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Abstract. Grover’s search algorithm gives a quantum attack against block
ciphers with query complexity O(

√
N) to search a keyspace of size N ,

when given a sufficient number of plaintext-ciphertext pairs. A recent result
by Jaques et al. (EUROCRYPT 2020) presented the cost estimates of
quantum key search attacks against AES under different security categories
as defined in NIST’s PQC standardization process. In this work, we extend
their approach to lightweight block ciphers for the cost estimates of quantum
key search attacks under circuit depth restrictions. We design quantum
circuits for the lightweight block ciphers GIFT, SKINNY, and SATURNIN.
We give overall cost in both the gate count and depth-times-width cost
metrics, under NIST’s maximum depth constraints. We also present Q#
implementation of the full Grover oracle for all versions of GIFT, SKINNY
and SATURNIN for unit tests and automatic resource estimations.

Keywords: Quantum cryptanalysis, quantum search, lightweight block
ciphers, GIFT, SKINNY, SATURNIN

1 Introduction

Recent advances in quantum computing technologies has prompted the viability of
a large-scale quantum computer. Shor’s seminal work [16] showed that a sufficiently
large quantum computer would allow to factor numbers and compute discrete
logarithms in polynomial time, which can be devastating to many traditional
public-key schemes such as RSA, ECDSA, ECDH. On the other hand, symmetric
cryptosystems like block ciphers and hash functions are generally believed to be
quantum-immune. The only known principle is the quadratic speed-up over the
exhaustive search attacks due to Grover’s algorithm [9] when attacking symmetric
ciphers, and thus doubling the key length addresses the concern.

In 2016, Grassl et al. [8] studied the quantum circuits of AES and estimated the
cost of quantum resources with minimizing the overall circuit width, i.e., the number
of qubits needed needed when applying Grover’s algorithm to break AES. Almazrooie
et al. [1] improved the quantum circuit of AES-128 by reducing the number of Toffoli
gates. Amy et al. [2] also estimated the cost of generic quantum pre-image attacks
on SHA-2 and SHA-3. Later, Langenberg et al. [13] proposed a different S-box



optimization based on Boyar and Peralta design approach [5] to reduce the total
number of Toffoli gates, and thus improving the previous works [1,8]. Zou et al. [19]
also proposed different S-box optimizations to improve the quantum circuit of AES
proposed by Langenberg et al. [13].

Since quantum computers are still in the early stage of its development, it is
difficult to decide the exact cost for each gate. The previous works [1, 8, 13, 19]
focused on reducing the number of T gates and the number of qubits in
their circuit construction. In contrast, Kim et al. [12] discussed the time-space
trade-offs for quantum resources needed for key search on block ciphers. They
also proposed various parallelization strategies for Grover’s algorithm to address
the depth constraint. Nevertheless, NIST has also initiated a process to solicit,
evaluate, and standardize one or more quantum-resistant public-key cryptographic
algorithms [14]. NIST also suggests various security categories where quantum
attacks are restricted to a fixed quantum circuit depth, by a parameter named
MAXDEPTH. The limitations from NIST motivated the need to provide better
resource estimations for the number of qubits, the number of Clifford+T gates
required to break either AES or SHA-3.

Recently, Jaques et al. [10] studied the quantum key-search attacks against
AES under NIST’s MAXDEPTH constraint [14] at the cost of few qubits. As
a working example, they implemented the full Grover’s oracle for key search on
AES and LowMC in Q# quantum programming language. They offer a specific
implementation that gives precise cost estimates of resources that would be required
to run the algorithm on quantum computer. They also revisited the time-space
trade-offs of parallelization strategies to overcome the MAXDEPTH constraint
from NIST. They proposed quantum circuits of AES and LowMC while minimizing
the gate-count depth-times-width cost metrics, under the MAXDEPTH constraint.

Our contributions. In this work, we present quantum circuits for lightweight block
ciphers – GIFT, SKINNY, and SATURNIN. We derive the lower cost estimates
for the number of qubits, the number of Clifford+T gates, the T-depth and
overall circuit depth. We also provide the precise cost estimates for quantum key
search attacks in both the gate count and depth-times-width cost metrics. To
implement the full quantum circuits of these ciphers, we separately present the
quantum circuits for S-box, SboxLayer, and the permutation layer. For the invertible
linear maps, we adopt an in-place PLU decomposition method as implemented
in SageMath [18]. We implement the full Grover oracle for GIFT-64, GIFT-128,
SKINNY-64, SKINNY-128, and SATURNIN-256 in Q# quantum programming
language [17] for automatic resource estimations. We then derive the quantum
search cost estimates against all the versions of these ciphers under different security
categories as defined by the NIST-PQC standardization process. The source code
of Q# implementations of Grover oracles for GIFT-64, GIFT-128, SKINNY-64,
SKINNY-128 and SATURNIN-256 is publicly available3 under a free license to allow
independent verification of our results.

3 https://github.com/amitcrypto/LWC-Q
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Organization. In Section 2, we review basic facts concerning quantum computation
and quantum search. In Section 2.3, we examine how the Grover search works with
parallelization improving upon the generic Grover-based attacks. Sections 3, 4 and
5 describe the quantum circuits for block ciphers GIFT, SKINNY and SATURNIN,
and also provide the cost estimates for each of their components. In Section 6,
we estimate the resources needed for quantum key search attack against GIFT,
SKINNY and SATURNIN in both the gate count and depth-time-width cost models.
In Section 7, we conclude this work.

2 Preliminaries

2.1 Quantum computation

A quantum computer acts on quantum states by applying quantum gates to its
quantum bits (qubits). A qubit (|0〉 or |1〉) is a quantum system defined over a finite
set B = {0, 1}. The state of a 2-qubit quantum system |ψ〉 is the superposition
defined as |ψ〉 = α |0〉+ β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1. In general, the
states of an n-qubit quantum system can be described as unit vectors in C2n under
the orthonormal basis {|0 . . . 00〉 , |0 . . . 01〉 , . . . |1 . . . 11〉}, alternatively written as
{|i〉 : 0 ≤ i < 2n}. Any quantum algorithm is described by a sequence of gates in
the form of a quantum circuit, and all quantum computations are reversible. The
algorithms we analyze are considered in a fault-tolerant era of quantum computing,
where quantum error correction enables large computations. As surface codes are
the most promising error correction candidate today [7], we focus on costs relevant
to surface codes. We pay special attention to the number of T-gates, which are the
most expensive gate on surface codes.

