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We consider Byzantine Agreement in the fully asynchronous network model with t < n/3 corruptions out of n players. An important

challenge in this field is to develop efficient protocols, measured in the total number of bits communicated. We present the first

consensus protocol with quasilinear complexity that achieves the following three desirable properties: responsiveness with optimal

latency, optimistic fast track, and strong unanimity. To date, none of these three properties has been achieved with subquadratic

complexity.

Our protocol uses the leader-based framework, which proceeds in phases in which a single player is designated as the leader for

that phase. Our key insight is that previous constructions that achieve some of the three properties implicitly require the leader to

prove knowledge of certain signed messages from sufficiently many (2t + 1) distinct players. We observe that, up to now, proving this

knowledge was done by naively forwarding these messages to all players, resulting in quadratic communication. We formalize these

proofs for the first time, with two novel abstractions that we refer to as “proof of recency” (PoR) and “proof of exclusivity” (PoE).

We are able to use recent results on communication-efficient zero-knowledge protocols to directly instantiate these proofs with

constant size, and as a result, obtain a consensus protocol with quasilinear complexity. Due to the generality of our techniques,

we are able to directly improve existing constructions. In particular, we can improve the latency of HotStuff (PODC’19), which is

implemented in Facebook’s Libra, from 7 to 5 messages before output, and even to 3 in optimistic executions, while preserving a

worst-case quasilinear complexity. Our protocol uses standard cryptographic assumptions and only requires a public-key infrastructure,

in contrast to the trusted setup required in HotStuff.

Of independent interest, we show that both the PoR and PoE functionalities can also be obtained by interactive protocols, using

any threshold signature scheme in a black box manner, while keeping optimal latency and the complexity linear in n, at the cost of

one of several possible tradeoffs regarding complexity and responsiveness.

Finally we provide halting in finite time with both external validity and linear complexity, in the amortized regime over long input

values.

1 INTRODUCTION

The problem of consensus is the oldest and most studied task in distributed systems [LSP82; Ben83; DLS88]. The

challenge is for n players to agree on some common information, in the presence of an adversary that may cause some

of the players to behave arbitrarily. Recently, consensus has gotten a surge of popularity due to the introduction of

blockchain [Bad+17; GKR20].

We regard the problem of Byzantine Agreement, where n = 3t +1 players want to agree on some value in the presence

of a malicious adversary that adaptively corrupts up to t of them. Each of the players inputs a value, and the goal is for

the honest (i.e., non-corrupted) players to output the same value (consistency), while also ensuring that if each player

has the same input value, then this value will be outputted (weak unanimity). Byzantine Agreement is closely related to

the problem of fault-tolerant state machine replication, which is used in decentralized cryptocurrencies and can be seen

as an ordered sequence of consensus instances [Lam98; CL99].

We assume the players are connected through an asynchronous network controlled by the adversary, that may

inspect all messages, and arbitrarily alter, reroute, drop, delay, or replay them. Our protocols require an established
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public-key infrastructure (PKI), and by employing this we may without loss of generality assume the integrity and

authenticity of messages, although they may still be dropped or delayed. The challenge of consensus in an asynchronous

network is that an honest player may receive messages that cause it to output, but afterwards become isolated from the

network. From the point of view of the other players, the player might have been corrupted, so they cannot wait to

hear from it to output. The other players have no means of knowing which messages the isolated player received, thus

they must find an indirect way to infer its output value.

A common framework to achieve consensus in an asynchronous network is to designate one player as leader, and

have each player communicate only with the leader [Lam98; CL99; Gol+18; Yin+19]. If the leader is honest and the

network is not blocked, this allows the honest players to efficiently obtain consensus. To deal with the possibility of a

corrupt leader, the protocol operates in subsequent phases where a new leader is elected in each phase.

In this paper, we focus on three highly desirable properties of consensus protocols, while our objective is to minimize

the total number of bits communicated by the players.

Responsiveness with optimal latency. Once the players enter and remain in a phase with an honest leader, the

players should output a value as soon as possible. Concretely, each player outputs within the actual network

delay of 6 consecutive messages exchanged between itself and the leader, once this situation occurs.

Optimistic fast track. Even though an adversary may delay output for an arbitrary amount of time, we do wish for

the output to be produced as soon as possible in absence of any adversarial behavior. Concretely, each player

outputs within 2 consecutive messages from the start of the protocol if all players are honest and have the same

input.

Strong unanimity. Despite all honest players having the same input value, with weak unanimity it can happen that

the players still output a different value. Therefore we want: if all honest players have the same input value, then

this value will be outputted.

To date, no protocol has been presented that achieves any of these three properties with a subquadratic (in the

number of players) number of bits communicated. We detail the state of the art of each of these open questions in

Section 1.3.

1.1 Main result

We present the first leader-based consensus protocol that achieves responsiveness with optimal latency, optimistic

fast track, and strong unanimity, with a quasilinear complexity in the number of players, thus proving the following

theorem.

Main Theorem 1. Consider n = 3t + 1 players of which t are malicious, in the leader-based model. Then there exists

a consensus protocol that has responsiveness with optimal latency, optimistic fast track, and strong unanimity, with a

worst-case O(n logn) total bits sent by all honest players per phase. The protocol requires no trusted setup (beyond PKI) nor

distributed key generation.

To achieve this result, we build upon previous protocols that realize these three properties albeit with quadratic

communication complexity. Our key insight that allows us to bring down the required communication, is that these

protocols implicitly require the leader to prove knowledge of signed messages with certain properties from sufficiently

many (2t + 1) distinct players. We observe that, up to now, proving this knowledge was done by naively forwarding

these messages to all players, resulting in quadratic communication. We formalize these proofs for the first time, and

introduce two novel abstractions.
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The first is a “proof of recency” (PoR), where the leader of phase ϕ proves that a specific earlier phase ϕmax is the

most recent one in which at least 2t + 1 players reported they saw a message of a certain form (called a “lock certificate”,

details will be explained in Section 3). In practice, this translates to providing a combined range proof for 2t + 1 values,

where each player sends a signed message of the most recent phase in which they saw a lock certificate. The second is a

“proof of exclusivity” (PoE), in which the leader proves knowledge of 2t + 1 authenticated values from distinct players,

where only one designated value v may occur strictly more than t times.

With the formalization of these proofs in hand, we use recent results from [AC20; ACF20; ACR20] on communication-

efficient zero-knowledge protocols to directly instantiate these proofs with logarithmic size. Although the short

proofs could be instantiated from a trustless circuit-based zero knowledge protocol [Ben+19], this approach has two

inefficiencies. First, the large circuit of a hash function leads to both large proofs and a painful implementation process.

Second, [Ben+19] gives an unspecified polyloд(n) size. In contrast, [ACR20, §7] provides a much shorter and explicit

tool for proving knowledge of signed messages whose values satisfy predicates.

There are some hurdles in applying [ACR20, §7] to our context: it allows providing predicates denoted as “RF ”, which

consist of: knowledge of k = 2t + 1 signed messages from distinct signers out of n, such that a public relation of the

form: F (w1, . . . ,wn ) = 0 is true, when applied on n values of messages, but of which the n − k values wi outside of

the set of the k signed messages can be chosen arbitrarily by the prover. As observed in Section 5.1, this freedom of the

prover can be easily get around, to obtain a PoR on the 2t + 1 actual values signed. A slightly more delicate case is

realizing the PoE. In Section 5.2 we achieve this using 3 proofs of the above form RF , which the prover “binds” together

by committing to 3 respective sets of indices of signers, which it proves disjunct.

Due to the generality of our techniques, we are able to directly improve existing constructions. In particular, our

protocol improves the latency of HotStuff ([Yin+19], PODC’19), which is implemented in Facebook’s Libra, from 7 to 5

messages before output, and even to 3 in optimistic executions, while preserving a worst-case quasilinear complexity.

Furthermore, we only use standard cryptographic assumptions and a public-key infrastructure, in contrast to the trusted

setup required in HotStuff.

1.2 Extensions and Elementary Alternatives

First, from our main result Main Theorem 1 we first derive several immediate consequences and extensions. (i) we

note that the latency gain of our methods compared to [Yin+19] also directly allows us to reduce the latency of the

state-of-the-art randomized consensus of [AMS19]. (ii) by amortization of our succinct proofs we are able to achieve

n log(log(n)) amortized complexity over multiple instances. (iii) we provide optimizations in the regime of sequential

executions, which is commonly referred to as state machine replication.

Second, our main advanced contribution is to provide an alternatives to our direct zero-knowledge construction.

Namely, we buid weaker-but-sufficient variants of PoR and PoE from any threshold signature scheme (TSS) in an

entirely black box manner, and show how to obtain an efficient consensus protocol still with complexity linear in n. This

comes at the cost of either sacrificing responsiveness, or accepting an additional complexity overhead in the bit-length

of the inputs.

At first, such alternative constructions seem hard to achieve, since the statements to be proven (PoE and PoR) apply

to many messages (2t + 1), which are possibly all different, whereas a TSS applies to identical messages. We resolve

this using interactive protocols. The broad idea is that, upon receiving 2t + 1 possibly different declarations, the leader

“cooks” ad-hoc predicates and requests players to send signed statements that their inputs satisfy those predicates. These
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further interactions create a new problem of making the latency suboptimal, but we resolve this by making the key

observation that leader can safely deliver his proofs two messages later than in the baseline protocols from Section 3.

Third, we deal with halting: the property that the players can stop sending messages in finite time. So far our

protocols guarantee output in finite time, but not halting. Halting is achieved in [Nay+20] with linear bit complexity,

when amortized over long input values, but at the cost of sacrificing the additional desirable “external validity” condition

[Cac+01, Def 4.1], which is desirable in the use case of state machine replication. We solve this issue in Appendix E.2.

1.3 Related work

1.3.1 Reponsiveness with optimal latency, linear bit complexity in the worst case and optimal adversary bound. The

protocol of [Yin+19] is responsive, but at the cost of a worst case latency of 8messages delay for an honest leader, instead

of the optimal 6.
1
In contrast, the protocol of [AGM18, p. v1] achieves this optimal latency, but it suffers from another

limitation. Namely, as pointed out in [Yin+19], that protocol is not responsive: the leader of a new phase is instructed to

wait for some fixed delay ∆, irrespective of the current network delays, before it can send new messages. Notice that

the recent preprint [Jal+21] follow-up of [Yin+19] claims to present a consensus protocol, in the same asynchronous

leader-based model, with both optimal latency and responsiveness. However, in their Algorithm 1 (described in their

Section V), the leader is instructed to forward to every player the concatenation (denotedAssQC) of n− t = 2t + 1 signed

messages, each message content being denoted “QC”. These QC have a priori different values, so they are not amenable

to being compactified with a threshold signature. Indeed a threshold signature applies only to identical messages. Thus,

they have quadratic bit complexity.

1.3.2 Strong unanimity with overall linear complexity. the only known consensus protocol in our model that achieves

strong unanimity is [Abr+20a, §6.1 long version]. It has quadratic complexity, which follows from the fact that all

players in this protocol are notified of the inputs of n − t players. We describe this issue in a self-contained manner in

Section 3.2, where we denote by D this set of n − t signed inputs.

1.3.3 Fast track with overall linear complexity. All consensus protocols to date with either a fast track, or strong

unanimity, have quadratic bit complexity of communications per phase: [Lam02; MA05; Kur02; Kot+09; Cle+09; Aub+15;

GV10; Abr+20b; KTZ21]. The question of achieving fast track with subquadratic bit complexity, even without requiring

responsiveness, was still open up to now. It was raised by the authors of the (nonresponsive) unpublished protocol

[AGM18]
2
. Let us also point out the fact that enabling a fast track in consensus that is not necessarily of optimal length,

also poses challenges: see [Abr+17; SK19a; SK19b] for safety or liveness violations in such published protocols.

Disambiguation: linearity of the fast track of [Gol+18], versus the overall quadratic bit complexity of [Gol+18]. The

“SBFT protocol” [Gol+18] has a fast track (although in a suboptimal 3 rounds, instead of the optimal 2). During this fast

track, the bit complexity of communications is linear ([Gol+18, §E]). However, from the beginning of the second phase

onwards ([Gol+18, §G]), the protocol has communication which is quadratic in the number of players. This is due to

the fact that a new leader in [Gol+18] forwards a large set of n − t signed messages to every player, in order to justify

safety of his proposed value. We actually observe in Section 3.3 that this bottleneck can be brought back to the issue of

1
Optimality of this 6 message delay is shown in [Ram20, Theorem A’].

2
In [AGM18, v1, March 2018, §8]: “One question left open by this work is whether linear phase-change is possible for BFT protocols with speculatively

fast tracks. In all the known methods [MA05; Kur02; Kot+09; Cle+09; Aub+15; GV10], we can achieve a linear reduction, either by applying LVC [linear

phase change], or by using threshold signature schemes (as demonstrated in [Gol+18]). However, combining the two to get linear-over-linear reduction is

not obvious.”
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strong unanimity. A way to see this is: consider as “input bits” the votes (possibly the empty vote) that players cast in

the fast track. Then, safety when adding a fast track is equivalent to strong unanimity with respect to these “input bits”.

Disambiguation: most fast tracks considered have one more message delay, but still have overall quadratic bit complexity.

Most of the protocols cited above are cast in the “state machine replication” setting. There, the inputs are distributed

in an additional preliminary message, by the possibly malicious leader (or an external “proposer” or “client”). This is

why the fast track considered in these papers is weakened since it has one more message delay. However, all of these

protocols have the same quadratic complexity bottleneck as soon as the second phase starts.

