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Abstract

While unconditionally-secure quantum bit commitment (allowing quantum computation and
quantum communication) is impossible, in this work we study complexity-based quantum bit
commitment. In particular, we will study its general properties through the lens of the so-called
“canonical”1 quantum bit commitment schemes. The reason why we can do this is that as will
be shown in this work, any complexity-based quantum bit commitment scheme can be converted
into the canonical form.

Both flavors of canonical quantum bit commitment schemes (i.e. computationally hiding and
statistically binding, or statistically hiding and computationally binding), which will be shown
equivalent in this work, can be based on quantum-secure one-way functions (or pseudorandom
quantum states by more recent results). But in our opinion, the question of whether canonical
quantum bit commitment schemes exist is interesting in its own right in quantum complexity
theory and may serve as an alternative foundation of complexity-based quantum cryptography.

∗Email: tjunyan@jnu.edu.cn
1In some prior work [FUYZ20, Yan21] and an earlier draft of this paper (back in 2020), it is called “generic” form.

However, this name is misleading as pointed out by Ananth, Qian, and Yuen [AQY22], who also suggest the current
name “canonical” to us. And we accept.
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1 Introduction

In the classical world, bit commitment is an important cryptographic primitive. A bit commitment
scheme defines a two-stage interactive protocol between a sender and a receiver. It provides two
security guarantees, hiding and binding. Informally, the hiding property states that the committed
bit is hidden from the receiver in the commit stage, while the binding property states that the
sender can only open the commitment as at most one bit value (0 or 1, exclusively) in the reveal
stage later. Unfortunately, unconditionally (or information-theoretically) secure bit commitment
is impossible. As a compromise, we turn to consider complexity-based bit commitment. The one-
way function assumption is a raw computational hardness assumption without any mathematical
structure; it is the minimum assumption in complexity-based cryptography [IL89]. From the one-
way function assumption we can construct two flavors of bit commitments: computationally-hiding
(statistically-binding) bit commitment [Nao91] and (statistically-hiding) computationally-binding
bit commitment [NOVY98, HNO+09]. However, a major disadvantage of these constructions is that
they are interactive: at least two or even polynomial numbers of messages are needed to exchange,
and which seems inherent [MP12, HHRS07].

As quantum technology develops, existing cryptosystems are facing possible quantum attacks
in the near future. Regarding bit commitment, we thus have to study bit commitment secure
against quantum attacks, a.k.a. quantum bit commitment. A general quantum bit commitment
scheme itself (i.e. the construction) could be a hybrid of classical and quantum computation and
communication. When it is purely classical (i.e. both the computation and the communication are
classical), we will call it “(classical) bit commitment scheme secure against quantum attacks” or
“post-quantum bit commitment scheme”2.

The concept of quantum bit commitment was proposed almost three decades ago, aiming to
make use of quantum mechanics to realize bit commitments [BB84, BC90]. Unfortunately, uncondi-
tionally secure quantum bit commitment is impossible either [May97, LC98]. Based on complexity
assumptions such as quantum-secure one-way permutations or functions, we can also construct
two flavors of quantum bit commitments [AC02, YWLQ15, DMS00, KO09, KO11, CLS01]. An
interesting observation about these constructions is that almost all of them (except for the one in
[CLS01]) are non-interactive (in both the commit and the reveal stages). This motivates us to ask
the following question:

Is quantum bit commitment inherently non-interactive? That is, can any quantum bit
commitment scheme be “compressed” into a non-interactive one?

This possible non-interactivity of quantum bit commitment is intriguing: if it is true, then replacing
post-quantum bit commitments with quantum bit commitments in applications can potentially
reduce the round complexity of the whole construction.

Quantum commitments in applications. While the idea of using quantum bit commitments
in applications sounds wonderful, unfortunately, it is well-known that the general binding property
of quantum bit commitment, e.g. sum-binding, is much weaker than the classical-style binding
(but secure against quantum attacks) [DMS00, CDMS04, YWLQ15, Unr16b], or unique-binding
hereafter. This is because a quantum cheating sender may commit to a bit 0 and 1 in an arbitrary
superposition, resulting in the committed value no longer unique3. Thus, it is questionable a prior

2Even in case, it is still legal to call it “quantum bit commitment scheme”. This is because classical computation
and communication can be simulated by quantum computation and communication, respectively, in a standard way.

3One may argue that in this case the committed value is still unique in that now the committed value is just a
superposition rather than a classical bit. However, we highlight that the goal quantum a commitment is trying to
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whether quantum bit commitments could be useful in cryptographic applications, let alone the
notorious difficulty (or general impossibility) of quantum rewinding [vdG97] in security analysis.
Moreover, in typical applications of bit commitments such as zero-knowledge [GMW91, Blu86], a
binary string is committed in a bitwise fashion. In this regard, what can we say about the general
binding property of the parallel composition of quantum bit commitments? Does it suffice for
applications? These questions turn out to be notoriously hard since the concept of complexity-based
quantum bit commitment was proposed more than two decades ago [DMS00]. As a compromise, we
may ask specific to each application we are interested in, what (tailored) quantum (string) binding
property is needed to establish its security? And can this quantum string binding property be
reduced to the general quantum bit binding (e.g. sum-binding)?

Some progress towards answering questions mentioned above has been made in prior works. On
the positive side, quantum bit commitment of the canonical (non-interactive) form (see Footnote
1) is proposed [YWLQ15, FUYZ20], which can be based on quantum-secure one-way functions
[YWLQ15, KO09, KO11] or even pseudorandom quantum states by more recent results [MY21].
Though its binding property seems even weaker than sum-binding, it turns out to be useful in
constructing quantum zero-knowledge [YWLQ15, FUYZ20, Yan21] and quantum oblivious transfer
[FUYZ20]; but the corresponding security analysis based on quantum binding is more tricky than
those based on unique-binding.

Other (classical or quantum) constructions of commitments may satisfy some stronger binding
properties than sum-binding, such as commitments with unique-binding (e.g. [AC02, BB21] and
those based on concrete complexity assumptions with structure), collapse-binding [Unr16b, Unr16a],
and the recently established extractable property [GLSV21, BCKM21]. They may be more versatile
than general quantum bit commitments in applications. However, these constructions suffer at least
one of weaknesses listed as below:

1. Rely on stronger quantum complexity assumptions than quantum one-way functions;

2. Need some setup;

3. The construction is complex;

4. The construction is highly interactive (which is in contrast to our motivation of using quantum
bit commitments in applications).

There are also some work in which certain strong enough quantum string binding properties
were proposed for applications [DFS04, CDMS04], but no instantiations of the corresponding com-
mitments based on well-founded complexity assumptions are known.

On the negative side, some black-box barriers towards using quantum commitments in applica-
tions are proved [ARU14].

This work. In this work, we put the applications of quantum bit commitments aside, while
focusing on studying their general properties. In particular, we will study through the lens of
quantum bit commitment schemes of the canonical form that ever appeared in prior work [CKR11,
YWLQ15, FUYZ20, Yan21] and was motivated by the study of complete problems for quantum
zero-knowledge [Wat02, Yan12] and more general quantum interactive proofs [RW05]. The reason
why we can do this is because we will show (in this work) that any complexity-based quantum bit
commitment scheme can be converted into the canonical form.

Based on previous results as well as results in this work, we propose to study quantum bit
commitment in future no only as a cryptographic primitive in the MiniQCrypt world (named

secure a classical bit rather than a qubit. In this regard, the committed value is not unique any more.
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after [GLSV21]), but also as a basic (quantum) complexity-theoretic object whose existence is an
interesting open problem in its own right. (Refer to Section 1.4 for more discussion.)

In this paper, when we talk about statistical or computational binding without explicitly men-
tioning other properties of the binding, we mean sum-binding (or equivalently, honest-binding w.r.t.
a canonical quantum bit commitment scheme, as will become clear shortly).

1.1 Our contribution

We first sketch what a canonical quantum bit commitment scheme looks like, which (we guess) are
unfamiliar to most researchers; its formal definition, as well as its hiding and binding properties,
are referred to Definition 4. Informally speaking, a canonical (non-interactive) quantum bit com-
mitment scheme can be represented by an ensemble of unitary polynomial-time generated quantum
circuit pair {(Q0(n), Q1(n))}n, where n is the security parameter. For the moment, let us drop
the security parameter n to simplify the notation. Both quantum circuits Q0 and Q1 perform on a
quantum register pair (C,R), which are composed of a bunch of qubits. To commit a bit b ∈ {0, 1},
the sender (of bit commitment) first initializes the register pair (C, R) in all |0⟩’s state and then
performs the quantum circuit Qb on them, sending the commitment register C to the receiver.
In the reveal stage, the sender sends the bit b together with the decommitment register R to the
receiver, who will first perform the inverse of the quantum circuit Qb (since it is unitary) on the
register pair (C, R), and then measure each qubit of (C, R) in the computational basis. The receiver
will accept (i.e. the opening is successful) if and only if the measurement outcome of each qubit is
0.

We obtain four main results on properties of canonical quantum bit commitment schemes and
general quantum bit commitments as follows:

1. Honest-binding is equivalent to sum-binding (w.r.t. the canonical form)

Among various binding properties proposed for quantum (including post-quantum) commit-
ments [AC02, DMS00, CDMS04, DFS04, Unr16b, YWLQ15, Yan21], honest-binding [YWLQ15] is
the weakest. Informally, it states that any cheating sender (in the reveal stage) cannot open an
honest commitment to 0 (resp. 1) as 1 (resp. 0). Its formal definition w.r.t. a canonical quantum
bit commitment scheme is referred to Definition 4. A prior, honest-binding seems too weak to be
useful: it is unrealistic to restrict a cheating sender’s behavior to be honest in the commit stage.

Sum-binding (which is mentioned several times before) is a general binding property of quantum
bit commitment schemes (secure against quantum attacks) [DMS00]. It roughly states that any
cheating sender (who may deviate from the scheme in both the commit and the reveal stages) cannot
open a claimed bit commitment as 0 and 1 in such a way that the sum of their success probabilities
is bounded by 1, with some additive negligible error. More formally, fix a bit commitment (not
necessarily an honest commitment) first. Let p0 (resp. p1) denote the probability that a cheating
sender in the reveal stage can open this commitment as 0 (resp. 1). Then sum-binding requires
that p0+p1 < 1+negl(n), where negl(·) is some negligible function of the security parameter. The
formal definition of sum-binding w.r.t. a canonical quantum bit commitment scheme is referred to
Definition 6.

While it is trivial that sum-binding implies honest-binding, in this work we show that the
converse is also true w.r.t. a canonical quantum bit commitment scheme4 (Theorem 1). This
in turn establishes an equivalence between its semi-honest security (against an honest-but-curious
attacker, i.e. honest-hiding and honest-binding; refer to Definition 4) and the full security (against

4We do not claim that this holds for a general quantum bit commitment scheme.
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an arbitrary attacker) (Theorem 2). This equivalence not only explains at a high level why previous
applications of a canonical quantum bit commitment scheme only make use of its honest-binding
property [YWLQ15, FUYZ20, Yan21], but also enables us to simplify the security analysis of
quantum bit commitment schemes of the canonical form5. As an application, we can significantly
simplify the DMS construction of computationally-binding quantum bit commitment based on
quantum-secure one-way permutations6 [DMS00].

2. Quantum bit commitment is non-interactive inherently

We answer the motivating question raised before affirmatively, i.e. quantum bit commitment
is inherently non-interacitve, by proving a round-collapse theorem (Theorem 3). This theorem can
also be viewed as an extension of converting an arbitrary non-interactive quantum bit commitment
scheme into the canonical form [YWLQ15, FUYZ20]. Its basic idea follows the non-interactive case,
with the only non-trivial thing lying in identifying a sufficient yet as weak as possible condition
under which the same idea works for such an extension. A prior, one may expect that for the
compression of rounds, the original scheme itself should be firstly secure (against quantum attacks),
with some additional structure requirements (if needed). Surprisingly, it turns out the condition
for the round compression could be extremely weak : even the original quantum bit commitment
scheme need not be fully secure; instead, it is sufficient that its purification is semi-honest secure!
In greater detail, we construct a general compiler that can convert any (interactive) quantum
bit commitment scheme whose purification is semi-honest secure into a quantum bit commitment
scheme of the canonical form. This resulting scheme (of the canonical form), which will be referred
to as the “compressed scheme”, has perfect completeness and satisfies the same flavor of hiding
and binding properties as the original scheme. This theorem is interesting by noting that we do not
have a classical counterpart of it yet, which seems even unlikely [MP12, HHRS07]. An immediate
consequence of the round-collapse theorem is that any known quantum bit commitment scheme (of
either flavor and based on any complexity assumption) can be converted into the canonical form
(Theorem 4).

If we want to apply the round-collapse theorem in applications, (seeing from its statement) the
relationship between the semi-honest security of the original scheme and its purification becomes
important. We thus initiate a study towards this relationship (in Section 7, 9, and 10). On one
hand, we identify many situations in which the semi-honest security of the original scheme extends
to its purification. On the other hand, we find two counterexamples for which such an extension
is impossible (Appendix B). A bridge that connects these two notions of security is the security
against a special kind of attack which we will refer to as the “purification attack”, i.e. attacking
by purifying all the party’s (honest) operations prescribed by the protocol. A typical purification
attack is not to perform the expected measurements. It turns out that an (interactive) quantum
bit commitment scheme is secure against the purification attack if and only if its purification is
semi-honest secure (Proposition 15). But in comparison, the security against the purification attack
is more convenient to work with in security analysis than the semi-honest security of the purified
scheme. We believe that this security against the purification attack as well as techniques developed
to establish it (refer to “Technical overview”) are of independent interest.

As an interesting application, we apply the round-collapse theorem to compress the classical
NOVY scheme [NOVY98], obtaining yet another construction (besides ones given in [DMS00, KO09,
KO11]) of non-interactive computationally-binding quantum bit commitment based on quantum-

5Then it suffices to show its semi-honest security.
6Strictly speaking, we simplify the security analysis of the DMS scheme after it is firstly converted into the

canonical form (which is straightforward).
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secure one-way permutations. This is interesting because we even do not know whether the original
NOVY scheme itself is secure against quantum attacks (when the underlying quantum one-way
permutation used is quantum secure). We also highlight that our quantum security analysis here
is (interestingly) much simpler than the classical analysis of the NOVY scheme in [NOVY98]. This
simplification mainly comes from that it suffices to show that the NOVY scheme is secure against
the purification attack (for the purpose of round compression).

3. Quantum bit commitment is symmetric

The CLS scheme [CLS01] is an interactive computationally-binding quantum bit commitment
scheme that builds on Naor’s statistically-binding (interestingly, of the opposite flavor) classical bit
commitment scheme (but secure against quantum attacks) [Nao91]. It gives a way of converting
the flavor of quantum bit commitment. In this work, we generalize this result and push it to the
optimal. Specifically, we show that quantum bit commitment is symmetric7, in that two flavors
of quantum bit commitments are equivalent. By the virtue of the round-collapse theorem, this is
achieved by proving an equivalence between two flavors of quantum bit commitment schemes of
the canonical form (Theorem 6).

The high-level idea of proving the equivalence above is as follows. Given a canonical quantum
bit commitment scheme, we first feed it to a somewhat simplified CLS construction [CLS01] to
convert its flavor, and then feed the resulting scheme to the general compiler guaranteed by the
round-collapse theorem to obtain the final scheme (which is of the canonical form but with the
opposite flavor). We highlight that both our construction and their analysis here are significantly
simpler than the related ones in [CLS01, CDMS04]. Basically, the simplification comes from two
aspects:

1. By the virtue of our round-collapse theorem (Theorem 3), the original CLS scheme (with a
canonical quantum bit commitment scheme plugged in) can be firstly simplified to just satisfy
the security against the purification attack before the compression.

2. Proving the security against the purification attack turns out to be much easier than the full
security.

Towards proving this equivalence, we develop several techniques to establish the security against
the purification attack. Among others, we develop a new technique to show a computational col-
lapse caused by quantum computationally-binding commitments (Theorem 7), which might be of
independent interest. In some more detail, in [CDMS04] authors try to show that using quantum
computationally-binding commitments can force the receiver of quantum oblivious transfer [CK88]
to measure its received BB84 qubits, like using ideal (i.e. perfectly unique-binding) commitments.
However, their analysis is quite involved and relies on a tailored quantum string binding prop-
erty that is not standard and no instantiations of the corresponding quantum commitments are
known even today. In comparison, here we achieve a desired computational collapse based on the
computational honest-binding property of canonical quantum bit commitment schemes but in a
restrictive setting (i.e. proving the security against the purification attack rather than an arbitrary
quantum attack). Our technique is inspired by techniques developed in [FUYZ20] and [Yan21]. It
is interesting to explore whether our technique can be extended to show a similar computational
collapse in the more general setting considered in [CK88, CDMS04].

We finally remark that in the classical world, two flavors of bit commitments (secure against
classical attacks) are also equivalent: both of them imply one-way functions, and from which both

7This symmetry is in the same sense as that of oblivious transfer [WW06].
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of them can be constructed [Nao91, HNO+09]. In comparison, our quantum equivalence is stronger
in that there is even no need of interaction in constructions of quantum bit commitment.

4. Quantum statistical string sum-binding (w.r.t. the canonical form)

A natural way to commit a string is to commit it in a bitwise fashion using a quantum bit
commitment scheme. So it is interesting to explore what binding property can be obtained if a
quantum bit commitment scheme is composed in parallel. Since a canonical quantum bit commit-
ment scheme satisfies the sum-binding property, ideally, we may hope to prove such a dream version
of the quantum string sum-binding property as

∑
s∈{0,1}m ps < 1 + negl(n), where ps denotes the

success probability that the cheating sender can open a (claimed) string commitment as the m-bit
string s, and negl(·) denotes some negligible function of the security parameter n. However, this
string sum-binding property seems too strong to be true generally when m = poly(n), in which
case the sender can attack by committing to a superposition of exponentially many m-bit strings
[CDMS04]. Then bounding the error induced by such a superposition by a negligible quantity
becomes technically hard or even impossible8.

In spite of the above, we manage to show that composing a canonical statistically-binding
quantum bit commitment scheme in parallel indeed gives rise to a quantum string commitment
scheme satisfying a dream version of the quantum statistical string sum-binding property (Theorem
8). Since our proof relies heavily on that the error (incurred by the statistical binding error)
decreases exponentially in the Hamming distance between the committed string and the string to
reveal, it does not extend to the case quantum computational binding.

1.2 A comparison with more recent work

More recently9, Bitansky and Brakerski [BB21] construct a non-interactive statistically-binding
quantum bit commitment scheme based on quantum-secure one-way functions, which deviates
from the canonical form but manages to achieve unique-binding and make the sender’s message in
the reveal stage classical. However, compared with schemes of the canonical form constructed in
[YWLQ15] and this work (Appendix C), their scheme is more complex. Moreover, since several
generic techniques are already developed to handle quantum statistical binding [FUYZ20], it seems
that the scheme in [BB21] is no more versatile in applications than schemes of the canonical form.
Thus in our opinion, schemes in [YWLQ15] and this work (Appendix C) are superior to the scheme
in [BB21] in that as a general rule in cryptography, it is better to keep the construction simple
while leaving all complexity to the security analysis.

Morimae and Yamakawa [MY21] construct a statistically-binding quantum bit commitment
scheme based on pseudorandom quantum states [JLS18], a quantum complexity assumption ar-
guably weaker than quantum-secure one-way functions [Kre21]. Interestingly, we find their con-
struction is just in the canonical form! So by results of this work, their security analysis of quantum
statistical binding can be simplified to just show quantum statistical honest-binding (rather than
sum-binding). Moreover, combining results in this work, it follows that both flavors of quantum bit
commitment schemes of the canonical form can be constructed based on pseudorandom quantum
states.

Ananth, Qian and Yuen [AQY21] also construct a statistically-binding quantum bit commitment
scheme based on pseudorandom quantum states, which has two messages (thus interactive) in the

8To the best of our knowledge, however, no impossibility result is known yet. In [CDMS04], authors only vaguely
argue that this seems impossible for quantum computationally-binding commitments.

9After the upload of the first preprint of this work to Cryptology ePrint Archive [Yan20] in 2020.
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commit stage while the single message in the reveal stage is classical. This scheme is clearly
not in the canonical form. But it satisfies a seemingly stronger (statistical) binding property
than honest-binding or sum-binding: in its definition an explicit (but not necessarily efficient)
extractor is required. This extractor can be used to extract (and thus collapse) the committed
value from the commitment at the end of the commit stage. We find that this idea of introducing
an extractor is very similar in spirit to the commitment measurement technique introduced in
[FUYZ20] (which is used to collapse the committed value in analyzing the security based on the
quantum statistical binding property of a canonical quantum bit commitment scheme). However,
this idea of incorporating an extractor in the definition of quantum statistical binding seems cannot
extend to the case of quantum computational binding (when the commitment is statistically hiding)
generally in a straightforward way. This is because then since the quantum commitment to 0 and
that to 1 are negligibly close (in trace distance), we cannot hope that there exists a similar extractor.
In contrast, the formalization of a canonical quantum bit commitment scheme provides a uniform
way to capture both flavors of quantum bit commitments (but without extractors).

