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Abstract
We prove that quantum-hard one-way functions imply simulation-secure quantum oblivious transfer

(QOT), which is known to suffice for secure computation of arbitrary quantum functionalities. Further-
more, our construction only makes black-box use of the quantum-hard one-way function.

Our primary technical contribution is a construction of extractable and equivocal quantum bit commit-
ments from quantum-hard one-way functions in the standard model. Instantiating the Bennet-Brassard-
Crépeau-Skubiszewska (CRYPTO 91) framework with these commitments yields simulation-secure quan-
tum oblivious transfer.
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1 Introduction
The complexity of cryptographic primitives has been central to the study of cryptography. Much of the
work in the field focuses on establishing reductions between different primitives, typically building more
sophisticated primitives from simpler ones. Reductions imply relative measures of complexity among different
functionalities, and over the years have resulted in an expansive hierarchy of assumptions and primitives, as
well as separations between them.

At the center of cryptographic complexity lie one-way functions (OWFs): their existence is the minimal
assumption necessary for nearly all classical cryptography [LR86, IL89, ILL89]. One-way functions are
equivalent to so-called “minicrypt” primitives like pseudorandom generators, pseudorandom functions and
symmetric encryption; but provably cannot imply key exchange when used in a black-box way [IR90, BM09]1.
Thus, the existence of key exchange is believed to be a stronger assumption than the existence of one-way
functions. Oblivious transfer (OT) — equivalently, secure computation — is believed to be even stronger :
it implies key exchange, but cannot be obtained from black-box use of a key exchange protocol [MMP14].

The importance of OT stems from the fact that it can be used to achieve secure computation, which is a
central cryptographic primitive with widespread applications. In a nutshell, secure computation allows mu-
tually distrusting participants to compute any public function over their joint private inputs while revealing
no private information beyond the output of the computation.

The Quantum Landscape. The landscape of cryptographic possibilities changes significantly when par-
ticipants have quantum computation and communication capabilities. For one, unconditionally secure key
distribution — commonly known as quantum key distribution (QKD) — becomes possible [BB84, May96].
Moreover, quantum oblivious transfer (QOT) is known to be achievable from special types of commitments,
as we discuss next.

Bennett, Brassard, Crepeau and Skubiszewska [BBCS92] first proposed a protocol for QOT by using
quantum bit commitments. The central idea in these QKD and QOT protocols is the use of (what are now
known as) “BB84 states”. These are single qubit states encoding either 0 or 1 in either the computational
or Hadamard basis. Crucially, measuring (or essentially attempting to copy the encoded bit) in the wrong
basis completely destroys information about the encoded bit. The original [BBCS92] paper heuristically
argued security of the proposed OT protocol, and subsequently, Mayers and Salvail [MS94] proved that
the protocol from [BBCS92] is secure against a restricted class of attackers that only perform single-qubit
measurements. This was later improved by Yao [Yao95], who extended the [MS94] result to handle general
quantum adversaries.

By an unfortunate historical accident, the aforementioned security proofs claimed the [BBCS92] QOT
could be information-theoretically secure, since at the time it was believed that information-theoretic quan-
tum bit commitment was possible [BCJL93]. Several years later, Mayers [May97] and Lo and Chau [LC97]
independently proved the impossibility of information-theoretic quantum bit commitment, and as a conse-
quence, the precise security of [BBCS92] QOT was once again unclear. This state of affairs remained largely
unchanged until 2009, when Damgard, Fehr, Lunemann, Salvail, and Schaffner [DFL+09] proved that bit
commitment schemes satisfying certain additional properties, namely extraction and equivocation, suffice to
obtain QOT [BBCS92]. [DFL+09] called their commitments dual-mode commitments, and provided a con-
struction based on the quantum hardness of the learning with errors (QLWE) assumption. We remark that
assumptions about the hardness of specific problems like QLWE are qualitatively even worse than general
assumptions like QOWFs and QOT. Thus, the following basic question remains:

Do quantum-hard one-way functions suffice for quantum oblivious transfer?
1In particular, [IR90, BM09] showed that there cannot exist a key exchange protocol that only has oracle access to the

input/output behavior of a one-way function, and makes no additional assumptions. Then [Dac16] ruled out the possibility of
certain types of key exchange protocols that also make use of the code of a one-way function. Constructions of key exchange from
one-way functions have eluded researchers for decades. This, combined with the aforementioned negative results, is considered
to be evidence that key exchange is a qualitatively stronger primitive than one-way functions in the classical regime. In fact,
Impagliazzo [Imp95] stipulates that we live in one of five possible worlds, of which Minicrypt is one where classical one-way
functions exist but classical public-key cryptographic primitives do not.
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Quantum OT: The Basis of Secure Quantum Computation. There is a natural extension of secure
computation to the quantum world, where Alice and Bob wish to compute a quantum circuit on (possibly
entangled) quantum input states. This setting, usually referred to as secure quantum computation, has been
previously studied and in fact has a strong tradition in the quantum cryptography literature.

Secure quantum computation was first studied by [CGS02, BCG+06], who obtained unconditional maliciously-
secure general multi-party quantum computation with honest majority. The setting where half (or more)
of the players are malicious requires computational assumptions due to the impossibility of unconditionally
secure quantum bit commitment [May97, LC97].

In this computational setting, [DNS10, DNS12] showed the feasibility of two-party quantum computation
(2PQC) assuming post-quantum OT. More recently, [DGJ+20] constructed maliciously-secure general multi-
party quantum computation (MPQC) secure against a dishonest majority from any maliciously-secure post-
quantum multi-party computation (MPC) protocol for classical functionalities, which can itself be obtained
from post-quantum OT [ABG+20].

Nevertheless, the following natural question has remained unanswered:

Can secure (quantum) computation be obtained from quantum-hard one-way functions?

1.1 Our Results
Our main result is the following:

Quantum oblivious transfer can be based on the assumption that quantum-hard one-way functions exist.

In fact, we prove a stronger result: we show that quantum oblivious transfer can be based on the black-
box use of quantum-hard one-way functions. This in turn implies secure two-party computation of classical
functionalities, in the presence of quantum computation and communication capabilities, from (black-box
use of) quantum-hard one-way functions [Kil88]. The latter can then be used to obtain secure two-party
quantum computation, by relying on the work of [DNS12]. QOT can also be used to obtain multi-party
secure computation of all classical functionalities [IPS08], in the presence of quantum computation and
communication capabilities, and additionally assuming the existence of authenticated channels. By relying
on [DGJ+20], this also implies multi-party secure quantum computation.

In summary, our main result implies that: (1) 2PQC can be obtained from (black-box use of) quantum-
hard OWFs and (2) assuming the existence of authenticated channels, MPQC can be obtained from (black-
box use of) quantum-hard OWFs.

This provides a further potential separation between the complexity of cryptographic primitives in the
classical and quantum worlds. In the former, (two-party) secure computation provably cannot be based on
black-box used of quantum-hard one-way functions. It is only known from special types of enhanced public-
key encryption schemes or from the hardness of specific problems, both of which are believed to be much
stronger assumptions than one-way functions. But in the quantum world, prior to our work, (two-party)
secure computation was only known from the special commitments required in the protocol of [DFL+09],
which can be based on QLWE following [DFL+09], or post-quantum OT (implicit in [HSS11, BS20, ABG+20])
— but were not known to be achievable from quantum-hard one-way functions.

Primary Tool: Stand-alone Extractable and Equivocal Commitments. As discussed earlier in
the introduction, [DFL+09] show that simulation-secure OT can be obtained from commitments satisfying
certain properties, namely extraction and equivocation.

• Extraction informally requires that there exist an efficient quantum “extractor”, that with access to a
quantum committer, is able to extract its committed value.

• Equivocality informally requires that there exist an efficient quantum simulator, that with access to a
quantum receiver, is able to open a commitment to any value of its choice.
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The two properties are crucial for proving simulation security of the [BBCS92] OT protocol: extraction
for receiver security, and equivocality for sender security. Our key technical contribution, which may be of
independent interest, is the following:

Extractable and equivocal commitments can be based on the black-box use of
quantum-hard one-way functions.

We obtain this result via the following technical steps.

• Quantum Equivocal Commitments from Quantum-Hard One-Way Functions. We describe a generic
unconditional compiler from any commitment to an equivocal commitment, in the plain model. This
compiler makes black-box use of the underlying commitment. By applying our compiler to Naor’s
statistically binding commitment [Nao91], which can be based on quantum-hard one-way functions, we
obtain a statistically binding, equivocal commitment.

• Quantum Extractable Commitments from Quantum Equivocal Commitments. We show that the [BBCS92,
DFL+09, BF10] framework can be used to obtain an extractable commitment that leverages quantum
communication, and can be based on the existence of any quantum equivocal commitment. This com-
bined with the previous step implies the existence of quantum extractable commitments based on the
existence of quantum-hard one-way functions.
This is in contrast to existing approaches (eg., [HSS11]) that require classical communication but rely
on qualitatively stronger assumptions like classical OT with post-quantum security.

• From Extractable Commitments to Extractable and Equivocal Commitments. We apply the black-box
equivocality compiler from the first step to the quantum extractable commitment obtained above, to
produce an extractable and equivocal commitment.
We note that the need to apply our compiler to a protocol with quantum communication meant that
we could not directly rely on simple equivocality compilers in the classical cryptography literature.
Indeed, generic compilers in the classical setting, in addition to not necessarily being quantum secure,
break down in the setting of quantum communication due to the need to make non-black-box use of
the underlying commitment.

Plugging our quantum extractable and equivocal commitments into the [BBCS92] framework yields a final
QOT protocol with an interaction pattern that readers familiar with [BB84, BBCS92] may find interesting:
the sender sends the receiver several BB84 states, after which the receiver proves to the sender that it
has honestly measured the sender’s BB84 states by generating more BB84 states of their own and asking
the sender to prove that they have measured the receiver’s BB84 states. An intriguing open question is
whether obtaining QOT from one-way functions requires this type of two-way quantum communication or,
alternatively, quantum memory.2

1.2 Additional Related Work
The protocol in [DFL+09] can be instantiated [BF10, FUYZ20] with weaker types of commitments (in par-
ticular, statistically binding, computationally hiding commitments) to obtain a weaker version of OT, which
only satisfies indistinguishability-based security, and not the standard notion of simulation-based security.
Such commitments can be obtained from quantum-hard one-way functions. But this weaker notion is not
typical in the classical OT literature and falls short of guaranteeing that the view of a quantum polynomial-
time adversary can be efficiently simulated given the input and/or output of the protocol. More crucially,
this notion is not known to imply standard (simulation-based) notions of secure multi-party computation.
Our focus in this work is on achieving the (standard) simulation-based notion of security for OT – this
suffices to instantiate the aforementioned compilers and achieve standard simulation-based secure quantum

2Naive approaches to removing one direction of quantum communication appear to require the honest parties to be entangled
and subsequently perform quantum teleportation.
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computation. Achieving simulation-based OT, specifically one that admits an efficient (quantum) simulator
involves overcoming multiple technical hurdles, that we discuss in Section 2.

In the setting of Universal Composability (UC), Unruh [Unr07] obtained quantum oblivious transfer from
quantum UC-secure commitments in the common reference string (CRS) model. Unfortunately, quantum
(and classical) UC-secure commitments also assume the existence of public-key encryption, and are not
known to be realizable from quantum-hard OWFs. By contrast, in this work, we focus on the standalone
setting in the plain/standard model, and we do not assume the existence of trusted setup or a common
reference string. In this setting, we obtain QOT from quantum-hard one-way functions.

2 Technical Overview
This work establishes that (1) black-box use of post-quantum one-way functions suffices for post-quantum
extractable and equivocal commitment schemes and moreover, that (2) [BBCS92] quantum oblivious transfer
instantiated with such commitments is a standard simulation-secure oblivious transfer. Crucially, the stan-
dard notion of simulation-secure (quantum) oblivious transfer that we achieve is sequentially composable
and suffices to achieve general-purpose secure quantum computation.

Before we explain our technical approach, we provide a complete review of the original [BBCS92] protocol.

2.1 Recap: BBCS Quantum Oblivious Transfer from Commitments
In quantum oblivious transfer (QOT), a quantum sender holding two classical messages 𝑚0,𝑚1 engages in
an interactive protocol over a quantum channel with a quantum receiver holding a classical choice bit 𝑏.
Correctness requires the receiver to learn 𝑚𝑏 by the end of the protocol. Informally, security demands that
a malicious receiver only learn information about one of 𝑚0,𝑚1, and that a malicious sender learn nothing
about 𝑏. Somewhat more formally, as discussed earlier, our focus is on the standard simulation-based notion
of security. This stipulates the existence of an efficient quantum simulator that generates the view of an
adversary (sender/receiver) when given access to an ideal OT functionality. In particular, when simulating
the view of a malicious sender, this simulator must extract the sender’s inputs (𝑚0,𝑚1) without knowledge
of the receiver’s input 𝑏. And when simulating the view of a malicious receiver, the simulator must extract
the receiver’s input 𝑏, and then simulate the receiver’s view given just 𝑚𝑏.

