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Abstract

In a universally composable framework, a global setup is intended to capture the ideal
behavior of a primitive which is accessible by multiple protocols, allowing them to share state.
The ledger implemented by blockchain protocols such as Bitcoin is a representative example of
such global setup, since the Bitcoin ledger is known to be useful in various scenarios. Therefore,
it has become increasingly popular to capture such ledgers as a global setup. One would hope
that this allows one to make security statements about protocols that use such a global setup,
e.g., a global ledger, which can then be automatically translated into the setting where the setup
is replaced by a protocol implementing it, such as Bitcoin.

We show that the above reasoning is flawed and such a generic security-preserving replacement
can only work under very (often unrealistic) strong conditions on the global setup. For example,
the composable security of Bitcoin, cast as realizing an ideal ledger such as the one by Badertscher
et al. [CRYPTO’17], is not sufficient per se to allow us to replace the ledger by Bitcoin when used
as a global setup and to expect that security statements that are made in the global ledger-hybrid
world would be preserved.

On the positive side, we provide characterizations of security statements for protocols that
make use of global setups, for which the replacement is sound. Our results can be seen as a first
guide on how to navigate the very tricky question of what constitutes a “good” global setup and
how to use it in order to keep the modular protocol-design approach intact.
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1 Introduction
Universally Composable (UC) security [Can01] ensures strong composability guarantees: Informally,
a UC secure protocol π remains secure no matter what environment it is placed in, i.e., no matter
what other protocols might be executed alongside π; and if π securely realizes a given functionality
F—i.e., π emulates the F-dummy protocol φ— then π can be used to replace F in any “context”,
i.e., within every protocol that might rely on calls to F. This powerful security definition enables a
constructive approach to protocols, where protocols can be designed and proved secure assuming
access to idealized primitives/functionalities, and then the assumed functionalities can be realized
by protocols securely emulating them. However, the power of any security definition lies not only in
what it allows us to do, but also, and perhaps more importantly, in answering the following question:
How well does this definition capture the execution of cryptographic protocols in reality?

Canetti and Rabin [CR03] pointed out a limitation of the standard universal composition theorem.
In a nutshell, the issue is as follows: Assume that a protocol π1 securely realizes a functionality
F1 in the public-key infrastructure (PKI) model. The UC composition theorem ensures that F1
can be replaced by π1 (and its PKI). However, if a protocol makes two calls to two independent
instances of F1, then any replacing instance of π1 needs to come with its own independent (local to
π1) PKI; in other words, the two replaced instances of π1 cannot share the same PKI. In fact the
issue is more general and applies to any protocol that makes calls to two (or more) functionalities
F1 and F2. Assuming each of F1 and F2 is UC realized by protocol π1 and π2, respectively, where
each of the πi’s uses a PKI,1 then in order for us to replace F1 by π1 and F2 by π2 we need two
independent PKIs, each of which is local to its protocol! This is a clear mismatch with reality, where
we would not create a different PKI for each protocol (instance), but rather people would have one
public-key/private-key pair which they would use in multiple protocols.

In addition to pointing out the above mismatch, [CR03] proposed a refinement of the UC
composition theorem, termed UC composition with Joint state, often referred to as the JUC theorem.
This theorem allows to tackle the issue for the case where the πi’s and Fi’s are instances of the
same protocol and functionality, e.g., we have multiple invocations of a digital signature protocol all
of which use the same PKI. However the JUC theorem suffered from its own limitation: It can only
be applied if we know in advance (the number and even the session identifiers of) the protocols that
will be using the common setup. This is, again, problematic in capturing reality, where a PKI is
created by a party registering its public key with a certification authority, without even knowing all
the intended uses of it.

The first attempt to resolve the above mismatch in a UC-like manner was made by Canetti
et al. [CDPW07] with the introduction of UC security with Global setups, often referred to as the
GUC framework. This framework redefined some of the basic features of the UC model of execution
which allowed protocols to access the same functionality—and share their state through it—and
came equipped with a composition theorem that allowed the protocols used to replace different
functionalities to share the same setup. Although the underlying motivation is sound, the GUC model
has some inconsistencies (see [BCH+20] for a discussion) which spill into its composition theorem.
Furthermore, its redesign of some core UC concepts make it somewhat incompatible with plain UC.
Motivated by the above, a recent work [BCH+20] proposed a way to equip the (recently updated)
plain UC framework with a universal composition theorem that allows the replaced protocols to use
the same global setup/functionality, a theorem termed the UCGS theorem. Importantly, and unlike
GUC, the global setup/functionality in [BCH+20] is not any special object new to the framework.
Rather, it is a standard UC functionality; what makes it “global” is just the fact that it is used by

1The statement applies also to any non-trivial type of hybrid functionalities whose use might correlate the views of
the protocols calling them, e.g., the common reference string (CRS).
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different protocols (that are not subprocesses of the same calling protocol). This allows, instead of
shifting to a new framework, to equip plain UC with a global-setup composition theorem, thereby
automatically preserving the security statement in the vast UC literature.

Notwithstanding, despite the cryptographic literature coming a long way in eliminating the
mismatch of the UC framework local-functionalities modelling with the reality of (global) PKIs, the
following important questions remains unresolved:

Can we replace a global setup with a (globally accessible) protocol realizing it, and does
such a replacement preserve security statements of protocols jointly using the global
setup as subroutine?

Arguably, being able to answer such a question is essential for assessing the power of the
framework. For example, without an answer to the above question, it is unclear how useful for
reality is a statement assuming a global PKI. Indeed, such a PKI would typically not be created by
a trusted party, but rather generated by its users by means of a protocol involving a certification
authority of a publicly trusted repository. Thus, in order for statements in the (global) PKI-hybrid
model [CSV16, PS18, DPS19] to be realistic, one should be able to argue that it is safe to replace the
PKI with a protocol as the above. The same holds for statements made w.r.t other commonly used
global UC setups in the literature, such as the global ledger [KZZ16, CGL+17, DFH18, DEFM19,
DEF+19, EMM19, CGJ19, ACKZ20, KL20], the global clock [KZZ16, BGK+18, DFH18, DEF+19],
various flavors of a global random oracles [CJS14, BGK+18, CDG+18] and a global CRS [CKWZ13].
Returning to the above question, the first thing one needs to address is what it means to “realize” a
global setup.

