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Abstract

The concept of quantum bit commitment was introduced more than three decades ago in
a failed attempt to base unconditional bit commitment solely on quantum information theory.
In this work, we explore general properties of conditional quantum bit commitment, which ad-
ditionally assumes quantum computational hardness but without any mathematical structure
(e.g. quantum-secure one-way function). While it is well known that a general quantum bit
commitment scheme can only guarantee a fairly weak binding property compared with its clas-
sical counterpart, interestingly, we show that it also enjoys some other nice properties that its
classical counterpart does not have. Among others, we show that any (interactive) quantum
bit commitment scheme can be compiled into a non-interactive generic form (by an ensemble
of quantum circuit pair). These general properties not only enable us to simplify both the con-
struction and the security analysis of quantum bit commitment significantly but also suggest a
potential use of it as a replacement of the classical one in quantum cryptography.
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1 Introduction

(Classical) bit commitment is an important cryptographic primitive which provides two security
guarantees, hiding and binding. Informally speaking, the hiding property states that the commit-
ments to 0 respective 1 are indistinguishable, whereas the binding property states that any (claimed)
bit commitment can be opened as at most one bit value (0 or 1, exclusively). Based on complexity
assumptions, we have two flavors of bit commitments, the computationally-hiding (statistically-
binding) bit commitment [Nao91] and the (statistically-hiding) computationally-binding bit com-
mitment [NOVY98, HNO+09]. Most bit commitment schemes are interactive, in particular those
based on one-way functions [Nao91, NOVY98, HNO+09] — the minimum complexity assumption
for almost all cryptographic applications [IL89]. The one-way function assumption is also the
raw computational hardness assumption without any mathematical structure, in contrast to those
concrete assumptions based on such as number theory or lattice.

Turning to the quantum world, quantum bit commitment was proposed more than three
decades ago, aiming to make use of quantum mechanics to realize commitment to a classical bit1

[BB84, BC90]. It may sound counter-intuitive at the beginning but w.r.t. general quantum bit com-
mitment, its quantum binding property is inherently weaker than its classical counterpart. Roughly
speaking, general quantum binding property can only guarantee p0 + p1 < 1 +negl(n) (a.k.a. sum-
binding), where pb (b ∈ {0, 1}) denotes the success probability of opening a (claimed) quantum bit
commitment as the bit value b, and negl(·) is some negligible function of the security parameter
n. In comparison, by the same notation, the classical binding property can guarantee p0 ≈ 0 or
p1 ≈ 0. At a high level, the reason why the quantum binding property is much weaker than its
classical counterpart is because now a malicious sender can commit to an arbitrary superposition
of 0 and 1. More discussion on quantum binding is referred to [DMS00, CDMS04]. As its classical
counterpart, quantum bit commitment cannot be realized unconditionally either [May97, LC98].
Based on quantum-secure one-way functions/permutations, we also have two flavors of quantum
bit commitment [AC02, YWLQ15, DMS00, KO09, KO11, CLS01].

In spite of its inherently weaker binding property, we are interested in quantum bit commitment
because it still turns out to be useful in some applications, notably the quantum zero-knowledge and
quantum oblivious transfer [CDMS04, YWLQ15, FUYZ20]. Moreover, [FUYZ20] and this work
show that quantum bit commitment enjoys some nice properties that classical bit commitment
does not have, as to be introduced immediately in “Our contribution” in the below. These nice
properties sugguest that qantum bit commitment could potentially be used as a primitive and find
more applications in quantum cryptography in future.

1.1 Our contribution

We obtain three main results on general properties of quantum bit commitments.

1. Honest-binding is equivalent to sum-binding w.r.t. a generic non-interactive quan-
tum bit commitment scheme

The honest-binding property of a (non-interactive or interactive) quantum bit commitment
scheme is the security against the sender who is semi-honest (or honest-but-curious) in the commit

1In some literature, the notion “quantum bit commitment” is referred to the post-quantum secure classical bit
commitment, or the classical bit commitment secure against the quantum attack, which can be viewed as a special
case of the quantum bit commitment such that its construction — the communication channel and the computation
of the honest party — is restricted to be classical.
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stage but could be cheating in the reveal stage. We show that the seemingly weaker honest-binding
property implies the widely accepted sum-binding property [DMS00] w.r.t. a generic non-interactive
quantum bit commitment scheme (Theorem 1). Its proof is just a simple application of the weak
quantum rewinding lemma given in [YWLQ15, FUYZ20]. As an immediate corollary, we establish
an equivalence between the semi-honest security and the full security (against an arbitrary quantum
attack) w.r.t. a generic non-interactive quantum bit commitment scheme (Theorem 2). This enables
us to simplify the security analysis of the DMS construction of computationally-binding quantum
bit commitment [DMS00] significantly.

More interestingly, we observe that the binding property of (both flavors of) a generic non-
interactive quantum bit commitment scheme turns out to be automatically sort of information-
theoretically strict in the sense as introduced in [Unr12, ARU14], but through the entanglement
(rather than the correlation) between the commitment and the decommitment. This inherent strict-
ness of the quantum binding property has already proved crucial in some application [FUYZ20].

Related work. Unruh [Unr16b] introduced a kind of quantum binding property known as the
collapse-binding w.r.t. the classical commitment secure against quantum attacks, which has many
nice properties and finds many applications in the post-quantum cryptography (e.g. [Unr16b,
Mah18]). Compared with the sum-binding, the collapse-binding is strictly stronger [Unr16a], but
its realization relies on stronger (than quantum-secure one-way functions) assumptions [Unr16a,
Unr16b].

2. Interaction can be removed for quantum bit commitment

Prior to this work, there have been several evidences suggesting that interaction may not be nec-
essary in realizing quantum bit commitment: both flavors of non-interactive quantum bit commit-
ment can be constructed from quantum-secure one-way function [YWLQ15, DMS00, KO09, KO11].
Seeing from this, one may tend to further extend these results and conjecture that any (interac-
tive) quantum bit commitment scheme can be complied into a non-interactive one. In this work,
we confirm this conjecture by proving a round-collapse theorem (Theorem 4). This theorem is
interesting by noting that we do not have a classical counterpart of it yet, which even seems un-
likely [MP12, HHRS07]. This round-collapse theorem can also be viewed as a generalization of the
quantization of Naor’s scheme in [YWLQ15].

Our compiler for the round compression is simple: the new (non-interactive) commit stage will
consist of just an honest execution of the commit stage of the original (interactive) scheme, in such
a way that all operations will be delegated to the new sender to perform, and who will send the
original receiver’s system at the end as the commitment. Later in the reveal stage, the new sender
will send the residual system in its hands to the new receiver, who will check the sender’s whole
computation in the commit stage via the reversible computation.

The round-compression above may sound too good to be true, but our proof of its correctness
actually yields an even stronger round-collapse theorem (Theorem 3): as long as an interactive
quantum bit commitment scheme is just secure against the purification attack, or put it another
way, its purification (e.g. as done in [LC98]) is semi-honest secure, then it can be compressed into
a non-interactive one!

For application of our round-collapse theorem, we provide two alternative constructions (besides
ones given in [DMS00, KO09, KO11]) of non-interactive computationally-binding quantum bit
commitment. The first one is to compress the CLS scheme [CLS01], for which our security analysis
is significantly easier than that of the original CLS scheme. The second construction is to compress
the NOVY scheme [NOVY98], whose classical security is not even known if can be lifted to the
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quantum setting (when the underlying one-way permutation is assumed to be quantum secure).
Interestingly, our (quantum) security analysis is much easier than the classical one in [NOVY98].
We highlight that in both applications, the simplification of the security analysis comes from our
strong round-collapse theorem: we just need to show the security against the purification attack of
the original (interactive) scheme.

Our technique. Techniques to establish the security against the purification attack, or the semi-
honest security of the purified scheme, is key to our analysis. It turns out that the security against
this special kind of attack is close to the semi-honest security, thus often much easier to establish
than the full security. In particular, we show that in many interesting situations, the semi-honest
security of the original scheme extends to its purification. For such an extension, the basic idea is to
show that the collapses prescribed by the original scheme are enforced even after the purification.
For example, messages sent through the classical channel automatically collapse; when a message
is uniquely determined by some other collapsed messages, it can be viewed as collapsed; as argued
in [FUYZ20], committing to a bit using a perfectly/statistically-binding quantum bit commitment
scheme can be viewed as a way of measuring the committed bit without leaking its value; and so
on. In spite of this, we note that the semi-honest security of a general (interactive) quantum bit
commitment scheme does not necessarily extend to its purification. Two counterexamples are given
in Subsection 5.4.

Related work. We would like to compare our compression of an interactive quantum bit com-
mitment scheme with that of a quantum interactive proof system [KW00]. The ideas in these
two cases are similar, both relying heavily on the reversibility of quantum computation. However,
their key difference lies in that in [KW00], since (even) the honest prover could be computationally
unbounded, we need to introduce an (interactive) swap test to check the computation. In contrast,
in our case this test is not necessary because as typical in cryptography, both the honest sender
and the honest receiver are polynomial-time bounded.

3. A generic statistically-binding quantum bit commitment scheme composed in par-
allel satisfies the strongest string sum-binding property

A natural way of committing a string is to commit it bitwisely. Since a generic non-interactive
quantum bit commitment scheme only guarantees a fairly weak sum-binding property, it is in-
teresting and important to explore what binding property can be obtained if it is composed in
parallel. Ideally, we may hope to prove such a strong quantum string sum-binding property as∑

s∈{0,1}m ps < 1 + negl(n), where ps denotes the success probability that the cheating sender can
open the claimed commitment as the m-bit string s, and negl(·) denotes some negligible function
of the security parameter n. However, this string sum-binding property seems too strong to be true
generally [CDMS04], due to technical difficulties induced by the possible superposition of exponen-
tially many different strings underlying a claimed quantum commitment when m = poly(n).

In spite of this, we are able to show that composing a generic statistically-binding quantum
bit commitment scheme in parallel indeed gives rise to a quantum string commitment scheme
satisfying such a strong statistical sum-binding property (Theorem 7). Its proof relies heavily on
that the statistical binding error decreases exponentially w.r.t. the Hamming distance between
the committed string and the string to reveal, which does not extend to the case of quantum
computational binding.

This strong quantum statistical string sum-binding property in particular implies that the
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statistical CDMS-binding property2 [CDMS04] holds generally, i.e. w.r.t. any function on binary
strings (Subsection 8.2). This in turn immediately implies that the quantum oblivious transfer
protocol in [CDMS04] (a variant of the original one [BBCS91, Cré94]) is secure when a generic non-
interactive statistically-binding quantum bit commitment scheme is plugged in3. We hope that
this strong string sum-binding property can find more applications in quantum security analysis in
future.

Organization. In Section 2, we review necessary preliminaries. In Section 3, we study the binding
property of a generic non-interactive quantum bit commitment scheme. In particular, we prove
that its honest-binding property is equivalent to the sum-binding property. This equivalence will
later be used to simplify the security analysis of the DMS construction of computationally-binding
bit commitment in Section 4. In Section 5, we introduce the notion of semi-honest security of
a general interactive quantum bit commitment scheme. Also, we sketch a general procedure to
purify an interactive quantum bit commitment scheme. Both of them will be crucial in establishing
the round-collapse theorem in Section 6. In Section 7, we give yet another two constructions of
non-interactive computationally-binding quantum bit commitment as applications of the round-
collapse theorem. In Section 8, we establish a strong string sum-binding property of the parallel
composition of a generic non-interactive statistically-binding quantum bit commitment scheme.
Finally in Section 9, we conclude this work and raise several open questions.

2 Preliminaries

Notation. Denote [n] = {1, 2, . . . , n} for an integer n. Let Un denote the uniform distribu-

tion/random variable ranging over the set {0, 1}n, i.e. all binary strings of length n. We use “
$←”

to denote the action of choosing an element uniformly random from a given set, e.g. x
$← Un.

Let negl(n) denote an arbitrary negligible (asymptotically smaller than any inverse polynomial)
function of the security parameter n. Given two strings s, s′ ∈ {0, 1}n, let dist(s, s′) denote the
Hamming distance between s and s′.

We sometimes explicitly write quantum register(s) as a superscript of an operator or a quantum
state to indicate on which register(s) this operator performs or which register(s) hold this quantum
state, respectively. For example, we may write UA, |ψ〉A or ρA, highlighting that the operator U
performs on the register A, and the register A is in pure state |ψ〉 or mixed state ρ, respectively.
When it is clear from the context, we often drop the superscripts to simplify the notation.

Quantum stuffs. We use F(·, ·) to denote the fidelity of two quantum states [Wat18]. Given a
projector Π on a Hilbert space, we call {Π,1−Π} the binary measurement induced by Π; it is
typically viewed as a verification for which we call it succeeds, accepts, or the outcome is one, if the
measured quantum state collapses to the subspace on which Π projects.

For a bit b ∈ {0, 1}, let |b〉+ and |b〉× be the qubits in the state |b〉 w.r.t. the standard basis
and Hadamard basis, respectively. For the standard basis, we often drop “+” and just write |b〉.

We work with the standard unitary quantum circuit model. In this model, quantum algorithm

2Actually, the CDMS-binding introduced in [CDMS04] is only w.r.t. the efficient cheating sender, i.e. the com-
putational CDMS-binding. But the statistical CDMS-binding can be defined similarly w.r.t. any computationally
unbounded cheating sender.

3However, this application of the strong quantum string sum-binding property is not so appealing, because we
have a much simpler security analysis for the original (which is also simpler) quantum oblivious transfer protocol
[FUYZ20].
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can be formalized in terms of uniformly generated quantum circuit family, where the “uniformly
generated” means the description of the quantum circuit coping with n-bit inputs can be output by
a single classical polynomial-time algorithm on the input 1n. We assume without loss of generality
that each quantum circuit is composed of quantum gates chosen from some fixed universal, finite,
and unitary quantum gate set [NC00]. Given a quantum circuit Q, we also abuse the notation to
use Q to denote the corresponding unitary transformation, and Q† to denote its inverse.

(In)distinguishability of quantum state ensembles

Definition 1 ((In)distinguishability of quantum state ensembles) Two quantum state en-
sembles {ρn}n and {ξn}n are quantum statistically (resp. computationally) indistinguishable, if for
any quantum state ensemble {σn}n and any unbounded (resp. polynomial-time bounded) quantum
algorithm D which outputs a single qubit,

|Pr[D(1n, ρn ⊗ σn) = 1]− Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n.

Remark. The quantum state ensemble {σn}n in the definition above plays the role of the non-
uniformity given to the distinguisher D. Since a mixed quantum state can always be purified, we
can assume without loss of generality that the state σn is pure.

A generic non-interactive quantum bit commitment scheme

In [YWLQ15], it is argued that any non-interactive statistically-binding quantum bit commitment
scheme can be converted into a generic scheme of the form given by an ensemble of unitary quantum
circuit pair as follows.

Definition 2 A non-interactive quantum bit commitment scheme is a two-party, two-stage proto-
col. It can be represented by an ensemble of polynomial-time uniformly generated quantum circuit
pair {(Q0(n), Q1(n))}n. Specifically,

• The scheme involves two parties, a sender and a receiver, proceeding in two stages: a commit
stage followed by a reveal stage.