We use the universal fault-tolerant Clifford+T gate set. The Clifford group for
any number of qubits can be generated by the Hadamard gate H, the phase gate
S = T 2, the controlled not-gate (CNOT), and unit scalars. As usual, we write X,
Y , and Z for the Pauli operators.

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
,

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

To design quantum circuits for block ciphers, we use only Pauli-X (NOT), CNOT,
SWAP, Toffoli, and AND gates, together with measurements (denoted throughout as
M gates). These gates act like classical bit operations on bitstrings, hence they are
efficient to simulate. A quantuSWAP gate can be implemented using three CNOT
gates, though we assume that its implementation is free as it can be executed via
rewiring only. A quantum AND gate has the same functionality as a Toffoli gate,
except the target qubit is assumed to be in the state |0〉, rather than an arbitrary
state. The Toffoli and AND gates are further decomposed into Clifford+T gates,
and only Toffoli and AND require T gates. Figure 1 illustrates the quantum gates
we use to implement reversible classical circuits.
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|a > |a⊕ 1 >

(a) Pauli-X gate

|a > |a >

|b > |a⊕ b >

(b) CNOT gate

|a > |b >

|b > |a >

(c) SWAP gate

|a > |a >

|c⊕ (a ∧ b) >|c >

|b > |b >

(d) Toffoli gate

|a > |a >

|b > |b >

|a ∧ b >

(e) AND gate

Fig. 1: Quantum gates used in quantum implementations of classical circuits

For the implementation of Toffoli gate, we adopt Selinger’s approach [15] which
requires 7 T gates, 16 CNOT gates, 2 single-qubit Clifford gates and 4 ancillas with
having the T -depth 1 and overall depth 7. Figure 2 shows the implementation of
Toffoli gate of T -depth 1, using 4 ancillas.

|y > |y >

|z > |z >

|0 > |0 >

|0 > |0 >

|0 > |0 >

|0 > |0 >

|x > |x >
|y >

|z >

|x >

|x⊕ y ⊕ z >

|x⊕ y >

|y ⊕ z >

|x⊕ z >

T

T

T

T

T

T

T

Z

==
ZH H

Fig. 2: T -depth 1 representation of the Toffoli gate [15]

We use Q# programming language [17] to implement the block ciphers. For the
Q# simulator to run, we are required to use the Microsoft QDK standard library’s
Toffoli gate for evaluating both Toffoli and AND gates, which results in deeper
than necessary circuits. The AND gate designs we chose use measurements, hence
CNOT, single-qubit Clifford, measurement and depth counts are probabilistic. As
mentioned in [10], the Q# simulator does not currently support PRNG seeding for
de-randomizing the measurements, which means that estimating differently sized
circuits with the same or similar depth (or re-estimating the same circuit multiple
times) may result in slightly different numbers.

2.2 The key-search problem for block ciphers
Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher with block size n and a key
size k for a key K ∈ {0, 1}k. Given a sufficient number of plaintext-ciphertext pairs,
our goal is to recover the unknown key K by exhaustive search methods. Formally,
these plaintext-ciphertext pairs are given in the following set:

{(P1, C1), . . . , (Pr, Cr) ∈ {0, 1}n × {0, 1}n : E(K,Pi) = Ci} (1)

for some unknown user’s key K ∈ {0, 1}k. The exhaustive search method can be
modelled by a special Boolean function f : {0, 1}k → {0, 1} which is defined as

fr(K) =
{

1, if E(K,Pi) = Ci for all 1 ≤ i ≤ r
0, otherwise.

(2)
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so that we can evaluate fr upon elements of the domain {0, 1}k until we find the
unique element (the user’s key) for which we are searching.

For a fixed plaintext P , the encryption function E(·, P ) : {0, 1}k → {0, 1} is
expected to act as a pseudorandom function. Now let K be the correct key that is
used for the encryption. It follows that for a single plaintext block of length n, we
have Pr[E(K,P ) = E(K ′, P )] = 2−n. For r plaintext blocks given in equation (1),
we have

Pr[(E(K,P1), . . . , E(K,Pr)) = (E(K ′, P1), . . . , E(K ′, Pr))] =
r−1∏
i=0

1
2n − i (3)

which is 2−rn for r2 ≤ 2n. Since the number of keys different from K is 2k − 1, we
expect number of spurious keys for an t-block plaintext to be (2k−1).2−rn ≈ 2k−rn.
Therefore, we must choose r such that the chance of obtaining such a spurious key
is negligible if we are performing a search via evaluating fr. The probability that K
is the unique key consistent with r plaintext-ciphertext pairs is e−2k−rn (see Section
2.2 of [10]). Thus, if rn = k+10 gives the probability 0.999 for correctly identifying
the key. When rn = k, the probability for identifying a unique key is 1

e ≈ 0.37.
Hence, r must be at least d kne.

The classical exhaustive search for the user’s key would require on average O(2k)
classical evaluations of fr : {0, 1}k → {0, 1}. On the other hand, Grover’s quantum
search algorithm [9] gives us the user’s key with high probability if we implement
fr : {0, 1}k → {0, 1} as a quantum circuit and then we need to execute this quantum
circuit O(2k/2) times. This quantum circuit is referred as a quantum oracle and has
a non-trivial cost to implement, and can be constructed out of r quantum circuits
which each evaluate GIFT, SKINNY, and SATURNIN.

2.3 Grover’s search algorithm

We briefly recall the interface that we need to provide for realizing a key search,
namely Grover’s algorithm [9]. Given a search space of 2k elements, say {x : x ∈
{0, 1}k} and a Boolean function or predicate f : {0, 1}n → {0, 1}, the Grover’s
algorithm requires about O(

√
2k) evaluations of the quantum oracle Uf that outputs∑

x ax |x〉 |y ⊕ f(x)〉 upon input of
∑
x ax |x〉 |y〉. First, we construct a uniform

superposition of states

|ψ〉 = 1√
2k

∑
x∈{0,1}k

|x〉 ,

by applying the Hadamard transformation H⊗k to |0〉⊗k. We prepare the joint state
|ψ〉 ⊗ |φ〉 with |ψ〉 and |φ〉 = (|0〉 − |1〉)/

√
2. We define the Grover operator G as

G = (2 |ψ〉 〈ψ| − I)Uf ,

where (2 |ψ〉 〈ψ| − I) can be viewed as an inversion about the mean amplitude.
We then iteratively apply the Grover operator (2 |ψ〉 〈ψ| − I)Uf to |ψ〉 such that
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the amplitudes of those values x with f(x) = 1 are amplified. Each iteration can
be viewed as a rotation of the state vector in the plane spanned by two orthogonal
vectors; the superposition of all indices corresponding to solutions and non-solutions,
respectively. The operator G rotates the vector by a constant angle towards the
superposition of solution indices. Let 1 ≤ M ≤ N be the number of solutions and
let 0 < θ ≤ π/2 such that sin2(θ) = M/N .