To our knowledge, with the exception of [CSV16] which studied the above question in GUC
for the case of a global PKI, no work has attempted to define such a notion of realization. This
is perhaps due to the fact that up until recently, a global setup was a special type in the GUC
framework, so that answering this question would mean defining a special type of global-setup
protocols in GUC which was never defined before. However, this above limitation has been lifted
by [BCH+20]: Since a global setup is not a new type, but rather a standard functionality which
might be accessed by protocols from different sessions, a “global protocol” also does not need to be
any new type (but is rather a property of how the protocol is being used). It is just a standard
protocol which might be called by protocols with different sessions. Hence, the most natural notion
of implementation is UC emulation.

Equipped with this realization notion, we can now focus on the more interesting part of the
above question, i.e., whether replacing a global subroutine by its emulation preserves the security
statements. One might quickly jump into the conclusion that since the UC framework allows
subroutine replacement, the answer must be “yes”. But as we discuss below the surprising answer
is actually: "not necessarily." Unlike setups that are available to only one protocol session, global
setups are standalone protocols that are typically accessible by many sessions – including the “local”
adversaries of these sessions. The situation can be depicted as follows, with the real protocol
execution with π accessing a global PKI on the left. The right-hand side depicts the ideal execution
with functionality F that π UC-emulates, with a simulator S which makes the execution look like
an execution of π with A.
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The above means that we understand the security of π by knowing its idealization F to which it
is indistinguishable for all practical purposes - but where the context is equipped with the global
PKI that the protocol is using, too. Therefore, the specification of F is tied with respect to this
context. If the setup is replaced by a protocol that UC-emulates it, this means we switch the
context, and this is where it gets problematic. We do not speak here of any technicality regarding
the syntactic replacement of a subroutine, this will happen the same way as standard UC thanks
to the embedding of globality in UC. The real issue that arises with this replacement is that the
program S might not function properly if its interface at the global PKI becomes restricted – and
that may happen since the replacement UC-emulates the global PKI, and hence might allow for less
attacks2. In fact, in Appendix A we give example settings in which a global replacement by UC
emulation is indeed impossible. This motivates a refined question which is at the core of our work,
namely

Under what conditions can a global setup be safely replaced by a protocol that UC
emulates it, without this replacement affecting the security of protocols using the setup
as a subroutine?

Having an answer to the above is essential for ensuring that statements involving global setups
have an analogue in a realistic setting, where the setup is not offered by a trusted party but rather
emulated by a protocol itself. In the upcoming section we discuss a number of situations in which
not addressing the above question leads to counter-intuitive results.

Our results. We provide various conditions under which replacement of a global subroutine by a
protocol realizing it does not affect the validity of the underlying security statement. Our results
give a partial guide on how to navigate the very tricky question of what constitutes a “good” global
setup. More concretely, we provide the following theorems for soundly replacing global setups by
their emulation in existing security statements. We note that only the first replacement strategy
is conditioned on the global setup and its emulation, and is oblivious of the underlying security
statement. Contrary, the latter replacement strategy requires us to put conditions on the simulator
of the underlying security statement.

Replacement with equivalent setup. A setup can be replaced with its implementation if the
implementation is actually equivalent to the setup, including adversarial capabilities. The
formulation of equivalence of adversarial capabilities is formalized using the simulation argu-
ment: after replacing, there must be an efficient way to emulate all queries that were available
before.

2Note that this does not contradict the UC composition theorem. Indeed, if the PKI would be local to the instance
of π, the simulator S consumes the PKI in the ideal world, and hence S’s external interfaces do not change.
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Replacements for agnostic simulations. As will be apparent from our discussion below on
selected case-studies, the requirement on equivalence is impractical and unrealistic if we want
to understand what a protocol ideally should achieve. Therefore, we need a more fine-grained
condition. In a nutshell, we prove two things. The replacement of a global setup G in a
protocol π UC-realizing φ is sound if the simulator witnessing this construction is either:

• agnostic of the adversarial capabilities of G and the only dependence is on exported
capabilities that are available to honest parties, too.
• characterized by a set I of adversarial queries that are admissible, a concrete technical

condition that generalizes the idea that adversarial capabilities and their actions will be
preserved once G is going to be replaced.

The first condition on the simulator is appealing as it is simple to check. Furthermore, since F
can communicate with G naturally via an ordinary party identifier (see [BCH+20]) or in its own
“name”, the simulator S can obtain information via F and hence use G just like an honest caller of
the protocol.

The second condition brings more flexibility to protocol designers since S can use certain
capabilities I at the adversarial interface. Intuitively speaking, Section 4 states the condition which
sets I of adversarial queries are fine to use relative to an implementation (or a set of implementations)
that is going to replace the setup.

Our theorems further follow by applications of the UCGS and UC composition theorems at
a level of abstraction which seems to share a lot of similarities with other frameworks and their
composition theorems. For example, the exact corruption model is irrelevant, as long as the behavior
of and upon corruption can be formulated via an “adversarial” interface, where the above conditions
can be evaluated on (such as the backdoor tape in UC). Therefore, we believe that our results are
natural and of importance to other frameworks, too.

Why replacing the setup in both worlds? We point out that we also formally prove a related
but weaker statement: we could just let π make subroutine calls to the replacement of G, and leave
the ideal world to be F in combination with context G. This is a formally sound statement and
we prove it in this work as a warm-up. The reason this cannot be the last word is the following:
the different contexts allow to completely obscure the achieved level of security as formalized by F .
The high-level reason is that F is misleading in its role as idealization of π if we ignore the context.
For example, F can offer much better security guarantees (for example, less powerful adversarial
interface) thanks to the weak context offering more adversarial capabilities. In the sum, the real
world is stronger and the ideal world is weaker (hence the statement must go through) but we
still do not learn what the idealization of π would be. We provide a simple example for such an
obscuring in Appendix A.2.

Related Work. To our knowledge, there is very limited work on the replaceability of a global
UC setup. In fact, the only work that has looked at the question at an analogous generality as here
is [CSV16]. As discussed above, the treatment there is in GUC which requires considerable effort to
even define a “global” protocols, and even then, the treatment inherits the inconsistencies of the
GUC model. Most importantly, although [CSV16] does identify necessary and sufficient conditions
on the global setup and protocol replacing it to allow a generic preservation of security properties,
these condition is too strict to be applied on more complicated primitives, such as blockchain ledgers,
which have recently become a standard example of global subroutines. We remark that although our
results are described using the recent UCGS modelling of [BCH+20], they can easily be adapted to
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any framework which supports universal composition and global setups. Finally, an investigation of
replaceability targeted to special variants of global random oracles was recently made in [CDG+18];
their approach is contrary to ours in the sense that their work investigates replacement by weaker
global setups. Such a replacement can only be sound for contrived interpretations of “weaker” (ones
that only take away leverage from the real-world adversary, but not the simulator) and hence does
not work for realistic protocols such as Bitcoin or a protocol implementing a PKI.