• In the commit stage, to commit bit b ∈ {0, 1}, the sender performs the quantum circuit Qb(n)
on quantum registers (C,R) initialized in all |0〉’s state. Then the sender sends the quantum
register C, the commitment register, to the receiver, whose state at this moment denoted by
ρb(n).

• In the (canonical) reveal stage, the sender announces the bit b, and send the quantum register
R, the decommitment register, to the receiver. The receiver then performs Qb(n)† on the
registers (C, R), accepting if (C, R) are back to all |0〉’s state.

The hiding (or concealing) and the binding properties of non-interactive quantum bit commit-
ment scheme are defined as follows.

• Hiding. We say that the scheme is statistically (resp. computationally) hiding if the quantum
state ensembles {ρ0(n)}n and {ρ1(n)}n are statistically (resp. computationally) indistinguish-
able.
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• (Honest-)binding. We say that the scheme is computationally (resp. statistically) binding if
for any state |ψ〉 in auxiliary register Z, and any polynomial-time realizable (resp. unbounded)
unitary transformation U performing on (R, Z), the reduced state of U(Q0(n) |0〉 ⊗ |ψ〉) in
the registers (C, R) is far from the state Q1(n) |0〉; that is,∥∥∥(Q1 |0〉 〈0|Q†1

)
URZ(Q0 |0〉 ⊗ |ψ〉)

∥∥∥ < negl(n). (1)

By the reversibility of quantum computation, the binding property can also be equivalently
defined by swapping the roles of Q0 and Q1 in the above, in which case the inequality (1)
becomes ∥∥∥(Q0 |0〉 〈0|Q†0

)
URZ(Q1 |0〉 ⊗ |ψ〉)

∥∥∥ < negl(n). (2)

Remark.

1. In the sequel, we will focus on this generic form of non-interactive quantum bit commitment
scheme without loss of generality. This will be more convenient for our discussion. Reasons
are referred to [YWLQ15, FUYZ20].

2. We call the binding property defined above the honest-binding, because it informally states
that any cheating sender cannot open the honest commitment to a bit b (output by the sender
who performs honestly in the commit stage) as 1 − b. Clearly, this is the weakest binding
such that any meaningful quantum bit commitment scheme should satisfy. We will also call
this binding property the standard-binding, because it will be later shown equivalent to the
well-accepted sum-binding property.

3. Seeing from the definition of the (honest-)binding property, we note that the auxiliary state
|ψ〉 is only provided to the (possibly cheating) sender at the beginning of the reveal stage.

4. As commented in [YWLQ15], this reveal stage is called canonical because it is similar to the
canonical opening of classical bit commitment, where the sender sends all his random coins
used in the commit stage to the receiver, who then checks that these coins explain (i.e. are
consistent with) the conversation in the commit stage.

5. In the sequel, to simplify the notation we often drop the security parameter n and just write
(Q0, Q1) to represent a generic arbitrary non-interactive quantum bit commitment scheme.

Useful lemmas

Lemma 3 (Uhlmann’s theorem) Let X and Y be two Hilber spaces. Density operators ρ and σ
are in the space X . Unit vector |ψ〉 is a purification of ρ in the space X ⊗Y, i.e. TrY (|ψ〉 〈ψ|) = ρ.
It holds that F(ρ, σ) = max {|〈ψ| η〉| : unit vector |η〉 ∈ X ⊗ Y s.t. TrY (|η〉 〈η|) = σ}.

Lemma 4 (A weak quantum rewinding [FUYZ20]) Let X and Y be two Hilbert spaces. Unit
vector |ψ〉 ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, while unitary

transformations U1, . . . , Uk perform on the space Y. If 1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ〉
∥∥2 ≥ 1−η, where

0 ≤ η ≤ 1, then∥∥∥(U †k ⊗ 1
X)Γk(Uk ⊗ 1X) · · · (U †1 ⊗ 1

X)Γ1(U1 ⊗ 1X) |ψ〉
∥∥∥ ≥ 1−

√
kη. (3)

Proof: Deferred to Appendix A. �
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3 The binding property of a generic non-interactive quantum bit
commitment scheme

3.1 Honest-binding is equivalent to sum-binding

A widely accepted binding property of quantum bit commitment is known as the sum-binding,
which is exactly what can be guaranteed generally when the most general quantum attack against
the sender is considered. Its definition is as follows.

Definition 5 (Sum-binding) In the commit stage, the cheating sender sends the commitment
register C (which could be in an arbitrary state) to the receiver. In the reveal stage, to open the
bit commitment as 0 (resp. 1), the sender performs U0 (resp. U1) on its system and then send the
decommitment register R to the receiver. Let p0 (resp. p1) be the success probability that the sender
opens the bit commitment as 0 (resp. 1). The sum-binding requires that p0 + p1 < 1 + negl(n).

Clearly, sum-binding implies honest-binding, by noting that if we fix p0 or p1 in Definition 5 to
be one, then we end up with the honest-binding. More interestingly, it turns out that the opposite
direction is also true w.r.t. a generic non-interactive quantum bit commitment scheme, i.e. the
seemingly weaker honest-binding also implies sum-binding. We can prove the following theorem.

Theorem 1 Honest-binding is equivalent to sum-binding w.r.t. a generic non-interactive quantum
bit commitment scheme.

Proof: We suffice to prove that honest-binding implies sum-binding. It turns out that an attack
which breaks the sum-binding property can be directly used to break the honest-binding property.
Detail follows.

Let n be the security parameter. An arbitrary attack of the sum-binding property of a
generic non-interactive quantum bit commitment scheme {(Q0(n), Q1(n))}n can be modeled by
(U0, U1, |ψ〉), where U0, U1 are two unitary transformations and |ψ〉 an arbitrary quantum state. In
more detail, at the beginning the whole system (C, R, Z) (refer to Definition 2 for their meanings)
is initialized in the state |ψ〉. Then in the commit stage, the (possibly cheating) sender sends the
commitment register C to the receiver. Later in the reveal stage, if a bit value b ∈ {0, 1} is to
reveal, then the sender first performs the unitary transformation Ub on the subsystem (R, Z), and
then sends the decommitment register R to the receiver.

Now assume that an attack (U0, U1, |ψ〉) breaks the sum-binding property; that is,∥∥∥(Q0 |0〉 〈0|Q†0
)CR · URZ0 |ψ〉

∥∥∥2 +
∥∥∥(Q1 |0〉 〈0|Q†1

)CR · URZ1 |ψ〉
∥∥∥2 > 1 +

1

p
,

where p is some polynomial of the security parameter n. We apply the weak rewinding lemma
(Lemma 4) to the inequality above, with the parameters k, η, U1, U2,Γ1 and Γ2 in the lemma

replaced by 2, 1/2− 1/(2p), U0, U1, Q0 |0〉 〈0|Q†0 and Q1 |0〉 〈0|Q†1, respectively. We obtain∥∥∥U †1(Q1 |0〉 〈0|Q†1
)
U1 · U †0

(
Q0 |0〉 〈0|Q†0

)
U0 |ψ〉

∥∥∥ ≥ 1−
√

1− 1

p
>

1

2p
. (4)

We are next to devise an attack of the honest-binding property of the scheme (Q0, Q1) given the
attack (U0, U1, |ψ〉) of the sum-binding property. Recall the definition of honest-binding (Definition
2). Suppose in the commit stage, the sender honestly prepares the quantum state Q0 |0〉 in the
registers (C, R) and sends the register commitment C to the receiver. Later at the beginning of
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the reveal stage, the sender receives the quantum state |ψ〉, which is stored in quantum registers
(C′,R′,Z′) that are of the same size as the registers (C,R,Z), respectively. Then the cheating sender
S∗ proceeds as follows to try to open the quantum bit commitment as 1:

1. Perform the unitary transformation U0 on the quantum registers (C′,R′,Z′).

2. Perform the binary measurement induced by the projector Q0 |0〉 〈0|Q†0 on the registers
(C′,R′). (Intuitively, we expect that conditioned on the outcome being one, the reduced
state of the register Z′ will help the sender cheats.)

3. Perform the unitary transformation U1U
†
0 on the registers (R,Z′).

4. Send the decommitment register R to the receiver, trying to open the quantum bit commit-
ment as 1.

Note that the squared l.h.s. of the inequality (4) is exactly the probability of the event that
the outcome of the measurement in step 2 above is one and S∗ cheats (i.e. opens the quantum
bit commitment as 1) successfully. This immediately yields a lower bound 1/4p2 (which is non-
negligible) of the probability of S∗ cheating successfully. (Note that S∗ may also cheat successfully
while the measurement outcome of step 2 is zero.) Hence, S∗ breaks the honest-binding property.
�

Remark. We highlight that the security reduction above is uniform.

W.r.t. a generic non-interactive quantum bit commitment scheme, since the receiver sends
nothing in the commit stage, its hiding property against the honest-but-curious receiver trivially
extends to that against an arbitrary receiver. Combined with Theorem 1, we have the following
theorem as an immediate corollary.

Theorem 2 A generic non-interactive quantum bit commitment scheme {(Q0(n), Q1(n)}n is se-
cure if and only if it is semi-honest secure (i.e. honest-hiding and honest-binding) .

3.2 Honest-binding does not imply collapse-binding

In [Unr16a], Unruh proposed the so-called (computational) collapse-binding property of classical
commitments against quantum attacks. Roughly speaking, collapse-binding requires that condi-
tioned on the (possibly cheating) sender opening the commitment successfully, its views correspond-
ing to whether the revealed value of the commitment is measured or not are quantum polynomial-
time indistinguishable. Compared with general quantum bit commitments, collapse-binding bit
commitments behave closer to classical bit commitments secure against classical attacks and thus
much easier to use in applications [Unr16b].

We can naturally generalize the collapse-binding property which was introduced for classical
commitments to quantum commitments. Then we ask, is a generic non-interactive quantum bit
commitment scheme collapse-binding? Unfortunately, it is not very hard to see that the answer is
no; even perfect honest-binding does not imply collapse-binding. Intuitively, the reason is almost
the same as that a superposition of 0 and 1 is distinguishable from its corresponding mixture.
Consider the counterexample as follows.

A cheating sender may prepare the state

1√
2

(
|0〉B ⊗Q0 |0〉CR + |1〉B ⊗Q1 |0〉CR

)
10



and sends the commitment register C to the receiver in the commit stage. Later, the sender sends
the registers (B,R) to the receiver to open the commitment. Clearly, the receiver will accept with
certainty. But the two quantum states corresponding to whether the opening register B is measured
or not, i.e. 1/2

(
|0〉 〈0| ⊗ Q0 |0〉 〈0|Q∗0 + |1〉 〈1| ⊗ Q1 |0〉 〈0|Q∗1

)
and 1/

√
2
(
|0〉Q0 |0〉 + |1〉Q1 |0〉

)
,

respectively, are distinguishable. Indeed, to distinguish them, one can first uncompute the register
pair (C, R) by performing Q†b controlled by the qubit B, which then allows us to discard the register
pair (C, R) safely. Finally, one can perform the measurement which distinguishes the quantum
states 1/2(|0〉 〈0|+ |1〉 〈1|) and 1/

√
2(|0〉+ |1〉) to finish the job.

3.3 Strict-binding

In [Unr12], Unruh proposed a strengthening of the ordinary binding property of classical commit-
ments known as the strict-binding. Roughly speaking, the strict-binding property requires that the
way to open a commitment be unique; that is, there cannot be two different pairs of the bit value
to reveal together with the corresponding decommitment that will lead the receiver to accept in a
canonical reveal stage. Quantum-secure classical strict-binding bit commitment can be constructed
from quantum-secure injective one-way functions. Such commitments turn out to be crucial in
constructing quantum-secure classical zero-knowledge proof-of-knowledge [Unr12, ARU14].

Interestingly, we note that a generic quantum bit commitment scheme of either flavors (computa-
tionally hiding or computationally binding) is automatically strict-binding information-theoretical.
That is, the only way to open an honest quantum bit commitment with certainty is to send the
decommitment register R, which should be untouched since the honest quantum bit commitment
is prepared (i.e. by performing the quantum circuit Qb for some b ∈ {0, 1} on the quantum register
pair (C, R) in the commit stage). This information-theoretic strict-binding property is originated
to the entanglement between the decommitment register R and the commitment register C.

The observation that a generic non-interactive quantum bit commitment scheme is inherently
strict-binding leads to a construction of quantum zero-knowledge proof-of-knowledge for NP state-
ments based on general (rather than injective) quantum-secure one-way functions [FUYZ20].

4 Application: a simpler security analysis for the purified DMS
construction of quantum bit commitment

Dumais, Mayers and Salvail [DMS00] gave a construction of non-interactive computationally-
binding quantum bit commitment based on quantum-secure one-way permutation. The hard part
of its security analysis lies in establishing the computational sum-binding property. Here, we sim-
plify this analysis but w.r.t. the purified version of the DMS scheme using Theorem 1, which allows
us to restrict to focus on its (computationally) honest-binding property.

For self-containment, we reproduce the DMS scheme following [DMS00] in Figure 1. It can be
first purified and then converted into the generic form as given in Definition 2 such that

Q0 |0〉 =
1√
2n

∑
x∈{0,1}n

|x〉R |f(x)〉C+n , Q1 |0〉 =
1√
2n

∑
x∈{0,1}n

|x〉R |f(x)〉C×n . (5)

The lemma below establishes the quantum computational binding property of the purified DMS
scheme.

Lemma 6 The purified DMS scheme (Q0, Q1) given by the equation (5) is quantum computation-
ally binding.

11



Commit stage: Let b ∈ {0, 1} be the bit to commit.

• The sender chooses x
$← {0, 1}n and computes y = f(x), where f : {0, 1}n → {0, 1}n is

a quantum-secure one-way permutation. Then the sender sends |y〉θ(b)n to the receiver,
where θ(b) denotes the standard basis “+” when b = 0 and the Hadamard basis “×”
when b = 1.

Reveal stage:

• The sender sends the bit b and the string x to the receiver.

• The receiver measures each qubit (in total n) received in the commit stage in the basis
θ(b), obtaining y ∈ {0, 1}n. Then the receiver checks that y = f(x).

Figure 1: The DMS construction of non-interactive computationally-binding quantum bit commit-
ment based on quantum-secure one-way permutation

Proof: By Theorem 1, it suffices to show that the purified DMS scheme is computationally
honest-binding.

We first rewrite

Q1 |0〉 =
1√
2n

∑
x∈{0,1}n

|x〉R |f(x)〉C×n

=
1

2n

∑
x∈{0,1}n

|x〉
(
|0〉+ (−1)f(x)1 |1〉

)
· · ·
(
|0〉+ (−1)f(x)n |1〉

)
=

1

2n

∑
x∈{0,1}n

|x〉
∑

y∈{0,1}n
(−1)f(x)·y |y〉

=
1√
2n

∑
y∈{0,1}n

 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R


︸ ︷︷ ︸
(∗)

|y〉C ,

and

Q0 |0〉 =
1√
2n

∑
x∈{0,1}n

|x〉R |f(x)〉C+n =
1√
2n

∑
y∈{0,1}n

∣∣f−1(y)
〉R︸ ︷︷ ︸

(∗∗)

|y〉C .

