
Proofs of non-Supermajority: the missing link for two-phase BFT with

responsive view-change and linear complexity

Christophe Levrat and Matthieu Rambaud

Télécom Paris, LTCI, Institut Polytechnique de Paris

Version 3 - May 2023
1

Abstract. We consider leader-based Byzantine state machine replication, a.k.a. “BFT”, under partial synchrony.

We provide a generic solution enabling to match simultaneously, for the �rst time, three arguably gold standards of

BFT: in two phases, with a responsive view change and a linear complexity per view. It is based on a new threshold

primitive, which we call Proofs of non-Supermajority (or PnS for short). A PnS system enables players, each with

an input number, to report their input to a leader, with extra hints enabling their e�cient aggregation. Out of a

threshold number k (= 2t+1) of such reports, calling vmax the highest reported value, the leader can e�ciently

build a short proof that a threshold number of k − t honest players have their inputs lower than this vmax. As

highlighted in the state of the art BFT [Abraham et al. Podc’23], any of our lightweight implementations of PnS can

be plugged in their BFT, or the one of [Gelashvili et al FC’22], to bring down their complexities from quadratic to

linear. Previous BFTs implicitely implemented PnS by either (i) having the leader multicasting the k signed reports,

so this had quadratic communication complexity, or (ii) multicasting an aggregate signature on the reports, with

veri�cation complexity of k + 1 pairings, so this had a total quadratic computation complexity. To match our

linear complexity claim, we introduce a very simple constant-sized and constant-veri�cation implementation of

PnS, built from any threshold (or multi-) signature scheme. We then bring further optimizations by introducing

the following tools of possible independent interest:

(1) a simple and general optimization to BFTs, which applies to any view without a hidden lock. It removes the

need for sending and verifying a PnS. Previous optimizations applied to a narrower set of views, essentially, those

for which the leader of the previous one was honest and enjoyed synchrony;

(2) a simple compiler from any multisignature scheme, into an aggregate signature scheme of a special-purpose

type. It operates over tagged messages, each key can sign at most one message with a given tag.

Contents

1 Introduction . 2

2 Toy Model and Background . 4

3 Toy Two-Phase Consensus from any PnS . 7

4 T -PnS: Lightweight, and from any NI-TSS . 13

5 No Proofs in Good Views, for Free . 14

6 Two more PnS, for Bad Scenarios . 15

7 Compiling Multi- into Aggregate- Signatures . 16

8 Optimizations, Implementations and Comparisons . 17

A Further Details for the Toy Two-Phase Consensus . 21

B Further Details for the No-Proofs-in-Good-Views . 22

C Faster proofs of possession (in the AGM) . 24

D An optimized version of BGLS. 25

1

Forks on the v1 (November 2020), of which the TSS-based PnS brie�y announced to Podc’21. New results of independent

interest are the (1) (2) and (3) (cf abstract and introduction). Some previous material of the April 2021 version is now forked in

[Abspoel, Rambaud, Tonkikh, Consensus Days’22] (fast tracks) and, in a preliminary form, in section 7 of eprint 2020/1447.

1 Introduction

In order for blockchain systems to be competitive with centralized services, it is imperative to keep the latency of the

consensus algorithm as low as possible while maintaining high throughput. To this end, Byzantine consensus [LSP82]

is typically used to reach agreement on a sequence of blocks of operations. Intuitively, in a single instance of con-

sensus, each participant, which we dub as player, starts with some valid value, e.g., a block of transactions. The goal

is for each player to irrevocably output a valid value, which we dub as a commit. Moreover, all players that follow

the protocol must output the same value. This speci�cation is known as consistency. Some subset of t out of the n
players are called “corrupt”, or “Byzantine”, which means that they are controlled by a malicious adversary and may

arbitrarily deviate from the protocol. Non-corrupt players are called “honest”. In this work, we are concerned with

a much studied class of protocols designed to operate under a network model known as partial synchrony [DLS88].

In this model, there is an unknown moment in time, called the global stabilization time (GST), such that any message

sent after this moment is delivered within a known time bound ∆. In order to ensure liveness of the protocols, this

bound has to be pessimistic and, in practice, most messages are delivered much faster. Hence, we use δ to denote

the unknown actual message delay in a given execution (δ << ∆). In this work we assume that n = 3t+1, which is

optimal for consensus under partial synchrony [DLS88]. We are concerned with the subclass of Byzantine consensus

protocols which are known as leader-based. These protocols require for their operation a mechanism that noti�es

the players, of the identity of one of them, denoted as leader, which may change in time. We dub such protocols

as BFTs, often leaving-out implicit the “leader-based” and the partial synchrony assumption. Beyond its practicality

as such, partially-synchronous leader-based consensus is also used as a subroutine in higher-level protocols, e.g., in

[AMS19; SDPV22] somehow n instances of Hotstu� [YMR+19a] or PBFT [CL99] are emulated in parallel; in [DZJR23]

a parallel instance is run as a fast-path of asynchronous consensus (building on [GKS+22; LLT22]); and in [SLL10;

BTA+19; VAFB22] it is used as a means to reach consensus on secret shares. Broadly speaking, we denote as a view

the time-frame in which all players are aware of the same leader. A view is denoted as normal if the leader is honest

and GST happens no later than the start of the view. BFTs guarantee that, in a normal view, a value is committed
within a �xed delay. A desirable property is when this guaranteed delay is purely in terms of δ. For such BFTs, it is

common-place to say that they have a view-change which is responsive.

PBFT [CL99] is by far the most famous BFT. It has latency of only 3δ if the �rst view is normal. However, PBFT

has quadratic authenticator complexity in the number n of players. An authenticator is, roughly speaking, a string

which is as fast (or nearly as fast) to verify as one signature. The authenticator complexity ([YMR+19a]) is, roughly,

an equivalent metric of the number of signatures sent or veri�ed by honest players. Hence, BFTs with worst-case

linear authenticator complexity in every view were proposed. The �rst and simplest is called “two-phase Hotstu�”

[YMR+19b] (which is the one put forth in their �rst version). If the �rst view is normal, then the leader decides

within 4δ. However in later views it decides within ∆+4δ. The extra delay ∆, which happens when the leader of a

new view starts its role, is known as view-change latency. Hence, [YMR+19b] does not have responsive view-change.

As will be detailed in Section 3.9, such non-responsive view change, in ∆, is paid by all protocols which follow a

speci�c view-change mechanism, which is credited to “Tendermint” [Buc16] and “Casper” [BG17] by [YMR+19b].

Later, leader-based BFTs were proposed [YMR+19a; SDZ22b], which have linear “authenticator complexity” and a

responsive view-change. The former, Hotstu�, was implemented in the late blockchain Diem [Tea21] and now in its

successor [Tea22]. However, they both pay an extra phase, i.e., an extra latency of 2δ, at least in executions which are

not “happy”, as detailed in Section 5.2. Other BFTs made the converse trade-o�, i.e., are always in two-phases, but

at the cost of paying a quadratic authenticator complexity in views which are not “happy”: Fast-Hotstu� [JNFG20]

and also Jolteon [GKS+22], implemented in the former Diem [Tea21]. So it seems that the design of BFT protocols

is driven by trade-o�s between three main performance criteria: the number of phases in a view, responsivity of

view-change, and the communication complexity. These three criteria are the ones put forth in their comparison

tables by a number of leading authorities in BFT: [YMR+19a, Table 1], [GKS+22, Table 1], [ACG+23, Table I], [MN23,

Table I] (and also [BBB+23, Table 1] although their synchronous setting requires orthogonal techniques). The recent

statement of knowledge on BFT [SDZ22a, Table 1], by the authors of [SDZ22b], con�rms that no existing BFT with

optimal corruption tolerance n = 3t+1 achieves simultaneously two-phases, and a responsive view-change which

is both responsive and with worst-case linear authenticator complexity.

2

Contributions In this work we provide a generic tool which enables to match, for the �rst time, all of the three

aforementioned arguably gold-standards of BFT: in two-phases, with a responsive view change and with linear com-

plexity per view. It is based on a new threshold cryptographic primitive, which we call Proofs of non-Supermajority

(or PnS for short), which may be of independent interest. A PnS system enables players, each with an input number,

to report their input to a leader, with extra hints enabling their e�cient aggregation. Out of a threshold number k
(=2t+1) of such reports, calling vmax the highest reported value, the leader can e�ciently build a short proof that

a threshold number of k − t honest players have their inputs lower than this vmax. Our �rst contribution is to

single-out this primitive of PnS, and illustrate where it can be plugged in place of existing view changes. This is

done in Section 3. Then, to match our complexity claim, our second contribution is a very simple constant-sized and

constant-veri�cation implementation of PnS, described in Section 4. It is based on any, black-box, non-interactive

threshold (or multi-) signature scheme. A corner-case limitation is that the complexity for each player to help the

leader to build a PnS, grows linearly with the gap between the highest lock of the player and the current view num-

ber v. Hence, in catastrophic scenarios where many consecutive views elapsed since the beginning of the instance,

without any commit, then at some point it may be desirable to switch to another more robust implementation of PnS.

Another contribution which we make is the observation (Section 6.1) that PnS can be instantiated from SNARKs of

signed messages satisfying a public predicate. Such one is implemented in [AR23]. When specialized to the predi-

cate of being in a public range [0, vmax], this yields an O(log(n))-sized PnS with constant pairing complexity. This

concludes our main complexity claims. The application of our primitive of PnS was very recently reported in the

state of the art BFT [ACG+23, Table I] (which they call SNARK, probably referring to the aforementioned speci�c

instantiation of [AR23]). There, they con�rm our claim that PnS can be plugged as a replacement of the view-change

of state of the art BFTs [GKS+22; JNFG20; ACG+23] in order to bring down their complexity from quadratic to linear.

To be self-contained, we incorporated this con�rmation of their Table I, as the last line of the comparison Table 1

below.

Complexity # of phases Responsiveness

Tendermint-like view-changes: Casper [BG17],

2-phase Hotstu� [YMR+19a, §4.4], [MN23]

O(n) 2 7

Hotstu� [YMR+19a] O(n) 3 3

Fast-HotStu� [JNFG20],

Jolteon [GKS+22], BeeGees [ACG+23]

O(n2) 2 3

Marlin [SDZ22b] O(n) 3 3{
Fast-HotStu� [JNFG20] or Jolteon [GKS+22] or

BeeGees [ACG+23]

}
with lightweight PnS’s

O(n) 2 3

Table 1: Comparison of leader-based BFT protocols under partial synchrony (excluding view synchronizer). The last line considers

the modi�cation of any of [JNFG20; GKS+22; ACG+23], consisting in replacing their view-change by plugging in e�cient proofs

of non-supermajority (PnS). A number of previous BFTs nevertheless enjoyed better parameters in so-called “happy” views. A

view is happy if the leader is responsively reported a lock certi�cate formed in the previous view. In particular, a view cannot be

happy if the leader of the previous one did nothing. Optimizations for “happy views” in previous works are:O(n) complexity for

[JNFG20; GKS+22], two phases for [SDZ22b], and responsiveness for [MN23].

We then bring further optimizations by introducing the following general tools:

(1) In Section 5 we introduce a simple and general optimization to BFTs, which applies to any good view. A

good view is one in which there is no hidden lock ([ACG+23]), i.e., in which the leader is responsively reported the

highest lock certi�cate ever formed. It removes the need for sending and verifying a PnS (be it in the naive form

of a batch of k signed reports). The technical idea is to run in parallel a tentative Tendermint-like unlocking, and

the detection of hidden locks. Previous optimizations either applied to a narrower set of views (called “happy”: see

Table 1), or required an extra round-trip in case of a hidden lock. More detailed analysis of previous works is provided

in Section 5.2.

3

(2) A very simple compiler from anymultisignature scheme, into an aggregate signature of a special-purpose type.

It operates over tagged messages, where each key can sign at most one message with a given tag. When instantiated

with BLS multi-signatures, its veri�cation costs only two pairings for any k messages, vs k+1 pairings for [BGLS03].

In our use-case of aggregated messages with 6 variable bits, then this instantiation: (i) brings a 40× speedup w.r.t.

[BGLS03]; and (ii) removes the need for sequential signing compared to a related scheme of [LOS+13]. So it yields

an alternative implementation of PnS, usable as a back-up in extremely bad scenarios of dozens of consecutive views

without synchrony or an honest leader. Instantiating the compiler with the multisignature scheme of [RY07], enables

to recover the scheme called Wendy in [GHA+21].

(3) We �nally address two minor issues. The �rst is an observation made in [SDZ22b] that the veri�cation cost

of a multisignature with the latter instantiation, would be of O(n) pairings. Hence, they count it as having O(n)
authenticator complexity. On the one hand, the veri�cation cost is only of two pairings. On the other hand, it is true

that the one-shot o�ine veri�cation, inherited from the proof of possession (PoP) of [RY07], is O(n) pairings. The

second issue is that, surprisingly, no existing multi-signature is formally proven in the multi-users setting. Doing

so would legitimate their usage as a k-out-of-n threshold signature, as considered in [DGNW20; GL22; DCX+23;

GJM+23]. Precisely, (n− t)-users security allows the adversary to choose the target honest key, out of a set of n− t
honest keys. In Appendix C we address both issues simultaneously, using a PoP 40× faster than the one of [RY07],

although under the AGM.

