
Cryptanalysis of Aggregate Γ Signature with
Sub-Exponential Complexity

Kaoru Takemure1,2, Yusuke Sakai2, Bagus Santoso1,
Goichiro Hanaoka2, and Kazuo Ohta1,2

1 The University of Electro-Communications, Japan
2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

Abstract. We present a sub-exponential forger by using a k-sum al-
gorithm against the aggregate Γ signature, which was proposed at Asi-
aCCS2019 by Zhao. Our forger is a universal forger under a key-only
attack and effective in the knowledge of secret key model.

Keywords: k-sum algorithm · aggregate signature · universal forgery

1 Introduction

Aggregate signatures (AS) are a cryptographic primitive which allows combin-
ing individual signatures on different messages into a compact one. Boneh et
al. introduced the notion of AS and proposed a pairing-based AS scheme which
achieves a constant size signature [3]. In general, pairing-based AS schemes re-
quire pairing computation to verify a signature, and the security of them is based
on the computational assumption in groups with bilinear maps which is stronger
than the discrete logarithm assumption in elliptic curve (EC) groups. Deploying
pairing-based AS schemes in existing applications, e.g., blockchain, is expen-
sive because it requires not only replacing the algorithms of a signature scheme
with the ones of the pairing-based scheme but also replacing an EC with pairing
friendly ones. AS from general groups is attractive in terms of the computational
complexity and the cost of deployment.

Zhao showed the subtlety in constructing secure AS scheme from general
groups and proposed an AS scheme from general EC groups without bilin-
ear maps by extending the Γ signature [8], which is called the aggregate Γ
signature [9]. He also proved that it is secure in the plain public-key (PK)
model [1] based on the new assumption, named the non-malleable discrete log-
arithm (NMDL) assumption.

In this paper, by using a k-sum algorithm [7], we propose a universal forger
under a key-only attack [5] in the knowledge of secret key (KOSK) model [2,
6]. This forger runs in sub-exponential time due to the k-tree algorithm [7]. Al-
though our proposed attack is not fatal theoretically since it is a sub-exponential
time attack, it affects the practical performance of Zhao’s scheme. More con-
cretely, for most of schemes based on general groups the bit-length of the order
of the underlying group of schemes is twice as long as the security parameter

2 Kaoru Takemure et al.

due to the ρ method. In contrast, the aggregate Γ signature scheme requires the
bit-length of the order of an underlying group to be approximately log n times
as long as the security parameter where n is the number of signers.

2 Preliminaries

The following is notations and some definitions which are used in this paper.

2.1 Notation

For a prime integer q, we denote the ring of integers modulo q by Zq and the
multiplicative group of Zq by Z∗q . Let G be an additive cyclic group of order q

and let P be a generator of G. For a set A, we write a
$←− A to mean that a is

chosen uniformly at random from A.

2.2 k-sum Problem

We recall the definition of k-sum problem.

Definition 1 (k-sum problem). The k-sum problem in group (Zq; +) for an
arbitrary q provides k lists L1, . . . , Lk of equal sizes, each list containing sL
elements sampled uniformly and independently from Zq, and requires to find

x1 ∈ L1, . . . , xk ∈ Lk s.t.
∑k
i=1 xi ≡ 0 (mod q).

In [7], Wagner proposed the k-tree algorithm which can solve the k-sum problem
for sL = 2log q/(1+log k) in time at most O(k2log q/(1+log k)) with non-negligible
probability.

2.3 Aggregate Signature

In this section, we show definitions of aggregate signatures and a security model
of it.

Definition 2. An aggregate signature scheme consists of the following six algo-
rithms. Let n be the number of signers.

Setup(1λ)→ pp. The public parameter generation algorithm takes as input a
security parameter 1λ, then it outputs a public parameter pp.

KeyGen(pp)→ (pk , sk). The key generation algorithm takes as input a public
parameter pp, then it outputs a public key pk and a secret key sk.

Sign(pp, pk , sk ,m)→ σ. The signing algorithm takes as input a public parame-
ter pp, a public key pk, a secret key sk, and a message m, then it outputs a
individual signature σ.

Verify(pp, pk ,m, σ)→ {0, 1} The verification algorithm takes as input a public
parameter pp, a public key pk, a message m, and a signature σ, then it
outputs 0 (REJECT) or 1 (ACCEPT).

Cryptanalysis of Aggregate Γ Signature with Sub-Exponential Complexity 3

Agg(pp, {(pk i,mi, σi)}ni=1)→ σa. The aggregation algorithm takes as input a
public parameter pp, and a set of all signers’ public keys, messages, and
signatures {(pk i,mi, σi)}ni=1, then it outputs an aggregate signature σa.

AggVer(pp, {(pk i,mi)}ni=1, σa)→ {0, 1}. The aggregate signature verification
algorithm takes as input a public parameter pp, a set of all signers’ pub-
lic keys and messages {(pk i,mi)}ni=1, and an aggregate signature σa, then it
outputs 0 (REJECT) or 1 (ACCEPT).