Organization of the remainder of this paper. In Section 2 we discuss the pitfalls of global
setup replacement with three concrete global setups that frequently appear in the literature. Section 3
gives an informal introduction to the UC framework and on how to formalize global setups in it
using the language of UCGS [BCH+20]. We also recall all definitions relevant for this work in
Appendix B. In Section 4 we deal with protocols accessing only a single global setup. Finally, we
generalize our concepts to many global subroutines in Section 5.

2 (Ir)Replaceability of Common Global Setups
We now discuss more concretely the issues that arise when replacing global setups. Although
originally introduced and broadly regarded as a concept of purely theoretical interest, several
global setups are recently finding their way into modeling of practical applications. We pick three
representatives for global setups, namely the (global) RO, PKI, and transaction ledger. With the
RO, we demonstrate the impact of our observation on feasibility results. The PKI is exemplary for
setups that are replaced by equivalence transformations. Finally, the ledger falls into the category
of an idealization of a complex protocol where our main theorems must be used.

2.1 Global Random Oracles

Random oracles are often used to abstract a hash function used in cryptographic protocols. This
abstraction makes a global random oracle less relevant for the scope of our work, as the replacement
with a hash function does not satisfy any notion of secure realization (it is just a heuristic argument).
Nonetheless, the random oracle model being one of the most commonly used abstractions in practice,
it offers the basis for a smooth introduction to the pitfalls of global setup “replacement”. For this,
we consider different variants of global random oracles from the literature and investigate the effects
of replacing one variant with another.

Introduction to Global Random Oracles. The standard instantiation of the (local) random
oracle model in UC assumes that protocol parties have access to an ideal functionality which behaves
as a random function. When we want to prove that a protocol π using such a random oracle realizes
an ideal functionality F, then in the security proof, the ideal world simulator is allowed to fully
control/simulate the behavior of the random oracle. This allows it to arbitrary define the function
it implements, a property typically referred to as programmability. In fact, this programability is
what gives us the ability to prove a number of non-trivial feasibility results in the RO model. The
reason is that it gives the simulator a comparative advantage over the real-world adversary who
cannot program the random oracle.

Using our intuition discussed in the introduction, that a global setup is nothing more than a
UC functionality which is used by protocols with different sessions, the natural way of capturing
a “global” RO is to include it also in the ideal world. However, this will remove the ability of the
simulator to program the RO, which is known to bring back most impossibility results that we
circumvented in the local RO setting, rendering this global RO mostly useless.
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Why global replacement intuitively fails. The above asymmetry of programmable vs. non-
programable ROs already provides a first demonstration of the irreplaceability principle. Indeed,
let π (resp. φ) denote the ideal (dummy) protocol in the non-programmable-RO-hybrid (resp.
programable-RO-hybrid) model. It is straight-forward to verify that π UC-emulates φ. However,
the known insufficiency of the non-programable-RO for certain tasks, such as non-committing
encryption [Nie02], which can be realized from a programmable RO, indicates that we cannot use π
to replace φ in arbitrary contexts.

Example I: A feasibility result. We now give a formal example where replacement of the global
random oracle does not preserve the security statement. In [CJS14], a weakend version of the above
global RO, denoted as gRO, was proposed. Informally, this version does not allow the simulator
to program the RO, but does allow him to query it in a private manner, protecting him against
an environment that might try to use its read access to the gRO to check the simulators claims
about the answers to queries of simulated honest parties. This protection is done by informing the
simulator when queries to the gRO relevant to the protocol he is trying to simulate are made by
the environment. The concrete mechanics of how this works are not relevant for our argument, but
what is important is that the above creates again an asymmetry between the power of real world
adversary—who cannot know the queries to the RO made by honest parties in the protocol—and
the simulator—who is the one making the queries for his simulation of the honest parties. As
proved in [CJS14], by means of a smart trick, this asymmetry can be exploited to make the gRO
as powerful, in terms of the feasibility statements it enables, as the local RO! For example it was
proved that secure two party computation of any given function is possible assuming such a gRO.

However, we can go one step further with this and consider the following private-input/private-
output n-party protocol ΠRF for UC emulating a random function: Upon receiving an input from
the environment, a party p uses the n parties in order to evaluate a pseudo-random function (with a
key which has been pre-distributed to the parties) in a private manner, e.g., by using the distributed
PRF construction of Naor, Pinkas, and Reingold [NPR99]. It is straightforward to verify that if the
invoked protocol securely realizes a distributed PRF, then ΠRF securely realizes the natural RO
functionality. Hence, since gRO is weaker than the natural RO functionality (i.e., it behaves the
same way but gives the simulator more power) it follows that ΠRF should also emulate the gRO
functionality. Note however, that in ΠRF , the adversary is not informed about the value or the
outcome of queries coming from honest parties. This means that, although ΠRF UC realized the
gRO functionality, if we replace the gRO with ΠRF , the feasibility statements of [CJS14] no longer
go through, as the simulator loses his advantage over the adversary.

We stress that the above is not a criticism of [CJS14], where it is clearly stated that the gRO is
intended as a more functional instantiation of the random oracle heuristic3, and it is not claimed that
their results are preserved when the gRO is replaced by a protocol implementing it. Nonetheless, the
above discussion does demonstrate a pitfall in what one might think is a straight-forward application
of the UC subroutine replacement theorem: depending of how a global setup is defined, it is possible
that feasibility statements are not preserved when the setup is replaced by a protocol which securely
realizes it.

Example II: Relating assumptions and composition. The different strengths of random
oracles model different assumptions. This leads to the problem of comparison and composition in a
modular protocol design: assume two protocols are proven with respect to different global RO’s as

3Indeed, since a hash function is not an implementation of the natural RO, it is unclear what one would choose to
heuristically abstract it as the natural RO and not as the gRO.

8



above (with G2 exporting strictly more adversarial capabilities than G1): π1 realizes F1 w.r.t. G1,
and π2, which makes (local) calls to F1 and realizes F2 w.r.t. G2. Therefore, it is hard to obtain a
combined security claim: they assume different global setups and hence F1’s usage in the presence
of G2 has never been formally realized. Therefore, applying the UCGS theorem is not possible and
replacing F1 by π1 must be deemed a heuristic under the global G1 assumption. Our main theorem
implies the conditions under which π2 can replace hybrid F1 by π1 (in particular, this happens when
we can replace the setup of π2), and hence the UCGS theorem can be applied under assumption G1.
We give more details on this for the random-oracle case in Section 4.4.