Ananth, Qian and Yuen [AQY21] also propose studying pseudorandom quantum states, instead
of quantum-secure one-way functions, as a basic quantum complexity assumption for quantum
(rather than post-quantum) cryptography. In this regard, we feel that it would be equally interesting
to study the existence of canonical quantum bit commitment schemes as a basic quantum complexity
assumption for quantum cryptography. More discussion on this point is referred to Section 1.4.

1.3 Technical overview

Honest-binding implies sum-binding. The proof is just a simple application of the quantum
rewinding lemma (Lemma 3) once used in [YWLQ15, FUYZ20, Yan21], which in a nutshell is
another variant of the gentle measurement lemma [Win99] other than the one in [Unr12].

Round compression. At a high level, our compiler for the round compression is inspired by the
equivalence between the semi-honest security and the full security w.r.t. a canonical quantum bit
commitment scheme (Theorem 2). Specifically, the compiler itself is extremely simple: in the new
(non-interactive) commit stage, the sender will simulate an honest execution of the commit stage
of the original (possibly interactive) scheme, and then send the original receiver’s system as the
commitment to the new receiver. Later in the reveal stage, the new sender will send the residual
system to the new receiver, who will check the new sender’s whole computation in the commit stage
via the quantum reversible computation. Note that here for the reveal stage to be legal, possible
irreversible computation of both parties prescribed by the original scheme in the commit stage
should be simulated by unitary computation (in a standard way) in the first place. This procedure
of simulation is typically referred to as the “purification” (of a quantum protocol).

At the first glance, the compiler constructed as above seems too simple to be true: how can
the idea of simply letting the new sender delegate all the computation in the commit stage of (the
purification of) the original scheme work? After all, a cheating new sender can deviate arbitrarily,
and there seems no way to restrict its behavior by just exchanging a single message in the (non-
interactive) commit stage! Clearly, this idea of compression does not work for commitments in
classical cryptography.

To see why our compiler works is by Theorem 2: it suffices to show that the resulting compressed
quantum bit commitment scheme (which is just in the canonical form by our construction) is semi-
honest secure! This also provides some intuition why in the formal statement of our round-collapse
theorem (Theorem 3), it requires that the purification of the original scheme, or purified scheme
hereafter, be semi-honest secure. As for the proof of the round-collapse theorem, while the honest-
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hiding property of the compressed scheme is trivial, its honest-binding property can be argued as
follows. Suppose (for contradiction) that at the beginning of the reveal stage, there is a cheating
sender who can transform the quantum state of the whole system when a bit 0 is committed to
the state when a bit 1 is committed, by just performing some unitary operation U on its own
system. This will gives rise to an attack against the honest-binding property of the purified scheme
as follows: the sender commits to the bit 0 honestly following the purified scheme in the commit
stage. In the reveal stage, it first performs the operation U on its own system, transforming the
whole system to a state that is close to the state when the bit 1 is committed, and then proceeds
honestly to open the commitment as 1. While the intuition underlying this reduction is simple,
to turn it to a formal proof, we need a large amount of (and tedious) work in formalizing an
execution of (the commit stage of) a general (interactive) quantum bit commitment scheme and its
purification (Section 6), as well as their semi-honest security (Section 7).

Last, we would like to compare our round compression of a general interactive quantum bit
commitment scheme with that of a quantum interactive proof [KW00] or a zero-knowledge proof
[Kob08]. Ideas in these two settings are very similar: both of them rely heavily on the reversibility of
quantum computation. The key difference lies in that for the latter, since (even) the honest prover
could be computationally unbounded, an (interactive) swap test is introduced for the purpose of
checking the computation. In comparison, in our setting this test is not needed because (as typical
in cryptography) both the honest sender and the honest receiver are polynomial-time bounded.

Arguing the security against the purification attack. To apply our round-collapse theorem,
one needs first to show that the original (interacitve) quantum bit commitment scheme is secure
against the purification attack (or equivalently, its purification is semi-honest secure). It turns out
that this security is closely related to the semi-honest security, thus often much easier to establish
than the full security. In particular, we show that in many interesting scenarios, the semi-honest
security of the original scheme extends to its purification. For such an extension, the basic idea is
to show that collapses prescribed by the original scheme are enforced even after the purification.
To have a taste of how this is possible, note that messages sent through the classical channel
automatically collapse; when a message is uniquely determined by some other collapsed messages,
it can be viewed as having collapsed as well.

A non-trivial scenario in which collapses are enforced is by quantum commitments, as argued
in [FUYZ20] and Section 10 of this paper. That is, committing to a bit in superposition us-
ing a canonical statistically- or computationally-binding quantum bit commitment scheme can
be viewed as an implicit way of measuring it (but without leaking its value)! In greater de-
tail, when statistically-binding quantum bit commitments are used, collapses can be shown using
generic techniques (i.e. perturbation and commitment measurement) developed in [FUYZ20]. When
computationally-binding quantum bit commitments are used, we will prove a computational col-
lapse theorem (Theorem 7) in this work, which realizes a “computational collapse” (named after
[CDMS04], but in proving a weaker security here). The technique used towards proving this the-
orem is inspired by the proof of the quantum computational string predicate-binding property
in [Yan21], which basically is a clever way of bounding exponentially many negligible errors in
superposition by a negligible quantity.

Last, we stress (again) that the semi-honest security of an arbitrary (interactive) quantum bit
commitment scheme does not extend to its purification generally ; two counterexamples are given
in Section B.

Proving an equivalence between two flavors of quantum bit commitments. The basic
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idea to convert the flavor of a quantum bit commitment scheme is to use the CLS construction
[CLS01]. In a nutshell, the original CLS scheme in [CLS01] uses (classical) statistically unique-
binding bit commitments (e.g. Naor’s scheme [Nao91]) to realize a quantum oblivious transfer
(QOT) [CK88], which in turn can be used to construct a computationally-binding quantum bit
commitment scheme. This result can be extended to using a canonical statistically/perfectly-
binding quantum bit commitment scheme within the CLS scheme [FUYZ20]. Combined with the
round-collapse theorem (Theorem 3), this already proves one direction of the equivalence.

For the other direction of the equivalence, however, it is still open whether we can use computationally-
binding quantum bit commitments in the CLS scheme to obtain a statistically-binding quan-
tum bit commitment scheme. Roughly speaking, this is because we do not know whether using
computationally-binding quantum bit commitments can cause a collapse like using statistically-
binding quantum bit commitments [CDMS04]. Very recently, a quantum computationally-binding
bit commitment that additionally satisfies extractable and equivocal properties is constructed based
on (classical) statistically unique-binding bit commitments [BCKM21]. We conjecture that the
same construction works as well if we use a canonical statistically-binding quantum bit commit-
ment scheme instead, by generic techniques developed in [FUYZ20]. If this is true, then plugging
the resulting computationally-binding quantum bit commitment scheme that additionally satisfies
extractable and equivocal properties in the CLS scheme and applying the round-collapse theorem
will prove the other direction of the equivalence.

In this work, however, we will take an alternative yet much simpler approach to prove the
claimed equivalence. In particular, in proofs of both directions we will use the same construction
to convert the flavor of quantum bit commitment, except that within which we will use canonical
quantum bit commitment schemes of different flavors. Then the round-collapse theorem can be
applied to finish the job.

In greater detail, we will use a somewhat simplified CLS construction to convert the flavor
of quantum bit commitment, which basically removes all intermediate verifications of quantum
commitments compared with the original CLS scheme. We can do this is by the virtue of the round-
collapse theorem: we only need a scheme whose purification is semi-honest secure for the purpose of
the round compression. In a nutshell, we only need (within our construction) a QOT satisfying the
following security property: after the interaction, the purified receiver of QOT does not know the
other bit that the honest sender is given as input, while the purified sender of QOT does not know
which input bit the honest receiver is aware of. This security requirement is already much weaker
than the security against an arbitrary quantum attack considered in [Yao95, CLS01, FUYZ20], let
alone the recently achieved simulation security [DFL+09, GLSV21, BCKM21]. Hence, it is much
easier to establish.

In greater detail, for the security analysis we will first prove the semi-honest security of this
somewhat simplified CLS scheme, and then extend it to its purification. For such an extension, a
crucial step is to show that quantum commitments will cause an implicit collapse of the quantum
state just like the measurements prescribed by the scheme were really performed. To this end, we
will use techniques aforementioned.

1.4 Quantum bit commitments: seeing from both quantum cryptography and
quantum complexity perspectives

Based on previous results and results in this paper, now let us give an overview of quantum bit
commitments from quantum cryptography and quantum complexity perspectives, respectively.

Seeing from the quantum cryptography perspective, on one hand quantum bit commitment can
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be constructed from quantum-secure one-way functions/permutations [AC02, YWLQ15, DMS00,
KO09, KO11, CLS01, BB21], or pseudorandom quantum states [JLS18, MY21, AQY21]. It is
interesting to explore whether quantum bit commitments imply pseudorandom quantum states
conversely10. On the other hand, quantum bit commitments are useful, and may help reduce
the round complexity of cryptographic constructions [YWLQ15, FUYZ20, Yan21]. In particular,
there exists a certain equivalence between quantum bit commitment and quantum zero-knowledge
[YWLQ15], and an equivalence between quantum bit commitment and quantum oblivious transfer
[Yao95, CLS01, FUYZ20, BCKM21, AQY21]. Thus, quantum bit commitment is likely to be an
important primitive living in the MiniQCrypt world [GLSV21]. It is interesting to explore more
cryptographic applications of quantum bit commitments in future.

Seeing from the quantum complexity perspective, whether (complexity-based) quantum bit com-
mitments exist is an interesting open problem. As mentioned, canonical quantum bit commit-
ment schemes were motivated by the study of complete problems for quantum zero-knowledge
[Wat02, Yan12] and more general quantum interactive proofs [RW05]. The existence of canonical
statistically-hiding computationally-binding quantum bit commitment schemes is closely related to
the quantum complexity of unitaries [Aar16]. In greater detail, suppose that (Q0, Q1) is a canonical
statistically-hiding computationally-binding quantum bit commitment scheme. Then its statistical
hiding property implies that quantum states Q0 |0⟩CR and Q1 |0⟩CR only differ up to a unitary U
performing on the decommitment register R. This is because restricting to the commitment register
C, the corresponding two reduced quantum states are negligibly close in trace distance. However,
the computational binding property implies that this unitary U is not efficiently realizable!

We can motivate the study of a canonical computationally-hiding statistically-binding quantum
bit commitment scheme by comparing it with a pair of efficiently constructible probability distri-
butions that are computationally indistinguishable but statistically far apart in the classical setting.
They look quit similar; we may view the former as the quantum counterpart of the latter. Goldreich
shows that the existence of the latter implies one-way functions [Gol01, an exercise in Chapter 3]
and pseudorandom generators [Gol90]. In a try to translate this result to the quantum setting, it
brings us back to the question of whether quantum bit commitments imply pseudorandom quantum
states (which are the quantum analog of pseudorandom generators) [JLS18, MY21, AQY21].

We finally remark that the round-collapse theorem and the equivalence between two flavors
of quantum bit commitments established in this paper indicate that the open problem regarding
the existence of (complexity-based) quantum bit commitments is very robust. And it will be more
robust if the answer to the following open question, which concerns quantum hardness amplification,
is “yes”: can the computational binding error of a canonical quantum bit commitment scheme be
reduced by parallel repetition, say from 1/2 or even inverse polynomial to some negligible quantity?
This question look very similar to the question of amplifying the hardness of inverting an arbitrary
one-way function in classical cryptography [Yao82]. More interestingly, if the answer to this question
is indeed “yes”, then combining it with results in [Wat02, YWLQ15, FUYZ20, Yan21] will complete
the proof for an equivalence between quantum bit commitment and quantum zero-knowledge like
in the classical setting [OV08].

Organization. In Section 2, we review necessary preliminaries. In Section 3, we formally in-
troduce the definition of a canonical quantum bit commitment scheme and its honest-hiding and
honest-binding properties In Section 4, we study the binding property of a canonical quantum
bit commitment scheme. In particular, we prove that its honest-binding property is equivalent to

10We do not expect that quantum bit commitments can imply quantum-secure one-way functions, simply because
a canonical quantum bit commitment scheme concerns quantum states rather than any sort of functions.
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the sum-binding property, which will be used to simplify the security analysis of the DMS con-
struction of computationally-binding bit commitment in Section 5. In Section 6, we fix a way of
formalizing a quantum two-party interaction as well as a way to purify a quantum protocol. We
also formally define a party’s view of an interaction. Based on these formalizations, we define the
semi-honest security of a general interactive quantum bit commitment scheme and its purification
in the subsequent Section 7, where we also introduce the notion of the security against the purifi-
cation attack. All formalizations and notions introduced in Section 6 and 7 will be crucial in the
statement and the proof of the round-collapse theorem in Section 8. In Section 9, as an application
of the round-collapse theorem we give yet another construction of non-interactive computationally-
binding quantum bit commitment by compressing the classical NOVY scheme. In Section 10, we
prove an equivalence between two flavors of quantum bit commitments as another application of
the round-collapse theorem. In Section 11, we establish a very strong quantum string sum-binding
property of the parallel composition of a canonical statistically-binding quantum bit commitment
scheme. Finally in Section 12, we conclude this work and raise several open problems.

2 Preliminaries

Notation. Denote [n] = {1, 2, . . . , n} for an integer n. Denote by Un the uniform distribu-

tion/random variable ranging over the set {0, 1}n, i.e. all binary strings of length n. We use “
$←”

to denote the action of choosing an element uniformly random from a given set, e.g. x
$← Un. Let

negl(n) denote an arbitrary negligible (i.e. asymptotically smaller than any inverse polynomial)
function of the security parameter n. Given two strings s, s′ ∈ {0, 1}n, let dist(s, s′) denote the
Hamming distance between s and s′.

Quantum formalism. Quantum registers/systems we use in this paper are composed of multiple
qubits. We sometimes explicitly write quantum register(s) as a superscript of an operator or a
quantum state to indicate on which register(s) this operator performs or which register(s) hold this
quantum state, respectively. For example, we may write UA, |ψ⟩A or ρA, highlighting that the
operator U performs on the register A, and the register A is in pure state |ψ⟩ or mixed state ρ,
respectively. When it is clear from the context, we often drop superscripts to simplify the notation.

We use F(·, ·) to denote the fidelity of two quantum states [Wat18]. Given a projector Π on a
Hilbert space, we call {Π,1−Π} the binary measurement induced by Π. This binary measurement
is typically induced by a verification, for which we call it succeeds, accepts, or the outcome is one,
if the measured quantum state collapses to the subspace on which Π projects.

For a bit b ∈ {0, 1}, let |b⟩+ and |b⟩× be the qubits in the state |b⟩ w.r.t. the standard basis
and Hadamard basis, respectively. For the former, we often drop “+” and just write |b⟩.

We work with the standard unitary quantum circuit model. In this model, a quantum algorithm
can be formalized in terms of uniformly generated quantum circuit family, where the “uniformly
generated” means the description of the quantum circuit coping with n-bit inputs can be output by
a single classical polynomial-time algorithm on the input 1n. We assume without loss of generality
that each quantum circuit is composed of quantum gates chosen from some fixed universal, finite,
and unitary quantum gate set [NC00]. Given a quantum circuit Q, we also overload the notation
to use Q to denote its corresponding unitary transformation; Q† denotes its inverse.

(In)distinguishability of quantum state ensembles
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Definition 1 ((In)distinguishability of quantum state ensembles) Two quantum state en-
sembles {ρn}n and {ξn}n are quantum statistically (resp. computationally) indistinguishable, if for
any quantum state ensemble {σn}n and any unbounded (resp. polynomial-time bounded) quantum
algorithm D which outputs a single qubit,

|Pr[D(1n, ρn ⊗ σn) = 1]− Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n.

Remark. The quantum state ensemble {σn}n in the definition above plays the role of the non-
uniformity given to the distinguisher D. Since a mixed quantum state can always be purified, we
can assume without loss of generality that the state σn is pure.

Useful lemmas

Lemma 2 (Uhlmann’s theorem) Let X and Y be two Hilber spaces. Density operators ρ and σ
are in the space X . Unit vector |ψ⟩ is a purification of ρ in the space X ⊗Y, i.e. TrY (|ψ⟩ ⟨ψ|) = ρ.
It holds that F(ρ, σ) = max {|⟨ψ| η⟩| : unit vector |η⟩ ∈ X ⊗ Y s.t. TrY (|η⟩ ⟨η|) = σ}.

Lemma 3 (Quantum rewinding [FUYZ20]) Let X and Y be two Hilbert spaces. Unit vector
|ψ⟩ ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, while unitary trans-

formations U1, . . . , Uk perform on the space Y. If 1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ⟩
∥∥2 ≥ 1 − η, where

0 ≤ η ≤ 1, then∥∥∥(U †k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U †1 ⊗ 1
X)Γ1(U1 ⊗ 1X) |ψ⟩

∥∥∥ ≥ 1−
√
kη. (1)

The proof of the lemma above is reproduced in Appendix A for convenience.

3 A canonical quantum bit commitment scheme

The definition of a canonical (non-interactive) quantum bit commitment scheme is as follows.

Definition 4 A canonical (non-interactive) quantum bit commitment scheme is represented by
an ensemble of polynomial-time uniformly generated quantum circuit pair {(Q0(n), Q1(n))}n as
follows, where we drop the security parameter n to simplify the notation:

• In the commit stage, to commit a bit b ∈ {0, 1}, the sender performs the quantum circuit Qb

on the quantum register pair (C,R)11 initialized in all |0⟩’s state. Then the sender sends the
commitment register C to the receiver, whose state at this moment is denoted by ρb.

• In the subsequent (canonical) reveal stage, the sender announces the bit b, and sends the

decommitment register R to the receiver. The receiver will first perform Q†b on the quantum
register pair (C, R) and then measure each qubit of (C, R) in the computational basis, accepting
if measurement outcomes are all 0’s.

The hiding (or concealing) and the binding properties of the scheme are defined as follows:

11Their size depend on the security parameter n.
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• (Honest)-hiding. We say that the scheme is statistically (resp. computationally) hiding if
quantum states ρ0 and ρ1 are statistically (resp. computationally) indistinguishable12.

• (Honest-)ϵ-binding. First prepare the quantum register pair (C, R) in the state Q0 |0⟩13.
We say that the scheme is computationally (resp. statistically) ϵ-binding if for any state
|ψ⟩ of an auxiliary register Z, and any polynomial-time (resp. physically) realizable unitary
transformation U performing on registers (R, Z), the reduced state of the quantum register
pair (C, R) after the transformation U is performed is far from the state Q1 |0⟩. Or formally,∥∥∥(Q1 |0⟩ ⟨0|Q†1

)CR
URZ

(
(Q0 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ. (2)

By the reversibility of quantum computation, this binding property can be equivalently de-
fined by swapping the roles of Q0 and Q1, in which case the inequality (2) becomes∥∥∥(Q0 |0⟩ ⟨0|Q†0

)CR
URZ

(
(Q1 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ. (3)

As typical in cryptography, We say that the scheme is computationally (resp. statistically)
binding (without referring to the parameter ϵ) when the function ϵ(·) is a negligible function
(of the security parameter n).

Remark.

1. We call the binding property defined above honest-binding, because informally it states that
any cheating sender cannot open the honest commitment to a bit b as 1− b. That is, in the
definition of honest-binding, a cheating sender is honest in the commit stage but may deviate
arbitrarily in the reveal stage. In this regard, the attack (U, |ψ⟩) of the sender just happens
in the reveal stage. Honest-binding is the weakest binding property that any meaningful
quantum bit commitment scheme should satisfy. This definition will be generalized to the
case of interactive quantum bit commitment schemes later (Section 7).

2. The hiding property of a bit commitment scheme is only defined w.r.t. the commit stage.
For the hiding property defined above, since the commit stage is non-interactive (so that
the receiver will send nothing during the commit stage), the hiding against a semi-honest
(i.e. honest-but-curious) receiver and that against an arbitrary receiver are just the same
security property. In this regard, the honest-hiding is also the hiding against an arbitrary
quantum receiver. However, in the sequel when we consider a general (interactive) quantum
bit commitment scheme, these two notions are not necessarily equivalent.

3. As commented in [YWLQ15], the reveal stage in the definition above is canonical in the sense
that it is similar to the canonical opening of a classical bit commitment: the sender sends all
its random coins used in the commit stage to the receiver, who then checks that these coins
explain (i.e. are consistent with) the conversation generated during the commit stage.

12Strictly speaking, it should be understood as the corresponding two quantum state ensembles indexed by the
security parameter n are indistinguishable.

13Here the notation |0⟩ should be understood as multiple |0⟩’s, the number of which depends on the security
parameter; we just write a single |0⟩ to simplify the notation. We will follow this rule throughout this paper.
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4. In [YWLQ15, FUYZ20], it is argued informally that any non-interactive statistically-binding
quantum bit commitment scheme can be converted into a scheme of the canonical form. Ac-
tually, the same argument extends to the setting of non-interactive computationally-binding
quantum bit commitment schemes in a straightforward way. In this work, we will further
extend it, showing that any (interactive) quantum bit commitment scheme can be converted
into this canonical form (Theorem 3).