Further comparison with related works is provided in Sections 3.2, 3.9, 5.2, 7.1 and 8 and appendix C.

2 Toy Model and Background

In this section we introduce a toy model, in which we will cast the simple consensus protocol described in Section 3

and called 2Pc. The purpose of 2Pc is to illustrate, as simply as possible, how to plug PnS into existing responsive

view-changes in order to reduce their complexity. Also, 2Pc will be the toy baseline to illustrate our further tech-

niques for achieving zero overhead in the good case (protocol 2Pc0PnS, in Section 5.1). The techniques which we

illustrate in Section 3 can be directly used in more optimized end-to-end blockchain protocols [GAG+19; GKS+22;

ACG+23], as explained in [ACG+23, Table I]. Hence, in Section 2.9 we list some extra features which we purposedly

not included in this toy model, to preserve its simplicity.

2.1 Notations. The size of a �nite set E is denoted |E|. The integers between a included and b excluded are

denoted [a, b[, conversely for]a, b], and [a] := [1, . . . , a]. The size of a bitstring b is denoted |b|, and the empty string

⊥. N := {0, 1, 2, . . . } denotes the set of non-negative integers, of which the positive ones N∗ := {1, 2, . . . }. Strings

of characters are denoted in “quotes”. To multicast a message means to send it to every player.

2.2 Partially-synchronous network and corruptions. We consider a set P = {P1, . . . , Pn} of probabilistic

polynomial time (PPT) machines connected by pairwise authenticated channels. We call them players. We consider

a PPT machine, denoted as the Environment E , which can read all messages sent and, without further speci�cation,

alter, reroute, delay or replay them. It can even suppress them (before GST: see below), whereas asynchronous BFTs

[bdt; GKS+22] assume eventual delivery. E has full control of up to t players, where t is a parameter known as

corruption threshold. We denote them as maliciously corrupt, also known as Byzantine.

For simplicity, we consider the maximal corruption threshold, i.e., we assume that the number of players is

n = 3t + 1 and that corruptions happen at the beginning of the execution. The remaining (at least 2t + 1) players

are said to be honest.

From some point in time denoted as GST [DLS88], E commits to delivering all messages sent within a �xed delay

δ. Both GST and δ are arbitrarily set by E in every execution, and are not disclosed to the honest players. However,

there is a �xed upper bound∆ ≥ δ which holds for any execution, and which is publicly known in advance. In some

executions, ∆ may be much larger than the actual message delay δ. If GST = 0, then this means that the δ delay

holds since the beginning of the execution. An event which is guaranteed to happen within a delay depending only

on δ, not on ∆, is denoted as responsive.

4

2.3 Views and leaders. For simplicity, we assume a global clock that publicly ticks every ∆, starting at the time

t = 0 when the execution begins. For simplicity we de�ne views as the following consecutive timeframes. The �rst

view, numbered as v = 1, is [0, 3∆[. Then every other view takes 4∆, i.e., view v > 2 is

[
3∆ + (v − 2)4∆ , 3∆ +

(v − 1).4∆
]
. For every view number v, the clock publicly designates a player, denoted Lv , no later than at the end

of the previous view v − 1. It is called the leader of view v, it can possibly remain the same, i.e., Lv−1 = Lv , or not.

Nonwithstanding these simplifying assumptions, our protocols remain safe even if players do not receive clock ticks

simultaneously, or are noti�ed con�icting leaders.

2.4 Non-interactive threshold signature schemes (NI-TSS), in a generalized sense.

De�nition 1 (NI-TSS). A non-interactive threshold signature scheme (TSS) in the general sense (NI-TSS) consists of
a setup phase, and of four locally computable algorithms (Sign, Verify, aggregate=• , Verify

=
k
). It is parametrized by

a numberN of participants, dubbed as machines, and an integer k 6 N called the threshold. The setup phase publicly

returns a public threshold key PK and one public veri�cation key pki per machine, and, privately to each machine i, a
secret signing key ski.

• Sign(sk , m ∈ {0, 1}∗)→ σ we will sometimes dub the output a signature share;

• Verify(pk,m, σ) → {accept or reject}. It the output is accept, then we say that σ is a valid signature (share) on

the datam.

• aggregate
=
I (m, (σi)i∈I) → σ is a (possibly randomized) aggregation algorithm. It takes as input k signatures

(σi)i∈I for a k-subset I⊂ [N] and a message m ∈ {0, 1}∗ (the superscript = is to stress that the message content

m is the same for all signers in I .) We will sometimes dub the output a threshold signature;

• Verify
=
k
(PK,m, σ)→ {reject or accept}. It the output is accept, we say that σ is a valid threshold signature on

m.

They must furthermore satisfy the following conditions.

De�nition 2 (Correctness & robustness). For every execution of the setup, then

(Correctness-of-signature-shares) Verify (pki,m, Sign(ski,m)) = accept ∀i ∈ [N] ; ∀m ∈ {0, 1}∗.

The next condition, called robustness-of-aggregation, states that any k valid signature shares always aggregate into

a valid threshold signature. It is stronger than standalone correctness-of-aggregation, since the latter applies only to

correctly formed signature shares.

Verify
=
k

(
(PK,m, aggregate=I

(
m, (σi)i∈I

))
= accept

∀I ⊂ {1, . . . , N} , ∀m ∈ {0, 1}∗ , ∀(σi)i ∈ I s.t. Verify(σi) = accept ∀i ∈ I
(Robustness of aggregation)

De�nition 3 (TS-UF-1 Unforgeability). Is de�ned in [BCK+22]. Informally, it states that if an adversary corrupting

a number t of machines, t < k, can forge a valid threshold signature on some m, then it must be that the adversary

previously observed signature shares onm issued by at least k − t honest machines.

The BLS threshold signature scheme [Bol03, §3] satis�es De�nition 1. It requires a setup which securely assigns,

to each machine, its secret key equal to a k-out-ofN secret share of a randomly sampled common secret signing key.

To interactively establish this setup in our use-case of a high threshold k = 2t+1, the state of the art asynchronous

distributed key generation (ADKG) is [DXKR23]. The aggregate
=
k algorithm has quadratic complexity, since it

requires a Lagrange interpolation of a degree k + 1 polynomial. However its practical cost was recently optimized

([Rob20] “aggregate a 130,000 out of 260,000 BLS threshold signature in just 6 seconds (down from 30 minutes)”). The

threshold signature output has the same format as a standalone BLS signature, in particular its veri�cation costs only

2 pairings. Notice that TS-UF-1 unforgability for threshold BLS was shown only very recently [Gro21; BCK+22] (and

its robustness is claimed in the latter). So these works have legitimated prior uses of threshold BLS in BFT. Before

these works, it was not excluded that an adversary could possibly forge a threshold signature as soon as it would

observe one signature share issued by one honest machine.

5

2.5 Instantiation of NI-TSS from multi-signatures. The so-called non-interactive multi-signature schemes

[RY07; BDN18; DGNW20; KCLM22; FSZ22; BCG+23] can be bootstrapped in our generalized De�nition 1 of NI-TSS.

Their setups do not require interaction between participating machines. They do not either require that the subset

I of signers interact in a preliminary round in which they would all behave honestly. Such requirements are made

in [PW23; TZ23], which are thus incompatible with the de�nition of NI-TSS. For simplicity of the exposition we

restrict the de�nition of multisignatures to our use case, where the list of the N potentially participating machines

is pre-determined. In this context, each subset I of k-out-of-N machines is e�ciently encoded as an N -sized binary

array. We will dub multi-signature the output of aggregate
=
I
(
(σi)i∈I ,m ∈ {0, 1}∗

)
. The setup of these schemes is

that each machine locally generates a key pair (ski, pki)← KeyGen(), along possibly with extra data called a proof of

possession (PoP) [RY07]. Then it publishes pki on a bulletin board, along with its PoP if required. Before aggregators

and veri�ers can use these keys, they need to perform some extra local computation (veri�cation of the PoP’s and/or

scalar multiplication of keys in [BDN18; BCG+23]). We will benchmark these computations in Appendix C. To make

it simple, we de�ne the threshold key as the list of the N published keys PK = [pk1, . . . , pkN]. Veri�ers simply

consider as ⊥ the published keys which are not appended with a valid PoP. Hence, without loss of generality, we

assume from now on that all published keys are appended with a valid PoP. Notice that this restricted context, of a

set of N �xed public keys, is also the one considered in recent works on NI-TSS based on BLS [ACR21; BCG+23;

DCX+23; GJM+23]. In multisignature schemes, Verify
=
k

also takes as input the k-subset I⊂ [N] of signers:

• Verify
=
k
(PK, I,m, σ)→ {reject or accept}

So to bootstrap this syntax into the one ofNI-TSS, we may just consider that the multisignature output by aggregate
=
I

comes appended with theN -sized bit array I . The pairing-based multi-signature schemes [Bol03, §4][RY07; DGNW20;

BCG+23] have the computational bene�t that their aggregation cost is linear in k. It simply consists in the addition

of k points, which is in practice highly amortized for large k. Notice that their robustness follows trivially from

the additivity of their veri�cation formulas. The veri�cation complexity of the schemes [Bol03, §4][RY07; BDN18;

BCG+23] is of only two pairings (plus two additions of k points, more precisely two linear combinations of k points

in [BDN18]), so is close to the one of a single BLS signature [Ben04; Dar10]. Finally, one last condition for mul-

tisignatures to implement NI-TSS, is that they satisfy unforgeability in the (N − t)-users setting. This is formalized

by [Lac18] for the related notion of aggregate signatures. Let us just summarize that it consists in a security game

where the adversary is given, not only one target key, but a list of the possible target keys, i.e., the N − t ones of

the honest machines among [pk1, . . . , pkN]. It wins as soon as it forges a multisignature which is valid with respect

to a set I containing one of the target keys pk∗ (and provided it did not query pk∗ for a signature on the forgery

message). As observed in (4) of the introduction, we are not aware of any existing formal security reduction for the

multi-users security of multisignatures (reductions are done in [Lac18] for the related problem of aggregate signa-

tures over pairwise distinct messages). We will provide one in Appendix C, for an e�cient PoP which we introduce.

We leave for future work the analysis of other existing multisignature schemes in the multi-users setting, for which

we have good hope that their security loss is not higher than the number of honest machines.

2.6 Aggregate signature schemes: over di�erent message contents. A non-interactive aggregate signature

scheme [BGLS03] consists of a setup, in which each machine locally generates a pair of keys (ski, pki), and, in our

context, publishes pki on a public bulletin board, and of four algorithms. The �rst two, Sign and Verify, have the

same syntax as in De�nition 1. The last two are as follows.

• aggregate
6=
I
(
(mi, σi)i ∈ I

)
takes as input a list of indices of keys I (possibly with repetitions, although we will

not use this feature), and a list of message-signature pairs: (mi, σi)i ∈ I where each σi is valid over mi for pki.
The superscript 6= stresses that the contents (mi)i ∈ I can now be di�erent.

• Verify
6=
(
[pk1, . . . , pkN], I, (mi)i ∈ I , σ

)
outputs either reject or accept. In the latter case we say that σ is a

valid aggregate signature on the (mi)i ∈ I with respect to I .

They have the expected properties. Namely, aggregate
6=
• over valid inputs returns a valid aggregate signature. Then,

the (N − t)-users unforgeability [Lac18] states that any polynomial adversary given N − t honestly generated keys

and oracle access to their signatures, cannot possibly forge a valid aggregate signature involving a message mj

credited to one of the honest keys pkj , unless it has already made signature query on mj to pkj .

6

The scheme of [BGLS03] furthermore requires that the contents of the aggregated messages are di�erent. The

veri�cation complexity of [BGLS03; BNN07] of an aggregate signature over k messages costs k+ 1 pairings. This is

roughly the cost of verifying k/2 individual BLS signatures, so we count an aggregate signature as k/2 authenticators.

We will con�rm empirically this complexity gap in Section 8.1. We will present an optimization of [BGLS03] in

Appendix D, possibly folklore. We present another way to build aggregate signatures in Section 7, and benchmark

it with the previous ones in Section 8.

2.7 BFT. Let us consider any public e�ciently computable predicate ExtValid : {0, 1}∗ → {accept, reject}. A

value which is returned as accept is said to be externally-valid ([AMS19]). We denote by X :=
{
x ∈ {0, 1}∗ |

ExtValid(x) = true
}

the set of externally-valid values. We assume that each player starts the protocol with a valid

input.

De�nition 4 (BFT). A partially synchronous leader-based Byzantine fault-tolerant consensus with external validity,

or BFT for short, is a protocol in which each player outputs at most one value: we say that the player commits the

value, and such that:

Consistency: no two players decide di�erent values;

External Validity: if a player commits x, then x ∈ X ;

Eventual Termination: every player commits in any in�nite execution in which there is a view v which starts at,

or after, GST, and in which the leader Lv is honest.

2.8 Latency and authenticator complexity. One authenticator is, concretely, a data which has comparable size

and veri�cation complexity as a MAC or a standalone signature. Both the BFT protocols 2Pc and 2Pc0PnS presented

in Section 3 enjoy the following:

Theorem 5 (Responsive view-change and two-phase latency). Consider the �rst time after GST where a view v
starts with a leader Lv which is honest. Then a value becomes committed (by Lv) within 5δ.