1.3.4 Transparent setup. Transparent setup means that no prior interaction between players nor trusted dealer of keys

(as in [KSM20; Sho00; Rob20]) is required before the protocol starts. Recall by contrast that modern efficient randomized

consensus protocols with subquadratic communication either require correctly generated secret keys ([Abr+19; CPS19])

and/or a public random string (e.g., a “genesis block”) appearing after the keys are published ([Dav+18; CM19; CPS19;

CKS20; Blu+20]). The only exception is the recent [BCG20a] in a synchronous setting, which also uses proofs of

knowledge of signatures, which are left unspecified (SNARKs with linear extractor), unlike ours which are fully explicit.

1.3.5 Synchronous setting. The recent [MR20] achieves amortized linear communication complexity in the synchronous

setting, but has suboptimal adversary bound t < n/2−ϵ . Likewise, the synchronous [BCG20a] has suboptimal adversary

bound t < n/3 − ϵ .

1.4 Roadmap

We start by defining the network, cryptographic and computational models and the desired properties in Section 2. To

describe our protocol, we first need to introduce some existing techniques used by previous protocols. We do so in

Section 3 by presenting simplified versions of previous protocols. This presentation leads up to showing how short

proofs of knowledge of many different messages can be plugged directly in these simplified versions, as a drop-in

replacement of the previous solution of naively forwarding these many messages. We carry out this idea in Section 4,

where we prove correctness of the protocols obtained. We finish the proof of Main Theorem 1 by showing how to

instantiate the proofs in Section 5. In Section 6 we give an overview of our alternative instantiations using merely

elementary methods, which are found in more details in the appendices. We then give an overview of other implications

and extensions of Main Theorem 1, especially halting in finite time, which are detailed in the appendices.

2 MODEL AND DEFINITIONS

Network. We assume the parties are pairwise connected through a fully asynchronous network controlled by the

environment, that can arbitrarily alter, reroute, drop, delay or replay the messages.

Cryptographic model. All parties and the adversary are polynomially-time bounded interactive Turing machines.

We assume an established public-key infrastructure, such that each player can register at most one public key to a

public bulletin board before the start of the protocol, and where no assumption is made on how the players generate

their keys. This plain model, that does not require any additional trusted setup, is referred to as the “bulletin board PKI

model” in [BCG20a; TLP20], and it is closely related to the ideal functionality denoted as ”FCA” in Canetti [Can04]. We

rely on the standard cryptographic hardness assumptions of a bilinear group equipped with a pairing, such that the

Decisional Diffie-Hellman assumption holds in both groups. The adversary may adaptively corrupt up to t parties,

learning their entire internal state and obtaining full control.
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Consensus. The functionality we aim to achieve is the “consensus form” of Byzantine Agreement, which is as follows.

Each player is given an input value in some finite rangeV = {0, . . . ,V } by the environment, and they may at some

point in the protocol output some value, also in V . A consensus protocol requires the following two properties to hold:

Consistency. No two honest parties output different values.

Weak unanimity. If all n parties are honest and have the same input, then this is the only value that they can possibly

output [Lam83].

Weak unanimity has the inherent limitation that, even if all honest parties have the same input value, they may still

output another value if the adversary corrupts a player. Therefore, the following stronger property is often desired.

Strong unanimity. If all honest players have the same input value, then this is the only possible output.

Leader-based model. Our consensus protocol proceeds in phases, that are coordinated by an abstract entity called

the synchronizer (as in [Nao+19; NK20; BCG20b], also known as the “pacemaker” in [Yin+19]), that is controlled by

the environment. The synchronizer maintains a monotonically increasing phase counter ϕ, along with the identity of

one player Lϕ per phase that it designates as the leader for that phase. Every time ϕ increases, it sends (ϕ, Lϕ ) to each

player using messages on the network. We say that a player “is in phase ϕ” if ϕ is the highest phase number that he was

notified of so far.

We now make the definitions of responsiveness and optimal latency from the introduction slightly more precise.

Optimal latency. A consensus protocol has optimal latency if, when the pacemaker remains blocked on the same

phase ϕ forever with the leader Lϕ of this phase being honest, then every player is guaranteed to output within

6 consecutive messages exchanged between himself and the leader, from the point where he is in this phase.

If the consensus protocol has neither fast track nor strong unanimity, then the latency is required to be 5messages

in the first phase ϕ = 1 (but still 6 in the higher phases).

Responsive. A distributed protocol is responsive if players have no instruction to wait for some fixed delay at any

point in the protocol.

For communication complexity, we count the total number of bits sent by all honest players in the same phase, and

then take the worst case over all phases and all executions.
3

3 BASIC PROTOCOLS

In this section, we show some existing consensus protocols in simplified form, to demonstrate the techniques we build

upon to achieve our results. Meanwhile, we provide some insight on why no protocol to date was able to achieve our

three desired properties with a quasilinear complexity.

3.1 Responsiveness with optimal latency

We start off with a basic consensus protocol that we denote “PBFT” [CL99], that only achieves weak unanimity. PBFT

has a quadratic complexity, but it does achieve responsiveness with optimal latency. Modifications to the protocol allow

for a linear complexity, at the cost of losing this property. Afterwards, we show how to first add strong unanimity,

and then fast track, and see where the quadratic complexities for these properties come from. Looking ahead to the

3
Under some weaker synchronizers than ours, many players may possibly believe that they are the leader of the same phase ϕ . For the sake of simplicity

we do not consider such models.
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next section, there we will take the blueprint from these protocols, and replace the parts with quadratic complexity by

defining two novel proof abstractions.

PBFT is illustrated in Figures 1 and 2. The protocol distinguishes between the first phase ϕ = 1 and the later phases

ϕ ≥ 2.

We first describe the first phase in Figure 1. Note that we have modified the original PBFT by replacing all-to-all

messages by a “star-shaped” communication pattern: each message is either leader-to-all or all-to-leader. This makes

sense given that we ultimately want to achieve subquadratic complexity.

The protocol in Figure 1 is responsive: players in phase ϕ = 1 perform these actions as soon as they can, and the

numbered steps do not denote any waiting instruction. The three message types that need to be made explicit in the

specification of the protocol below, are denoted as: propose, lock vote, decision vote. Recall that a threshold signature

scheme (TSS), in the strong sense achieved by [ACR20, Theorem 4], provides for any integer k , an algorithm aggregatek

which, on input a set S of k messages of identical contentm, signed by any k out of n players, outputs a proof of

knowledge of such a set S. Unless specified differently, we will always consider a threshold k = 2t + 1. For clarity, we

denote as lock certificate the data type output by aggregate2t+1 on messages of type lock vote, and decision certificate

the data type output by aggregate2t+1 on messages of type decision vote.

1 Propose Leader Lϕ multicasts propose(vL,ϕ) where vL is his input.

2 Lock vote Every player, upon receiving propose(v,ϕ) from Lϕ for the first time (for whatever value of v),

replies with a signed “lock vote(v,ϕ)”.

3 Lock certificate Leader Lϕ , upon receiving lock votes for the same (v,ϕ) from 2t + 1 distinct players,

aggregate2t+1 them into a “lock certificate(v,ϕ)”, which he multicasts.

4 Decision vote Every player, upon receiving from Lϕ a lock certificate(v,ϕ) for the first time (for whatever

value of v), replies with a signed decision vote(v,ϕ).

5 Decision certificate Leader Lϕ , upon receiving decision vote(v,ϕ) from 2t + 1 distinct players for the same v ,
aggregates2t+1 them into a decision certificate(v), which he multicasts.

6 Output Upon receiving a decision certificate for v , a player outputs v .

Fig. 1. Star-shaped PBFT: first phase ϕ = 1, with linear bit complexity.

Let us examine the communication complexity of the first phase. Honest players send a total number of bits equal to

O(n) times the size of a threshold signature. The latter can be implemented in constant size assuming a trusted setup

([Sho00; Rob20]), or log(n) size without ([ACR20]). Therefore, we have quasilinear complexity overall. The star-shaped

PBFT that we consider has the same latency of 5 in the first phase as [AGM18], and it is also considered in [Gol+18] under

the name “linear PBFT”. However, in [Gol+18] they describe only the first phase, and as we see now, the complexity

issues instead arise in the higher phases ϕ ≥ 2.

The higher phases of PBFT are described in Figure 2. Informally, PBFT enforces that every player casting a

lock vote(v,ϕ), must be “convinced” beforehand that no decision certificate(vj ) for any conflicting vj , v could

have been formed in a lower phase ϕ j < ϕ (and thus possibly have been output by some isolated player). The first

step towards this “convincing” is that we have the invariant that, as soon as some value vj is output in some phase

ϕ j , then there exist at least t + 1 honest players who received a lock certificate(vj ,ϕ j ), and thus at least one of them

will be present in any set of 2t + 1 players. But still, after many phases, many values vj can possibly have been in

lock certificates.
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The simple but strict rule chosen by several previous works (e.g., [AGM18]) is that players lock vote(v,ϕ) only if

the leader exhibits to them a lock certificate(v,ϕmax), such that they did not receive any lock certificate(vj ,ϕ j ) for a

conflicting value vj in a higher phase ϕ j > ϕmax. The drawback is that, mechanically, output is then only guaranteed

in phase ϕ if the leader collected the highest seen lock certificate(vj ,ϕ j ) of all honest players.4 This is why the leader

must wait for the eventual upper bound on the network delay ∆ before processing his mailbox. Notice that [Yin+19]

has a related rule that achieves responsiveness but not optimal latency, since it requires two extra messages delay.

The rule of PBFT is more permissive, since players have the right to lock vote even if they saw a higher lock certificate

for a conflicting value. This is the key to achieving responsiveness with optimal latency. Here, the mechanism is that the

leader must append some additional data, that we refer to as justifications, to convince players to lock vote a value. The

downside of this is that it has quadratic bit complexity
5
, since these justifications include the set of propose messages

from 2t + 1 players, which are each of size Ω(n). The higher phases for PBFT are described in Figure 2, with the first

phase from Figure 1 taken as a baseline.

0 Report Every player Pi sets ϕi ≤ ϕ the highest phase up to ϕ for which he saw a lock certificate, or ϕi = 0 if

he did not see any so far. He sends to the leader Lϕ : a report(ϕi ,ϕ), appended with a lock certificate(vi ,ϕi ) if
ϕi ≥ 1.

1 Propose The leader Lϕ , upon receiving a set R of report messages from 2t + 1 distinct players, then, letting
ϕmax be the highest ϕ j in R:

(i) If 0 < ϕmax, he received at least one lcmax := lock certificate(vmax,ϕmax). Then he multicasts

propose(vmax,ϕ), appended with the justification {R, lcmax}.

(ii) Otherwise, he sets vL equal to his own input and multicasts propose
(
vL,ϕ) appended with the justification

R.

2 Lock vote Every player, upon receiving propose(v,ϕ) from Lϕ for the first time (whatever v is), appended

with a set R of report messages relative to ϕ, checks if:

(i) Either the justification comes with some lock certificate(v,ϕ ′) for v , such that ϕ ′ is the highest ϕ j reported
in R;

(ii) Or the justification contains no lock certificate, and all messages in R report ϕ j = 0;

then if the check passes, he replies with a signed lock vote(v,ϕ).
Steps 3-6 are as in Figure 1.

Fig. 2. Star-shaped PBFT: modified steps for the higher phases ϕ ≥ 2. Step 1 Propose has quadratic bit complexity.

Consider any phase satisfying the definition of optimal latency from Section 2, or more generally, any phase with an

honest leader and such that the network allows for 6 consecutive messages to be delivered before the synchronizer

issues a new phase. In such a phase, all honest players will output. The intuition of the proof of safety of the consensus

of Figure 2 follows from the three following invariants. We will give a formal proof of our improved protocol, that has

the same formal structure, in Lemma 3 and Proposition 2.

• A set R of report messages from 2t + 1 distinct players who all claim: to be in phase ϕ, and to have seen no

lock certificate in a higher phase than ϕmax; is a proof that strictly less than t + 1 honest players did see a

lock certificate in a phase ϕ ′ such that ϕmax < ϕ ′ ≤ ϕ, while being in a phase up to ϕ.

4
See the discussion in [Yin+19] (“Livelessness with two-phases”).

5
We followed the optimisation (credited to [CL02] in the v2 18 Oct 2018 of [Yin+19], under the name “Strawberry”) where the leader does not append

every reported lock certificate(vj , ϕj ) to the set R that he forwards to players.
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• In turn, this proves that no decision certificate is formed relatively to any higher phase ϕ ′ up to ϕ: ϕmax < ϕ ′ ≤ ϕ,

in the whole execution.

• Thus if a lock certificate is formed in ϕ for some value, then, no decision certificate is formed for any conflicting

value between ϕmax and ϕ, in the whole execution. And thus no conflicting honest output is triggered between

those two phases. We repeat the argument with ϕ := ϕmax and conclude by backward induction.

3.2 Adding strong unanimity

To obtain strong unanimity, we do not take as a baseline the protocol of [Abr+20a, §6.1 long version]. Although it does

achieve strong unanimity, it is constructed on the top of [AGM18], which as we discussed above is incompatible with

our goal of responsiveness with optimal latency.

Instead, we are going to achieve strong unanimity by constructing on the top of our baseline consensus protocol

(with weak unanimity) of Figure 2. Following [Abr+20a, §6.1 long version], we add to our baseline a Report step even

when ϕ = 1, then an additional justification in 1 Propose, and finally an additional check in 2 Lock vote.

0 Report Each player Pi , in addition to the report message, also sends to the leader Lϕ a signed declare(vi ),
where vi is its input.