When measuring the first qubits after j > 0 iterations of G, the success
probability p(j) for obtaining one of the solutions is p(j) = sin2((2j + 1)θ), which
is close to 1 for j ≈ π

4θ . Hence, after
⌈
π
4

√
N
M

⌉
iterations, measurement yields a

solution with overwhelming probability of at least 1 − N
M . The exact complexity of

the Grover search can be estimated by implementing the oracle circuit efficiently.
It is thus essential to have a precise estimate of the quantum resources needed to
implement the oracle.

2.4 Cost metrics for quantum circuits

In this work, we consider the two cost metrics proposed by Jaques and Schanck [11].
The fist cost metric is the G-cost as the total number of gates. The second cost
metric is the DW-cost as the product of circuit depth and width.

From the recent work by Jaques et al. [10], we briefly recall the following
discussion on the cost of Grover’s algorithm with or without depth restriction.

The cost of Grover’s algorithm. Let the search space have size N = 2k. Suppose
we use an oracle G such that a single Grover iteration costs Gg gates, has depth Gd,
and uses Gw qubits. Let S = 2s be the number of parallel machines that are used with
the inner parallelization method by dividing the search space in S disjoint parts. In
order to achieve a certain success probability p, the required number of iterations can
be deduced from p ≤ sin2((2j + 1)θ) which yields jp = d(sin−1(√p)/θ − 1)/2e ≈
sin−1(√p)/2.

√
N/S. Let cp = sin−1(√p)/2, then the total depth of a jp-fold

Grover iteration is

D = jpGd ≈ cp
√
N/S.Gd = cp2

k−s
2 Gd cycles. (4)

Each machines uses jpGg ≈ cp
√
N/S.Gg = cp2

k−s
2 Gg gates, i.e., the total G-cost

over all S machines is

G = S.jpGg ≈ cp
√
N.S.Gg = cp2

k+s
2 Gg cycles. (5)

Finally the total width is W = S.Gw = 2sGw qubits, which leads to a DW-cost

DW ≈ cp
√
N.S.GdGw = cp2

k+s
2 GdGw qubit-cycles. (6)

These cost expressions show that minimizing the number S = 2s of parallel
machines minimizes both G-cost and DW-cost. Thus, under fixed limits on depth,
width, and the number of gates, an adversary’s best course of action is to use
the entire depth budget and parallelize as little as possible. Under this premise,
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the depth limit fully determines the optimal attack strategy for a given Grover oracle.

Optimizing the oracle under a depth limit. Grover’s full algorithm does not
parallelize well; thus it is generally preferable to parallelize it within the oracle circuit.
Reducing its depth allows more iterations within the depth limit, hence reducing the
necessary parallelization.

Let Dmax be a fixed depth limit. Given the depth Gd of the oracle, we are able
to run jmax = bDmax/Gdc Grover iterations of the oracle G. For a target success
probability p, we obtain the number S of parallel instances to achieve this probability
in the instance whose keyspace partition contains the key from

S =
⌈

N. sin−1(√p)
(2.bDmax/Gdc+ 1)2

⌉
≈ c2

p2k
G2
d

D2
max

. (7)

Using this in equation (5) give the total gate count of

G = c2
p2k

GdGg
D2
max

gates. (8)

The total DW-cost under the depth constraint is

DW = c2
p2k

G2
dGw

D2
max

qubit-cycles. (9)

Therefore, our goal is to minimize G2
dGw cost of the oracle circuit to minimize total

DW-cost. In its call for proposals to the post-quantum cryptography standardization
effort [14], NIST introduces the parameter MAXDEPTH as such a bound and
suggests that reasonable values are between 240 and 296. Whenever an algorithm’s
overall depth exceeds this bound, parallelization becomes necessary. We assume
that MAXDEPTH constitutes a hard upper bound on the total depth of a quantum
attack, including possible repetitions of a Grover instance.

3 A quantum circuit for GIFT-128

GIFT [3] is family of lightweight block ciphers with SPN structure consists of
two ciphers, namely GIFT-64/128 and GIFT-128/128. GIFT-64/128 uses 64-bit
plaintext, 128-bit initial key and consists of 28 rounds. Whereas GIFT-128/128
uses 128-bit plaintext, 128-bit initial key and consists of 40 rounds. We implement
GIFT in Q# programming language and provide the cost for full quantum circuits
of GIFT-64/128 and GIFT-128/128.

Round function. Each round of GIFT-64/128 and GIFT-128/128 consists of there
major subroutines: SubCells, PermBits and AddRoundKey, which are described as
follows:

• Initialization: The cipher receives an n-bit plaintext bn−1bn−2 . . . b0 as
the cipher state S, where n = 64, 128 and b0 being the least significant
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bit. The cipher state can also be expressed as s many 4-bit nibbles
S = ws−1||ws−2|| . . . ||w0, where s = 16, 32. The cipher also receives a
128-bit key K = k7||k6|| . . . ||k0 as the key state, where ki is a 16-bit word.

• SubCells: The S-box is applied to each nibble of the cipher state X. The GIFT
S-box is given in Table 1.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GS(x) 1 10 4 12 6 15 3 9 2 13 11 7 5 0 8 14

Table 1: Specifications of 4-bit S-box of GIFT.

The quantum circuit implementation of GIFT S-box requires 4 Toffoli gates, 2
CNOT gates, and 6 Pauli-X gates. The quantum circuit for 4-bit S-box is shown
in Figure 3.

q0

q1

q2

q3

X

X

q0

q1

q2

q3

X

X

X

X

Fig. 3: In-place implementation of 4-bit S-box of GIFT.

• PermBits: The bit permutations used in GIFT-64/128 and GIFT-128/128 maps
bits from bit position i of the cipher state to bit position P (i). As given in [3],
the permutation P64(i) and P128(i) are defined as

P64(i) = 4
⌊
i

16

⌋
+ 16

((
3
⌊
i mod 16

4

⌋
+ (i mod 4)

)
mod 4

)
+ (i mod 4)

P128(i) = 4
⌊
i

16

⌋
+ 32

((
3
⌊
i mod 16

4

⌋
+ (i mod 4)

)
mod 4

)
+ (i mod 4)

The quantum circuit implementation of PermBits operation requires no
quantum gates, since it is just a permutation of qubits which can be taken care
of during the code implementation of wires.