More particularly, they enjoy some form of quality ([AMS19]) since, if started at GST with an honest leader, then

the committed value is its input. Our main contribution is that, when instantiated with any of the implementations

of PnS proposed in Sections 4, 6.1 and 7, then 2Pc and 2Pc0PnS have linear authenticator complexity per view. This

means that the total number of authenticators sent and veri�ed by honest players in each view is linear in n, i.e., is

O(n).

2.9 What is not in this toy model The following techniques are well-investigated, and can be directly plugged

in our toy protocols (i) how to implement the global clock and/or the leader designation, and make them advance

at the actual pace of the system (in particular, in views with synchrony and an honest leader, not wait for 4∆ to

elapse before moving to the next view) [BCG22b; NK20; CGK+22; BCG22a; LL22; LA23; MN23; EEK+23] (ii) how to

pipeline a new instance of consensus after every other phase, possibly by replacing the leader (leaders in 2Pc are

stateless, so they could be replaced after speaking once, in the sense called LSO in [ACG+23]); and what is then the

validity condition on values (roughly: being a batch of transactions extending a block of previous height in a lock

certi�cate) [BG17; YMR+19a; ACG+23] (iv) if leaders rotate every other phase, then how to preserve liveness despite

non-consecutive honest leaders [ACG+23] (v) how possibly external learners can read the state machine ([Lam06;

GV10]): this can be conveyed by the outputs produced by 2Pc. For the sake of simplicity and concreteness, we de�ne

in a very low-level manner these outputs as decision certi�cates.

3 Toy Two-Phase Consensus from any PnS

In this section we illustrate our generic black-box tool for responsive view change in two-phase consensus. In Sec-

tion 3.1 we convey the main idea of how to do a responsive-yet-safe view-change. In particular, we give the intuition

of our new primitive, called a proof of non-supermajority system (PnS), and where it can be used in existing BFTs to

7

achieve responsiveness in two-phases with linear communication complexity. In Section 3.2 we describe how ex-

isting works �t in the framework of PnS’s. Then in Section 3.3 we formalize PnS. In Section 3.4 we illustrate the

application of PnS to view-change, by describing a simple single-instance consensus, called 2Pc. We refer to Sec-

tion 2 for the long list of simpli�cations which we purposedly made to 2Pc, in order to keep the simplicity of this

toy-model. Further details are provided in Appendix A.

3.1 Overview and roadmap. Very concretely, to commit a value x, there must be 2t+1 signed so-called decvote’s

which are cast by 2t+1 players, for x, in a given view v′. The threshold signature out of these votes forms what we

call a decision certi�cate for x. Any player receiving a decision certi�cate for a value x, commits x. Also, a decision

certi�cate can be forwarded to any entity external to the system (formalized as a “learner of the state machine” in

[Lam06; GV10]), to prove to it that x was committed. When a new view v starts, players send to the new leader,

Lv , messages of a speci�c format called new-view. Roughly, in its new-view message, each player, Pi, testi�es of the

most recent view number, vi < v in which it cast a commitvote . We call vi its locked view number, and, denoting

as x̃i the value for which it voted, we say that Pi is locked on x̃i. So far, all this dates back to at least [DLS88] and

Paxos [Lam98], and was inherited in most recent leader-based BFTs to our knowledge.

The leader of the new view, Lv , waits until it receives a set NVset of messages, from 2t+1 players. Let vmax < v
be the highest locked view number reported in one of those new-view messages, and xmax be the value for which

decvote’s were cast in vmax. How does the leader know for sure that xmax is the unique value for which honest

players could have cast a commitvote in vmax? It is because it is also reported a quorum of preliminary votes for

xmax in vmax, which we will call a lock certi�cate, shortened as lock cert
[
vmax, xmax

]
. This quorum of preliminary

votes, called lockvote s, ensure the unicity. The leader sends a proposal to players to vote for xmax. To convince

them that they can safely vote for xmax, it appends to its proposal a proof for the following predicate called (1):

safe(v, xmax) : No other value than, possibly, xmax, could have

been committed in any earlier view v′ < v.
(1)

By this we mean precisely that, if 2t+1 commitvote messages (a “supermajority”) were cast in some earlier view

v′ < v, then these must have been votes for xmax.

To prove this predicate safe(v, xmax), the leader appends two evidences to its proposal. Each of them proves one

half of the predicate. The �rst evidence is the lock certi�cate for xmax. It proves that, in no previous view v1 6 vmax,

no other value than xmax could have been committed. The assertion is clear for v1 = vmax, since a lock certi�cate is

made of a supermajority of votes in vmax on xmax (and since honest players do not vote for con�icting values in the

same view). Then for the lower views v1 < vmax, we will see in Section A.1 that the assertion follows from a very nice

and old induction argument that, for all previous views, votes were cast for values respecting Equation (1). This dates

back to at least PBFT [CL99] (which is itself the “byzantization” of Paxos [Lam11]). The second evidence is brought

by what we call a PnS(v, vmax). It is a bitstring (hopefully short) which proves to any veri�er, possibly external,

the following predicate: no value could possibly have been committed in any higher view v′, s.t. vmax < v′ < v. In

conclusion, from these two evidences, players are convinced of Equation (1). From there, the leader can responsively

drive the view to the committing of vmax, following the classical pattern of two-phases of votes.

Our contribution in this work is to enable the leader to e�ciently prove the following remaining half of the

predicate. It states that no value could have been committed in any view higher than vmax, so is implied by the

following.

non-Supermajority(v, vmax) : no supermajority of decvote’s, i.e., 2t+1, could have been cast

in any higher view v′, s.t. vmax < v′ < v .
(2)

In turn, it is straightforward to see that this non-Supermajority(v, vmax) predicate is implied by the su�cient pred-

icate that, no set of t+1 honest players could have cast decvote’s in any higher view v′, s.t. vmax < v′ < v. This

is this actually this last su�cient predicate which will be proven by what we call a PnS(v, vmax).
[
A histori-

cal remark is that the previous straightforward implication was somewhat formalized in PBFT [CL99] (if not al-

ready in Paxos). Precisely, this implication can be seen as the contraposite of their statement on top of page 5

((t+1)“committed-local(v′, x)”⇒ “committed(v′, x)”) Indeed, since an honest player issues only one lockvote
[
v′, x

]
,

8

it cannot be the case that a lockvote
[
v′, y

]
be formed for any con�icting value y 6= x, and hence no commitcert

[
v′, y

]
can ever be formed.

]
3.2 Relationship to prior protocols. Nearly all prior two-phase BFTs with responsive view change [CL02;

GAG+19; GKS+22; ACG+23] implicitly implemented a PnS, without actually de�ning it, as the concatenation of

2t+1 signed testimonies. There, each of their issuers, say, Pi, testi�ed that it does not have a higher lock certi�cate

than the reported vi. Since this concatenation is multicast by the leader, the communication cost is quadratic in n.

Notice that the original PBFT [CL99] was even heavier, since the leader included, in the concatenation, all the re-

ported lock certi�cates. This ine�ciency was observed in the v2 of [YMR+19a], in §9.2, under the name “Vanilla”

[and reappeared in [GKS+22], where this concatenation is called a TC]. In order to reduce the size of the signatures,

it was proposed in [JNFG20] that the leader aggregates
=
t he signatures of the testimonies into one single BGLS

aggregate signature [BGLS03]. Since veri�cation of one aggregate signature over k messages costs k + 1 pairings,

this has the same order of magnitude as verifying k distinct BLS signatures. This is why we count this as a linear

authenticator complexity per player, hence, a total quadratic authenticator complexity. We compare more concretely

to their performance in Section 7.

3.3 Proofs of non-Supermajority (PnS). To enable the leader to e�ciently build a short proof for the non-

Supermajority predicate (Equation (2)), vouching for the lock certi�cate which it will propose, players and the leader

use the following new threshold primitive. We formalize it in De�nition 6, and call it a Proof of non-Supermajority

(PnS) system. We now illustrate the de�nition by describing how it is used in a BFT. For each playerPi at the beginning

of a new view v, denote as vi ∈ [0, v− 1] its locked view number (vi = 0 is for when Pi has no lock). In its new-view
message to the leader Lv , Pi includes a somewhat signed testimony, stating that its locked view number at the

beginning of v is equal to vi. Somehow, it appends to this testimony extra hints, which will help Lv to e�ciently

aggregate many testimonies into a single proof. More formally, Pi creates the testimony and the hints all-at-once, in

the form of what we call a report: reporti,v,vi ← PnS.Reporti(v, vi). Upon receiving 2t+1 valid reports for view

v: (reporti,v,vi)i ∈ I indexed by some subset I⊂ [n], the leader somehow extracts from them a PnS(v, vmax), where

vmax is the max of the reported vi’s. Precisely, it obtains the PnS by applying, on the batch of 2t+1 reports, the

(publicly available) algorithm called PnS.Report. Finally, upon receiving from the leader a request to vote on some

value x̃, encapsulated in some lock certi�cate of rank ṽ, and vouched by a purported proof of non supermajority: π,

each player applies the veri�cation algorithm PnS.Verify (v,vmax,π), and if this check passes, this means that π is a

valid PnS(v, vmax).
Two questions which may arize from the speci�cation of PnS are (A) what prevent corrupt players from reporting

very high inputs, e.g., vi = v− 1? Nothing. However, the way in which we use a PnS system in BFT is that a honest

leader does not take into account reports unless they come appended with a lock certi�cate for the correspond-

ing epoch. That way, when the leader outputs a PnS(v, vmax), it is guaranteed to have a matching corresponding

lock cert
[
vmax, xmax

]
. Also, (B) what prevents a corrupt leader from taking into account a report for a high input,

e.g., vmax, without checking existence of a lock cert
[
vmax, •

]
? Again, nothing. This will only weaken what it proves,

since the higher the vmax, the weaker the PnS(v, vmax).

De�nition 6 (PnS: de�nition as a threshold cryptographic primitive). Consider n = 3t+1 players, of which

t are corrupt. All what follows takes as parameter any arbitrary bitstring, denoted v. It can be could be thought of

as a unique instance identi�er (in our context: the current view number v, implicitely appended with the consensus

instance identi�er). Each honest player Pi starts with a tuple (v, vi), where vi > 1 is a positive integer in some

predetermined range (in our context: vi ∈ [0, v − 1] is the locked view number of Pi at the beginning of view v). A

PnS system is the data of a setup, and of a quadruple of locally computable algorithms, which are available after this

setup: (PnS.Report, (PnS.Provei)i ∈ [n], PnS.ReportVerif , PnS.Verify). The outcome of the setup is the publication

of some data on a publicly available bulletin board, e.g., (individual or threshold) veri�cation key(s), and a private

assignment to each player Pi, e.g., signature key(s).

• PnS.Verify(v, vmax, π). This publicly available algorithm takes as input an integer vmax and a bitstring π,

and outputs either accept or reject. If it outputs accept, then we call π a Proof of non-supermajority for vmax

9

in view v, shortened as a PnS (v,vmax). We require that: existence of a PnS (v,vmax) implies that no set of t+1
honest players have their inputs (v, vi) such that vmax < vi.[
So this implies the non-supermajority predicate for vmax (Equation (2)). This requirement is dubbed as the sound-

ness condition.

]
• reporti,v,vi

← PnS.Reporti(v, vi) for all i ∈ [n]. This algorithm is accessible only by player Pi, since it

requires secret input(s) from Pi (left implicit), e.g., signature key(s). It outputs a data string called a report.
• PnS.ReportVerif

(
i, v, vi, reporti,v,vi

)
. It is a publicly available algorithm, it returns either accept or

reject. If the outcome is accept, then we say that reporti,v,vi is a valid report of Pi on (v, vi). We require the

condition, dubbed as report-completeness, that: ∀i ∈ [n], PnS.Reporti always outputs valid reports.

• π ← PnS.Prove
(
v, I,

{
vi , reporti,v,vi

}
i ∈ I

)
. This publicly available algorithm takes as input a set of

2t+1 pairs of

{
reported input, valid report

}
, indexed by I⊂ [n] (all with respect to the same (current view

number) v). Denote the highest reported input as vmax = maxi ∈ I vi. We require the condition, dubbed as

prover-completeness, that the output π is a PnS(v, vmax).

Remark (Generalized parameters). The speci�c thresholds in De�nition 6: of t-out-of n = 3t+1 corruptions, and

of the non-supermajority predicate stated for t+1 honest players, can seamlessly be generalized to any threshold. It

would then give: consider any number n of players of which t are corrupt, and k a number such that t + k 6 n.

Then PnS.Prove would take as input k+ t reports messages, and the supermajority predicate would then state that

at least k honest players have their input lower than vmax (so no set of n− t− k + 1 honest players can have their

input higher).

3.4 Introducing the toy two-phase BFT from any PnS. We now illustrate the use of PnS on a simple one-

instance leader based consensus. This toy protocol is called two-phase consensus (2Pc) and formalized in Algorithm 2.