1 Propose The leader Lϕ , upon receiving a set R of report messages from 2t + 1 distinct players, then, letting
ϕmax be the highest ϕ j in R:

(i) If 0 < ϕmax, then proceed as in Figure 2 under 1 Propose (i).
(ii) Otherwise, let D be the set of 2t + 1 declare messages received. The leader selects any value vL reported in

D, such that no conflicting value v ′ , vL is reported identically in t + 1 messages of D. Then he multicasts

propose
(
vL,ϕ) appended with the justification D (in addition to the justification R).

2 Lock vote Is enriched in case (ii): in addition to the previous check on R, every player also checks that no

other value v ′ , v is reported identically in t + 1 messages or more in the set D. Then if this checks also passes,

he replies with a signed lock vote(v,ϕ).

Fig. 3. Adding strong unanimity: modifications for all phases ϕ .

Now, the leader also forwards to every player a set of messagesD, which itself is of bitsize Ω(n). This is the quadratic

communication bottleneck of strong unanimity, which comes in addition to the previous one of Figures 1 and 2, which

was due to the size of R. The check performed in 2 Lock vote guarantees that honest players do not cast a lock vote

for some value v if there exists a conflicting value vun , v which is a unanimous input of all honest players, thus

guaranteeing strong unanimity. We shall later formalize this in Lemma 21.

3.3 Adding optimistic fast track

Building on our consensus protocol with strong unanimity of Figure 3, we can obtain a fast track with a tight 2 rounds as

follows. Upon receiving messages declare(v) for the same value v from all the n = 3t + 1 players (denoted “fast quorum”

in the folklore), then the leader Lϕ aggregates3t+1 them into a fast dec cert(v) that he multicasts to players. This

enriched construction brings no overhead in bit complexity nor latency. To prove the safety of it, note that our baseline

construction of Section 3.2 has strong unanimity, and so we only need to prove that: no (isolated) player can output some

value v from a fast dec cert(v), while another player outputs a conflicting value v ′
from a (slow) decision certificate(v ′).

But a fast dec cert(v) exists only if all 2t + 1 honest players have the same input v . Thus by strong unanimity of the

previous protocol, no decision certificate(v ′) for a conflicting value can ever be formed. Therefore, we see that having
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enforced the strong unanimity previously in Section 3.2, then brings linear complexity of a fast track for free. We shall

formalize this later in Lemma 19.

For the sake of completeness, notice that enforcing strong unanimity brings an unavoidable one extra message of

delay (6 messages total) in the first phase ([Ram20, B’]). Despite this, enforcing a plain 2 messages fast track would also

result in this extra delay, so this explains the definition of optimal latency in Section 2. However, this extra delay can

be circumvented by instead directly enforcing an alternative fast track in 3 messages (Definition F.1), as described in

Appendix F.2.3 (following [Gol+18]).

4 TWO NEW PROOFS

In this section, we modify the protocol from the previous section by replacing implicit proofs by a drop-in black box

proof of knowledge. Concretely, we define two proofs of knowledge. One proves knowledge of the set R, which we call

a proof of recency (or “PoR”), since the leader wants to prove the report from ϕmax is the most recent. The other proves

knowledge of the set D, which we call a proof of exclusivity (or “PoE”), where the leader wants to show that v is the

only possible value that was declared strictly more than t times.

In the next section, we will show how to instantiate these proofs, but for now we treat them as a black box. We

show how to modify the protocols to incorporate these proofs, then prove consistency, in Proposition 2, and strong

unanimity, in Proposition 4, of the protocols given these proofs.

4.1 Proof of Recency (PoR)

Let us recall the specification of a k-threshold signature scheme (TSS) achieved by [ACR20, Theorem 4]. Considering a

baseline digital signature scheme, a k-threshold signature is a proof of knowledge of signatures issued by k out of n

distinct players, on the same messagem. Notice that this new definition of a TSS, introduced by [ACR20], implies the

classical one.

The TSS of [ACR20, Theorem 4] proves knowledge of k out of n signatures of the type [Ben04]. Their sizes in

O(log(n)), and has the property that k can actually be dynamically chosen by the prover. Notice that, in order to

instantiate the black box proofs later in Section 4, then our first (warmup) step will be to re-build explicitly a TSS, this

time from “structure-preserving” baseline signatures instead of [Ben04].

All the protocols of this section will use a (2t + 1)-TSS (except the fast track, which also requires a (3t + 1) −TSS . We

use the following data types:

- Let 0 ≤ ϕi ≤ ϕ. We have messages of type report(ϕi ,ϕ). If 0 < ϕi , this message is concatenated by a lci =

lock certificate(vi ,ϕi ) for some vi ∈ V .

- For a value v ∈ V and phase number ϕ ∈ {1, 2, . . . }, we have messages of type propose(v,ϕ, justifs), lock vote(v,ϕ)

and decision vote(v,ϕ). The justifs are additional data, to be made precise below, that are needed when ϕ ≥ 2 to make

honest players accept the propose message as valid.

- We take lock certificate(v,ϕ) to be a (2t + 1)-threshold signature on lock vote(v,ϕ), while decision certificate(v) is a

(2t + 1)-threshold signature on decision vote(v,ϕ) for any fixed ϕ.
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- Our specialized definition for a proof of recency in this context, is a proof of knowledge of the following:

PoR(ϕmax,ϕ) =
{(
Public Input : ϕmax ≤ ϕ ; I Know : I ⊂ {1, . . . ,n} of size 2t + 1

and R =
{
report(ϕ j ,ϕ) signed by Pj , ∀j ∈ I

})
SuchThat :

{
ϕ j ≤ ϕmax for all j ∈ I

}}
(1)

In some cases we also refer to the corresponding existential statement: we say that ϕmax satisfies the recency predicate

up to ϕ, if such a set R exists. So a PoR(ϕmax,ϕ) proves in particular that ϕmax satisfies the recency predicate up to ϕ.

We denote the size of a PoR as |PoR|.

- Finally, the justifs mentioned above are as follows. If vmax , ⊥, then it is a PoR(ϕmax,ϕ) together with lci =

lock certificate(vmax,ϕmax), where ϕmax > 0. If vmax = ⊥, then it is a pair {PoR(0,ϕ),⊥}.

0 Report If ϕ = 1, then skip directly to step 1 Propose.
Every player Pi sets ϕi ≤ ϕ the highest phase up to ϕ for which he saw a lock certificate, or ϕi = 0 if he did not

see any so far. He sends to the leader Lϕ a report(ϕi ,ϕ), appended with a lock certificate(vi ,ϕi ) if ϕi ≥ 1.

1 Propose The leader Lϕ : if ϕ = 1, then he sets v equal to his own input and multicasts propose
(
v, 1,⊥

)
.

Otherwise, upon receiving valid report messages from 2t + 1 distinct players, then, letting ϕmax be the highest

ϕi received, builds a PoR(ϕmax,ϕ) out of them.

(i) either ϕmax > 0, thus he received at least one lcmax := lock certificate(vmax,ϕmax). Then he multicasts

propose
(
vmax,ϕ,

{
PoR(ϕmax,ϕ), lcmax

})
;

(ii) or if ϕmax = 0, he sets v equal to his own input and multicasts propose
(
v,ϕ,

{
PoR(0,ϕ),⊥

})
.

2 Lock vote Every player P , upon receiving a valid propose
(
v,ϕ, justifs

)
from Lϕ for the first time in ϕ, replies

with a signed lock vote(v,ϕ).

3 Lock certificate Leader Lϕ , upon receiving 2t + 1 lock votes for the same (v,ϕ), issues from them a

lock certificate(v,ϕ), which he multicasts along with v .

4 Decision vote Every player, upon receiving from Lϕ a lock certificate(v,ϕ) for the first time in ϕ (for whatever

value v), replies with a signed decision vote(v,ϕ).

5 Decision certificate Leader Lϕ , upon receiving decision vote(v,ϕ) from 2t + 1 distinct players for the same

value v , issues from them a decision certificate(v), that he multicasts to the players.

6 Output Upon receiving a decision certificate for v , a player outputs v .

Fig. 4. Star-shaped PBFT with a PoR: any phase ϕ , with communication complexity O (n |PoR |).

Since an honest leader sends to each player messages containing a constant number of threshold signatures and

PoRs , we have that the worst case bit communication complexity per phase is in O(n) times the largest size of a PoR

or a threshold signature. Optimal latency follows directly from the ability to build a PoR out of any set R of 2t + 1

well-formed report messages.

We now show the protocol of Figure 4 has consistency. As a preliminary remark, note that no two distinct

lock certificates relative to the same phase can be formed. Indeed, honest players send at most one lock vote per

phase.

Proposition 2. The protocol of Figure 4 has consistency.

Proof. Consider an execution in which some value v is output by some player. Thus a decision certificate(v) has

been formed in this execution. Thus there exists a phase ϕv such that 2t + 1 distinct players in this phase signed a

decision vote(v,ϕv ). Without loss of generality, take ϕv to be minimal with respect to this condition, and suppose that
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another valuev ′
is output by another player in the same execution. Then there exists a phase ϕ ′ such that 2t + 1 distinct

players in this phase signed a decision vote(v ′,ϕ ′). By the minimality assumtion, we have ϕv ≤ ϕ ′. By the preliminary

remark, we thus have ϕv < ϕ ′. But this is impossible, by Lemma 3. □

It remains to prove the following key invariant, which also holds in [CL99].

Lemma 3. Suppose in some execution of the protocol there exists a phase ϕv in which 2t +1messages decision vote(v,ϕv )

are sent for some value v . Then there does not exist any other value v ′ , v and higher phase ϕ ′ > ϕv in which some honest

player sends a lock vote(v ′,ϕ ′) for v ′
.

Proof. Suppose by contradiction that such a higher phase ϕ ′ > ϕv exists. Let ϕ ′ be minimal, i.e. ϕ ′ is the smallest

phase number with ϕ ′ > ϕv in which there is some honest player that sends a lock vote for a conflicting value v ′ , v .

This implies that in phase ϕ ′ this honest player must have received a PoR(ϕlc ,ϕ
′) with respect to some phase ϕlc < ϕ ′,

along with a lock certificate(v ′,ϕlc ).

Observe that we cannot have ϕv < ϕlc (< ϕ ′), since then the existence of a lock certificate(v ′,ϕlc ) would imply

that an honest player sent a lock vote for the value v ′ , v in phase ϕlc > ϕv , which contradicts the minimality of

ϕ ′. We also cannot have ϕv = ϕlc , since the existence of decision vote(v,ϕv ) in particular implies the existence of a

lock certificate(v,ϕv ), which in turn implies a lock vote from at least t + 1 honest players for v; but we cannot in the

same phase have at least t + 1 honest players simultaneously voting for a conflicting value v ′ , v .

So ϕlc < ϕv . But this also cannot be true, since at least t + 1 honest players sent a decision vote for v in phase ϕv , so

they all received a lock certificate for v in phase ϕv , which means in a subsequent phase ϕ ′ > ϕv there cannot exist a

PoR(ϕlc ,ϕ
′). This contradiction finishes the proof. □

4.2 Adding the Fast Track and Strong Unanimity

We now solve the quadratic bottleneck for strong unanimity. Then, as sketched in Section 3.3 and formalized in

Lemma 19, this will automatically give us an optimistic fast track. Our method is to introduce a second proof that we

call a proof of exclusivity (PoE). Recall from Section 3.2 that each (honest) player is asked to issue signed declare(v)

messages only for his own input valuev . A proof of exclusivity forv ∈ V attests thatv satisfies the following exclusivity

predicate, with respect to some execution of our consensus protocol: there exists a set D of 2t + 1 declare(vi ) messages

issued by distinct players, such that there is no single other value v ′ , v which is identically present strictly more than

t times in these 2t + 1 declared input values vi .

If v satisfies the exclusivity predicate, this guarantees that if the honest players have a unanimous input, then this

input equals v (see Lemma 21). Our generic definition for PoE(v) is the following proof of knowledge:

PoE(v) =
{(
v ; I Know : I ⊂ {1, . . . ,n} of size 2t + 1, and D =

{
declare(vj ) signed by Pj , ∀j ∈ I

})
SuchThat : no value v ′ , v is such that

{
vj = v

′
for t + 1 or more indices j ∈ I

}}
(2)

Therefore, a PoE(v) proves in particular that v satisfies the exclusivity predicate. Given this black box, we only need

to add the modifications of Figure 3 to the protocol of Figure 4, where we use PoE(vL) as a drop-in replacement for

sending players the set D. In Figure 5, we show the modifications to the protocol compared to Figure 4.

Proposition 4. The consensus protocol of Figure 5 satisfies strong unanimity.
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0 Report Each player Pi , in addition to the report message, also sends to the leader Lϕ a signed declare(vi ),
where vi is its input.

1 Propose The leader Lϕ , upon receiving a set R of report messages from 2t + 1 distinct players, sets ϕmax to be

the highest ϕ j in R, and:

(i) If ϕmax > 0, proceed as in Figure 4, 1 Propose under (i).
(ii) Otherwise ϕmax = 0, and let D be the set of 2t + 1 declare messages received. The leader selects any value

vL reported in D, such that no conflicting value v ′ , vL is identically reported in any t + 1 messages of

D. He constructs a PoE(vL) out of D. Then he multicasts propose
(
vL,ϕ) appended with the justification

PoE(vL) (in addition to the justification PoR(0,ϕ), as in Figure 4).

2 Lock vote When a player validates the justifications in a received message propose
(
v,ϕ, justifs

)
, if the justifs

include a PoR(0,ϕ) (so we are in case (ii) of 1 Propose), then justifs should also include a valid PoE(v) for the
value v proposed.