Intuitively, if any cheating sender breaks the (computational) honest-binding property, then
it can sort of transform the quantum state represented by the expression (∗) into the expression
represented by the term (∗∗) in the above. But this already implies some ability to invert the
one-way permutation f(·) on input a uniformly random chosen image y ∈ {0, 1}n. We convert this
intuition into a formal proof in the below.

For contradiction, suppose that there exists a cheating sender S∗ who breaks the computational
honest-binding property of the purified DMS scheme; that is, there exists a pair (U, |ψ〉) (whose
meaning is referred to Definition 2) such that∥∥∥(Q0 |0〉 〈0|Q†0

)CR
URZ

(
Q1 |0〉CR ⊗ |ψ〉Z

)∥∥∥ ≥ 1

p(n)
, (6)
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where p(·) is some polynomial. We construct an inverter I∗ for the one-way permutation f(·) as
follows: it operates on the system (R, Y, Z), where the register Y holds the input y ∈ {0, 1}n, the
register Z holds the auxiliary state |ψ〉, while the register R is initialized in the state |0n〉. Then
the inverter I∗ proceeds in the following steps:

1. Transform the whole system (R, Y, Z) into the state 1/
√

2n
∑

x∈{0,1}n(−1)f(x)·y |x〉R |y〉Y |ψ〉Z .
Specifically, this step can be accomplished through the following steps:

(a) Perform H⊗n on the register R, where H is the Hadamard gate, to obtain the quantum
state

1√
2n

∑
x∈{0,1}n

|x〉R |y〉Y |ψ〉Z .

(b) Perform the unitary quantum circuit that computes the function f(·), i.e. realizing
|x〉 |0〉 7→ |x〉 |f(x)〉 for each x ∈ {0, 1}n, to obtain the quantum state

1√
2n

∑
x∈{0,1}n

|x〉R |y〉Y |ψ〉Z |f(x)〉 .

(c) For each pair of f(x)i and yi, i = 1, . . . , n, i.e. the i-th bit of f(x) and y, respectively,
perform the two-qubit unitary transformation that realizes |a〉 |b〉 7→ (−1)ab |a〉 |b〉. This
unitary transformation can be realized by first performing the Hadamard gate on the
second qubit |b〉, followed by performing the CNOT gate on the two qubits with the first
qubit |a〉 as the control, and finally performing another Hadamard gate on the second
qubit. After ths step, the state becomes

1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |y〉Y |ψ〉Z |f(x)〉 .

(d) Uncompute the f(x) for each x ∈ {0, 1}n in the superposition above by performing the
inverse of the unitary quantum circuit that computes the function f(·). We thus arrive
at the desired quantum state.

2. Perform the unitary translation U on the register (R, Z).

3. Measure the register R in the standard basis and output the outcome.

It is not hard to see that the inverter I∗ runs in polynomial time if the unitary transformation
U is polynomial-time realizable. We are left to estimate the success probability of the inverter I∗.
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From the hypothesis (6),

1

p(n)
≤

∥∥∥(Q0 |0〉 〈0|Q†0
)CR

URZ(Q1 |0〉CR |ψ〉Z)
∥∥∥

=
1

2n

∥∥∥Q0 |0〉 ⊗
∑

y∈{0,1}n

(
1C ⊗

〈
f−1(y)

∣∣R ) · URZ( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |ψ〉Z
)∥∥∥

=
1

2n

∥∥∥ ∑
y∈{0,1}n

(
1C ⊗

〈
f−1(y)

∣∣R ) · URZ( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |ψ〉Z
)∥∥∥

≤ 1

2n

∑
y∈{0,1}n

∥∥∥(1C ⊗ 〈f−1(y)
∣∣R ) · URZ( 1√

2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |ψ〉Z
)∥∥∥

=
1

2n

∑
y∈{0,1}n

∥∥∥( ∣∣f−1(y)
〉 〈
f−1(y)

∣∣ )R · URZ( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |ψ〉Z
)∥∥∥

≤

 1

2n

∑
y∈{0,1}n

∥∥∥( ∣∣f−1(y)
〉 〈
f−1(y)

∣∣ )R · URZ( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |ψ〉Z
)∥∥∥2

 1
2

,

where the second “≤” above uses the triangle inequality and the third “≤” uses the Cauchy-
Schwartz inequality. Squaring both sides of this inequality gives

1

2n

∑
y∈{0,1}n

∥∥∥( ∣∣f−1(y)
〉 〈
f−1(y)

∣∣ )R · URZ( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x〉R |ψ〉Z
)∥∥∥2 ≥ 1

p(n)2
.

Note that the l.h.s. of the inequality above is exactly the success probability of the inverter
I∗ on input a uniformly random chosen image y. This probability is at least 1/p(n)2, which is
non-negligible and thus contradicts the one-wayness of the function f(·).

This finishes the proof of the lemma. �

5 Interactive quantum bit commitment: its semi-honest security
and purification

In this section, we move on to study the more general interactive quantum bit commitments.
First, we generalize the semi-honest security (i.e. honest-hiding and honest-binding properties)
of non-interactive quantum bit commitment to the interactive one. Then, we sketch a standard
procedure of purifying an arbitrary interactive quantum bit commitment scheme. Next, we discuss
the relationship between the semi-honest security of an interactive quantum bit commitment scheme
before and after the purification. Last, we study two inspiring schemes for the illustration of this
relationship.

We remark that the material presented in this section is crucial in understanding and establish-
ing the round-collapse theorem in the next section.

5.1 Definitions of quantum honest-hiding and honest-binding

Before generalizing the semi-honest security of non-interactive quantum bit commitment to the
interactive setting, we first recall the classical definition of semi-honest security of a general protocol.
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Recall that in the classical setting, the semi-honest security of a protocol is defined w.r.t. the
semi-honest, or honest-but-curious party. Specifically, in a running of a protocol the semi-honest
party will follow the protocol honestly, except that it always record everything generated during
the interaction, which is typically referred to as the view of this party. In more detail, the view
of a party includes the random coins it has used, as well as all messages it has sent and received.
Only at the end of the running of the protocol, the semi-honest party may deviate to do something
malicious based on its view.

In the same spirit as in the classical setting, we can generalize the semi-honest security to the
quantum setting. For this purpose, we need first to prescribe the quantum semi-honest party’s
behavior, which is quite different from its classical counterpart due to the quantum no-cloning
theorem.

Quantum semi-honest party’s behavior. Intuitively, the quantum semi-honest party still will
try to record everything that can be copied/cloned, but without disturbing the honest running of
the protocol; that is, restricting to consider the quantum system used when both parties are honest,
the corresponding state should be the same as that when both parties are honest. Thus, in addition
to always do exactly what the protocol prescribes, the semi-honest party will also copy/clone the
following things for a possible later use:

1. its measurement outcomes.

2. its random coin tosses.

3. the classical messages it has sent and received.

We note that since a quantum state cannot be cloned generally, intermediate quantum states during
a running of a quantum protocol can no longer be saved for a later use as in the classical setting.

Next, we need to define the semi-honest sender/receiver’s view during the commit stage.
The semi-honest sender/receiver’s view. In a running of the commit stage of an interactive
quantum bit commitment scheme, the semi-honest sender/receiver’s view refers to the quantum
state of this semi-honest party’s system at the end of the commit stage.

We have three remarks about the definition of the view above:

1. The behavior of either the semi-honest sender or the semi-honest receiver can be derived
from the scheme by additionally doing some copy job as prescribed for a general quantum
semi-honest party in the above.

2. None of intermediate quantum states of the semi-honest sender/receiver’s system during
the commit stage account for its view; only the state at end of the commit stage matters.
Intuitively, this is because an unknown quantum state cannot be cloned generally.

3. Since a quantum bit commitment scheme has two stages, namely the commit and the reveal
stages, one may wonder why we are only interested in the view of the commit (but not
the reveal) stage. Basically, this is due to the intuitive honest-hiding and honest-binding
properties of quantum bit commitment scheme we are interested in, as shall be seen shortly.
For this reason, in the sequel we will refer to the semi-honest sender/receiver’s view without
mentioning explicitly it is the view of the commit stage.

Now we are ready to get back to the question of defining the semi-honest security of an (inter-
active) quantum bit commitment scheme, i.e. the honest-hiding and the honest-binding properties.
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For the purpose of simplicity, our definitions will be informal yet clear enough so that experienced
readers can easily work out the detail for a formal definition.

Intuitively, the honest-hiding property requires that at the end of a running of the commit
stage of a quantum bit commitment scheme where the sender is honest whereas the receiver is
semi-honest, the receiver cannot distinguish whether it is 0 or 1 that is committed. That is, we
have the following (informal) definition.

Definition 7 (Honest-hiding) An interactive quantum bit commitment scheme is honest-hiding
if the semi-honest receiver’s views corresponding to committing 0 respective 1 are indistinguishable.

Compared with the honest-hiding property which is defined w.r.t. the semi-honest receiver only
in the commit stage, the honest-binding property is defined w.r.t. the semi-honest sender in the
commit stage followed by an arbitrary sender in the reveal stage.

Definition 8 (Honest-binding) Consider the following honest-binding game w.r.t. a general
interactive quantum bit commitment scheme: a bit b ∈ {0, 1} is committed in a running of the
commit stage of the scheme where the sender is semi-honest while the receiver is honest. Later in
the reveal stage, a possibly cheating sender will inherit the semi-honest sender’s view (of the commit
stage) and may additionally receive an auxiliary quantum state at the beginning of the reveal stage,
attempting to open the (quantum) bit commitment as 1 − b. If the sender succeeds, then we say
that the sender wins the game. We say that the scheme is honest-binding if any cheating sender in
the reveal stage cannot win the game with non-negligible probability, for both b = 0 and 1.

Remark. We note that our definitions of the honest-hiding and honest-binding properties of gen-
eral interactive quantum bit commitment schemes are consistent with those in the non-interactive
setting (Definition 2). But in contrast to the non-interactive setting, here in the definition of honest-
binding we no longer claim that the ability to open an honest commitment to 0 as 1 is equivalent
to the ability to open an honest commitment to 1 as 0; but in typical cases, e.g. examples in this
pape, they can be proved symmetrically.

5.2 Purify an arbitrary interactive quantum bit commitment scheme

A general quantum bit commitment scheme could be a hybrid of classical and quantum computa-
tions and communications; moreover, regarding the quantum computation, it could also be a hybrid
of unitary and non-unitary operations. For our purpose, we need to normalize a general quantum
bit commitment scheme by purifying it in such a way that all (classical and quantum) computa-
tions can be simulated by unitary quantum operations, and all classical communications can be
simulated by quantum communications. The purification procedure presented below is standard,
basically following Mayers [May97].

For simplicity, assume without loss of generality that all registers are two-dimensional (i.e.
composed of qubits), and all measurements are restricted to be performed on a single qubit in the
standard basis. To model a running of the commit stage of a general quantum bit commitment
scheme, we introduce quantum registers (A,B,E) as follows:

• A: the sender’s workspace.

• B: the receiver’s workspace.

• E: the environment E = (ES ,EA,EB) is such that
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– ES = (ES,A,ES,B): both registers ES,A and ES,B store the classical bits transmitted
between the sender and the receiver.

– EA: stores the untransmitted classical bits that are kept on the sender’s side.

– EB: stores the untransmitted classical bits that are kept on the receiver’s side.

For a party P ∈ {A,B}, where A and B stand for the sender and the receiver, respectively, we
can purify each operation in the commit stage4 of a general interactive quantum bit commitment
scheme in the following way:

• Measurement : introduce an ancilla qubit in the state |0〉, and perform the quantum gate CNOT
on the qubit to measure and this ancilla, with the former as the control. Then move this
ancilla to the environment EP .

• A uniformly random coin toss: introduce an ancilla qubit in the state |0〉, and perform the
Hadamard gate H on it. Then move this ancilla to the environment EP .

• Transmission of a classical bit x from the sender to the receiver, and vice versa: first move the
qubit |x〉 from the environment EA to ES,A, and then introduce an ancilla in the state |0〉 in the
environment ES,B. Finally, perform the CNOT gate on the qubit |x〉 and this ancilla, with the
former as the control. The opposite direction of the transmission is simulated symmetrically.

• Unitary operation. If P ’s unitary operation depends on any bit values in the environment
(EP , ES,P ), then first copy these bits into P ’s private workspace P before performing the
corresponding unitary operation.

After the purification procedure above is applied, at any moment of a running of the purified
commit stage of an interactive quantum bit commitment scheme the whole system will be in a state
of the form ∑

s,a,b

αs,a,b |s〉ES,A |s〉ES,B |a〉EA |b〉EB |ψs,a,b〉AB .

That is, whenever each qubit in the environment E is measured in the standard basis (i.e. collapses
occur like in a running of the commit stage of the original scheme), then |ψs,a,b〉 will be the state
of the registers (A, B) associated with the occurrence of (s, a, b) with probability |αs,a,b|2.

5.3 The semi-honest security before and after the purification

For the purpose of this work, we are especially interested in the relationship between the semi-
honest security of a general interactive quantum bit commitment scheme and its purification. We
have the following simple observations that pertain to it:

Observation 1 Purifying the honest party’s all operations in the commit stage of the original
scheme will not affect the semi-honest security against the other party. This is because
purifying the honest party’s operations will not affect the other party’s view.

Observation 2 While the honest party’s all operations are unitary in the commit stage of the
purified scheme, the corresponding semi-honest one will follow the purified scheme honestly;
that is, the semi-honest party’s behavior will be the same as that of the honest party w.r.t.
the purified scheme in the commit stage.

4For the purpose of this work, we only need to purify the commit stage, though the reveal stage can also be done
in the same fashion.
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Observation 3 The semi-honest security against one party of the purified scheme implies the
semi-honest security against the same party of the original scheme. To see this, note that
the outcome of measurements and random coin tosses, as well as classical messages sent and
received by the honest party, are all recorded in the environment by the purification.

Combing Observation 1 and 2 above, the semi-honest security of the purified interactive quan-
tum bit commitment scheme can also as viewed as the security against the purification attack of
the original scheme, where by the “purification attack” we mean that the cheating party attacks
by purifying the corresponding honest party’s all operations. In the sequel, we will use the semi-
honest security of the purified scheme and the security against the purification attack of the original
scheme interchangeably.

Since the security against the purification attack plays a key role in our applications later,
let us write out the corresponding definitions of what we will refer to as purification-hiding and
purification-binding explicitly in the below, which are adapted from definitions of honest-hiding
(Definition 7) and honest-binding (Definition 8), respectively.

Definition 9 (Purification-hiding) Consider an execution of the commit stage of an interactive
quantum bit commitment scheme such that the sender is honest whereas the receiver attacks by
purifying all the honest receiver’s operations. We say that this scheme is secure against the purifi-
cation attack of the receiver, or purification-hidng, if at the end of the commit stage, the quantum
state of the receiver’s system corresponding to committing 0 respective 1 are indistinguishable.