Further formalism for the data structures is in Appendix A Fig. 5. We now convey the main ideas of 2Pc. It can be

seen as one instance of SBFT [GAG+19] (no chain of instances), without a fast-track, and where the costly multicast

of 2t+1 reports was replaced by a black-box PnS system (see at the end of Section 3.1). Although simple, when

2Pc is instantiated with a PnS having constant authenticator complexity, then it yields the �rst two-phase leader

based consensus with responsive view change and linear communication complexity. The steps of 2Pc are speci�ed

with respect to the current view number v. Players perform the steps numbered 0., 2. and 4., as soon as they can, in

any order. Some additional steps, numbered as 1., 3. and 5., are taken only by the leader.

3.5 Steps common to every view v. The broad pattern of the following steps has been mainstream since at least

[CL99], and is commonly known as BFT with two phases of vote. The �rst phase is initiated in step 1. by the leader

of the view, Lv , which proposes a valid value, x, to all players. Technically, it does so by multicasting a message of a

speci�c format, called prepare , to be detailed. In step 2., upon receiving from Lv for the �rst time a prepare message

for some value x each player accepts it if the prepare satis�es some conditions to be speci�ed. If it accepts, then, it

sends to the leader Lv a signed vote for the value x. It does so in the form of a signed message of a speci�c format,

denoted as a lockvote
[
v, x
]
. In step 3., upon receiving 2t+1 lockvote

[
v, x
]

messages for the same value x, the leader

aggregates
=
2t+1 their signatures (shares) into what we call a lock certi�cate attached to view number v for the value

x, and which we denote as lock cert
[
v, x
]
. Notice that the t < n/3 assumption implies that no two lock certi�cates

attached to the same view number v can ever exist for two distinct values x 6= x′. This partly explains the name

“lock”. The leader Lv initiates the second phase of vote by multicasting the lock cert
[
v, x
]
. In step 4., upon receiving

a lock cert
[
v, x
]
, each player sends to the leader Lv , a signed vote for the value x, in the form of a message called

decision vote, and denoted as commitvote
[
v, x
]
. In step 5., upon receiving 2t+1 commitvote

[
v, x
]

messages for the

same value x, the Lv aggregates
=
2t+1 their signatures (shares) into what we call a decision certi�cate, denoted as

commitcert
[
v, x
]
, then commits x. Any honest player which forms or receives a decision certi�cate for a value x

must automatically commit x.

Remark. Our contribution is orthogonal to how decision certi�cate(s) are di�used once a value has been committed.

Several well-known implementation options are possible. The most natural one is that Lv muticasts the decision

10

certi�cate to all. In the pipelined regime [YMR+19a; ACG+23], players send instead their commitvote
[
v, x
]

to the

next leader Lv+1, which then multicasts the decision certi�cate along with a new block proposal.

More accurately, following the terminology of [CL99]: we say that the predicate committed(v, x) holds for some

value x and view number v, if there exists a set D of at least t+1 honest players which received a lock cert
[
v, x
]

while they were in view v. Indeed, the view-change mechanism will guarantee that, from this point in the execution,

only the value x can make its way into a decision certi�cate. Conversely, we will use in the proof of safety the easy

aforementioned implication that, if some commitcert
[
v, x
]

is formed, then committed(v, x) must hold.

3.6 View-change for higher views v> 2: locked values. We now detail the mechanism enabling the leader to

choose the value that it proposes to players in step 1., and preventing two distinct values from being decided in two

distinct views, thereby ensuring the “consistency” guarantee. This mechanism is known as view-change and shows

up in steps 0. to 2.

No view-change however needs to be done in the �rst view, where the leader L1 can simply send a blank prepare
for any valid value x, e.g., its own input. To make the view-change operate, 2Pc requires that every player Pi locally

stores and updates a lock certi�cate, denoted as its “high locki”. To de�ne it, we introduce the terminology that a lock

certi�cate is “higher” than another one, if it is attached to a higher view number. Then, high locki is simply de�ned

as the highest lock certi�cate that Pi so far ever received or created. Notice that this mechanism is present in most

BFTs since [DLS88]. For consistency of notations, we make the convention that a player Pi starting the BFT instance

initializes high locki := (vi := 0, ṽPi
), where ṽPi

is any valid value of its choice, e.g., its input to the BFT instance.

Let us just examplify, for concreteness. When 2Pc is used in the SMR regime of pipelined consecutive instances, then

xPi
can be any block of pending transactions with ancestor equal to a block of previous height and vouched by a

quorum certi�cate, i.e., in our terminology: either a lock certi�cate or a decision certi�cate.

If, later, high locki becomes equal to some lock cert
[
vi, x̃i

]
, for some vi> 1, then we say that Pi is “locked” on the

value x̃i. Otherwise if vi is still 0 then we say that Pi is not locked on any value. This is why we call lock cert
[
vi :=

0, ṽPi

]
a non-locking lock certi�cate (it can be seen as a mere wrapper of the value ṽPi).

3.7 View-change for v > 2: choice of the value to prepare. At the beginning of a view v, in step 0., every

player Pi sends its high locki to the leader Lv , in a message of a speci�c format denoted as new-view. In addition to

this high locki, a new-view message contains a report of player Pi (Equation (report) in Algorithm 2). Recall that this

is, roughly, a signed testimony of Pi stating that it has locked view number equal to vi at the beginning of v. The

leader waits until it receives a set of 2t+1 new-view messages:

NVset =
{(

“new-view”, reporti,v,vi , lock cert
[
vi, x̃

])
: i ∈ I

}
where I⊂ [n] the 2t+1-sized subset of indices of

the issuers. Denote as lock cert
[
vmax, xmax

]
the high lockLv

of the leader Lv after reception of these messages.

By de�nition, since the leader Lv must update it high lockLv
every time it receives a higher one, we have that

vmax > maxi ∈ I vi.
The leader Lv extracts, out of the reports contained in the messages, a proof of non-supermajority for vmax in view

v (PnS(v, vmax)), denoted as π, as spelled-out in Algorithm 2 Equation (proof). Then Lv proposes to the players to

vote for vmax, in step 1.. It does so by multicasting a message of a speci�c format: (“prepare”, π, lock cert
[
vmax, x

]
).

Recall that if vmax = 0, then we have that lock cert
[
vmax, x

]
= x is any externally-valid value x of Lv’s choice, e.g.,

its input in the BFT instance.

One possible optimization in [1. Prepare] is that the leaderLv tentatively forms the PnS(v, vmax) without verify-

ing the reports. It veri�es them a posteriori if the PnS is invalid. In this case, it publicly exposes the invalid report(s),

thereby evidencing misbehavior of their issuer(s). Then it waits for further reports to replace the invalid one(s). This

idea is further optimized in Section 4.1 in the context of the implementation called T -PnS.

3.8 View-change for v> 2: accepting a preparemessage. Upon receiving a (“prepare”, π, lock cert
[
ṽ, x
]
) mes-

sage, each player Pi in view v, in the case where lock cert
[
ṽ, x
]

would be strictly higher than its own high locki =

lock cert
[
vi, x̃i

]
, then by de�nition it immediately updates high locki ← lock cert

[
ṽ, x
]
. In particular it becomes

locked on x, if it was not already.

[
Notice that in case of equality vi = ṽ > 1, since no two di�erent values can

11

2Pc

The steps 0., 2., 4. are done by each player when it is in view v.

In addition the leader Lv performs the steps 1., 3., 5..

A player starts view v = 1 at the beginning of the protocol, then view v = 2 after 3∆, then each next view after 4∆.

0. Report If v = 1, skip and go directly to step 1.

Else if v ≥ 2: Every player Pi, denoting by lock cert
[
vi, x̃i

]
its high locki, forms a report:

(report) reporti,v,vi ← PnS.Reporti(v, vi).

Then it sends

(
“new-view”, reporti,v,vi , lock cert

[
vi, x̃

])
to the leader Lv ;

1. Prepare If v = 1, Leader L1 multicasts (“prepare”, lock cert
[
0, xL1

]
= xL1), where xL1 is any valid value //e.g., its

input to the BFT instance.

Else if v ≥ 2: Leader Lv waits until it receives a set NVset of 2t+1 valid new-view messages, indexed by some I⊂ [n]:

NVset =
{(

“new-view”, reporti,v,vi , lock cert
[
vi, x̃

])
: i ∈ I

}
.

Denote by lock cert
[
vmax, xmax

]
the high lockLv

of Lv //since it must update it every time it receives a higher one, we

have in particular: vmax > maxi ∈ I vi.
It extracts, out of NVset, a proof of non-supermajority for vmax in view v:

(proof) π ← PnS.Prove
({

reporti,v,vi : i ∈ I
})
.

//since a PnS(v,maxi ∈ I vi) is a fortiori a PnS(v, vmax).
Then it multicasts (“prepare”, π, lock cert

[
vmax, xmax

]
).

2 Lock Vote Every player Pi waits until it receives a prepare message for the �rst time from Lv :(
“prepare”, π, lock cert

[
ṽ, x̃
])

//recall that, for the message to be valid, π must be a PnS(v, ṽ).

Then Pi replies with a lockvote
[
v, x̃
]
.

3. Lock Certificate Upon receiving lockvote
[
v, x
]

from 2t+1 distinct issuers, the leader Lv aggregates
=
2t+1

their signa-

tures to form a lock cert
[
v, x
]
, which it multicasts //in the context of chained SMR, it may also multicast a new prepare for

a block extending v.

4. Commit Vote Upon receiving a lock cert
[
v, x
]

from leader Lv , a player Pi replies with a signed commitvote
[
v, x
]

//In

the pipelined regime, it sends it instead to the next leader.

5. Commit Certificate Leader Lv , upon receiving 2t+1 commitvote
[
v, x
]

from distinct issuers, aggregates
=
2t+1

the sig-

natures into a commitcert
[
v, x
]
. //In the pipelined regime then this is performed by the next leader. Upon forming or

receiving a commitcert
[
v′, x

]
for any v′ ∈ N∗, a player commits x (and continues the protocol).

Algorithm 2: 2Pc: generic two-phase consensus with responsive view change, instantiated from any black box PnS system.

have a lock certi�cate attached to the same view > 1, it must be the case that x = x̃i.
]

Then, Pi accepts the

prepare
(
v, lock cert

[
ṽ, x
])

message if and only if π is a valid PnS(v, ṽ). The rest of the view follows the classical

pattern of PBFT, except that votes are collected then aggregated by the leader, in order to preserve linear communi-

cation complexity. The proof of safety is formalized in Section A.1.

3.9 Why the view-change is responsive (and where it was prevented). So in particular we see that, even if

Pi’s locked view number vi> ṽ was strictly higher, it still accepts the prepare message. This is the key to respon-

sive view-change, as is the case in [CL99; GAG+19; GKS+22; ACG+23]. By contrast, in all existing Tendermint-like

view-changes [DLS88; Buc16; BG17; YMR+19b; SWN+23; MN23], a player does not accept a prepare containing a

12

lock cert
[
ṽ, x
]

if it is locked on a strictly higher view vi> ṽ. In those view-changes, if the leader does not wait ∆ to

be sure that it receives their highest locks from all honest players, then its prepare message might not be accepted by

a quorum of 2t+1 players, preventing liveness. This limitation of those view-changes is coined as Livelessness with

two-phases in [YMR+19a, §4.4], and dubbed a “hidden lock” in [ACG+23, §3.1]. In particular, this limitation shows up

in [MN23] in their Figure 1: a player Pi votes in step (3) only if the lock certi�cate received in the prepare is “ranked

no lower than” its own high locki. This is why their claim of being responsive shows up only in the good case.

4 T -PnS: Lightweight, and from any NI-TSS

The following implementation of PnS, which we call T -PnS, is very simple and general. For simplicity we present

it with the following speci�c parameters: the inputs are of the form (v, vi), where the tag v is a number and

vi ∈ [0, v − 1]; and we consider the speci�c thresholds of De�nition 6 (t out of n corruptions, and with PnS.Prove
which aggregates 2t+1-out-of-n valid reports into a PnS proof that no t+1-out-of-n honest players have their

input higher than vmax). All these parameters can be straightforwardly generalized, e.g., for the general thresh-

olds discussed below De�nition 6. T -PnS operates from any (2t+1)-out-of-n threshold signature scheme:

(
Sign,

aggregate
=

2t+1, Verify
=

2t+1

)
.

PnS.Reporti(v, vi) Informally, the output consists of a signature (share) on each of the following testimonies

for each v′ ∈ [vi, . . . , v − 1]:

(testi(v,v′)) � my input in view v is no higher than v′ �

More formally, each such testimony may be just formatted as the pair (v, v′). So formally, the output is the

collection of signature (shares): Sign(ski, (v, v
′))v′ ∈ [vi,...,v−1].

PnS.ReportVerif(i, v, vi, •) it takes as input (in place of •): a tuple of signatures shares (σi,v′)v′ ∈ [vi,...,v−1] for

some number vi, and outputs accept if each σi is as previously, i.e., a valid signature from Pi on the testimony

(v, v′).
PnS.Prove

(
v, I, (σi,v′)v′ ∈ [vi,...,v−1]

)
De�ne vmax as the lowest value for which there exists a testimony: (v, vmax)

signed by the 2t+ 1 signers, i.e.:

(testi(v,vmax)) � my input in view v is no higher than vmax �

aggregate
=

2t+1 the 2t+1 signatures (shares) (σi,vmax)i ∈ I on this testimony, into a threshold signature: π, which

is the output.