(Then if the checks pass, he replies with a signed lock vote(v,ϕ), as in Figure 4)

Fig. 5. Adding strong unanimity to the protocol of Figure 4, with O (n |PoE |) complexity.

Proof. Suppose by contradiction that all honest players have (unanimously) the same input vun. Consider any

value v ′ , vun. We will show show that no lock certificate(v ′,ϕ ′) can be formed in the execution (and a fortiori no

decision certificate for v ′
).

Without loss of generality, let us consider ϕ ′ to be the smallest phase in the execution where a lock certificate(v ′,ϕ ′)

is formed for a value v ′
different from vun. Thus at least t + 1 honest players must have sent a lock vote(v ′,ϕ ′) in 2

Lock vote of phase ϕ ′.
First, note none of these honest players could have received justifs that include a PoR(0,ϕ ′), since, by the condition

in step 2 Lock vote, it must be the case that they also received a valid PoE(v ′). But, existence of such a PoE(v ′) for

a conflicting value v ′ , vun violates unanimity of vun [in case this fact is not already obvious for the reader, it is

formalized in Lemma 21]. Therefore, all these t + 1 honest players received a PoR(ϕlc ,ϕ
′) for 0 < ϕlc < ϕ ′, together

with a lock certificate(v ′,ϕlc ). We conclude the proof by noting this contradicts the minimality of ϕ ′. □

5 IMPLEMENTATION OF PoR AND PoE

From a high level view, we could instantiate the proofs of PoR and PoE by assuming any digital signature scheme,

consisting of three algorithms (keygen, sign, verify), and assuming that the proofs needed are produced by the trustless

general-purpose succinct proof system of [Ben+19] used as black box. But what we actually do in this section, is that

we leverage the specific proof scheme of [ACR20, §7], whose comparative advantages are stressed in the introduction.

For convenience we consider that all messages are encoded as signed pairsmi = (w, tag) ∈ Zq × Zq for q a prime

number (of cryptographic size), which is the same message space as in [ACR20, §7]. In practice the valuesw encode the

(variable) message content, while tag typically encodes the protocol instance number, the type of message etc. Players

are meant to send messages to the prover, appended with their signature σi := sign(ski , (wi , tagi )) computed from

their secret key ski . The proofs developed in this section prove knowledge of many (k) such correctly signed messages

that have the same tag, such that these signed values {wi }i (jointly) satisfy some predicate.

5.1 PoR

Let us first generalize Equation (1), that defines a PoR, into a proof of knowledge of k signed messages whose values

belong to some publicly-known interval [a,b]. This generalization will allow us a similar proof to efficiently implement

a PoE. For this latter purpose, we also need that the prover communicates a succinct commitment (of the type used
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in [ACR20]) QI = Com(I), of the set I of indices of players that sent the messages for which the prover claims

knowledge.

Overall, this gives the following relation. Let a ≤ b ∈ Zq and k ∈ {0, 1 . . . ,n}. We define:

Rk ,[a,b],tag :=
{(
Public Input : k, tag, a ≤ b,QI ; I Know : I ⊂ {1, . . . ,n}, {(wi , tag),σi }i ∈I

SuchThat : wi ∈ [a,b] and verify

(
pki , (wi , tag),σi

)
= true and |I | = k and QI = Com(I)

}
. (3)

The PoR(ϕmax,ϕ) in the protocol of Figure 4 can then be instantiated as a Rk ,[a,b],tag with k := 2t +1, where (wi , tag)

encodes a report message in phase ϕ as follows: the (variable) witnesswi is the highest phase ϕi in which player i saw

a lock certificate; while the public parameters are: a := 0 ≤ b := ϕmax and the tag which encodes the phase ϕ of the

report message, and various other unspecified metadata that uniquely identify the message, such as an identifier of the

protocol instance. Finally, implementation of a succinct proof for Rk ,[a,b],tag follows as a particular case of the relation

RF of [ACR20, §7]. This is not directly obvious since RF deals only with proving relations of the form F (w1, . . . ,wn ) = 0

on n values, of which the n − k values outside of the indices of the k signed messages can be chosen arbitrarily by the

prover. Nevertheless, we claim that, choosing the specific boolean function F :=
{
wi ∈ [a,b] ∀i ∈ [1, . . . ,n]

}
, induces

RF = Rk ,[a,b],tag. The reason, tautological, is that RF implies knowledge of a set I ⊂ [1, . . . ,n] of k indices and of

messages (wi , tag) signed by players in I, such thatwi ∈ [a,b] for all i ∈ I.

5.2 PoE

We now define PoE in a slightly more specific way:

Definition 5. A proof of exclusivity PoE(v) of a value v , relative to a publicly-known fixed tag, proves knowledge of

one of the two following:

(i) either of a set I ⊂ {1, . . . ,n} of t + 1 distinct indices, together with a signature from each player i ∈ I for the

message (v, tag);

(ii) or, of a set S of 2t + 1 messages (vj , tag) for j = 1, . . . , 2t + 1, each signed by a distinct player, such that no value

vj repeats identically in strictly more than t messages.

It is straightforward to show that this definition is equivalent to an instantiated form of the previously defined PoE

of Equation (2), and we do so in Lemma 20.

We now discuss the implementation. If the prover is in the easy case (i), where some value v repeats t + 1 times,

then he proves this with a (t + 1)-threshold signature on v . This again can be seen as a proof of knowledge: see the one

without trusted setup of [ACR20, §5], that t + 1 values vi are equal to the public v .

In what follows we assume that the prover is in the hard case (ii), in which no value repeats more than t times in S.

The prover orders the numbers vi in S by increasing value, with repetitions, and separates them into three consecutive

disjunct nonempty subsets of values (with repetitions): S = S
low

∪ {vmed } ∪ S
high

, all of cardinalities at most t . To

construct S
low

, he starts from the lowest value (which repeats less than t times by definition), then adds progressively

values (with repetitions) in S
low

. He stops just before adding the next value, called vmed (the median), such that adding

vmed with repetitions would have led to have strictly more than t values in S
low

. Then he constructs the set S
high

containing all remaining values. S
high

cannot be empty, otherwise this would mean that vmed repeats at least t + 1

times.
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Let I
low

, Ivmed and I
high

be the (disjunct) subsets of indices in [1, . . . ,n] of players from which the values in

S
low

∪ {vmed } ∪ S
high

originate. They are encoded as binary vectors of length n. Denote |S
low

|, |{vmed }|,
��S

high

��
the

cardinalities of these sets of players. The prover finally outputs: the public inputs |S
low

|, |{vmed }|,
��S

high

��
, along with

succinct commitments to the sets of indices: QI
low

, Q,Ivmed and QI
low

. He appends the follwing proofs of knowledge:

1) of binary vectors of length n: I
low

, Ivmed and I
high

, containing exactly |S
low

|, |{vmed }|,
��S

high

��
coordinates

equal to 1, such that these 1 coordinates do not overlap. In particular, this implies disjunctness of the sets encoded

by I
low

, Ivmed and I
high

.

2) (i) a proof of R |S
low

|,[0,vmed−1] with public input equal to commitment QI
low

, (ii) a proof of R |S
high

|,[vmed+1,q−1]

with public input equal to commitment QI
high

, (iii) and a |{vmed }|-threshold signature on vmed

Proposition 6. This output is a PoE(v).

Proof. We already addressed the easy case, thus we consider only the output of the hard case, as described just

above. The data provided by the prover implies knowledge of some set S′
of 2t + 1 pairs (vi , tag) signed by distinct

players, such that the values vi are organized in three nonempty subsets which are disjunct, each of cardinality at most

t . Thus no value vi repeats identically more than t times in S′
. □

6 ELEMENTARY ALTERNATIVES AND ADVANCED CONTRIBUTIONS

We now show some of the direct implications of Main Theorem 1, and discuss some extensions to the theorem. This

section is intended to give a high-level overview of our more advanced results. Most details can be found in the

appendices.

6.1 Re-building our Program from Threshold Signatures Only

The use of succinct arguments of knowledge, that we used in the proof of Main Theorem 1, is new in the consensus

literature. Thus, we now want to demonstrate that Main Theorem 1 can be alternatively obtained, although less

efficiently, from solely threshold signatures (TSS), which are a mainstream tool in the area. We consider an arbitrary

threshold signature scheme (TSS), instantiated twice (with threshold t + 1 for one instantiation and threshold 2t + 1 for

the other). Let us denote by |TSS| the size of a threshold signature, and by V the size of the domain of inputs for the

TSS. For instance, the TSS without trusted setup of [ACR20, Thm 4] has |TSS| = O(logn) size.

In the theorem 7, apart from |TSS| which may be not constant, the other coefficients of the terms in n are constant

and not specified. These coefficients are clear from the protocols detailed in the appendices. Typically, they are equal to

the number of steps (6), times the size of a message content, e.g., such as the short strings of characters specified in the

PoR protocol of §D. Instantiating with optimized elementary interactive protocols for PoR and PoE, of independent

interest, introduced below in Sections 6.1.1 and 6.1.4, we have:

Theorem 7. In the leader-based consensus model with n = 3t + 1 players of which t are malicious, there exists a

consensus protocol that has responsiveness with optimal latency, optimistic fast track, and strong unanimity, with a worst-

case O(nϕ + n logV |TSS|) total bits sent by all honest players in any given phase ϕ. If responsiveness is not required, the

bit complexity per phase reduces to O(7n |TSS|).

6.1.1 First ingredient: Preserving Optimal Latency Despite Delaying the Proofs. Recall in Figure 3 we showed how to add

strong unanimity to our star-shaped PBFT protocol with quadratic complexity. Here, the leader is required to forward

the set D of messages in 1 Propose, immediately after receiving it. To obtain linear complexity and achieve Main
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Theorem 1, we replaced forwarding D by sending a short proof (PoE) for the value vL that he proposes. Therefore, the

leader does not have the time to perform further interaction with players before issuing this proof in step 1 Propose.
Interestingly, a tweak on the baseline protocol of Figure 3, allows the leader to use 2 more messages delay to issue

this PoE, now in step 3 Lock certificate. We describe this tweak in Figure 6. Note that this tweak does require the

leader to already in 1 Propose “commit” to the same value vL for which he is going to deliver a proof later in 3 Lock
certificate.

Likewise, for the case of Theorem 7 where responsiveness is not required, we start this time from the baseline

consensus protocol of [AGM18], which we recall in Appendix B.3.3. Then we apply the same tweak on it, enabling the

leader to issue a PoE two steps later: see Figure 8.

6.1.2 Second ingredient: weakening of Definition of PoE. To show the constructions that prove Theorem 7, we now

leverage the extra delays obtained previously. Precisely, we want to construct interactive sub-protocols with low

communication complexity, that enable the leader to output the required proofs (PoE and PoR) in a total maximum of 2

round trips. To enable efficient elementary sub-protocols, we will weaken the definition of a PoE(v) (from Equation (2))

into Definition 10). In particular it is not a proof of knowledge of a setD anymore. Anyway this weakened Definition of

a PoE(v) still guarantees that no other value than v can be the input of all honest players. So is enough for the purpose

of guaranteeing strong unanimity.

6.1.3 Third ingredient: interactive sub-protocols producing PoE and PoR of short sizes. For the case of Theorem 7 where

responsiveness is not required, the sub-protocol for PoE is presented in Appendix C.2. The PoE output by the leader has

size 5 |TSS|, which, combined with the 2 |TSS| bits of certificates sent by the leader to each player in a phase, results in

the stated complexity of 7n |TSS |. Interestingly, the baseline of [AGM18] that we chose in Section 6.1.1 does not require

a PoR and still having Optimal Latency. This is what enables this sharp communication complexity.

For the case of Theorem 7 where responsiveness is required, the responsive interactive sub-protocol is presented in

Appendix C.1. The PoE output has size logV |TSS| (V: the range of possible input values). Likewise, for usage in the

responsive consensus protocol, we provide a responsive elementary sub-protocol in Proposition 17 in Appendix D, that

enables the leader to output a PoR in one message delay. This sub-protocol requires players to send O(nϕ) bits in total,

and the bitsize of the PoR output by the leader is in O(|TSS|).

All those elementary constructions of PoE also handle External Validity, whose Definition is recalled in Section 6.1.4.

6.1.4 Extension: Handling External Validity. In Appendices B and C we discuss how to extend techniques to a consensus

protocol with external validity conditions (Definition 8, following [Cac+01, Def 4.1]) on the input and output values.

These conditions come into play for example when using consensus protocols to provide a functionality called “state

machine replication” (cf. [Lam98; CL99]). Namely, it is required that the output value is, in addition, appended with

some additional information, denoted as “certificate of validity” and noted π , such that π is returned as valid be some

efficiently computable public algorithm, denoted as QID . Concretely, these “certificates of validity” can be, e.g., a proof

of work on the value, or the signature of some entity, denoted as “client”, on the value. Certificates can be delivered to

players by the Environment at any point in the protocol, and can be forwarded by players to each other. In the External

Validity setting, some players may not start with a valid certificate on their input value, if not start with no input at all.

Optimal Latency of leader-based consensus is then narrowed (Definition 9) to phases where: either a honest leader

knows a valid value, or at least t + 1 honest players have an input with a valid certificate (so the leader is guaranteed to

be declared at least one of them). We handle this extra difficulty in Appendix B and Appendix C.
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As a slight variation on these specifications of External Validity, notice that, in some use-cases (e.g. [CL99]), one

could want to guarantee output in finite time, even in situations where strictly less than t + 1 honest players would have

a valid certificate on their input. We formalize in Lemma 23 a possible add-on to protocols, without communication

overhead, that guarantees the output of a default value in these cases, that does not come with a valid certificate (thus

this violates External Validity).