• AddRoundKey: This step consists of adding the round key and round
constants. An n/2-bit round key RK is extracted from the key state, it is
further partitioned into 2 s-bit words RK = U ||V = u31 . . . u0||v31 . . . v0,
where s = 16, 32 for GIFT-64/128 and GIFT-128/128 respectively.
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For GIFT-64/128, U and V are xored to b4i+1 and b4i of the cipher state.

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi,∀i ∈ {0, . . . , 15}.

For GIFT-128/128, U and V are xored to b4i+2 and b4i+1 of the cipher state.

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,∀i ∈ {0, . . . , 31}.

Furthermore, a single bit “1” and a 6-bit round constant C = c5 . . . c0 are
xored into the cipher state at bit position 127, 23, 19, 15, 11, 7 and 3 respectively.

The quantum circuit implementation of AddRoundKey operation requires
32 CNOT gates for one round of GIFT-64/128. While the quantum circuit
implementation of AddRoundKey operation requires 64 CNOT gates for one
round of GIFT-128/128.

Key schedule and round constants. The key schedule and round constants are
the same for both versions of GIFT, the only difference is the round key extraction.
A round key is first extracted from the key state before the key state update.

For GIFT-64, two 16-bit words of the key state are extracted as RK = U ||V .

U ← k1, V ← k0.

For GIFT-128, four 16-bit words of the key state are extracted as RK = U ||V .

U ← k5||k4, V ← k1||k0.

The key state is then updated as follows:

k7||k6|| . . . ||k0 ← k1 ≫ 2||k0 ≫ 12||k7|| . . . ||k2,

where ≫ i is an i bits right rotation within a 16-bit word.

The round constants are generated using the same 6-bit affine LFSR as Skinny-128,
whose state is denoted as (c5, c4, c3, c2, c1, c0). Its update function is defined as:

(c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1).

The quantum circuit implementation of updating the key state requires no quantum
gates since it is just a permutation of wires which can be taken care of during the
code implementation of wires. We precompute the round constants, and thus adding
them to proper qubits in each round requiring only 4 Pauli-X gates.
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3.1 Quantum resource estimates of GIFT-128

Here, we give the precise cost estimates for the quantum circuits of GIFT-64/128
and GIFT-128/128. The GIFT S-box can be naturally implemented using Toffoli
gates. We use the Toffoli gate implementation with no measurements from Selinger’s
work [15], i.e., a Toffoli gate can be implemented using 7 T gates, 16 CNOT gates,
2 single-qubit Clifford gates, and 4 ancillas with having T -depth one and overall
depth 7. We implement all the subroutines: SubCells, PermBits, AddRoundKey,
KeySchedule, and AddRoundConstants operations implemented in Q# programming
language. The cost estimates for one round of GIFT-64/128 and GIFT-128/128 are
given in Tables 2 and 3 respectively. The total cost estimates of full GIFT-64/128
and GIFT-128/128 encryption circuits are given in Table 4.

Operation #CNOT #1qClifford #T #M T -depth full depth width
In-place S-box 66 14 28 0 4 32 8
SubCells 1056 224 448 0 4 32 68
PermBits 0 0 0 0 0 0 64
AddRoundKey 32 0 0 0 0 1 192
KeySchedule 0 0 0 0 0 0 128
AddConstants 0 4 0 0 0 1 128
Total cost 1088 225 448 0 4 33 196

Table 2: Cost of in-place circuits implementing one round of GIFT-64/128.

Operation #CNOT #1qClifford #T #M T -depth full depth width
In-place S-box 66 14 28 0 4 32 8
SubCells 2112 448 896 0 4 32 132
PermBits 0 0 0 0 0 0 128
AddRoundKey 64 0 0 0 0 1 256
KeySchedule 0 0 0 0 0 0 128
AddConstants 0 4 0 0 0 1 128
Total cost 2176 449 896 0 4 33 260

Table 3: Cost of in-place circuits implementing one round of GIFT-128/128.

4 A quantum circuit for SKINNY-128

SKINNY [4] is a family of lightweight tweakable block ciphers, with several block
sizes and tweakey sizes, namely SKINNY-64/64, SKINNY-64/128, SKINNY-64/192
and SKINNY-128/128, SKINNY-128/256, SKINNY-128/384. The internal state

10



Operation #CNOT #1qClifford #T #M T -depth full depth width
GIFT-64/128 61056 12768 25088 0 224 1851 260
GIFT-64/128 174336 36160 71680 0 320 2643 388

Table 4: Cost estimates for the full encryption circuits of GIFT.

of SKINNY can be viewed as a (4 × 4) square array of cells, where each cell is a
nibble (in the n = 64 case) or a byte (in n = 128 case). The number of rounds
depends upon the tweakey size, for example, SKINNY-64/64 has 32 rounds, and
SKINNY-128/128 has 40 rounds. We implement SKINNY in Q# programming
language and provide the cost full quantum circuits of all versions of SKINNY-64
and SKINNY-128.

Round function. Each round of Skinny-128 is composed of five operations:
SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and
MixColumns (MC).

• SubCells: A s-bit S-box is applied to every cell of the cipher internal state.
For s = 4, 8, SKINNY cipher uses a S-box S4 and S8 respectively. The Sbox is
applied to every cell of the internal state X.

The S-box S4 can be described with four NOR and four XOR operations. If
x0, . . . , x3 represent the eight input bits of the S-box, it basically applies the
following transformation on the 4-bit state:

(x3, x2, x1, x0)→ (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation.

An 8-bit Sbox is applied to every cell of the internal state X. If x0, . . . , x7
represent the eight input bits of the Sbox, it basically applies the following
transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4⊕(x7 ∨ x6), x3, x2, x1, x0⊕(x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x2, x1, x7, x6, x4, x3, x3, x5),

repeating this process 4 times, except the last iteration where there is just a bit
swap between x1 and x2.

The quantum circuit for 4-bit S-box and 8-bit S-box are shown in Figures 4
and 5 respectively. The quantum circuit implementation of 4-bit S-box
operation requires 4 Toffoli gates and 10 Pauli-X gates. The quantum circuit
implementation of 8-bit S-box operation requires 8 Toffoli gates and 22 Pauli-X
gates.
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Fig. 5: In-place implementation of 8-bit S-box of SKINNY-128.