5. In the sequel, to simplify the notation we often drop the security parameter n and just write
(Q0, Q1) to represent a canonical quantum bit commitment scheme.

6. We can commit to a binary string s ∈ {0, 1}m in a bitwise fashion using a canonical quantum
bit commitment scheme (Q0, Q1). Then the corresponding quantum circuit is given by

Qs
def
=

m⊗
i=1

Qsi , (4)

where si is the i-th bit of the string s and each quantum circuit Qsi performs on one copy of
the quantum register pair (C, R).

7. As discussed in “Introduction”, this definition of a canonical quantum bit commitment scheme
can also be viewed as a quantum complexity assumption that is weaker than quantum-secure
one-way functions and pseudorandom quantum states [JLS18].

A generalized quantum honest-binding which turns out to be useful in security analysis is given
below, whose proof is referred to [Yan21].

Lemma 5 (Generalized quantum honest-binding) Inherit all notations in Definition 4. Let
the operator Γ = UkΠk · · ·U1Π1 be an arbitrary alternation of efficiently realizable (resp. un-
bounded) unitary transformations and projectors, where k ≥ 1 is an integer, and for each i
(1 ≤ i ≤ k) both the unitary transformation Ui and the projector Πi perform on the quantum
registers (R, Z). If the inequality (2) holds, then∥∥∥(Q1 |0⟩ ⟨0|Q∗1)CRΓRZ

(
(Q0 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ(n),∥∥∥(Q0 |0⟩ ⟨0|Q∗0)CRΓRZ
(
(Q1 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ(n).

4 Honest-binding is equivalent to sum-binding

Sum-binding is a general binding property of quantum bit commitment schemes. Its definition
w.r.t. a canonical quantum bit commitment scheme is as follows.

Definition 6 (Sum-binding) At the beginning of the commit stage, the cheating sender prepares
the whole system (C, R, Z) in an arbitrary quantum state |ψ⟩. Then it sends the commitment
register C to the receiver. In the reveal stage, to open the bit commitment as 0 (resp. 1), the
sender performs U0 (resp. U1) on the system (R, Z) and then send the decommitment register R to
the receiver. Let p0 (resp. p1) be the success probability that the sender opens the bit commitment
as 0 (resp. 1). The sum-binding requires that p0 + p1 < 1 + negl(n).

Compared with honest-binding (Definition 4), sum-binding is a security against an arbitrary
quantum sender, who may deviate from the scheme in both the commit and the reveal stages.
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Clearly, sum-binding implies honest-binding, by noting that if we fix p0 or p1 in Definition 6 to be
1, then we end up with the honest-binding. Interestingly, it turns out that the opposite direction
is also true, i.e. the seemingly weaker honest-binding also implies sum-binding. Combining them
we have the following theorem.

Theorem 1 Honest-binding is equivalent to sum-binding w.r.t. a canonical quantum bit commit-
ment scheme (of either flavors).

Proof: It is left to prove that honest-binding implies sum-binding. It turns out that an attack
which breaks the sum-binding property can be directly used to break the honest-binding property
without much modification. Detail follows. We remark that the proof below holds for either flavors
of canonical quantum bit commitment schemes.

Let n be the security parameter. According to its definition (Definition 6), an arbitrary attack of
the sum-binding property of a canonical quantum bit commitment scheme (Q0, Q1) can be modeled
by (U0, U1, |ψ⟩). Now assume that the attack (U0, U1, |ψ⟩) breaks the sum-binding property; that
is, ∥∥∥(Q0 |0⟩ ⟨0|Q†0

)CR · URZ
0 |ψ⟩

∥∥∥2 + ∥∥∥(Q1 |0⟩ ⟨0|Q†1
)CR · URZ

1 |ψ⟩
∥∥∥2 > 1 +

1

p
,

where p(·) is some polynomial of the security parameter n. We apply the quantum rewinding
lemma (Lemma 3) to the inequality above, with the parameters k, η, U1, U2,Γ1 and Γ2 in the

lemma replaced by 2, 1/2− 1/(2p), U0, U1, Q0 |0⟩ ⟨0|Q†0 and Q1 |0⟩ ⟨0|Q†1, respectively. We obtain∥∥∥U †1(Q1 |0⟩ ⟨0|Q†1
)
U1 · U †0

(
Q0 |0⟩ ⟨0|Q†0

)
U0 |ψ⟩

∥∥∥ ≥ 1−
√

1− 1

p
>

1

2p
. (5)

We are next to devise an attack of the honest-binding property of the scheme (Q0, Q1) given the
attack (U0, U1, |ψ⟩). Specifically, suppose that in the commit stage, the sender (honestly) prepares
the quantum state Q0 |0⟩ in the quantum register pair (C, R) and sends the commitment register C
to the receiver. Later at the beginning of the reveal stage, the sender receives the quantum state
|ψ⟩, which is stored in quantum registers (C′,R′,Z′) that are of the same size as registers (C,R,Z),
respectively. Then the cheating sender S∗ proceeds as follows to try to open the quantum bit
commitment as 1:

1. Perform the unitary transformation U0 on the quantum registers (C′,R′,Z′).

2. Perform the binary measurement induced by the projector Q0 |0⟩ ⟨0|Q†0 on the quantum
register pair (C′,R′). (Intuitively, we expect that conditioned on the outcome being one, the
reduced state of the register Z′ will help the sender cheat.)

3. Perform the unitary transformation U1U
†
0 on the registers (R,Z′).

4. Send the decommitment register R to the receiver.

Note that the squared l.h.s. of the inequality (5) is exactly the probability of the outcome of
the binary measurement in step 2 above being one and S∗ opening the quantum bit commitment as
1 successfully. This immediately yields a lower bound 1/4p2 (which is non-negligible) of the proba-
bility of S∗ cheating successfully. (Note that S∗ may also cheat successfully while the measurement
outcome of step 2 is 0.) Hence, S∗ breaks the honest-binding property of the scheme (Q0, Q1). ■

Remark. We highlight that the security reduction above is uniform.
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

• The sender chooses x
$← {0, 1}n and computes y = f(x), where f : {0, 1}n → {0, 1}n is

a quantum-secure one-way permutation. Then the sender sends |y⟩θ(b)n to the receiver,
where θ(b) denotes the standard basis “+” when b = 0 and the Hadamard basis “×”
when b = 1.

Reveal stage:

• The sender sends the bit b and the string x to the receiver.

• The receiver measures each qubit (in total n) received in the commit stage in the basis
θ(b), obtaining y ∈ {0, 1}n. Then the receiver checks that y = f(x).

Figure 1: The DMS construction of non-interactive computationally-binding quantum bit commit-
ment based on quantum-secure one-way permutation

Combing the second remark following Definition 4 with Theorem 1, we have the following
theorem as an immediate corollary.

Theorem 2 A canonical quantum bit commitment scheme (Q0, Q1) (of either flavor) is secure if
and only if it is semi-honest secure (i.e. honest-hiding and honest-binding) .

5 Application: a simpler security analysis for the purified DMS
construction of quantum bit commitment

Dumais, Mayers and Salvail [DMS00] gave a construction of non-interactive computationally-
binding quantum bit commitment based on quantum-secure one-way permutations. The hard
part of its security analysis lies in establishing the computational sum-binding property. Here, we
can simplify this analysis but w.r.t. the purified DMS scheme using Theorem 1, which allows us to
just show its (computational) honest-binding property.

For self-containment, we reproduce the DMS scheme following [DMS00] in Figure 1. It can be
firstly purified and then converted into the canonical form as given in Definition 4 such that

Q0 |0⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩R |f(x)⟩C+n , Q1 |0⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩R |f(x)⟩C×n . (6)

The lemma below establishes the quantum computational binding property of the purified DMS
scheme.

Lemma 7 The purified DMS scheme (Q0, Q1) given by the equation (6) is quantum computation-
ally binding.

Proof: By Theorem 1, it suffices to show that the purified DMS scheme is computationally
honest-binding.
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We first rewrite

Q1 |0⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩R |f(x)⟩C×n

=
1

2n

∑
x∈{0,1}n

|x⟩
(
|0⟩+ (−1)f(x)1 |1⟩

)
· · ·

(
|0⟩+ (−1)f(x)n |1⟩

)
=

1

2n

∑
x∈{0,1}n

|x⟩
∑

y∈{0,1}n
(−1)f(x)·y |y⟩

=
1√
2n

∑
y∈{0,1}n

 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R


︸ ︷︷ ︸
(∗)

|y⟩C ,

and

Q0 |0⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩R |f(x)⟩C+n =
1√
2n

∑
y∈{0,1}n

∣∣f−1(y)〉R︸ ︷︷ ︸
(∗∗)

|y⟩C .

Intuitively, if any cheating sender breaks the (computational) honest-binding property, then
it can sort of transform the quantum state represented by the expression (∗) into the expression
represented by the term (∗∗) in the above. But this already implies some ability to invert the
one-way permutation f(·) on input a uniformly random chosen image y ∈ {0, 1}n. We convert this
intuition into a formal proof in the below.

For contradiction, suppose that there exists a cheating sender S∗ who breaks the computational
honest-binding property of the purified DMS scheme; that is, there exists a pair (U, |ψ⟩) (whose
meaning is referred to Definition 4) such that∥∥∥(Q0 |0⟩ ⟨0|Q†0

)CR
URZ

(
Q1 |0⟩CR ⊗ |ψ⟩Z

)∥∥∥ ≥ 1

p(n)
, (7)

where p(·) is some polynomial. We construct an inverter I∗ for the one-way permutation f(·) as
follows: it operates on the system (R, Y, Z), where the register Y holds the input y ∈ {0, 1}n, the
register Z holds the auxiliary state |ψ⟩, while the register R is initialized in the state |0n⟩. Then
the inverter I∗ proceeds in the following steps:

1. Transform the whole system (R, Y, Z) into the state 1/
√
2n

∑
x∈{0,1}n(−1)f(x)·y |x⟩

R |y⟩Y |ψ⟩Z .
Specifically, this step can be accomplished through the following steps:

(a) Perform H⊗n on the register R, where H is the Hadamard gate, to obtain the quantum
state

1√
2n

∑
x∈{0,1}n

|x⟩R |y⟩Y |ψ⟩Z .

(b) Perform the unitary quantum circuit that computes the function f(·), i.e. realizing
|x⟩ |0⟩ 7→ |x⟩ |f(x)⟩ for each x ∈ {0, 1}n, to obtain the quantum state

1√
2n

∑
x∈{0,1}n

|x⟩R |y⟩Y |ψ⟩Z |f(x)⟩ .
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(c) For each pair of f(x)i and yi, i = 1, . . . , n, i.e. the i-th bit of f(x) and y, respectively,
perform the two-qubit unitary transformation that realizes |a⟩ |b⟩ 7→ (−1)ab |a⟩ |b⟩. This
unitary transformation can be realized by first performing the Hadamard gate on the
second qubit |b⟩, followed by performing the CNOT gate on the two qubits with the first
qubit |a⟩ as the control, and finally performing another Hadamard gate on the second
qubit. After ths step, the state becomes

1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |y⟩Y |ψ⟩Z |f(x)⟩ .

(d) Uncompute the f(x) for each x ∈ {0, 1}n in the superposition above by performing the
inverse of the unitary quantum circuit that computes the function f(·). We thus arrive
at the desired quantum state.

2. Perform the unitary translation U on the register (R, Z).

3. Measure the register R in the standard basis and output the outcome.

It is not hard to see that the inverter I∗ runs in polynomial time if the unitary transformation
U is polynomial-time realizable. We are left to estimate the success probability of the inverter I∗.

From the hypothesis (7),

1

p(n)
≤

∥∥∥(Q0 |0⟩ ⟨0|Q†0
)CR

URZ(Q1 |0⟩CR |ψ⟩Z)
∥∥∥

=
1

2n

∥∥∥Q0 |0⟩ ⊗
∑

y∈{0,1}n

(
1C ⊗

〈
f−1(y)

∣∣R )
· URZ

( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |ψ⟩Z
)∥∥∥

=
1

2n

∥∥∥ ∑
y∈{0,1}n

(
1C ⊗

〈
f−1(y)

∣∣R )
· URZ

( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |ψ⟩Z
)∥∥∥

≤ 1

2n

∑
y∈{0,1}n

∥∥∥(1C ⊗
〈
f−1(y)

∣∣R )
· URZ

( 1√
2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |ψ⟩Z
)∥∥∥

=
1

2n

∑
y∈{0,1}n

∥∥∥( ∣∣f−1(y)〉 〈f−1(y)∣∣ )R · URZ
( 1√

2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |ψ⟩Z
)∥∥∥

≤

 1

2n

∑
y∈{0,1}n

∥∥∥( ∣∣f−1(y)〉 〈f−1(y)∣∣ )R · URZ
( 1√

2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |ψ⟩Z
)∥∥∥2

 1
2

,

where the second “≤” above uses the triangle inequality and the third “≤” uses the Cauchy-
Schwartz inequality. Squaring both sides of this inequality gives

1

2n

∑
y∈{0,1}n

∥∥∥( ∣∣f−1(y)〉 〈f−1(y)∣∣ )R · URZ
( 1√

2n

∑
x∈{0,1}n

(−1)f(x)·y |x⟩R |ψ⟩Z
)∥∥∥2 ≥ 1

p(n)2
.

Note that the l.h.s. of the inequality above is exactly the success probability of the inverter
I∗ on input a uniformly random chosen image y. This probability is at least 1/p(n)2, which is
non-negligible and thus contradicts the one-wayness of the function f(·).

This finishes the proof of the lemma. ■
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6 Formalizations

In this section, we first fix a formalization for a general quantum two-party interaction, which
basically follows Mayers [May97] but deviates a little bit. Based on this formalization, we formally
define a party’s view in an interaction and fix a way to purify a general quantum two-party protocol.
Here, by “purify a quantum protocol” we mean all (classical and quantum) computations prescribed
by the protocol will be simulated by unitary quantum operations, and all classical communications
will be simulated by quantum communications. Formalizations and the definition of a party’s
view introduced in this section will be crucial for rigorous security definitions introduced in the
subsequent Section 7 and the proof of the round-collapse theorem (Theorem 3) in Section 8.

To simplify the notation, we will drop the security parameter in this section.
Materials presented in this section are standard. Experienced readers may skip this section for

the first reading of this paper and come back later when necessary.

6.1 An interaction between two parties

An interaction between two parties may be a hybrid of classical and quantum computations and
communications. For simplicity, we can assume without loss of generality the following for a general
two-party interaction:

• The interaction consists of multiple rounds, the number of which is bounded by some fixed
polynomial of the security parameter;

• Both classical and quantum registers used are two-dimensional, i.e. composed of bits and
qubits, respectively.

• Both parties can carry out classical and quantum computations. In particular, classical com-
putation includes random coin tosses. Quantum computation includes quantum operations
are those:

1. either (which itself might not be unitary but) can be realized by polynomial-size quan-
tum circuits composed of quantum gates from some fixed universal, finite, and unitary
quantum gate set, or

2. the measurement of a qubit in the computational basis.

• Both parties can send classical and quantum messages.

Formally, to model an interaction ⟨A,B⟩ between two parties A and B, we introduce quantum
registers (A,B) and classical register E as follows:

• A: the party A’s quantum workspace.

• B: the party B’s quantum workspace.

• E: the “environment” E = (ES ,EA,EB) such that

– ES = (ES,A,ES,B): both registers ES,A and ES,B store classical bits transmitted between
the party A and the party B; that is, each party will keep a copy of them.

– EA: stores the untransmitted classical bits that are kept on the party A’s side, which in
particular includes A’s inner coin tosses and measurement outcomes.
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– EB: stores the untransmitted classical bits that are kept on the party B’s side, which in
particular includes B’s inner coin tosses and measurement outcomes.

Now let us describe possible operations of a party P ∈ {A,B}:

• The party P’s classical operations will perform on the register EP .

• The party P’s quantum operations will perform on the register P.

• If the party P’s classical operations depend on the classical messages stored in the register
ES,P , then it will first copy the corresponding bits to the register EP .

• If the party P’s quantum operations depend on the classical information stored in the register
(EP ,ES,P ), then it will first copy the corresponding bits to the register EP .

• If the party P’s quantum operations output classical bits, then move these bits to the register
EP .

• When the party A (resp. B) wants to send a quantum message to the party B (resp. A), it
will send the part of the register A (resp. B) which holds this message to the party B (resp.
A), who will then incorporate this register into its own workspace B (resp. A).

• When the party A (resp. B) wants to send a classical message to the party B (resp. A),
it will first move this message from the part of the register EA (resp. EB) which holds this
message to the register ES,A (resp. ES,B), and then copy it to the register ES,B (resp. ES,A).

By the formalization introduced above, at any moment of the interaction the whole system will
be in a (mixed) state of the form∑

s,a,b

|αs,a,b|2 (|s⟩ ⟨s|)ES,A(|s⟩ ⟨s|)ES,B (|a⟩ ⟨a|)EA(|b⟩ ⟨b|)EB (|ψs,a,b⟩ ⟨ψs,a,b|)AB. (8)

Remark. We have two remarks about the formalization above.

1. We actually implicitly assume that each party will record all classical messages (in classical
registers ES,A for the party A and ES,B for the party B) it has sent and received. And we
can assume w.o.l.g. that even honest parties (whose behaviors are prescribed in a quantum
protocol) will do this. This could be crucial for attacking a quantum protocol.

2. We note that quantum registers introduced above are not fixed during the execution of the
protocol; they are subject to change as the quantum computation and communication go on.

6.2 A party’s view of an interaction

For the purpose of defining the semi-honest security of a quantum protocol in the subsequent section
(Section 7), we introduce a party’s view of an interaction, which is natural and accords with our
intuition.

Definition 8 (A party’s view of an interaction) A party’s view of a two-party interaction is
given by the state of its system at the end of the interaction. Formally, with the formalization
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fixed in Section 6.1, the party A’s view is given by the state of the subsystem (ES,A,EA,A) at the
end of the interaction, which is of the form∑

s,a,b

|αs,a,b|2 (|s⟩ ⟨s|)ES,A(|a⟩ ⟨a|)EATrB(|ψs,a,b⟩ ⟨ψs,a,b|)AB (9)

that is obtained from the expression (8) by tracing out the subsystem (ES,B,EB,B). The expression
for the party B’s view can be written down symmetrically:∑

s,a,b

|αs,a,b|2 (|s⟩ ⟨s|)ES,B (|b⟩ ⟨b|)EBTrA(|ψs,a,b⟩ ⟨ψs,a,b|)AB. (10)

Remark. We have two remarks about the definition above:

1. Seeing from the formalization of a party’s view, we actually implicitly assume w.o.l.g. that
any (honest or cheating) party will copy all classical messages generated during the interaction
(for a possible later use).

2. Intermediate quantum states of a party’s system during the interaction do not account for
its view; only the state at end matters. There are two reasons to justify this: First, general
intermediate quantum states cannot be cloned for the use after the interaction. Second, thus
defined view fits our applications later.

6.3 The purification of a general quantum protocol

A general quantum protocol could be a hybrid of classical and quantum computations and com-
munications. We can purify it so that the resulting protocol consists of only unitary quantum
computation and communication (but the security might be compromised). In the below, We fix
a way to purify a general quantum protocol based on the formalization of a two-party interaction
(Section 6.1), which is almost standard.

Given a general quantum protocol, its purification prescribes an interaction between two parties
A and B formalized as follows:

• The whole system consists of quantum registers (A, B, E) as described in Section 6.1, except
that now the register E is a quantum (rather than classical) register (by abusing the notation).

• For a party P ∈ {A,B}, we can purify each operation prescribed by the protocol in the
following way, depending on the operation:

1. Measurement in the computational basis: move the qubit that will be measured to the
environment EP .

2. A uniformly random coin toss: introduce an ancilla qubit in the state |0⟩, and perform
the Hadamard gate on it. Then move it to the register EP .

3. Transmission of a classical bit x from the party A to the party B, and vice versa: first
move the qubit |x⟩ from the register EA to ES,A, and then copy it to the register ES,B w.r.t.
the computational basis (i.e. introducing an ancilla in the state |0⟩ in the environment
ES,B, and then perform the CNOT gate on the qubit |x⟩ and this ancilla, with the former
as the control). The opposite direction of the transmission is simulated symmetrically.

4. Non-unitary quantum operation: it can be simulated by a unitary quantum operations
followed by a measurement in the computational basis. The measurement in turn can
be simulated in the way as described in item 1.
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5. Classical operation other than a random coin toss. It can be simulated by a unitary
quantum operation in a standard way [NC00, KSV02].

After the purification, the whole system will be in a state of the form∑
s,a,b

αs,a,b |s⟩ES,A |s⟩ES,B |a⟩EA |b⟩EB |ψs,a,b⟩AB (11)

at any moment of a running of the purified protocol. Compared with the expression (8), here qubits
in the environment are no longer collapsed.