6.2 Halting in Finite Time and External Validity, with Amortized Linear Complexity Over Long Values

Halting in Finite Time with Amortization over Long Values, by [Nay+20]. So far our protocols do not guarantee

that players can stop playing protocol (this action being denoted as “Halting”) in finite time after they all output.

Only the latency to when he outputs is guaranteed. Guaranteeing halting would require that players who received

a decision certificate, forward it to all other players, so they can stop taking part to the protocol. So these all to all

messages bring us back to quadratic complexity in n, and linear in the bitlength ℓ := log |V| of the values. The general

compiler introduced [Nay+20, Figure 4] transforms any consensus with output in finite time, into one Halting in finite

time and a communication complexity which is amortized when ℓ is large. Namely, if the baseline consensus has

linear complexity, then the compiled one has n2O(1) + nℓ complexity. So that when ℓ is large we recover our linear nℓ

complexity.

Incompatibility with External Validity. However this compilation comes at a cost: if we are in the situation where not

all honest players would have the same input, then this compiler may well force them to output some default value

⊥. Rephrased in the notations of [Nay+20, Figure 4]: a player is “happy” if value output by the baseline consensus

(performed on hashes) is his input value. Then, if some honest players are not happy, the compiler may arbitrarily

enforce the output ⊥. Technically, this is due to a subroutine of Consensus on being “happy” or not. But ⊥ is not

valid. Since this happens even if all players have a valid output, then, this does not satisfy the traditional “external

validity” requirement of [Cac+01, Def 4.1] (or as in [AMS19, Lemma 23 of full paper]). Recall that this traditional

requirement is that players output in finite time if they all start with valid inputs. As a remark, notice that these

traditional requirements for output are themselves much stronger than our Definition 9. Nevertheless, the compiler is

not compatible with these narrow traditional requirements.

Fortunately, it turns out that leader-based consensus protocols can escape this problem, thanks to a variation on the

compiler of [Nay+20] that we provide in Appendix E.2.

6.3 Direct Consequences and Extensions of the Main Result

6.3.1 Reducing the Latency of the state of the art Leaderless Asynchronous Validated Consensus (“VABA”) of [AMS19].

The protocol of [AMS19] consists in running n instances of a variation of the consensus of [Yin+19] in parallel, one for

each player playing the role of a leader. In detail, our phase of the execution of the protocol is denoted there as Proposal

Promotion, while the local variables denoted ϕi in [AMS19, Algorithms 5 6] correspond to our highest lock certificate

seen by player i in our notations. Then players elect a leader a posteriori. The consensus of Main Theorem 1 can be

used as a drop-in replacement for [Yin+19]. This is detailed in E.1. This results in a first phase in 5 messages delay (no

fast track nor strong unanimity is needed in their case), instead of 7. Then is the first elected leader is dishonest or the

network not initially fast enough, this results in higher phases in 6 messages delay instead of 8.

6.3.2 Amortization of Bit Complexity over Multiple (Ordered) Instances In Parallel. In the use-case of consensus of

[CL99], denoted as “state machine”, players are executing an ordered sequence of consensus instances. But in case
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where many consecutive leaders do not enforce any output, then pending executions of these instances pile-up. As a

result, a leader of some phase ϕ in Figure 2 at step 1, receives not one set R, but as many sets Rj as pending instances

of consensus that the players are executing in parallel. This is handled in [CL99] by having the leader handle separately

each instance in step 1 (even if he concatenates them in a single message for each player). As a result, applying Main

Theorem 1 to this naive approach in M instances of PoR in parallel, would result in a total O(Mn log(n)) bits sent.

However, the proof system of [ACR20] that we use, being in logarithmic size in the circuit to be proven, thus enables

to compress M instances of proofs in a total bitsize O(n log(Mn)). The only incompressible cost that remains is the

public parameter vmax of each of theseM instances, that need to be communicated to players, which represents a total

constant size O(M). The same applies to PoE.

6.3.3 Other Trivial Consequences. In Appendix F.2 we consider direct application of our short proofs to linearize

complexity of most of the protocols considered in 1.3.3. These consensus, presented under the name“state machine

replication”, offer degraded properties. The degraded properties are: no strong unanimity and a weakened fast track

(Definition F.1), of 3 messages delays instead of 2. This degradation, which thus escapes the impossibility [Ram20, B’],

enables in return latency of 5 in the first phase instead of 6. We illustrate how short PoR/PoE also apply and make these

protocols communication-linear. These applications also carry in a straightforward manner over the protocols with

suboptimal adversary bounds considered in [DGV05; Gol+18], where n = 3t + 2c + 1 for c ≥ 1. Notice the nice recent

improvement n = 3t + 2c − 1 in [KTZ21], which however applies only to weakened fast tracks with one more message

delay. Recall that they enable the benefit, in the above degraded context, to enable a fast track even if c players are

corrupted (whereas c = 0, for the optimal adversary bound n = 3t + 1 considered elsewhere in this paper).

We also briefly review how the technique denoted as “pipelining”, introduced in [Yin+19], applies. Namely, in the

regime of multiplie ordered sequences (denoted as “state machine replication”), this consists in having the same leader

manage simultaneously two instances of consensus: the last steps of the former, and the first steps of the latter. This

multiplies throughput by 2, but at the cost of making both instances fail if the leader is corrupted.
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A MODEL: REMINDERS AND COMPLEMENTS

A.1 Messages lost or not, output vs Halting

For Simplicity: Messages are Always Delivered. Recall that the definiton of optimal latency from Section 2 assumes for

simplicity an asynchronous network where messages cannot be lost. Main Theorem 1 and Theorem 7 (the proof of

responsiveness) are stated with respect to this definition.

Adapting The Model To Account For Lost Messages. We could alternatively have supposed that messages sent can be

lost, and restrict the definition of optimal latency to phases where no message is lost. The proofs of Main Theorem 1

and Theorem 7 hold unchanged in such an alternative model.

Halting. In the definition of optimal latency, we only consider latency until players output. However we do not

guarantee that they can halt in finite time. In our fully asynchronous where messages are never lost, then one could

enforce halting by having a player which outputs to propagate the decision certificate to all players then halt. However

these additional instructions trigger quadratic message complexity. This is why we do not consider halting neither in

Main Theorem 1 nor Theorem 7. However we will consider halting in Appendix E.2, and consider the bit comlexity

amortized over long values. But we will so only in models in which messages cannot be lost. Indeed, in models in which

messages can be lost, then achieving halting in finite time is anyway not possible by [DLS88, §4.2 Remark 2].

A.2 Partial Synchrony

For the specific case of the last nonresponsive claim of Theorem 7, on nonresponsive protocols (supported by the

protocols Appendix B.3.3 and Appendix C.2), we will depart from our fully asynchronous model and consider instead

partial synchrony. This assumes a publicly known delay ∆, and some unknown time GST, after which messages are

delivered within ∆.

Messages can be Lost. All the partially protocols considered (in Appendix B.3.3 and Appendix C.2) hold even under

the specific model [DLS88, §3.1] where messages can be lost before GST. Thus also our nonresponsive claim of Theorem

7.

Except if halting is required. However, to apply the amortized halting techniques of Appendix E.2, then, as mentionned

in A.1, one needs to assume in addition that messages are never lost, such as in the model [DLS88, 2.3 3)].

B HANDLING EXTERNAL VALIDITY AND PoE WITH INTERACTIONS

B.1 Handling for External Validity Conditions

In the remainder of this paper we make the choice to generalize a bit the constructions in order to handle Consensus

with External validity, as defined in [Cac+01, Def 4.1] or as in [AMS19, Lemma 23 of full paper]. That is, we assume that

an external entity QID may deliver to some honest players “certificates of validity” of their inputs values (that they can

forward). We say that a value is valid relatively to a player and some point in time, if at this point of time, this player has

a certificate of validity for this value. We accordingly restrict the definition of Consensus, as provided in §2, in order to

handle External Validity conditions on the output:

Definition 8 (Consensus with External Validity). - Consistency: unchanged

- External Validity: Players do not output a value which is not valid
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- Consensus Weak Unanimity (CWU): If all n players are honest and all start with the same initially valid input;

then, this is the only value that they can possibly output;

- Consensus Strong Unanimity (CSU): If all honest players start with the same initially valid input; then, this is

the only value that they can possibly output;

Notice that loosening the CWU and CSU enables players to output some value even if all honest players have the

same Nonvalid input. We will explain after Definition 10 how tolerating this loosening enables in return better liveness

in protocols, i.e., that guarantees output even if no honest player has a valid input. By contrast, if one wanted to strictly

enforce External Validity without this loosening, then Consensus protocols may be simply modified by requiring players

to ignore any message containing a value not valid. This is formalized by the easy Lemma 22. In practical use cases,

players may possibly gossip validity certificates they received. Players encode their input by 0 if it is not valid, i.e., if

they have not seen so far a validity certificate for it. They also encode it as 0 if they have no input at all.

Further Comments on Definition B.1. The behavior of QID is arbitrary, it may possibly issue certificates only for a

subset of input values. The Lemma 23 provides a path, with linear complexity, to output a default value in finite time

when ≤ t honest players have a valid input. But allowing this path comes at the cost of possibly violating External

Validity.

Restriction of output guarantee (Liveness) under External Validity.

Definition 9 (Optimal Latency). The additional restriction is made to the definition of optimal latency in §2 that

output is guaranteed in a phase only if this phase further satisfies: Either the (honest) leader of this phase knows a

valid value (which holds in particular if his input is valid) Or at least t + 1 honest players have a valid input.

Notice that this Liveness Definition is more demanding than the traditional requirement ([Cac+01, Def 4.1] or as in

[AMS19, Lemma 23 of full paper]), where output is not guaranteed as soon as one player does not have a valid input.

For use cases where an output would be anyway required when the above conditions (honest leader valid input of t + 1

honest players valid input) are not satisfied, then Lemma 23 brings a mechanism for output in any case, which matches

the optimal latency criterion specified in §2. This mechanism works whatever the inputs. In return, it comes at the cost

of possibly violating External Validity in the situation where t honest players or less have a valid input.

B.2 Useful Weakening of Exclusivity Predicate. Extension with the Special Nonvalid Value

For our Elementary constructions in Appendix C, we define a new Exclusivity Predicate which is weaker than (or equal

to) the previous one of (2). This new Definition, which we denote Exclusivity-uni, is the property implied from Equation

(2) by Lemma 21. Namely, a value in D satisfies Exclusivity-uni if no other value is a unanimous input of honest players.

However, this weakened (or equal) new Definition of still states exactly the property of PoE which is used in the proof

of Proposition 4. So we can still use PoE satisfying this new Definition in the protocols. In addition, we also extend this

new (a priori weakened) definition to handle the Nonvalid 0 value, in addition to values in V = [1, . . . ,V ]. This results

in the following more intrinsic Definition, that will be of particular help for handling negative statements of players.

Definition 10 (PoE). We say that v ∈ {0} ∪V satisfies the Exclusivity Predicate, if and only if, no other value v ′ ∈ V

is a unanimous input of honest players. A PoE(v) is a proof that v satisfies the Exclusivity Predicate.
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This Definition is none other than the previously mentionned Exclusivity-uni, extended to 0. For simplicity we

dropped the terminology Exclusivity-uni. Indeed we do not consider the previous one (Equation (2)) anymore in the

subsequent elementary methods.

Motivation of Definition 10, in link External Validity (Definition 8). Definition 10 concretely enables a leader who

would receive 2t declarations of having 0 input, to nevertheless issue a PoE(vL) on his own (valid) input. This tolerance

in Definition 10 is the key to achieving better liveness in our protocols (Definition 9), than demanded traditionally

([Cac+01, Def 4.1] or as in [AMS19, Lemma 23 of full paper]). Notice that this new Definition 10 coincides onV with

the previously mentionned Exclusivity-uni. Precisely, the (iii) in the Lemma below points that we can well have that

the value 0 is a unanimous input of all honest players, and still, this implies that every value v ∈ V also satisfies the

Exclusivity Predicate. Protocols below will indeed allow this situation where a PoE(v) can be formed for v , 0 and v

output, even if 0 is unanimous among honest players. Indeed, tolerating this situation does not contradict anymore

Weak Unanimity nor Strong Unanimity, as weakened in the new Definition 8.

Lemma 11. (i) Let v ∈ {0} ∪ V = [0, . . . ,V ] be any value. The data, for each value v ′ , v , of t + 1 signed messages

from distinct players stating that they do not have input v ′
constitutes a PoE(v).

(ii) Let v ∈ {0} ∪ V be any value. The data of t + 1 signed messages from distinct players stating that they have input v

constitutes a PoE(v).

(iii) A PoE(0) constitutes a PoE(any): that is, that all values in [0, . . . ,V ] satisfy Exclusivity (Definition 10)

(iv) A PoE(w) along with t + 1 statements of not having inputw , constitutes a PoE(any).

Proof. (i): the data implies that for each value v ′ , v inV , there is at least one honest player who does not have v ′

as input, so v ′
cannot be unanimous among honest players. (ii): follows from (i): t + 1 declarations to have input v

also constitute in particular, for every other v ′ , v , t + 1 declarations of not having input v ′
. (iii): Apply (i) to every

v ∈ V . (iv) the second data proves thatw is not an unanimous input of honest players, but the first data proves thatw

is the only possible unanimous honest input. So finally no value can be a unanimous input. Thus all values satisfy the

exclusivity predicate. □

B.3 Handling for Interactive 4-move PoE in the Consensus of Main Theorem 1

B.3.1 PoE with 4-move Interaction. We still consider n = 3t + 1 players, of which t are maliciously corrupted. We

denote L a distinguished player which we call “prover”. Each player (which includes the prover) starts with an input

value vi ∈ {0} ∪ V = [0, . . . ,V ] with respect to this protocol.