Definition 10 (Purification-binding) Consider the following purification-binding game: a bit
b ∈ {0, 1} is committed in a running of the commit stage of an interactive quantum bit commitment
scheme where the receiver is honest whereas the sender attacks by purifying all the honest sender’s
operations. Later in the reveal stage, a possibly cheating sender will inherit the sender’s system
at the end of the commit stage and may additionally receive an auxiliary quantum state at the
beginning of the reveal stage, attempting to open the (quantum) bit commitment as 1 − b. If the
sender succeeds, then we say that the sender wins the game. We say that the scheme is secure
against the purification attack of the sender, or purification-binding, if any cheating sender in the
reveal stage cannot win the game with non-negligible probability, for both b = 0 and 1.

By definition, the security against the purification attack of a general interactive quantum bit
commitment scheme is weaker than the full security (against an arbitrary attack). Generally, we
do not expect that it can be equivalent to the full security5. Observation 3 above states that the
security against the purification attack is stronger than the semi-honest security. But can these
two kinds of security be equivalent, or are honest-hiding and honest-binding properties of a general
interactive quantum bit commitment scheme preserved after the purification?

To answer the question above, we note that compared with the honest party’s behavior, after
the purification some desired collapses (via measurements) by the honest party may no longer
occur. This might compromise the semi-honest security of the purified scheme. One is referred to
the next subsection for two such examples. In spite of this, sometimes the semi-honest security of
an interactive quantum bit commitment scheme does extend to its purification. In Section 7, we
develop several techniques for such an extension in two applications. In the below, for illustration
we identify a simple yet common scenario in which the semi-honest security against one party of a
quantum bit commitment scheme extends its purification.

5Restricting to the non-interactive setting, interestingly, we have shown that this is nevertheless true (Theorem
2).
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

1. The sender chooses a uniformly random string x = x1 · · ·xn, where each xi
$← {0, 1}.

Choose the basis θ = + if b = 0, and θ = × if b = 1. Send each qubit |xi〉θ, i = 1, 2, . . . , n,
to the receiver.

2. For each i = 1, . . . , n, the receiver chooses the basis θ̂i
$← {+,×} and measures each

qubit |xi〉θ in the basis θ̂i, obtaining the outcome x̂i.

Reveal stage:

1. The sender sends the bit b and all xi’s to the receiver.

2. The receiver checks that for each i = 1, 2, . . . , n, x̂i = xi whenever θ̂i = θ; reject other-
wise.

Figure 2: The BB84 scheme

Specifically , we say that a party of a quantum bit commitment scheme is public-coin if its only
action in the commit stage prescribed by the scheme is just sending a number of uniformly random
bits. We have the following proposition.

Proposition 11 If a party of a quantum bit commitment scheme is public-coin and this scheme is
semi-honest secure against this party, then this scheme is also secure against the purification attack
of this party.

Proof Sketch: The (honest) receiver (who is the other party) of the random bits will measure
immediately upon receiving them, which will collapse the state of the whole system to the one
corresponding to this party not purifying its operation of tossing random coins. �

5.4 Two simple schemes that are semi-honest secure but vulnerable to the
purification attack

We present two schemes that are inspiring for the study of the relationship between the semi-
honest security of a general interactive quantum bit commitment scheme and its purification. Both
of these two schemes are unconditionally(information-theoretic) semi-honest secure, but vulnerable
to the purification attack. We expect these two toy examples to give readers some idea of how
the purification may compromise the semi-honest security of the original quantum bit commitment
scheme. In particular, the security analysis of the second scheme (i.e. the simplified CLS scheme
as we call) is helpful in understanding that of the correct one in subsection 7.1.

5.4.1 The BB84 scheme

The non-interactive BB84 scheme [BB84, May97] is described in Figure 2. We next informally
argue that the BB84 scheme is unconditionally honest-hiding and unconditionally honest-binding.

The BB84 scheme is unconditionally honest-hiding, by noting that both honest commitments to
0 respective 1 are just the maximally mixed state. The scheme is unconditionally honest binding,
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because almost a half of the bases θ̂i’s chosen by the receiver are not equal to the basis θ that is
determined by the bit b to commit. Thus, for each θ̂i 6= θ, any cheating sender cannot guess x̂i
correctly with probability more than 1/2. It follows that the success probability of any cheating
sender opening the honest commitment to the bit b as 1− b is exponentially small.

However, the BB84 scheme is vulnerable to the purification attack of the sender, or not purification-
binding. To see this, note that the commit stage of the BB84 scheme can be purified in such a
way that the sender prepares n EPR pairs and sends half of each EPR pair to the receiver as the
commitment; another half is kept by the sender. Then the sender simulates the measurement of its
halves of EPR pairs in the basis θ unitarily ; we denote this unitary operation by U when a bit 0 is
committed. As such, the cheating sender who performs as follows can open the honest commitment
to 0 as 1 with certainty:

1. Perform U † to roll its system back to the state at the moment just before the sender measuring
its halves of EPR pairs in the commit stage.

2. Measure its halves of EPR pairs in the basis “×”. Denote the outcomes by x1, . . . , xn.

3. Send the revealed bit 1, as well as all xi’s to the receiver.

In this way, it is not hard to see that the sender can open the bit commitment as 1 successfully
with certainty.

5.4.2 A simplified CLS scheme

The simplified CLS scheme, which is adapted from [CLS01], is the parallel composition of the atomic
scheme as described in Figure 3. Compared with the original CLS scheme, the sender additionally
sends bases θi’s in its first message, and the receiver removes commitments to all its random chosen
bases and measurement outcomes in its first message. We are next to informally argue that this
simplified CLS scheme is unconditionally honest-hiding and unconditionally honest-binding.

Unconditional honest-hiding. Consider a running of the commit stage of the atomic scheme in
which the sender is honest whereas the receiver is semi-honest. Note that with an overwhelming
probability, we have θ̂i 6= θi for nearly half of indices i where 1 ≤ i ≤ n. Since |I0|+ |I1| = 2n/3 >
n/2, it follows from the pigeon hole principle that there exists at least one index j ∈ I1−c such
that θ̂j 6= θj . It is for this index j that the receiver’s guess for the xj can be no better than a
random guess. In turn, the receiver’s guess for a1−c, and thus the committed bit b (which is equal
to a0 ⊕ a1), can be no better than a random guess. That is, the sender’s messages contain no
information about the committed bit b. And this should hold for each copy when there are n copies
of the atomic scheme running in parallel. As such, the simplified CLS scheme is unconditionally
honest-hiding.

Unconditional honest-binding. First consider the honest-binding game w.r.t. the atomic
scheme in which a bit 0 is committed in the commit stage and the cheating sender is trying to
open the commitment as 1 in the reveal stage; the case when a bit 1 is committed can be proved
symmetrically.

A key observation here is that a cheating sender can win the game above if and only if it can
guess the receiver’s random choice of the bit c correctly. To see this, note that for the purpose of
cheating successfully, in the reveal stage the sender must send (a0, 1−a1) when c = 0, or (1−a0, a1)
when c = 1, to the receiver; this is because the receiver will check the correctness of ac (but not
a1−c). This implies that a successful sender should guess the receiver’s random choice of the bit c
correctly. The converse holds trivially.
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

• (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis θi

$← {+,×},
sending (|xi〉θi , θi) to the receiver.

• (R2) For i = 1, 2, . . . , n, the receiver chooses each basis θ̂i
$← {+,×} and measures each

received BB84 qubit |xi〉θi in the basis θ̂i, obtaining the outcome x̂i. Choose c
$← {0, 1}.

Choose at random two disjoint subsets of positions I0, I1 ⊂ [n] of size n/3 such that for
each i ∈ Ic, θi = θ̂i. Send (I0, I1) to the sender.

• (S3) The sender chooses a0
$← {0, 1} and sets a1 = a0⊕b. Then compute â0 =

⊕
i∈I0 xi⊕

a0, â1 =
⊕

i∈I1 xi ⊕ a1, sending (â0, â1) to the receiver.

• (R4) The receiver computes dc =
⊕

i∈Ic x̂i ⊕ âc.

Reveal stage:

• The sender sends the bit b and (a0, a1) to the receiver.

• The receiver checks that b = a0 ⊕ a1 and dc = ac.

Figure 3: The atomic scheme which composes in parallel gives the simplified CLS scheme

Since the receiver’s only message in the commit stage, i.e. the subsets (I0, I1), contains no
information about the bit c (the sender just saw two random disjoint subsets of size n/3), it follows
that the probability of the sender winning the game is no more than 1/2.

The honest-binding game w.r.t. the simplified CLS scheme consists of n copies of the atomic
honest-binding game above running in parallel. Since the random bits c’s corresponding to each copy
of the atomic game are independent, the probability of the sender winning all copies of the atomic
game is no more than 2−n. This establishes that the simplified CLS scheme is unconditionally
honest-binding.

An attack against the purification-hiding property. Consider a running of the atomic scheme
in which the receiver performs a unitary simulation of each of its non-unitary operation as prescribed
by the scheme, including the measurement of each qubit |xi〉θi in the basis θ̂i, as well as the random

coin tosses corresponding to the choices of θ̂i, c and I0, I1. Note that the receiver’s measurement of
each received qubit in the bases θ̂i’s is independent of its choices of the bit c and the subsets I0, I1.
Thus, this measurement can be postponed to the beginning of step (R4) in commit stage; let U be
the unitary transformation that simulates this new step. Once the commit stage is finished, the
cheating receiver can perform as follows to guess the committed bit b:

1. Perform U † to roll its system back to the state in which the received qubits |xi〉θi ’s have not
yet been measured.

2. For each qubit |xi〉θi , i = 1, 2, . . . , n, measure it in the basis θi that is received in step (S1) to
obtain xi.

3. Compute a0, a1 from â0, â1 and x1, . . . , xn; that is, let a0 =
⊕

i∈I0 xi⊕â0, and a1 =
⊕

i∈I0 xi⊕
â1. Output b = a0 ⊕ a1.
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Assumption: there are no inner verifications within the commit stage of the given interactive
quantum bit commitment scheme.

Commit stage: the new sender simulates the honest execution of the commit stage of the
purified scheme in the way as stated in Subsection 5.2 such that the whole system is initialized
in the all |0〉’s state. At the end, it sends the quantum registers (ES,B,EB,B) to the receiver
as the commitment.

Reveal stage: the new sender sends the remainder registers (ES,A,EA,A) to the receiver, who
then does the reverse computation to check if the whole system returns to all |0〉’s state.

Figure 4: The essential compiler for the round-collapse

In this way, the receiver can guess the committed bit b correctly with certainty. The simplified CLS
scheme is not purification-hiding.

6 A round-collapse theorem

In this section, we first establish that any interactive quantum bit commitment scheme can be
compiled into a non-interactive one of the form (Q0, Q1) as in Definition 2. It can also be viewed
as a generalization of putting an arbitrary non-interactive quantum bit commitment scheme in the
same form. As an immediate application, we can compile Naor’s bit commitment scheme [Nao91]
to get a non-interactive statistically-binding quantum bit commitment scheme, though this result
was known before [YWLQ15]. Two more non-trivial applications of our round-collapse theorem
are referred to the subsequent section.

The statement of our round-collapse theorem is as below.

Theorem 3 (Round-collapse) If a quantum bit commitment scheme is secure against the pu-
rification attack (or, its purification is semi-honest secure), then it can be compressed into a non-
interactive one with the same flavors of the hiding and binding properties.

The essential compiler to achieve the round-collapse is described in Figure 4. The high-level
idea of its construction is to delegate all computations of the purified scheme in the commit stage
to the new sender, while the new receiver can check these computations in the reveal stage later
by the virtue that the quantum computation is reversible.

Proof: We first consider a special case in which there are no inner verifications within the commit
stage of the given interactive quantum bit commitment scheme. That is, inner verifications may
cause some party to abort prematurely (i.e. before completing the commit stage), but which we do
not take care for the moment for simplicity. We construct a compiler which can compress rounds
of the given interactive quantum bit commitment scheme as described in Figure 4.

Formally, let Qb (b ∈ {0, 1}) denote the quantum circuit that simulates the honest execution
of the commit stage of the purified scheme when the bit b is committed. It performs on quantum
registers (ES,B,EB,B,ES,A,EA,A), treating the first and the last triple quantum registers as the
registers C and R in Definition 2, respectively.

We are next to prove the correctness of the compiler; that is, the scheme represented by the
quantum circuit pair (Q0, Q1) indeed gives rise to a non-interactive quantum bit commitment
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scheme with the same flavors of hiding and binding properties as the original scheme.

Hiding. We show that the honest-hiding property of the purified scheme directly translates into
that of the compressed scheme (Q0, Q1). Indeed, consider an honest execution of the commit stage
of the purified scheme. If the purified scheme is statistically (resp. computationally) honest-hiding,
then the states of the registers (ES,B,EB,B) at the end of the commit stage when 0 respective 1
are committed will be statistically (resp. computationally) indistinguishable. This concludes that
the scheme (Q0, Q1) is statistically (resp. computationally) hiding.

Binding. We show that the honest-binding property of the purified scheme translates into the
binding property of the compressed scheme (Q0, Q1).

Consider the moment at the end of the commit stage in an honest execution of the purified
scheme when a bit 0 is committed. The whole system (ES,B,EB,B,ES,A,EA,A) will then be in
the state Q0 |0〉. The honest-binding property (Definition 8) of the purified scheme implies that
no cheating sender — either computationally unbounded in case of statistically honest-binding or
polynomial-time bounded in case of computationally honest-binding — can transform the quan-
tum state Q0 |0〉 into another one whose projection on the vector Q1 |0〉 is non-negligible, by just
operating on the subsystem (ES,A,EA,A). This is because for otherwise, a cheating sender would
first transform the state Q0 |0〉 into a state that is non-negligibly close to Q1 |0〉 at the beginning of
the reveal stage, and then proceed honestly to reveal the bit 1. But this should lead the receiver to
accept with non-negligible probability, contradicting to the honest-binding property of the purified
scheme. We note that the cheating sender may additionally use some auxiliary input state in the
reveal stage (r.f. Definition 8), but almost the same argument as above goes through.

Henceforth, the scheme (Q0, Q1) is statistically (resp. computationally) binding if the purified
scheme is statistically (resp. computationally) honest-binding.

Combining the hiding and binding properties established above, it follows that the non-interactive
quantum bit commitment scheme (Q0, Q1) enjoys the same flavors of the hiding and binding prop-
erties as the given scheme.

Extension. We can extend the proof above to the case where there are intermediate verifications
during the commit stage of the interactive quantum bit commitment scheme. In case that all
verifications will always pass if both parties follow the scheme honestly — this is indeed the case
when the semi-honest security is considered — we can safely remove these verifications without
disturbing the state at the end of the commit stage and get back to the case as discussed above.