2.2 Global PKI

Is there any way we can safely replace a global setup generically by a protocol, so that the above issues,
and any UC feasibility statements using the setup are not disturbed by the replacement? Canetti et
al. studied this question in GUC framework in the context of analyzing global PKIs [CSV16]. In a
nutshell, such a replacement is possible if the setup-ideal protocol φ (consisting of dummy parties
that relay inputs and outputs to the global setup) and its realizing protocol ψ are UC equivalent,
i.e., ψ UC emulates φ and φ emulates ψ.4 As part of our treatment we confirm that UC equivalence
is sufficient for such feasibility-preserving replacement of global setups in plain UC equipped with
the UCGS theorem from [BCH+20].

To gain intuition why UC equivalence is a sufficient condition, one can look at the issues with
the above gRO example. As discussed, what enabled a richer feasibility landscape in the gRO model
as opposed to the natural (non-programable) RO was the advantage that it gave the simulator. This
advantage is lost when the gRO is replaced by ΠRF . If, however, instead of πRF we used a protocol
π which is UC emulated by the dummy gRO-hybrid protocol, denoted as ρ, then this would imply
that any power that is given to the adversary/simulator when interacting with ρ would have to be
also given to the simulator when interacting with π, which would, again, allow to obtain the strong
feasibility statements from [CJS14].

In fact, for a natural version of a global PKI setup, [CSV16] provided a protocol using a (global)
certification authority (CA) which is UC equivalent with the global PKI. However, as discussed
below, for global setups which require complicated protocols to be realized, such as the ledger
realized by Bitcoin, devising a simple and usuable functionality which is UC equivalent5 with the
protocol is in fact infeasible.

2.3 Global transaction ledger

The last common global setup discussed here is also the one that has recently attracted the most
attention, and is a global transaction ledger. The works of Andrichowitz et al. [ADMM14] and
Bentov and Kumaresan [BK14] demonstrated how the Bitcoin protocol can be used to achieve a
compensation-based variant of fairness in multi-party computation—where the adversary forcing
an unfair abort yields a penalty for the adversary which translates in compensation for the honest
parties that lost their fairness. Following these results a plethora of works investigated how Bitcoin
or alternative cryptocurrencies can be used by other cryptographic protocol either to circumvent
limitation such as fairness, robustness, etc., or to improve their underlying properties.

4We note that the above is the intuition of the formal theorem of [CSV16]; as in order to even make such a
statement, [CSV16] needed to define what a global protocol is in GUC.

5In slight abuse of terminology we will say that a functionality F is UC equivalent to a protocol π if the (dummy)
F-ideal protocol is UC equivalent to π.
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Kiayias et al. [KZZ16] were the first to notice that any universally composable treatment of such
constructions would yield a mismatch with reality unless the functionality that is implemented by
Bitcoin—or alternative blockchain protocols—is abstracted as a global functionality. Indeed, not
only Bitcoin should not be considered as local to any of these protocols, as in reality it pre-existed
them and works independently of them, but also it is the prototypical example of what it means for
all these protocols to share state, as technically they are proposed as building on top of the (same)
Bitcoin network. In [KZZ16] a simple version of such a global ledger was proposed and a compiler
that adds a compensation-based robustness—every honest party either terminates with his output
or it gets compensated with funds that are derived by penalizing the adversasry—to any dishonest
majority MPC was devised. This initiated a number of works that have modelled blockchain ledgers
as global functionalities, making “globality” a central feature of the UC modeling of such ledgers.

The ledger functionality from [KZZ16] operates as follows: it receives transactions from its
users or from its adversary and maintains two type of memory: the state which is an append only
immutable memory—it corresponds to transactions that have settled in a deep enough Bitcoin
block; and the buffer which includes recently received valid transactions that have not yet made
it into the state. Every few rounds, the simulator needs to include (a subset of the transactions
in) the buffer to a block which is then added to the state. Finally, upon request by any party, the
ledger functionality outputs the current state to the requestor. As observed in [KZZ16], the above
simplistic description could not be an abstraction of a real world execution of Bitcoin, where by
using his network influence, the adversary is allowed at the very least to interfere with the order in
which messages appear in any blocks added to the state. To capture such interference, the ledger
from [KZZ16] allowed the simulator to reorder transactions before they are inserted to the block.

However, by the above modelling choice, the ledger of [KZZ16] introduced to the model an
asymmetry: Unlike in their transaction ledger, the Bitcoin protocol does not allow the adversary
to arbitrary reorder transactions that are inserted in a block—in particular for blocks created by
honest parties, the adversary have very limited influence on this ordering. Similar to the RO case,
by a simulator exploiting this asymmetry one might be able to prove feasibility statements that are
not preserved when the ledger is replaced by the Bitcoin protocol.

We note in passing that Badertscher et al. [BMTZ17] observed that the ledger proposed
in [KZZ16] is in fact not UC realized by (the backbone) of Bitcoin and provided an alternative,
albeit more complicated version of a ledger that is (provably) realized, which give further influence
to the simulator on the state update and the output of the ledger. However, as this ledger also gives
the simulator (at least) the power to reorder transactions, a UC equivalence theorem between this
and the Bitcoin protocol cannot hold. Despite its complex description, the ledger is far from such
an equivalent functionality. This hints to the fact that any such UC equivalent to the Bitcoin ledger
functionality would be as complex to use as the original protocol. This means that we cannot hope
to have a usable version of a Bitcoin ledger which can be replaced by the Bitcoin protocol without
destroying feasibility statements.

But perhaps more interesting and leaving Bitcoin aside, the feasibility statement of [KZZ16] does
remain unaffected if we replace their proposed ledger by a ledger protocol which does not give this
power to its adversary. Whether this is by chance or by design, it does raise the natural question:
What is special about the compiler of [KZZ16] that makes the mismatch between the proposed
ledger and its more restrictive implementation irrelevant? The short answer to this question is that
the simulator used in the security proof of the compiler does not use the reordering power offered to
it by the ledger, and therefore cannot fail when just this power is removed. This hints to the more
relevant goal which is central in our results: to give formal conditions on global setups, protocols
and security proofs that allow for replacement of the global setup by its implementation, without
invalidating the security proof.
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3 Preliminaries
While our ideas are formulated in a generality such that they can be applied to several composable
frameworks that support global setup [KMT20, MR11], when it comes to proofs, we must fix a
particular model which we choose to be UC [Can20] and its treatment of global subroutines as
recently established in [BCH+20]. We provide an overview of all UC concepts in Appendix B and
an overview of UCGS in Section 3.2. We give here a very brief introduction in order to follow the
ideas of our proofs.