By the definition of a party’s view of an interaction (Definition 8), the party A’s view of a
running of a purified (quantum) protocol is given by the state of the subsystem (ES,A,EA,A) at the
end of the interaction, which is of the form∑

s,a,a′,b

α∗s,a′,bαs,a,b (|s⟩ ⟨s|)ES,A(|a⟩ ⟨a′|)EATrB(|ψs,a,b⟩ ⟨ψs,a′,b|)AB. (12)

It is obtained from the expression (11) by tracing out the subsystem (ES,B,EB,B). The expression
for the party B’s view can be written down symmetrically, i.e.:∑

s,a,b,b′

α∗s,a,b,b′αs,a,b,b′ (|s⟩ ⟨s|)ES,B (|b⟩ ⟨b′|)EBTrA(|ψs,a,b⟩ ⟨ψs,a,b′ |)AB (13)

7 The semi-honest security and the security against the purifica-
tion attack

Based on formalizations of a general quantum two-party interaction and the definition of a party’s
view during the interaction introduced in the previous section, we formally define the semi-honest
security of an interactive quantum bit commitment scheme and its purification in this section. They
extend from the case of non-interactive quantum bit commitment scheme in a straightforward way,
and will be crucial for both the statement and the proof of the round-collapse theorem later in
Section 8. Further, for our purpose we initiate a study towards the relationship between the semi-
honest security of an interactive quantum bit commitment scheme and its purification. A bridge
that connects these two notions of security is a special kind of security that we will refer to as the
“security against the purification attack”.

The organization of this section is as follows. We formally define the semi-honest security of
an interactive quantum bit commitment scheme and its purification in Section 7.1 and Section 7.2,
respectively. Also in Section 7.2, we introduce the notion of the security against the purification
attack and show its equivalence to the semi-honest security of the purified scheme. Last in Section
7.3, we study the strength of the security against the purification attack.

7.1 The semi-honest security: honest-hiding and honest-binding

We will define the semi-honest security of a general (interactive) quantum bit commitment scheme
against the receiver and the sender, which will be referred to as honest-hiding and honest-binding.
Specifically, we specialize the formalization of a two-party interaction fixed in Section 6.1 to an
(honest) running of the commit stage of the scheme, where we identify the party A (resp. B) with
the (honest) sender (resp. receiver). Then the sender’s and the receiver’s views of the commit stage
can be defined correspondingly according to Definition 8. Formally, we introduce the following two
definitions.
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Definition 9 (Honest-hiding) Consider an honest running of the commit stage of an interactive
quantum bit commitment scheme. We say that the scheme is statistically (resp. computationally)
honest-hiding if the (honest) receiver’s view of the commit stage corresponding to committing 0
and that corresponding to committing 1 are statistically (resp. computationally) indistinguishable.
Or equivalently, consider an honest running of the commit stage of an interactive quantum bit
commitment scheme in which a uniformly random bit b is committed. We say that the scheme is
statistically (resp. computationally) honest-hiding if after the commit stage, any (possibly cheating)
computationally unbounded (resp. polynomial-time) receiver cannot guess the bit b correctly with
a non-negligible advantage than just a random guess.

Compared with the honest-hiding property which is defined w.r.t. the honest receiver only in
the commit stage, the honest-binding property is defined w.r.t. the honest sender in the commit
stage followed by an arbitrary sender in the reveal stage.

Definition 10 (Honest-binding) Consider the following honest-binding game w.r.t. an interac-
tive quantum bit commitment scheme: an arbitrary bit b ∈ {0, 1} is committed in an honest running
of the commit stage of the scheme. Later in the reveal stage, a possibly cheating sender attempts
to open the (quantum) bit commitment as 1 − b. For doing this, this cheating sender will inherit
the (honest) sender’s view of the commit stage and may additionally receive an auxiliary quantum
state at the beginning of the reveal stage. If this cheating sender succeeds, then we say that it wins
the game. We say that the scheme is statistically (resp. computationally) honest-binding if any
computationally unbounded (resp. polynomial-time) cheating sender in the reveal stage cannot win
the game with non-negligible probability.

Remark. We note that our definitions of honest-hiding and honest-binding properties (of a general
interactive quantum bit commitment scheme) as above are consistent with those of a canonical
quantum bit commitment scheme (Definition 4), respectively. However, in the definition of honest-
binding in Definition 4, the inability of opening an honest commitment to 0 as 1 is equivalent to
that of opening an honest commitment to 1 as 0, which we do not claim here. In spite of this, it
turns out for schemes studied in this paper (Section 9 and 10), proofs for these two directions are
symmetric.

7.2 The semi-honest security of purified quantum bit commitment schemes and
the security against the purification attack

Quantum bit commitment schemes have two stages, the commit stage and the reveal stage. For
our purpose, by “purifying an interactive quantum bit commitment scheme” we mean purify only
its commit stage.

Definition 11 (The purification of an interactive quantum bit commitment scheme) Given
an interactive quantum bit commitment scheme, we can purify its commit stage in the way as de-
scribed in Section 6.3. We will call the resulting scheme the “purified scheme”, or the “purification
of the original scheme”. Correspondingly, the sender and the receiver of the purified scheme will be
referred to as the “purified sender” and “purified receiver” (w.r.t. the original scheme), respectively.

For the purpose of this work, we are especially interested in the relationship between the semi-
honest security of the original quantum bit commitment scheme and its purification. Towards
studying this relationship, we will first introduce a special kind of attack of an interactive quantum
bit commitment scheme which we will refer to as the purification attack. Informally, we can view
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the purification of one party in an interaction as a kind of attack of this party, i.e. the purification
attack. Then we establish an equivalence between the security against the purification attack of
the original scheme and the semi-honest security of its purification.

The purification attack against the receiver, or purification-hiding for short, is formally de-
fined as follows. This definition is adapted straightforwardly from that of honest-hiding w.r.t. an
interactive quantum bit commitment scheme (Definition 9).

Definition 12 (Purification-hiding) Given an interactive quantum bit commitment scheme,
consider an interaction between the honest sender and the purified receiver of the commit stage.
We say that this scheme is statistically (resp. computationally) secure against the purification
attack of the receiver, or statistically (resp. computationally) purification-hiding, if the purified
receiver’s view corresponding to committing 0 and that corresponding to committing 1 are statis-
tically (resp. computationally) indistinguishable. Or equivalently, consider an interaction between
the honest sender and the purified receiver of the commit stage in which a uniformly random bit
b is committed. We say that the scheme is statistically (resp. computationally) purification-hiding
if after the commit stage, any (possibly cheating) computationally unbounded (resp. polynomial-
time) receiver cannot guess the bit b correctly with a non-negligible advantage than just a random
guess.

We define the security against the purification attack of the sender of the original scheme, or
purification-binding for short, as follows. The definition is adapted straightforwardly from that of
honest-binding w.r.t. an interactive quantum bit commitment scheme (Definition 10).

Definition 13 (Purification-binding) Given an interactive quantum bit commitment scheme,
we define a purification-binding game w.r.t. this scheme as follows: The purified sender first inter-
acts with the honest receiver in the commit stage when an arbitrary bit b ∈ {0, 1} is committed.
Later in the reveal stage, a possibly cheating sender attempts to open the (quantum) bit commit-
ment as 1 − b. For doing this, this cheating sender will inherit the purified sender’s view of the
commit stage and may additionally receive an auxiliary quantum state at the beginning of the reveal
stage. If this cheating sender succeeds, then we say that it wins the game. We say that the scheme
is statistically (resp. computationally) secure against the purification attack of the sender, or sta-
tistically (resp. computationally) purification-binding, if any computationally unbounded (resp.
polynomial-time) sender in the reveal stage cannot win the game with non-negligible probability.

The following simple observation is crucial for establishing the equivalence between the security
against the purification attack of the original scheme and the semi-honest security of the purified
scheme.

Proposition 14 Purifying an honest party’s all operations in a running of a two-party quantum
protocol will not affect the other party’s view.

Proof Sketch: This is simply because the honest party’s behavior can be equivalently viewed as
that of its purification after some collapses caused by projective measurements in the computational
basis. But whether these collapses really occur or not cannot be observed by the other party. Hence,
the other party’s views are identical in either cases. ■

Proposition 15 The security against the purification attack of an interactive quantum bit com-
mitment scheme is equivalent to the semi-honest security of its purification.
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Proof: Given an interactive quantum bit commitment scheme, we consider the following two
interactions:

1. The interaction between the purified sender and the purified receiver of the commit stage, i.e.
an (honest) running of the commit stage of the purified scheme;

2. The interaction between the (honest) sender and the purified receiver of the commit stage.

By Proposition 14, the purified receiver’s views of the two interactions above are identical. Thus,
the purification-hiding property of the original scheme is equivalent to the honest-hiding property
of the purified scheme.

Similarly, it is not hard to see the purification-binding property of the original scheme is equiva-
lent to the honest-binding property of its purification by comparing the following two interactions:

1. The interaction between the purified sender and the purified receiver of the commit stage, i.e.
an (honest) running of the commit stage of the purified scheme;

2. The interaction between the purified sender and the (honest) receiver of the commit stage.

Note that the purified sender’s views of these two interactions are also identical. ■

Due to Proposition 15, in the sequel we will use the security against the purification attack of
the original scheme and the semi-honest security of the purified scheme interchangeably. In many
cases of security analysis, the former is often easier to work with than the latter. This is because
we only need to consider the purification of just one (other than two) party with the former.

7.3 The strength of the security against the purification attack

We will show that the security against the purification of a general interactive quantum bit com-
mitment scheme lies between the semi-honest security and the full security (i.e. against an arbitrary
attack).

First, clearly the security against the purification attack of a general interactive quantum bit
commitment scheme is implied by the full security. However, we do not expect the opposite direction
to hold14, because in the definition of the full security a cheating sender can deviate arbitrarily
rather than just purifying the honest sender’s behavior.

Second, the security against the purification attack implies the semi-honest security, as formally
stated in the following proposition.

Proposition 16 The security against the purification attack of one party of an interactive quantum
bit commitment scheme implies its semi-honest security against the same party.

Proof Sketch: This is simply because the honest party’s view can be viewed as that of its
purification after some collapses caused by projective measurements in the computational basis. ■

But can the opposite direction of the proposition above hold, or put it in another way, can the
honest-hiding and honest-binding properties of any interactive quantum bit commitment scheme
be preserved after the purification?

14Specific to quantum bit commitment schemes of the canonical form, interestingly, we have shown that these two
notions of security are equivalent (Theorem 2).
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Before answering the question above, we note that compared with the honest party’s behavior,
after the purification some desired collapses (via measurements) by the honest party may no longer
occur. But this might compromise the semi-honest security of the purified scheme; one is referred
to Appendix B for two such examples.

In spite of the above, the semi-honest security of some interactive quantum bit commitment
schemes does extend to their purifications. In Section 9 and 10, we develop several techniques for
such an extension. In the below, for illustration we identify a simple yet common scenario in which
such an extension is possible.

Specifically, we say that one party of an interactive quantum bit commitment scheme is public-
coin if its only action in the commit stage prescribed by the scheme is just sending a number of
uniformly random bits. Then we have the following proposition.

Proposition 17 If one party of an interactive quantum bit commitment scheme is public-coin and
this scheme is semi-honest secure against this party, then this scheme is also secure against the
purification attack of this party.

Proof Sketch: The (honest) receiver of random bits15 will measure immediately upon receiving
them, which will collapse the state of the whole system to the one corresponding to the sender of
random bits not purifying its operation of tossing random coins. ■

8 A round-collapse theorem

In this section, we will prove a round-collapse theorem as below, which can be viewed as an extension
of converting an arbitrary non-interactive quantum bit commitment scheme into the canonical form
[YWLQ15, FUYZ20].

Theorem 3 (Round-collapse) If a quantum bit commitment scheme is secure against the pu-
rification attack (or equivalently, its purification is semi-honest secure; refer to Definition 12 and
13), then it can be compressed into a scheme of the canonical form (Definition 4) such that:

1. It has perfect completeness. That is, if both the sender and the receiver follow the scheme
honestly, then the receiver will not reject or abort in both the commit and the reveal stages.

2. Both the hiding and binding properties of the original scheme are preserved after the com-
pression. That is, if the original scheme is statistically (resp. computationally) hiding (resp.
binding), then the new scheme is also statistically (resp. computationally) hiding (resp. bind-
ing) as well.

At a high level, our compiler achieves the round-collapse by delegating the computation of both
parties in the commit stage prescribed by the purification of the original scheme to the new sender.
Later in the reveal stage, the new receiver will check this computation in the commit stage via the
reversible quantum computation. We will formally prove the round-collapse theorem (Theorem 3)
shortly below, by constructing a compiler for the round-compression. The proof relies heavily on
the formalization introduced in Section 6.

As a simple application of the round-collapse theorem, we can compress Naor’s bit commitment
scheme [Nao91] to get a non-interactive one. Nevertheless, this application seems not a big deal,

15Not the receiver of the bit commitment.
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since there already exists a more straightforward (and somewhat simpler) construction (also inspired
by Naor’s scheme [YWLQ15]). Two non-trivial applications are referred to the next two sections.

Proof of Theorem 3: We first give a compiler for the round-compression that is easier to under-
stand. Then we explain how to simplify it a little bit to make it cleaner. To prove the correctness
of the compiler, it suffices to prove that the resulting scheme, which will be in the canonical form,
is semi-honest secure: by the virtue of Theorem 2, it follows that the resulting scheme will be fully
secure (against an arbitrary quantum attack) as well.

For simplicity, we can assume w.o.l.g. that in the first place the original scheme is normalized
in such a way that in any running of the commit stage, the number of rounds of the interaction
is fixed by adding dummy rounds, and each exchanged message (whether classical, quantum, or
a hybrid) is of fixed length by padding dummy qubits or bits. As such, the number of rounds of
the interaction and the length of each exchanged message in the commit stage only depend on the
security parameter.

We will call the given quantum bit commitment scheme the original scheme, while its purifica-
tion the purified scheme. Their commit stages (not including the reveal stages) will be formalized
in the way as described in Section 6.1 and Section 6.3, respectively, with the party A identified as
the sender and the party B as the receiver. Our compiler to achieve the round-collapse is described
in Figure 2 (with the security parameter dropped to simplify the notation). We will call this result-
ing scheme the compressed scheme. We are next to prove the correctness of our compiler; that is,
the compressed scheme represented by the quantum circuit pair (Q0, Q1), which is already in the
canonical form, has perfect completeness and satisfies the same flavors of the hiding and binding
properties as the original scheme. In the first place, note that by the normalization of the original
scheme, the size of each quantum register of (ES,B,EB,B,ES,A,EA,A) at the end of the commit
stage in an execution of the purified scheme only depends on the security parameter16.

Completeness. The perfect completeness of the compressed scheme comes from the reversibility
of the quantum computation directly.

Honest-hiding. We show that the honest-hiding property of the purified scheme translates directly
into that of the compressed scheme (Q0, Q1). Indeed, consider an honest execution of the commit
stage of the purified scheme. If the purified scheme is statistically (resp. computationally) honest-
hiding, then the state of the register C = (ES,B,EB,B) at the end of the commit stage (i.e. the
receiver’s view) when a bit 0 is committed, and that when a bit 1 is committed, will be statistically
(resp. computationally) indistinguishable. This concludes that the scheme (Q0, Q1) is statistically
(resp. computationally) hiding.

Honest-binding. We show that the honest-binding property of the purified scheme translates into
the honest-binding property of the compressed scheme (Q0, Q1).

Consider the moment at the beginning of the reveal stage after an honest execution of the
commit stage of the purified scheme when a bit 0 is committed. Then the system (C,R) (=
(ES,B,EB,B,ES,A,EA,A)) will be in the state Q0 |0⟩. An arbitrary quantum state |ψ⟩, which is
stored in an auxiliary system Z, might also be fed to the cheating sender at this moment.

The honest-binding property (Definition 10) of the purified scheme implies that by just oper-

16But by our formalization, their sizes are subject to change during the commit stage. In spite of this, their total
size is fixed and also only depends on the security parameter. In this sense, it is legal to say that quantum circuits
Q0, Q1 perform on quantum registers (ES,B ,EB ,B,ES,A,EA,A) in our construction of the compiler described in Figure
2.
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Commit stage: The new sender simulates an honest execution of the commit stage of the
purified scheme, and then sends the system that corresponds to the receiver of the purified
scheme as the commitment. Formally, let Qb (b ∈ {0, 1}) denote the unitary quantum circuit
that simulates an honest execution of the commit stage of the purified scheme when the bit b
is committed. This quantum circuit performs on quantum registers (ES,B,EB,B,ES,A,EA,A)
that are initialized in all |0⟩’s state. After the quantum circuit Qb is applied, the system of
the new sender will be in the state of the form given by the expression (11). Then the new
sender sends the quantum register C = (ES,B,EB,B) (which is in the state of the form given
by the expression (13)) to the receiver as the commitment.

Reveal stage: The new sender sends the bit b to reveal, together with all the residual system
in its hands, i.e. the quantum register R = (ES,A,EA,A), to the receiver. Upon receiving

them, the new receiver will perform Q†b, i.e. the inverse of Qb, on the whole system (C, R)
(= (ES,B,EB,B,ES,A,EA,A)) to check if it returns to all |0⟩’s state. If yes, then accept; reject
otherwise.

Figure 2: A general compiler for the round-compression of quantum bit commitment schemes

ating on the subsystem (R, Z) (= (ES,A,EA,A,Z)), no cheating sender — either computationally
unbounded in case of statistically honest-binding or polynomial-time bounded in case of compu-
tationally honest-binding — can transform the quantum state Q0 |0⟩ of the system (C, R) into a
(possibly mixed) state whose projection on the vector Q1 |0⟩ is non-negligible. This is because for
otherwise, a cheating sender in the reveal stage could have first transformed the state Q0 |0⟩ of the
system (C, R) into a state that is non-negligibly close (in trace distance) to Q1 |0⟩ by performing on
the system (R, Z), and then proceed honestly as prescribed by the purified scheme to try to open
the commitment as 1. But this should lead the receiver to accept with non-negligible probability,
contradicting to the honest-binding property of the purified scheme.

Henceforth, the scheme (Q0, Q1) is statistically (resp. computationally) binding if its purifica-
tion is statistically (resp. computationally) honest-binding.

Combining all the above, it follows that the canonical quantum bit commitment scheme (Q0, Q1)
has perfect completeness and satisfies the same flavors of the hiding and binding properties as the
original scheme.

Simplification. We note that there is some redundancy in our construction of the compiler given
in Figure 2: the content of the register ES,A and ES,B are identical; they both record the classical
messages communicated by the two party. It turns out in the construction of the compiler for the
round-compression, it suffices to keep track of just one copy of classical messages. In greater detail,
in the constructions of quantum circuits Q0 and Q1 as described in Figure 2, we can just keep the
register ES,B while dropping the register ES,A. Alternatively, this can be done at the end of the
construction by uncomputing the register ES,A given the register ES,B. Now we rename the register
ES,B as ES . Then the quantum circuit pair (Q0, Q1) which represent a new compressed scheme
performing on the registers (C,R), where C = (ES ,EB,B) and R = (EA,A). This simplified compiler
is summarized in Figure 3 for convenience.

For the correctness of this simplified compiler, proofs of the perfect completeness and the honest-
hiding property of the compressed scheme follow almost the same line as those when the compiler
described in Figure 2 is used. For the proof of the honest-binding property, we can first recover the
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Commit stage: Let Qb (b ∈ {0, 1}) denote the unitary quantum circuit that first simulates
the honest execution of the commit stage of the purified scheme when a bit b is committed
and then uncomputes the register ES,A. This quantum circuit can also be equivalently viewed
as just performing on quantum registers (ES ,EB,B,EA,A) that are initialized in all |0⟩’s state,
where the register ES is just the register ES,B after renaming. The new sender will send the
quantum register C = (ES ,EB,B) to the receiver as the commitment.

Reveal stage: The new sender will send the bit b to reveal, together with all the residual
system in its hands, i.e. the quantum register R = (EA,A), to the receiver. Upon receiving

them, the new receiver will perform Q†b, i.e. the inverse of Qb, on the whole system (C,R)
(= (ES ,EB,B,EA,A)), to check if it returns to all |0⟩’s state. If yes, then accept; reject
otherwise.

Figure 3: A simplified compiler for the round-compression of quantum bit commitment schemes

dropped register ES,A and then argue in the same way as the analysis when the compiler described
in Figure 2 is used. We omit the detail here. ■

Remark. One may wonder why the proof of the round-collapse theorem as above does not go
through if we only require that the original scheme (rather than its purification) be semi-honest
secure. Literally, this is because the system (C, R) is then no longer guaranteed to be in a pure
state at the end of the commit stage; in turn, we cannot make use of the reversibility of quantum
computation.

Hereafter, we will call the scheme after the compression (by feeding it into the compiler described
in Figure 3) as the “compressed scheme”, as stated in the definition below formally.

Definition 18 (Compressed scheme) Given an arbitrary interactive quantum bit commitment
scheme, its associated compressed scheme is obtained by feeding it into the compiler described in
Figure 3.

Since the purification attack is just a special kind of attack among all possible attacks, the
following theorem is an immediate corollary of Theorem 3.

Theorem 4 Any secure interactive quantum bit commitment scheme (secure against an arbitrary
quantum attack), in particular post-quantum secure (classical) bit commitment scheme, can be
compressed into a non-interactive one of the canonical form (Definition 4) with perfect completeness
and the same flavors of the hiding and binding properties.