In case that some verifications may fail (and the corresponding party aborts) with negligible
probability6 even if both parties follow the scheme honestly, removing them will only cause a negli-
gible disturbance to the state conditioned on neither parties aborting before the end of the commit
stage. Such a disturbance will only affect the hiding and binding properties of the compressed
scheme by a negligible additive factor. �

Remark. In the proof above, we actually only proved that the compressed scheme (Q0, Q1) is
semi-honest secure. But by the virtue of Theorem 2, it follows that the scheme (Q0, Q1) is fully
secure against arbitrary adversaries as well.

The proof of Theorem 3 actually gives a general explicit procedure to compress an arbitrary
interactive quantum bit commitment scheme. We will refer to the scheme after the compression

6We always assume that the completeness error is negligible.
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the “compressed scheme” hereafter. Let us highlight this in the following definition.

Definition 12 (Compressed scheme) Given an arbitrary interactive quantum bit commitment
scheme, its associated compressed scheme is obtained by applying the compiler given in Figure 4.

Since the purification attack is a kind of attack among all possible attacks, the following theorem
is an immediate corollary of Theorem 3.

Theorem 4 Any secure interactive quantum bit commitment scheme (against arbitrary adver-
saries), in particular the post-quantum secure (classical) bit commitment scheme, can be com-
pressed into a non-interactive quantum bit commitment scheme with the same flavors of the hiding
and binding properties.

6.1 Application: compress Naor’s scheme

As the first application, we can apply the collapse theorem (Theorem 3) to Naor’s construc-
tion of statistically-binding bit commitment [Nao91], obtaining a quantum computationally-hiding
statistically-binding bit commitment scheme. Actually, similar result was already known before
[YWLQ15]. Two more (involved) applications of the collapse theorem are referred to the next
section.

Given a quantum-secure pseudorandom generator G : {0, 1}n → {0, 1}3n, a statistically-binding
bit commitment scheme can be constructed in the following way [Nao91]. Its commit stage proceeds
in two rounds: the receiver first sends a uniformly random string r ∈ {0, 1}3n to the sender. In
response, the sender chooses a uniformly random string s ∈ {0, 1}n, and if a bit 0 is to commit,
then the sender sends G(s) to the receiver; if a bit 1 is to commit, then the sender sends G(s)⊕ r
(the “⊕” denotes the xor bitwisely) to the receiver. The reveal stage is canonical; namely, the
sender sends its random coin tosses s to the receiver for verification.

To compress Naor’s scheme, we consider an honest execution of the commit stage of the purified
Naor’s scheme. At the end of the commit stage, when a bit 0 is committed the whole system will
be in the state

Q0 |0〉
def
=

1√
24n

∑
s∈{0,1}n,

r∈{0,1}3n

|s〉EA |G(s), r〉ES,A |G(s), r〉ES,B ; (7)

and when a bit 1 is committed the whole system will be in the state

Q1 |0〉
def
=

1√
24n

∑
s∈{0,1}n,

r∈{0,1}3n

|s〉EA |G(s)⊕ r, r〉ES,A |G(s)⊕ r, r〉ES,B (8)

By the compiler within the proof of Theorem 3, the compressed scheme given by the quantum
circuit pair (Q0, Q1) is as follows: in the commit stage the sender prepares the quantum state
Qb |0〉 when a bit b ∈ {0, 1} is to commit, and the quantum registers ES,B will be sent to the
receiver as the commitment; later in the reveal stage, the quantum register (EA,ES,A) will be sent
as the decommitment to the receiver.

Since Naor’s scheme is quantum-secure given that the pseudorandom generator G(·) is secure
against any polynomial-time quantum distinguishers [HSS11], applying Theorem 3 we conclude
that the scheme (Q0, Q1) is computationally hiding and statistically binding.

Remark. Compared with the scheme (Q0, Q1) given in the equations (7) and (8), the construction
in [YWLQ15] is simpler and its proof is more direct. In spite of this, their ideas in the nutshell are
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nevertheless the same. Further, our approach via the round-collapse theorem here is more general,
indicating that the quantization of Naor’s scheme in [YWLQ15] is not an accident.

7 Application: yet another two constructions of non-interactive
computationally-binding quantum bit commitment

In this section, we apply Theorem 3 to compress the CLS scheme [CLS01] and the NOVY scheme
[NOVY98], obtaining yet another two constructions of non-interactive computationally-binding
quantum bit commitment that are previously unknown. The main technical part of this section lies
in showing that both the CLS and the NOVY schemes are secure against the purification attack,
which will be proved in two separate subsections. Readers who are not interested in these two
applications of the round-collapse theorem can safely skip this section.

To simplify the notation in our security analyses, we will drop the auxiliary quantum state that
the adversary may receive (as specified, explicitly or implicitly, in Definitions 7 and 8). We can do
this because our analyses will be black-box without rewinding; one can easily see that almost the
same arguments go through even if the auxiliary quantum state is taken into account.

7.1 Compress the CLS scheme

The original CLS scheme [CLS01] is an interactive computationally-binding quantum bit com-
mitment scheme; it is built on the statistically-binding (interestingly, of the opposite flavor) clas-
sical/quantum bit commitment [CLS01, FUYZ20]. Combined with Theorem 4, it immediately
follows that the compressed CLS scheme (by the compiler specified within the proof of Theorem
3) is statistically hiding and computationally binding. However, showing that the CLS scheme is
secure against an arbitrary quantum attack a-prior, as done in [CLS01, FUYZ20], turns out to be
quite involved.

Interestingly, Theorem 3 tells us that just for the purpose of the compression it suffices to
restrict to consider the security against the purification attack of the CLS scheme, whose analysis
turns out to be much simpler than the original one for the full security [CLS01, FUYZ20]. We
thus achieve the least number of rounds and even simpler analysis simultaneously. In the rest of
this subsection, we will focus on showing the security against the purification attack of a somewhat
simplified CLS scheme. Detail follows.

The scheme. The CLS scheme is basically the parallel composition of the atomic (interactive)
scheme as described in Figure 5, which we denote by QBC(n), with the security parameter n which
we often drop to simplify the notation. Let QBC(n)⊗n denote the parallel composition of n copies
of the scheme QBC(n). This scheme is almost the CLS scheme given in [CLS01], except that all
intermediate verifications of the commitments by the sender are removed. In spite of this, we still
call it CLS scheme in this paper.

To show that the compressed CLS scheme is secure, we suffice to prove that the CLS scheme
QBC(n)⊗n is secure against the purification attack (Theorem 3), or the purified CLS scheme is
both unconditionally honest-hiding and computationally honest-binding. We will prove them in
Lemma 13 and Lemma 14, respectively.

Remark. Since the atomic CLS scheme QBC is somewhat complex, we do not intend to explicitly
write out the quantum circuit pair ensemble {Q0(n), Q1(n)}n corresponding to the compressed CLS
scheme, though which is straightforward following the compiler described in Figure 4. Jumping
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Security parameter: n

Commit stage: Let b ∈ {0, 1} be the bit to commit.

• (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis θi

$← {+,×},
sending the qubit |xi〉θi to the receiver.

• (R2) For i = 1, 2, . . . , n, the receiver chooses a basis θ̂i
$← {+,×} and measures each

received qubit |xi〉θi in the basis θ̂i, obtaining the outcome x̂i. Then commit to (θ̂i, x̂i)
bitwisely using a statistically-binding classical/quantum bit commitment scheme. (We
assume that the bases “+” and “×” are encoded as 0 and 1, respectively.)

• (S3) The sender sends all θi’s, i = 1, 2, . . . , n, to the receiver.

• (R4) The receiver chooses a random bit c
$← {0, 1}, as well as two random subsets of

indices I0, I1 ⊂ [n] such that |I0| = |I1| = n/3, I0 ∩ I1 = ∅, and θi = θ̂i for each i ∈ Ic.
Then send (I0, I1) to the sender.

• (S5) The sender chooses a bit a0
$← {0, 1} and sets a1 = a0 ⊕ b. Then compute â0 =⊕

i∈I0 xi ⊕ a0, â1 =
⊕

i∈I1 xi ⊕ a1, and send (â0, â1) to the receiver.

• (R6) The receiver computes the bit dc =
⊕

i∈Ic x̂i ⊕ âc.

Reveal stage:

• The sender sends the bits b and (a0, a1) to the receiver.

• The receiver verifies that b = a0 ⊕ a1 and dc = ac.

Figure 5: The atomic scheme QBC, which composed in parallel gives the CLS scheme
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ahead, we will do this for the comparably simpler NOVY scheme in the next subsection (Subsection
7.2).

Before giving formal proofs, let us first fix the bit commitment scheme used within the atomic
scheme QBC (step (R2)). By Theorem 4, we can assume without loss of generality that the
scheme is the generic non-interactive quantum bit commitment scheme represented by an ensemble
of quantum circuit pair {(Q0(n), Q1(n))}n (Definition 2). To further simplify our security analysis,
we can assume without loss of generality that this scheme is perfectly binding [FUYZ20].

Lemma 13 The purification of the scheme QBC(n)⊗n is unconditionally honest-hiding. (Or, the
CLS scheme QBC(n)⊗n is unconditionally purification-hiding.)

Proof: We show that the CLS scheme QBC(n)⊗n is unconditionally honest-hiding, and which
extends to its purification.

The proof that the CLS scheme QBC(n)⊗n is unconditionally honest-hiding follows almost the
same line as the proof of that the simplified CLS scheme (r.f. Section 5.4) is unconditionally
honest-hiding. This is because if we compare the two atomic schems described in Figure 5 and
Figure 3, respectively, we find that the only difference lies in that in the former scheme the receiver
additionally sends commitments to (θ̂i, x̂i)’s to the sender in step (R2)7. But these commitments
clearly cannot help the semi-honest receiver in cheating.

To show that the unconditional honest-hiding property of the scheme QBC(n)⊗n is preserved
after the purification, it suffices to show that all collapses caused by the receiver’s non-unitary
operations are still enforced even after the purification. Indeed, the receiver has two non-unitary
operations prescribed by the atomic scheme QBC:

1. Measure each received qubit |xi〉θi in step (R2).

2. Randomly choose the bit c, as well as the subsets I0, I1, in step (R4).

For the first non-unitary operation, the commitment to each (θ̂i, x̂i) in step (R2) amounts to
measuring (θ̂i, x̂i) (but without revealing them to the sender), by the virtue of the perfect binding
property of the quantum bit commitment scheme (Q0, Q1) plugged in8. Thus, the state of the whole
system still will collapse to the one associated with the occurrence of (θ̂i, x̂i), i ∈ {1, 2, . . . , n}, even
after the receiver’s measurements are purified.

For the second non-unitary operation, with overwhelming probability, about half of θ̂i’s are
equal to θi’s; that is, with probability exponentially close to one, n/2.1 <

∣∣{i | θi = θ̂i
}∣∣ < n/1.9.

Conditioned on this event happening, the receiver’s private coin c can be determined from the
subsets (I0, I1). In turn, the qubit storing the (private) coin c will collapse at the moment the
subsets (I0, I1) are sent to the sender in step (R4). As such, the state of the whole system still
will collapse to the one associated with the occurrence of (I0, I1, c) before the purification of the
receiver’s random coin tosses.

Therefore, the unconditional honest-hiding property of the CLS scheme QBC(n)⊗n extends to
its purification. This finishes the proof of the lemma. �

As opposed to the proof of the unconditional purification-hiding property of the CLS scheme
QBC(n)⊗n, there seems no obvious way to show that the collapses caused by the honest sender’s

7If these commitments were removed from the scheme QBC, then its step (S3) could be merged into step (S1),
resulting in the same atomic scheme as described in Figure 3.

8A hypothetical measurement known as the commitment measurement performed on each quantum bit commit-
ment can be introduced without affecting the security; its detail is referred to [FUYZ20].
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non-unitary operations, e.g. choosing the xi’s in step (S1) and choosing the a0, a1 in step (S5),
still will be enforced after the purification. Thus, the unconditional honest-binding property of the
CLS scheme QBC(n)⊗n (which follows similar to that of the simplified CLS scheme discussed in
Section 5.4.) does not extend to its purification straightforwardly. In spite of this, we can take
a similar analysis as the one in [CLS01]. But since now we are to argue the security against the
purification rather than an arbitrary attack, the analysis can be greatly simplified.

Lemma 14 The purification of the scheme QBC(n)⊗n is computationally honest-binding. (Or, the
CLS scheme QBC(n)⊗n is computationally purification-binding.)

Proof: For our analysis, we define a sequence of atomic schemes as follows9:

1. U-QBC. Obtained from the scheme QBC by letting the receiver commit to 2n uniformly
random bits, rather than (θ̂i, x̂i)’s, in step (R2).

2. S-QBC. Obtained from the scheme U-QBC by removing the receiver’s commitments in step
(R2). Now since step (S3) of the sender is independent of step (R2) of the receiver, we can
first switch them, and then merge the former into step (S1), and the latter into step (R2).
For clarity, the resultng scheme S-QBC is depicted in Figure 6.

3. M-QBC. Obtained from the scheme S-QBC by introducing measurements of each qubit |xi〉θi
in the basis θi once it is sent in step (S1). These hypothetical measurements are introduced
purely for the purpose of the security analysis.

The roadmap of our analysis is depicted as below:

The scheme QBC(n)⊗n is computationally purification-binding

⇑ Reduction 1

The scheme U-QBC(n)⊗n is unconditionally purification-binding

⇑ Reduction 2

The scheme S-QBC(n)⊗n is unconditionally purification-binding

⇑ Reduction 3

The scheme M-QBC(n)⊗n is unconditionally purification-binding

To establish the purification-binding property of various schemes above, we consider the corre-
sponding purification-binding games described in Definition 10. For simplification, in the analysis
below we just focus on the case b = 0 (i.e. a bit 0 is committed) of each game without explicit
mention; the case b = 1 can be established symmetrically.

Reduction 1. This is the most technical part of the whole analysis, which is deferred to Appendix
B. Basically, we use the hybrid argument to replace all receiver’s commitments one by one in step
(R2) of the atomic scheme QBC.

Reduction 2. Consider the purification-binding game w.r.t. the scheme U-QBC(n)⊗n, whose
commit stage is just that of n copies of the purification-binding game w.r.t. the atomic scheme
U-QBC running in parallel. Intuitively, the commitments described in step (R2) of the scheme
U-QBC does not contain any information about the (honest) receiver’s random bits c’s (also chosen
in step (R2); n bits in total) that can help the sender win the game, hence can be removed.

9The notations of various schemes we introduced are not exactly the same as those in [Lég00, CLS01].
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Security parameter: n

Commit stage: Let b ∈ {0, 1} be the bit to commit.

• (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis θi

$← {+,×}.
Send the basis θi and the qubit |xi〉θi to the receiver.

• (R2) For i = 1, 2, . . . , n, the receiver chooses a basis θ̂i
$← {+,×} and measures each

received qubit |xi〉θi in the basis θ̂i, obtaining the outcome x̂i. Then choose a random

bit c
$← {0, 1}, as well as two random subsets of indices I0, I1 ⊂ [n] such that |I0| =

|I1| = n/3, I0 ∩ I1 = ∅, and θi = θ̂i for each i ∈ Ic. Send (I0, I1) to the sender.