PnS.Verify(v, vmax, π) Verify
=

2t+1
whether π is a valid threshold signature on the testimony (v, vmax).

The proof of soundness of T -PnS is just: consider π a valid threshold signature on the testimony (v, vmax),
then this implies that at least t+1 (honest) players have their inputs vi no higher than vmax, which is the non-

supermajority predicate which was to be proven.

4.1 Optimisation for the leader: constant veri�cation complexity (or one misbehaving player gets pub-

licly exposed). Upon receiving 2t+1 reports (reporti,v,vi)i ∈ I from a 2t+1-set I⊂ [n] of issuers, the leader does

not verify the signature shares. Instead, it optimistically computes the highest reported value: vmax = maxi ∈ I vi,
and tentatively applies PnS.Prove, i.e., aggregates the signature shares for vmax: (σi,vmax

)i ∈ I . It then veri�es the

threshold signature π obtained. If veri�cation rejects, then it searches the signature share(s): (σi∗,vmax
) which was

(were) invalid. Notice that even in this case, the leader needs only verifying 2t+1 signature shares, not the whole

content of the reports. So the leader removes the issuer i∗ out of the set I , and waits to receive a report from some

new player j. However when this bad event happens, the badly formed report of i∗ constitutes a proof that it mis-

behaved, which the leader can publicly expose. So the price paid by i∗ will be much higher than the consequence of

its behavior, i.e., having the leader compute another threshold signature.

13

4.2 Performance. A report for input vi has bitsize equal to v − vi authenticators. So it is particularly small

for the common case where honest players obtained their high locki no more than from a few views behind v. As

detailed above, the computation of the leader is independent of v, unless one misbehaving player is publicly exposed.

In this latter case, the computation of the leader consists in verifying 2t+1 signature shares. It may have to do such

veri�cation t times, but then this means that the leader caught all t corrupt players. Likewise, the PnS obtained has

size equal to 1 authenticator (a threshold signature), so both the communication from the leader and veri�cation at

the players, are independent of v. In conclusion, 2Pc instantiated with T -PnS has linear authenticator complexity:

O(nv) and keeps independent of v the load on the leader (unless all corrupt players are caught). Although this does

not count in the authenticator complexity, let us further observe that the contents of messages needs not be appended

to the threshold signature to enable its veri�cation. So when instantiated with a constant-sized TSS, T -PnS is the

�rst PnS which has a bit complexity which is constant in n. In Section 6 we will provide further implementations

of PnS which are useful in very bad scenarios where v grows large, since their sizes of reports have less worst-case

dependency in v (either +O(log(v)) or ×O(log(v))).

5 No Proofs in Good Views, for Free

Technically, a good view is one in which no player Pi lately reports a lock which is strictly higher: vi> vmax, than

the one of the leader (precisely: than its lock cert
[
vmax, xmax

]
updated after reception of the 2t+1 �rst new-view

messages). In particular, it must be that i /∈ I : such a late and isolated Pi is dubbed a “hidden lock” in [ACG+23]. A

strict subset of good views are called “happy” in [JNFG20; GKS+22; SDZ22b]. A su�cient condition for a view to be

“happy” is: GST happened at the beginning of the previous view and the leader of the previous view was also honest.

In this section we present an optimization of 2Pc0PnS which completely removes the overhead at the leader, due to

PnS in step 1., in all the good views. Since the leader is in practice a bottleneck ([CDH+22]), removing the complexity

at the leader is particularly desirable. Since this optimization applies to any black-box PnS system, it also applies to

the naive one [CL02; GAG+19; GKS+22; ACG+23] consisting in forwarding 2t+1 signed reports.

5.1 Illustration on the toy two-phase BFT. We now illustrate our optimization on 2Pc, in the form of the

optimized variant which we call as 2Pc0PnS. We give the main ideas, 2Pc0PnS is formalized in Section B Algorithm 6.

The �rst ingredient is that the leader tentatively multicasts its prepare message without a PnS. Now, we add the

following extra path for accepting such a prepare message. When a player Pi receives a prepare message containing a

lock certi�cate lock cert
[
ṽ, x̃
]

at least as high as its own, i.e., vi 6 ṽ, then it automatically replies with lockvote
[
v, x̃
]

(without even checking whether there was a PnS included or not). We dub this extra-path as the Tendermint unlocking,

since this path was credited to Tendermint by [YMR+19b]. In good case executions, this extra-path is actually the

only one followed. Indeed, all honest players have a lock as high as vi = v − 1. So the leader is reported such a lock

within the �rst 2t+1 reports messages, so is able to convince all 2t+1 honest players to cast a lockvote , yielding

the desired lock certi�cate for the proposed value. In conclusion, both the communication from the leader and the

veri�cation by players, are as light as in all non-responsive two-phase BFTs [Buc16; BG17; YMR+19b; MN23] (and

[DLS88]).

However, if we kept only this extra-path in 2Pc, then it would not be responsive anymore! As explained in

Section 3.9, having only this path is what prevented responsiveness in BFTs such as [DLS88; Buc16; BG17; YMR+19b;

MN23]. This is why in 2Pc0PnS we also keep the path of 2Pc, in parallel, as a backup mechanism. Namely, when

the leader receives a higher lock than its own (lock cert
[
vmax, xmax

]
) from a late Pi (so i /∈ I), then it sends to Pi a

PnS(v, vmax) to support its proposal (in the pseudo code we were underoptimal, for simplicity, and had the leader

send a whole prepare message again to Pi). Then any such Pi accepts the prepare message as in 2Pc, namely, if the

PnS(v, vmax) is valid.

Finally, the reason why allowing this extra-voting mechanism preserves safety is somewhat classical. Indeed,

safety of the Tendermint mechanism is what supports [Buc16; BG17; YMR+19b; MN23], and it follows from a very

old and classical induction proof (from [DLS88]). However in our case it may be more subtle because we allow

simultaneously two paths to vote, i.e., the (PnS-based) one of PBFT and the (good-case) one of Tendermint. So in

Section B.1 we give the details of the proof of safety.

14

We �nally make some orthogonal optimization-related remarks related to aggregation of signature shares. In

[GL22] they make the observation that, when NI-TSS is embodied by BLS multisignatures, then players can append

their BLS signatures σi with a classical Chaum-Pedersen proof of equality of exponent (w.r.t. their public key). Then

the leader needs only checking this proof to accept σi, so it needs not anymore performing the pairing-based BLS

veri�cation. In their Table 1 they report a 2× speedup for 256 signatures. Actually the task of the leader can be further

sped up. It can tentatively aggregate the batch of 2t+1 signature shares, then test only validity of the multi-signature

obtained. In the rare cases where a few invalid signatures are hidden in the batch, group-testing-based techniques

[LM07] enable to �nd them all in a logarithmic number of pairings.

5.2 Relationship to prior optimizations. As commented in Table 1, a number of BFTs (Fast-Hotstu� [JNFG20],

Jolteon [GKS+22], implemented in the late Diem [Tea21], Marlin [SDZ22b], [MN23]) enjoy better parameters in so-

called “happy” views. A view is “happy” if the new leader is responsively reported a lock certi�cate of the previous

view v − 1. For instance, if the highest lock ever formed was formed in a view before v − 2, then the view is not

“happy”, but it is still good if the leader is reported this lock in the �rst 2t+1 reports. This shows that “happy” views

are a strict subset of good views. In non-happy views, [SDZ22b] have an extra-phase due to a preliminary round-trip

which they call “pre-prepare”, as explained in [SDZ22b, §V. C]. Such an extra-round-trip is also paid in [GHA+21]

in non-good views (as discussed in their §VII, D and in [SDZ22b]). Our new technique to avoid such an extra-phase

in 2Pc0PnS (Algorithm 6), despite our tentative Tendermint-like view-change, is that the leader detects hidden locks

straight from late new-view messages. In the related works [GHA+21; ACG+23] it is not speci�ed if players report

their highest known lock certi�cate (high locki) to the leader in new-view messages. For our optimization to carry

over these works, it would be needed that they incoporate this speci�cation (as a by-product, this would implement

the abstraction called “HighVoteReq” in [ACG+23]).

6 Two more PnS, for Bad Scenarios

We now introduce two more classes of implementations of PnS. The former has no dependency in v at all and the

latter only inO(log(v)). Hence, they may serve as a replacement for T -PnS (Section 4) in bad scenarios where many

consecutive views elapsed since the beginning of the instance. For simplicity we also present them with the same

speci�c choice of parameters as in Section 4. The implementations obviously carry over general parameters.

6.1 From SNARKS of signed values in a range. This implementation is introduced in [AR23], so we just recall

it here. We describe it when narrowed to our speci�c parameters. Consider a prover (a leader), which received 2t+1
signed messages, signed by a subset I⊂ [n] of 2t+1-out-of n public keys. Their contents come as pairs:mi = (v, vi).
The left entry v is �xed public, e.g., it encodes the current view and the instance number. Their right entries vi are

all in some range [0, vmax]. Their tool is a succinct non-interactive argument of knowledge (a “SNARK”) enabling

the prover to prove knowledge of what we have just described. Namely: of signatures issued by a subset I of 2t+1
out of n public keys, each on a message of the form (v, vi) for a �xed public v, and such that all vi ∈ [0, vmax]
∀i ∈ I . The latter range condition is what they denote as a predicate on the signed messages. So in our formalism,

the PnS.Reporti consists in generating a signature on (v, vi), and the PnS.Prove consists in generating a SNARK

as just described. In conclusion, the advantage of this SNARKs-based instantiation of PnS is its short size, since the

message contents, more precisely: the variable parts vi’s, need not be exhibited.

Remark 7. We make the observation that this gain of size is fully visible when the SNARK is applied to related

contexts where the sizes of signed messages are larger. Such an example is given by the problem of responsive view-

change of optimistically fast BFT. In this context, the leader multicasts 2t+1 signed messages, and players check

that no (t+1)-subset of them have equal content. In the v1 of this work it is detailed how . Non-responsive PoE’s

can be found in [RTA22].

6.2 From any aggregate signature scheme. This instantiation of PnS, which we denote asA-PnS, is simply the

one where players send a report of the form mi = (v, vi) along with a signature on it. Then, the leader forms a PnS

15

consisting of: a set I of 2t+1 senders indices, their reports, and an aggregate
6=
I of their signatures. In [JNFG20] this

approach is instantiated with the aggregate signature scheme of [BGLS03], which has veri�cation complexity equal

to 2t+1 + 1 pairings.

7 Compiling Multi- into Aggregate- Signatures

We consider any multi-signature scheme (Sign, Verify, aggregate= , Verify=). The following very simple con-

struction, calledMtoA, compiles it into a restricted-purpose aggregate signature scheme. Its �rst restrition is that

it operates on sets of signed messages of which all issuers are distinct, i.e.: (mi)I⊂ [n]. Then, without restricting gen-

erality, we assume that the messages input to aggregate
=

are of the form mi = (v, vi), where the tag v is the

same for all i ∈ I , and where the variable parts of the messages, the vi’s, are within a prede�ned range. The second

restriction is then that the signature must be used only once for each tag v. Said otherwise, in the unforgeability

game, we do not allow queries on messages with the same pre�x (v, vi). Let us denote this range as [0, 2`− 1] (so in

our context of PnS: ` = log(v)). The setup is that each player Pi generates 2` signature key pairs:

(ski,j,b, pki,j,b)j ∈ [0,`[,b ∈ {0,1}

of which it publishes the 2` public keys (and proofs of possession if needed). So somehow, each player emulates 2`
signing machines, hence a total of N := 2`.N signing machines. Let us �x the notation that the bit decomposition

of a variable part of some input, vi, is denoted as [vi,0, . . . , vi,`−1]. To generate a signature on vi, generate a signature

on the same message content: v for each bit of this decomposition. The idea is that distinguishing which bit is encoded

by the signature, and whether it is 0 or 1, is not achieved by modifying the content signed (always v). It is instead

achieved by changing the signing key used. That way, the content (v) stays always the same, so signatures encoding

di�erent bits can still be e�ciently aggregated with a multi-signature. The proof of unforgeability simply consists in

considering a forger which creates a valid aggregate signature, σ, for a set of messages containing a (v, vi∗) for one of

the challenge keys: pki∗ = [pki∗,j,b], such that it did not query a signature before to pki∗ for the tag v. Then, consider

any bit of vi∗ , e.g., the �rst: vi∗,1. We have that σ is a legitimate forgery against the underlying multisignature scheme

(in the N -users setting) with respect to the target key pk1,j,vi∗,1
.

Sign

(
(ski,j,b)j ∈ [`−1],b ∈ {0,1}, (v, vi)

)
Output the `-uple of signatures on v:

(3)

[
Sign(ski,j,vi,j

, v
)

: j ∈ [0, `− 1]
]

Verify(i, (v, vi), •) it takes as input (in place of •): an `-uple of signatures

[
σi,j : j ∈ [0, `− 1]

]
. Output accept

if each σi,j is a valid signature on v, under the key pki,j,vi,j
.

aggregate

6=(
I,
{
(v, vi) ,

[
σi,j : j ∈ [0, `− 1]

]}
i ∈ I

)
Let I be the 2`n-sized binary array which encodes the

subset of the `|I|-out-of-2`n public keys, pki,j,vi,j
, which signed the σi,j ’s. Recall that these keys are indexed by

the (multi)-indices (i, j, vi,j)i ∈ I,j ∈ [`−1].