3.1 UC Basics

Formally, a protocol π is an algorithm for a distributed system and formalized as an interactive
Turing machine. An ITM has several tapes, for example an identity tape (read-only), an activation
tape, or input/output tapes to pass values to its program and return values back to the caller. A
machine also has a backdoor tape where (especially in the case of ideal functionalities) interaction
with an adversary is possible or corruption messages are handled. While an ITM is a static object,
UC defines the notion of an ITM instance (denoted ITI), which is defined by the extended identity
eid = (M, id), where M is the description of an ITM and id = (sid, pid) is a string consisting of a
session identifier sid and a party identifier pid ∈ P. An instance, also called a session, of a protocol
π (represented as an ITM Mπ) with respect to a session number sid is defined as a set of ITIs
{(Mπ, idpid)}pid∈P where idpid = (sid, pid).

The real process can now be defined by an environment Z (a special ITI) that spawns exactly
one session of the protocol in the presence of an adversary A (also a special ITI), where A is allowed
to interact with the ITIs via the backdoor tape, e.g., to corrupt them or to obtain information from
the hybrid functionalities, e.g. authenticated channels, that the protocol is using. The adversary
ITI can only communicate with the backdoor tapes of the protocol machines. An environment
can be restricted by a so-called identity bound ξ ∈ Ξ which formalizes which external parties the
environment might claim when interacting as input provider to the protocol. The less restrictive
the bound, the more general the composition guarantees are. The UC theorem is quantified by such
a predicate.

The output of the execution is the bit output by Z and is denoted by execπ,A,Z(k, z, r) where
k is the security parameter, z ∈ {0, 1}∗ is the input to the environment, and randomness r for
the entire experiment. Let execπ,A,Z(k, z) denote the random variable obtained by choosing the
randomness r uniformly at random and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z denote the
ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal-world process The ideal process is formulated with respect to an another protocol φ,
which in its most familiar form is a protocol IDEALF for an ITM F which is called an ideal
functionality for which we describe the situation. In the ideal process, the environment Z interacts
with F , an ideal-world adversary (often called the simulator) S and a set of trivial, i.e., dummy
ITMs representing the protocol machines of IDEALF that forward to the functionality whatever
is provided as inputs to them by the environment (and return back whatever received from the
functionality). In the ideal world, the ideal-world adversary (aka the simulator) can decide to corrupt
parties and can interact via the backdoor tape with the functionality. For example, via the backdoor
tape, the functionality could for example leak certain values about the inputs, or allow certain
influence on the system. We denote the output of this ideal-world process by execF ,A,Z(k, z, r)
where the inputs are as in the real-world process. Let execF ,S,Z(k, z) denote the random variable
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obtained by choosing the randomness r uniformly at random and evaluating execF ,S,Z(k, z, r). Let
execF ,S,Z denote the ensemble {execF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Secure Realization and Composition In a nutshell, a protocol π ξ-UC-emulates (ideal) pro-
tocol φ if the “real-world” process (where π is executed) is indistinguishable from the ideal-world
process (where φ is executed), i.e., if for any (efficient) adversary A there exists an (efficient)
ideal-world adversary (the simulator) S such that for every (efficient) ξ-bounded environment Z it
holds that execπ,A,Z ≈ execφ,S,Z .

The emulation notion is composable, i.e., if π UC-emulates φ, then in a larger context protocol
ρ, the subroutine φ can be safely replaced by π, denoted by ρφ→π. For this replacement to be
well-defined, a few technical preconditions must be satisfied. First, the protocols must be compliant,
which ensures that in case π and φ might both be subroutines in ρ they do not share the same
session (ensuring that the replacement operator works as intended). Furthermore, compliance also
makes sure that the protocol is invoked properly, i.e., with the correct identities specified in ξ. The
full definition is found in Appendix B. The second major precondition is that protocols should be
subroutine respecting, meaning that each session of π can run in parallel with other sessions of
protocols without interfering with them (in order for the UC-emulation notion which considers a
single challenge session to be a reasonable precondition for the composition theorem). For details
we refer to Appendix B.

Theorem 3.1 (UC Theorem). Let ρ, π, φ be protocols and let ξ be a predicate on extended identities,
such that ρ is (π, φ, ξ)-compliant, both φ and π are subroutine exposing and subroutine respecting,
and π UC-emulates φ with respect to ξ-identity-bounded environments. Then ρφ→π UC-emulates
protocol ρ.

3.2 UC with Global Subroutines

A global subroutine can be imagined as a module that a protocol uses as a subroutine, but which
might be available to more than this protocol only. While initial formalizations to capture when a
module is available to everyone, i.e., to the environment, defined a UC-variant [CDPW07], it was
recently shown that capturing this can be fully accommodated within UC [BCH+20]. In a nutshell,
if π is proven to realize φ in the presence of a global subroutine γ, then the environment can access
this subroutine in both, the ideal and the real world, which must be taken care of by the protocol.
As a rule of thumb, proving that π realizes φ in the presence of global γ is harder than when γ is a
local subroutine, i.e., not visible by the environment.

The framework presented in [BCH+20] defines a new UC-protocol M[π, γ] that is an execution
enclave of π and γ. M[π, γ] provides the environment access to the main parties of π and γ in a way
that does not change the behavior of the protocol or the set of machines. The clue is that M[π, γ]
itself is a normal UC protocol and the emulation is perfect under certain conditions on π and γ. We
first state the definition from [BCH+20].

Definition 3.2 (UC emulation with global subroutines). Let π, φ and γ be protocols. We say that
π ξ-UC-emulates φ in the presence of γ if protocol M[π, γ] ξ-UC-emulates protocol M[φ, γ].

The first condition is the following and expresses the fact that γ might communicate with
protocols outside of π’s realm:

Definition 3.3 (γ-subroutine respecting). A protocol π is called γ-subroutine respecting if the
four conditions of Definition B.6 required from any (sub-)party of some instance of π are relaxed as
follows:
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• the conditions do not apply to those sub-parties of instance s that also belong to some extended
session s′ of protocol γ;

• (sub-)parties of smay pass input to machines that belong to some extended session s′ of protocol
γ, even if those machines are not yet part of the extended instance of s (cf. Definition B.6,
item 4).

The second condition is a technical condition on the global subroutine which is called regularity.
The condition says that (a) a shared subroutine does not spawn new ITIs by providing subroutine
output to them, and (b) that the shared subroutine may not invoke the outside protocol as a
subroutine. It is usually not a problem for global setups to satisfy this, since most of the time, we
can model functionalities to be reactive and assume “signaling events” to happen out-of-band.

The formal definition is taken from [BCH+20].