• (S3) The sender chooses a bit a0
$← {0, 1} and sets a1 = a0 ⊕ b. Then compute â0 =⊕

i∈I0 xi ⊕ a0, â1 =
⊕

i∈I1 xi ⊕ a1, and send (â0, â1) to the receiver.

• (R4) The receiver computes the bit dc =
⊕

i∈Ic x̂i ⊕ âc.

Reveal stage:

• The sender sends (b, a0, a1) to the receiver.

• The receiver verifies that b = a0 ⊕ a1 and dc = ac.

Figure 6: The atomic scheme S-QBC
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In more detail, a key observation is that whether for the purification-binding game w.r.t. the
scheme U-QBC(n)⊗n or the scheme S-QBC(n)⊗n, a cheating sender can win the game if and only if
it can guess the (honest) receiver’s all random bits c’s correctly. To see this, note that for the purpose
of cheating successfully, in the reveal stage of each copy of the purification-binding game w.r.t. the
atomic scheme U-QBC or S-QBC, the cheating sender must send corresponding (a0, 1− a1) when
c = 0, or (1−a0, a1) when c = 1, to the receiver; this is because the receiver will check the correctness
of ac (but not a1−c). Combining this observation with that the receiver’s commitments to random
bits as described by step (R2) of the scheme U-QBC do not contain any information about the
receiver’s random bits c’s, removing all these commitments in the purification-binding game w.r.t.
the scheme U-QBC(n)⊗n will not affect the sender’s success probability of cheating. But removing
these commitments gives exactly the same commit stage as that of the purification-binding game
w.r.t. the scheme S-QBC(n)⊗n. Reduction 2 follows.

Reduction 3. Consider the purification-binding game w.r.t. the scheme S-QBC(n)⊗n, whose com-
mit stage is just that of n copies of the purification-binding game w.r.t. the atomic scheme S-QBC
running in parallel. Note that introducing the hypothetical measurements as in the description
of the scheme M-QBC to this game will result in the purification-binding game w.r.t. the scheme
M-QBC(n)⊗n, which will affect nothing but x̂i’s (i.e. the receiver’s private measurement outcomes)
where i ∈ I1−c (or θ̂i 6= θi) in the commit stage of each copy of the atomic game. Henceforth,
neither the sender’s view nor the receiver’s verification (of dc’s, where only x̂i’s for i ∈ Ic matter)
in the subsequent reveal stage will change. This implies that the sender’s probability of winning
the game will not change after introducing the hypothetical measurements. Reduction 3 follows.

The scheme M-QBC(n)⊗n is unconditionally purification-binding. We first argue that the
scheme M-QBC(n)⊗n is unconditionally honest-binding. Then we show that this binding prop-
erty extends to the purified scheme; this is equivalent to say that the scheme M-QBC(n)⊗n is
unconditionally purification-binding.

First consider the honest-binding game w.r.t. the scheme M-QBC(n)⊗n, which is n copies of the
honest-binding game w.r.t. the atomic scheme M-QBC running in parallel. Note that within each
atomic game, the hypothetical measurements will become redundant; this is because each qubit
|xi〉θi has already been collapsed by the honest-but-curious sender’s measurement in the basis θi
in step (S1). Hence, the honest-binding game w.r.t. the atomic scheme M-QBC is exactly the
game w.r.t. the atomic scheme (of the simplified CLS scheme) described in Figure 3. Henceforth,
as we have already argued in Subsubsection 5.4.2, the scheme M-QBC(n))⊗n is unconditionally
honest-binding.

Now we turn to consider the purification-binding game w.r.t. the scheme M-QBC(n))⊗n, which
is n copies of the purification-binding game w.r.t. the atomic scheme M-QBC running in parallel.
If we can show that all collapses of the sender’s (quantum) messages in the corresponding honest-
binding game are still enforced in this purification-binding game, then the probability that the
sender can win the purification-binding game will be the same as that of the honest-binding game,
and we are done. To see this, consider the atomic purification-binding game (w.r.t. the atomic
scheme M-QBC). First, we note that the bases θi’s chosen in the step (S1) will be collapsed by
the honest receiver. Second, the xi’s chosen in the same step will be collapsed by the hypothetical
measurements. Third, in step (S3), since bits a0, a1 are uniquely determined by bits â0, â1 and
x1, . . . , xn, they will collapse after â0, â1 are collapsed by the honest receiver. As such, all collapses
happened in the honest-binding game are still enforced in the corresponding purification-binding
game.
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This finishes the proof of that the scheme M-QBC(n)⊗n is unconditionally purification-binding.
Combining with Reduction 1, 2, and 3, this finishes the proof of the lemma. �

Combing Lemma 13, Lemma 14, and Theorem 3, we have the following theorem as an immediate
corollary.

Theorem 5 The compressed CLS quantum bit commitment scheme is quantum statistically hiding
and computationally binding.

7.2 Compress the NOVY scheme

The classical NOVY scheme [NOVY98] gives a construction of computationally-binding bit com-
mitment based on any one-way permutation. We naturally will ask, is the NOVY scheme secure
against the quantum attack when the underlying one-way permutation is also quantum-secure?
The main difficulty in extending the classical argument for the binding property [NOVY98] to the
quantum setting lies in the rewinding, which is generally impossible in the quantum setting [vdG97].
Moreover, Brassard, Crépeau, Mayers, and Salvail [BCMS98] have shown an attack which indeed
breaks the binding property that is common in the classical setting, but it does not break the
well-accepted quantum sum-binding property. That is, the NOVY scheme with a quantum-secure
one-way permutation plugged in is possibly sum-binding, but unfortunately we still do not know
how to prove this. Instead, interestingly, a quantum construction of computationally-binding quan-
tum bit commitment is given [DMS00]. This construction is intriguing in that its commit stage is
non-interactive, in contrast to the polynomial rounds of the classical construction [NOVY98]. Its
follow-up works finally manage to relax the complexity assumption to the quantum-secure one-way
function [KO09, KO11].

In the below, we will show that the NOVY scheme with a quantum-secure one-way permu-
tation plugged in is secure against the purification attack, which thus can be compressed into a
non-interactive computationally-binding quantum bit commitment scheme by our round-collapse
theorem (Theorem 3). The analysis here is much simpler than the one in [NOVY98].

Formally, we prove the following theorem. For self-containment, we reproduce the NOVY
scheme [NOVY98] in Figure 7.

Theorem 6 The compressed NOVY quantum bit commitment scheme with a quantum-secure one-
way permutation plugged in is perfectly-hiding and computationally-binding. In particular, this
scheme can be represented by the quantum circuit pair ensemble {(Q0(n), Q1(n))}n such that

Q0(n) |0〉 =
1

2
n(n+1)

4

∑
x,h1,...,hn−1

∣∣x, f(x), h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), a
〉R

⊗
∣∣h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), a

〉C
, (9)

Q1(n) |0〉 =
1

2
n(n+1)

4

∑
x,h1,...,hn−1

∣∣x, f(x), h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), 1− a
〉R

⊗
∣∣h1, . . . , hn−1, h1f(x)1, . . . , h

n−1f(x), 1− a
〉C
, (10)

where the x is summing over {0, 1}n, and hk (for k = 1, 2, . . . , n− 1) over 0k−11{0, 1}n−k.

Proof: The expressions of Q0(n) and Q1(n) are obtained by applying the compiler described in
Figure 4 to the NOVY scheme described in Figure 7. By the round-collapse theorem (Theorem 3),
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

• The sender chooses a string x
$← {0, 1}n and computes y = f(x), where f : {0, 1}n →

{0, 1}n is an aribitrary one-way permutation.

• For k = 1, 2, . . . , n − 1, the receiver chooses a string hk
$← 0k−11{0, 1}n−k and sends it

to the sender, who replies with the bit ck = hky, i.e. the inner product of hk and y if we
view them as vectors over the field F2.

• Let (y0, y1) ∈ {0, 1}n be the two solutions in the lexicographical order of the equation
system hky = ck, k = 1, . . . , n − 1. Let the bit a ∈ {0, 1} be such that y = ya. The
sender then sends the bit d = a⊕ b to the receiver.

Reveal stage:

• The sender sends the bit b and the string x to the receiver.

• The receiver first determines the bit a from f(x): 0 if f(x) is the lexicographically smaller
solution of the equation system hky = ck, k = 1, . . . , n − 1, and 1 otherwise. Then the
receiver checks that d = a⊕ b; accept if yes, reject otherwise.

Figure 7: The NOVY scheme

the correctness of the scheme {(Q0(n), Q1(n))}n follows by combining Lemma 16 and Lemma 15
that are to be proved shortly below. �

Lemma 15 The NOVY scheme with a quantum-secure one-way permutation plugged in is perfectly
honest-hiding and computationally honest-binding.

Proof: The perfect honest-hiding property follows by exactly the same argument as the one in the
classical setting. At a high level, this is because the two distributions of the messages exchanged
during the commit stage corresponding to f(x) = y0 and f(x) = y1 are identical ; we ommit the
detail here, which is trivial. In the below, we will focus on showing the computational honest-
binding property of the scheme, whose proof is also almost a reproduction of the classical one
(which is folklore).

Consider the honest-binding game w.r.t. the NOVY scheme in which a bit 0 is committed; the
case when a bit 1 is committed can be proved symmetrically. For contradiction, suppose that a
cheating sender S∗ of the reveal stage succeeds in opening the commitment as 1 with non-negligible
probability. Given the oracle access to S∗, we construct an inverter I∗ of the quantum-secure
one-way permutation f(·) as follows: on input y′ ∈ {0, 1}n,

1. Choose y
$← {0, 1}n−1 ◦ (1− y′n), where the y′n denotes the n-th bit of the y′ and the operator

“◦” denotes the concatenation of two binary strings.

2. For k = 1, 2, . . . , n− 1 do: hk
$← 0k−11 ◦ {0, 1}n−k subject to hky = hky′; let ck = hky.

3. If y < y′, then a← 0; otherwise, a← 1.
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4. Output x′ ← S∗(y, h1, . . . , hn−1, c1, . . . , cn−1, 1− a).

We are left to show that this inverter indeed breaks the security of the one-way permutation f(·).
Let H = (H1, H2, . . . ,Hn−1), where the random variable Hk = 0k−11 ◦ Un−k and Un−k is

uniformly distributed over {0, 1}n−k. We introduce an experiment E1 as: x
$← {0, 1}n, y = f(x),

h
$← H. Intuitively, the experiment E1 is to simulte the commit stage of the honest-binding game

w.r.t. the NOVY scheme. Let y′ be the unique vector such that hy = hy′ and y′ 6= y. We claim that
yn = 1− y′n. Indeed, let j = max {i | 1 ≤ i ≤ n, yi 6= y′i}; our goal is to show that j = n. Suppose
for contradiction that j ≤ n− 1. Then for any hj ∈ 0j−11 ◦ {0, 1}n−j , since the last n− j+ 1 bits of
y − y′ are 10n−j , we must have hj(y − y′) = 1. But this contradicts with the equation hjy = hjy′.

We introduce another experiment E2 as: y′
$← {0, 1}n, y

$← {0, 1}n−1 ◦ (1− y′n), h
$← H subject

to hy = hy′. Intuitively, the experiment E2 is to simulate an execution of the first two steps of the
inverter I∗.

We claim that the distribution of (y, y′, h) in the experiment E1 is identical to that in the
experiment E2; that is, for any (y, y′, h),

Pr
E1

[y, y′, h] = Pr
E2

[y, y′, h]. (11)

Assuming for the moment that this is true, then the success probability of the inverter I∗ is exactly
that of the cheating sender S∗. But since this probability is non-negligible by our hypothesis,
the inverter I∗ thus breaks the one-wayness of the one-way permutation f(·). We arrive at a
contradiction. Henceforth, the NOVY scheme is computationally honest-binding.

We are left to prove the equation (11). Regarding the experiment E1, since both the y and h
are uniformly distributed, and the y′ is uniquely determined by the y and h, we have

Pr
E1

[y, y′, h] = Pr
E1

[y] · Pr
E1

[h] =
1

2n
· 1

2n−1
1

2n−2
· · · 1

2
. (12)

Regarding the experiment E2, we have

Pr
E2

[y, y′, h] = Pr
E2

[y′] · Pr
E2

[y | y′] · Pr
E2

[h | y, y′] =
1

2n
· 1

2n−1
· Pr
E2

[h | y, y′]. (13)

To calculate the PrE2 [h | y, y′], since the h is chosen uniformly random such that hy = hy′ in the
experiment E2, we are to calculate it via of the cardinaliy of the set {h | h(y − y′) = 0}. Since
yn − y′n = 1, there are exactly half of hk ∈ 0k−11 ◦ {0, 1}n−k, for each 1 ≤ k ≤ n − 1, such that
hk(y − y′) = 0. It then follows that there are 2n−2 · 2n−1 · · · 2 · 1 h’s satisfying h(y − y′) = 0. As
such,

Pr
E2

[h | y, y′] =
1

2n−2
· · · 1

2
.

Combined with equations (12) and (13), the equation (11) holds.
This finishes the proof of the lemma. �

Lemma 16 If the NOVY scheme is quantum semi-honest secure (i.e. honest-hiding and honest-
binding), then it is also secure against the purification attack.

Proof: We first prove that the NOVY scheme is secure against the purification attack of the re-
ceiver; or, the purification of the NOVY scheme is honest-hiding. This follows from the assumption

33



that the NOVY scheme is honest-hiding together with that the receiver is public-coin, in which
case Proposition 11 can be applied.

We next prove that the NOVY scheme secure against the purification of the sender; or, the
purification of the NOVY scheme is honest-binding. Consider the purification-binding game w.r.t.
the NOVY scheme in which a bit 0 is committed. By the purification attack the cheating sender
may not meausre the quantum states storing x and f(x) at the beginning of the commit stage. Since
the classical messages (h1, . . . , hn−1; c1, . . . , cn−1; a) exchanged in the commit stage will uniquely
determine the x chosen by the sender at the beginning of the commit stage, the corresponding
quantum states storing x and f(x) will be enforced to collapse at the end of the commit stage.
The case when a bit 1 is committed in the purification-binding game can be proved symmetrically.
Hence, the honest-binding property of the NOVY scheme extends to its purification. �

8 Parallel composition of statistically-binding quantum bit com-
mitments

We know that a general quantum bit commitment scheme can only guarantee the sum-binding
property (Definition 5). In cryptography, a typical way to commit a string is to commit it bitwisely
using a bit commitment scheme. We naturally will ask, what binding property can we obtain if
we commit a string bitwisely using a generic quantum bit commitment scheme? The answer to
this question on the parallel composition of quantum bit commitments turns out to be elusive,
especially w.r.t. the computationally-binding quantum bit commitment [CDMS04].

In this section, we study the parallel composition of a generic statistically-binding quantum bit
commitment scheme, establishing the (almost) strongest binding property that we may hope for.
We also show that this binding property implies the CDMS-binding property of quantum string
commitment, which is useful in quantum cryptography [CDMS04]. In spite of this, we do not expect
the same binding property extends to a generic computationally-binding quantum bit commitment
scheme [CDMS04].