Output σ ← aggregate
=
(
I, v,

{
σi,j
}
i ∈ I,j ∈ [0,`−1]

)
.

Verify
6=
(
I, (vi)i ∈ I , σ)

)
From I and the binary decomposition of the vi’s, form the binary array I encoding the

`|I|-sized subset of (multi)-indices (i, j, vi,j)i ∈ I,j ∈ [`−1].

Output Verify
=(I, v, σ).

7.1 Instantiation with PoP-based BLS multisignatures. Let us �rst consider the application ofMtoA to the

BLS-multisignatures of [RY07]. Its veri�cation costs 2 pairings, v.s. |I| + 1 pairings for [BGLS03]. The public keys

are of size 2` group elements. So this poses no problem in our setting where `, i.e., the number of bits by which

messages di�er, is small. Of course this would pose a problem with a large `. We make the observation that this

speci�c instantiation is exactly the pairing-based aggregate signature scheme called “Wendy” in [GHA+21] (and

16

which inspiredMtoA). This observation enables to replace their security proof, by a tight reduction to the security

of [RY07]. We benchmark this instantiation in Section 8.1, against BGLS aggregate signatures. We conclude that it

provides an e�cient PnS, which can be used as a backup to the simple TSS-based one of Section 4, in the scenarios

where the number v of consecutive bad views grows to dozens (which should be extremely rare, unless the system

is miscon�gured).

7.2 Comparison and performance ofMtoA in general. The construction can also be compared to the

pairing-based one of [LOS+13]. They had a similar idea of one-key-per-bit, and also achieved veri�cation in two

pairings. But their scheme is agnostic of situations, as ours, in which messages di�er by a few number ` of bits.

Hence, the number of their keys is equal to the whole bitsize of messages, vs in our case, equal to only 2`. They

require sequential signing (one signer passes the intermediate aggregate to the next signer), so this does not match

our non-interactive De�nition 1 (and is impractical for BFT). Finally, a bene�t ofMtoA is its genericity, e.g., it can

be instantiated with post-quantum multisignatures. Post-quantum ones with non-interactivity (De�nition 1) were

recently constructed [KCLM22; FSZ22].

8 Optimizations, Implementations and Comparisons

First, in Table 3 we provide a comparison of the complexities of all the implementations of PnS considered. Then

in Section 8.1 and appendix C we describe implementations and optimizations related to pairing-based PnS. All our

implementations were run on a laptop with Core i5-8265U (8 cores at 1.6GHz), 16GB of RAM, with the library gnark-

crypto on Go [BPH+22]. They were run with curve BN254, for which the uncompressed size of a point inG1 is 512 bits

and of a point inG2 is 1024 bits. They were also run with BLS12-377, for which the uncompressed size of a point inG1

is 768 bits and of a point in G2 is 1536 bits. Compressed points, i.e., their x-coordinate plus one bit, are twice smaller.

Each number is the mean over 10 executions. The code is available at https://anonymous.4open.science/r/consensus-

D7E0/ . In our implementations, we considered baseline BLS signatures implemented from type III pairings, which

are the most used since the most e�cient ones [AHO16; BCLS22]. In this type III setting, it is desirable for several

reasons that the public key has also a component pk′ in G1, i.e., is of the form (pk′, pk) = (sk.G1, sk.G2). Such a

double key is required in existing reductionist proofs of BGLS-aggregation [Dar10; Lac18]. Another bene�t is that

multi-scalar multiplications are 3× faster in G1. We will leverage this in both Section 8.1 and appendix C. We �nally

mention that to evaluate related works we needed to compute large products of pairings, namely: for verifying one

BGLS signature in Section 8.1, and for batching the veri�cation of the PoP’s of [RY07], in Appendix C. We used the

optimized implementation of products of pairings in gnark-crypto, inherited from [GS06].

8.1 Pairing-based PnS for bad scenarios: BGLS vsMtoA. In Table 4 we compare the veri�cation times of

two instantiations of aggregate-signature-based PnS, which are usable as a backup for T -PnS in bad scenarios where

v grows very large without a commit. The �rst is suggested in [JNFG20]. There, the aggregate signature is the one

of [BGLS03; BDN18]. Its veri�cation involves a product of at least as many pairings as distinct reported values. We

considered min(2t+1, v) distinct ones, since nothing prevents the t corrupt players from reporting a distinct lock

certi�cate each (in favorable executions, this would have given min(t+ 1, v)).
The second is obtained by applying the compiler MtoA from any BLS multisignature scheme. By “BLS mul-

tisignature scheme” we mean any one such that the veri�cation formula is as simple as in the original [Bol03, §4].

Namely, the veri�cation of a purported multisignature σ on a message (v, in the context of MtoA) with respect

to a (2t+1)-sized subset I ∈ [n] of issuers is as follows. In the context of MtoA, these issuers used a total of

`(2t+1) keys to create the signatures, out of which the multisignature was produced. In the more e�cient type-

III pairing context, these public keys come as the pairs in (G1,G2):
(
X ′i,j,bi,j , Xi,j,bi,j

)
i ∈ I,j ∈ [0,`−1]. We denote

as I =
{
(i, j, bi,j) : i ∈ I, j ∈ [0, ` − 1]

}
the set of their `(2t+1) (multi)-indices. Then, veri�cation consists

in verifying if e
(
σ,G2

)
= e

(
H(v),

∑
i ∈ I,j ∈ [0,`−1]Xi,j,bi,j

)
. There are three schemes which enable such a fast

veri�cation and which operate in the bulletin board PKI model. Their setups are benchmarked in Appendix C (of

which a new one:MSP-skoe, which we propose). We applied a further veri�cation speedup for BLS multisigna-

tures, which is a nice trick of [BCLS22]. The aggregator also gives to the veri�er the aggregated key in G2, i.e.,

17

report
(auth. complexity)

PnS.Prove
complexity

PnS

(auth. complexity)

PQ

T -PnS (Section 4)
generation cost: v − vi
veri�cation cost: 1

1 threshold sign. aggregation 1 threshold sign. veri�cation 3

A-PnS using [BGLS03] 1 2×(addition of k points) k + 1 pairings 7

A-PnS using [BDN18]

+ Appendix D

1 2×(addition of k points) min(v + 1 , k + 1) pairings 7

A-PnS using

MtoA (Section 7)

log(v)
(log(v) + 1).k-multisignature

aggregation

(log(v) + 1).k-multisignature

veri�cation

3

. . . itself instantiated

with BLS multisigs

log(v) addition of (log(v) + 1).k points 2 pairings 7

SNARKs of signed

messages [AR23]

7 pairings O(n log(n)) point additions 6 pairings 7

Table 3: Authenticator complexities of various instantiations of PnS, for a number of k = 2t+1 reports. The �rst column is for a

single report. In T -PnS we distinguished that the complexity for an honest player to create a report is as much signature shares

as the gap between its high locki and the current view; whereas the one for the leader is only to verify 1 signature share (the one

for vmax). The complexities at the veri�er ignore point-additions in pairing-based schemes. The last column PQ displays whether

it can be instantiated with post-quantum schemes.

XI :=
∑

i ∈ I,j ∈ [0,`−1]Xi,j,bi,j . Instead of recomputing it directly, the veri�er checks if XI is well-formed by

computing the aggregate key in G1: X ′I :=
∑

i ∈ I,j ∈ [0,`−1]X
′
i,j,bi,j

, then checks equality of the exponents by

testing if: e(X ′I , G2) = e(G1, XI). The bene�t is that, for N ∼ 1000, then adding N points in G1 is twice as fast as

in G2.

BN254 curve BLS12-377 curve

[BGLS03; BDN18] 39.8 ms 70.1 ms

MtoA from BLS multisig. 1.0 ms 1.8 ms

Table 4: Veri�cation times of a BGLS aggregate signature from 2t+1 players, on messages taking values in some range [0, v−1 =
2` − 1]. Veri�cation time of anMtoA aggregate signature from 2t+1 players, when instanted with BLS multisignatures. Recall

that anMtoA signature consists in multi-signature for `.(2t+1) public keys. Our parameters are v ∈ [0, 27-1], so ` = 7, and

t = 64 so 2t+1 = 129. Thus the total number of public keys in the multisignature is 903.

References

[ACG+23] I. Abraham, N. Crooks, N. Giridharan, H. Howard, and F. Suri-Payer. “BeeGees: strengthened liveness

in chained BFT”. In: PODC. 2023.

[ACR21] T. Attema, R. Cramer, and M. Rambaud. “Compressed Sigma-Protocols for Bilinear Circuits and Ap-

plications to Logarithmic-Sized Transparent Threshold Signature Schemes”. In: ASIACRYPT. 2021.

[AHO16] M. Abe, F. Hoshino, and M. Ohkubo. “Design in Type-I, Run in Type-III: Fast and Scalable Bilinear-Type

Conversion Using Integer Programming”. In: CRYPTO. 2016.

[AMS19] I. Abraham, D. Malkhi, and A. Spiegelman. “Asymptotically Optimal Validated Asynchronous Byzan-

tine Agreement”. In: PODC. 2019.

[AR23] Succinct Proofs of Partial Knowledge of Signed Messages Satisfying a Public Predicate. A preliminary ver-

sion appears as the unpublished extra-Section 7 of "Compressed Sigma-Protocols for Bilinear Circuits

and Applications to Logarithmic-Sized Transparent Threshold Signature Schemes", eprint 2020/1447.

18

[BBB+23] A. Bhat, A. Bandarupalli, S. Bagchi, A. Kate, and M. Reiter. Unique Chain Rule and its Applications.

Financial Cryptography and Data Security. 2023.

[BCG+23] F. Baldimtsi, K. K. Chalkias, F. Garillot, J. Lindstrom, B. Riva, A. Roy, A. Sonnino, P. Waiwitlikhit, and

J. Wang. Subset-optimized BLS Multi-signature with Key Aggregation. ePrint 2023/498. 2023.

[BCG22a] M. Bravo, G. V. Chockler, and A. Gotsman. “Liveness and Latency of Byzantine State-Machine Repli-

cation”. In: DISC. 2022.

[BCG22b] M. Bravo, G. V. Chockler, and A. Gotsman. “Making Byzantine consensus live”. In: Distributed Comput.

(2022).

[BCK+22] M. Bellare, E. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. “Better than Advertised Security for

Non-interactive Threshold Signatures”. In: CRYPTO. 2022.

[BCLS22] J. Burdges, O. Ciobotaru, S. Lavasani, and A. Stewart. E�cient Aggregatable BLS Signatures with Chaum-

Pedersen Proofs. ePrint 2022/1611. 2022.

[BD21] M. Bellare and W. Dai. “Chain Reductions for Multi-Signatures and the HBMS Scheme”. In:ASIACRYPT.

2021.

[BDN18] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for Smaller Blockchains”. In: ASI-

ACRYPT. 2018.

[Ben04] D. B. and Ben Lynn and Hovav Shacham. “Short Signatures from the Weil Pairing”. In: J. Cryptology

(2004).

[Ber15] D. J. Bernstein. Multi-user Schnorr security, revisited. ePrint 2015/996. 2015.

[BG17] V. Buterin and V. Gri�th. “Casper the Friendly Finality Gadget”. In: arxiv 1710.09437 (2017).

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and Veri�ably Encrypted Signatures from

Bilinear Maps”. In: EUROCRYPT. 2003.

[BGR98] M. Bellare, J. A. Garay, and T. Rabin. “Fast batch veri�cation for modular exponentiation and digital

signatures”. In: EUROCRYPT. 1998.

[BNN07] M. Bellare, C. Namprempre, and G. Neven. “Unrestricted Aggregate Signatures”. In: ICALP. 2007.

[Bol03] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Di�e-

Hellman-Group Signature Scheme”. In: PKC. Latest long version at https://faculty.cc.gatech.edu

/ aboldyre/papers/b.pdf. 2003.

[BPH+22] G. Botrel, T. Piellard, Y. E. Housni, A. Tabaie, and I. Kubjas. ConsenSys/gnark-crypto: v0.6.1. 2022.

[BTA+19] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Reiter, and E. G. Sirer. “E�cient Veri�able Secret

Sharing with Share Recovery in BFT Protocols”. In: CCS. 2019.

[Buc16] E. Buchman. “Tendermint: Byzantine Fault Tolerance in the Age of Blockchains”. PhD thesis. Univer-

sity of Guelph, 2016.

[CDH+22] J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup, and D. Williams. “Internet Computer

Consensus”. In: PODC. 2022.

[CGK+22] S. Cohen, R. Gelashvili, E. Kokoris-Kogias, Z. Li, D. Malkhi, A. Sonnino, and A. Spiegelman. “Be Aware

of Your Leaders”. In: Financial Cryptography and Data Security. 2022.

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward. “Marlin: Preprocessing zkSNARKs with

Universal and Updatable SRS”. In: EUROCRYPT. 2020.

[CHP07] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen. “Batch Veri�cation of Short Signatures”. In: EURO-

CRYPT. 2007.

[CL02] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance and Proactive Recovery”. In: ACM Trans.

Comput. Syst. (2002).

[CL99] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance”. In: OSDI. 1999.