Definition 12. We call a 4-move interactive Responsive PoE protocol a protocol between L and the players (including

himself), such that if L is honest and: If Either L knows a valid value Or at least t + 1 honest players have a valid input,

then:

- After a round-trip of messages, L outputs a valid value v . We denote this select(v).

- Then after another round-trip he outputs a PoE(v) in the sense of Definition 10.

We call a 4-move interactive Not Responsive PoE protocol, in the model [DLS88, p. 3.1], a protocol played round-by round,

and such that the previous properties hold only if it is initiated after GST (that is: if synchrony holds).

Notice that this implies by construction that the value v that the prover selects, then for which he outputs a PoE(v),

satifies the Exclusivity Predicate (Definition 10).
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B.3.2 Adding the Fast Track and Strong Unanimity to Consensus of Figure 4: Figure 6.

Overview of the differences with Figure 5. Recall that obtaining Strong Unanimity (and thus subsequently Fast Track

by Lemma 19) in Main Theorem 1, follows from enrichening the baseline Consensus of Figure 4, with a PoE, as specified

in Figure 5.

However to use an interactive 4-move PoE protocol (Definition 12), then the leader cannot deliver anymore a PoE

when at 1(ii) of Figure 4. Thus we make the following alternative enrichening instead. If the leader is in case (ii) of 1,
then he selects the value vL from the ongoing PoE protocol (Definition 12). He then propose(vL), but is not anymore

required to append a PoE(vL) to it. Players then accept a propose(v) at 2(ii) without anymore checking if a PoE for it is

attached. This leaves the leader two more rounds to issue a PoE for the value vL he proposed. This delay corresponds

to the two last moves of the interactive 4-move PoE protocol (Definition 12).

The leader then outputs a PoE at 3, which he appends to the lock certificate(v). Players now accept a lock certificate(v)

in 4 only if it comes appended with a PoE(vL). Likewise, players now report in 0 only lock certificate(vi ) that come

appended with a PoE(vi ). Subsequently, the leader now takes in consideration reported lock certificate(vi ) in 1 only if

they come appended with a PoE(vi ).

Formalization: Figure 6. The above additional validity requirement for a lock certificate is incorporated in the new

enriched data structure which we denote as full lock certificate. A full lock certificate(v,ϕ) is the concatenation of: a

(2t + 1) threshold signature on messages lock vote(v,ϕ) (which is what was denoted as lock certificate(v,ϕ)), and of a

PoE(v).

Sketch proof of this alternative enrichening. Responsiveness with Optimal Latency. If in case 1(ii) then it is guaranteed

by Definition 12 that, as soon as the leader has a valid input or t + 1 honest players have a valid input, then, the leader

will be able to select a valid vselect for which he will issue a PoE at step 3, and thus produce a decision certificate for

this value. If in case 1(i), then it is the case that the leader obtained a set R of report messages containing at least

one full lock certificate. Let full lock certificate(vmax ,ϕmax ) be the highest, which he proposes to players, it is then

guaranteed that the players will accept it thanks to the PoR certifying that ϕmax ) as the highest phase reported in R.

The leader can then subsequently issue a lock certificate then a decision certificate.

Consistency is unchanged, since the baseline Figure 4 is unchanged.

Strong Unanimity Results from a adaptation of the proof of Proposition 4. Namely: replacing lock vote(ϕ ′,v ′) by

decision vote(ϕ ′,v ′) in the proof, then shows that we have the guarantee that a decision certificate(v), is formed only

if v satisfies the Exclusivity Predicate. In the context of the new weakened Definition 10, then this directly implies that

Strong Unanimity holds. [Otherwise if this is a PoE for the old Definition of Equation 2, then this implies a fortioti the

new Definition 10 by Lemma 21.]

B.3.3 Nonresponsive Consensus with Strong Unanimity Used with Interactive Proofs: Fig. 8.

The Baseline Nonresponsive consensus of [AGM18]: Figure 7. We still consider a (2t + 1)-TSS. We consider the model of

[DLS88, p. 3.1] with parameter ∆.

Adding Strong Unanimity using Interactive PoE: : Figure 8. We enrich Figure 7 with Strong Unanimity, with exactly

the same tweak (2-message delay before delivering PoE) as in Figure 6.

The only addition to the proof is on Optimal Latency, and consists in noticing that, after GST, then a leader under

the conditions of Definition 12 is indeed guaranteed to select in 1, and to issue a PoE in 3.
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0 Report Every player Pi sets ϕi ≤ ϕ the highest phase up to ϕ for which he saw a lock certificate, or ϕi = 0 if he

did not see any so far. He sends to the leader Lϕ : a report(ϕi ,ϕ), appended with a full lock certificate(vi ,ϕi ) if
ϕi ≥ 1. He Initiates an instance of a 4-move PoE (Definition 12) with prover Lϕ , with respect to his input value.

1 Propose The leader Lϕ , upon receiving a set R of report messages from 2t + 1 distinct players, then, letting
ϕmax be the highest ϕ j in R:

(i) either 0 < ϕmax , thus he received at least one flcmax := full lock certificate(vmax ,ϕmax ). Then he multi-

casts propose
(
vmax ,ϕ,

{
PoR(ϕmax ,ϕ), flcmax

})
;

(ii) or if 0 = ϕmax , then: If he selects a (valid) value vselect with respect to the ongoing 4-move PoE, then he

multicasts propose
(
vselect ,ϕ,

{
PoR(0,ϕ),⊥

})
; else does nothing.

2 Lock vote Every player P , upon receiving a valid propose
(
v,ϕ, justifs

)
from Lϕ for the first time in ϕ, replies

with a signed lock vote(v,ϕ).

3 Lock certificate Leader Lϕ , upon receiving 2t + 1 lock votes for the same (v,ϕ),

(i) if L already had a full lock certificate on v when he proposed it in 1, then he extracts from it the PoE(v);
(ii) Else this means that he selected v with respect to the PoE protocol, in 1. Thus, by Definition 12, he now

obtains a PoE(v).

He aggregates2t+1 the lock vote (v,ϕ), and appends them with the PoE(v) obtained in (i) or (ii) above, into

full lock certificate (v,ϕ) that he sends to the players.

4 Decision vote Every player, upon receiving from Lϕ a full lock certificate(v,ϕ) for the first time in ϕ (whatever

v), replies with a signed decision vote(v,ϕ).

5 Decision certificate Leader Lϕ , upon receiving decision vote(v,ϕ) from 2t + 1 distinct players for the same

value v , issues from them a decision certificate(v), that he multicasts to the players.

6 Output Upon receiving a decision certificate for v , a player outputs v (but continues the protocol)

Fig. 6. Adding Strong Unanimity to Figure 4 with 4-move Interactive PoE

C ELEMENTARY INTERACTIVE PoE

C.1 An elementary interactive Responsive PoE of bitsize O(log(V )|TSS |)

C.1.1 Warmup in the binary case. If the set of inputs is binary: {0} ∪ V = {0, 1, 2}, then the following is a responsive

PoE protocol in one step between players and a prover L. Let us consider a threshold signature τP with threshold t + 1.

0 Players send to L: their input xi , with the validity vertificate xi , 0, along with testifies signed with τ : “my input is

not 1”, resp, “my input is not 2”, and, accordingly, send both testifies when they have input 0.

1 Upon receiving 2t + 1 well-formed messages, then it must be that L received more than t + 1 identical copies of at

least one of those two testifies. Without loss of generality, suppose that he received t + 1 testifies for not having the

input 1. He aggregatest+1 the signatures (with τ ) into what we denote as a “¬1”.

(i) If he received 2, then by well-formedness of the message, this came with a validity certificate for 2, thus 2 is

valid. Also, ¬1 constitutes a PoE(2) by Lemma 11 (i). The prover then outputs 2 and this PoE(2).

(ii) Else if he received no 2, then it must be the case that he received 2t + 1 testifies of not having input 2. Which we

denote ¬2. Along with ¬1, this constitutes a PoE(any). Thus as soon as the prover knows a valid value (possibly

from receiving it from the players, which happens if at least t + 1 honest players have a valid input), then, let vL

be such a value, he outputs vL .



Malicious Security Comes for Free in Consensus with Leaders 27

0 Report If ϕ = 1, then skip directly to step 1.

Otherwise: Every player Pi sets ϕi ≤ ϕ the highest phase up to ϕ for which he saw a lock certificate, or ϕi = 0

if he did not see any so far. He sends to the leader Lϕ : a report(ϕi ,ϕ), appended with a lock certificate(vi ,ϕi ) if
ϕi ≥ 1. Leader Lϕ Waits for delay ∆.

1 Propose Leader Lϕ waits that ∆ finishes to elapse, unless ϕ = 1. He receives his messages.

(i) If he ever observed so far a lock certificate (w,ϕ ′), then he chooses the one with the highest phase number

ϕmax andmulticasts propose (vmax ,ϕ) for the corresponding valuevmax , appendedwith the lock certificate
(vmax ,ϕmax ))

(ii) else if he ever saw a valid value, then he chooses one vL which he multicasts propose(vL,ϕ). (Else, he does
nothing.)

2 Lock vote Every player P , when in phase ϕ and upon receiving a propose (v,ϕ) from Lϕ , possibly appended

with a lock certificate (v,ϕv ), then P accepts it if he has not seen any other lock certificate for a different w
with a higher phase number ϕw > ϕv (where by convention ϕv := 0 if no lock certificate is appended). In
which case P sends a signed lock vote (v,ϕ) to Lϕ .

3 Lock certificate Upon receiving 2t + 1 lock votes for the same (v,ϕ), the leader Lϕ .

4 Decision vote When in phase ϕ and upon receiving a lock certificate (v,ϕ) from leader L, a player P answers

by a signed decision vote (v,ϕP ).

5 Decision certificate Leader Lϕ , upon receiving 2t+1 decision votes for the same (v,ϕ), aggregates2t+1 them
into a decision certificate (v,ϕ), that he multicasts.

6 Output Upon receiving a decision certificate for v , a player outputs v (and continues the protocol).

Fig. 7. Nonresponsive consensus of [AGM18]

C.1.2 Protocol and Proof. Let us consider a threshold signature τP with threshold t + 1.

1 Report Each player P sends to L his value vP signed with τP , along with a validity certificate if it is not 0; plus, for

each bit bi of his value vP , one testify: “my i-th bit is equal to bi”, signed with τP .

2 Early termination or Select and Request Upon receiving 2t + 1 well formed messages, the prover L:

(i) If he received more than t + 1 times the same value v , then he aggregatest+1 those reports. This constitutes a

PoE(v) by Lemma 11 (ii).

(α ) either v is valid, in which case he outputs v and the PoE(v);

(β) or v is zero, in which case the PoE(v) constitutes a PoE(any) by Lemma 11(iii). Thus as soon as L knows a

valid value (possibly from receiving it from the players, which happens if at least t + 1 honest players have a

valid input), then, let vL be such a value, he outputs vL and the PoE(any).

(ii) Otherwise he constructs the “Frankenstein” valuew = (bi ) , such that for every i ∈ [1 . . . logV ], the i-th bit bi

ofw is the one which received the majority (so ≥ t + 1) of testifies. He aggregatest+1 each of those majority

declarations, with τ , to obtain logV threshold signatures: one for every bit bi ofw . Claim2: by Lemma 11(i), this

constitutes a PoE(w).

(α ) Ifw is a valid value which is reported in one of the 2t + 1 messages, then he directly outputsw , the validity

predicate and the previous PoE(w) then terminates. this constitutes a PoE(w). In particular ifw = 0, then

Lemma 11(ii) shows that this then constitutes a PoE(any).
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0 Report Every player:

(i) Initiates an instance of a (nonresponsive) 4-move PoE (Definition 12) with prover Lϕ , with respect to his

input value.

(ii) If any, sends to Lϕ the full lock certificate (w,ϕ ′) on a valuew with the highest phase number ϕ ′ that he
received so far;

1 Propose Leader Lϕ :

(i) If he ever observed so far a full lock certificate (w,ϕ ′), then he picks the one with the highest phase

number ϕmax , and multicasts propose(vmax ,ϕ) for the corresponding value vmax , appended with the

full lock certificate (vmax ,ϕmax )

(ii) Else, if in the ongoing execution of the PoE protocol, Lϕ selects a (valid) value vselect , then he multicasts

propose(vselect ,ϕ); Else does nothing.

2 Lock vote Every player P , when in phase ϕ and upon receiving a propose(v,ϕ) from Lϕ , possibly appended

with a full lock certificate (v,ϕv ), then P accepts it if he has not seen any other full lock certificate for a different
w with a higher phase number ϕw > ϕv (where by convention ϕv := 0 if no full lock certificate is appended).
In which case P sends a lock vote (v,ϕ) to Lϕ , signed with τ .

3 Full lock certificate Upon receiving 2t + 1 lock vote for the same (v,ϕ), the leader Lϕ :

(i) If L already had a full lock certificate on v when he proposed it in 1, then he extracts from it the PoE(v);
(ii) Else this means that he selected v with respect to the PoE protocol, in 1. Thus, by Definition 12, he now

obtains a PoE(v) from this protocol.

He aggregates2t+1 the lock vote (v,ϕ), and appends them with the PoE(v) obtained in (i) or (ii) above, into

full lock certificate (v,ϕ) that he sends to the players.