Definition 3.4 (Regular setup). Let φ, γ be protocols. We say that γ is a φ-regular setup if, in any
execution, the main parties of an instance of γ do not invoke a new ITI of φ via a message destined
for the subroutine output tape, and do not have an ITI with code φ as subsidiary.

In [BCH+20, Proposition 3.5], the authors show that if the protocol π is γ-subroutine respecting,
where γ itself is π-regular and subroutine respecting, then the interaction between π and the global
subroutine γ is very structured without unexpected artifacts. We state the proposition here for
completeness. Here, α is an arbitrary protocol and α̂ is a version of α that makes use of M[[]π, γ]
instead of π and has an indistinguishable behavior. We refer to [BCH+20] and just state the
proposition.

Proposition 3.5. Let γ be subroutine respecting and π be γ-subroutine respecting. Then the protocol
M[π, γ] is subroutine respecting. In addition, let γ be π-regular, and let α be a protocol that invokes
at most one subroutine with code π. Denote by α̂ the transformed protocol described above. Then
the transcript established by the set of virtual ITIs in an execution of some environment with α̂ is
identical to the transcript established by the set of ITIs induced by the environment that has the
same random tape but interacts with α.

The UCGS theorem is then the composition theorem for protocols that are defined with respect
to a global subroutine γ. Note that not γ is replaced, but φ by its implementation π.

Theorem 3.6 (Universal Composition with Global Subroutines – UCGS Theorem). Let ρ, φ, π, γ
be subroutine-exposing protocols, where γ is a φ-regular setup and subroutine respecting, φ, π are
γ-subroutine respecting and ρ is (π, φ, ξ)-compliant and (π,M[code, γ], ξ)-compliant for code ∈ {φ, π}.
Assume π ξ-UC-emulates φ in the presence of γ, then ρφ→π UC-emulates ρ.

4 Replacement Theorems for a Global Subroutine
In this section, we consider a setting where protocols access only one global subroutine, e.g., a global
CRS, or a global ledger, but not both of them. That is, we only consider protocols whose shared
setup is formulated as a single protocol. For this simplest global setting, we start by exploring
which replacement of the global subroutine follows already from application of the UC composition
theorem. Then, we recover the replacement theorem of [CSV16], which preserves security statements
if the global subroutine is replaced by an equivalent protocol. And finally, we give conditions for
security-preserving replacement of non-equivalent global subroutines.
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4.1 Common Preconditions of our Theorems

Throughout this section, we assume the following preconditions for our theorems. Recall that we are
interested in replacing a global subroutine while preserving security statements made with respect
to this subroutine. We assume the security statement to be the following: protocol π UC-emulates
an ideal functionality F in the presence of global subroutine G, with respect to dummy adversary
A. Simulator SA is a witness for this emulation. The statement is depicted below and referred to in
the text as precondition (1).

GF

SA
Backdoor Tape Backdoor Tape

π

π

π π

H G
Backdoor Tape

A

(1)
UC-emulates

≈

Second, since our aim is to investigate how UC emulation of global subroutines can be useful for
context protocols, we assume that the global subroutine is emulated as follows: ψ UC-emulates G,
with simulator SD for dummy adversary D. We refer to this emulation as precondition (2).

G
Backdoor Tape

SD
H′

ψ ψ

ψ

ψ
D

≈(2)
UC-emulates

Given this notation, the core question of our work can be stated as follows: given preconditions
(1) and (2), under which additional conditions does it hold that

π UC-emulates F in the presence of global ψ?

Simplifying notation. We note that, while our theorems hold for arbitrary UC protocols, to ease
understanding, we formulate them with the special protocols idealF and idealG . Intuitively, F is
a “target” functionality that is to be realized and G a global ideal setup. To further simplify, we
slightly abuse notation and write G instead of idealG , e.g., we write “ψ UC-emulates G” instead of
“ψ UC-emulates idealG”.

4.2 Warm-Up: Replacing Real-World Global Setups

Our first lemma states that under precondition (2) we can replace the shared subroutine by the
construction that UC emulates it. Another way to view this is that “lifting” to global subroutines
(w.r.t any application protocol π) preserves UC emulation. An important feature of this statement is
that it follows from standard UC composition thanks to the embedding of global setups in standard
UC. Throughout the section, we will maintain a running example to illustrate all our statements.

Running Example. Let G = Gledger be an ideal ledger and π a lottery protocol requiring a ledger.
Further, let ψ = FunCoin be a cryptocurrency implementing the ledger Gledger. By UC emulation,
all manipulation and attacks allowed on FunCoin must also be allowed against Gledger. In particular,
this holds for any manipulation or attack carried out while running a lottery.
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Lemma 4.1. Assume a protocol π makes subroutine calls to global subroutine G and that ψ is a
protocol that UC-emulates G. Then π invoking ψ instead of G UC-emulates protocol π.
Proof. On a high level, the argument is as follows: if an environment could tell a run of π with ψ
from a run of π with G, then running π internally would already let the environment distinguish a
run of ψ from a run of G, violating the precondition of the lemma.

π

π

π π

H G
Backdoor Tape

A SD
≈π

π

π π

H

A

H′

ψ ψ

ψ

ψ

by (2)

behave as if invoked
by the environment

UC-emulates

Since for the technical argument, we have to stick to a particular model, we have use the UC
language in a more precise way: hence, we assume that π, ψ, G be protocols and let ξ ∈ Ξ be a
predicate on extended identities, such that π is (ψ,G, ξ)-compliant, π, G, ψ are subroutine exposing,
G and ψ are subroutine respecting, and π is subroutine respecting except via calls to G. We note
that these technical conditions are as they appear in UC in order to guarantee that the UC-operator
is well defined. To formalize emulation in the presence of a shared setup, we use the terminology
of UCGS [BCH+20] (see Section 3.2 for a short recap), where global access to G is granted by an
overlay M[·,G]. In order for this overlay to be opaque to the execution of π with G, we need to
assume G to be π-regular (see Definition 3.4 and Proposition 3.5).

With this terminology, it remains to show that if ψ UC-emulates G with respect to ξ-identity-
bounded environments, then M[πG→ψ, ψ] UC-emulates protocol M[π,G] (with respect to ξ-identity
bounded environments). This follows from the UC composition theorem: First, observe that M[π,G]
is an ordinary UC-protocol, mimicking all effects that the global (and hence shared) subroutine might
have with the environment. Similarly, M[πG→ψ, ψ] is an ordinary UC-protocol where subroutine
G is replaced by ψ. Note that, similar to the role of the control function in UC, the embedding
M[·] does not reveal the code of the main instances when interacting with the environment, and
therefore we have that M[π,G]G→ψ and M[πG→ψ, ψ] are equivalent protocols. Since ψ UC-emulates G
w.r.t. all environments that are bounded by ξ, the UC composition theorem implies that M[πG→ψ, ψ]
UC-emulates M[π,G].