• AddConstants: A 6-bit affine LFSR, whose state is denoted as
(rc5, rc4, rc3, rc2, rc1, rc0) and is used to generate round constants. Its
update function is defined as

(rc5, rc4, rc3, rc2, rc1, rc0)→ (rc4, rc3, rc2, rc1, rc0, rc4 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero, and updated before use in a given round. The
bits from LFSR are arranged into 1 4 × 4 array (only the first column of the
state is affected by the LFSR bits), depending on the internal state’s size.

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0


with c2 = 0x2 and

(c0, c1) = (0||0||0||0||rc3||rc2||rc1||rc0, 0||0||0||0||0||0||rc5||rc4).

The round constants are combined with the state, respecting array positioning,
using bitwise exclusive-or. We precompute all the round constants, and thus
adding constants to proper qubits in each round requires only 4 Pauli-X gates.

• AddRoundTweakey: The first and second rows of all tweakey arrays are
extracted and bitwise exclusive-xored to the cipher internal state X. More
formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:
• Xi,j = Xi,j ⊕ TK1i,j when z = 1
• Xi,j = Xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2
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• Xi,j = Xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.
Tweakey arrays are updated according to a fixed permutation as given in [4].

The quantum circuit implementation of AddRoundTweakey operation for
SKINNY-128 with 128-bit tweakey size requires (8× 6) = 48 CNOT gates.

• ShiftRows: The rows of the cipher state cell array are rotated to the right. The
second, third, and fourth cell rows are rotated by 1, 2, and 3 positions to the
right, respectively. This operation is similar to AES.

The quantum circuit implementation of ShiftRows operation is free, since it
is just a permutation of qubits which can be taken care of during the code
implementation of wires.

• MixColumns: Each column of the cipher internal state array is multiplied by
the following binary matrix M :

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


The PLU decomposition of matrix M implemented in SageMath [18] gives

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1

 ·


1 0 1 1
0 1 1 0
0 0 1 1
0 0 0 1


The permutation P does not require any quantum gates and instead, is realized
by appropriately keeping track of the necessary rewiring. While the lower- and
upper-triangular components L and U of the decomposition can be implemented
using the appropriate CNOT gate. The quantum circuit implementation of
binary matrix M requires 4 × 6 = 24 CNOT gates and 8 × 6 = 48 CNOT
gates for SKINNY-64 and SKINNY-128 respectively. As for the full MixColumns
operation, we need to apply M four times on each column, therefore, we need
(4×24) = 96 and (4×48) = 192 CNOT gates for SKINNY-64 and SKINNY-128
respectively to implement MixColumns operation.

4.1 Quantum resource estimates of SKINNY

Here, we give the cost estimates of the quantum circuits of SKINNY-64 and
SKINNY-128 with various tweakey sizes. The SKINNY S-boxes can naturally be
implemented using Toffoli gates. We use the Toffoli gate implementation with no
measurements from Selinger’s work [15]. We implement all the subroutines: SubCells,
AddConstants, AddRoundTweakey, TweakeyUpdate, ShiftRows, and MixColumns in
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Q# programming language for automatic resource computations. The complete cost
estimates of one round and full quantum circuits of SKINNY-64 and SKINNY-128
are given in Tables 5 and 6 and 7 respectively.

Operation #CNOT #1qClifford #T #M T -depth full depth width
In-place S-box 64 18 28 0 4 32 8
SubCells 1024 288 448 0 4 32 68
AddConstants 0 4 0 0 0 1 64
AddRoundTweakey 32 0 0 0 0 1 128
TweakeyUpdate 0 0 0 0 0 0 64
ShiftRows 0 0 0 0 0 0 64
MixColumns 96 0 0 0 0 5 64
Total cost 1152 289 448 0 4 41 132

Table 5: Cost of in-place circuits implementing one round of SKINNY-64.

Operation #CNOT #1qClifford #T #M T -depth full depth width
In-place S-box 128 38 56 0 4 33 12
SubCells 2048 608 896 0 4 33 132
AddConstants 0 4 0 0 0 1 128
AddRoundTweakey 64 0 0 0 0 1 256
TweakeyUpdate 0 0 0 0 0 0 128
ShiftRows 0 0 0 0 0 0 128
MixColumns 192 0 0 0 0 5 128
Total cost 2304 612 896 0 4 42 260

Table 6: Cost of in-place circuits implementing one round of SKINNY-128.

Operation #CNOT #1qClifford #T #M T -depth full depth width
SKINNY-64/64 73792 18720 28672 0 256 2537 196
SKINNY-64/128 85888 21054 32256 0 288 2851 260
SKINNY-64/192 98624 23396 35840 0 320 3176 324
SKINNY-128/128 184448 48996 71680 0 320 3243 388
SKINNY-128/256 228224 58772 86016 0 384 3891 516
SKINNY-128/384 254720 63666 93184 0 416 4215 644

Table 7: Cost estimates for full encryption circuits of SKINNY.
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5 A quantum circuit for SATURNIN-256

The Saturnin-256 [6] is an SPN based block cipher with an even number
of rounds, started with 0. The composition of two consecutive rounds is called
super-round. It uses a 256-bit internal state X and a 256-bit key state K, and both
are represented as a (4 × 4 × 4)-cube of nibbles. Two additional 16-bit words RC0
and RC1 are also used for generating the successive round constants.

Round function. Round 0 starts by xoring K to the internal state X. Then each
round applies the internal state by the following transformations:

• Sbox layer: An Sbox layer applies a 4-bit S-box σ0 to all nibbles with an even
index, and a 4-bit S-box σ1 to all nibbles with an odd index. These two S-boxes
are defined in Table 8, and their quantum circuit implementations are shown in
Figures 6 and 7.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ0(x) 0 6 14 1 15 4 7 13 9 8 12 5 2 10 3 11
σ1(x) 0 9 13 2 15 1 11 7 6 4 5 3 8 12 10 14

Table 8: Specifications of SATURNIN-256 S-boxes

The quantum circuit implementation SATURNIN S-boxes requires 10 Toffoli
gates, 4 CNOT gates, and 24 Pauli-X gates. Additionally, we need 4 qubits and
1 ancilla to implement S-boxes of SATURNIN-256.
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Fig. 6: Saturnin-256 S-box σ0.

• Nibble permutation: A nibble permutation SRr depends on the round number
r. For all even rounds, SRr is an identity function. For odd rounds of index
r with r mod 4 = 1, SRr = SRslice maps each nibble with with coordinates
(x, y, z) to (x+ y mod 4, y, z). For odd rounds of index r with r mod 4 = 3,
SRr = SRsheet maps each nibble with with coordinates (x, y, z) to (x, y, z + y
mod 4).
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Fig. 7: Saturnin-256 S-box σ1.