8.1 Quantum string sum-binding

We first define the sum-binding property of a general quantum string commitment scheme.

Definition 17 (Sum-binding) Suppose that a possibly cheating sender interacts with an honest
receiver prescribed by a quantum string commitment scheme, and completes the commit stage. For
any string s ∈ {0, 1}m(n), where m(·) is a polynomial of the security parameter n, let ps denote the
success probability that the sender can open the commitment as the string s in the reveal stage.
We say that this quantum string commitment scheme is sum-binding if∑

s∈{0,1}m
ps < 1 + negl(n). (14)

Remark. The sum-binding property defined above is very strong for quantum string commit-
ment in the following sense. Note that a cheating sender can trivially achieve

∑
s∈{0,1}m ps = 1,

by committing to an arbitrary superposition of the strings in {0, 1}m honestly and then open the
commitment honestly. But showing that the advantage of any cheating sender in opening a com-
mitment is negligible is likely to be hard or even impossible [CDMS04]. The difficulty comes from
that there are exponentially many strings (2m, exactly) in {0, 1}m.
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For our purpose, we first extend the honest-binding property of a non-interactive quantum bit
commitment scheme (in Definition 2) to a quantitative form.

Definition 18 (ε-binding) We say that a generic non-interactive quantum bit commitment scheme
{(Q0(n), Q1(n))}n as stated in Definition 2 is ε(n)-binding if the r.h.s. of both inequalities (1) and
(2) are replaced with the function ε(n).

We can prove the following theorem.

Theorem 7 Suppose that a generic non-interactive quantum bit commitment scheme {(Q0(n), Q1(n))}n
is statistically binding. Then the quantum string commitment scheme obtained by composing it in
parallel is sum-binding. Specifically, if the scheme {(Q0(n), Q1(n))}n is statistically ε(n)-binding
where the function ε(·) is negligible, then∑

s∈{0,1}m
ps ≤ 1 +O(m2ε). (15)

The proof of the theorem above will be information-theoretic, thus does not extend to the
computational setting. Before giving the proof, we provide some preliminaries first.

When we use the quantum bit commitment scheme {Q0(n), Q1(n)}n to commit an m-bit string
s bitwisely, the quantum (string) commitment (stored in the quantum register C⊗m) is given by
the quantum state

ρs =
m⊗
i=1

ρsi , (16)

where the “si” denotes the i-th bit of the string s. The fact below gives an information-theoretic
characterization of the success probability of opening a claimed quantum commitment as an arbi-
trary string.

Fact 19 ([YWLQ15]) Let {Q0(n), Q1(n)}n be a generic non-interactive statistically-binding quan-
tum bit commitment scheme. Given an arbitrary quantum state ρ ∈ C⊗m which is claimed to be
the commitment to an m-bit string by a (possible cheating) computationally-unbounded sender,
the success probability of opening this commitment as an arbitrary string s ∈ {0, 1}m is at most
F(ρ, ρs)

2.

The following lemma states that the honest-binding error decreases exponentially w.r.t. the
Hamming distance between the committed string and the string to reveal.

Lemma 20 ([YWLQ15]) Let {Q0(n), Q1(n)}n be a generic non-interactive quantum bit commit-
ment scheme that is statistically ε-binding. Given the honest commitment to a string s ∈ {0, 1}m,
the success probability of opening it as s′ ∈ {0, 1}m by any computationally-unbounded sender is at
most ε2·dist(s,s

′).

Proof Sketch: Combining Fact 19 and the equation (16), the success probability

F(ρs, ρs′)
2 =

m∏
i=1

F(ρsi , ρs′i)
2 ≤ ε2·dist(s,s′).

�
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We also need a technical lemma as below, whose name comes from the fact that the inequality
(17) trivially holds by the Pythagorean theorem in the special case in which vectors |ψs〉 and |ψs′〉
are orthogonal whenever s 6= s′. Its proof is deferred to Appendix C.

Lemma 21 (An approximate Pythagorean theorem) Let {|ψs〉 ∈ X}s∈{0,1}m(n) be an essem-
ble of unnormalized vectors, where X is a Hilbert space, m(·) is a polynomial, and n is the se-
curity parameter. For each pair of indices s, s′ ∈ {0, 1}m such that s 6= s′, the inner product
|〈ψs′ |ψs〉| ≤ ε(n)dist(s,s

′) for some fixed function ε(·) such that 0 < ε(n) < 1/m(n) when n is
sufficiently large. Fix coefficients αs ≥ 0 for all s ∈ {0, 1}m. Then it holds that∣∣∣∣∣∣

∥∥∥ ∑
s∈{0,1}m

αs |ψs〉
∥∥∥2 − ∑

s∈{0,1}m
α2
s ‖|ψs〉‖

2

∣∣∣∣∣∣ ≤ m2ε
∑

s∈{0,1}m
α2
s. (17)

Now we are ready to prove Theorem 7.

Proof of Theorem 7: Let ρ ∈ C⊗m be an arbitrary quantum state which is claimed as the
commitment to an m-bit string sent by a cheating sender. Let ρs be the quantum state corre-
sponding to the honest commitment to the string s ∈ {0, 1}m. By Fact 19, it suffices to prove∑

s∈{0,1}m F(ρ, ρs)
2 ≤ 1 +O(m2ε). Denote by |ϕ〉 to be an arbitrary purification of ρ. Fact 3 allows

us to choose a unit vector |ψs〉 to be a purification of ρs such |〈ϕ|ψs〉| = F(ρ, ρs). In turn, our goal
becomes to prove ∑

s∈{0,1}n
|〈ϕ|ψs〉|2 ≤ 1 +O(m2ε).

Since the projection of the vector |ϕ〉 on the orthogonal complement of the subspace spanned
by {|ψs〉}s∈{0,1}m contributes zero to the summation on the r.h.s. of the inequality above, we can
assume without loss of generality that |ϕ〉 ∈ span {|ψs〉}s∈{0,1}m ; that is, we can write

|ϕ〉 =
∑

t∈{0,1}m
αt |ψt〉 .

(We note that the |ψt〉 in the equation above is not necessarily orthogonal to |ψt′〉 for t′ 6= t,
and

∑
t∈{0,1}m |αt|

2 is not necessarily equal to one.) Moreover, again without loss of generality we
can assume that the αt’s are non-negative reals; for otherwise, we can absorb the corresponding
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normalization (complex) phases into |ψt〉’s without affecting other settings. Thus,∑
s∈{0,1}m

|〈ϕ|ψs〉|2 =
∑

s∈{0,1}m

∣∣∣ ∑
t∈{0,1}m

αt〈ψt|ψs〉
∣∣∣2

≤
∑

s∈{0,1}m

∑
t∈{0,1}m

α2
t |〈ψt|ψs〉|

2 (triangle inequality)

=
∑

t∈{0,1}m
α2
t

m∑
j=0

∑
s∈{0,1}m:
dist(s,t)=j

|〈ψt|ψs〉|2

≤
∑

t∈{0,1}m
α2
t

m∑
j=0

∑
s∈{0,1}m:
dist(s,t)=j

F(ρs, ρt)
2 (Fact 3)

≤
∑

t∈{0,1}m
α2
t

m∑
j=0

∑
s∈{0,1}m:
dist(s,t)=j

ε2j (Lemma 20)

=
∑

t∈{0,1}m
α2
t

m∑
j=0

(
m

j

)
ε2j

= (1 + ε2)m
∑

t∈{0,1}m
α2
t . (18)

We are left to bound
∑

t∈{0,1}m α
2
t . To this end, we apply the approximate Pythagorean theorem;

specifically, we replace |ψs〉 and
∑

s∈{0,1}m αs |ψs〉 in Lemma 21 with |ψt〉 and |ϕ〉, respectively. We

note that all |ψt〉’s and |ϕ〉 are now unit vectors, and the condition |〈ψt′ |ψt〉| ≤ εdist(t,t
′) is guaranteed

by Lemma 20. Hence,

m2ε
∑

t∈{0,1}m
α2
t ≥

∣∣∣∣∣∣
∥∥∥ ∑
t∈{0,1}m

αt |ψt〉
∥∥∥2 − ∑

t∈{0,1}m
α2
t ‖|ψt〉‖

2

∣∣∣∣∣∣ =
∣∣∣1− ∑

t∈{0,1}m
α2
t

∣∣∣.
Then there are two cases:

1.
∑

t∈{0,1}m α
2
t < 1. In this case, 1 serves as a good upper bound.

2.
∑

t∈{0,1}m α
2
t ≥ 1. In this case, we have m2ε

∑
t∈{0,1}m α

2
t ≥

∑
t∈{0,1}m α

2
t − 1. Rewritting

terms, we have
∑

t∈{0,1}m α
2
t ≤ 1/(1−m2ε).

It follows that in either cases, we have ∑
t∈{0,1}m

α2
t ≤

1

1−m2ε
.

Plugging the upper bound above in the inequality (18), we have∑
s∈{0,1}m

|〈ϕ|ψs〉|2 ≤
(1 + ε2)m

1−m2ε
= 1 +m2ε+O((m+m4)ε2) = 1 +O(m2ε).

This completes the proof of the theorem. �
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8.2 Relationship with other quantum string binding properties

We show that the quantum string sum-binding property established above is stronger than two
other quantum string binding properties that have been previously studied.

Honest-binding

Informally, we say that a quantum string commitment scheme is honest-binding if the honest
commitment to an arbitrary string s cannot be opened as s′ 6= s with non-negligible probability
(implicit in [YWLQ15]). By a simple hybrid argument, it is not hard to see that any quantum non-
interactive (statistically-binding or computationally-binding) bit commitment scheme composed in
parallel gives an honest-binding quantum string commitment scheme.

To see that the quantum string sum-binding implies the quantum string honest-binding, we
just fix the ps = 1 in the inequality (15) for an arbitrary string s ∈ {0, 1}m; it then follows that
ps′ < O(m2ε) for any s′ 6= t.

CDMS-binding

The CDMS-binding is defined w.r.t. a function or a set of functions. The following definition is
adapted from [CDMS04].

Definition 22 (CDMS-binding) Function f : {0, 1}m → {0, 1}l, where m(·) and l(·) are two
polynomials of the security parameter n. A possibly cheating sender interacts with an honest
receiver prescribed by a quantum string commitment scheme and completes the commit stage.
Let p̃fy be the success probability that the sender can open the string commitment as any string
s ∈ {0, 1}m in the reveal stage such that f(s) = y, where y ∈ {0, 1}l. We say that this (string)
commitment scheme is binding w.r.t. the function f(·) (or f -binding as in [CDMS04]) if∑

y∈{0,1}l
p̃fy < 1 + negl(n).

When a set of functions F is considered, we say that a quantum string commitment scheme is
F-binding if it is f -binding for each f ∈ F .

The (string) sum-binding property (Definition 17) can be viewed as a special case of the CDMS-
binding property, by noting that when the function f is fixed to be the identity function, then the
f -binding becomes the sum-binding.

Conversely, it is also not hard to see that the (string) sum-binding property implies the f -binding
property whatever the function f is. To see this, a key observation is that

p̃fy ≤
∑

s:f(s)=y

ps,

where ps denotes the success probability that the sender can open a claimed commitment as the
string s ∈ {0, 1}m (as in Definition 17). This follows straightforwardly from definitons of p̃fy and
ps: while the cheating sender uses the same strategy to open the commitment as each preimage of
y in the definition of p̃fy , it may reveal each preimage of y adaptively in the definition of ps. Hence,
given the sum-binding we have∑

y∈{0,1}l
p̃fy ≤

∑
y∈{0,1}l

∑
s:f(s)=y

ps =
∑

s∈{0,1}m
ps < 1 + negl(n),
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which establishes the f -binding property.
Therefore, the (string) sum-binding property implies the CDMS-binding property w.r.t. any

function or set of functions.

9 Conclusion and open questions

In this work, we study general properties of quantum bit commitment based on the raw quantum
computational hardness. Notably, we show that it is sufficient to focus on the non-interactive
quantum bit commitment of a generic scheme (Theorem 3), whose semi-honest security implies
the full security (Theorem 2). This yields several applications, allowing us to not only obtain
new constructions of quantum bit commitment but also simplify the security analyses of existing
constructions. We also establish the strongest sum-binding property of the quantum string commit-
ment scheme that is obtained by composing a generic non-interactive statistically-binding quantum
bit commitment scheme in parallel (Theorem 7).

Two open questions following this work that interest us most are as follows:

1. In previous applications of statistically-binding quantum bit commitments [YWLQ15, FUYZ20]
we commit a string bitwisely. If we view this as giving rise to a quantum string commitment,
then after taking a closer look at those security analyses, we find that the security of cor-
ressponding constructions essentially only relies on the string honest-binding property. An
interesting open question is, can we find any applications whose security will make an essential
use of the (strongest) string sum-binding property that we have established?

2. What binding property (stronger than the honest-binding) can we obtain if we compose
computationally-binding quantum bit commitments in parallel? Can it yield any interest-
ing applications? If yes, then the corresponding construction is likely to reduce the round
complexity significantly compared with its classical counterpart (by the virtue of the non-
interactiveness of quantum bit commitment). However, as pointed out in [FUYZ20], the
security analysis based on the quantum statistical binding property does not extend to the
computational setting straightforwardly.
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strictness of the quantum binding property. We are also grateful to Dominique Unruh and Takeshi
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A The proof of the weak quantum rewinding lemma in [FUYZ20]

Lemma 23 (The restatement of Lemma 4) Let X and Y be two Hilbert spaces. Unit vec-
tor |ψ〉 ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, while unitaries

U1, . . . , Uk perform on the space Y. If 1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ〉
∥∥2 ≥ 1 − η, where 0 ≤ η ≤ 1,

then ∥∥∥(U †k ⊗ 1
X)Γk(Uk ⊗ 1X) · · · (U †1 ⊗ 1

X)Γ1(U1 ⊗ 1X) |ψ〉
∥∥∥ ≥ 1−

√
kη.

Proof: From the assumption 1/k ·
∑k

i=1 ‖ΓiUi |ψ〉‖
2 ≥ 1− η, we have

η ≥ 1− 1

k

k∑
i=1

‖ΓiUi |ψ〉‖2 =
1

k

k∑
i=1

(
1− ‖ΓiUi |ψ〉‖2

)
=

1

k

k∑
i=1

‖ΓiUi |ψ〉 − Ui |ψ〉‖2

=
1

k

k∑
i=1

∥∥∥U †i ΓiUi |ψ〉 − |ψ〉
∥∥∥2 ,

where the second ”=” is by noting that 1− ‖ΓiUi |ψ〉‖2 is equal to the square of the projection of
Ui |ψ〉 on the subspace 1− Γi. Rearranging terms, we get

k∑
i=1

∥∥∥U †i ΓiUi |ψ〉 − |ψ〉
∥∥∥2 ≤ kη. (19)

We claim that∥∥∥|ψ〉 − (U †kΓkUk) · · · (U †1Γ1U1) |ψ〉
∥∥∥2 ≤ k∑

i=1

∥∥∥U †i ΓiUi |ψ〉 − |ψ〉
∥∥∥2 . (20)

If this is true, then combining the inequalities (19) and (20), we have∥∥∥|ψ〉 − (U †1Γ1U1) · · · (U †kΓkUk) |ψ〉
∥∥∥ ≤√kη.