[Dam92] I. Damgård. “Towards Practical Public Key Systems Secure Against Chosen Ciphertext attacks”. In:

CRYPTO. 1992.

[Dar10] S. C. and Darrel Hankerson and Edward Knapp and Alfred Menezes. “Comparing two pairing-based

aggregate signature schemes”. In: Designs, Codes and Cryptography (2010).

[DCX+23] S. Das, P. Camacho, Z. Xiang, J. Nieto, B. Bunz, and L. Ren. Threshold Signatures from Inner Product

Argument: Succinct, Weighted, and Multi-threshold. ePrint 2023/598. 2023.

19

[DGNW20] M. Drijvers, S. Gorbunov, G. Neven, and H. Wee. “Pixel: Multi-signatures for Consensus”. In: USENIX.

2020.

[DLS88] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. “Consensus in the presence of partial synchrony”. In: J.

ACM (1988).

[DN18] M. D. Dan Boneh and G. Neven.Blsmulti-signatures with public-key aggregation. https://crypto.stanford.edu/ dabo/pubs/papers/BLSmultisig.html.

2018.

[DXKR23] S. Das, Z. Xiang, L. Kokoris-Kogias, and L. Ren. “Practical Asynchronous High-threshold Distributed

Key Generation and Distributed Polynomial Sampling”. In: Usenix Security symposium. 2023.

[DZJR23] X. Dai, B. Zhang, H. Jin, and L. Ren. ParBFT: Faster Asynchronous BFT Consensus with a Parallel Opti-

mistic Path. ePrint 2023/679. 2023.

[EEK+23] M. F. Esgin, O. Ersoy, V. Kuchta, J. Loss, A. Sakzad, R. Steinfeld, X. Yang, and R. K. Zhao. “A New Look

at Blockchain Leader Election: Simple, E�cient, Sustainable and Post-Quantum”. In: AsiaCCS. 2023.

[FPS20] G. Fuchsbauer, A. Plouviez, and Y. Seurin. “Blind Schnorr Signatures and Signed ElGamal Encryption

in the Algebraic Group Model”. In: EUROCRYPT. 2020.

[FSZ22] N. Fleischhacker, M. Simkin, and Z. Zhang. “Squirrel: E�cient Synchronized Multi-Signatures from

Lattices”. In: CCS. 2022.

[GAG+19] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D. Seredinschi, O. Tamir,

and A. Tomescu. “SBFT: A Scalable and Decentralized Trust Infrastructure”. In: DSN. 2019.

[GHA+21] N. Giridharan, H. Howard, I. Abraham, N. Crooks, and A. Tomescu.No-commit proofs: Defeating livelock

in bft. eprint 2021/1308. 2021.

[GJM+23] S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y. Zhang. hinTS: Threshold Signatures with Silent

Setup. ePrint 2023/567. 2023.

[GKM+18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. “Updatable and Universal Common

Reference Strings with Applications to zk-SNARKs”. In: CRYPTO. 2018.

[GKS+22] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and Z. Xiang. “Jolteon and Ditto: Network-

Adaptive E�cient Consensus with Asynchronous Fallback”. In: Financial Cryptography and Data Se-

curity. 2022.

[GL22] D. Galindo and J. Liu. “Robust Subgroup Multi-signatures for Consensus”. In: CT-RSA. Ed. by S. D.

Galbraith. 2022.

[Gro21] J. Groth. Non-interactive distributed key generation and key resharing. ePrint 2021/339. 2021.

[GS06] R. Granger and N. P. Smart. “On Computing Products of Pairings”. In: eprint 2006/172 (2006).

[GV10] R. Guerraoui and M. Vukolic. “Re�ned quorum systems”. In:Distributed Comput. (2010). extends PODC’07.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. “PLONK: Permutations over Lagrange-bases for Oec-

umenical Noninteractive arguments of Knowledge”. In: eprint 2019/953 (2019).

[JNFG20] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai. Fast-HotStu�: A Fast and Resilient HotStu� Protocol. arxiv.

2020.

[KCLM22] I. Khaburzaniya, K. Chalkias, K. Lewi, and H. Malvai. “Aggregating and Thresholdizing Hash-Based

Signatures Using STARKs”. In: Asia CCS. 2022.

[KS22] Y. Kondi and A. Shelat. Improved Straight-Line Extraction in the RandomOracle Model With Applications

to Signature Aggregation. ePrint 2022/393. 2022.

[LA23] A. Lewis-Pye and I. Abraham. Fever: Optimal Responsive View Synchronisation. 2023.

[Lac18] M. Lacharité. “Security of BLS and BGLS signatures in a multi-user setting”. In: Cryptogr. Commun.

(2018).

[Lam06] L. Lamport. Lower Bounds for Asynchronous Consensus. https://lamport.azurewebsites.net/pubs/lower-

bound.pdf. 2006.

[Lam11] L. Lamport. “Byzantizing Paxos by Re�nement”. In: DISC. 2011.

[Lam98] L. Lamport. “The Part-time Parliament”. In: ACM Trans. Comput. Syst. (1998).

[LL22] C. Lenzen and J. Loss. “Optimal Clock Synchronization with Signatures”. In: PODC. 2022.

[LLT22] Y. Lu, Z. Lu, and Q. Tang. “Bolt-Dumbo Transformer: Asynchronous Consensus As Fast As the Pipelined

BFT”. In: CCS. 2022.

20

[LM07] L. Law and B. J. Matt. “Finding Invalid Signatures in Pairing-Based Batches”. In: Cryptography and

Coding. Ed. by S. D. Galbraith. 2007.

[LOS+13] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. “Sequential Aggregate Signatures, Multisig-

natures, and Veri�ably Encrypted Signatures Without Random Oracles”. In: J. Cryptol. (2013).

[LSP82] L. Lamport, R. E. Shostak, and M. C. Pease. “The Byzantine Generals Problem”. In: ACMTrans. Program.

Lang. Syst. (1982).

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-Knowledge SNARKs from Linear-

Size Universal and Updatable Structured Reference Strings”. In: CCS. 2019.

[MN23] D. Malkhi and K. Nayak. Extended Abstract: HotStu�-2: Optimal Two-Phase Responsive BFT. ePrint

2023/397. 2023.

[MOR01] S. Micali, K. Ohta, and L. Reyzin. “Accountable-Subgroup Multisignatures: Extended Abstract”. In:CCS.

2001.

[NK20] O. Naor and I. Keidar. “Expected Linear Round Synchronization: The Missing Link for Linear Byzantine

SMR”. In: DISC. 2020.

[NRS21] J. Nick, T. Ru�ng, and Y. Seurin. “MuSig2: Simple Two-Round Schnorr Multi-Signatures”. In: CRYPTO.

2021.

[PW23] J. Pan and B. Wagner. “Chopsticks: Fork-Free Two-Round Multi-Signatures from Non-Interactive As-

sumptions”. In: EUROCRYPT. 2023.

[Rob20] A. T. and Robert Chen and Yiming Zheng and Ittai Abraham and Benny Pinkas and Guy Golan-Gueta

and Srinivas Devadas. “Towards Scalable Threshold Cryptosystems”. In: IEEE S&P. 2020.

[RTA22] M. Rambaud, A. Tonkikh, and M. Abspoel. “Linear View Change in Optimistically Fast BFT”. In: (2022).

[RY07] T. Ristenpart and S. Yilek. “The Power of Proofs-of-Possession: Securing Multiparty Signatures against

Rogue-Key Attacks”. In: EUROCRYPT. 2007.

[SDPV22] C. Stathakopoulou, T. David, M. Pavlovic, and M. Vukolic. “[Solution] Mir-BFT: Scalable and Robust

BFT for Decentralized Networks”. In: J. Syst. Res. (2022).

[SDZ22a] X. Sui, S. Duan, and H. Zhang. “BG: A Modular Treatment of BFT Consensus”. In: (2022).

[SDZ22b] X. Sui, S. Duan, and H. Zhang. “Marlin: Two-Phase BFT with Linearity”. In: DSN. 2022.

[SG02] V. Shoup and R. Gennaro. “Securing Threshold Cryptosystems against Chosen Ciphertext Attack”. In:

J. Cryptol. (2002).

[SLL10] D. Schultz, B. Liskov, and M. Liskov. “MPSS: Mobile Proactive Secret Sharing”. In: ACM Trans. Inf. Syst.

Secur. (2010).

[SWN+23] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath. “Player-Replaceability and Forensic Support

are Two Sides of the Same (Crypto) Coin”. In: Financial Cryptography and Data Security. 2023.

[Tea21] T. D. Team.DiemBFT v4: StateMachine Replication in the DiemBlockchain. https://developers.diem.com/papers/

diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf. 2021.

[Tea22] A. Team. aptos. https://aptos.dev/. 2022.

[TZ23] S. Tessaro and C. Zhu. “Threshold and Multi-Signature Schemes from Linear Hash Functions”. In:

EUROCRYPT. 2023.

[VAFB22] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani. “COBRA: Dynamic Proactive Secret Sharing for

Con�dential BFT Services”. In: IEEE S&P. 2022.

[YMR+19a] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham. “HotStu�: BFT Consensus with Lin-

earity and Responsiveness”. In: PODC. 2019.

[YMR+19b] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham. ““Two-phase HotStu�” in Sections

4.4 and 6 of HotStu�: BFT Consensus with Linearity and Responsiveness”. In: PODC. 2019.

[ZS92] Y. Zheng and J. Seberry. “Practical Approaches to Attaining Security Against Adaptively Chosen Ci-

phertext Attacks (Extended Abstract)”. In: CRYPTO. 1992.

A Further Details for the Toy Two-Phase Consensus

The data structures of 2Pc are in Fig. 5, the protocol in Algorithm 2 and the proof in Algorithm 2) The steps of 2Pc
are speci�ed with respect to the current view number v. Some steps are speci�ed to be taken only in the �rst view

21

(v = 1), they are in addition highlighted in gray for extra-clarity. Players perform the steps numbered 0., 2. and 4.,
as soon as they can, in any order. Some additional steps, numbered as 1., 3. and 5., are taken only by the leader.

Utilities

• A lockvote
[
v, x

]
/ commitvote

[
v, x

]
is a triple (v ∈ N∗, x ∈ X , σi), where σi is a signature (share) of any player, e.g.,

Pi, on the triple

[
{“lockvote” / “commitvote”}, v, x

]
. Pi is then called the issuer of this lockvote / commitvote. The σi is

left-out of the notation, for brevity.

• A lock certi�cate is a triple (ṽ ∈ N, x̃ ∈ X , σ), where ṽ is called the view number attached, x̃ a valid value, dubbed as the

locked value and:

- if ṽ ≥ 1, then σ is the aggregate
=

2t+1
of 2t+1 signatures over identical commitvote

[
ṽ, x̃
]

from distinct issuers.

- else, i.e., if ṽ = 0, then σ = ⊥. We say that such lock certi�cate is non-locking, and identify it with x̃.

We say that a lock certi�cate is (strictly) higher than another one if the view number attached is (strictly) higher. For brevity,

we denote it as lock cert
[
ṽ, x̃

]
, omitting σ.

• high locki is a lock certi�cate locally stored by every player Pi. Upon starting the BFT instance, Pi initializes high locki as

the (non-locking) lock cert
[
0, xPi

]
, where xPi is Pi’s input to the BFT instance. Upon receiving or creating a lock certi�cate,

say, lock cert
[
v′i, x̃i

′]
, which is strictly higher than its high locki, then Pi sets high locki ← lock cert

[
v′i, x̃i

′]
.

• A new-view message is a tuple of the form

(
“new-view”, reporti,v,vi , lock cert

[
vi, x̃

])
, where vi ∈ [0, v − 1] and

reporti,v,vi is a valid report of Pi for (v, vi).

• A prepare message is a tuple of the form

(
“prepare”, π, lock cert

[
vmax, xmax

])
, where vmax ∈ [0, v − 1] and π is a Proof

of non-supermajority for vmax in view v (PnS(v, vmax)). If vmax = v − 1, then we have simply π = ⊥ because the non-

supermajority predicate is automatically satis�ed (no commitvote could have been cast in view v at the beginning of v).

• A decision certi�cate commitcert
[
v ∈ N∗, x ∈ X

]
is the aggregate

=
2t+1

of 2t+1 signatures over identical

commitvote
[
v, x
]

’s from distinct issuers.

Figure 5: Data structures for 2Pc consensus (Algorithm 2).

A.1 Reminder of the proof of liveness and safety of 2Pc. Liveness is straightforward: from any 2t+1 valid

reports, the leader can form a PnS for the highest reported locked view number: PnS(v,maxi ∈ I vi), which is a

fortiori a PnS(v, vmax). From there, it can obtained all the required votes for the proposed value xmax.

As for safety, the argument is classical since PBFT [CL99], and actually the conceptualization of PnS makes it

even easier to follow! Let us make the induction assumption that for all view numbers v′ ∈ [0, v − 1] included, any

value y for which a lock certi�cate was formed in view v′: lock cert
[
v′, y

]
, must verify the safety invariant coined

as safe(v′,y) in Equation (1). Recall that this means that no other value than, possibly, y, could have been committed
in any view up to v′. We now show that the induction assumption holds for view v. Assume by contradiction that

a lock cert
[
v, x
]

for some value is formed, and that a con�icting value y was committed in a previous view v′ < v
(the supermajority needed to make a lock certi�cate rules out that y could have been committed in v). But for

the lock cert
[
v, x
]

to be formed, it must be that at least one (and even t+1) honest players checked existence of a

lock cert
[
v1, x

]
and of a PnS(v, v1), for some v1 < v. We now show that this could actually not happen in any case,

which concludes the proof:

either v′ 6 v1: then this would violate the induction assumption for v1, since v1 < v.

or v1 < v′: then this violates the supermajority predicate proven by PnS(v, v1), i.e., no value could have been com-

mitted in any view in]v1, v].