No quantum gate is required to implement the nibble permutation since it is just
a reshuffling of the wires which can be taken care of during the implementation.

• Linear layer: A linear layer MC is composed of 16 copies of a linear operation
M over (F4

2)4 which is applied in parallel to each column of the internal state.
The transformation M is defined as

M :


a
b
c
d

 7→


α2(a)⊕ α2(b)⊕ α(b)⊕ c⊕ d
a⊕ α(b)⊕ b⊕ α2(c)⊕ c⊕ α2(d)⊕ α(d)⊕ d

a⊕ b⊕ α2(c)⊕ α2(d)⊕ α(d)
α2(a)⊕ a⊕ α2(b)⊕ α(b)⊕ b⊕ c⊕ α(d)⊕ d


where a is the nibble with the lowest index, and α transforms the four bits
x0, x1, x2, x3 of each nibble by the following multiplication

α :


x0
x1
x2
x3

 7→


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0



x0
x1
x2
x3


The PLU decomposition of the above binary matrix gives

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


One CNOT gate is required to implement the transformation α and two
CNOT gates are required to implement the transformation α2. Overall, only
(8 × 4 + 2 × 1 + 2 × 2) = 38 CNOT gates are required to implement
one transformation M . As linear layer needs 16 parallel copies of the linear
transformation M , we need a total of (16 × 38) = 608 CNOT gates to
implement the linear layer MC.

• Inverse of nibble permutation: Apply the inverse of the previous nibble
permutation SR−1

r .

The quantum circuit implementation of the inverse of nibble permutation is
free, i.e., no quantum gate is required.
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• AddRoundKey: The sub-key addition is performed at odd rounds only.

The quantum circuit implementation of key addition requires 256 CNOT gates
for every two consecutive rounds (one super-round) of Saturnin-256.

Key schedule and round constants. The subkey is composed of the XOR of a
round constant and either master key or a rotated version of master key:

• Round constant: The round constants RC0 and RC1 are updated by clocking
16 times two independent LFSR of length 16 in Galois mode with respective
feedback polynomial X16 +X5 +X3 +X2 + 1 and X16 +X6 +X4 +X+ 1. In
other words, we repeat 16 times the following operation: if the most significant
bit of RCi is 0, then RCi is replaced by RCi � 1, otherwise it is replaced
by (RCi � 1) ∧ polyi with poly0 = 0x1002d and poly1 = 0x10053. The
two words RC0, RC1 are then xored to the internal state. Bit number i in
RC0 is added to bit 0 of the nibble with index 4i for 0 ≤ i ≤ 15, and bit
number i in RC1 is added to bit 0 of the nibble with index (4i+2) for 0 ≤ i ≤ 15.

We precompute the round constants on a classical computer. Thus, the
quantum circuit implementation of adding round constants to the current states
requires 16 Pauli-X gates only.

• Round key: If the round index r is such that r mod 4 = 3, the master key
is xored to the internal state; otherwise a rotated version of the key is added
instead. The nibble with index i receives the key nibble with index (i + 20)
mod 64 for 0 ≤ i ≤ 63.

The quantum circuit implementation of subkey generation requires no quantum
gates, since it is simply a rotation of key bits.

5.1 Quantum resource estimates of SATURNIN-256

Here, we give the precise cost estimates for the quantum circuits of SATURNIN-256.
The SATURNIN S-boxes can naturally be implemented using Toffoli gates. We use
the Toffoli gate implementation with no measurements from Selinger’s work [15].
We implement SATRUNIN’s subroutines: SboxLayer, (Inverse) NibblePermutation,
MixColumns, AddRoundConstants and SubKeyGeneration operations implemented
in Q# programming language. The complete cost estimates for one round and full
SATURNIN-256 are given in Tables 9 and 10 respectively.

6 Quantum key search resource estimates

In this section, we describe the implementations of full Grover oracles for lightweight
block ciphers: GIFT, SKINNY, and SATURNIN. Since Q# implementation provides
cost estimates automatically for these Grover oracles, we provide quantum resource
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Operation #CNOT #1qClifford #T #M T -depth full depth width
S-box 164 44 70 0 10 86 9
SboxLayer 10496 2816 4480 0 10 86 261
NibblePerm 0 0 0 0 0 0 256
MixColumns 608 0 0 0 0 7 256
InverseNibblePerm 0 0 0 0 0 0 256
AddRoundKey 256 0 0 0 0 1 512
AddConstants 0 16 0 0 0 1 256
SubKeyGeneration 0 0 0 0 0 0 256
Total cost 11360 2832 4480 0 10 94 517

Table 9: Cost of quantum circuits implementing one round of SATURNIN-256.

Operation #CNOT #1qClifford #T #M T -depth full depth width
SATURNIN-256 455168 112960 179200 0 400 3763 773

Table 10: Cost estimates for quantum circuits implementing SATURNIN-256.

estimates for full key search attacks via Grover’s algorithm. Similar to the work by
Jaques et al. [10], we also consider NIST’s MAXDEPTH limit to evaluate the cost
of our algorithms by inner parallelization via splitting up the search space.

6.1 Grover oracles

To recover the key successfully, we require sufficient number of known
plaintext-ciphertext pairs. The Grover oracle encrypts r plaintext blocks under the
same candidate key and computes a Boolean value that encodes whether all r
resulting ciphertext blocks match the given classical results. A circuit for the block
cipher allows us to build an oracle for any r by simply fanning out the key qubits to
the r instances and running the r block cipher circuits in parallel. Then a comparison
operation with the classical ciphertexts conditionally flips the result qubit and the
r encryptions are uncomputed. Figure 8 illustrates the construction for GIFT and
r = 2, using ForwardGIFT operation from Section 3.
The explicit computation of the probabilities in Equation (3) shows that using
r = 2 for GIFT-128 guarantees a unique key with overwhelming probability. If
we consider the key recovery with a success probability lower than 1, it suffices
to use r = dk/ne blocks of plaintext-ciphertext pairs. In this case, it is enough
to use r = 1 for GIFT-64/64, GIFT-128/128, SKINNY-64/64, SKINNY-128/128,
SATURNIN-256. For GIFT-64/128, SKINNY-64/128, SKINNY-128/256, we need
r = 2 plaintext-ciphertext pairs., while we need r = 3 plaintext-ciphertext pairs for
SKINNY-64/192, SKINNY-128/384.