Applying the triangle inequality to the left hand side of the inequality above and rearranging terms,
we arrive at ∥∥∥(U †1Γ1U1) · · · (U †kΓkUk) |ψ〉

∥∥∥ ≥ 1−
√
kη,

as desired.

We are left to prove the inequality (20), which will be done by induction on k.
1. k = 1. The “=” of inequality (20) holds trivially.
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2. Suppose that the inequality (20) holds for k − 1. We now prove that it also holds for k.∥∥∥|ψ〉 − (U †kΓkUk) · · · (U †1Γ1U1) |ψ〉
∥∥∥2

=
∥∥∥|ψ〉 − (U †kΓkUk) |ψ〉

∥∥∥2 +
∥∥∥(U †kΓkUk) |ψ〉 − (U †kΓkUk) · · · (U †1Γ1U1) |ψ〉

∥∥∥2
≤

∥∥∥|ψ〉 − (U †kΓkUk) |ψ〉
∥∥∥2 +

∥∥∥|ψ〉 − (U †k−1Γk−1Uk−1) · · · (U
∗
1Γ1U1) |ψ〉

∥∥∥2
≤

∥∥∥|ψ〉 − (U †kΓkUk) |ψ〉
∥∥∥2 +

k−1∑
i=1

∥∥∥U †i ΓiUi |ψ〉 − |ψ〉
∥∥∥2

=
k∑
i=1

∥∥∥U †i ΓiUi |ψ〉 − |ψ〉
∥∥∥2 .

where the first “=” follows from Pythagorean theorem by observing that the subspaces U †kΓkUk and

1 − U †kΓkUk are orthogonal; in the second “≤”, we apply the induction hypothesis. This finishes
the proof of the inequality (20), and in turn the proof of the lemma. �

B Reduction 1 in Lemma 14

We inherit all notations in Subsection 7.1. Additionally, for convenience and to avoid ambiguity
here, let us call the sender and the receiver of the inner quantum bit commitment scheme (Q0, Q1)
Alice and Bob, respectively, while “the sender” and “the receiver” are reserved for the scheme
QBC(n)⊗n and other outer schemes.

For contradiction, suppose that the scheme U-QBC(n)⊗n is unconditionally purification-binding
whereas the scheme QBC(n)⊗n is not computationally purification-binding; in particular, let S∗ be
a cheating sender in the reveal stage10 who breaks the computational purification-binding property
of the latter. That is, consider the purification-game w.r.t. the scheme QBC(n)⊗n, where in the
reveal stage the cheating sender S∗ attempts to open the commitment as 1. By our hypothesis,
the probability of the S∗ cheating (revealing 1) successfully is non-negligible. We shall construct
a cheating Bob B∗, with oracle access to S∗, who can break the computational hiding property of
the inner quantum bit commitment scheme (Q0, Q1), thus arriving at a contradiction. To this end,
we use the hybrid argument. Detail follows.

As prescribed by the atomic scheme QBC, there are 2n bit commitments (to (θi, xi), for i =
1, 2, . . . , n) sent in step (R2); thus, there are in total 2n2 bit commitments sent in the parallelized
scheme QBC(n)⊗n. For k = 0, 1, 2, . . . , 2n2, we define hybrid scheme Hk as follows: it is basically
the parallelized scheme QBC(n)⊗n, except that in step (R2) in place of the first k (when k ≥ 1)
bits the receiver would have committed, it picks k fresh uniformly random bits and commits to
them. It is easy to check that the hybrids H0 and H2n2 are just the parallelized scheme QBC(n)⊗n

and U-QBC(n)⊗n, respectively.
Now for each hybrid Hk (0 ≤ k ≤ 2n2), consider the corresponding purification-binding game

such that in the reveal stage the cheating sender runs S∗. We define event succ as the sender cheating
(revealing 1) successfully. From our hypothesis that the scheme U-QBC(n)⊗n is unconditionally

10Recall that regarding the purification-binding (Definition 10), the sender’s operation is fixed to be the purification
of that of the honest sender in the commit stage.
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purification-binding and S∗ breaks the computational purification-binding property of the scheme
QBC(n)⊗n, we have

Pr
H0

[succ]− Pr
H2n2

[succ] >
1

q(n)
, (21)

where q(·) is some fixed polynomial.
Now we are ready to construct a cheating Bob B∗, with oracle access to S∗, who can break the

computational hiding property of the inner quantum bit commitment scheme (Q0, Q1). Specifically,
B∗ operates as follows after receiving the commitment to a random bit b ∈ {0, 1} from Alice:

1. Choose k
$←
{

0, 1, . . . , 2n2 − 1
}

.

2. Internally simulate the commit stage of the purification-binding game w.r.t. the hybrid Hk,
except that in step (R2) replace the commitment to the (k + 1)-th bit, which we denote by
bk+1, with the commitment to the bit b (which is received from Alice externally).

3. Invoke the S∗ in the reveal stage of the purification-game. If the opening is successful, i.e.

the event succ happens, then let b̃ = bk+1; otherwise, choose b̃
$← {0, 1}.

4. Output the guess b̃.

Clearly, B∗ runs in polynomial time if S∗ does. We are left to lowerbound the probability of
the B∗ guessing the bit b correctly.

Averaging over all choices of the random k ∈
{

0, 1, . . . , 2n2 − 1
}

,

Pr
b←{0,1},B∗

[b̃ = b] =
1

2n2

2n2−1∑
k=0

Pr
b←{0,1},B∗k

[
b̃ = b

]
, (22)

where the B∗ under the “Pr” indicates the experiment induced by the cheating Bob B∗, and B∗k
indicates the same experiment conditioned on the k is chosen. For the summand on the r.h.s. of
the equation above,

Pr
b←{0,1},B∗k

[
b̃ = b

]
= Pr

b←{0,1},B∗k

[
(b̃ = b) ∧ succ

]
+ Pr
b←{0,1},B∗k

[
(b̃ = b) ∧ succ

]
≥ Pr

[
(b̃ = b) ∧ succ|b = bk+1

]
· Pr

[
b = bk+1

]
+ Pr

[
(b̃ = b)|succ

]
· Pr[succ]

=
1

2
Pr
[
succ|b = bk+1

]
+

1

2
Pr[succ], (23)

where the last “=” follows from the following:

• The first “1/2” is due to that the bit b is chosen uniformly random by Alice, and thus with
probability 1/2 equal to the (k+ 1)-th bit (i.e. bk+1) that the receiver would have committed
in a semi-honest execution of the commit stage of the hybrid Hk.

• Conditioned on both the events succ and b = bk+1 happening, according to step 3 of the B∗,
we must have b̃ = bk+1 = b. Thus,

Pr
b←{0,1},B∗k

[
(b̃ = b) ∧ succ|b = bk+1

]
= Pr

b←{0,1},B∗k

[
succ|b = bk+1

]
.

• The second “1/2” is due to that conditioned on that the opening of the commitment (as 1)
fails, B∗ (step 3) will output a random guess b̃.
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Another important observation is that

Pr
b←{0,1},B∗k

[
succ|b = bk+1

]
= Pr

Hk

[
succ

]
, Pr

b←{0,1},B∗k
[succ] = Pr

Hk+1

[succ], (24)

where the Hk and Hk+1 under the “Pr” indicate the experiments induced by a semi-honest execution
of the hybrids Hk and Hk+1, respectively.

Combing equations (23) and (24), we have

Pr
b←{0,1},B∗k

[
b̃ = b

]
≥ 1

2
Pr
Hk

[
succ

]
+

1

2

(
1− Pr

Hk+1

[succ]
)

=
1

2
+

1

2

(
Pr
Hk

[
succ

]
− Pr

Hk+1

[succ]
)
.

Plug this inequality in the equation (22),

Pr
b←{0,1},B∗

[b̃ = b] ≥ 1

2n2

2n2−1∑
k=0

(
1

2
+

1

2

(
Pr
Hk

[
succ

]
− Pr

Hk+1

[succ]
))

=
1

2
+

1

4n2

(
Pr
H0

[
succ

]
− Pr

H2n2

[succ]
)

≥ 1

2
+

1

4n2q(n)
,

where the last “≥” follows from the inequality (21). But this violates the computational hiding
property of the quantum bit commitment scheme (Q0, Q1). Thus, if the scheme U-QBC(n)⊗n

is unconditionally purification-binding, then the scheme QBC(n)⊗n computationally purification-
binding.

C A proof of the approximate Pythagorean theorem

For convenience, we restate Lemma 21 as below.

Lemma 24 (An approximate Pythagorean theorem) Let {|ψs〉 ∈ X}s∈{0,1}m(n) be an essem-
ble of unnormalized vectors, where X is a Hilbert space, m(·) is a polynomial, and n is the se-
curity parameter. For each pair of indices s, s′ ∈ {0, 1}m such that s 6= s′, the inner product
|〈ψs′ |ψs〉| ≤ ε(n)dist(s,s

′) for some fixed function ε(·) such that 0 < ε(n) < 1/m(n) when n is
sufficiently large. Fix coefficients αs ≥ 0 for all s ∈ {0, 1}m. Then it holds that∣∣∣∣∣∣

∥∥∥ ∑
s∈{0,1}m

αs |ψs〉
∥∥∥2 − ∑

s∈{0,1}m
α2
s ‖|ψs〉‖

2

∣∣∣∣∣∣ ≤ m2ε
∑

s∈{0,1}m
α2
s. (25)

Proof: We prove the lemma by induction on m.

1. m = 1. We first expand ‖α0 |ψ0〉+ α1 |ψ1〉‖2 as

α2
0 ‖|ψ0〉‖2 + α2

1 ‖|ψ1〉‖2 + α0α1〈ψ0|ψ1〉+ α1α0〈ψ1|ψ0〉.
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Thus, ∣∣∣‖α0 |ψ0〉+ α1 |ψ1〉‖2 − (α2
0 ‖|ψ0〉‖2 + α2

1 ‖|ψ1〉‖2)
∣∣∣

= |α0α1〈ψ0|ψ1〉+ α1α0〈ψ1|ψ0〉|

≤ 2ε · α0α1 ≤ 2ε · α
2
0 + α2

1

2
= ε(α2

0 + α2
1).

The lemma holds for m = 1.

2. Assume that the theorem holds for m− 1, where m ≥ 2. We then prove it also holds for m.

First, one can expand
∥∥∥∑s∈{0,1}m αs |ψs〉

∥∥∥2 as

∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0〉+
∑

t′∈{0,1}m−1

αt′1 |ψt′1〉
∥∥∥2

=
∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0〉
∥∥∥2 +

∥∥∥ ∑
t′∈{0,1}m−1

αt′1 |ψt′1〉
∥∥∥2

+
∑

t,t′∈{0,1}m−1

αt0αt′1〈ψt0|ψt′1〉+
∑

t,t′∈{0,1}m−1

αt′1αt0〈ψt′1|ψt0〉.

Thus, the left hand side of the inequality (25)∣∣∣∣∣∣
∥∥∥ ∑
s∈{0,1}m

αs |ψs〉
∥∥∥2 − ∑

s∈{0,1}m
α2
s ‖ψs‖

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0〉
∥∥∥2 +

∥∥∥ ∑
t′∈{0,1}m−1

αt′1 |ψt′1〉
∥∥∥2 − ∑

s∈{0,1}m
α2
s ‖ψs‖

2

+
∑

t,t′∈{0,1}m−1

αt0αt′1〈ψt0|ψt′1〉+
∑

t,t′∈{0,1}m−1

αt′1αt0〈ψt′1|ψt0〉

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0〉
∥∥∥2 − ∑

t∈{0,1}m−1

α2
t0 ‖|ψt0〉‖

2

∣∣∣∣∣∣+

∣∣∣∣∣∣
∥∥∥ ∑
t′∈{0,1}m−1

αt′1 |ψt′1〉
∥∥∥2 − ∑

t′∈{0,1}m−1

α2
t′1 ‖|ψt′1〉‖

2

∣∣∣∣∣∣
+ 2

∑
t,t′∈{0,1}m−1

|αt0αt′1〈ψt′1|ψt0〉| (triangle inequality)

≤ (m− 1)2ε
∑

t∈{0,1}m−1

α2
t0 + (m− 1)2ε

∑
t′∈{0,1}m−1

α2
t′1 + 2

∑
t,t′∈{0,1}m−1

|αt0αt′1〈ψt′1|ψt0〉|

= (m− 1)2ε
∑

s∈{0,1}m
α2
s + 2

∑
t,t′∈{0,1}m−1

|αt0αt′1〈ψt′1|ψt0〉| ,

where the last ”≤” is by the induction hypothesis. We are left to bound the second term in the
above.
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Indeed,

2
∑

t,t′∈{0,1}m−1

|αt0αt′1〈ψt′1|ψt0〉|

= 2

m−1∑
j=0

∑
t,t′∈{0,1}m−1:

dist(t,t′)=j

αt0αt′1 · |〈ψt′1|ψt0〉|

≤
m−1∑
j=0

εj+1
∑

t,t′∈{0,1}m−1:

dist(t,t′)=j

2αt0αt′1

(
by the assumption |〈ψs′ |ψs〉| < εdist(s,s

′)
)

≤
m−1∑
j=0

εj+1
∑

t,t′∈{0,1}m−1:

dist(t,t′)=j

(α2
t0 + α2

t′1).

We next count how many times each α2
t0 (resp. α2

t′1) is added up in the inner summation above.
Since for each t (resp. t′), there are exactly

(
m−1
j

)
t′’s (resp. t’s) such that dist(t, t′) = j, it follows

that there are in total
(
m−1
j

)
α2
t0’s (resp. α2

t′1’s) appearing in the inner summation. Therefore,

∑
t,t′∈{0,1}m−1:

dist(t,t′)=j

(α2
t0 + α2

t′1) =

(
m− 1

j

) ∑
t∈{0,1}m−1

α2
t0 +

∑
t′∈{0,1}m−1

α2
t′1

 =

(
m− 1

j

) ∑
s∈{0,1}m

α2
s.

Hence,

2
∑

t,t′∈{0,1}m−1

|αt0αt′1〈ψt′1|ψt0〉| ≤
m−1∑
j=0

εj+1

(
m− 1

j

) ∑
s∈{0,1}m

α2
s = ε(1 + ε)m−1

∑
s∈{0,1}m

α2
s.

Putting it together,∣∣∣∣∣∣
∥∥∥ ∑
s∈{0,1}m

αs |ψs〉
∥∥∥2 − ∑

s∈{0,1}m
αs

2 ‖|ψs〉‖2
∣∣∣∣∣∣ ≤ (m− 1)2ε

∑
s∈{0,1}m

α2
s + ε(1 + ε)m−1

∑
s∈{0,1}m

α2
s

=
(
(m− 1)2 + (1 + ε)m−1

)
ε
∑

s∈{0,1}m
α2
s

≤ m2ε
∑

s∈{0,1}m
α2
s.

This completes the proof of the lemma. �
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