We recall the construction of quantum oblivious transfer due to [BBCS92] (henceforth BBCS), which
combines the information theoretic quantum key distribution protocol of [BB84] (henceforth BB84) with
cryptographic bit commitments.

BBCS First Message. The first message of the BBCS protocol exactly follows the beginning of the BB84
protocol. For classical bits 𝑦, 𝑧, let |𝑦⟩𝑧 denote |𝑦⟩ if 𝑧 = 0, and (|0⟩+ (−1)𝑦 |1⟩)/

√
2 if 𝑧 = 1, i.e. the choice

of 𝑧 specifies whether to interpret 𝑦 as a computational or Hadamard basis vector. Let 𝜆 denote the security
parameter. The sender samples two random 2𝜆-bit strings 𝑥 and 𝜃, and constructs “BB84 states” |𝑥𝑖⟩𝜃𝑖

for
𝑖 ∈ [2𝜆]. The sender forwards these 2𝜆 BB84 states (|𝑥𝑖⟩𝜃𝑖

)𝑖∈[2𝜆] to the receiver. Next, the receiver samples
a 2𝜆-bit string 𝜃, measures each |𝑥𝑖⟩𝜃𝑖

in the basis specified by 𝜃𝑖, and obtains a 2𝜆-bit measurement result
string �̂�.

BBCS Measurement-Check Subprotocol. At this point, the BBCS and BB84 protocols diverge. Since
the BB84 protocol is an interaction between two honest parties, it assumes the parties comply with the
protocol instructions. However, in the BBCS protocol, a malicious receiver who does not measure these
BB84 states will be able to compromise sender privacy later in the protocol. Therefore, the next phase of
BBCS is a measurement-check subprotocol designed to catch a malicious receiver who skips the specified
measurements. This subprotocol requires the use of a quantum-secure classical commitment scheme; for the
purposes of this recap, one should imagine a commitment with idealized hiding and binding properties. The
subprotocol proceeds as follows:
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• For each 𝑖 ∈ [2𝜆], the receiver commits to (𝜃𝑖, �̂�𝑖).

• Next, the sender picks a random set 𝑇 of 𝜆 indices from [2𝜆], and challenges the receiver to open the
corresponding commitments.

• The receiver sends (𝜃𝑖, �̂�𝑖) along with the corresponding opening for each 𝑖 ∈ 𝑇 .

• The sender verifies each commitment opening, and furthermore checks that �̂�𝑖 = 𝑥𝑖 for each 𝑖 ∈ 𝑇
where 𝜃𝑖 = 𝜃𝑖. If any of these checks fail, the sender aborts.

The rough intuition for the subprotocol is simple: from the receiver’s point of view, the BB84 states are
maximally mixed and therefore completely hide 𝑥𝑖 and 𝜃𝑖. For any index 𝑖 that the receiver does not measure,
it must guess �̂�𝑖. From the receiver’s perspective, the sender checks �̂�𝑖 against 𝑥𝑖 if two 1/2-probability events
occur: (1) 𝑖 is included in 𝑇 , and (2) 𝜃𝑖 = 𝜃𝑖. This means a malicious receiver who skips a significant number
of measurements will be caught with overwhelming probability.

BBCS Privacy Amplification. If all the subprotocol checks pass, the sender continues to the final stage
of the BBCS protocol. For convenience, relabel the 𝜆 indices in [2𝜆]∖𝑇 from 1 to 𝜆; all indices corresponding
to opened commitments are discarded for the remainder of the protocol.

For each 𝑖 ∈ [𝜆], the sender reveals the correct measurement basis 𝜃𝑖. The receiver then constructs the
index set 𝐼𝑏 — where 𝑏 is its choice bit for the oblivious transfer — as the set of all 𝑖 ∈ [𝜆] where 𝜃𝑖 = 𝜃𝑖. It
sets 𝐼1−𝑏 to be the remaining indices, and sends (𝐼0, 𝐼1) to the sender. Note that by the hiding property of
the commitments, the sender should not be able to deduce 𝑏 from (𝐼0, 𝐼1); furthermore, 𝐼0 and 𝐼1 will both
be close to size 𝜆/2, since for each 𝑖 ∈ [𝜆], the receiver committed to 𝜃𝑖 before obtaining 𝜃𝑖.

On receiving 𝐼0, 𝐼1, the sender sets 𝑥0 := (𝑥𝑖)𝑖∈𝐼0 and 𝑥1 := (𝑥𝑖)𝑖∈𝐼1 . The intuition is that if a receiver
honestly constructs (𝐼0, 𝐼1), it will only have information about 𝑥𝑏 corresponding to its choice bit 𝑏. However,
it turns out that even if the receiver maliciously constructs (𝐼0, 𝐼1), at least one of 𝑥0 and 𝑥1 will have high
min-entropy from its point of view. Thus, by standard privacy amplification techniques, the sender can
complete the oblivious transfer as follows. It samples two universal hash functions ℎ0 and ℎ1, both with
ℓ-bit outputs, and uses ℎ0(𝑥0) to mask the ℓ-bit message 𝑚0, and uses ℎ1(𝑥1) to mask 𝑚1. That is, the
sender sends (ℎ0, ℎ1, ℎ0(𝑥0) ⊕𝑚0, ℎ1(𝑥1) ⊕𝑚1) to the receiver, who can then use 𝑥𝑏 to recover 𝑚𝑏. Since
𝑥1−𝑏 will have high entropy, the leftover hash lemma implies that ℎ1−𝑏(𝑥1−𝑏) is statistically close to uniform,
which hides 𝑚1−𝑏 from the receiver.

The BBCS QOT protocol can be shown to satisfy simulation-based security when instantiated with an
extractable and equivocal commitment [DFL+09]. With this in mind, we now turn to constructing such
commitments from quantum-hard one-way functions.

2.2 Our Construction: A High-Level Overview
The rest of this technical overview describes our black-box construction of simultaneously extractable and
equivocal quantum bit commitments from any quantum-hard one-way function.

The ingredients for our construction are the following:

• A general-purpose “equivocality compiler” that turns any bit commitment scheme — classical or quan-
tum — into an equivocal quantum commitment scheme. Moreover, if the original commitment scheme
is extractable, this compiler outputs an extractable and equivocal commitment scheme.

• A general-purpose “extractability compiler” that turns any equivocal bit commitment scheme — clas-
sical or quantum — into an extractable but not equivocal commitment scheme.

Both of these compilers require no additional computational assumptions beyond those of the original com-
mitment schemes. Given these compilers, we build extractable and equivocal commitments via the following
steps:
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1. Begin with Naor’s statistically-binding and computationally hiding commitment scheme [Nao91]. Naor’s
construction makes black-box use of one-way functions and achieves post-quantum computational hid-
ing assuming post-quantum security of the one-way function.3

2. Plug Naor’s commitments into our equivocality compiler to obtain an equivocal quantum bit commit-
ment scheme.

3. Feed the resulting equivocal quantum bit commitments into our extractability compiler to obtain an
extractable but not equivocal quantum bit commitment.

4. Run the equivocality compiler a second time, but now starting with the extractable commitments pro-
duced by the previous step. This gives the desired extractable and equivocal quantum bit commitments.

We briefly remark that if one did not care about obtaining a construction that only makes black-box use
of one-way functions, it would only be necessary to invoke the equivocality compiler once. In slightly more
detail, we could design an alternative extractability compiler that works with any (not necessarily equivocal)
bit commitment scheme by additionally relying on post-quantum zero-knowledge arguments [Wat06]; this
approach would still give a construction of quantum oblivious transfer from post-quantum one-way functions,
but the zero-knowledge arguments would be used to prove statements involving the description of some one-
way function, which is a non-black-box use of the primitive. We stress that constructing QOT from one-way
functions is interesting regardless of whether or not the construction is black-box. However, since black-box
constructions are generally preferred over non-black-box ones (e.g. for conceptual simplicity, efficiency, etc.)
our focus will be on presenting a black-box construction.

Organization. We describe our equivocality compiler in Section 2.3 and our extractability compiler in Sec-
tion 2.4. In Section 2.5, we briefly discuss implications for secure computation in a quantum world.

2.3 Making Any Quantum (or Classical) Commitment Equivocal
Roughly speaking, a quantum commitment protocol is equivocal if an efficient quantum algorithm called
the equivocator, with access to the receiver, can generate commitments that can be opened to any value.
More precisely, for any receiver (modeled as an efficient malicious quantum algorithm), there must exist
an equivocator who can generate a computationally indistinguishable commitment that the equivocator can
later open arbitrarily.

In this subsection, we describe a black-box compiler for a fairly general task (which may be of independent
interest): making any classical or quantum commitment equivocal. Recall from Section 2.2 that we will
need to invoke our equivocality compiler twice, once on a classical bit commitment scheme, and once on
an extractable quantum bit commitment scheme; in the latter case, our compiler will need to preserve
the extractability of the original commitment. Since classical commitments are a subclass of quantum
commitments, our exposition will focus on challenges unique to the quantum setting.

Why Existing Classical Solutions Are Insufficient. Let us briefly relax our goal of using one-way
functions in an exclusively black-box way. Then there is a simple equivocality compiler that applies to any
(statistically-binding and computationally-hiding) classical commitment. Recall that quantum-hard one-
way functions imply post-quantum zero-knowledge arguments for NP [Wat06]. Now, in the opening phase
of the commitment, to open to a bit 𝑏, the committer will not send the randomness used to commit to 𝑏
in the clear. Instead, the committer sends a zero-knowledge proof for the NP statement that there exist
randomness consistent with the commitment, and opening to 𝑏. Equivocation is achieved by simulating the

3In slightly more detail, Naor’s commitment scheme makes black-box use of any pseudo-random generator. It is straight-
forward to verify that if the pseudorandom generator is post-quantum secure, the commitment satisfies computational hiding
against quantum attackers. A black-box construction of pseudo-random generators from one-way functions is due to [HILL99];
Aaronson [Aar09] and Zhandry [Zha12] observed that [HILL99] makes no assumptions about the computational model of the
attacker and therefore applies to quantum attackers.
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ZK proof. Unfortunately, this technique fails when the commitment involves quantum communication, since
the statement to be proven is no longer an NP statement (nor a QMA statement). Therefore, we construct a
compiler that only makes black-box use of the underlying commitment, and leverages Watrous’s rewinding
lemma in the proof of equivocality [Wat06].

Our Equivocality Compiler. In our construction, to commit to a bit 𝑏, the committer and receiver will
perform 𝜆 sequential repetitions of the following subprotocol:

• The (honest) committer samples 2 uniformly random bits 𝑢0, 𝑢1, and commits to each one twice using
the base commitment scheme. Let the resulting commitments be c(0)

0 , c(1)
0 , c(0)

1 , c(1)
1 , where the first

two are to 𝑢0 and the second two are to 𝑢1. Note that since the base commitment scheme can be
an arbitrary quantum interactive commitment, each commitment c(𝑏2)

𝑏1
corresponds to the receiver’s

quantum state after the commitment phase of the base commitment.

• The receiver sends the committer a random challenge bit 𝛽.

• The committer opens the two base commitments c(0)
𝛽 , c(1)

𝛽 . If the openings are invalid or the revealed
messages are different, the receiver aborts the entire protocol.

If these 𝜆 executions pass, the receiver is convinced that a majority of the committer’s remaining 2𝜆 unopened
commitments are honestly generated, i.e. most pairs of commitments are to the same bit.

Rewriting the (honest) committer’s unopened bits as 𝑢1, . . . , 𝑢𝜆, the final step of the commitment phase
is for the committer to send ℎ𝑖 := 𝑢𝑖 ⊕ 𝑏 for each 𝑖 ∈ [𝜆] (recall that 𝑏 is the committed bit).

To decommit, the committer reveals each 𝑢𝑖 by picking one of the two corresponding base commitments
at random, and opening it. The receiver accepts if each one of the base commitment openings is valid, and
the opened 𝑢𝑖 satisfies ℎ𝑖 ⊕ 𝑢𝑖 = 𝑏 for every 𝑖.

The (statistical) binding property of the resulting commitment can be seen to follow from the (statistical)
binding of the underlying commitment. For any commitment, define the unique committed value as the
majority of (ℎ𝑖 ⊕ 𝑢𝑖) values in the unopened commitments, setting 𝑢𝑖 to ⊥ if both committed bits in the 𝑖𝑡ℎ

session differ. Due to the randomized checks by the receiver, any committer that tries to open to a value
that differs from the unique committed value will already have been caught in the commit phase, and the
commitment will have been rejected with overwhelming probability. A similar argument also allows us to
establish that this transformation preserves extractability of the underlying commitment. We now discuss
why the resulting commitment is equivocal.

Quantum Equivocation. The natural equivocation strategy should have the equivocator (somehow) end
up with 𝜆 pairs of base commitments where for each 𝑖 ∈ [𝜆], the pair of commitments is to 𝑢𝑖 and 1− 𝑢𝑖 for
some random bit 𝑢𝑖. This way, it can send an appropriately distributed string ℎ1, · · · , ℎ𝜆, and later open to
any 𝑏 by opening the commitment to 𝑏⊕ ℎ𝑖 for each 𝑖.