Remark. We stress again that in this work we consider general quantum binding properties that all
quantum bit commitment schemes can satisfy, for which sum-binding is likely to be the strongest.
A specific quantum bit commitment scheme may satisfy even stronger binding properties (e.g.
[AC02, Unr16b, Unr16a, GLSV21, BCKM21, BB21]) than sum-binding. But if we feed it into our
compiler for the round-compression, these stronger binding properties may be lost; the compressed
scheme is only guaranteed sum-binding (or equivalently honest-binding, since it is of the canonical
form).
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

• The sender chooses a string x
$← {0, 1}n and computes y = f(x), where f : {0, 1}n →

{0, 1}n is an aribitrary one-way permutation.

• For k = 1, 2, . . . , n − 1, the receiver chooses a string hk
$← 0k−11{0, 1}n−k and sends it

to the sender, who replies with the bit ck = hky, i.e. the inner product of hk and y if we
view them as vectors over the field F2.

• Let (y0, y1) ∈ {0, 1}n be the two solutions in the lexicographical order of the equation
system hky = ck, k = 1, . . . , n − 1. Let the bit a ∈ {0, 1} be such that y = ya. The
sender then sends the bit d = a⊕ b to the receiver.

Reveal stage:

• The sender sends the bit b and the string x to the receiver.

• The receiver first determines the bit a from f(x): 0 if f(x) is the lexicographically smaller
solution of the equation system hky = ck, k = 1, . . . , n − 1, and 1 otherwise. Then the
receiver checks that d = a⊕ b; accept if yes, reject otherwise.

Figure 4: The NOVY scheme

9 Application: compress the NOVY scheme

In this section, we apply the round-collapse theorem (Theorem 3) to compress the NOVY scheme
[NOVY98], obtaining yet another construction of non-interactive computationally-binding quantum
bit commitment. The main technical part of this section lies in showing that the NOVY scheme is
secure against the purification attack.

In greater detail, the classical NOVY scheme [NOVY98] gives a construction of computationally-
binding bit commitment based on any one-way permutation. We naturally will ask, is the NOVY
scheme secure against the quantum attack when the underlying one-way permutation is also
quantum-secure? The main difficulty in extending the classical argument for the binding prop-
erty [NOVY98] to the quantum setting lies in the rewinding, which is generally impossible in the
quantum setting [vdG97]. Moreover, Brassard, Crépeau, Mayers, and Salvail [BCMS98] have shown
a superposition attack which breaks the unique-binding property, but it does not break the quan-
tum sum-binding property. That is, the NOVY scheme instantiated with a quantum-secure one-way
permutation is still possibly sum-binding, but unfortunately we do not have a proof of it yet. In the
below, we show that the NOVY scheme instantiated with a quantum-secure one-way permutation
is secure against the purification attack, which in turn can be compressed into a computationally-
binding quantum bit commitment scheme of the canonical form by our round-collapse theorem
(Theorem 3). The (quantum) analysis here is much simpler than the classical one in [NOVY98].

Formally, we prove the following theorem. And for self-containment, we reproduce the NOVY
scheme [NOVY98] in Figure 4.

Theorem 5 The compressed NOVY quantum bit commitment scheme is perfectly-hiding and computationally-
binding if the one-way permutation used within it is quantum-secure. In particular, this compressed
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scheme can be represented by the quantum circuit pair ensemble (Q0, Q1) such that

Q0(n) |0⟩ =
1

2
n(n+1)

4

∑
x,h1,...,hn−1

|x⟩R
∣∣h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), a〉C , (14)

Q1(n) |0⟩ =
1

2
n(n+1)

4

∑
x,h1,...,hn−1

|x⟩R
∣∣h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), 1− a〉C , (15)

where the x is summing over {0, 1}n, and hk (for k = 1, 2, . . . , n− 1) over 0k−11{0, 1}n−k.

Proof: We can purify the NOVY scheme (described in Figure 4) in the way as fixed in Section 6
so that the whole system will be in the quantum state

1

2
n(n+1)

4

∑
x,h1,...,hn−1

|x⟩EA
∣∣h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), a〉ES

when a bit 0 is committed honestly, and in the quantum state

1

2
n(n+1)

4

∑
x,h1,...,hn−1

|x⟩EA
∣∣h1, . . . , hn−1, h1f(x), . . . , hn−1f(x), 1− a〉ES

when a bit 0 is committed honestly. The expressions of Q0(n) and Q1(n) are obtained by the general
compiler as described in Figure 3. By the round-collapse theorem (Theorem 3), the correctness of
the scheme (Q0, Q1) follows by combining Lemma 19 and Lemma 20 that will be proved shortly
below. ■

To simplify the notation in our security analysis, we will drop the auxiliary quantum state that
the adversary may receive (as specified, explicitly or implicitly, in Definitions 9 and 10). We can
do this because our analysis will be black-box without rewinding; one can easily see that almost
the same arguments go through even if the auxiliary quantum state is taken into account. We will
also follow this rule in the subsequent sections.

Lemma 19 The NOVY scheme with a quantum-secure one-way permutation plugged in is perfectly
honest-hiding and computationally honest-binding.

Proof: The perfect honest-hiding property follows by exactly the same argument as the one in the
classical setting. At a high level, this is because the distribution of the bit a is uniform; we omit
the detail here. In the below, we will focus on showing the computational honest-binding property
of the scheme, whose proof is also almost a reproduction of the classical one17 (which we believe is
folklore).

Consider the honest-binding game w.r.t. the NOVY scheme in which a bit 0 is committed; the
case when a bit 1 is committed can be proved symmetrically. For contradiction, suppose that a
cheating sender S∗ of the reveal stage succeeds in opening the commitment as 1 with non-negligible
probability. Given the oracle access to S∗, we construct an inverter I∗ of the quantum-secure
one-way permutation f(·) as follows: on input y′ ∈ {0, 1}n,

1. Choose y
$← {0, 1}n−1 ◦ (1− y′n), where the y′n denotes the n-th bit of the y′ and the operator

“◦” denotes the concatenation of two binary strings.

17We highlight that this is the analysis of the security against a sender who is honest in the commit stage, rather
than the NOVY analysis of the security against an arbitrary sender [NOVY98].
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2. For k = 1, 2, . . . , n− 1 do: hk
$← 0k−11 ◦ {0, 1}n−k subject to hky = hky′; let ck = hky.

3. If y < y′, then a← 0; otherwise, a← 1.

4. Output x′ ← S∗(y, h1, . . . , hn−1, c1, . . . , cn−1, 1− a).

We are left to show that this inverter indeed breaks the security of the one-way permutation f(·).
Let H = (H1, H2, . . . ,Hn−1), where the random variable Hk = 0k−11 ◦ Un−k and Un−k is

uniformly distributed over {0, 1}n−k. We introduce an experiment E1 as: x
$← {0, 1}n, y = f(x),

h
$← H. Intuitively, the experiment E1 is to simulate the commit stage of the honest-binding game

w.r.t. the NOVY scheme. Let y′ be the unique vector such that hy = hy′ and y′ ̸= y. We claim that
yn = 1− y′n. Indeed, let j = max {i | 1 ≤ i ≤ n, yi ̸= y′i}; our goal is to show that j = n. Suppose
for contradiction that j ≤ n− 1. Then for any hj ∈ 0j−11 ◦ {0, 1}n−j , since the last n− j+1 bits of
y − y′ are 10n−j , we must have hj(y − y′) = 1. But this contradicts with the equation hjy = hjy′.

We introduce another experiment E2 as: y′
$← {0, 1}n, y $← {0, 1}n−1 ◦ (1− y′n), h

$← H subject
to hy = hy′. Intuitively, the experiment E2 is to simulate an execution of the first two steps of the
inverter I∗.

We claim that the distribution of (y, y′, h) in the experiment E1 is identical to that in the
experiment E2; that is, for any (y, y′, h),

Pr
E1
[y, y′, h] = Pr

E2
[y, y′, h]. (16)

Assuming for the moment that this is true, then the success probability of the inverter I∗ is exactly
that of the cheating sender S∗. But since this probability is non-negligible by our hypothesis,
the inverter I∗ thus breaks the one-wayness of the one-way permutation f(·). We arrive at a
contradiction. Henceforth, the NOVY scheme is computationally honest-binding.

We are left to prove the equation (16). Regarding the experiment E1, since both the y and h
are uniformly distributed, and the y′ is uniquely determined by the y and h, we have

Pr
E1
[y, y′, h] = Pr

E1
[y] · Pr

E1
[h] =

1

2n
· 1

2n−1
1

2n−2
· · · 1

2
. (17)

Regarding the experiment E2, we have

Pr
E2
[y, y′, h] = Pr

E2
[y′] · Pr

E2
[y | y′] · Pr

E2
[h | y, y′] = 1

2n
· 1

2n−1
· Pr
E2
[h | y, y′]. (18)

To calculate the PrE2 [h | y, y′], since the h is chosen uniformly random such that hy = hy′ in the
experiment E2, we are to calculate it via of the cardinaliy of the set {h | h(y − y′) = 0}. Since
yn − y′n = 1, there are exactly half of hk ∈ 0k−11 ◦ {0, 1}n−k, for each 1 ≤ k ≤ n − 1, such that
hk(y − y′) = 0. It then follows that there are 2n−2 · 2n−1 · · · 2 · 1 h’s satisfying h(y − y′) = 0. As
such,

Pr
E2
[h | y, y′] = 1

2n−2
· · · 1

2
.

Combined with equations (17) and (18), the equation (16) holds.
This finishes the proof of the lemma. ■

Lemma 20 If the NOVY scheme is quantum semi-honest secure (i.e. honest-hiding and honest-
binding), then it is also secure against the purification attack.
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Proof: We first prove that the NOVY scheme is secure against the purification attack of the re-
ceiver; or, the purification of the NOVY scheme is honest-hiding. This follows from the assumption
that the NOVY scheme is honest-hiding together with that the receiver is public-coin, in which
case Proposition 17 can be applied.

We next prove that the NOVY scheme secure against the purification of the sender; or, the
purification of the NOVY scheme is honest-binding. Consider the purification-binding game w.r.t.
the NOVY scheme in which a bit 0 is committed. By the purification attack the cheating sender will
not measure the quantum register in which x and f(x) are stored at the beginning of the commit
stage. Since the classical messages (h1, . . . , hn−1; c1, . . . , cn−1; a) exchanged during the commit stage
will uniquely determine the x chosen by the sender, the quantum state is enforced to collapse at
the end of the commit stage to the one as if x and f(x) were really measured (at the beginning
of the commit stage). The case when a bit 1 is committed in the purification-binding game can
be proved symmetrically. Hence, the honest-binding property of the NOVY scheme extends to its
purification. ■

10 Application: an equivalence between two flavors of quantum
bit commitments

In this section, we show that two flavors of quantum bit commitments are equivalent, or quantum
bit commitment is symmetric, through the following theorem.

Theorem 6 Canonical computationally-hiding statistically-binding quantum bit commitment schemes
exist if and only if canonical statistically-hiding computationally-binding quantum bit commitment
schemes exist.

Towards establishing the equivalence above, our basic idea is first using a construction that
is a simplification of the CLS scheme [CLS01] to convert the flavor of the given quantum bit
commitment scheme, and then compressing the resulting (interactive) scheme into a canonical one
using the round-collapse theorem (Theorem 3).

In greater detail, our construction for the purpose of converting the flavor of quantum bit
commitments is basically the parallel composition of the atomic (interactive) scheme as described
in Figure 5, which we denote by QBC(n), with the security parameter n (which we often drop to
simplify the notation). Let QBC(n)⊗n denote the parallel composition of n copies of the scheme
QBC(n). This construction is almost the CLS scheme given in [CLS01], but with a significant
simplification: all intermediate verifications of the commitments by the sender are removed. In
spite of this, we will still call it the CLS scheme in this paper. Intuitively, these intermediate
verifications can be removed because by the virtue of the round-collapse theorem (Theorem 3),
we only need a scheme that is just secure against the purification attack for the purpose of the
compression. That is, we only need to show that the CLS scheme QBC(n)⊗n is secure against
the purification attack, or the purified CLS scheme is both honest-hiding and honest-binding. This
simplification of the construction will induce a significant simplification of the analysis of the original
CLS scheme [CLS01], which is for the full security and quite technically involved.

Remark. Since here our purpose is to show the equivalence between two flavors of quantum bit
commitments, we do not intend to explicitly write out the quantum circuit pair (Q0, Q1) corre-
sponding to the compressed CLS scheme, though which is straightforward following the compiler
described in Figure 3.
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Security parameter: n

Commit stage: Let b ∈ {0, 1} be the bit to commit.

• (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis θi

$← {+,×},
sending the qubit |xi⟩θi to the receiver.

• (R2) For i = 1, 2, . . . , n, the receiver chooses a basis θ̂i
$← {+,×} and measures each

received qubit |xi⟩θi in the basis θ̂i, obtaining the outcome x̂i. Then commit to (θ̂i, x̂i)
in a bitwise fashion using a canonical quantum bit commitment scheme (Q0, Q1). (We
can assume that the bases “+” and “×” are encoded as 0 and 1, respectively.)

• (S3) The sender sends all θi’s, i = 1, 2, . . . , n, to the receiver.

• (R4) The receiver chooses a random bit c
$← {0, 1}, as well as two random subsets of

indices I0, I1 ⊂ [n] such that |I0| = |I1| = n/3, I0 ∩ I1 = ∅, and θi = θ̂i for each i ∈ Ic.
Then send (I0, I1) to the sender.

• (S5) The sender chooses a bit a0
$← {0, 1} and sets a1 = a0 ⊕ b. Then compute â0 =⊕

i∈I0 xi ⊕ a0, â1 =
⊕

i∈I1 xi ⊕ a1, and send (â0, â1) to the receiver.

• (R6) The receiver computes the bit dc =
⊕

i∈Ic x̂i ⊕ âc.

Reveal stage:

• The sender sends the bits b and (a0, a1) to the receiver.

• The receiver verifies that b = a0 ⊕ a1 and dc = ac.

Figure 5: The atomic scheme QBC, which composed in parallel gives a scheme that is a somewhat
simplification of the original CLS scheme
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We will prove two directions of Theorem 6 in two separate subsections. Specifically, in Sec-
tion 10.1 we show that instantiating the CLS scheme with a canonical computationally-hiding
statistically-binding quantum bit commitment scheme gives rise to a scheme that is statistically
purification-hiding and computationally purification-binding. In Section 10.2 we prove the other
direction of Theorem 6, namely, instantiating the CLS scheme with a canonical statistically-hiding
computationally-binding quantum bit commitment scheme gives rise to a scheme that is computa-
tionally purification-hiding and statistically purification-binding.

10.1 The forward direction

Applying the round-collapse theorem (Theorem 3), the forward direction of Theorem 6 follows
immediately from Lemma 21 and Lemma 22 that will be stated and proved in the remainder of
this subsection.

Lemma 21 If the canonical quantum bit commitment scheme (Q0, Q1) is statistically-binding, then
the purification of the CLS scheme QBC(n)⊗n is statistically honest-hiding (or, the CLS scheme
QBC(n)⊗n is statistically purification-hiding).

Proof: To simplify our security analysis, by the perturbation technique developed in [FUYZ20], we
can assume without loss of generality that the canonical quantum bit commitment scheme (Q0, Q1)
plugged in the atomic scheme QBC (described in Figure 5) is perfectly binding.

We first show that the CLS scheme QBC(n)⊗n is statistically honest-hiding. Then we show
that this statistical honest-hiding property extends to its purification.

The proof that the CLS scheme QBC(n)⊗n is statistically honest-hiding follows almost the
same line as the proof of that the oversimplified CLS scheme (r.f. Section B) is statistically honest-
hiding. This is because if we compare the two atomic schems described in Figure 5 and Figure
8, respectively, we find that the only difference lies in that in the former scheme the receiver
additionally sends commitments to (θ̂i, x̂i)’s to the sender in step (R2)18. But these commitments
clearly cannot help the semi-honest receiver in cheating.

To show that the statistical honest-hiding property of the scheme QBC(n)⊗n is preserved after
the purification, it suffices to show that all collapses caused by the receiver’s non-unitary operations
are still enforced even after the purification. Indeed, the receiver has two non-unitary operations
prescribed by the atomic scheme QBC:

1. Measure each received qubit |xi⟩θi in step (R2).

2. Randomly choose the bit c, as well as the subsets I0, I1, in step (R4).

For the first non-unitary operation, note that the scheme (Q0, Q1) plugged in is perfectly bind-
ing. Then applying the commitment measurement technique technique developed in [FUYZ20], the
commitment to each pair (θ̂i, x̂i) in step (R2) amounts to measure them (but without revealing
their values to the sender)19. Thus, even the receiver’s measurements are purified, the state of the

18If these commitments were removed from the scheme QBC, then its step (S3) could be merged into step (S1),
resulting in the same atomic scheme as described in Figure 8.

19A hypothetical measurement called “commitment measurement” performed on each quantum bit commitment
can be introduced to collapse the committed value without affecting the security; its detail is referred to [FUYZ20].
Anyway, if one is not satisfied with this informal argument, then one is referred to the proof of the backward
direction of Theorem 6 in Section 10.2. There, a computational collapse (caused by computationally-binding quantum
commitments) is formally established. And arguments for this computational collapse extends to the (information-
theoretic) collapse (caused by perfectly-binding quantum commitments) here straightforwardly.
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whole system can be equivalently viewed as collapsed to the one corresponding to that each pair
(θ̂i, x̂i) is really measured.

For the second non-unitary operation, with overwhelming probability, about half of θ̂i’s are
equal to θi’s; that is, with probability exponentially close to one, n/2.1 <

∣∣{i | θi = θ̂i
}∣∣ < n/1.9.

Conditioned on this event happening, the receiver’s private coin c can be determined from the
subsets (I0, I1). In turn, the qubit storing the (private) coin c will collapse at the moment the
subsets (I0, I1) are sent to the sender in step (R4). As such, the state of the whole system still
will collapse to the one associated with the occurrence of (I0, I1, c) before the purification of the
receiver’s random coin tosses.

Therefore, the statistical honest-hiding property of the CLS scheme QBC(n)⊗n extends to its
purification. This finishes the proof of the lemma. ■

As opposed to the proof of the statistical purification-hiding property of the CLS scheme
QBC(n)⊗n, there seems no obvious way to show that the collapses caused by the honest sender’s
non-unitary operations, e.g. choosing the xi’s in step (S1) and choosing the a0, a1 in step (S5),
still will be enforced after the purification. Thus, the statistical honest-binding property of the
CLS scheme QBC(n)⊗n (which follows similar to that of the oversimplified CLS scheme discussed
in Section B) does not extend to its purification straightforwardly. In spite of this, we can take
a similar analysis as the one in [CLS01]. But since now we are to argue the security against the
purification rather than an arbitrary attack, the analysis can be greatly simplified.

Lemma 22 If the canonical quantum bit commitment scheme (Q0, Q1) is computationally-hiding,
then the purification of the CLS scheme QBC(n)⊗n is computationally honest-binding (or, the CLS
scheme QBC(n)⊗n is computationally purification-binding).

Proof: For our analysis, we define a sequence of atomic schemes as follows20:

1. U-QBC. Obtained from the scheme QBC by letting the receiver commit to 2n uniformly
random bits, rather than (θ̂i, x̂i)’s, in step (R2).

2. S-QBC. Obtained from the scheme U-QBC by removing the receiver’s commitments in step
(R2). Now since step (S3) of the sender is independent of step (R2) of the receiver, we can
first switch them, and then merge the former into step (S1), and the latter into step (R2).
For clarity, the resultng scheme S-QBC is depicted in Figure 6.

3. M-QBC. Obtained from the scheme S-QBC by introducing measurements of each qubit |xi⟩θi
in the basis θi once it is sent in step (S1). These hypothetical measurements are introduced
purely for the purpose of the security analysis.

The roadmap of our analysis is depicted as below:

The scheme QBC(n)⊗n is computationally purification-binding

⇑ Reduction 1

The scheme U-QBC(n)⊗n is statistically purification-binding

⇑ Reduction 2

The scheme S-QBC(n)⊗n is statistically purification-binding

⇑ Reduction 3

The scheme M-QBC(n)⊗n is statistically purification-binding

20The notations of various schemes we introduced are not exactly the same as those in [Lég00, CLS01].
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Security parameter: n

Commit stage: Let b ∈ {0, 1} be the bit to commit.

• (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis θi

$← {+,×}.
Send the basis θi and the qubit |xi⟩θi to the receiver.

• (R2) For i = 1, 2, . . . , n, the receiver chooses a basis θ̂i
$← {+,×} and measures each

received qubit |xi⟩θi in the basis θ̂i, obtaining the outcome x̂i. Then choose a random

bit c
$← {0, 1}, as well as two random subsets of indices I0, I1 ⊂ [n] such that |I0| =

|I1| = n/3, I0 ∩ I1 = ∅, and θi = θ̂i for each i ∈ Ic. Send (I0, I1) to the sender.

• (S3) The sender chooses a bit a0
$← {0, 1} and sets a1 = a0 ⊕ b. Then compute â0 =⊕

i∈I0 xi ⊕ a0, â1 =
⊕

i∈I1 xi ⊕ a1, and send (â0, â1) to the receiver.

• (R4) The receiver computes the bit dc =
⊕

i∈Ic x̂i ⊕ âc.