Grover oracle cost for GIFT. The resources for the implementation of full
GIFT-64 and GIFT-128 Grover oracles for the relevant values of r ∈ {1, 2} are
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Fig. 8: Grover oracle construction from AES using two message-ciphertext pairs.
FwGIFT represents the ForwardGIFT operator. The middle operator “=” compares
the output of GIFT with the provided ciphertexts and flips the target qubit if they
are equal.

shown in Table 11.

Operation r #CNOT #1qClifford #T #M T -depth full depth width
GIFT-64/128 1 61567 13288 25340 63 224 1850 2049
GIFT-128/128 1 175365 37204 72188 127 320 2642 5505
GIFT-64/128 2 123387 26560 50684 127 224 1851 4097
GIFT-128/128 2 350951 74328 144380 255 320 2644 11009

Table 11: Cost estimates for the GIFT Grover oracle operator for r = 1 and 2
plaintext-ciphertext pairs. All operations are performed in-place.

Grover oracle cost for SKINNY. The resources for the implementation of full
SKINNY-64 and SKINNY-128 Grover oracles for the relevant values of r ∈ {1, 2, 3}
are shown in Table 12.

Grover oracle cost for SATURNIN. The resources for the implementation of full
SATURNIN Grover oracle for the relevant values of r ∈ {1, 2} are shown in Table 13.

6.2 Cost estimates for lightweight block cipher key search

Using the cost estimates for the GIFT-128, SKINNY-128, and SATURNIN-256
Grover oracles from Section 7.1, this section provides cost estimates for full key
search attacks on lightweight block ciphers. Firstly, we provide cost estimates without
any depth limit and parallelization requirements. Table 14 shows cost estimates for
a full run of Grover’s algorithm when using

⌊
π
4 2k/2⌋ iterations of the GIFT-128

Grover operator without parallelization. We only consider the costs imposed by the
unitary operator Uf and ignore the cost of the operator 2 |ψ〉 〈ψ| − I. The G-cost
is the total number of gates, which is the sum of the first three columns in the
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Operation r #CNOT #1qClifford #T #M T -depth full depth width
SKINNY-64/64 1 74289 19212 28924 63 256 2536 2241
SKINNY-64/128 1 86381 21538 32508 63 288 2850 2561
SKINNY-64/192 1 99113 23872 36092 63 320 3176 2881
SKINNY-128/128 1 185487 50060 72188 127 320 3242 5505
SKINNY-128/256 1 229245 59800 86524 127 384 3890 6657
SKINNY-128/384 1 275311 69560 100860 127 448 4538 7809
SKINNY-64/64 2 148731 38464 57852 127 256 2536 4481
SKINNY-64/128 2 173027 43084 65020 127 288 2850 5121
SKINNY-64/192 2 198657 47828 72188 127 320 3176 5761
SKINNY-128/128 2 371195 100040 144380 255 320 3242 11009
SKINNY-128/256 2 458999 119584 173052 255 384 3890 13313
SKINNY-128/384 2 551421 139172 201724 255 448 4538 15617
SKINNY-64/64 3 223175 57720 86780 191 256 2536 6721
SKINNY-64/128 3 259693 64670 97532 191 288 2850 7681
SKINNY-64/192 3 298137 71656 108284 191 320 3176 8641
SKINNY-128/128 3 556909 150032 216572 383 320 3242 16503
SKINNY-128/256 3 688749 179360 259580 383 384 3890 19969
SKINNY-128/384 3 827499 208720 302588 383 448 4538 23425

Table 12: Cost estimates for the SKINNY Grover oracle operator for r = 1, 2, 3
plaintext-ciphertext pairs. All operations are performed in-place.

Operation r #CNOT #1qClifford #T #M T -depth full depth width
SATURNIN-256 1 457197 114980 180220 255 400 3762 5889
SATURNIN-256 2 914655 229960 360444 511 400 3764 11777

Table 13: Cost estimates for the SATURNIN Grover oracle operator for r = 1 and 2
plaintext-ciphertext pairs. All operations are performed in-place.

table, corresponding to the numbers of 1-qubit Clifford and CNOT gates, T gates,
and measurements. The DW -cost is the product of full circuit depth and width,
corresponding to columns 6 and 7 in the table.

Tables 15 and 16 show cost estimates for SKINNY-128 and SATURNIN-256
respectively in the same setting as GIFT-128.

Scheme r #CNOT #1qClifford #T #M T -depth full depth width G-cost DW -cost ps

GIFT-64/128 1 1.47 · 279 1.27 · 277 1.21 · 278 1.54 · 269 1.37 · 271 1.41 · 274 2049 1.19 · 280 1.41 · 285 1/e
GIFT-64/128 2 1.47 · 280 1.27 · 278 1.21 · 279 1.55 · 270 1.37 · 271 1.41 · 274 4097 1.19 · 281 1.41 · 286 1
GIFT-128/128 1 1.05 · 281 1.78 · 278 1.73 · 279 1.55 · 270 1.96 · 271 1.01 · 275 5505 1.70 · 281 1.35 · 288 1/e
GIFT-128/128 2 1.05 · 282 1.78 · 279 1.73 · 280 1.56 · 271 1.96 · 271 1.01 · 275 11009 1.70 · 282 1.35 · 288 1

Table 14: Cost estimates for Grover’s algorithm with
⌊
π
4 2k/2⌋ GIFT oracle iterations

for attacks with high success probability, without a depth restriction.
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Scheme r #CNOT #1qClifford #T #M T -depth full depth width G-cost DW -cost ps