We construct our equivocator using Watrous’s quantum rewinding lemma [Wat06] (readers familiar with
Watrous’s technique may have already noticed our construction is tailored to enable its use).

We give a brief, intuition-level recap of the rewinding technique as it pertains to our equivocator. Without
loss of generality, the malicious quantum receiver derives its challenge bit 𝛽 by performing some binary
outcome measurement on the four quantum commitments it has just received (and on any auxiliary states).
Our equivocator succeeds (in one iteration) if it can prepare four quantum commitments c(0)

0 , c(1)
0 , c(0)

1 , c(1)
1

where:

1. c(0)
𝛼 , c(0)

𝛼 are commitments to the same random bit,

2. c(0)
1−𝛼, c

(0)
1−𝛼 are commitments to a random bit and its complement,

3. on input c(0)
0 , c(1)

0 , c(0)
1 , c(1)

1 , the receiver produces challenge bit 𝛽 = 𝛼.
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That is, the equivocator is successful if the receiver’s challenge bit 𝛽 corresponds to the bit 𝛼 that it can
open honestly. Watrous’s [Wat06] rewinding lemma applies if the distribution of 𝛽 is independent of the
receiver’s choice of 𝛼, which is guaranteed here by the hiding of the base commitments. Thus, the rewinding
lemma yields a procedure for obtaining an honest-looking interaction where all three properties above are
met. Given the output of the rewinding process, the equivocator has successfully “fooled” the committer on
this interaction and proceeds to perform this for all 𝜆 iterations. As described above, fooling the committer
on all 𝜆 iterations enables the equivocator to later open the commitment arbitrarily.

2.4 An Extractability Compiler for Equivocal Commitments
In this subsection, we compile any classical or quantum equivocal bit commitment into a quantum extractable
bit commitment. We stress that even though this compiler is applied to equivocal bit commitments, the
resulting commitment is not guaranteed to be simultaneously extractable and equivocal; we refer the reader
to Section 2.2 for details on how this compiler fits into our final construction.

Recall that a commitment scheme is said to be extractable if for any adversarial quantum committer
that successfully completes the commitment phase, there exists an efficient quantum algorithm (called the
extractor) which outputs the committed bit.

Construction. The committer, who intends to commit to a classical bit 𝑏, begins by sampling 2𝜆-bit strings
𝑥 and 𝜃. It generates the corresponding 2𝜆 BB84 states |𝑥𝑖⟩𝜃𝑖

and sends this to the receiver. The receiver
picks 2𝜆 random measurement bases 𝜃𝑖, and measures each |𝑥𝑖⟩𝜃𝑖

in the corresponding basis, obtaining
outcomes �̂�𝑖.

Next, the receiver and committer engage in a BBCS-style measurement-check subprotocol. That is, they
temporarily switch roles (for the duration of the subprotocol), and perform the following steps:

1. The receiver (acting as a committer in the subprotocol), commits to each 𝜃𝑖 and �̂�𝑖 (for each 𝑖 ∈ [2𝜆])
with an equivocal commitment.

2. The committer (acting as a receiver in the subprotocol), asks the receiver to open the equivocal
commitments for all 𝑖 ∈ 𝑇 , where 𝑇 ⊂ [2𝜆] is a random set of size 𝜆.

3. The receiver (acting as a committer in the subprotocol) opens the 𝜆 commitments specified by 𝑇 .

Provided the receiver passes the measurement-check subprotocol, the committer generates the final mes-
sage of the commitment phase as follows:

• Discard the indices in 𝑇 and relabel the remaining 𝜆 indices from 1 to 𝜆.

• Partition {𝑥1, . . . , 𝑥𝜆} into
√
𝜆 strings �⃗�1, . . . , �⃗�√𝜆 each of length

√
𝜆.

• Sample
√
𝜆 universal hash functions ℎ1, . . . , ℎ√𝜆 each with 1-bit output.

• Finally, send
(𝜃𝑖)𝑖∈[𝜆], (ℎ𝑗 , ℎ𝑗(�⃗�𝑗)⊕ 𝑏)𝑗∈[

√
𝜆].

This concludes the commitment phase.
To decommit, the committer reveals 𝑏 and (�⃗�1, . . . , �⃗�√𝜆). The receiver accepts if (1) for each 𝑗, the bit

𝑏 and the value �⃗�𝑗 are consistent with the claimed value of ℎ𝑗(�⃗�𝑗) ⊕ 𝑏 from the commit phase, and (2) for
each index 𝑖 ∈ [𝜆] where 𝜃𝑖 = 𝜃𝑖, the 𝑥𝑖 from the opening is consistent with �̂�𝑖.
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Extraction. The use of equivocal commitments in the measurement-check subprotocol makes extraction
simple. Given any malicious committer, we construct an extractor as follows.

The extractor plays the role of the receiver and begins an interaction with the malicious committer. But
once the committer sends its 2𝜆 BB84 states, the extractor skips the specified measurements, instead leaving
these states unmeasured. Next, instead of performing honest commitments to each 𝜃𝑖, �̂�𝑖, the extractor
invokes (for each commitment) the equivocator algorithm of the underlying equivocal commitment scheme.
Since the equivocator is guaranteed to produce an indistinguishable commitment from the point of view
of any malicious receiver for the equivocal commitment, this dishonest behavior by the extractor will go
undetected.

When the malicious committer responds with a challenge set 𝑇 ⊂ [2𝜆], the extractor samples uniformly
random bases 𝜃𝑖 for each 𝑖 ∈ 𝑇 , measures the corresponding BB84 states to obtain �̂�𝑖 values, and sends
(𝜃𝑖, �̂�𝑖)𝑖∈𝑇 . Moreover, the equivocator (for each commitment) will enable the extractor to generate valid-
looking openings for all of these claimed values.

Thus, the malicious committer proceeds with the commitment protocol, and sends

(𝜃𝑖)𝑖∈[𝜆], (ℎ𝑗 , ℎ𝑗(�⃗�𝑗)⊕ 𝑏)𝑗∈[
√

𝜆]

to the extractor. These correspond to the 𝜆 BB84 states that the extractor has not yet measured, so it can
simply read off the bases 𝜃𝑖, perform the specified measurements, and extract the committer’s choice of 𝑏.

Statistical Hiding. Intuitively, statistical hiding of the above commitment protocol follows because the
measurement-check subprotocol forces the receiver to measure states in arbitrary bases, which destroys
information about the corresponding 𝑥𝑖 values whenever ̂︀𝜃𝑖 ̸= 𝜃𝑖. The formal argument is a straightforward
application of a quantum sampling lemma of [BF10], and we defer further details to the body of the paper.

2.5 Putting it Together: From Commitments to Secure Computation.
Plugging the compilers of Sections 2.3 and 2.4 into the steps described in Section 2.2 yields a black-box
construction of simultaneously extractable and equivocal quantum bit commitments from quantum-hard one-
way functions. Following [DFL+09], these commitments can be plugged into BBCS to obtain maliciously
simulation-secure QOT (see Section 6 for further details). Finally, going from QOT to arbitrary secure
computation (in a black-box way) follows from a number of prior works, which we briefly survey here for the
sake of completeness (see also the discussion in Section 1.1).

• Secure Computation of Classical Functionalities. It is well known that maliciously simulation-
secure (classical) oblivious transfer can be used in a black-box way to build two-party (classical)
computation [Kil88]. This also extends to the multi-party setting tolerating upto all-but-one corrup-
tions [IPS08]. Since the constructions of [Kil88] and [IPS08] only make black-box use of the underlying
oblivious transfer and the simulators are straight-line, their correctness/security guarantees continue
to hold if parties are quantum and the oblivious transfer uses quantum communication. Therefore,
if all parties are quantum and all pairs of parties are connected via authenticated quantum channels,
they can securely compute any classical functionality assuming quantum-hard one way functions (and
authenticated channels in the multi-party setting).

• Secure Computation of Quantum Functionalities. [DNS12] constructed a secure two-party quan-
tum computation protocol assuming black-box access to any secure two-party classical computation
protocol. [DGJ+20] proved the analogous statement in the multi-party setting: secure multi-party clas-
sical computation implies (in a black-box way) secure multi-party quantum computation. Therefore,
by invoking the results in the previous bullet, quantum-hard one-way functions also suffice for arbi-
trary secure quantum computation (additionally assuming authenticated channels in the multi-party
setting).
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While the results in the second bullet technically subsume the first, stating them separately enables direct
comparison with the classical setting. In particular, one takeaway is that while oblivious transfer is necessary
and sufficient for secure computation in the classical world, quantum-hard one-way functions suffice for
exactly the same task when parties (and their communication channels) are quantum.

3 Preliminaries
Notation. We will write density matrices/quantum random variables (henceforth, QRVs) in lowercase bold
font, e.g. x. A quantum register X will be written in uppercase (grey) serif font. A collection of (possibly
entangled) QRVs will be written as (x,y, z).

Throughout this paper, 𝜆 will denote a cryptographic security parameter. We say that a function 𝜇(𝜆)
is negligible if 𝜇(𝜆) = 1/𝜆𝜔(1).

The trace distance between two QRVs x and y will be written as ‖x−y‖1. Recall that the trace distance
captures the maximum probability that two QRVs can be distinguished by any (potentially inefficient)
procedure. We therefore say that two infinite collections of QRVs {x𝜆}𝜆∈N and {y𝜆}𝜆∈N are statistically
indistinguishable if there exists a negligible function 𝜇(𝜆) such that ||x𝜆−y𝜆||1 ≤ 𝜇(𝜆), and we will frequently
denote this with the shorthand {x𝜆}𝜆∈N ≈𝑠 {y𝜆}𝜆∈N.

Non-Uniform Quantum Advice. We will consider non-uniform quantum polynomial-time (QPT) al-
gorithms with quantum advice, denoted by 𝒜 = {𝒜𝜆,𝜌𝜆}𝜆∈N, where each 𝒜𝜆 is the classical description of
a poly(𝜆)-size quantum circuit, and each 𝜌𝜆 is some (not necessarily efficiently computable) non-uniform
poly(𝜆)-qubit quantum advice. We remark that “non-uniform quantum polynomial-time algorithms” of-
ten means non-uniform classical advice, but the cryptographic applications in this work will require us to
explicitly consider quantum advice.

Therefore, computational indistinguishability will be defined with respect to non-uniform QPT distin-
guishers with quantum advice. That is, two infinite collections of QRVs {x𝜆}𝜆∈N and {y𝜆}𝜆∈N are com-
putationally indistinguishable if there exists a negligible function 𝜇(·) such that for all QPT distinguishers
𝒟 = {𝒟𝜆,𝜎𝜆}𝜆∈N,

|Pr[𝒟𝜆(𝜎𝜆,x𝜆) = 1]− Pr[𝒟𝜆(𝜎𝜆,y𝜆) = 1]| ≤ 𝜇(𝜆).

We will frequently denote this with the shorthand {x𝜆}𝜆∈N ≈𝑐 {y𝜆}𝜆∈N.

3.1 Bit Commitments
We define bit commitments with quantum players and quantum communication. First, we fix some notation.

A bit commitment scheme is a two-phase interactive protocol between a quantum interactive committer
𝒞 = (𝒞com, 𝒞open) and a quantum interactive receiver ℛ = (ℛcom,ℛopen). In the commit phase, 𝒞com(1𝜆, 𝑏)
for bit 𝑏 ∈ {0, 1} interacts with ℛcom(1𝜆), after which 𝒞com outputs a state xcom and ℛcom outputs a state
ycom. We denote this interaction by (xcom,ycom)← ⟨𝒞(1𝜆, 𝑏),ℛ(1𝜆)⟩.

In the open phase, 𝒞open(xcom) interacts with ℛopen(ycom), after which ℛopen either outputs a bit 𝑏′ or ⊥.
We will denote this receiver’s output by OUTℛ⟨𝒞open(xcom),ℛopen(ycom)⟩.

First, we give the standard notions of hiding and binding.

Definition 3.1 (Hiding Commitment). A bit commitment scheme is computationally hiding if the following
holds. For any polynomial-size receiver ℛ*com = {ℛ*com,𝜆,𝜌𝜆} interacting in the commit phase of the protocol,
let OUTℛ⟨𝒞com(1𝜆, 𝑏),ℛ*com,𝜆(𝜌𝜆)⟩ denote a bit output by ℛ*com,𝜆 after interaction with an honest 𝒞com
committing to message 𝑏. Then for every polynomial-size receiver ℛ*com = {ℛ*com,𝜆,𝜌𝜆}, there exists a
negligible function 𝜈(·) such that⃒⃒

Pr[OUTℛ⟨𝒞com(1𝜆, 0),ℛ*com,𝜆(𝜌𝜆)⟩ = 1]− Pr[OUTℛ⟨𝒞com(1𝜆, 1),ℛ*com,𝜆(𝜌𝜆)⟩ = 1]
⃒⃒

= 𝜈(𝜆).
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Definition 3.2 (Binding Commitment). A bit commitment scheme is computationally (resp. statistically)
binding if for every polynomial-size (resp. unbounded-size) committer 𝒞* = {𝒞*com,𝜆, 𝒞*open,𝜆,𝜌𝜆}, there exists
a negligible function 𝜈(·) such that with probability ≥ 1− 𝜈(𝜆) over (xcom,ycom)← ⟨𝒞*com(𝜌),ℛ(1𝜆)⟩ (where
the indexing by 𝜆 is omitted for convenience), there exists a bit 𝑏 ∈ {0, 1} such that

Pr[OUTℛ⟨𝒞*open(xcom),ℛopen(ycom)⟩ = 𝑏] ≤ 𝜈(𝜆).