Reveal stage:

• The sender sends (b, a0, a1) to the receiver.

• The receiver verifies that b = a0 ⊕ a1 and dc = ac.

Figure 6: The atomic scheme S-QBC
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To establish the purification-binding property of various schemes above, we consider the corre-
sponding purification-binding games described in Definition 13. For simplification, in the analysis
below we just focus on the case b = 0 (i.e. a bit 0 is committed) of each game without explicit
mention; the case b = 1 can be established symmetrically.

Reduction 1. This is the most technical part of the whole analysis, which is deferred to Appendix
D. Basically, we use the hybrid argument to replace all receiver’s commitments with commitments
to uniformly random bits in step (R2) of the atomic scheme QBC.

Reduction 2. Consider the purification-binding game w.r.t. the scheme U-QBC(n)⊗n, whose
commit stage is just that of n copies of the purification-binding game w.r.t. the atomic scheme
U-QBC running in parallel. Intuitively, the commitments described in step (R2) of the scheme
U-QBC does not contain any information about the (honest) receiver’s random bits c’s (also chosen
in step (R2); n bits in total) that can help the sender win the game, hence can be removed.

In more detail, a key observation is that whether for the purification-binding game w.r.t. the
scheme U-QBC(n)⊗n or the scheme S-QBC(n)⊗n, a cheating sender can win the game if and only if
it can guess the (honest) receiver’s all random bits c’s correctly. To see this, note that for the purpose
of cheating successfully, in the reveal stage of each copy of the purification-binding game w.r.t. the
atomic scheme U-QBC or S-QBC, the cheating sender must send corresponding (a0, 1− a1) when
c = 0, or (1−a0, a1) when c = 1, to the receiver; this is because the receiver will check the correctness
of ac (but not a1−c). Combining this observation with that the receiver’s commitments to random
bits as described by step (R2) of the scheme U-QBC do not contain any information about the
receiver’s random bits c’s, removing all these commitments in the purification-binding game w.r.t.
the scheme U-QBC(n)⊗n will not affect the sender’s success probability of cheating. But removing
these commitments gives exactly the same commit stage as that of the purification-binding game
w.r.t. the scheme S-QBC(n)⊗n. Reduction 2 follows.

Reduction 3. Consider the purification-binding game w.r.t. the scheme S-QBC(n)⊗n, whose com-
mit stage is just that of n copies of the purification-binding game w.r.t. the atomic scheme S-QBC
running in parallel. Note that introducing the hypothetical measurements as in the description
of the scheme M-QBC to this game will result in the purification-binding game w.r.t. the scheme
M-QBC(n)⊗n, which will affect nothing but x̂i’s (i.e. the receiver’s private measurement outcomes)
where i ∈ I1−c (or θ̂i ̸= θi) in the commit stage of each copy of the atomic game. Henceforth,
neither the sender’s view nor the receiver’s verification (of dc’s, where only x̂i’s for i ∈ Ic matter)
in the subsequent reveal stage will change. This implies that the sender’s probability of winning
the game will not change after introducing the hypothetical measurements. Reduction 3 follows.

The schemeM-QBC(n)⊗n is statistically purification-binding. We first argue that the scheme
M-QBC(n)⊗n is statistically honest-binding. Then we show that this binding property extends
to the purified scheme; this is equivalent to say that the scheme M-QBC(n)⊗n is statistically
purification-binding.

First consider the honest-binding game w.r.t. the scheme M-QBC(n)⊗n, which is n copies of the
honest-binding game w.r.t. the atomic scheme M-QBC running in parallel. Note that within each
atomic game, the hypothetical measurements will become redundant; this is because each qubit
|xi⟩θi has already been collapsed by the honest-but-curious sender’s measurement in the basis θi in
step (S1). Hence, the honest-binding game w.r.t. the atomic scheme M-QBC is exactly the game
w.r.t. the atomic scheme (of the simplified CLS scheme) described in Figure 8. Henceforth, as we
have already argued in Subsubsection B.2, the scheme M-QBC(n))⊗n is statistically honest-binding.
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Now we turn to consider the purification-binding game w.r.t. the scheme M-QBC(n))⊗n, which
is n copies of the purification-binding game w.r.t. the atomic scheme M-QBC running in parallel.
If we can show that all collapses of the sender’s (quantum) messages in the corresponding honest-
binding game are still enforced in this purification-binding game, then the probability that the
sender can win the purification-binding game will be the same as that of the honest-binding game,
and we are done. To see this, consider the atomic purification-binding game (w.r.t. the atomic
scheme M-QBC). First, we note that the bases θi’s chosen in the step (S1) will be collapsed by
the honest receiver. Second, the xi’s chosen in the same step will be collapsed by the hypothetical
measurements. Third, in step (S3), since bits a0, a1 are uniquely determined by bits â0, â1 and
x1, . . . , xn, they will collapse after â0, â1 are collapsed by the honest receiver. As such, all collapses
happened in the honest-binding game are still enforced in the corresponding purification-binding
game.

This finishes the proof of that the scheme M-QBC(n)⊗n is statistically purification-binding.
Combining with Reduction 1, 2, and 3, this finishes the proof of the lemma. ■

10.2 The backward direction

Now the canonical quantum bit commitment scheme (Q0, Q1) plugged in the scheme QBC (de-
scribed in Figure 5) will be statistically-hiding and computationally-binding.

To prove the backward direction of Theorem 6, after a few thoughts, it turns out that the proof
of the forward direction almost extends here in a straightforward way except for one place: namely,
in arguing the statistical purification-hiding property (the proof of Lemma 21), we use a technique
developed in [FUYZ20] which allows us to view quantum bit commitments with perfect binding
as implicit measurements of the committed value. However, here we will use instead quantum bit
commitments that are only guaranteed computationally binding, in which case the same technique
cannot be applied. Actually, this is just where the analysis of quantum oblivious transfer gets stuck
when computationally-binding quantum bit commitments are used [CDMS04], where the difficulty
was circumvented by turning to a stronger yet “non-standard” quantum computational string
binding property. However, even today there is still no instantiation of quantum commitments
with such binding property based on well-founded quantum complexity assumptions.

Fortunately, our situation seems inherently easier than that is considered in [CDMS04], because
we only need to take into account of the purification attack (as opposed to an arbitrary attack). It
turns out that in our situation we can show that quantum commitments with just the computational
honest-binding property indeed can realize a computational collapse that is similar to the one caused
by statistically-binding quantum commitments as argued in the proof of Lemma 21.

Formally, the proof of the backward direction of Theorem 6 relies on a what we will refer to
as the computational collapse theorem, which might be of independent interest. Its proof, which is
deferred to Appendix E, is inspired by the technique developed in [Yan21] to establish the quantum
computational string predicate-binding property.

Theorem 7 (Computational collapse) Suppose that (Q0, Q1) is a canonical computationally
ϵ-binding quantum bit commitment scheme. Then for each b ∈ {0, 1},∥∥∥ΠbU

∑
s∈{0,1}m

αs |s⟩ (Qs |0⟩)C
⊗mR⊗m |ψs⟩ |0⟩B

∥∥∥2 ≤ ∑
s∈{0,1}m

|αs|2
∥∥∥ΠbU |s⟩ (Qs |0⟩)C

⊗mR⊗m |ψs⟩ |0⟩B
∥∥∥2+mϵ,

where the projector Πb = |b⟩ ⟨b| acts on the qubit B; the efficiently realizable unitary transformation
U is arbitrary and acts on the whole system other than the system C⊗m; complex coefficients αs’s
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satisfy
∑

s∈{0,1}m |αs|2 = 1; |ψs⟩ is a unit vector; and the quantum circuit Qs is given by the equation
(4).

Now we are ready to sketch a proof of the backward direction of Theorem 6 using Theorem 7.

Proof of Theorem 6 (the backward direction): It suffices to prove that the CLS scheme QBC(n)⊗n,
i.e. the parallelization of the atomic scheme QBC described in Figure 5 with a canonical statistically-
hiding computationally-binding quantum bit commitment scheme plugged in, is both computation-
ally purification-hiding and statistically purification-binding.

The proof of the statistical purification-binding property follows almost the same line as that
of Lemma 22, except thatwhere “computationally hiding” is replaced with “statistically hiding”
literally.

For the proof of the computational purification-hiding property, we will adapt the proof of
Lemma 21. As discussed, it suffices to show that using computationally-binding quantum commit-
ments will result in a similar collapse of the quantum state as that is caused by using perfectly-
binding quantum commitments. We are left to elaborate how to apply the computational collapse
theorem (Theorem 7) to justify this.

Recall that in the proof of Lemma 21, we argue that although the cheating receiver will not
measure each pair (θ̂i, x̂i), the corresponding collapse is enforced by perfectly-binding quantum
bit commitments. Now we are going to argue that using computationally-binding quantum bit
commitments will cause a similar effect. Specifically, suppose that a uniformly random bit b ∈ {0, 1}
has been chosen by the sender to commit. The quantum state of the whole system at the end of
the commit stage can be written in the following form:∑

θ̂,x̂∈{0,1}n

1

2n
|θ̂⟩|x̂⟩ ⊗

(
Qθ̂ |0⟩

)C⊗nR⊗n(
Qx̂ |0⟩

)C⊗nR⊗n

⊗ |ψθ̂,x̂⟩ |0⟩
B , (19)

where quantum circuits Qθ̂ and Qx̂ are circuits used to commit the chosen bases θ̂ and the mea-
surement outcomes x̂, respectively; the qubit B will be used to store the guess for the bit b that
is committed by the sender; and |ψθ̂,x̂⟩ is the state of the residual system. Note that the quantum

state corresponding to (θ̂, x̂) being measured at this moment is given by the uniform mixture of
the quantum state ensemble{

|θ̂⟩|x̂⟩ ⊗
(
Qθ̂ |0⟩

)C⊗nR⊗n(
Qx̂ |0⟩

)C⊗nR⊗n

⊗ |ψθ̂,x̂⟩ |0⟩
B
}
θ̂,x̂∈{0,1}n

. (20)

Next, the cheating receiver may attack by performing a polynomial-time realizable unitary
operation U on its system, which in particular does not touch the commitment registers C⊗2n. (It
may also additionally receives a quantum state for the attack, but which will not affect the analysis
below; so we omit it.) After the attack, seeing from the expression (19) the success probability of
the receiver guessing the random bit b correctly is given by∥∥∥ΠbU

∑
θ̂,x̂∈{0,1}n

1

2n
|θ̂⟩|x̂⟩ ⊗

(
Qθ̂ |0⟩

)(
Qx̂ |0⟩

)
⊗ |ψθ̂,x̂⟩ |0⟩

B
∥∥∥2. (21)

In comparison, seeing from the expression (20) the success probability when the attack U performs
on the collapsed quantum state (i.e. obtained by measuring (θ̂, x̂) of the quantum state (19)) is
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given by ∑
θ̂,x̂∈{0,1}n

1

22n

∥∥∥ΠbU
(
|θ̂⟩|x̂⟩ ⊗

(
Qθ̂ |0⟩

)(
Qx̂ |0⟩

)
⊗ |ψθ̂,x̂⟩ |0⟩

B )∥∥∥2, (22)

Now we are ready to apply the computational collapse theorem. Specifically, we instantiate
parameters m, s, |ψs⟩ ,Πb, U and αs for each s ∈ {0, 1}m in Theorem 7 with 2n, (θ̂, x̂), |ψθ̂,x̂⟩,Πb, U

and 1/22n, respectively. It follows that if the real quantum state (given by the expression (19)) of
the whole system at the end of the commit stage is replaced by the collapsed one corresponding to
(θ̂, x̂) is measured (given by the expression (20)), then the receiver’s success probability of guessing
the committed bit b correctly decreases at most 2nϵ (which is negligible).

Hence, the proof Lemma 21 can be modified to establish the computational purification-hiding
property here by just replacing the information-theoretic collapse caused by perfectly-binding quan-
tum bit commitments with the computational collapse caused by computationally-binding quantum
bit commitments. ■

11 Parallel composition of a canonical statistically-binding quan-
tum bit commitment scheme

In cryptography, a typical way to commit a string is to commit it in a bitwise fashion using a
bit commitment scheme. We naturally ask, what binding property can we obtain if we commit
a string in a bitwise fashion using a canonical quantum bit commitment scheme? The answer to
this question on the parallel composition of quantum bit commitments turns out to be elusive,
especially w.r.t. the computationally-binding quantum bit commitment [CDMS04].

In this section, we study will the parallel composition of a canonical statistically-binding quan-
tum bit commitment scheme, establishing the (almost) strongest quantum string binding property
that we may hope for. We also show that this binding property implies the CDMS-binding property
of quantum string commitment, which is useful in quantum cryptography [CDMS04]. In spite of
this, we do not expect the same binding property extends to a canonical computationally-binding
quantum bit commitment scheme.

11.1 Quantum string sum-binding

We first define the sum-binding property of a general quantum string commitment scheme.

Definition 23 (Sum-binding) Suppose that a possibly cheating sender interacts with an honest
receiver prescribed by a quantum string commitment scheme, and completes the commit stage. For
any string s ∈ {0, 1}m(n), where m(·) is a polynomial of the security parameter n, let ps denote the
success probability that the sender can open the commitment as the string s in the reveal stage.
We say that this quantum string commitment scheme is sum-binding if∑

s∈{0,1}m
ps < 1 + negl(n). (23)

Remark. The sum-binding property defined above is very strong for quantum string commit-
ment in the following sense. Note that a cheating sender can trivially achieve

∑
s∈{0,1}m ps = 1,

by committing to an arbitrary superposition of the strings in {0, 1}m honestly and then open the
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commitment honestly. But showing that the advantage of any cheating sender in opening a com-
mitment is negligible is likely to be hard or even impossible [CDMS04]. Roughly speaking, the main
difficulty comes from that there are exponentially many strings (2m, exactly) in {0, 1}m, but we still
hope bound the sum of exponentially many advantages by a negligible quantity. In spite of this,
we can prove the following parallel composition theorem w.r.t. a canonical statistically-binding
quantum bit commitment scheme.

Theorem 8 (Parallel composition) Suppose that a canonical quantum bit commitment scheme
(Q0, Q1) is statistically binding. Then the quantum string commitment scheme obtained by com-
posing it in parallel is statistically sum-binding. Formally, if the scheme (Q0, Q1) is statistically
ϵ(n)-binding where the function ϵ(·) is negligible, then∑

s∈{0,1}m
ps ≤ 1 +O(m2ϵ). (24)

The proof of the theorem above will be information-theoretic, thus does not extend to the
computational setting. Before giving the proof, we provide some preliminaries first.

When we use the quantum bit commitment scheme (Q0, Q1) to commit an m-bit string s in a
bitwise fashion, the quantum (string) commitment (stored in the quantum register C⊗m) is given
by the quantum state

ρs =

m⊗
i=1

ρsi , (25)

where the “si” denotes the i-th bit of the string s. The fact below gives an information-theoretic
characterization of the success probability of opening a claimed quantum commitment as an arbi-
trary string.

Fact 24 ([YWLQ15]) Let (Q0, Q1) be a non-interactive statistically-binding quantum bit commit-
ment scheme. Given an arbitrary quantum state ρ ∈ C⊗m which is claimed to be the commitment to
an m-bit string by a (possible cheating) computationally-unbounded sender, the success probability
of opening this commitment as an arbitrary string s ∈ {0, 1}m is at most F(ρ, ρs)

2.

The following lemma states that the honest-binding error decreases exponentially w.r.t. the
Hamming distance between the committed string and the string to reveal.

Lemma 25 ([YWLQ15]) Let (Q0, Q1) be a canonical quantum bit commitment scheme that is
statistically ϵ-binding. Given the honest commitment to a string s ∈ {0, 1}m, the success probability
of opening it as s′ ∈ {0, 1}m by any computationally-unbounded sender is at most ϵ2·dist(s,s

′).

Proof Sketch: Combining Fact 24 and the equation (25), the success probability

F(ρs, ρs′)
2 =

m∏
i=1

F(ρsi , ρs′i)
2 ≤ ϵ2·dist(s,s′).

■

We also need a technical lemma as below, whose name comes from the fact that the inequality
(26) trivially holds by the Pythagorean theorem in the special case in which vectors |ψs⟩ and |ψs′⟩
are orthogonal whenever s ̸= s′. Its proof is deferred to Appendix F.
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Lemma 26 Let {|ψs⟩ ∈ X}s∈{0,1}m(n) be an essemble of unnormalized vectors, where X is a Hilbert

space, m(·) is a polynomial, and n is the security parameter. For each pair of indices s, s′ ∈ {0, 1}m
such that s ̸= s′, the inner product |⟨ψs′ |ψs⟩| ≤ ϵ(n)dist(s,s

′) for some fixed function ϵ(·) such that
0 < ϵ(n) < 1/m(n) when n is sufficiently large. Fix coefficients αs ≥ 0 for all s ∈ {0, 1}m. Then it
holds that ∣∣∣∣∣∣

∥∥∥ ∑
s∈{0,1}m

αs |ψs⟩
∥∥∥2 − ∑

s∈{0,1}m
α2
s ∥|ψs⟩∥2

∣∣∣∣∣∣ ≤ m2ϵ
∑

s∈{0,1}m
α2
s. (26)

Now we are ready to prove Theorem 8.

Proof of Theorem 8: Let ρ ∈ C⊗m be an arbitrary quantum state which is claimed as the
commitment to an m-bit string sent by a cheating sender. Let ρs be the quantum state corre-
sponding to the honest commitment to the string s ∈ {0, 1}m. By Fact 24, it suffices to prove∑

s∈{0,1}m F(ρ, ρs)
2 ≤ 1+O(m2ϵ). Denote by |φ⟩ to be an arbitrary purification of ρ. Fact 2 allows

us to choose a unit vector |ψs⟩ to be a purification of ρs such |⟨φ|ψs⟩| = F(ρ, ρs). In turn, our goal
becomes to prove ∑

s∈{0,1}n
|⟨φ|ψs⟩|2 ≤ 1 +O(m2ϵ).

Since the projection of the vector |φ⟩ on the orthogonal complement of the subspace spanned
by {|ψs⟩}s∈{0,1}m contributes zero to the summation on the r.h.s. of the inequality above, we can
assume without loss of generality that |φ⟩ ∈ span {|ψs⟩}s∈{0,1}m ; that is, we can write

|φ⟩ =
∑

t∈{0,1}m
αt |ψt⟩ .

(We note that the |ψt⟩ in the equation above is not necessarily orthogonal to |ψt′⟩ for t′ ̸= t,
and

∑
t∈{0,1}m |αt|2 is not necessarily equal to one.) Moreover, again without loss of generality we

can assume that the αt’s are non-negative reals; for otherwise, we can absorb the corresponding
normalization (complex) phases into |ψt⟩’s without affecting other settings. Thus,
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∑
s∈{0,1}m

|⟨φ|ψs⟩|2 =
∑

s∈{0,1}m

∣∣∣ ∑
t∈{0,1}m

αt⟨ψt|ψs⟩
∣∣∣2

≤
∑

s∈{0,1}m

∑
t∈{0,1}m

α2
t |⟨ψt|ψs⟩|2 (triangle inequality)

=
∑

t∈{0,1}m
α2
t

m∑
j=0

∑
s∈{0,1}m:
dist(s,t)=j

|⟨ψt|ψs⟩|2

≤
∑

t∈{0,1}m
α2
t

m∑
j=0

∑
s∈{0,1}m:
dist(s,t)=j

F(ρs, ρt)
2 (Fact 2)

≤
∑

t∈{0,1}m
α2
t

m∑
j=0

∑
s∈{0,1}m:
dist(s,t)=j

ϵ2j (Lemma 25)

=
∑

t∈{0,1}m
α2
t

m∑
j=0

(
m

j

)
ϵ2j

= (1 + ϵ2)m
∑

t∈{0,1}m
α2
t . (27)

We are left to bound
∑

t∈{0,1}m α
2
t . To this end, we apply Lemma 26; specifically, we replace

|ψs⟩ and
∑

s∈{0,1}m αs |ψs⟩ in Lemma 26 with |ψt⟩ and |φ⟩, respectively. We note that all |ψt⟩’s
and |φ⟩ are now unit vectors, and the condition |⟨ψt′ |ψt⟩| ≤ ϵdist(t,t

′) is guaranteed by Lemma 25.
Hence,

m2ϵ
∑

t∈{0,1}m
α2
t ≥

∣∣∣∣∣∣
∥∥∥ ∑
t∈{0,1}m

αt |ψt⟩
∥∥∥2 − ∑

t∈{0,1}m
α2
t ∥|ψt⟩∥2

∣∣∣∣∣∣ =
∣∣∣1− ∑

t∈{0,1}m
α2
t

∣∣∣.
Then there are two cases:

1.
∑

t∈{0,1}m α
2
t < 1. In this case, 1 serves as a good upper bound.

2.
∑

t∈{0,1}m α
2
t ≥ 1. In this case, we have m2ϵ

∑
t∈{0,1}m α

2
t ≥

∑
t∈{0,1}m α

2
t − 1. Rewritting

terms, we have
∑

t∈{0,1}m α
2
t ≤ 1/(1−m2ϵ).

It follows that in either cases, we have ∑
t∈{0,1}m

α2
t ≤

1

1−m2ϵ
.