Lemma 4.1 will serve mainly as a tool in proving the upcoming theorems. Next, we can apply
the UC composition theorem to our two preconditions. This yields the following theorem. It says
that, in any UC emulation statement w.r.t a global setup, we can safely strengthen the real-world
setup, while leaving the setup in the ideal world unchanged. The intuition behind it is illustrated
with the following example.
Running Example. Back to our lottery. The lottery’s provider wants to create trust in his product.
He therefore proves that, when run with the global ideal ledger, the lottery protocol UC-emulates
some ideal functionality Flottery which enforces a fair lottery. In his proof, both the lottery protocol
and Flottery may exploit weaknesses of Gledger. Since FunCoin is at least as secure as Gledger, the
provider can safely advertise that running the lottery with FunCoin is as secure as Flottery with
Gledger, since this replacement can only decrease the number of possible attacks on the global setup
while running the lottery.
Lemma 4.2. Assume a protocol π UC-emulates F in the presence of global subroutine G and that
G is UC-emulated by ψ, then replacing π’s subroutine G by ψ UC-emulates F that has access to
global subroutine G.

15



Proof. We again need some technical conditions from standard UC and UCGS: Let π, F , ψ, G be
protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that π is (ψ,G, ξ)-compliant,
π, F , G, ψ are subroutine exposing, G and ψ are subroutine respecting, π and F are subroutine
respecting except via calls to G and G is π-regular. If ψ UC-emulates G with respect to ξ-identity-
bounded environments, and if π UC-emulates F in the presence of G w.r.t. ξ′-identity-bounded
environments, then what we have to prove is that M[πG→ψ, ψ] UC-emulates protocol M[F ,G]
w.r.t. ξ′-identity-bounded environments. This however follows from standard composition: Recall
that protocols M[πG→ψ, ψ] and M[π,G] from Lemma 4.1 are embeddings of protocols with global
setup as normal UC protocols. Therefore, we can apply the UC composition theorem: M[πG→ψ, ψ]
UC-emulates M[π,G], and by our assumption M[π,G] UC-emulates M[F ,G].

The conclusion of this subsection is that under both conditions (1) and (2) it follows that
both π and ψ running together are indistinguishable from the ideal world, where both components
are idealized. This is often assurance enough that the protocol in combination with a particular
implementation of the global setup achieves a good level of security. However, note that the security
is stated in terms of abstractions of both real-world components. The overall guarantees are thus
hard to tell, and false impressions of security might be created. Let us illustrate this issue with the
following.

Running Example. Assume that the provider does not have a strong cryptographic background
and that he actually struggled conducting the aforementioned proof. But suddenly, he realized
that the proof is easy when he assumes that Gledger, which is used by both the poker game and
Flottery, admits arbitrarily many adversarial ledger entries. He calls this new setup GweakLedger and is
delighted when he finds out that it is still emulated by FunCoin (since UC emulation is transitive).
He then happily applies Lemma 4.2 and rightfully advertises that his poker game run with FunCoin
is as secure as Flottery together with GweakLedger.

With this example we see that Lemma 4.2 falls short in examining the security of the challenge
protocol when proven w.r.t. an (even slight) abstraction of the setup and not its implementation.
In the above example, Flottery might provide very strong fairness guarantees, that however can
only be achieved with a simulation that crucially exploits introduction of adversarial entries into
GweakLedger. Thus, when looking only at Flottery, false impressions of security guarantees are created.
In particular, with the stronger global Gledger or the actual protocol FunCoin, which do not have
this weakness, Flottery might not even be realizable by the lottery – to say the least, the existing
simulation is likely to fall short in witnessing such an emulation statement.

To remedy the situation (and to blow our provider’s cover), we need to understand the implications
of replacing the global setup in the ideal world. In particular, preventing a security proof from
exploiting weaknesses in the abstraction of the setup seems to be crucial to arrive at a plausible and
realistic level of security. In the remainder of this section, we ask under which conditions a security
proof might be preserved when replacing the global setup in both worlds.

4.3 Full Replacement of the Global Subroutine

We now turn our attention to “full” replacement strategies, where the global subroutine is replaced by
a protocol UC-emulating it in both the real and the ideal world. Of course, this is to be understood
w.r.t an existing security statement, that is, our precondition (1). Let us emphasize again that we
are only interested in replacement strategies that preserve the underlying security statement.
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4.3.1 Equivalence Transformations of the Global Subroutine.

Canetti et al. demonstrated, using the terminology of GUC, that replacing the global subroutine
by an equivalent procedure preserves protocol emulation w.r.t the subroutine. The replacement
theorem is proven in [CSV16], and we recover it here for completeness. Thanks to the embedding
within plain UC that UCGS achieves, our proof is able to capture the arguments at a more abstract
level, essentially reducing all steps to standard UC-emulation. Let us first illustrate how and why
equivalence replacement works with the lottery.

Running Example. The provider keeps receiving calls from cryptographers who find it suspicious
that his simulation exploits the weaknesses of GweakLedger. Since FunCoin does not offer introduction
of arbitrary adversarial blocks, the provider however cannot carry out his simulation with FunCoin.
Searching the internet, the provider learns about a shady cryptocurrency called DarkCoin. Further
investigating, the provider can prove that DarkCoin admits the exact same attacks as GweakLedger, i.e.,
is UC-equivalent to GweakLedger

6. Thus, the provider can run his simulation with DarkCoin instead
of GweakLedger, since DarkCoin allows for all adversarial queries that are possible with GweakLedger.
Moreover, the provider can be assured that his simulation is still good for the now modified real
world, since DarkCoin does not admit more attacks than GweakLedger. Relieved, he announces that,
when using the globally available DarkCoin, his lottery protocol emulates Flottery.

Theorem 4.3 (Full Replacement via Equivalence Transformations). Assume π UC-emulates F in
the presence of a global subroutine G. If ψ UC-emulates G and vice-versa, i.e., their adversarial
interfaces are equivalent, then π, invoking ψ instead of G, UC-emulates F , invoking ψ instead of G,
and where ψ is the global subroutine.