Post-quantum bit commitments satisfying computational hiding and statistical binding can be con-
structed from any post-quantum pseudorandom generator (PRG) [Nao91].4 Watrous’s paper [Wat06] con-
siders PRGs built from (post-quantum) one-way permutations via a “quantum Goldreich-Levin Theorem”
of [AC02]. However, Aaronson [Aar09] and Zhandry [Zha12] later pointed out that the original [HILL99]
construction of PRGs from one-way functions makes no assumptions on the computational model of the
attacker, and therefore immediately extends to non-uniform quantum adversaries. Thus, post-quantum
computationally hiding and statistically binding commitments are known from post-quantum one-way func-
tions.

In addition, we will now define notions of extractability and equivocation for commitments. Extractability
is a strengthening of (computational) binding, and equivocation is a strengthening of (computational) hiding.

Definition 3.3 (Extractable Commitment). A bit commitment scheme is extractable if for every polynomial-
size quantum adversarial committer 𝒞* = {𝒞*com,𝜆, 𝒞*open,𝜆,𝜌𝜆}, there exists a QPT extractor ℰ𝒞* such that
for every polynomial-size quantum distinguisher 𝒟* = {𝒟*𝜆,𝜎𝜆}, there exists a negligible function 𝜈(·) such
that: ⃒⃒

Pr[𝒟*𝜆(𝜎𝜆,Real) = 1]− Pr[𝒟*𝜆(𝜎𝜆, Ideal) = 1]
⃒⃒

= 𝜈(𝜆)

for Real and Ideal distributions defined below (where we omit indexing by 𝜆 for the sake of presentation).

• Denote by Real the distribution consisting of (xfinal, 𝑏) where xfinal denotes the final state of 𝒞*open and
𝑏 ∈ {0, 1,⊥} denotes the output by ℛopen after the open phase.

• To define the distribution Ideal, first run the extractor ℰ𝒞* on input 𝜌 to obtain outputs (xcom,ycom, 𝑏
*),

where xcom and ycom are the final states of committer and receiver respectively after the commit phase.
Then run 𝒞*(xcom) and ℛ(ycom) to produce (xfinal, 𝑏), where xfinal is the final state of the committer.
If 𝑏 /∈ {⊥, 𝑏*}, output FAIL and otherwise output (xfinal, 𝑏).

Definition 3.4 (Equivocal Commitments). A bit commitment scheme is equivocal if for every polynomial-
size quantum adversarial receiver ℛ* = {ℛ*com,𝜆,ℛ*open,𝜆,𝜌𝜆} there exists a QPT equivocator 𝒬ℛ* =
(𝒬ℛ*,com,𝒬ℛ*,open) such that for every polynomial-size quantum distinguisher 𝒟* = {𝒟*𝜆,𝜎𝜆} there ex-
ists a negligible function 𝜈(·) such that for every bit 𝑏 ∈ {0, 1},⃒⃒

Pr[𝒟*(𝜎𝜆,Real𝑏) = 1]− Pr[𝒟*(𝜎𝜆, Ideal𝑏) = 1]
⃒⃒

= 𝜈(𝜆)

for Real𝑏 and Ideal𝑏 distributions as defined below (where we omit indexing by 𝜆 for the sake of presentation).

• Real𝑏: Let ℛ* interact with 𝒞com(1𝜆, 𝑏) in the commit phase, after which 𝒞com obtains state xcom and
ℛ* obtains state ycom. Next, obtain output signal bit 𝑠 ∈ {0, 1} from ℛ*, specifying whether or not
the commit phase aborts. If 𝑠 = 0, output ycom. Otherwise, output the final state yfinal of ℛ* after it
interacts with 𝒞open(xcom) in the open phase.

• Ideal𝑏: To define Ideal𝑏, first run the equivocator 𝒬ℛ*,com(𝜌) to obtain state (z, ycom) and signal bit
𝑠 ∈ {0, 1}. If 𝑠 = 0, output ycom. Otherwise, obtain and output yfinal ← 𝒬ℛ*,open(𝑏, z,ycom).

Definition 3.5 (Equivocal and Extractable Commitments). We say that a commitment scheme is equivocal
and extractable if it satisfies Definitions 3.1, 3.3, and 3.4.

4In Naor’s protocol, the receiver first sends a uniformly random 𝑢← {0, 1}𝜆3 , and the committer commits to bit 𝑏 by sending
(𝑏 · 𝑢)⊕𝐺(𝑠), where 𝑠← {0, 1}𝜆 and 𝐺 is a length-tripling PRG.
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3.2 Oblivious Transfer with Quantum Communication
An oblivious transfer with quantum communication is a protocol between a quantum interactive sender 𝒮
and a quantum interactive receiver ℛ, where the sender 𝒮 has input 𝑚0,𝑚1 ∈ {0, 1}𝜆 and the receiver ℛ
has input 𝑏 ∈ {0, 1}. After interaction the sender outputs (𝑚0,𝑚1) and the receiver outputs (𝑏,𝑚𝑏).

Let ℱ(·, ·) be the following functionality. ℱ(𝑏, ·) takes as input either (𝑚0,𝑚1) or abort from the sender,
returns end to the sender, and outputs 𝑚𝑏 to the receiver in the non-abort case and ⊥ in the abort case.
ℱ(·, (𝑚0,𝑚1)) takes as input either 𝑏 or abort from the receiver, returns 𝑚𝑏 to the receiver, and returns end
to the sender in the non-abort case, and returns ⊥ to the sender in the abort case.

Definition 3.6. We let ⟨𝑆(𝑚0,𝑚1), 𝑅(𝑏)⟩ denote an execution of the OT protocol with sender input (𝑚0,𝑚1)
and receiver input bit 𝑏. We denote by 𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩ and OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩ the final state of a non-
uniform malicious sender 𝑆*(𝜌) and the output of the receiver 𝑅(𝑏) at the end of an interaction (leaving
the indexing by 𝜆 implicit). We denote by 𝜌out,𝑅*⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩ and OUT𝑆⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩ the final
state of a non-uniform malicious receiver 𝑅*(𝜌) and the output of the sender 𝑆(𝑚0,𝑚1) at the end of an
interaction. We require OT to satisfy the following security properties:

• Receiver Security. For every receiver bit 𝑏 ∈ {0, 1} and every QPT non-uniform malicious sender
𝑆*(𝜌), there exists a simulator Sim𝑆* such that the following holds. Sim𝑆*(𝜌) sends inputs (𝑚0,𝑚1) or
abort to the ideal functionality ℱOT(𝑏, ·), whose output to the receiver is denoted by OUT𝑅. Sim𝑆*(𝜌)
also outputs a final state 𝜌Sim,out,𝑆* such that(︀

𝜌Sim,out,𝑆* ,OUT𝑅

)︀
≈𝑐

(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀
.

• Sender Security. For every pair of sender inputs (𝑚0,𝑚1) and every QPT non-uniform malicious
receiver 𝑅*(𝜌), there exists a simulator Sim𝑅* such that the following holds. Sim𝑅*(𝜌) sends bit 𝑏
or abort to the ideal functionality ℱOT(𝑚0,𝑚1, ·), whose output to the sender is denoted by OUT𝑆 .
Sim𝑅*(𝜌) also outputs a final state 𝜌Sim,out,𝑅* such that(︀

𝜌Sim,out,𝑅* ,OUT𝑆

)︀
≈𝑐

(︀
𝜌out,𝑅*⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩,OUT𝑆⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩

)︀
.

3.3 Quantum Rewinding Lemma
We will make use of the following lemma from [Wat06].

Lemma 3.7. Let 𝒬 be a general quantum circuit with 𝑛 input qubits that outputs a classical bit 𝑏 and 𝑚
qubits. For an 𝑛-qubit state |𝜓⟩, let 𝑝(|𝜓⟩) denote the probability that 𝑏 = 0 when executing 𝒬 on input |𝜓⟩.
Let 𝑝0, 𝑞 ∈ (0, 1) and 𝜖 ∈ (0, 1/2) be such that:

• For every 𝑛-qubit state |𝜓⟩ , 𝑝0 ≤ 𝑝(𝜓),

• For every 𝑛-qubit state |𝜓⟩, |𝑝(𝜓)− 𝑞| < 𝜖,

• 𝑝0(1− 𝑝0) ≤ 𝑞(1− 𝑞),

Then, there is a general quantum circuit ̂︀𝒬 of size 𝑂
(︁

log(1/𝜖)
4·𝑝0(1−𝑝0) |𝒬|

)︁
, taking as input 𝑛 qubits, and

returning as output 𝑚 qubits, with the following guarantee. For an 𝑛 qubit state |𝜓⟩, let 𝒬0(|𝜓⟩) denote the
output of 𝒬 on input |𝜓⟩ conditioned on 𝑏 = 0, and let ̂︀𝒬(|𝜓⟩) denote the output of ̂︀𝒬 on input |𝜓⟩. Then,
for any 𝑛-qubit state |𝜓⟩,

TD
(︁
𝒬0(|𝜓⟩), ̂︀𝒬(|𝜓⟩)

)︁
≤ 4
√
𝜖

log(1/𝜖)
𝑝0(1− 𝑝0) .
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3.4 Quantum Entropy and Leftover Hashing
Classical Min-Entropy. For a classical random variable 𝑋, its min-entropy H∞(𝑋) is defined as

H∞(𝑋) := − log(max
𝑥

Pr[𝑋 = 𝑥]).

In cryptographic settings, we are often interested in the min-entropy of a random variable 𝑋 sampled
from a joint distribution (𝑋,𝑌 ), where 𝑌 is side information available to an adversary/distinguisher. Fol-
lowing [RW05], we define the conditional min-entropy of 𝑋 given 𝑌 as

H∞(𝑋 | 𝑌 ) := − log(max
𝑥,𝑦

Pr[𝑋 = 𝑥 | 𝑌 = 𝑦]).

That is, H∞(𝑋 | 𝑌 ) is (the negative log of) the maximum probability of guessing the outcome of 𝑋,
maximized over the possible outcomes of 𝑌 .

Quantum Conditional Min-Entropy. Let 𝜌XY denote a bipartite quantum state over registers XY.
Following [Ren08, KRS09], the conditional min-entropy of 𝜌XY given Y is then defined to be

H∞(𝜌XY | Y) := sup
y

max{ℎ ∈ R : 2−ℎ · 𝐼X ⊗ yY − 𝜌XY ≥ 0}.

In this work, we will exclusively consider the case where the 𝜌XY is a joint distribution of the form (𝑋,y)
where 𝑋 is a classical random variable. In other words, 𝜌XY can be written as∑︁

𝑥

Pr[𝑋 = 𝑥] |𝑥⟩ ⟨𝑥| ⊗ y𝑥.

In this case, we will write H∞(𝜌XY | Y) as H∞(𝑋 | y). We remark that in this particular setting,
H∞(𝑋 | y) can be interpreted as the (negative log of) the maximum probability of guessing 𝑋 given
quantum state y [KRS09].

Leftover Hash Lemma with Quantum Side Information. We now state a generalization of the
leftover hash lemma to the setting of quantum side information.

Lemma 3.8 ([RK05]). Let ℋ be a family of universal hash functions from 𝒳 to {0, 1}ℓ, i.e. for any 𝑥 ̸= 𝑥′,
Prℎ←ℋ[ℎ(𝑥) = ℎ(𝑥′)] = 2−ℓ. Then for joint random variables (𝑋,y) where 𝑋 is a classical random variable
over 𝒳 and y is a quantum random variable,

‖(ℎ, ℎ(𝑋),y)− (ℎ, 𝑢,y)‖1 ≤
1

21+ 1
2 (H∞(𝑋|y)−ℓ) ,

where ℎ← ℋ and 𝑢← {0, 1}ℓ.

4 A Quantum Equivocality Compiler
In this section, we show a generic black-box compiler that takes any quantum-secure commitment scheme
and produces a quantum-secure equivocal commitment scheme.

The compiler is described in Protocol 1, where (Commit,Decommit) denotes some statistically binding
and computationally hiding commitment scheme satisfying Definitions 3.1 and 3.2. We describe how to
equivocally commit to a single bit, and note that commitment to an arbitrary length string follows by
sequential repetition.