SKINNY-64/64 1 1.78 · 247 1.84 · 245 1.38 · 246 1.54 · 237 1.57 · 239 1.94 · 242 2241 1.46 · 248 1.06 · 254 1/e
SKINNY-64/64 2 1.78 · 248 1.84 · 246 1.38 · 247 1.55 · 238 1.57 · 239 1.94 · 242 4481 1.46 · 249 1.06 · 255 1
SKINNY-64/128 2 1.03 · 281 1.03 · 279 1.55 · 279 1.55 · 270 1.76 · 271 1.09 · 275 5121 1.67 · 281 1.36 · 287 1/e
SKINNY-64/128 3 1.55 · 281 1.55 · 279 1.16 · 280 1.17 · 271 1.76 · 271 1.09 · 275 7681 1.25 · 282 1.02 · 288 1
SKINNY-64/192 2 1.19 · 2113 1.14 · 2111 1.73 · 2111 1.55 · 2102 1.96 · 2103 1.21 · 2107 5761 1.90 · 2113 1.70 · 2119 1/e
SKINNY-64/192 3 1.78 · 2113 1.71 · 2111 1.29 · 2112 1.17 · 2103 1.96 · 2103 1.21 · 2107 8641 1.42 · 2113 1.27 · 2120 1
SKINNY-128/128 1 1.11 · 281 1.19 · 279 1.73 · 279 1.55 · 270 1.96 · 271 1.24 · 275 5505 1.84 · 281 1.66 · 287 1/e
SKINNY-128/128 2 1.11 · 282 1.19 · 280 1.73 · 280 1.56 · 271 1.96 · 271 1.24 · 275 11009 1.84 · 281 1.66 · 288 1
SKINNY-128/256 2 1.37 · 2146 1.43 · 2144 1.03 · 2145 1.56 · 2135 1.17 · 2136 1.49 · 2139 13313 1.12 · 2147 1.21 · 2153 1/e
SKINNY-128/256 3 1.03 · 2147 1.07 · 2145 1.55 · 2145 1.17 · 2136 1.17 · 2136 1.49 · 2139 19969 1.68 · 2147 1.81 · 2153 1
SKINNY-128/384 2 1.65 · 2210 1.66 · 2208 1.20 · 2209 1.56 · 2199 1.37 · 2200 1.74 · 2203 15617 1.33 · 2211 1.65 · 2217 1/e
SKINNY-128/384 3 1.23 · 2211 1.25 · 2209 1.81 · 2209 1.17 · 2200 1.37 · 2200 1.74 · 2203 23425 1.99 · 2211 1.23 · 2218 1

Table 15: Cost estimates for Grover’s algorithm with
⌊
π
4 2k/2⌋ SKINNY oracle

iterations for attacks with high success probability, without a depth restriction.

Scheme r #CNOT #1qClifford #T #M T -depth full depth width G-cost DW -cost ps

SATURNIN-256 1 1.37 · 2146 1.38 · 2144 1.08 · 2145 1.56 · 2135 1.22 · 2136 1.44 · 2139 5889 1.13 · 2147 1.03 · 2152 1/e
SATURNIN-256 2 1.37 · 2147 1.38 · 2145 1.08 · 2146 1.56 · 2136 1.22 · 2136 1.44 · 2139 11777 1.13 · 2148 1.03 · 2153 1

Table 16: Cost estimates for Grover’s algorithm with
⌊
π
4 2k/2⌋ SATURNIN oracle

iterations for attacks with high success probability, without a depth restriction.

6.3 Cost of Grover search under NIST’s MAXDEPTH limit

Tables 17, 18, 19 and 20 show cost estimates for running Grover’s algorithm
against GIFT, SKINNY-64, SKINNY-128, and SATURNIN-256 under a given depth
limit, respectively. This restriction is proposed in the NIST call for proposals
for standardization of post-quantum cryptography [14]. We use the notation and
example values for MAXDEPTH from the call. Imposing a depth limit forces the
parallelization of Grover’s algorithm, which we assume uses inner parallelization.

7 Conclusion

We explored the Grover key search resource estimates for lightweight block ciphers
GIFT, SKINNY, and SATURNIN under MAXDEPTH limitations as proposed by
NIST’s PQC standardization process. First, we implemented the Grover oracle
for GIFT-64, GIFT-128, SKINNY-64, SKINNY-128, and SATURNIN-256 in Q#
quantum programming language. We then presented the concrete cost of quantum
circuits of these ciphers. We also provided the concrete cost estimations for all
ciphers with parallelization of Grover’s algorithm under NIST’s MAXDEPTH limit.

As future work, it would be interesting to explore other lightweight schemes
submitted to NIST-LWC standardization process for quantum resource estimates
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scheme MD r S log2 (SKP) D W G-cost DW -cost
GIFT-64/128 240 1 1.01 · 269 −69.01 1.00 · 240 1.01 · 280 1.70 · 2114 1.01 · 2120

GIFT-128/128 240 1 1.03 · 270 −70.04 1.00 · 240 1.38 · 282 1.73 · 2116 1.38 · 2122

GIFT-64/128 264 1 1.01 · 221 −21.01 1.00 · 264 1.01 · 232 1.70 · 290 1.01 · 296

GIFT-128/128 264 1 1.03 · 222 −22.04 1.00 · 264 1.38 · 234 1.73 · 292 1.38 · 298

GIFT-64/128 296 2 1.00 · 20 −128.00 1.42 · 274 1.00 · 212 1.20 · 281 1.42 · 286

GIFT-128/128 296 2 1.00 · 20 −128.00 1.01 · 275 1.34 · 213 1.71 · 282 1.36 · 288

(a) The depth cost metric is the full depth D.

scheme MD r S log2 (SKP) T -D W G-cost T -DW -cost
GIFT-64/128 240 1 1.89 · 262 −62.92 1.00 · 240 1.89 · 273 1.65 · 2111 1.89 · 2113

GIFT-128/128 240 1 1.93 · 263 −63.95 1.00 · 240 1.30 · 276 1.68 · 2113 1.30 · 2116

GIFT-64/128 264 2 1.89 · 214 −142.92 1.00 · 264 1.89 · 226 1.65 · 288 1.89 · 290

GIFT-128/128 264 2 1.93 · 215 −143.95 1.00 · 264 1.30 · 229 1.68 · 290 1.30 · 293

GIFT-64/128 296 2 1.00 · 20 −128.00 1.37 · 271 1.00 · 212 1.20 · 281 1.37 · 283

GIFT-128/128 296 2 1.00 · 20 −128.00 1.96 · 271 1.34 · 213 1.71 · 282 1.32 · 285

(b) The depth cost metric is the T -depth T -D only.

Table 17: Circuit sizes for parallel Grover key search against GIFT-64 and GIFT-128
under a depth limit MAXDEPTH with inner parallelization. MD is MAXDEPTH, r is
the number of plaintext-ciphertext pairs used in the Grover oracle, S is the number of
subsets in which the key-space is divided into, SKP is the probability that spurious
keys are present in the subset holding the target key,W is the qubit width of the full
circuit, D is the full depth, T -D is the T depth, DW cost uses the full depth and
T -DW -cost uses the T -depth. After the Grover oracle is completed, each of the S
measured candidate keys is classically checked against 2 plaintext-ciphertext pairs.

using exhaustive search methods. Since we have studied key search problems for a
single target only, it will be interesting to explore the resource cost of multi-target
attacks. Further, implementing quantum circuits for other block ciphers in any
quantum programming language for concrete cost estimation will be worthwhile
to increase confidence in the post-quantum security of lightweight schemes.
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