4 Decision vote When in phase ϕ and upon receiving a full lock certificate (v,ϕ), PoE(v)) from leader L, a player
P answers by a decision vote (v,ϕP ) signed with τP .

5 Decision certificate leader Lϕ , upon receiving 2t + 1 decision vote (v,ϕ) for the same value and the current

phase, aggregates2t+1 them (with τ ) into a decision certificate (v,ϕ), that he forwards to the players.

6 Output Upon receiving a decision certificate for v , a player outputs v (and continues the protocol).

Fig. 8. Partially synchronous consensus with Strong Unanimity using Interactive PoE

(β) Else, as soon as L knows a valid value (possibly from receiving it from the players, which happens if at least

t + 1 honest players have a valid input), then, let vL be such a value, he select(vL) and sends to the players

the question: “isw your input value ?"

3 Answer Upon receiving the question, each player P replies to L with the message “my input value is (resp. is not)w”

and signs it with τP .

4 Output Upon receiving 2t + 1 answers of players which do not contradict what they reported in 1. We have that

Claim4: at least t +1 of those answers say not to have inputw . L then aggregatest+1 the signatures of these negative

answers. By Lemma 11(iv), the data of these t + 1 negative answers, along with the previous PoE(w), constitute a

PoE(any). L then outputs vL , the validity certificate on vL and the PoE(any).

Proposition 13. This is a 4-move interactive PoE protocol (Definition 12), with bit complexity of communication

O(logV ) and producing a PoE of size O(logV |TSS |).
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Proof. The communication complexity is straightforward, and the size of the PoE output in 4 consists in: log(V )

aggregatedt+1 signatures on bits, plus one aggregatedt+1 signature of players declaring not to have inputw .

Let us now prove that the protocol satisfies Definition 12. We do so by justifying the inline claims in the protocol

that were not yet proven.

We first prove Claim2 made in 2(ii)(α ), which is a generalization of the previous warmup. For every valuew ′ , w , we

have that there exists a bit i at whichw andw ′
differ. The i-th aggregatedt+1 signature testifies that bi was present in

the input of at least t + 1 players. So in turn this proves that the i-th bit ofw ′
: 1 − bi , cannot be present in 2t + 1 input

values or more.

Let us finally justify the Claim4 made in 4, which will conclude our proof. What is to be shown is that, among the

2t + 1 noncontradictory declarations received in 4, we have at most t of them which can claim to have inputw . But

remember that none of the 2t + 1 players reporting in 1 declared to have inputw : indeed, otherwise, the prover would

have already terminated by 2(ii)(α ). So the only players who can report having inputw in 3 without contradicting their

Report received in 2, are precisely those whose report was simply not received by the prover in 2. Since we have no
more than t of such players, this is what was to be shown. □

C.2 A three-move PoE under partial synchrony with size in 5|TSS |

Let vmax be the highest input of honest players.

Theorem 14. The following protocol is a partially synchronous 4-move PoE protocol with overall log(n) log(vmax )

communication, and the PoE output has constant size, in log(vmax )).

Let τ = (τP ) be a t + 1 threshold signature scheme. The idea of the protocol is inspired from group testing [DH93]:

after receiving reported input values, the prover L sorts them in consecutive intervals Ij containing few enough reported

values. He then asks players to declare in which set Ij their values are not. Thus, unless we are in the easy case where

some value v was reported more than t + 1 times, L gathers many statements of membership in the complementary sets

Ij for every j: just as many overlapping negative joint bloodtests. The statements are hopefully all sufficiently numerous:

|Ij | ≥ t + 1 for every j to be gathered using threshold signatures, and yield a PoE(v) for all values v by Lemma 11. But

one could consider the bad case where, e.g. malicious players that reported set membership in the first round may not

talk anymore in the second, to the point that some |Ij | ≥ t + 1 condition does not hold anymore. Here, the key Claim

made in the final step of the protocol, and proven in Proposition 15 is that, when synchrony holds, then if enough

players escaped from some “fence” |Ij |, then t + 1 must actually have been caught by some singleton “fencepost” value

[aj ] in the first round, yielding a PoE(aj ).

1 Report Every player P reports his input vP (so: either valid, or 0) to L signed with τP .

2 Early termination or Select and Request If L receives t + 1 reports for the same valuev , then he aggregatest+1

those reports. This constitutes a PoE(v) by Lemma 11 (ii).

(α ) either v is valid, in which case he outputs v and the PoE(v);

(β) or v is zero, in which case the PoE(v) constitutes a PoE(any) by Lemma 11(iii). Thus as soon as L knows a valid

value (possibly from receiving it from the players, which happens if at least t + 1 honest players have a valid

input), then, let vL be such a value, he outputs vL and the PoE(any).

Else as soon as L knows a valid value (possibly from receiving it from the players, which happens if at least t + 1

honest players have a valid input), then, let vL be such a value. He select(vL) and continues as follows. Let vr ep be
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the highest reported input. L partitions the interval [0,∞[ into (at most 5) nonempty consecutive distinct intervals

Ij = [aj ,bj ] such that: the number |Ij | of values reported in Ij , with repetitions, is strictly smaller than t + 1. 6 More

details on the construction are given in Appendix C.2.1.

3 Testify Upon receiving the intervals, each P sends to L his input vP (possibly again) signed with τP , plus for every Ij

to which his value does not belong, a testify signed with τP : « my input is in the complementary Ij ». (For instance if

P has input 0, then he testifies for every interval Ij not containing zero.)

4 Output Claim: if synchrony holds from the beginning, and if L did not already terminate in 2, then it must hold that:

for every j, there exists more than t + 1 declarations of being in the complementary Ij .

Assembling each of these groups of declarations with τ , the prover then obtains in particular a PoE(any) by the (i) of

Lemma 11. [Indeed for every v ′ ∈ [1,vmax ], he has t + 1 declarations not to have input in the interval containing

v ′
.] He then outputs vL along with this PoE(any).

The Claim in 4 directly implies Theorem 14. Indeed either L terminates in 2, in which case he automatically outputs

a PoE for the value he selects. Or, he thus outputs in 4 a PoE (any), which constitutes in particular a PoE for the value

that he selected.

Now the Claim remains to be proven. The Claim follows directly from the following Proposition. Indeed the Claim

states that if alternative 1 of the Proposition does not hold, then alternative 2. So only the Proposition remains to be

proven.

Proposition 15. If GST holds from the beginning, then we have the following mutually exclusive alternatives:

(1) Either there exists a value aj such that L received more than t + 1 reports from different players to have input aj , so

that he early selects and outputs in "Select and Request".

(2) Or it holds that for all j, L receives more than t + 1 testifies from different players to be in the complementary Ij .

Proof. Let us assume that the first alternative does not hold: L did not collected t + 1 distinct reports for any value

v . So that he did proceed with constructing intervals Ij and requesting for testifies. Let us assume by contradiction that

the second alternative does not hold either: there exists a j such that in the testify round, less than t players testified to

be in Ij .

LetM be the set of players that L does not hear of in the report round: the “missing” ones, andm their number. So

that L receives 3t + 1 −m reports at the end of the report round. If synchrony holds, then all players in M must be

malicious. Note |Ij | the number of values received by L and reported to be in Ij (of course, players did not reported

explicitly to be in Ij , since the intervals were not constructed before the request round). And likewise |Ij | the number of

values reported to be in the complementary Ij . Thus for every j, we have

(4) |Ij | = 3t + 1 −m − |Ij |

Let us note D j the set of departures, that is, the set of players from whom L heard reports to be in Ij , but from whom

L does not hear of anymore in the testify round. Note dj their number. Then, the asumption is thus that

(5) dj ≥ |Ij | − t = 2t + 1 −m − |Ij |

6
Notice that he is always able to do so, because otherwise it must be the case that some value v is repeated t + 1 times or more, in which case he should

have already terminated in 2.
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Now, observe that under synchrony, all players in D j are malicious, and that by definitionM and D j are disjunct, so that

(6) t ≥ dj +m

Combining with the previous inequality, we get

(7) t ≥ dj +m ≥ 3t + 1 − |Ij | − t = 2t + 1 − |Ij |

and thus

(8) |Ij | ≥ t + 1

which contradicts the rule |Ij | < t + 1. □

C.2.1 Details on the construction (and why the number 5). The following explicit construction ensures our claim about

the log dependency in vmax . Let j = 1: b1 := ∞ and a1 be the smallest integer such that the number |I1 | of values

reported in Ij := [a1,b1[ is strictly smaller than t + 1. In particular a1 ≤ vmax : otherwise this would mean that the

number of dishonest reports is t + 1 or more. Then, repeat for all j ≥ 2 while bj := aj−1 − 1 ≥ 0: let aj be the smallest

positive integer such that the number |Ij | of values reported in Ij := [aj ,bj ] is strictly smaller than t + 1.

Let us illustrate a configuration of reported values such that it is necessary to cut it into 5 consecutive intervals.

Assume t = 2t ′ ≥ 4, and that the prover received 3t + 1 consecutive reported values (with repetitions), organized as

follows. |I1 | = t ′, I2 = [a2] repeated t
′ + 1 times,|I3 | = t ′, I4 = [a4] repeated t

′ + 1 times and |I5 | = t − 1.

D A PoRWITH SIZE |TSS |, PRODUCEDWITH O(nϕ) COMMUNICATION

As in Appendix B.2, we make here a weakened definition of PoR, compared to the Equation (1). This weakened definition

will allow elementary constructions, and still, it exactly addresses the property needed in the proof of Lemma 3 (ii).

Precisely, this Lemma (ii) it is the only place where PoR is needed in the proof of Main Theorem 1, where the actually

property of a PoR(ϕmax ,ϕ) which is used, is namely that a PoR guarantees that no set of t + 1 honest players could

possibly have seen, up to being in phase ϕ, a lock certificate in a higher phase than ϕmax .

Definition 16 (PoR). For every honest player in phase ϕ , denote ϕi ≤ ϕ the highest phase number up to ϕ for which

he saw a valid lock certificate lci . Then a Proof of Recency: PoR(ϕmax ,ϕ) for some valid (ϕmax , lcmax ) is the data of:

ϕmax ≤ ϕ, along with some data proving that no t + 1 honest players have their ϕi strictly higher than ϕmax .

Relatively to such a specific set of inputs (ϕi , lci ): a PoR protocol is one in which honest players in phase ϕ send one

message to a designated prover Lϕ among them, such that, upon receiving 2t + 1 well-formed messages, a (honest)

prover is able to output: a phase number ϕmax ≤ ϕ, a lock certificate lcmax relative to this phase, and a PoR(ϕmax ,ϕ).

We still consider a 2t + 1-TSS σ . We denote Lϕ the prover associated to phase ϕ.

1 Every player Pi sends to Lϕ a report (ϕi ,ϕ) (along with a lock certificate in ϕi if 1 ≤ ϕ) along with, for each

integer value ϕ ′ ∈ [ϕi , . . . ,ϕ], one testimony signed with σP , of the form: “my locked phase number up to ϕ

is lower or equal to ϕ ′ ”.

2 Upon receiving from 2t + 1 players such well formed messages, that is: containing a lock certificate for the claimed ϕi ,

a list of testimonies which is consistent with the claimed ϕi , and such that all the messages specify “up to ϕ” with ϕ

the current phase number. Then, define ϕmax the lowest value for which there exists 2t + 1 identical testimonies:

“my locked phase number up to ϕ is lower or equal to ϕmax ". Leader Lϕ then:
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- extracts this ϕmax and a lock certificate lcmax ) relative to ϕmax from one of the 2t + 1 messages received. Claim1:

he is always able to do so;

- aggregates2t+1 the testimonies (with σ ). Claim2: this constitutes a PoR on (ϕmax ,ϕ).

Proposition 17. The previous protocol is a PoR protocol with respect to the locked phase numbers (ϕPlock , lc(ϕPlock ))

held by honest players in phase ϕ. It has overall linear communication bit complexity, precisely in O(n ϕ), and the PoR

obtained consists of at most ϕ signatures. In particular, it is of bit size independent of the number of players.

Proof. What remains to be shown are Claim2 and Claim1. Together they guarantee that the prover is indeed able to

obtain (i) a locked phase number and (ii) a PoR on it (relative to phase ϕ), as expected.

Proof of Claim2: If t + 1 honest players have a strictly higher input than ϕmax , then no t + 1 honest players can

possibly testify to have a lower input, thus the leader will never receive 2t + 1 testimonies claiming so.

Proof of Claim1: By construction of ϕmax , there is a player Pj in the set of the 2t + 1 ones who issued the messages,

such he reported a ϕ j ≤ ϕmax but not ϕ j < ϕmax . Therefore, this player reported exactly ϕ j = ϕmax . Thus, by

well formedness of the message, his report must have been appended by a lock certificate asociated to ϕmax (unless

ϕmax = 0). □

E OTHER CONTRIBUTIONS

E.1 Leaderless asynchronous Byzantine agreement

Recall the structure of the VABA of [AMS19]. Players run n executions in parallel of the first phase of the consensus of

[Yin+19] (with weak unanimity): one for each player playing the role of the leader. After 2t + 1 of them have at least

one player which outputs, a leader election is performed to decide a posteriori which of the n leaders was the “real”

one. Players erase from their memories everything related to the other n − 1 executions. Notice at this point that in

50% of cases, this elected leader is both: honest, and in the 2t + 1 leaders who enforced an output. In which case, by

construction of [Yin+19], a decision certificate will be ultimately received by all players to output his honest input.