Furthermore, we show that if the underlying commitment (Commit,Decommit) is extractable according to
Definition 3.3, then the resulting scheme is an extractable and equivocal commitment satisfying Definition
3.5.

These results are captured in the following theorems.
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Protocol 1

Committer 𝒞 Input: Bit 𝑏 ∈ {0, 1}.
The Protocol: Commit Phase

1. 𝒞 samples uniformly random bits 𝑑𝑖,𝑗 for 𝑖 ∈ [𝜆] and 𝑗 ∈ {0, 1}.

2. For every 𝑖 ∈ [𝜆], 𝒞 and ℛ sequentially perform the following steps.

(a) 𝒞 and ℛ execute four sessions sequentially, namely:
• x0,0,y0,0 ← Commit⟨𝒞(𝑑𝑖,0),ℛ⟩,
• x0,1,y0,1 ← Commit⟨𝒞(𝑑𝑖,0),ℛ⟩,
• x1,0,y1,0 ← Commit⟨𝒞(𝑑𝑖,1),ℛ⟩ and
• x1,1,y1,1 ← Commit⟨𝒞(𝑑𝑖,1),ℛ⟩.

(b) ℛ sends a choice bit 𝑐𝑖 ← {0, 1}.
(c) 𝒞 and ℛ execute two decommitments, obtaining the opened bits:

• 𝑢← Decommit⟨𝒞(x𝑐𝑖,0),ℛ(y𝑐𝑖,0)⟩ and
• 𝑣 ← Decommit⟨𝒞(x𝑐𝑖,1),ℛ(y𝑐𝑖,1)⟩.

If 𝑢 ̸= 𝑣, ℛ aborts. Otherwise, 𝒞 and ℛ continue.

3. For 𝑖 ∈ [𝜆], 𝒞 sets 𝑒𝑖 = 𝑏⊕ 𝑑𝑖,1−𝑐𝑖
and sends {𝑒𝑖}𝑖∈[𝜆] to 𝑅.

The Protocol: Decommit Phase

1. 𝒞 sends 𝑏 to ℛ. In addition,

• For 𝑖 ∈ [𝜆], 𝒞 picks 𝛼𝑖 ← {0, 1} and sends it to ℛ.
• 𝒞 and ℛ execute ̂︀𝑑𝑖 ← Decommit⟨𝒞(x1−𝑐𝑖,𝛼𝑖

),ℛ(y1−𝑐𝑖,𝛼𝑖
)⟩.

2. ℛ accepts the decommitment and outputs 𝑏 if for every 𝑖 ∈ [𝜆], ̂︀𝑑𝑖 = 𝑏⊕ 𝑒𝑖.

Figure 1: Equivocal Bit Commitment.

Theorem 4.1. Protocol 1 describes a quantum statistically binding and equivocal commitment (satisfying
Definitions 3.2 and 3.4) whenever Commit is instantiated with any quantum statistically binding, computa-
tionally hiding commitment (satisfying Definitions 3.2 and 3.1).

Theorem 4.2. Protocol 1 describes a quantum extractable and equivocal commitment (satisfying Definition
3.5) whenever Commit is instantiated with any quantum extractable, computationally hiding commitment
(satisfying Definitions 3.3 and 3.1).

These theorems follows from establishing statistical binding, equivocality, and extractability of the com-
mitment in Protocol 1.

Binding. We show that if Commit is statistically binding, then Protocol 1 is statistically binding. For any
adversarial committer strategy, consider the 𝜆 unopened pairs of commitments after the commit phase. Since
Commit is statistically binding, we can assume that each of the 2𝜆 commitments is binding to a particular
bit, except with negligible probability. Now, if any single pair contains binding commitments to the same
bit 𝑑𝑖, then the committer will only be able to open its Protocol 1 commitment to the bit 𝑑𝑖 ⊕ 𝑒𝑖. Thus,
to violate binding, the adversarial committer will have to have committed to different bits in each of the 𝜆
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unopened pairs. However, in this case, the committer will be caught and the receiver will abort except with
probability 1/2𝜆.

Equivocality. The equivocal simulator (𝒬ℛ*,com,𝒬ℛ*,open) is obtained via the use of the quantum rewind-
ing lemma (Lemma 3.7) [Wat06]. For the purposes of defining the simulation strategy, it will be sufficient
(w.l.o.g.) to consider a restricted receiver ℛ* as follows, for the 𝑖𝑡ℎ sequential step of the protocol. In our
simulation, the state of ℛ* will be initialized to the final state at the end of simulating the (𝑖− 1)𝑡ℎ step.

1. ℛ* takes a quantum register W, representing its auxiliary quantum input. ℛ* will use two additional
quantum registers that function as work space: V, which is an arbitrary (polynomial-size) register, and
A, which is a single qubit register. The registers V and A are initialized to their all-zero states before
the protocol begins.

2. Let M denote the polynomial-size register used by 𝒞 to send messages to ℛ*. After carrying out step
2(a) by running on registers (W,V,A,M), ℛ* measures the register A to obtain a bit 𝑐𝑖, for Step 2(b),
which it sends back to 𝒞.

3. Next, ℛ* computes the decommitment phases (with messages from 𝒞 placed in register M) according
to Step 2(c). ℛ* outputs registers (W,V,A,M).

Any polynomial-time quantum verifier can be modeled as a verifier of this restricted form followed by
some polynomial-time post-processing of the restricted verifier’s output. The same post-processing can be
applied to the output of the simulator that will be constructed for the given restricted verifier.

Following [Wat06], we define a simulator that uses two additional registers, C and Z. C is a one qubit
register, while Z is an auxiliary register used to implement the computation that will be described next.
Consider a quantum procedure 𝒬partial that implements the strategy described in Protocol 2 using these
registers.

Protocol 2

Circuit 𝒬partial.

1. Sample a uniformly random classical bit ̂︀𝑐, and store it in register C.

2. Sample uniformly random bits (𝑧, 𝑑).

3. If ̂︀𝑐 = 0, initialize committer input as follows, corresponding to four sequential sessions:

• For the first two sessions, set committer input to 𝑧.
• For the third and fourth sessions, set committer input to 𝑑 and 1− 𝑑 respectively.

4. If ̂︀𝑐 = 1, initialize committer input as follows, corresponding to four sequential sessions:

• For the first and second sessions, set committer input to 𝑑 and 1− 𝑑 respectively.
• For the last two sessions, set committer input to 𝑧.

5. Run the commitment phase interaction between the honest committer and ℛ*’s sequence of
unitaries on registers initialized as above.

6. Measure the qubit register 𝐴 to obtain a bit 𝑐. If 𝑐 = ̂︀𝑐, output 0, otherwise output 1.

Figure 2: Equivocal Simulator.
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Next, we would like to apply the quantum rewinding lemma (Lemma 3.7) to the 𝒬partial circuit. In order
to do this, we will argue that the probability 𝑝(𝜓) that this circuit outputs 0 is such that |𝑝(𝜓) − 1

2 | =
negl(𝜆), regardless of the auxiliary input |𝜓⟩ to ℛ*. This follows from the fact that the commitments are
(statistically/computationally) hiding. In more detail, by definition, Step 5 produces a distribution on the
ℛ*’s side that is identical to the distribution generated by ℛ* in its interaction with the committer. If
|𝑝(𝜓) − 1

2 | were non-negligible, then the sequence of unitaries applied by ℛ* could be used to distinguish
commitments generated according to the case ̂︀𝑐 = 0 from commitments generated according to the casê︀𝑐 = 1, leading to a contradiction.

Now consider the state of the residual qubits of 𝒬partial conditioned on a measurement of its output qubit
being 0. The output state of the general quantum circuit ̂︀𝒬 resulting from applying quantum rewinding
(Lemma 3.7) will have negligible trace distance from this state. This state is over all of the registers discussed
above, so the simulator 𝒬com,ℛ* must further process this state as follows:

• Measure the register C, obtaining challenge 𝑐.

• Compute decommitment information corresponding to challenge 𝑐, as in Step 2(c) of the protocol
(recall that this information is stored in the message register M).

• Output registers (W,V,A,M). All remaining registers are traced out.
The simulator𝒬ℛ*,com executes all 𝑖 sequential interactions in this manner, and then samples 𝑒1, . . . , 𝑒𝜆 ←

{0, 1}𝜆, as the committer messages for Step 3 of Protocol 1. It runs the receiver’s unitary on the re-
sulting protocol, and outputs the resulting registers (W,V,A,M). It additionally outputs private state
st = (𝑐1, 𝑑1, . . . , 𝑐𝜆, 𝑑𝜆) where 𝑐𝑖, 𝑑𝑖 were sampled during the 𝑖th execution of Protocol 2.

The simulator 𝒬ℛ*,open(𝑏, st,w,v,a,m) parses st as (𝑐1, 𝑑1, . . . , 𝑐𝜆, 𝑑𝜆). For every 𝑖 ∈ [𝜆] it does the
following:

• Let ̂︀𝑑𝑖 = 𝑏⊕ 𝑒𝑖.

• If 𝑐𝑖 = 0, it executes the decommitment phase corresponding to the (( ̂︀𝑑𝑖 ⊕ 𝑑𝑖) + 2)𝑡ℎ session.

• If 𝑐𝑖 = 1, it executes the decommitment phase corresponding to the ( ̂︀𝑑𝑖 ⊕ 𝑑𝑖)𝑡ℎ session.
𝒬ℛ*,open then executes the receiver’s algorithm on these decommitments and outputs the resulting state.
Note that each decommitment will be to the bit ̂︀𝑑𝑖 = 𝑏⊕ 𝑒𝑖.

To complete the proof of the equivocal property, we must establish that the distributions Real𝑏 and
Ideal𝑏, according to Definition 3.4, are indistinguishable. This follows from the (statistical/computational)
hiding of the commitment scheme, via an identical argument to the one used above. In particular, if the
equivocal simulator produces a distribution that is distinguishable from the real distribution, then there
exists a session 𝑖 ∈ [𝜆] such that the distribution in the real and ideal experiments upto the 𝑖− 1𝑡ℎ session
are indistinguishable, but upto the 𝑖𝑡ℎ session are distinguishable. This contradicts the above guarantee
given by the quantum rewinding lemma, since for any 𝑖, the post-processed residual qubits of 𝒬partial are
indistinguishable from the state of ℛ* after the 𝑖’th sequential session in the real protocol (due to the hiding
of the commitment scheme).

Extractability. Next, we prove that Protocol 1 satisfies Definition 3.3 as long as the underlying com-
mitment (Commit,Decommit) is extractable according to Definition 3.3. Consider the following extractor
ℰ𝒞* .

• For 𝑖 ∈ [𝜆]:

– Execute four sequential commitment sessions with 𝒞*, where the extractor of Commit is run on the
first and third sessions, and the honest interaction is run for the second and fourth sessions. Obtain
outputs (𝜌𝒞* , stℛ,𝑖,0, 𝑑

′
𝑖,0, stℛ,𝑖,0, 𝑑

′
𝑖,1), where 𝜌𝒞* is the final state of the committer after engaging

in all four sequential sessions, and stℛ,𝑖,0, stℛ,𝑖,1 are receiver states output by the extractor
corresponding to the first and third sessions.
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– Corresponding to Step 2(b), compute and send 𝑐𝑖 ← {0, 1}.
– Execute Step 2(c) identically to Protocol 1.

• Executes Step 3 of Protocol 1, receiving bits {𝑒𝑖}𝑖∈[𝜆]. Fix 𝑏* to be the most frequently ocurring bit
in {𝑒𝑖 ⊕ 𝑑′𝑖,1−𝑐𝑖

}𝑖∈[𝜆], and output the final state of 𝒞*, the receiver states {stℛ,𝑖,0, stℛ,𝑖,1}𝑖∈[𝜆], and the
extracted bit 𝑏*.

Indistinguishability between the distributions Real and Ideal follows by definition of extractability of
the underlying commitment (Commit,Decommit). In more detail, recall that Real denotes the distribution
(𝜌𝒞*,final, 𝑏) where 𝜌𝒞*,final denotes the final state of 𝒞* and 𝑏 the output of the receiver, and Ideal denotes
the final committer state and opened bit after the opening phase of the scheme is run on the output of the
extractor. Now for every commitment strategy, every 𝑖 ∈ [𝜆], the probability that 𝑑′𝑖,1−𝑐𝑖

is not equal to
the other bit committed in its pair, and yet the receiver does not abort in Step 2(c) in the 𝑖𝑡ℎ sequential
repetition, is ≤ 1

2 +negl(𝜆). Thus, by the correctness of the extractor, this implies that the probability that an
adversarial committer opens to 1−𝑏* is at most 1/2𝜆/2 +negl(𝜆) = negl(𝜆). Finally, by indistinguishability of
the extractor’s and committer’s states, this implies that the distributions Real and Ideal are indistinguishable.

5 Quantum Extractable Commitments
We construct extractable commitments by making use of the following building blocks.

• We let (EqCommit,EqDecommit) denote any quantum statistically binding and equivocal commitment
scheme, satisfying Definition 3.2 and Definition 3.4. Such a commitment can be obtained by applying
the compiler from last section to Naor’s commitment scheme [Nao91].