Plugging the upper bound above in the inequality (27), we have∑
s∈{0,1}m

|⟨φ|ψs⟩|2 ≤
(1 + ϵ2)m

1−m2ϵ
= 1 +m2ϵ+O((m+m4)ϵ2) = 1 +O(m2ϵ).

This completes the proof of the theorem. ■
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11.2 Relationship with other quantum string binding properties

We show that the quantum string sum-binding property established above is stronger than two
other quantum string binding properties that have been previously studied.

Honest-binding

Informally, we say that a quantum string commitment scheme is honest-binding if the honest
commitment to an arbitrary string s cannot be opened as s′ ̸= s with non-negligible probability
(implicit in [YWLQ15]). By a simple hybrid argument, it is not hard to see that any quantum non-
interactive (statistically-binding or computationally-binding) bit commitment scheme composed in
parallel gives an honest-binding quantum string commitment scheme.

To see that the quantum string sum-binding implies the quantum string honest-binding, we
just fix the ps = 1 in the inequality (24) for an arbitrary string s ∈ {0, 1}m; it then follows that
ps′ < O(m2ϵ) for any s′ ̸= t.

CDMS-binding

The CDMS-binding is defined w.r.t. a function or a set of functions. The following definition is
adapted from [CDMS04].

Definition 27 (CDMS-binding) Function f : {0, 1}m → {0, 1}l, where m(·) and l(·) are two
polynomials of the security parameter n. A possibly cheating sender interacts with an honest
receiver prescribed by a quantum string commitment scheme and completes the commit stage.
Let p̃fy be the success probability that the sender can open the string commitment as any string
s ∈ {0, 1}m in the reveal stage such that f(s) = y, where y ∈ {0, 1}l. We say that this (string)
commitment scheme is binding w.r.t. the function f(·) (or f -binding as in [CDMS04]) if∑

y∈{0,1}l
p̃fy < 1 + negl(n).

When a set of functions F is considered, we say that a quantum string commitment scheme is
F-binding if it is f -binding for each f ∈ F .

The (string) sum-binding property (Definition 23) can be viewed as a special case of the CDMS-
binding property, by noting that when the function f is fixed to be the identity function, then the
f -binding becomes the sum-binding.

Conversely, it is also not hard to see that the (string) sum-binding property implies the f -binding
property whatever the function f is. To see this, a key observation is that

p̃fy ≤
∑

s:f(s)=y

ps,

where ps denotes the success probability that the sender can open a claimed commitment as the
string s ∈ {0, 1}m (as in Definition 23). This follows straightforwardly from definitons of p̃fy and
ps: while the cheating sender uses the same strategy to open the commitment as each preimage of
y in the definition of p̃fy , it may reveal each preimage of y adaptively in the definition of ps. Hence,
given the sum-binding we have∑

y∈{0,1}l
p̃fy ≤

∑
y∈{0,1}l

∑
s:f(s)=y

ps =
∑

s∈{0,1}m
ps < 1 + negl(n),
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which establishes the f -binding property.
Therefore, the (string) sum-binding property implies the CDMS-binding property w.r.t. any

function or set of functions.

12 Conclusion and open problems

In this work, we study general properties of complexity-based quantum bit commitments. Specif-
ically, we show that any quantum bit commitment scheme can be compressed into the canonical
form (Theorem 3), which is non-interactive and whose semi-honest security implies the full security
(Theorem 2). This yields several applications (Section 5 and 9), allowing us to not only obtain new
constructions of quantum bit commitment but also simplify the security analysis of existing ones.
Moreover, it also enables us to establish an equivalence between two flavors of quantum bit com-
mitments (Theorem 6). Regarding the parallel composition, we establish the strongest quantum
statistical string sum-binding property by composing a canonical statistically-binding quantum bit
commitment scheme in parallel (Theorem 8).

We propose to study quantum bit commitments in future from both quantum cryptography
and quantum complexity theory perspectives. In the below, we summarize and raise some open
problems that are related to this work and beyond:

1. In previous applications of statistically-binding quantum bit commitments [YWLQ15, FUYZ20],
a string is committed in a bitwise fashion. If we view this as giving rise to a quantum string
commitment, then after taking a closer look at those security analysis, we find that the
security of corresponding constructions essentially only relies on the string honest-binding
property. Informally, the string honest-binding property states that an honest commitment
to a binary string cannot be opened as any other string except for a negligible probability.
Then an interesting open question is, can we find any applications whose security will make an
essential use of the quantum string sum-binding property as proved in Section 11, something
like that is done in [CDMS04]?

2. In Section 11, we only discuss the parallel composition of of a canonical statistically-binding
quantum bit commitment scheme. But what string binding property (preferably stronger
than honest-binding) can we obtain if we compose a canonical computationally-binding quan-
tum bit commitment scheme in parallel? Can it yield any interesting applications? If yes,
then the corresponding construction is likely to reduce the round complexity significantly
compared with its classical counterpart (by the virtue of the non-interactivity of quantum
bit commitments). However, as pointed out in [FUYZ20], the security analysis based on the
quantum statistical binding property does not extend to the computational setting straight-
forwardly. In spite of this, an initial step towards this goal is taken in [Yan21], where a
so-called “predicate-binding” property is established and turns out to be useful. We expect
more positive results in this regard in future.

3. In this work, we plug a canonical computationally-binding quantum bit commitment scheme
in a somewhat simplified CLS scheme for the purpose of converting its flavor (Section 10.2).
This construction essentially realizes a quantum oblivious transfer (QOT) that satisfies the
following security requirements: the purified receiver of QOT does not know the other bit that
the honest sender is given as input , while the purified sender of QOT does not know which
input bit the honest receiver is aware of. We highlight that this security is neither the security
against an arbitrary quantum attack nor the simulation security [GLSV21, BCKM21] that is
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preferable in cryptography. Recall that we prove a computational collapse theorem (Theorem
7) for the analysis this security. So a natural open question is, can this computational-collapse
technique be extended to show the same security but against an arbitrary quantum attack
(as opposed to against the purification attack) for the original QOT protocol (or some of
its variant like the one considered in [CDMS04]) with a canonical computationally-binding
quantum bit commitment scheme plugged in [CK88]? Possibly combine it with the quanum
sampling technique devised in [BF10]? Though this security is not as good as the simulation
security, the corresponding construction is much simpler (in particular, consisting of constant
number of rounds). And it might be sufficient in some interesting applications, just like
[CLS01] and here for the purpose of converting the flavor of quantum bit commitment.

4. As mentioned in Section 1.4, it is interesting to explore whether quantum bit commitments
conversely imply pseudorandom quantum states (of any sort).

5. This open question regards quantum hardness amplification. The big question here is, if a
unitary operation U is hard to realize (e.g. requires super-polynomial number of elementary
quantum gates), then is the unitary operation U⊗n (i.e. perform the unitary operation U n
times in parallel) harder? Specific to a canonical quantum bit commitment scheme, we ask:
can the parallel composition of quantum bit commitments reduce the binding error? The
answer is a trivial “yes” w.r.t. a canonical statistically-binding quantum bit commitment
scheme, whose binding error can be captured by an information-theoretic notion known as
fidelity [YWLQ15]. However, the answer becomes unclear when it comes to a canonical
computationally-binding quantum bit commitment scheme. In particular, can the parallel
composition reduce the computational binding error from, say 1/2 or even inverse polynomial,
to a negligible quantity? This question looks very similar to the question of amplifying the
one-wayness of one-way functions in classical cryptography [Yao82]. If the answer to this
question is “yes”, then combining it with results in [Wat02, YWLQ15, FUYZ20, Yan21]
will complete the proof for an equivalence between quantum bit commitment and quantum
zero-knowledge like in the classical setting [OV08].

6. Some fancier open questions include: can quantum bit commitment find more applications
in quantum cryptography? Are there any other quantum cryptographic applications (be-
sides quantum zero-knowledge and quantum oblivious transfer) that also imply quantum bit
commitment? That is, can quantum bit commitment serve as the foundation of quantum
cryptography?

7. Finally, the perhaps biggest open question that is related to the quantum complexity theory
is: do complexity-based quantum bit commitments really exist?
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[BCMS98] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. Defeating clas-
sical bit commitments with a quantum computer. arXiv preprint quant-ph/9806031,
1998. 33

[BF10] Niek J. Bouman and Serge Fehr. Sampling in a quantum population, and applications.
In CRYPTO, pages 724–741, 2010. 50

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, volume 1, page 2, 1986. 5
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A The proof of the quantum rewinding lemma in [FUYZ20]

Lemma 28 (The restatement of Lemma 3) Let X and Y be two Hilbert spaces. Unit vec-
tor |ψ⟩ ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, while unitaries

U1, . . . , Uk perform on the space Y. If 1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ⟩
∥∥2 ≥ 1 − η, where 0 ≤ η ≤ 1,

then ∥∥∥(U †k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U †1 ⊗ 1
X)Γ1(U1 ⊗ 1X) |ψ⟩

∥∥∥ ≥ 1−
√
kη.
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Proof: From the assumption 1/k ·
∑k

i=1 ∥ΓiUi |ψ⟩∥2 ≥ 1− η, we have

η ≥ 1− 1

k

k∑
i=1

∥ΓiUi |ψ⟩∥2 =
1

k

k∑
i=1

(
1− ∥ΓiUi |ψ⟩∥2

)
=

1

k

k∑
i=1

∥ΓiUi |ψ⟩ − Ui |ψ⟩∥2

=
1

k

k∑
i=1

∥∥∥U †i ΓiUi |ψ⟩ − |ψ⟩
∥∥∥2 ,

where the second “=” is by noting that 1− ∥ΓiUi |ψ⟩∥2 is equal to the square of the projection of
Ui |ψ⟩ on the subspace 1− Γi. Rearranging terms, we get

k∑
i=1

∥∥∥U †i ΓiUi |ψ⟩ − |ψ⟩
∥∥∥2 ≤ kη. (28)

We claim that∥∥∥|ψ⟩ − (U †kΓkUk) · · · (U †1Γ1U1) |ψ⟩
∥∥∥2 ≤ k∑

i=1

∥∥∥U †i ΓiUi |ψ⟩ − |ψ⟩
∥∥∥2 . (29)

If this is true, then combining the inequalities (28) and (29), we have∥∥∥|ψ⟩ − (U †1Γ1U1) · · · (U †kΓkUk) |ψ⟩
∥∥∥ ≤√

kη.

Applying the triangle inequality to the left hand side of the inequality above and rearranging terms,
we arrive at ∥∥∥(U †1Γ1U1) · · · (U †kΓkUk) |ψ⟩

∥∥∥ ≥ 1−
√
kη,

as desired.

We are left to prove the inequality (29), which will be done by induction on k.
1. k = 1. The “=” of inequality (29) holds trivially.

2. Suppose that the inequality (29) holds for k − 1. We now prove that it also holds for k.∥∥∥|ψ⟩ − (U †kΓkUk) · · · (U †1Γ1U1) |ψ⟩
∥∥∥2

=
∥∥∥|ψ⟩ − (U †kΓkUk) |ψ⟩

∥∥∥2 + ∥∥∥(U †kΓkUk) |ψ⟩ − (U †kΓkUk) · · · (U †1Γ1U1) |ψ⟩
∥∥∥2

≤
∥∥∥|ψ⟩ − (U †kΓkUk) |ψ⟩

∥∥∥2 + ∥∥∥|ψ⟩ − (U †k−1Γk−1Uk−1) · · · (U∗1Γ1U1) |ψ⟩
∥∥∥2

≤
∥∥∥|ψ⟩ − (U †kΓkUk) |ψ⟩

∥∥∥2 + k−1∑
i=1

∥∥∥U †i ΓiUi |ψ⟩ − |ψ⟩
∥∥∥2

=

k∑
i=1

∥∥∥U †i ΓiUi |ψ⟩ − |ψ⟩
∥∥∥2 .

where the first “=” follows from Pythagorean theorem by observing that the subspaces U †kΓkUk and

1 − U †kΓkUk are orthogonal; in the second “≤”, we apply the induction hypothesis. This finishes
the proof of the inequality (29), and in turn the proof of the lemma. ■
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

1. The sender chooses a uniformly random string x = x1 · · ·xn, where each xi
$← {0, 1}.

Choose the basis θ = + if b = 0, and θ = × if b = 1. Send each qubit |xi⟩θ, i = 1, 2, . . . , n,
to the receiver.

2. For each i = 1, . . . , n, the receiver chooses the basis θ̂i
$← {+,×} and measures each

qubit |xi⟩θ in the basis θ̂i, obtaining the outcome x̂i.

Reveal stage:

1. The sender sends the bit b and all xi’s to the receiver.

2. The receiver checks that for each i = 1, 2, . . . , n, x̂i = xi whenever θ̂i = θ; reject other-
wise.

Figure 7: The BB84 scheme

B Two simple quantum bit commitment schemes that are semi-
honest secure but vulnerable to the purification attack

We present two schemes that are inspiring for the study of the relationship between the semi-
honest security of a general interactive quantum bit commitment scheme and its purification. Both
of these two schemes are statistically (information-theoretic) semi-honest secure, but vulnerable
to the purification attack. We expect these two toy examples to give readers some idea of how
the purification may compromise the semi-honest security of the original quantum bit commitment
scheme. In particular, the security analysis of the second scheme (i.e. the oversimplified CLS
scheme as we call) is helpful in understanding that of the correct one in Section 10.1.

B.1 The BB84 scheme

The non-interactive BB84 scheme [BB84, May97] is described in Figure 7. We next informally
argue that the BB84 scheme is statistically honest-hiding and statistically honest-binding.

The BB84 scheme is statistically honest-hiding, by noting that both the honest commitment
to 0 and that to 1 are just the maximally mixed state. The scheme is statistically honest-binding,
because almost a half of the bases θ̂i’s chosen by the receiver are not equal to the basis θ that is
determined by the bit b to commit. Thus, for each θ̂i ̸= θ, any cheating sender cannot guess x̂i
correctly with probability more than 1/2. It follows that the success probability of any cheating
sender opening the honest commitment to the bit b as 1− b is exponentially small.

However, the BB84 scheme is vulnerable to the purification attack of the sender, or not purification-
binding. To see this, note that the commit stage of the BB84 scheme can be purified in such a
way that the sender prepares n EPR pairs and sends half of each EPR pair to the receiver as the
commitment; another half is kept by the sender. Then the sender simulates the measurement of its
halves of EPR pairs in the basis θ unitarily ; we denote this unitary operation by U when a bit 0 is
committed. As such, the cheating sender who performs as follows can open the honest commitment
to 0 as 1 with certainty:

1. Perform U † to roll its system back to the state at the moment just before the sender measuring
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Commit stage: Let b ∈ {0, 1} be the bit to commit.

• (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis θi

$← {+,×},
sending (|xi⟩θi , θi) to the receiver.

• (R2) For i = 1, 2, . . . , n, the receiver chooses each basis θ̂i
$← {+,×} and measures each

received BB84 qubit |xi⟩θi in the basis θ̂i, obtaining the outcome x̂i. Choose c
$← {0, 1}.

Choose at random two disjoint subsets of positions I0, I1 ⊂ [n] of size n/3 such that for
each i ∈ Ic, θi = θ̂i. Send (I0, I1) to the sender.

• (S3) The sender chooses a0
$← {0, 1} and sets a1 = a0⊕b. Then compute â0 =

⊕
i∈I0 xi⊕

a0, â1 =
⊕

i∈I1 xi ⊕ a1, sending (â0, â1) to the receiver.

• (R4) The receiver computes dc =
⊕

i∈Ic x̂i ⊕ âc.

Reveal stage:

• The sender sends the bit b and (a0, a1) to the receiver.

• The receiver checks that b = a0 ⊕ a1 and dc = ac.

Figure 8: The atomic scheme which composes in parallel gives the oversimplified CLS scheme

its halves of EPR pairs in the commit stage.

2. Measure its halves of EPR pairs in the basis “×”. Denote the outcomes by x1, . . . , xn.

3. Send the revealed bit 1, as well as all xi’s to the receiver.

In this way, it is not hard to see that the sender can open the bit commitment as 1 successfully
with certainty.

B.2 An oversimplified CLS scheme

The oversimplified CLS scheme, which is adapted from [CLS01], is the parallel composition of the
atomic scheme as described in Figure 8. Compared with the original CLS scheme, the sender
additionally sends bases θi’s in its first message, and the receiver removes commitments to all its
random chosen bases and measurement outcomes in its first message. We are next to argue that
this oversimplified CLS scheme is statistically honest-hiding and statistically honest-binding.

Statistical honest-hiding. Consider an honest running of the commit stage of the atomic scheme.
Note that with an overwhelming probability, we have θ̂i ̸= θi for nearly half of indices i where
1 ≤ i ≤ n. Since |I0|+ |I1| = 2n/3 > n/2, it follows from the pigeon hole principle that there exists
at least one index j ∈ I1−c such that θ̂j ̸= θj . It is for this index j that the receiver’s guess for
the xj can be no better than a random guess. In turn, the receiver’s guess for a1−c, and thus the
committed bit b (which is equal to a0 ⊕ a1), can be no better than a random guess. That is, the
sender’s messages contain no information about the committed bit b. And this should hold for each
copy when there are n copies of the atomic scheme running in parallel. As such, the oversimplified
CLS scheme is statistically honest-hiding.
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Statistical honest-binding. First consider the honest-binding game w.r.t. the atomic scheme
in which a bit 0 is committed in the commit stage and the cheating sender is trying to open
the commitment as 1 in the reveal stage; the case when a bit 1 is committed can be proved
symmetrically.

A key observation here is that a cheating sender can win the game above if and only if it can
guess the receiver’s random choice of the bit c correctly. To see this, note that for the purpose of
cheating successfully, in the reveal stage the sender must send (a0, 1−a1) when c = 0, or (1−a0, a1)
when c = 1, to the receiver; this is because the receiver will check the correctness of ac (but not
a1−c). This implies that a successful sender should guess the receiver’s random choice of the bit c
correctly. The converse holds trivially.

Since the receiver’s only message in the commit stage, i.e. the subsets (I0, I1), contains no
information about the bit c (the sender just saw two random disjoint subsets of size n/3), it follows
that the probability of the sender winning the game is no more than 1/2.

The honest-binding game w.r.t. the oversimplified CLS scheme consists of n copies of the
atomic honest-binding game above running in parallel. Since the random bits c’s corresponding
to each copy of the atomic game are independent, the probability of the sender winning all copies
of the atomic game is no more than 2−n. This establishes that the oversimplified CLS scheme is
statistically honest-binding.

An attack against the purification-hiding property. Consider a running of the atomic scheme
in which the receiver performs a unitary simulation of each of its non-unitary operation as prescribed
by the scheme, including the measurement of each qubit |xi⟩θi in the basis θ̂i, as well as the random

coin tosses corresponding to the choices of θ̂i, c and I0, I1. Note that the receiver’s measurement of
each received qubit in the bases θ̂i’s is independent of its choices of the bit c and the subsets I0, I1.
Thus, this measurement can be postponed to the beginning of step (R4) in the commit stage; let U
be the unitary transformation that simulates this new step. Once the commit stage is finished, the
cheating receiver can perform as follows to guess the committed bit b:

1. Perform U † to roll its system back to the state in which the received qubits |xi⟩θi ’s have not
been measured yet.

2. For each qubit |xi⟩θi , i = 1, 2, . . . , n, measure it in the basis θi that is received in step (S1) to
obtain xi.

3. Compute a0, a1 from â0, â1 and x1, . . . , xn; that is, let a0 =
⊕

i∈I0 xi⊕â0, and a1 =
⊕

i∈I0 xi⊕
â1. Output b = a0 ⊕ a1.

In this way, the receiver can guess the committed bit b correctly with certainty. The oversimplified
CLS scheme is not purification-hiding.

C Compress Naor’s scheme

As the first application, we can apply the collapse theorem (Theorem 3) to Naor’s construc-
tion of statistically-binding bit commitment [Nao91], obtaining a quantum computationally-hiding
statistically-binding bit commitment scheme. Actually, similar result was already known before
[YWLQ15].

Given a quantum-secure pseudorandom generator G : {0, 1}n → {0, 1}3n, a statistically-binding
bit commitment scheme can be constructed in the following way [Nao91]. Its commit stage proceeds
in two rounds: the receiver first sends a uniformly random string r ∈ {0, 1}3n to the sender. In
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response, the sender chooses a uniformly random string s ∈ {0, 1}n, and if a bit 0 is to commit,
then the sender sends G(s) to the receiver; if a bit 1 is to commit, then the sender sends G(s)⊕ r
(the “⊕” denotes the bitwise xor) to the receiver. The reveal stage is canonical; namely, the sender
sends its random coin tosses s to the receiver for verification.