For any set of messages {mi}ni=1, if a public parameter pp, all signers’ public
keys {pk i}ni=1, and an aggregate signature σa are generated honestly by the above
algorithms, then we require that Pr[AggVer(pp, {(pk i,mi)}ni=1, σa) = 1] = 1.

Security Game. For aggregate signatures, we define universal unforgeability
under key-only attacks in the knowledge of secret key (KOSK) model. In this
security model, a forger who corrupts an aggregator and signers except one
honest signer is given an honest signer’s public key and a message and is required
to generate a forgery on the given message by making only hash queries. When
outputting a forgery, it must output cosigners’ secret keys corresponding to
cosigners’ public keys which are chosen arbitrarily.

If, for all m∗, a forger F wins the following game with non-negligible prob-
ability, then we say that F is a universal forger under a key-only attack in the
KOSK model.

Setup(1λ,m∗). The challenger chooses a public parameter pp
$←− Setup(1λ),

a honest signer’s key pair (pk , sk)
$←− KeyGen(pp). It runs a forger F on

input pp, pk and a message m∗.
Output. F outputs n key pairs {(pki, ski,m∗i)}ni=1 and a forgery σ∗a where the

following holds.

– (pk1,m
∗
1), . . . , (pkn,m

∗
n) are mutually distinct.

– (pk,m∗) ∈ {(pki,m∗i)}ni=1.
– skl is ⊥ where l is s.t. pkl = pk.
– ski is a correct secrete key corresponding to pki for i ∈ [1, n]\{l}.

If AggVer(pp, {(pk i,m
∗
i)}ni=1, σ

∗
a) = 1 is true, then F wins.

3 Aggregate Γ Signature Scheme

In [9], the aggregate Γ signature scheme is proposed by Zhao. This scheme
consists of the following six algorithms.

Setup(1λ)→ (G, q, P,H0, H1). It chooses (G, q, P), hash functions H0 : G →
Zq and H1 : G ×M → Zq where M is the set of messages, then it outputs
pp = (G, q, P,H0, H1).

KeyGen(pp)→ (X,x). It computes x
$←− Z∗q and X ← xP , then it outputs a

public key X and a secret key x.

4 Kaoru Takemure et al.

Sign(pp, X, x,m)→ σ. It computes r
$←− Z∗q , A ← rP , d ← H0(A), and e ←

H1(X,m). It computes z ← rd− ex mod q, then it outputs σ = (z, d) as a
signature.

Verify(pp, X,m, σ)→ {0, 1} It computes e ← H1(X,m) and A ← zd−1P +
ed−1X. If H0(A) 6= d holds, then it outputs 0. Otherwise it outputs 1.

Agg(pp, {(Xi,mi, σi)}ni=1)→ (T̂ , Â, z). It initializes T̂ = ∅, Â = ∅, and z = 0.

For i = 1 to n, if Verify(pp, Xi,mi, σi) = 1 ∧ (Xi,mi) /∈ T̂ ∧ Ai /∈ Â holds,
it sets T̂ ← T̂ ∪ {(Xi,mi)} and Â ← Â ∪ {Ai} and computes z ← z + zi
mod q. Finally, it outputs (T̂ , Â, z).

AggVerify((T̂ , Â, z))→ {0, 1}. If the elements in T̂ are not mutually distinct,
the elements in Â are not mutually distinct, or |T̂ | 6= |Â| holds, then outputs
0. It sets n′ ← |T̂ |, and for j = 1 to n′, it computes dj ← H0(Aj) and

ej ← H1(Xj ,mj). If
∑n′

j=1 djAj = zP +
∑n′

j=1 ejXj holds, it outputs 1,
Otherwise it outputs 0.

Zhao presented the ephemeral rouge-key attack against an intuitive AS scheme
built from the Schnorr signature which combines only the response components
of the Σ protocol [4] and showed that the above AS scheme can prevent this
attack. Also the security of this scheme is proved based on the non-malleable
discrete logarithm (NMDL) assumption. We review the definition of this as-
sumption.

Definition 3 (non-malleable discrete logarithm (NMDL) assumption).
Let H1, . . . ,HK : {0, 1}∗ → Z∗q be cryptographic hash functions, which may not
be distinct. On input (G,P, q,X) where X = xP for x ← Z∗q a PPT algorithm
A (called an NMDL solver) succeeds in solving the NMDL problem, if it outputs
({bi, Yi,mi}Ki=1, z) satisfying:

– z ∈ Zq, and for any i, 1 ≤ i ≤ K, Yi ∈ G, mi ∈ {0, 1}∗ that can be the
empty string, and bi ∈ {0, 1}.

– For any 1 ≤ i, j ≤ K, it holds that (Yi,mi) 6= (Yj ,mj). It might be the case
that Yi = Yj or mi = mj.

– X ∈ {Yi}K1 , and zP =
∑K
i=1(−1)bieiYi where ei = Hi(Yi,mi).

The NMDL assumption means that there are no PPT algorithm which succeeds
in solving the NMDL problems with non-negligible probability in log q.