B Further Details for the No-Proofs-in-Good-Views

B.1 Proof of liveness and safety of 2Pc0PnS Liveness follows from the one of 2Pc, since we added an extra-path

for voting, without removing the previous path.

22

2Pc0PnS: no PnS sent in good views.

0. Report Unchanged

1. Prepare - Tendermint unlocking If v = 1: unchanged

Else if v ≥ 2: Leader Lv waits until it receives a set NVset of valid 2t+1 new-view messages, in-

dexed by some I⊂ [n]: NVset =
{(

“new-view”, reporti,v,vi , lock cert
[
vi, x̃

])
: i ∈ I

}
. Denote

by lock cert
[
vmax, xmax

]
the high lockLv

of Lv .

//One optimization is that instead of verifying validity of the 2t+1 reports, the leader Lv can

tentatively form a PnS(v, vmax) out of them. If the PnS obtained is invalid, Lv publicly exposes

the invalid report(s), thereby evidencing misbehavior of their issuer(s). Then it waits for further

reports to replace the invalid one(s).

Then it muticasts a prepare message without a PnS: (“prepare”, lock cert
[
vmax, xmax

]
).

1. Prepare - non-good case: PnS-unlocking the hidden locks If the following non-good event

ever happens, then the leader opens the following non-good thread in parallel of the rest (in par-

ticular, of 3.). The non-good event is reception of a (late) new-view message, issued by some Pi,

reporting a strictly higher lock certi�cate than Lv’s: vi> vmax.

The non-good thread is as follows (the leader stops it upon succeeding in forming a

lock cert
[
v, xmax

]
, in 3.):

Leader Lv forms, out of NVset, a proof of non-supermajority π for vmax in view v as in Equa-

tion (proof) of Fig. 5 (it needs to do so only once).

Then it sends to every suchPi a prepare message as in 2Pc: (“prepare”, π, lock cert
[
vmax, xmax

]
).

2 Lock Vote Every player Pi waits until it accepts a prepare message for the �rst time from Lv .

There are two possibilities for a prepare message to be accepted:

(a) Tendermint unlocking if the prepare message contains a lock certi�cate at least as high:

lock cert
[
ṽ, x̃
]

than then one of Pi: vi 6 ṽ, then Pi accepts it.

(b) bad case: PnS unlocking the hidden locks (Unchanged: otherwise, if the prepare message

is as in 2Pc, i.e., of the form

(
“prepare”, π, lock cert

[
ṽ, x̃
])

with π a PnS(v, ṽ), then Pi

accepts it.)

Then Pi replies with lockvote
[
v, x̃
]
.

Remaining steps 3., 4.& 5. unchanged

Algorithm 6: Optimization for 2Pc in good views. The unchanged steps compared to 2Pc are shaded-out.

As for safety, let us make the same induction assumption as in Section A.1, namely, that for all view numbers

v′ ∈ [0, v−1] included, any value y for which a lock certi�cate was formed in view v′: lock cert
[
v′, y

]
, must verify the

safety invariant coined in Equation (1) as safe(v′,y). Recall that this means that no other value than, possibly, y, could

have been committed in any view up to v′. We now show that the induction assumption holds for view v. Assume

by contradiction that a lock cert
[
v, x
]

for some value is formed, and that a con�icting value y was committed in

a previous view v′ < v (the supermajority needed to make a lock certi�cate rules out that y could have been

committed in v). But for the lock cert
[
v, x
]

to be formed, one of the following two (non-exclusive) situations must

have happened. Consider the set of the honest players which cast a lockvote
[
v, x
]

(so there are at least t+1 of them).

Denote as lock cert
[
v1, x

]
the lock certi�cate included in the prepare message of the leader Lv .

Either at least one of them was unlocked by a PnS. Then we are back in the situation of the proof of Section

A.1, so this cannot happen (Recall that this player must have received the lock cert
[
v1, x

]
and a valid PnS(v, v1),

but we showed that the simultaneous existence of those two objects was impossible under our contradictory

assumption).

Or all of them voted following the Tendermint unlocking.

This means that, at the beginning of v, at least t+1 honest players had a locked view number no higher than v1.

This implies that no value could have been committed in a view at least as high as v1 (because less than t honest

23

players could have cast a commitvote in such a higher view). So we must have that v′ < v1, so this violates the

induction assumption for v1.

C Faster proofs of possession (in the AGM)

We �nally address simultaneously the two apparent issues mentionned in the (4) at the end of the Introduction. In

[BCK+22], Fig. 11, they formalize the following schnorr-knowledge-of-exponent (schnorr-koe) assumption. Consider

an abelian groupG of some prime order q, with a public generatorG. This assumption states existence of an extractor

Ext such that if an adversary is able to produce a public key pk ∈G and a Schnorr signature on pk, then except with

negligible probability negl(κ), Ext recovers the exponent: sk ∈ Z/qZ such that pk = sk.G, in straight-line from the

random oracle queries of the adversary. It is proven, independently in both [FPS20, Thm 1] and [BCK+22, Thm 8],

that schnorr-koe holds (tightly) under the AGM and the DL assumptions for G. Hence, our �x for both issues in (4)

is as follows. Instead of requiring the proofs-of-possession (PoP) of [RY07], we require PoP’s consisting of Schnorr

signatures on their key(s) by players. We call asMSP-skoe the multisignature scheme obtained. We believe it to be

practical, since Schnorr signatures are now standard (as EdDSA in TLS 1.3, and in Bitcoin since 2022). Even when

t ∼ N/3 machines are controled by the adversary, then Ext recovers all their secret keys except with negligible

t.negl probability. Without both assumptions that Ext is straight-line and with negligible probability of failure, then

no better reduction is known than with an exponential loss in N ([SG02] and [MOR01, Problems 4]). Given the

keys extracted from the adversary, then the same trivial argument as in [Bol03, Thm 4.2] provides a tight reduction:

from the security of BLS multisignatures in the (N − t)-users setting, to the one of standalone BLS signatures in

the (N − t) users setting. This concludes our (N − t)-users security claim, since the security of the latter reduces

to the single-user setting with at most (N − t) overhead. This is proven in [Ber15; Lac18]). As for the performance

issue, Schnorr signatures have the advantage not to require pairings. Concretely, to verify one Schnorr signature

σ = (R, z) on pk, the veri�cation consists in computing the hash c = H(pk, pk, R) then testing if z.G = R+ c.pk.

Then, testingN such equalities can be done all at once, by testing their linear combination with powers of a random

number in Z/qZ ([BGR98]).The cost of such a N -sized linear combination, known as a multi-scalar multiplication,

is highly amortized in modern libraries such as the one we used.We also leveraged existence of a component in G1,

pk′ of each key. This allowed to make the Schnorr PoP instead in G1, and thus veri�ed under pk′. Since multiscalar

multiplications are 3x faster in G1 for thousands of keys, it is not surprising that this trick brought a further 2x

speedup of the total time for the batch veri�cation of the setup ofMSP-skoe.

We measured the computation done by each Veri�er, at the setup, in three BLS-based multi-signatures: [BCG+23],

[RY07] and the new MSP-skoe. We report on them in Table 7. In all three, we incorporated the time taken by

the veri�er to check equalities of exponents in all published pairs of keys. This check for one key is e(pk′, G2) =
e(G1, pk), so we batched its veri�cation in a total of 2 pairings. The veri�cation of the PoP [RY07] was optimized as

essentially a single product of N pairings with random exponents, using the batch veri�cation of BLS signatures of

[CHP07, §5.1]. In the table we also evaluated the marginal computation of the Veri�er for every set of 2.` = 14 keys

published. This corresponds to the use-case ofMtoA for v = 27, when a new player registers a set of 2.` keys. For

the scheme of [BCG+23], most of the computation of the Veri�er is the same when one new key registers, as the one

for the setup ofN keys. More generally, each time the set of published keys is modi�ed, the Veri�er of [BCG+23] must

replace, in its head, each published key pkk by its multiplication by H(pkk‖[pk1, . . . , pkN]). Of course, [BCG+23]

have the size advantage not to require that keys come appended with a PoP (512 bits for our Schnorr one, and 256

for [RY07]). The latter are proven secure under the RMSS and AGM assumptions. Without these assumptions, then

it is still possible to skip PoP’s by using the previous scheme [BDN18]. This previous scheme comes at the slight

overhead that the aggregation of k signatures and keys, cost two k-points multiplication and k hashes. Instead, this

cost is just two k-points additions in [BCG+23] and PoP-based schemes ([RY07] and ourMSP-skoe).

Before we report on the performance, we brie�y discuss the assumption. The schnorr-koe is folklore since [ZS92;

Dam92]. Avoiding such kind of assumptions, i.e., that the adversary gives the exponent to the reduction (known as

KOSK [Bol03]), is precisely what motivated the PoP of [RY07]. It turns out that the AGM is used in popular SNARK

systems (Marlin [CHM+20], PlonK [GWC19] and Sonic [GKM+18; MBKM19]), as well as in DKG ([BCK+22]) and

multisignatures ([NRS21; BD21; BCG+23]). Still, such assumptions are non-falsi�able. So we believe that the Schnorr

PoP which we put forth (as MSP-skoe) should be further composed with the Fischlin transform. Precisely, this

24

transform compiles a Schnorr proof into one with straight-line extractability, without any overhead for the veri�er.

Plus, its cost is now highly optimized [KS22].

BN254 curve [BCG+23] [RY07] MSP-skoe

Batch N keys 495.9 ms 582.1 ms 14.9 ms

Each 2.` keys 319.2 ms 5.5 ms 0.7 ms

BLS12-377 curve [BCG+23] [RY07] MSP-skoe

Batch N keys 1136.5 ms 1023.1 ms 24.1 ms

Each 2.` keys 860.0 ms 10.3 ms 1.7 ms

Table 7: One-shot computation time of the Veri�er for each new list of N public keys, in three BLS multi-signature schemes.

First line: for a complete new set of N keys. Second line: when 2.` new keys are added (in [BCG+23]: for any change in the set

of keys). Times for N = 4608 public keys [this corresponds to the following choice of parameters inMtoA (Section 7), where

N = 2`.n: ` = 7 bits of variable parts of messages, and n = 193 players (= 3.64 + 1)]. We neglected the time taken by the

hashes, they will be incorporated in a future update of the code.

D An optimized version of BGLS.

Of independent interest, we introduce a class of non interactive aggregate signatures, in which the number of pairings

is brought down to the number of distinct message contents. Roughly, it consists of the ones called AMSP and ASMP-

pop in [BDN18, §3.3, §6.1], but in which signatures are not pre�xed with sub-aggregate keys apki. More precisely:

– the signature is the vanilla BLS [Ben04; Dar10], in particular not pre�xed with one’s key.

– the aggregator, on input signed messages from a subset I⊂ [n] of issuers, gathers them by sub-subsets Ji of

identical contents mi. For each distinct content mi, it applies the aggregate
=

algorithm desribed in their

blogpost [DN18] (multi-scalar multiplication), resp. of [RY07] (multi-point addition). The former aggregation is

a multi-scalar multiplication of the signatures (σj)j ∈ Ji
by the hashes

{
H(pkj‖(pk

′
j)j ∈ Ji

) : ∀j ∈ Ji
}

. Notice

that in the proceedings version [BDN18, §3.1], these multiplications are instead done by the signers in Ji. But

we cannot require this, since this is not compatible with our syntax of NI-TSS (members of a quorum of signers

are not aware of each other). So the aggregator obtains a multisignature on each content mi, with respect to a

(sub-)aggregate key apki.
– Finally, it applies the aggregation of [BGLS03][BDN18, §3.3] (add the multi signatures).

– The veri�cation algorithm consists in verfying the all mi’s are distinct, then verifying the multisignatures on

them, then apply the BGLS veri�cation formula w.r.t. the sub-aggregate keys apki, as in [BDN18, §3.3].

Hence, the veri�cation of each subset of signatures over the same message content, collapses to one pairing. This is

why in Table 3, we count that veri�cation of their aggregate signature requires min(k+ 1, v + 1) pairings, where v
is the number of possible distinct message contents. Notice that in the schemes presented as AMSP and ASMP-pop

in [BDN18, §3.3, §6.1], the messages were pre�xed with sub-aggregate keys. But as noticed by the authors in their

§3.3, this pre�x serves only to guarantee that the messages are distinct. Indeed, their reduction to the security of the

baseline multisignature scheme, holds as soon as the messages are distinct. This reduction is a direct adaptation of

the one of [BNN07], of which a variant for Type III pairings can be found in [Lac18, Thm 2]. We further observe that

the same construction applies when using instead the multi-signature scheme of [BCG+23] as baseline (and also the

one with our Schnorr PoP, in Appendix C).

25