• For a suitable polynomial 𝑘(·), let ℎ : {0, 1}𝑘(𝜆) × {0, 1}𝜆2 → {0, 1} be a universal hash function that
is evaluated on a random seed 𝑠 ∈ {0, 1}𝑘(𝜆) and input 𝑥 ∈ {0, 1}𝜆2 .

Our extractable commitment scheme is described formally in Figure 3. It is shown how to commit to a
single bit, though commitment to any arbitrary length string follows by sequential repetition. Correctness
of the protocol follows by inspection. In the remainder of this section, we prove the following theorem.

Theorem 5.1. Protocol 3 describes a quantum statistically hiding and extractable commitment (satisfying
Definition 3.2 and Definition 3.3) whenever (EqCommit,EqDecommit) is instantiated with any quantum
statistically binding and equivocal commitment scheme (satisfying Definition 3.2 and Definition 3.4).

Proof. Throughout, we will consider non-uniform adversaries, but drop the indexing by 𝜆.

Extractability. Consider any adversarial committer 𝒞* with advice 𝜌. The extractor ℰ𝒞*(𝜌) is constructed
as follows.

1. Run the first message algorithm of 𝒞* on input 𝜌, obtaining message 𝜓.

2. For 𝑖 ∈ [2𝜆3], sequentially execute equivocal commitment sessions with the equivocal simulator𝒬𝑅*,com,
where 𝑅* is the part of 𝒞* that participates as receiver in the 𝑖𝑡ℎ session. Session 𝑖 results in output
(z𝑖,ycom,𝑖), where z𝑖 is stored by the extractor, and ycom,𝑖 is the current state of 𝒞*, which is fed as
input into the next session.

3. Obtain 𝑇 from 𝒞*, and sample ̂︀𝜃 ← {+,×}2𝜆3 . Let 𝜓𝑖 denote the 𝑖𝑡ℎ qubit of 𝜓, and measure the
qubits 𝜓𝑖 for 𝑖 ∈ 𝑇 , each in basis ̂︀𝜃𝑖. Let {̂︀𝑥𝑖}𝑖∈[𝑇 ] be the results of the measurements.

4. Let xcom be the current state of 𝒞*. For each 𝑖 ∈ [𝑇 ], execute 𝒬𝑅*,open((̂︀𝜃𝑖, ̂︀𝑥𝑖), z𝑖,xcom), where 𝑅* is
the part of 𝒞* that participates in the 𝑖𝑡ℎ opening, and xcom is updated to be the current state of 𝒞*
after each sequential session.
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Protocol 3

Committer 𝒞 Input: Bit 𝑏 ∈ {0, 1}.

The Protocol: Commit Phase.

1. 𝒞 chooses 𝑥← {0, 1}2𝜆3 , 𝜃 ← {+,×}2𝜆3 and sends |𝑥⟩𝜃 to ℛ.

2. ℛ chooses ̂︀𝜃 ← {+,×}2𝜆3 and obtains ̂︀𝑥 ∈ {0, 1}2𝜆3 by measuring |𝑥⟩𝜃 in basis ̂︀𝜃.
ℛ commits to ̂︀𝜃 and ̂︀𝑥 position-wise: ℛ and 𝒞 execute sequentially 2𝜆3 equivocal commitment
sessions with ℛ as committer and 𝒞 as receiver. That is, for each 𝑖 ∈ [2𝜆3], they compute
(xcom,𝑖,ycom,𝑖)← EqCommit⟨ℛ(̂︀𝜃𝑖, ̂︀𝑥𝑖), 𝒞⟩.

3. 𝒞 sends a random test subset 𝑇 ⊂ [2𝜆3] of size 𝜆3 to ℛ.

4. For every 𝑖 ∈ 𝑇 , ℛ and 𝒞 engage in (̂︀𝜃𝑖, ̂︀𝑥𝑖)← EqDecommit⟨ℛ(xcom,𝑖), 𝒞(ycom,𝑖)⟩, and 𝒞 aborts if
any commitment fails to open.

5. 𝒞 checks that 𝑥𝑖 = ̂︀𝑥𝑖 whenever 𝜃𝑖 = ̂︀𝜃𝑖. If all tests pass, 𝒞 proceeds with the protocol, otherwise,
𝒞 aborts.

6. The tested positions are discarded by both parties: 𝒞 and ℛ restrict 𝑥 and 𝜃, respectively ̂︀𝑥 and̂︀𝜃, to the 𝜆3 indices 𝑖 ∈ 𝑇 . 𝒞 sends 𝜃 to ℛ.

7. 𝒞 partitions the remaining 𝜆3 bits of 𝑥 into 𝜆 different 𝜆2-bit strings 𝑦1, . . . , 𝑦𝜆. For each 𝑖 ∈ [𝜆],
sample a seed 𝑠𝑖 ← {0, 1}𝑘(𝜆) and compute 𝑑𝑖 := ℎ(𝑠𝑖, 𝑦𝑖). Then output {𝑠𝑖, 𝑏⊕ 𝑑𝑖}𝑖∈[𝜆].

The Protocol: Decommit Phase.

1. 𝒞 sends 𝑏 and (𝑦1, . . . , 𝑦𝜆) to ℛ.

2. If either of the following fails, ℛ rejects and outputs ⊥. Otherwise, ℛ accepts and outputs 𝑏.

• Let {𝑠𝑖, 𝑣𝑖}𝑖∈[𝜆] be the message received by ℛ in step 7. Check that for all 𝑖 ∈ [𝜆], 𝑣𝑖 =
𝑏⊕ ℎ(𝑠𝑖, 𝑦𝑖).

• Let 𝑥 = (𝑦1, . . . , 𝑦𝜆). For each 𝑗 ∈ [𝜆3] such that ̂︀𝜃𝑗 = 𝜃𝑗 , check that ̂︀𝑥𝑗 = 𝑥𝑗 .

Figure 3: Extractable Commitment.

5. If 𝒞* aborts at any point, abort and output ⊥, otherwise continue.

6. Discard tested positions and restrict ̂︀𝜃 to the indices in 𝑇 . Obtain 𝜃 ∈ {+,×}𝜆3 from 𝒞*. Measure
the qubits 𝜓𝑖 in basis 𝜃𝑖 to obtain ̂︀𝑥𝑖 for 𝑖 ∈ 𝑇 , and then partition ̂︀𝑥 into 𝜆 different 𝜆2-bit stringŝ︀𝑦1, . . . , ̂︀𝑦𝜆.

7. Obtain {𝑠𝑖, 𝑣𝑖}𝑖∈[𝜆] from 𝒞*. Let 𝑏* be the most frequently occurring bit in {ℎ(𝑠𝑖, ̂︀𝑦𝑖)⊕𝑣𝑖}𝑖∈[𝜆]. Output
(xcom,ycom, 𝑏

*), where xcom is the resulting state of 𝒞* and ycom = (𝜃, ̂︀𝜃, ̂︀𝑥).

We now prove that ℰ𝒞* satisfies the indistinguishability between Real and Ideal distributions as required by
Definition 3.3. We do so via a sequence of hybrids.

Hyb1. Define distribution Hyb1 identically to Hyb0, except that in Step 2, for 𝑖 ∈ [2𝜆3], sequentially execute
equivocal commitment sessions using the equivocal simulator 𝒬𝑅*,com, as described in the extractor. In Step
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4, for every 𝑖 ∈ 𝑇 , open the 𝑖’th commitment to (̂︀𝜃𝑖, ̂︀𝑥𝑖) using 𝒬𝑅*,open, as described in the extractor.
By the equivocal property of Commit, for any QPT distinguisher (𝒟*,𝜎), there exists a negligible function

𝜈(·) such that ⃒⃒⃒
Pr[𝒟*(𝜎,Hyb1) = 1]− Pr[𝒟*(𝜎,Hyb0) = 1]

⃒⃒⃒
= 𝜈(𝜆).

Hyb2. This is identical to Hyb1, except that the verifier measures qubits of |𝑥⟩𝜃 only after obtaining a
description of the set 𝑇 , and only measures the qubits 𝑖 ∈ [𝑇 ]. The output of this experiment is identical to
Hyb1, therefore for any QPT distinguisher (𝒟*,𝜎),

Pr[𝒟*(𝜎,Hyb3) = 1] = Pr[𝒟*(𝜎,Hyb2) = 1].

Moreover, the only difference between Hyb2 and Ideal is that Ideal outputs FAIL when the message 𝑏
opened by 𝒞* is not ⊥ and differs from the one extracted by ℰ𝒞* . Therefore, to derive a contradiction it will
suffice to prove that there exists a negligible function 𝜈(·) such that

Pr[FAIL|Ideal] = 𝜈(𝜆).

Consider any sender 𝒞* that produces a committer state xcom and then decommits to message 𝑏′ using
strings (𝑦1, . . . , 𝑦𝜆) during the decommit phase. Let 𝑇 ′ ⊆ [𝜆] denote the set of all indices 𝑖 ∈ [𝜆] such that
the corresponding 𝑦𝑖 ̸= ̂︀𝑦𝑖, where ̂︀𝑦𝑖 denotes the values obtained by the extractor in Step 6. Then we have
the following claim.

Claim 5.2. There exists a negligible function 𝜈(·) such that

Pr[|𝑇 ′| > 𝜆/2] = 𝜈(𝜆)

where the probability is over the randomness of the extractor.

Proof. For every 𝑖 ∈ [𝜆], we have that (over the randomness of the extractor):

Pr
[︁
ℛopen(ycom) outputs ⊥ in ⟨𝒞*open(xcom),ℛopen(ycom)⟩

⃒⃒⃒
𝑦𝑖 ̸= ̂︀𝑦𝑖

]︁
≥ 1

2 .

Indeed, the receiver will reject if for some position 𝑖 for which 𝑦𝑖 ̸= ̂︀𝑦𝑖, it holds that 𝜃𝑖 = ̂︀𝜃𝑖. Since ̂︀𝜃 was
sampled uniformly at random, this will occur with probability 1/2. This implies that Pr[|𝑇 ′| > 𝜆/2] ≤ 1

2𝜆/2 ,
and the claim follows.

By construction of ℰ𝒞* , Pr[FAIL|Ideal] < Pr[|𝑇 ′| > 𝜆/2], and therefore it follows that there exists a
negligble function 𝜈(·) such that

Pr[FAIL|Ideal] = 𝜈(𝜆).

Statistical Hiding. We now prove that the protocol in Fig. 3 is statistically hiding. This follows from the
statistical binding of the commitment scheme EqCommit.

In more detail, we show that for any (unbounded) receiver strategy ℛ*, the 𝜆 bits 𝑑𝑖 computed by 𝒞 in
Step 7, Fig. 3 are negligibly close to uniformly random bits from the perspective of ℛ*. This suffices to show
that the committer’s bit 𝑏 is statistically hidden.

To show this, we use ℛ* to construct an algorithm 𝐵 that interacts in the EPR protocol (Protocol 5).
From ℛ*’s perspective, this interaction will be (statistically) indistinguishable from an interaction with the
honest committer 𝒞. 𝐵 is constructed as follows.

• 𝐵 forwards the state received from 𝐴 to ℛ*. 𝐵 then takes the role of a receiver, interacting with ℛ*
as ℛ* commits to each bit of ̂︀𝜃, ̂︀𝑥. It inefficiently (brute force) extracts ̂︀𝜃, ̂︀𝑥 from these sessions and
forwards ̂︀𝜃, ̂︀𝑥 to 𝐴.
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• 𝐵 forwards the test subset 𝑇 received from 𝐴 to ℛ*. 𝐵 then interacts with ℛ* to open the 𝑖’th
commitments for 𝑖 ∈ [𝑇 ]. It sends continue to 𝐴 if all commitments open and the opened messages
{̂︀𝜃𝑖, ̂︀𝑥𝑖}𝑖∈[𝑇 ] match the previously extracted strings ̂︀𝜃, ̂︀𝑥. Otherwise, it sends abort.

• In the post-processing phase, 𝐴 follows the honest committer 𝒞 in Protocol 3. That is, it partitions 𝑥
into 𝑦1, . . . , 𝑦𝜆, samples {𝑠𝑖}𝑖∈[𝜆], computes {𝑑𝑖 := ℎ(𝑠𝑖, 𝑦𝑖)}𝑖∈[𝜆] and outputs {𝑠𝑖, 𝑏⊕ 𝑑𝑖}𝑖∈[𝜆].

There are a few differences between the view of ℛ* in the above “simulated” protocol and the view of
ℛ* in the real protocol.

1. In the first round, ℛ* receives halves of EPR pairs in the simulated protocol, but this is identical to
the real protocol since the state sent by 𝒞 in the first round is maximally mixed from ℛ’s perspective.