In case he was not honest, in order to ensure liveness, players start n executions in parallel of the second phase of

[Yin+19] and repeat. Plugging our Main Theorem 1 in place of [Yin+19] reduces the latency of the first phase from 7 to

5 (and of the subsequent phases from 8 to 6).

E.2 Reconciling Halting in Finite time with no Amortized Overhead, and External Validity

The modifications of [Nay+20, Figure 4] are: players perform as baseline a leader-based consensus with linear complexity,

e.g. the one of Section 3.1, possibly enriched with Strong Unanimity and a Fast Track as in Section 3.1. The data structure

of the consensus is enriched in that players perform it simultanesouly on the actual input values (of which we denote

ℓ = logV the length), along with their hashes. Players refuse any certificate for a value not externally valid (see Lemma

22 for a formalization). The message complexity of Main Theorem 1 for this is thus O(nℓ). Then: when some player

outputs a value v , he generates a Reed Solomon encoding of v of degree 2t and length n (so with tolerance of up to t

erasures). He then multicasts H (v), the decision certificate for the hash H (v); and sends to each player i a share RS(v)i

of this Reed-Solomon encoding of v length n, along with a succinct proof that the RS(v)i is the correct encoding of the

value inside the hash H (v). A player i receiving such a decision certificate for a H (v), along with his correctly proven

share RS(v)i of v , multicasts this material (the decision certificate, H (v) and RS(v)i ).
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Proposition 18. The overall bit communication is n2 |H (v)| |π | +O(nℓ), where |π | is the (short) size of the proof. As

soon as one honest player outputs, then every honest player outputs in two messages delay.

Proof. The claim on the complexity is by construction.

The key additional invariant compared to [Nay+20] is that any honest player which outputs v has necessarily

received a (short) decision certificate for the hash H (v) of the value, thanks to our double data structure. And this

decision certificate itself is enough to convince any player to output v as soon as he learns the actual value of v . But by

construction, the above protocol guarantees that, as soon as one honest player outputs, then every player is guaranteed

to receive, in two messages delay, both: a decision certificate for H (v), along with 2t + 1 distinct shares of v . These

shares are enough to reconstruct the actual value of v . □

[A simple proof system for the above purpose is proposed in [Nay+20], and consists in replacing hashes by a Merkle

tree of the codewords RS(v)i . Then, instead of the hash of v , a player who output communicates to each player i the

root of this Merkle tree, with the codeword RS(v)i , along with a proof that the codeword is indeed at place i of the

Merkle tree. This simple proof has however logarithmic size in ℓ. Therefore [Nay+20] consider more generic proof

systems for this purpose, denoted as “cryptographic accumulators”.]

F EASY LEMMAS AND VARIOUS EXTENSIONS

F.1 Lemmas

F.1.1 Deriving a Fast Track from Strong Unanimity for Free. The following Lemma formalizes the trick used in 3.3 to

compile Strong Unanimity into a Fast Track with no cost.

Lemma 19. Consider a consensus protocol with Strong Unanimity. Then the following additional instructions enable, in

addition, Optimistically fast output in two steps:

Players initially report their inputs to the leader, signed with threshold n = 3t + 1. Upon receiving n = 3t + 1 such reports

for the same value v , the first leader aggregatest he signatures into a fast output certificate message for v (possibly with a

multi/threshold signature mechanism), which he multicasts. Upon receiving a fast output certificate for a valuew , a player

outputsw .

The proof for safety is that if some player fast outputsw , then he must have received a fast output certificate for this

value w . This proves in turn that all honest players have input w . Thus by Strong Unanimity, no honest player can

output a value different from w . Liveness follows from the fact that if all players are honest, so is the first leader. In

particular, every player receives a fast output certificate in two messages delay.

F.1.2 PoE implies Exclusivity.

Lemma 20. Specify Definition 5 of PoE as follows: S := D, tag equal to the metadata: the protocol instance number and

the type of message (here:“declare”); and v := vL . It is then equivalent to Equation (2).

Proof. Starting from Equation (2), the Definition 5 holds trivially (either v repeats t + 1 times in D, or it does not,

in any case S := D works). Starting now from Definition 5. In the first alternative, if the prover both knows a set S of

2t + 1 signed reported values, and also knows a value v signed t + 1 times or more, then he is a fortiori able to exhibit a

set D of 2t + 1 signed values in which v is the only value repeated t + 1 times. In the second alternative, taking D := S,

any value v in this set will satisfy Equation (2). □
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F.1.3 Exclusivity Implies that No Other Value Can Be Unanimous.

Lemma 21. Suppose that some value vun is an (unanimous) input of all the 2t + 1 honest players in some execution

of the protocol of Figures 4 + 5. Then, no other value v ′ , vun can satisfy the Exclusivity predicate, as defined in §4.2. In

particular no PoE(v ′) can ever be formed in the execution.

Proof. By assumption on unanimity of vun , we have that any set D of 2t + 1 declare messages contains more than

t + 1 times vun . So this violates the Exclusivity Predicate for v ′
. □

F.1.4 Enforcing External Validity. Consider as in [Cac+01, Def 4.1]: an external entity QID , that may deliver to some

honest players “certificates of validity” to their inputs.

Lemma 22. Then all the protocols in this paper can be modified without any additional cost on the bit complexity, such

that we have the following additional guarantees:

• in any case: the output of any honest player is valid;

• If in some phase long enough, we have a honest leader who has, in addition a certificate of validity on his input, then

all honest players output in this phase. [This implies that we have the same liveness condition as in [Cac+01, Def

4.1] & [AMS19, Lemma 23 of full paper]: if all honest players start with a validity certificate on their input, then

liveness condition of the previous protocols is unchanged.]

In addition, (optimal) latency is preserved in executions in which every honest player has a valid input.

The only modifications to be made are: 1) a honest player ignore propose messages sent by the leader in which the

value proposed does not come with an external validity certificate, and refuses to output any value that does not come

with a validity certificate. A leader always append the proposed value with a certificate, if he has any (either he received

it at the beginning, of was forwarded some by some previous leader). Likewise he always appends the validity certicate

in the lock certificates and decision certificates that he makes.

F.1.5 Default Output, when t or Less Honest Players Have an Externally Valid Input. The following construction brings

the guarantee that players to output a non-valid value in finite time, if not enough of them have a valid input. This may

be of use in some use-cases, e.g. [CL99]. On the other hand this may then violate the External Validity condition. For

simplicity we state it explicitly on the top of the consensus of Figure 4.

Lemma 23. The following additional specifications to the consensus of Figure 4 guarantee that all players output a value

as soon as: the leader of a phase ϕ > 1 is honest and the network fast enough. If ≤ t honest players have a valid input, then,

the output may be Non-valid. However if ≥ t honest players have a valid input, then the output is necessarily valid.

0 a player with no valid input and who has seen no lock certificate so far, sends the signed ⊥ message to the leader, along

with report(0,ϕ).

1 upon receiving such 2t+1⊥messages, the leader aggregatest hem into a threshold signature andmulticasts propose(⊥,ϕ)

along with a PoR(0,ϕ).

2 a player accepts propose(⊥,ϕ) if: it comes with a valid threshold signature, and, if the PoR(0,ϕ) is valid. The rest carries

unchanged.

Proof. If ≥ t + 1 honest players have a valid input: then no set of 2t + 1 messages can exist. On the other hand, a

honest leader will always be reported of a valid value, so at least can propose it if no lock certificate was reported to
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him. If ≤ t honest players have a valid input Then a honest leader, out of a set of 2t + 1 well-formed report messages:

either he obtains a valid value, or, all these messages must then be equal to report(0,ϕ) and come appended with signed

⊥ messages.

□

F.2 Other Various Extensions

F.2.1 Suboptimal Adversary Thresholds, for More Tolerant Fast Tracks. The constructions we describe are illustrated on

the maximal adversary threshold. They can be applied to the suboptimal threshold n = 3t + 2c + 1, with some parameter

c > 0, which enables in return a Fast Track as soon as up to c players are malicious. The adaptation to the parameters

of: the number of messages constituting the sets R, D, and the number of signatures needed for a lock certificate and

decision certificate, are given in [Gol+18; DGV05; Aub+15]. The constructions of PoE and PoR (generic, or with the

alternative weaker Definitions 10 & 16) carry unchanged over these new parameters.

F.2.2 State Machine Replication, (of which Possible Improvements to Libra). In its historical conception ([CL99]), the

regime of “state machine replication” may be defined as an ordered sequence of instances of consensus with Weak

Unanimity, where the External Validation entity QID is embodied by several “Clients” and the leaders denoted as

“primaries”. Using the simpler variant (§3.1) of Main Theorem 1 with plain Responsiveness and Optimal Latency in the

transaction system [Lib19], in place of the consensus of [Yin+19], would result in an Optimal Latency of 6 in higher

phases instead of 8 (and 5 in the first phase instead of 7).

Another limitation pointed in the preliminary version of [Lib19], is that this uses threshold signatures of size Ω(n).

Indeed these signatures communicate the identities of the signers. Thus their overall complexity falls back to quadratic:

Ω(n2). This choice was apparently made to avoid a trusted setup. Instantiating Main Theorem 1 with the Transparent

TSS of [ACR20], also removes this limitation, since it does not use any trusted setup.

F.2.3 Making Linear an Alternative Fast Track in 3 steps instead, preserving latency of 5 in the first phase.

Dictatorial Fast Track in 3 messages delay. The following Definition F.1 is satisfied by [Gol+18], although we define it

for simplicity: in the maximal adversary threshold (see F.2.1 for other parameters), for a single instance, and allows such

a Fast Track only in the first phase. This Definition comes on the top of the definition of consensus (§2, or, alternatively,

the Consistency and Consensus Weak Unanimity combined with External Validity, as formalized in Definition 8) But is

not compatible with strong unanimity (as defined in §2, or alternatively, the definition combined with External Validity,

in Definition 8). It also comes at the top of the top of the definition of optimal latency (§2, although now with the

stronger requirement where 5 messages delays are in addition required in the first phase).

Definition F.1 (Dictatorial Fast Track). We say that a consensus has an (optimistic) Dictatorial Fast Track (in 3messages

delay), if we have furthermore that: if all players are honest, and if the Pacemaker is forever blocked on the first phase,

then, all players output within 3 messages delay from the start of the execution, and furthermore they output the input

of the Leader.

Under partial synchrony where messages can be lost (§A.2, [DLS88, §3.1]), this holds only if the network is initially

synchronous. The reason for requiring here 5messages delays in the first phase despite this weakened fast track, instead

of always 6 as defined in §2, is that a weakened fast track in 3messages is not subject to the impossibility of [Ram20, B’].

Notice also the Dictatorial Fast tracks in 2 messages of, e.g., [Aub+15; DGV05], there denoted as “very fast learning”.
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Construction with Linear Complexity. The following construction uses as baseline Figure 4. We claim no originality,

since it is meant to have the same structure as [Gol+18], with succinct proofs used as drop-in replacement to forwarding

of many messages. Players i who issued a lock vote(vi ,ϕ = 1) the first phase, store the value vi ,f ast := vi forever. The

additional data structure is added: a fast dec cert(v, 1) for a value v (only relatively to phase ϕ = 1) is the aggregateo f

3t + 1 identical lock vote(v, 1) issued by all players.

0 Report If ϕ = 1, skip. Else, In addition to the report: players send to Lϕ a signed declare(vi ,f ast )

1 Propose If ϕ = 1: unchanged. Else: The leader Lϕ , upon receiving a set R of reportmessages from 2t +1 distinct
players, then, letting ϕmax be the highest ϕ j in R:

(i) either 0 < ϕmax , then as in Figure 4 1(i)
(ii) or: let D be the set of 2t + 1 declare messages received. The leader selects any value vL reported in D, such

that no conflicting value v ′ , vL is reported identically in t + 1 messages of D. He constructs a PoE(vL)
out of D. Then he multicasts propose

(
vL,ϕ

)
appended with the justification PoE(vL) (in addition to the

justification PoR(0,ϕ), as in Figure 4).

2 Lock vote Is enriched in case (ii): in addition to the previous check on R, every player also checks validity of

the PoE(v) for the value v proposed.

(Then if this checks also passes, he replies with a signed lock vote(v,ϕ), as in Figure 4)

3 Lock/Fast certificate if ϕ = 1, In addition: Leader L1, upon receiving 3t + 1 lock vote(v, 1) for the same value

v aggregatesthem into a fast dec cert(v, 1), which he multicasts along with v .

4 Decision vote / Fast decision In addition: Players in ϕ = 1, upon receiving a fast dec cert(v, 1), output v .

Fig. 9. Adding 3-steps Fast Track in O (n |PoE |) complexity

Improving the Throughput over Multiple Ordered Instances by “Pipelining”. “Throughput”, in the above “state machine

replication” regime, denotes the average number of consecutive instances per phase. Throughput may be optimized

with the so-called “pipelining trick” [BG17; Yin+19; CS20]. Recall that this consists in having the leader at step 3 of

instance i , upon forming a lock certificate(vi , .), start simultaneously an instance i + 1. The propose(vi+1) of this new

instance may then be appended with the lock certificate(vi , .). Players then accept a propose in instance i + 1 only if it

comes appended with a lock certificate. An additional variation in this regime is that leaders may rotate every step, or

every two steps, instead of every phase.

Weaker Synchronizers. In weaker models, Synchronizers may designate different leaders to different players in the

same phase (in particular multiple players believing themselves to be the leader). The results hold unchanged. However

the definition of bit complexity, as stated in §2, would need to be changed accordingly, e.g., by dividing the bitsize by

the number of honest leaders in the same phase).
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