For more detail of this assumption, see Section 5.1 of [9].

4 Sub-Exponential Universal Forgery under a Key-Only
Attack against Aggregate Γ Signature in the KOSK
Model

Here we present a sub-exponential universal forger under a key-only attack
against the aggregate Γ signature in the KOSK model. The cause of this crypt-
analysis is that there is an algorithm that can solve the NMDL problem in
sub-exponential time by using a k-sum algorithm.

Cryptanalysis of Aggregate Γ Signature with Sub-Exponential Complexity 5

The input and the goal of a forger against aggregate Γ signature in the
security game in Section 2.3 are as follows:

Input: A challenge key X1 and a target messages m∗1.
Goal: To output a forgery (z∗, {Ai}ni=1) and a set of cosigners’ keys and mes-

sages {(Xi, xi,m
∗
i)}ni=2 s.t. the following holds:

n∑
i=1

diAi = z∗P +

n∑
i=1

eiXi (1)

where Xi = xiP for i ∈ [2, n], di = H0(Ai), and ei = H1(Xi,m
∗
i) for

i ∈ [1, n].

Below, we show the procedure of our proposed forger F .

Main Procedure

1. Choose arbitrary cosigners’ secret keys {xi}ni=2 ∈ (Z∗q)(n−1) and assign the
public keys as follows:

X2 ← x2P, . . . ,Xn ← xnP. (2)

2. Launch a n-sum attack via n·sL times hash computations to obtain {(di, ri, Ai)}ni=1

s.t. the following holds:

n∑
i=1

di ≡ e1 (mod q) (3)

where Ai = riP +X1, di = H0(Ai) for i ∈ [1, n] and e1 = H1(X1,m
∗
1).

3. Choose any messages {m∗i }ni=2 and assign the followings:

e2 ← H1(X2,m
∗
2), . . . , en ← H1(Xn,m

∗
n), (4)

z∗ ← −
n∑
i=2

xiei +

n∑
i=1

ridi. (5)

4. Output (z∗, {Ai}ni=1) and {(Xi, xi,m
∗
i)}ni=2.

In Step 2 of the above, F executes the n-sum algorithm according to the
following.

n-sum Attack Procedure

1. Choose {ri,j}n,sLi=1,j=1 ∈ (Z∗q)n×sL and computes {Ai,j}n,sLi=1,j=1 where

Ai,j = ri,jP +X1. (6)

2. Compute di,j ← H0(Ai,j) for i ∈ [1, n], j ∈ [1, sL].

6 Kaoru Takemure et al.

3. Make lists as follows:

L1 ← {d1,j − e1}sLj=1,

and Li ← {di,j}sLj=1 for i ∈ [2, n].

4. Run the n-sum algorithm on input the n lists {Li}ni=1 to obtain {di,ji}ni=1

s.t. Eq. (3) holds.
5. Output {(di,ji , ri,ji , Ai,ji)}ni=1.

Correctness. Now we confirm the correctness of the above attack procedure.
For an output of F , (z∗, {Ai}ni=1) and {(Xi, xi,m

∗
i)}ki=2, we have the following

equations hold:

z∗P +
n∑
i=1

eiXi

= (−
n∑
i=2

xiei +

n∑
i=1

ridi)P + e1X1 +

n∑
i=2

eixiP (from,Eq.(5))

=

n∑
i=1

ridiP + e1X1

=

n∑
i=1

ridiP +

(
n∑
i=1

di

)
X1 (from Eq.(3))

=

n∑
i=1

di(riP +X1)

=

n∑
i=1

diAi (from Eq.(6)).

Computational Complexity. By using Wagner’s k-tree algorithm, Step 4 of
(n−1)-sum Attack Procedure takes at most O

(
n2log q/(1+logn)

)
time. In ad-

dition, in Main Procedure, there are n−1 exponentiations and n computations
of the hash function in Step 1 and 3, respectively. Also, in n-sum Attack Pro-
cedure, there are respectively n× sL exponentiations and n× sL computations
of the hash function in Step 1 and 2 where sL is 2log q/(1+logn).

References

1. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS 2006. pp. 390–399 (2006)

2. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In: PKC 2003. pp. 31–46 (2003)

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: EUROCRYPT 2003. pp. 416–432 (2003)

Cryptanalysis of Aggregate Γ Signature with Sub-Exponential Complexity 7

4. Cramer, R.: Modular design of secure, yet practical cryptographic protocols. Ph.D.
thesis, University of Amsterdam (1996)

5. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

6. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: EUROCRYPT 2006.
pp. 465–485 (2006)

7. Wagner, D.A.: A generalized birthday problem. In: CRYPTO 2002. pp. 288–303
(2002)

8. Yao, A.C., Zhao, Y.: Online/offline signatures for low-power devices. IEEE Trans.
Information Forensics and Security 8(2), 283–294 (2013)

9. Zhao, Y.: Practical aggregate signature from general elliptic curves, and applications
to blockchain. In: AsiaCCS 2019. pp. 529–538 (2019)