2. In the simulated protocol, there is an additional check performed on the messages sent by ℛ*, namely,
that the opened messages {̂︀𝜃𝑖, ̂︀𝑥𝑖}𝑖∈[𝑇 ] match previously extracted strings ̂︀𝜃, ̂︀𝑥. Since the commitment
is statistically binding, there is only a negligible probability that this check fails (and 𝐵 aborts) in the
simulated protocol, but 𝒞 does not abort in the real protocol.

3. In the simulated protocol, 𝐴 measures her half of the EPR pairs in 𝑇 according to the basis ̂︀𝜃, checking
that the result matches ̂︀𝑥 whenever ̂︀𝜃𝑖 = 𝜃𝑖. Due to the aforementioned check on the ZK argument
instance, this check is computed with respect to the same ̂︀𝜃, ̂︀𝑥 as in the real protocol. Moreover, there is
no difference from ℛ*’s perspective whether, for 𝑖 ∈ [𝑇 ] such that ̂︀𝜃𝑖 = 𝜃𝑖, it received a qubit already in
basis ̂︀𝜃𝑖, or it received half of an EPR pair, the other half of which was then subsequently measured in
basis ̂︀𝜃𝑖. For the indices 𝑖 for which ̂︀𝜃𝑖 ̸= 𝜃𝑖, ℛ* simply sees a maximally mixed state in both protocols.

Thus, by Lemma A.1, each 𝑦1, . . . , 𝑦𝜆 has min-entropy Ω(𝜆2) conditioned on ℛ*’s view (and each other),
except with probability negl(𝜆3𝜆2/𝜆4) = negl(𝜆). This follows because, by Hoeffding’s inequality, the number
of positions that 𝜃 and ̂︀𝜃 differ in each of the 𝜆 subsets of size 𝜆2 is Ω(𝜆2), except with negligible probability.
Finally, Lemma 3.8 shows that each 𝑑𝑖 is negligibly close to a uniformly random bit, completing the proof.

The following corollary follows immediately from Theorems 4.1, 4.2 and 5.1.

Corollary 5.3. Extractable and equivocal commitments satisfying Definition 3.5 can be based on black-box
use of statistically binding bit commitments, or on black-box use of quantum-hard one-way functions.

6 Quantum Oblivious Transfer from Extractable and Equivocal
Commitments

We construct simulation-secure quantum oblivious transfer by making use of the following building blocks.

• Let (EECommit,EEDecommit) denote any extractable and equivocal bit commitment satisfying Defini-
tion 3.5. Such a commitment scheme may be obtained by applying the compiler from Section 4 to the
extractable commitment constructed in Section 5.

• Let {ℎ𝑝}𝑝∈[𝜆,7𝜆] be a family of universal hash functions, where for suitable polynomial 𝑘(·), ℎ𝑝 :
{0, 1}𝑘(𝜆) × {0, 1}𝑝 → {0, 1}𝜆.

Our QOT protocol is described in Protocol 4, which is essentially the [BBCS92] protocol instantiated
with our extractable and equivocal commitment scheme.

Theorem 6.1. The protocol in Figure 4 is a QOT protocol satisfying Definition 3.6 whenever (EECommit,EEDecommit)
is instantiated with any extractable and equivocal commitment that satisfies Definition 3.5.

Proof. We prove that the resulting QOT protocol satisfies the following properties.
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Protocol 4

Sender 𝑆 Input: Messages 𝑚0,𝑚1 ∈ {0, 1}𝜆 × {0, 1}𝜆

Receiver 𝑅 Input: Bit 𝑏 ∈ {0, 1}

The Protocol:

1. 𝑆 chooses 𝑥← {0, 1}16𝜆 and 𝜃 ← {+,×}16𝜆 and sends |𝑥⟩𝜃 to 𝑅.

2. 𝑅 chooses ̂︀𝜃 ← {+,×}16𝜆 and obtains ̂︀𝑥 ∈ {0, 1}16𝜆 by measuring |𝑥⟩𝜃 in basis ̂︀𝜃. Then, 𝑆 and 𝑅
execute 16𝜆 sessions of EECommit sequentially with 𝑅 acting as committer and 𝑆 as receiver. In
session 𝑖, 𝑅 commits to the bits ̂︀𝜃𝑖, ̂︀𝑥𝑖.

3. 𝑆 sends a random test subset 𝑇 ⊂ [16𝜆] of size 8𝜆 to 𝑅.

4. For each 𝑖 ∈ 𝑇 , 𝑅 and 𝑆 sequentially execute the 𝑖’th EEDecommit, after which 𝑆 receives the
opened bits ̂︀𝜃𝑖, ̂︀𝑥𝑖.

5. 𝑆 checks that 𝑥𝑖 = ̂︀𝑥𝑖 whenever 𝜃𝑖 = ̂︀𝜃𝑖. If all tests pass, 𝑆 accepts, otherwise, 𝑆 rejects and
aborts.

6. The tested positions are discarded by both parties: 𝑆 and 𝑅 restrict 𝑥 and 𝜃, respectively ̂︀𝜃 and̂︀𝑥, to the 8𝜆 indices 𝑖 ∈ 𝑇 . 𝑆 sends 𝜃 to 𝑅.

7. 𝑅 partitions the positions of 𝑇 into two parts: the “good” subset 𝐼𝑏 = {𝑖 : 𝜃𝑖 = ̂︀𝜃𝑖} and the “bad”
subset 𝐼1−𝑏 = {𝑖 : 𝜃𝑖 ̸= ̂︀𝜃𝑖}. 𝑅 aborts if |𝐼0| < 𝜆 or |𝐼1| < 𝜆. Otherwise, 𝑅 sends (𝐼0, 𝐼1) to 𝑆.

8. 𝑆 samples seeds 𝑠0, 𝑠1 ← {0, 1}𝑘(𝜆) and sends
(︀
𝑠0, ℎ|𝐼0|(𝑠0, 𝑥0)⊕𝑚0, 𝑠1, ℎ|𝐼1|(𝑠1, 𝑥1)⊕𝑚1

)︀
, where

𝑥0 is 𝑥 restricted to the set of indices 𝐼0 and 𝑥1 is 𝑥 restricted to the set of indices 𝐼1.

9. 𝑅 decrypts 𝑠𝑏 using ̂︀𝑥𝑏, the string ̂︀𝑥 restricted to the set of indices 𝐼𝑏.

Figure 4: Quantum Oblivious Transfer.

Receiver Security. Consider any adversarial sender 𝑆* with advice 𝜌. The simulator Sim𝑆*(𝜌) is con-
structed as follows.

1. Run the first message algorithm of 𝑆* on input 𝜌 to obtain message 𝜓.

2. Execute 16𝜆 sequential sessions of EECommit. In each session, run the equivocator 𝒬ℛ*,com, where ℛ*
denotes the portion of 𝑆* that participates as receiver in the 𝑖𝑡ℎ sequential EECommit session.

3. Obtain test subset 𝑇 of size 8𝜆 from 𝑆*.

4. For each 𝑖 ∈ 𝑇 , sample ̂︀𝜃𝑖 ← {+,×}. Obtain ̂︀𝑥𝑖 by measuring the 𝑖𝑡ℎ qubit of 𝜓 in basis ̂︀𝜃𝑖. For each
𝑖 ∈ 𝑇 , sequentially execute the equivocal simulator 𝒬ℛ*,open on input (̂︀𝜃𝑖, ̂︀𝑥𝑖) and the state obtained
from 𝒬ℛ*,com.

5. If 𝑆* continues, discard positions indexed by 𝑇 . Obtain 𝜃𝑖 for 𝑖 ∈ 𝑇 from 𝑆*, and compute 𝑥𝑖 for 𝑖 ∈ 𝑇
by measuring the 𝑖𝑡ℎ qubit of 𝜓 in basis 𝜃𝑖.

6. For every 𝑖 ∈ 𝑇 , sample bit 𝑑𝑖 ← {0, 1}. Partition the set 𝑇 into two subsets (𝐼0, 𝐼1), where for every
𝑖 ∈ 𝑇 , place 𝑖 ∈ 𝐼0 if 𝑑 = 0 and otherwise place 𝑖 ∈ 𝐼1. Abort if |𝐼0| < 𝜆 or |𝐼1| < 𝜆. Send (𝐼0, 𝐼1) to 𝑆.
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7. Obtain (𝑦0, 𝑦1) from 𝑆. Set 𝑥0 to be 𝑥 restricted to the set of indices 𝐼0 and 𝑥1 to be 𝑥 restricted to
the set of indices 𝐼1. For 𝑏 ∈ {0, 1}, parse 𝑦𝑏 = (𝑠𝑏, 𝑡𝑏) and compute 𝑚𝑏 = 𝑡𝑏 ⊕ ℎ|𝐼𝑏|(𝑠𝑏, 𝑥𝑏).

8. If 𝑆* aborts anywhere in the process, send abort to the ideal functionality. Otherwise, send (𝑚0,𝑚1)
to the ideal functionality. Output the final state of 𝑆*.

Next (recalling notation from Definition 3.6), we will establish receiver security by proving that for each
𝑏 ∈ {0, 1}, (︀

𝜌Sim,out,𝑆* ,OUT𝑅

)︀
≈𝑐

(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀
.

Towards a contradiction, suppose there exists a bit 𝑏 ∈ {0, 1}, a non-uniform QPT sender (𝑆*,𝜌), a
non-uniform QPT distinguisher (𝐷*,𝜎), and polynomial poly(·) such that⃒⃒⃒

Pr
[︀
𝐷*

(︀
𝜎,

(︀
𝜌Sim,out,𝑆* ,OUT𝑅

)︀)︀
= 1

]︀
− Pr

[︀
𝐷*

(︀
𝜎,

(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒
≥ 1

poly(𝜆) .

Fix any such 𝑏, sender (𝑆*,𝜌) and distinguisher (𝐷*,𝜎). We derive a contradiction via an intermediate
hybrid experiment, defined as follows with respect to bit 𝑏 and sender (𝑆*,𝜌).

Hyb. In this hybrid, we generate the QOT receiver commitments via the equivocal simulator 𝒬ℛ* (where ℛ*
is derived from the malicious QOT sender 𝑆*), and otherwise follow the honest QOT receiver’s algorithm.

1. Run the first message algorithm of 𝑆* on input 𝜌 to obtain message 𝜓.

2. Choose ̂︀𝜃 ← {+,×}16𝜆 and obtain ̂︀𝑥 ∈ {0, 1}16𝜆 by measuring 𝜓 in basis ̂︀𝜃. Execute 16𝜆 sequential
sessions of EECommit. In each session, run the equivocator 𝒬ℛ*,com, where ℛ* denotes the portion of
𝑆* that participates as receiver in the 𝑖𝑡ℎ sequential EECommit session.

3. Obtain test subset 𝑇 of size 8𝜆 from 𝑆*.

4. For each 𝑖 ∈ 𝑇 , sequentially execute the equivocal simulator 𝒬ℛ*,open on input ̂︀𝜃𝑖, ̂︀𝑥𝑖 and the state
obtained from 𝒬ℛ*,com.

5. If 𝑆* continues, discard positions indexed by 𝑇 . Obtain 𝜃𝑖 for 𝑖 ∈ 𝑇 from 𝑆*.

6. Partition the set 𝑇 into two subsets: the “good” subset 𝐼𝑏 = {𝑖 : 𝜃𝑖 = ̂︀𝜃𝑖} and the “bad” subset
𝐼1−𝑏 = {𝑖 : 𝜃𝑖 ̸= ̂︀𝜃𝑖}. Abort if |𝐼0| < 𝜆 or |𝐼1| < 𝜆. Otherwise, send (𝐼0, 𝐼1) to 𝑆.

7. Obtain (𝑦0, 𝑦1) from 𝑆. Set 𝑥𝑏 to be ̂︀𝑥 restricted to the set of indices 𝐼𝑏, and compute and set
𝑚𝑏 = 𝑡𝑏 ⊕ ℎ|𝐼𝑏|(𝑠𝑏, 𝑥𝑏). If 𝑆* aborts anywhere in the process, let ⊥ be the output of the receiver,
otherwise let 𝑚𝑏 be the output of the receiver.

The output of Hyb is the joint distribution of the final state of 𝑆* and the output of the receiver.
Receiver security then follows from the following two claims.

Claim 6.2.
Pr

[︀
𝐷*

(︀
𝜎,

(︀
𝜌Sim,out,𝑆* ,OUT𝑅

)︀)︀
= 1

]︀
≡ Pr [𝐷*(𝜎,Hyb) = 1] .

Proof. The only differences in the simulated distribution are (1) that measurements of 𝑆*’s initial message
𝜓 are delayed (which cannot be noticed by 𝑆*), and (2) a syntactic difference in that the ideal functionality
is queried to produce the receiver’s output.

Claim 6.3. There exists a negligible function 𝜈(·) such that⃒⃒⃒
Pr[𝐷*(𝜎,Hyb) = 1]− Pr

[︀
𝐷*

(︀
𝜎,

(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒
= 𝜈(𝜆).
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Proof. The only difference between the two distributions is that in the first, the receiver generates commit-
ments according to the honest commit algorithms of EECommit while in the second, commitments in step 2
are generated via the equivocal simulator 𝒬ℛ* of EECommit. Therefore, this claim follows by the equivocal
property of (EECommit,EEDecommit) (Definition 3.4).