To compress Naor’s scheme, we consider an honest execution of the commit stage of the purified
Naor’s scheme, which can be formalized in the way as described in Section 6. At the end of the
commit stage, when a bit 0 is committed the whole system will be in the state

1√
24n

∑
s∈{0,1}n,

r∈{0,1}3n

|s⟩EA |G(s), r⟩ES,A |G(s), r⟩ES,B ; (30)

and when a bit 1 is committed the whole system will be in the state

1√
24n

∑
s∈{0,1}n,

r∈{0,1}3n

|s⟩EA |G(s)⊕ r, r⟩ES,A |G(s)⊕ r, r⟩ES,B . (31)

By the general compiler (Figure 3, within the proof of Theorem 3), the compressed scheme is
given by the quantum circuit pair (Q0, Q1) as follows:

Q0 |0⟩
def
=

1√
24n

∑
s∈{0,1}n,

r∈{0,1}3n

|s⟩R |G(s), r⟩C , (32)

Q1 |0⟩
def
=

1√
24n

∑
s∈{0,1}n,

r∈{0,1}3n

|s⟩R |G(s)⊕ r, r⟩C . (33)

Since Naor’s scheme is quantum-secure given that the pseudorandom generator G(·) is secure
against any polynomial-time quantum distinguisher [HSS11], applying Theorem 3 concludes that
the scheme (Q0, Q1) is computationally hiding and statistically binding. Its security can also be
established in a more direct way like that in [YWLQ15].

D Reduction 1 in Lemma 22

We inherit all notations in Section 10.1. Additionally, for convenience and to avoid ambiguity here,
let us call the sender and the receiver of the inner quantum bit commitment scheme (Q0, Q1) Alice
and Bob, respectively, while “the sender” and “the receiver” are reserved for the scheme QBC(n)⊗n

and other outer schemes.
For contradiction, suppose that the scheme U-QBC(n)⊗n is statistically purification-binding

whereas the scheme QBC(n)⊗n is not computationally purification-binding; in particular, let S∗ be
a cheating sender in the reveal stage21 who breaks the computational purification-binding property
of the latter. That is, consider the purification-game w.r.t. the scheme QBC(n)⊗n, where in the
reveal stage the cheating sender S∗ attempts to open the commitment as 1. By our hypothesis,
the probability of the S∗ cheating (revealing 1) successfully is non-negligible. We shall construct
a cheating Bob B∗, with oracle access to S∗, who can break the computational hiding property of

21Recall that regarding the purification-binding (Definition 13), the sender’s operation is fixed to be the purification
of that of the honest sender in the commit stage.

59



the inner quantum bit commitment scheme (Q0, Q1), thus arriving at a contradiction. To this end,
we use the hybrid argument. Detail follows.

As prescribed by the atomic scheme QBC, there are 2n bit commitments (to (θi, xi), for i =
1, 2, . . . , n) sent in step (R2); thus, there are in total 2n2 bit commitments sent in the parallelized
scheme QBC(n)⊗n. For k = 0, 1, 2, . . . , 2n2, we define hybrid scheme Hk as follows: it is basically
the parallelized scheme QBC(n)⊗n, except that in step (R2) in place of the first k (when k ≥ 1)
bits the receiver would have committed, it picks k fresh uniformly random bits and commits to
them. It is easy to check that the hybrids H0 and H2n2 are just the parallelized scheme QBC(n)⊗n

and U-QBC(n)⊗n, respectively.
Now for each hybrid Hk (0 ≤ k ≤ 2n2), consider the corresponding purification-binding game

such that in the reveal stage the cheating sender runs S∗. We define event succ as the sender cheat-
ing (revealing 1) successfully. From our hypothesis that the scheme U-QBC(n)⊗n is statistically
purification-binding and S∗ breaks the computational purification-binding property of the scheme
QBC(n)⊗n, we have

Pr
H0

[succ]− Pr
H2n2

[succ] >
1

q(n)
, (34)

where q(·) is some fixed polynomial.
Now we are ready to construct a cheating Bob B∗, with oracle access to S∗, who can break the

computational hiding property of the inner quantum bit commitment scheme (Q0, Q1). Specifically,
B∗ operates as follows after receiving the commitment to a random bit b ∈ {0, 1} from Alice:

1. Choose k
$←
{
0, 1, . . . , 2n2 − 1

}
.

2. Internally simulate the commit stage of the purification-binding game w.r.t. the hybrid Hk,
except that in step (R2) replace the commitment to the (k + 1)-th bit, which we denote by
bk+1, with the commitment to the bit b (which is received from Alice externally).

3. Invoke the S∗ in the reveal stage of the purification-game. If the opening is successful, i.e.

the event succ happens, then let b̃ = bk+1; otherwise, choose b̃
$← {0, 1}.

4. Output the guess b̃.

Clearly, B∗ runs in polynomial time if S∗ does. We are left to lowerbound the probability of
the B∗ guessing the bit b correctly.

Averaging over all choices of the random k ∈
{
0, 1, . . . , 2n2 − 1

}
,

Pr
b←{0,1},B∗

[b̃ = b] =
1

2n2

2n2−1∑
k=0

Pr
b←{0,1},B∗

k

[
b̃ = b

]
, (35)

where the B∗ under the “Pr” indicates the experiment induced by the cheating Bob B∗, and B∗k
indicates the same experiment conditioned on the k is chosen. For the summand on the r.h.s. of
the equation above,

Pr
b←{0,1},B∗

k

[
b̃ = b

]
= Pr

b←{0,1},B∗
k

[
(b̃ = b) ∧ succ

]
+ Pr

b←{0,1},B∗
k

[
(b̃ = b) ∧ succ

]
≥ Pr

[
(b̃ = b) ∧ succ|b = bk+1

]
· Pr

[
b = bk+1

]
+ Pr

[
(b̃ = b)|succ

]
· Pr[succ]

=
1

2
Pr

[
succ|b = bk+1

]
+

1

2
Pr[succ], (36)

where the last “=” follows from the following:
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• The first “1/2” is due to that the bit b is chosen uniformly random by Alice, and thus with
probability 1/2 equal to the (k+1)-th bit (i.e. bk+1) that the receiver would have committed
in a semi-honest execution of the commit stage of the hybrid Hk.

• Conditioned on both the events succ and b = bk+1 happening, according to step 3 of the B∗,
we must have b̃ = bk+1 = b. Thus,

Pr
b←{0,1},B∗

k

[
(b̃ = b) ∧ succ|b = bk+1

]
= Pr

b←{0,1},B∗
k

[
succ|b = bk+1

]
.

• The second “1/2” is due to that conditioned on that the opening of the commitment (as 1)
fails, B∗ (step 3) will output a random guess b̃.

Another important observation is that

Pr
b←{0,1},B∗

k

[
succ|b = bk+1

]
= Pr

Hk

[
succ

]
, Pr

b←{0,1},B∗
k

[succ] = Pr
Hk+1

[succ], (37)

where the Hk and Hk+1 under the “Pr” indicate the experiments induced by a semi-honest execution
of the hybrids Hk and Hk+1, respectively.

Combing equations (36) and (37), we have

Pr
b←{0,1},B∗

k

[
b̃ = b

]
≥ 1

2
Pr
Hk

[
succ

]
+

1

2

(
1− Pr

Hk+1

[succ]
)

=
1

2
+

1

2

(
Pr
Hk

[
succ

]
− Pr

Hk+1

[succ]
)
.

Plug this inequality in the equation (35),

Pr
b←{0,1},B∗

[b̃ = b] ≥ 1

2n2

2n2−1∑
k=0

(
1

2
+

1

2

(
Pr
Hk

[
succ

]
− Pr

Hk+1

[succ]
))

=
1

2
+

1

4n2

(
Pr
H0

[
succ

]
− Pr

H2n2

[succ]
)

≥ 1

2
+

1

4n2q(n)
,

where the last “≥” follows from the inequality (34). But this violates the computational hiding
property of the quantum bit commitment scheme (Q0, Q1). Thus, if the scheme U-QBC(n)⊗n is
statistically purification-binding, then the scheme QBC(n)⊗n computationally purification-binding.

E A proof of the computational collapse theorem

Theorem 9 (A restatement of Theorem 7) Suppose that (Q0, Q1) is a canonical computa-
tionally ϵ-binding quantum bit commitment scheme. Then for each b ∈ {0, 1},∥∥∥ΠbU

∑
s∈{0,1}m

αs |s⟩ (Qs |0⟩)C
⊗mR⊗m |ψs⟩ |0⟩B

∥∥∥2 ≤ ∑
s∈{0,1}m

|αs|2
∥∥∥ΠbU |s⟩ (Qs |0⟩)C

⊗mR⊗m |ψs⟩ |0⟩B
∥∥∥2+mϵ,

where the projector Πb = |b⟩ ⟨b| acts on the qubit B; the efficiently realizable unitary transformation
U is arbitrary and acts on the whole system other than the system C⊗m; complex coefficients αs’s
satisfy

∑
s∈{0,1}m |αs|2 = 1; |ψs⟩ is a unit vector; and the quantum circuit Qs is given by the equation

(4).
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Proof: Actually, we will prove a strengthening of the theorem as follows: for each k (0 ≤ k ≤ m)
and each x ∈ {0, 1}m−k, it holds that∥∥∥ΠbU

∑
s∈{0,1}k◦x

αs |s⟩ (Qs |0⟩)C
⊗mR⊗m |ψs⟩ |0⟩B

∥∥∥2 ≤ ∑
s∈{0,1}k◦x

|αs|2
(∥∥∥ΠbU |s⟩ (Qs |0⟩)C

⊗mR⊗m |ψs⟩ |0⟩B
∥∥∥2+kϵ),

(38)
where {0, 1}k ◦ x denotes the set of all m-bit strings with the suffix x. Then what the theorem
states is just a special case of the inequality above when k = m and x is an empty string.

We will prove by induction.

Base. k = 0. In this case, fix an arbitrary x ∈ {0, 1}m. Then the inequality (38) holds trivially.

Induction. Suppose that the inequality (38) holds for k − 1 and each string x ∈ {0, 1}m−(k−1). We
will prove that it also holds for k and an arbitrary string x ∈ {0, 1}m−k.

Without loss of generality, we assume that the complex number αs ≥ 0 for each s ∈ {0, 1}m;

otherwise, we can absorb its phase into the quantum state. We also introduce a shorthand |ϕs⟩
def
=

|s⟩ (Qs |0⟩) |ψs⟩ |0⟩ to simplify the notation. Then our goal becomes to show∥∥∥ΠbU
∑

s∈{0,1}k◦x

αs |ϕs⟩
∥∥∥2 ≤ ∑

s∈{0,1}k◦x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + kϵ

)
.

We first expand the l.h.s. of the inequality above:∥∥∥ΠbU
∑

s∈{0,1}k◦x

αs |ϕs⟩
∥∥∥2 =

∥∥∥ΠbU
∑

s∈{0,1}k−1◦0x

αs |ϕs⟩+ΠbU
∑

s∈{0,1}k−1◦1x

αs |ϕs⟩
∥∥∥2

≤
∥∥∥ΠbU

∑
s∈{0,1}k−1◦0x

αs |ϕs⟩
∥∥∥2 + ∥∥∥ΠbU

∑
s∈{0,1}k−1◦1x

αs |ϕs⟩
∥∥∥2 (39)

+2
∣∣∣ ∑
s∈{0,1}k−1◦0x

αs ⟨ϕs| · U †ΠbU ·
∑

s∈{0,1}k−1◦1x

αs |ϕs⟩
∣∣∣.

For convenience, we introduce additional shorthands α0x, α1x, αx such that

α2
0x

def
=

∑
s∈{0,1}k−1◦0x

α2
s, α2

1x
def
=

∑
s∈{0,1}k−1◦1x

α2
s. (40)

The remainder of the analysis splits into two cases:

Case 1: either α0x = 0 or α1x = 0. Without loss of generality, we assume α1x = 0. This implies
αs = 0 for all s ∈ {0, 1}k−1 ◦ 1x. Hence, from the inequality (39) we have∥∥∥ΠbU

∑
s∈{0,1}k◦x

αs |ϕs⟩
∥∥∥2 ≤

∥∥∥ΠbU
∑

s∈{0,1}k−1◦0x

αs |ϕs⟩
∥∥∥2

≤
∑

s∈{0,1}k−1◦0x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + (k − 1)ϵ

)
(induction hypothesis)

=
∑

s∈{0,1}k◦x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + (k − 1)ϵ

)
≤

∑
s∈{0,1}k◦x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + kϵ

)
.
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Case 2: both α0x, α1x > 0. From the inequality (39) we have∥∥∥ΠbU
∑

s∈{0,1}k◦x

αs |ϕs⟩
∥∥∥2 ≤

∑
s∈{0,1}k−1◦0x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + (k − 1)ϵ

)
(induction hypothesis)

+
∑

s∈{0,1}k−1◦1x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + (k − 1)ϵ

)
(induction hypothesis)

+2α0xα1x

∣∣∣ 1

α0x

∑
s∈{0,1}k−1◦0x

αs ⟨ϕs| · U †ΠbU ·
1

α1x

∑
s∈{0,1}k−1◦1x

αs |ϕs⟩
∣∣∣

︸ ︷︷ ︸
(∗)

≤
∑

s∈{0,1}k◦x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + (k − 1)ϵ

)
+ 2α0xα1x · ϵ (Claim 29)

≤
∑

s∈{0,1}k◦x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + (k − 1)ϵ

)
+
(
α2
0x + α2

1x

)
ϵ

=
∑

s∈{0,1}k◦x

α2
s

(
∥ΠbU |ϕs⟩ ∥2 + kϵ

)
. (recall shorthands (40))

This completes the proof of the induction step, and hence the theorem. ■

We are left to prove the following claim.

Claim 29 The absolute value (∗) in the proof of Theorem 7 above is less than ϵ.

Proof: Inherit all notations introduced within the statement and the proof of Theorem 7. Recall

that the shorthand |ϕs⟩
def
= |s⟩ (Qs |0⟩) |ψs⟩ |0⟩, where the (unitary) quantum circuit Qs = ⊗m

i=1Qsi

performs on n copies of the quantum register pair (C,R). Then the proof of the claim is just a simple
application of the quantum computational ϵ-binding property of the quantum bit commitment
scheme (Q0, Q1).

In greater detail, note that w.r.t. the unit quantum state vector 1/α0x
∑

s∈{0,1}k−1◦0x αs |ϕs⟩,
the (k + 1)-th quantum register pair (C,R) is in the state Q0 |0⟩ that is unentangled with the
rest of the system; similarly, w.r.t. the unit quantum state vector 1/α1x

∑
s∈{0,1}k−1◦1x αs |ϕs⟩, the

(k+1)-th quantum register pair (C,R) is in the state Q1 |0⟩ that is unentangled with the rest of the
system. Then the absolute value (∗) can be bounded by ϵ by applying Lemma 5 straightforwardly;
we omit further details here. ■

F A proof of Lemma 26

For convenience, we restate Lemma 26 as below.

Lemma 30 (A restatement of Lemma 26) Let {|ψs⟩ ∈ X}s∈{0,1}m(n) be an ensemble of unnor-
malized vectors, where X is a Hilbert space, m(·) is a polynomial, and n is the security parameter.
For each pair of indices s, s′ ∈ {0, 1}m such that s ̸= s′, the inner product |⟨ψs′ |ψs⟩| ≤ ϵ(n)dist(s,s

′)

for some fixed function ϵ(·) such that 0 < ϵ(n) < 1/m(n) when n is sufficiently large. Fix coefficients
αs ≥ 0 for all s ∈ {0, 1}m. Then it holds that∣∣∣∣∣∣

∥∥∥ ∑
s∈{0,1}m

αs |ψs⟩
∥∥∥2 − ∑

s∈{0,1}m
α2
s ∥|ψs⟩∥2

∣∣∣∣∣∣ ≤ m2ϵ
∑

s∈{0,1}m
α2
s. (41)
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Proof: We prove the lemma by induction on m.

1. m = 1. We first expand ∥α0 |ψ0⟩+ α1 |ψ1⟩∥2 as

α2
0 ∥|ψ0⟩∥2 + α2

1 ∥|ψ1⟩∥2 + α0α1⟨ψ0|ψ1⟩+ α1α0⟨ψ1|ψ0⟩.

Thus, ∣∣∣∥α0 |ψ0⟩+ α1 |ψ1⟩∥2 − (α2
0 ∥|ψ0⟩∥2 + α2

1 ∥|ψ1⟩∥2)
∣∣∣

= |α0α1⟨ψ0|ψ1⟩+ α1α0⟨ψ1|ψ0⟩|

≤ 2ϵ · α0α1 ≤ 2ϵ · α
2
0 + α2

1

2
= ϵ(α2

0 + α2
1).

The lemma holds for m = 1.

2. Assume that the theorem holds for m− 1, where m ≥ 2. We then prove it also holds for m.

First, one can expand
∥∥∥∑s∈{0,1}m αs |ψs⟩

∥∥∥2 as∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0⟩+
∑

t′∈{0,1}m−1

αt′1 |ψt′1⟩
∥∥∥2

=
∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0⟩
∥∥∥2 + ∥∥∥ ∑

t′∈{0,1}m−1

αt′1 |ψt′1⟩
∥∥∥2

+
∑

t,t′∈{0,1}m−1

αt0αt′1⟨ψt0|ψt′1⟩+
∑

t,t′∈{0,1}m−1

αt′1αt0⟨ψt′1|ψt0⟩.

Thus, the left hand side of the inequality (41)∣∣∣∣∣∣
∥∥∥ ∑
s∈{0,1}m

αs |ψs⟩
∥∥∥2 − ∑

s∈{0,1}m
α2
s ∥ψs∥2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0⟩
∥∥∥2 + ∥∥∥ ∑

t′∈{0,1}m−1

αt′1 |ψt′1⟩
∥∥∥2 − ∑

s∈{0,1}m
α2
s ∥ψs∥2

+
∑

t,t′∈{0,1}m−1

αt0αt′1⟨ψt0|ψt′1⟩+
∑

t,t′∈{0,1}m−1

αt′1αt0⟨ψt′1|ψt0⟩

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∥∥∥ ∑
t∈{0,1}m−1

αt0 |ψt0⟩
∥∥∥2 − ∑

t∈{0,1}m−1

α2
t0 ∥|ψt0⟩∥2

∣∣∣∣∣∣+
∣∣∣∣∣∣
∥∥∥ ∑
t′∈{0,1}m−1

αt′1 |ψt′1⟩
∥∥∥2 − ∑

t′∈{0,1}m−1

α2
t′1 ∥|ψt′1⟩∥2

∣∣∣∣∣∣
+ 2

∑
t,t′∈{0,1}m−1

|αt0αt′1⟨ψt′1|ψt0⟩| (triangle inequality)

≤ (m− 1)2ϵ
∑

t∈{0,1}m−1

α2
t0 + (m− 1)2ϵ

∑
t′∈{0,1}m−1

α2
t′1 + 2

∑
t,t′∈{0,1}m−1

|αt0αt′1⟨ψt′1|ψt0⟩|

= (m− 1)2ϵ
∑

s∈{0,1}m
α2
s + 2

∑
t,t′∈{0,1}m−1

|αt0αt′1⟨ψt′1|ψt0⟩| ,
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where the last “≤” is by the induction hypothesis. We are left to bound the second term in the
above.

Indeed,

2
∑

t,t′∈{0,1}m−1

|αt0αt′1⟨ψt′1|ψt0⟩|

= 2
m−1∑
j=0

∑
t,t′∈{0,1}m−1:

dist(t,t′)=j

αt0αt′1 · |⟨ψt′1|ψt0⟩|

≤
m−1∑
j=0

ϵj+1
∑

t,t′∈{0,1}m−1:

dist(t,t′)=j

2αt0αt′1

(
by the assumption |⟨ψs′ |ψs⟩| < ϵdist(s,s

′)
)

≤
m−1∑
j=0

ϵj+1
∑

t,t′∈{0,1}m−1:

dist(t,t′)=j

(α2
t0 + α2

t′1).

We next count how many times each α2
t0 (resp. α2

t′1) is added up in the inner summation above.
Since for each t (resp. t′), there are exactly

(
m−1
j

)
t′’s (resp. t’s) such that dist(t, t′) = j, it follows

that there are in total
(
m−1
j

)
α2
t0’s (resp. α

2
t′1’s) appearing in the inner summation. Therefore,

∑
t,t′∈{0,1}m−1:

dist(t,t′)=j

(α2
t0 + α2

t′1) =

(
m− 1

j

) ∑
t∈{0,1}m−1

α2
t0 +

∑
t′∈{0,1}m−1

α2
t′1

 =

(
m− 1

j

) ∑
s∈{0,1}m

α2
s.

Hence,

2
∑

t,t′∈{0,1}m−1

|αt0αt′1⟨ψt′1|ψt0⟩| ≤
m−1∑
j=0

ϵj+1

(
m− 1

j

) ∑
s∈{0,1}m

α2
s = ϵ(1 + ϵ)m−1

∑
s∈{0,1}m

α2
s.

Putting it together,∣∣∣∣∣∣
∥∥∥ ∑
s∈{0,1}m

αs |ψs⟩
∥∥∥2 − ∑

s∈{0,1}m
αs

2 ∥|ψs⟩∥2
∣∣∣∣∣∣ ≤ (m− 1)2ϵ

∑
s∈{0,1}m

α2
s + ϵ(1 + ϵ)m−1

∑
s∈{0,1}m

α2
s

=
(
(m− 1)2 + (1 + ϵ)m−1

)
ϵ

∑
s∈{0,1}m

α2
s

≤ m2ϵ
∑

s∈{0,1}m
α2
s.

This completes the proof of the lemma. ■
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