Sender Security. Consider any adversarial receiver 𝑅* with advice 𝜌. The simulator Sim𝑅*(𝜌) is con-
structed as follows:

1. Choose 𝑥← {0, 1}16𝜆 and 𝜃 ← {+,×}16𝜆. Send |𝑥⟩𝜃 to 𝑅*.

2. Execute 16𝜆 sequential sessions of EECommit. In the 𝑖𝑡ℎ session for 𝑖 ∈ [16𝜆], run the extractor ℰ𝒞*
𝑖

,com
where 𝒞*𝑖 denotes the portion of 𝑅* that participates as committer in the 𝑖𝑡ℎ sequential EECommit
session. Obtain from ℰ𝒞*

𝑖
,com the extracted values (̂︀𝜃𝑖, ̂︀𝑥𝑖).

3. Sample and send a random test subset 𝑇 ⊂ [16𝜆] of size 8𝜆 to 𝑅*.

4. Execute the 𝑇 opening phases EEDecommit with 𝑅*, and abort if any fail. Discard the opened values.

5. Check that 𝑥𝑖 = ̂︀𝑥𝑖 whenever 𝜃𝑖 = ̂︀𝜃𝑖, and if not abort.

6. Restrict 𝑥 and 𝜃 to 𝑖 ∈ 𝑇 and send 𝜃 to 𝑅*.

7. Obtain 𝑅*’s message and parse it as consisting of two sets 𝐼0 and 𝐼1. Let 𝑆 be the set of indices in 𝐼0
such that 𝜃𝑖 ̸= ̂︀𝜃𝑖. If |𝑆| ≥ 3𝜆/2 then set 𝑏 = 1 and otherwise set 𝑏 = 0.

8. Obtain the output 𝑚𝑏 of ℱOT on input bit 𝑏. Set 𝑚1−𝑏 = 0𝜆.

9. Sample seeds 𝑠0, 𝑠1 ← {0, 1}𝑘(𝜆) and send 𝑠0, ℎ|𝐼0|(𝑠0, 𝑥0) ⊕ 𝑚0, 𝑠1, ℎ|𝐼1|(𝑠1, 𝑥1) ⊕ 𝑚1, where 𝑥0 is 𝑥
restricted to the set of indices 𝐼0 and 𝑥1 is 𝑥 restricted to the set of indices 𝐼1. Output the final state
of 𝑅*.

We will now establish sender security by proving that(︀
𝜌Sim,out,𝑅* ,OUT𝑆

)︀
≈𝑐

(︀
𝜌out,𝑅*⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩,OUT𝑆⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩

)︀
.

Towards a contradiction, suppose there exists a pair of messages (𝑚0,𝑚1) ∈ {0, 1}𝜆, a non-uniform QPT
receiver (𝑅*,𝜌), a non-uniform QPT distinguisher (𝐷*,𝜎), and a polynomial poly(·) such that⃒⃒⃒

Pr
[︀
𝐷*

(︀
𝜎,

(︀
𝜌Sim,out,𝑅* ,OUT𝑆

)︀)︀
= 1

]︀
− Pr

[︀
𝐷*

(︀
𝜎,

(︀
𝜌out,𝑅*⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩,OUT𝑆⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒
≥ 1

poly(𝜆) .

Fix any such (𝑚0,𝑚1), receiver (𝑅*,𝜌) and distinguisher (𝐷*,𝜎). We derive a contradiction via an inter-
mediate hybrid experiment, defined as follows. Like the simulator, this hybrid simulates and extracts from
the receiver’s commitments, but does not yet replace the sender string 𝑚1−𝑏 with 0𝜆.

Hyb. Consider any adversarial receiver 𝑅* with advice 𝜌. The output of Hyb depends on (𝑚0,𝑚1) and is
generated as follows.

1. Choose 𝑥← {0, 1}16𝜆 and 𝜃 ← {+,×}16𝜆. Send |𝑥⟩𝜃 to 𝑅*.

2. Execute 16𝜆 sequential sessions of EECommit. In the 𝑖𝑡ℎ session for 𝑖 ∈ [16𝜆], run the extractor ℰ𝒞*
𝑖

,com
where 𝒞*𝑖 denotes the portion of 𝑅* that participates as committer in the 𝑖𝑡ℎ sequential EECommit
session. Obtain from ℰ𝒞*

𝑖
,com the extracted values ̂︀𝜃𝑖, ̂︀𝑥𝑖.

3. Sample and send a random test subset 𝑇 ⊂ [16𝜆] of size 8𝜆 to 𝑅*.
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4. Execute the 𝑇 opening phases EEDecommit with 𝑅*, and abort if any fail. Discard the opened values.

5. Check that 𝑥𝑖 = ̂︀𝑥𝑖 whenever 𝜃𝑖 = ̂︀𝜃𝑖, and if not abort.

6. Obtain 𝑅*’s message and parse it as consisting of two sets 𝐼0 and 𝐼1.

7. Sample seeds 𝑠0, 𝑠1 ← {0, 1}𝑘(𝜆) and send 𝑠0, ℎ|𝐼0|(𝑠0, 𝑥0) ⊕ 𝑚0, 𝑠1, ℎ|𝐼1|(𝑠1, 𝑥1) ⊕ 𝑚1, where 𝑥0 is 𝑥
restricted to the set of indices 𝐼0 and 𝑥1 is 𝑥 restricted to the set of indices 𝐼1.

This hybrid distribution is indistinguishable from the real distribution due to the extractability of
(EECommit,EEDecommit) (Definition 3.3). Indeed, the values extracted from the simulator are used in
place of the values opened by 𝑅*. Conditioned on the opening phases succeeding, these values will be equal
with all but negligible probability.

Now, the only difference between this hybrid experiment and the simulation is the value of the string
𝑚1−𝑏, where 𝑏 is the bit extracted in the simulated game. Thus, to complete the proof, it suffices to argue
that in the simulation, the string ℎ|𝐼1−𝑏|(𝑠1−𝑏, 𝑥1−𝑏), which is used to mask 𝑚1−𝑏, is statistically close to a
uniformly random string. We will show this by using the algorithm 𝑅* in the simulation to construct an
algorithm 𝐵 that interacts in the EPR protocol (Protocol 5). The output of the simulation will be identical
to the output of 𝐵 in the EPR protocol. 𝐵 is constructed as follows.

• 𝐵 forwards the state received from 𝐴 to 𝑅*.

• 𝐵 runs the EECommit extractor as in Step 2 of the simulator, and responds to 𝐴 with the extracted
values {̂︀𝜃𝑖, ̂︀𝑥𝑖}𝑖∈[16𝜆].

• 𝐵 receives the test subset 𝑇 from 𝐴, and forwards it to 𝑅*. Then, it executes the opening phases with
𝑅*, and sends abort to 𝐴 if any fail. Otherwise, it sends continue to 𝐴.

• In the post-processing phase, 𝐴 acts as the simulator, and 𝐵 as the receiver 𝑅* in Steps 6-9.

The only difference between this EPR protocol and the simulation is that in the EPR protocol, 𝑅*
receives halves of EPR pairs in the first round, while in the simulation, 𝑅* receives |𝑥⟩𝜃. However, from 𝑅*’s
perspective, these are both maximally mixed states.

Now, consider the two subsets 𝐼0, 𝐼1 ⊂ [8𝜆] sent by 𝑅* in the EPR protocol game. For 𝑐 ∈ {0, 1}, let
wt(𝐼𝑐) be the number of indices in 𝐼𝑐 such that 𝜃𝑖 ̸= ̂︀𝜃𝑖. If wt(𝐼0) > 3𝜆/2, then 𝑏 will be fixed to 1, and
by Lemma 3.8, ℎ|𝐼0|(𝑠0, 𝑥0) will be statistically close to a uniformly random string. Now, by Hoeffding’s
inequality, with overwhelming probability 𝜃 and ̂︀𝜃 differ in more than 3𝜆 positions. Conditioned on this
event, wt(𝐼0) ≤ 3𝜆/2 implies that wt(𝐼1) > 3𝜆/2. If this case 𝑏 will be fixed to 0, and again by Lemma 3.8,
ℎ|𝐼1|(𝑠1, 𝑥1) will be statistically close to a uniformly random string. This completes the proof.

Finally, the following corollary follows immediately from Corollary 5.3 and Theorem 6.1.

Corollary 6.4. Quantum oblivious transfer (QOT) satisfying Definition 3.6 can be based on black-box use
of statistically binding bit commitments, or on black-box use of quantum-hard one-way functions.
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A A Quantum Sampling Lemma
A.1 The [BF10] EPR Protocol
We describe a protocol we call the “EPR Protocol,” which is essentially equivalent to the “QOT*” protocol
described by [BF10]. This protocol is exclusively stated as a tool for arguing about the security of BB84-style
protocols, and should not be viewed as a functional protocol.

In the EPR protocol, party 𝐴 deviates from the standard BB84-style template, instead generating EPR
pairs and sending one half of each pair. From the other party’s point of view, this message is distributed
identically to random BB84 states, since in both cases each qubit is maximally mixed. Note that in a
standard BB84-style protocol, 𝐴 samples a random bit string 𝑥 and encodes it in a random bases before
interacting with 𝐵. But in the EPR protocol, 𝐴 obtains 𝑥 as the result of measuring her halves of the EPR
pairs; this has the advantage of significantly simplifying arguments about the entropy of 𝑥 from 𝐵’s point
of view [BF10].

This is captured in Lemma A.1, which relies heavily on quantum sampling techniques of [BF10].

Lemma A.1. Consider the protocol in Fig. 5. Let 𝑛 ≥ 𝑚/2. For any subset of 𝐼 ⊂ [𝑛] of size 𝑡, let wt(𝐼) be
the number of positions in 𝐼 that 𝜃 and ̂︀𝜃 differ, and let 𝑥𝐼 be the string 𝑥 restricted to positions in 𝐼. Then
for any 𝜖 > 0, 𝑥𝐼 has quantum min-entropy (see definition in Section 3.4) at least wt(𝐼)− 𝜖𝑡 conditioned on
𝐵’s view and on 𝑥𝐼 , except with probability negl(𝑘𝑡2/𝑛2).
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Protocol 5

Parameters: 𝑚 = 𝑛+ 𝑘.

1. 𝐴 prepares 𝑚 EPR pairs and sends one of each pair to 𝐵. 𝐴 also samples 𝜃 ← {+,×}𝑚.

2. 𝐵 responds with ̂︀𝜃 ∈ {+,×}𝑚, ̂︀𝑥 ∈ {0, 1}𝑚.

3. 𝐴 sends a random test subset 𝑇 ⊂ [𝑚] of size 𝑘.

4. 𝐵 responds with either continue or abort.

5. 𝐴 measures each of her qubits in 𝑇 in the corresponding basis of ̂︀𝜃. For any index 𝑖 such that̂︀𝜃𝑖 = 𝜃𝑖, 𝐴 checks that the measured 𝑥𝑖 matches ̂︀𝑥𝑖. If not, 𝐴 aborts. If all checks pass, 𝐴 restricts
her qubits and 𝜃 to subset 𝑇 of size 𝑛. Then she measures her qubits in basis 𝜃 to produce a
string 𝑥, and sends 𝜃 to 𝐵.

6. Post-processing: 𝐴 and 𝐵 engage in some protocol using the strings 𝑥 and 𝜃, and ̂︀𝑥, ̂︀𝜃 restricted
to positions in 𝑇 .

Figure 5: EPR Protocol.

Proof. (Sketch) We argue for the case where the strings ̂︀𝜃, ̂︀𝑥 returned by 𝐵 are both the all-zeros strings;
all other possibilities can be handled by applying the same arguments after an appropriate change of bases.
Now consider the (purified) joint state |𝜓A,B⟩ of 𝐴 and 𝐵 in the middle of step 5, after 𝐴 has restricted her
state to 𝑛 qubits. The check at the beginning of step 5 is essentially establishing that 𝐴’s part of |𝜓A,B⟩ is
close to the all zeros state |0⟩⊗𝑛. Indeed, applying [BF10, Theorem 3] (plus analysis in [BF10, Appendix B.4]
bounding the error probability of the corresponding classical sampling strategy) with some 𝛿 > 0 shows that,
conditioned on 𝐴 not aborting after this check, 𝐴’s part of the state is within trace distance negl(𝑘𝛿2) of a
superposition of states with Hamming weight at most 𝛿𝑛. That is, we can assume that the state |𝜓A,B⟩ is a
superposition of vectors that only contain at most 𝛿𝑛 1s among the 𝑛 positions in A. Now, letting 𝛿 = 𝜖′𝑡/𝑛
for a small enough constant 𝜖′ > 0 and applying [BF10, Corollary 1] shows that the conditional min-entropy
(conditioned on 𝑅’s portion of the state) of 𝑥𝐼 is at least wt(𝐼)− 𝜖𝑡.
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