Proof. We again have to phrase our theorem in the language of UCGS: Let π, F , ψ, G be protocols
and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that π is (ψ,G, ξ)-compliant, π, F , G, ψ are
subroutine exposing, G and ψ are subroutine respecting, π and F are subroutine respecting except via
calls to G and G is π-regular. If ψ UC-emulates G with respect to ξ-identity-bounded environments —
and vice-versa— and if π UC-emulates F in the presence of G w.r.t. ξ′-identity-bounded environments,
then M[πG→ψ, ψ] UC-emulates protocol M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded environments.

The sequence of steps needed in this proof are the following hybrid protocols.

• The real protocol H0 := M[πG→ψ, ψ].

• The first intermediate step H1 := M[π,G].

• The second intermediate step H2 := M[F ,G].

• The destination protocol H3 := M[FG→ψ, ψ].

As in the proof of Lemma 4.1 , H0 is equivalent to M[π,G]G→ψ and hence H1 = Hψ→G
0 . By standard

composition, H0 UC-emulates H1 since the embedding is an normal UC-protocol and subroutine ψ
UC-emulates G. Next, the transition from H1 to H2 is trivial: H1 UC-emulates H2 by the theorem
assumption. Finally, we go the “reverse” direction as in the argument of the first step thanks to the
fact that we know that G UC-emulates ψ. More formally, we have H3 = M[F ,G]G→ψ and again, H3
is obtained by normal subroutine replacement within protocol H2. Therefore, H2 UC-emulates H3
by the theorem assumption and we have that H0 UC-emulates H3 which concludes the proof.

6Formally, ψ and ψ′ are UC-equivalent if ψ UC-emulates ψ′ and ψ′ UC-emulates ψ.
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To the best of our knowledge, Theorem 4.3 is the only composition theorem allowing for
replacement of global subroutines with their UC emulation that already exists in the literature
[CSV16]. It can be applied to soundly replace, e.g., a globally available ideal PKI with its
implementation at a trusted PKI provider. However, it falls short in replacing global setups with
protocols, which are likely to be stronger than their abstraction as a UC functionality. In the
remainder of this section we discuss solutions for such replacements.

4.3.2 Global-agnostic Simulations of the Challenge Protocol.

The condition discussed in this section is useful for protocols designers to check whether their
proof remains valid when a global subroutine is replaced, by means of checking the structure of
the simulator. Intuitively, a sufficient condition is if the simulator can simulate without accessing
the adversarial interface of the global setup. More generally speaking, for all UC-adversaries A the
corresponding simulation strategy SA should only externally-write onto the backdoor tape of the
global subroutine session(s) if the real-world adversary did so. An easy way to achieve this is to
have the ideal functionality F communicate with the global setup G directly and if needed, provide
the simulator (simulating the actions of π when having access to the backdoor tape of F) with the
necessary information. Intuitively, the reason this is sound is that the only way F can interact with
the global setup just like an honest party would do (and in particular, not via the backdoor tape).
Since replacing F by a protocol that implements it can never change the behavior for honest parties
in a noticeable way (otherwise, it is obviously distinguishable) the replacement is unproblematic.
We first formally capture what it means for a simulator to not use the adversarial interface of the
global subroutine.

Definition 4.4 (G-agnostic). An adversary S interacting with subroutine G is G-agnostic if the
only external write requests (made by S’s shell) destined for (the backdoor tape) of parties and
subparties of any session of G are those instructed by the environment directly and any messages
via the backdoor tapes of (sub-)parties of any session of G are delivered directly to the environment
without activating the body of S.

Running Example. Recently, numbers of users participating in the provider’s lottery dropped
significantly. Being sure that this is because of his recent recommendation to use DarkCoin, the
provider desperately hires a team of cryptographers. Examining the provider’s simulation carried out
with respect to GweakLedger, the team finds a better simulation strategy that only requires legitimate
use of the ledger by sending transaction requests to it. The new simulator thus acts like an honest
party using the ledger. In particular it does not exploit any of the adversarial interfaces of GweakLedger.
Since FunCoin allows to submit transactions, replacing GweakLedger by FunCoin in the proof does
not hinder the new simulation. With FunCoin back in the picture, user statistics begin to slowly
recover and the provider is delighted.

Theorem 4.5 (Full Replacement due to Agnostic Simulations I). Assume π UC-emulates F in the
presence of a global subroutine G such that the simulator S for this construction is G-agnostic. Let
further ψ UC-emulate G. Then π, invoking ψ instead of G, UC-emulates F , invoking ψ instead of
G, and where ψ is the global subroutine.

Proof. We first state the theorem in the language of UCGS as before. Let π, F , ψ, G be protocols
and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that π is (ψ,G, ξ)-compliant, π, F , G,
ψ are subroutine exposing, G and ψ are subroutine respecting, π and F are subroutine respecting
except via calls to G and G is π-regular. Let ψ UC-emulate G with respect to ξ-identity-bounded
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environments and let π UC-emulate F in the presence of G w.r.t. ξ′-identity-bounded environments.
Let SA denote a simulator for the latter emulation that satisfies Definition 4.4. Then M[πG→ψ, ψ]
UC-emulates protocol M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded environments.

The proof strategy is as follows:
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More formally, we make the following transitions, going from top left to bottom right in the
picture.

M[πG→ψ, ψ] UC-emulates M[π,G]. This directly follows from Lemma 4.1 and the precondition of
ψ UC-emulating G. Let A′ denote the simulator of this emulation.

execπ,A′,Z ≈ execF ,SA′ ,Z . We show how to simulate for the specific adversary A′. SA′ works as
SA, but lets the internally simulated A on π issue its external write requests to the global
subroutine directly to SD, which overall has the effect as if A and SD were combined when
talking to the global subroutine. The simulator SA (simulating π while interacting with F)
performs a good simulation even against this combined attacker, because SA does not care
about this interaction due to the agnostic property: SA does not issue any queries to G itself
(that might get blocked or modified by SD) and acts as a relay between G and Z. Assume Z
distinguishes both distributions. Then, Z running SD internally instead of sending requests
to SD to the adversary is a successful distinguisher of π,A and F ,SA, since due to SA being
G-agnostic, Z is oblivious of the order of SA and SD (and, naturally, of the order of A and
SD). Since such a Z would violate precondition (1), we conclude that both distributions are
indistinguishable.

execF ,SA′ ,Z ≈ execF ,S′,Z , where S ′ denotes the simulator SA sending requests to ψ via dummy
adversary D. Recall that SA′ combines SA and SD. If both executions are distinguishable, an
environment running SA and F could distinguish an execution of ψ and D from an execution
of SD with G, violating the precondition that ψ UC-emulates G, i.e., precondition (2).

execF ,S′,Z ≈ execF ,SA,Z . Since the dummy adversary D is just a relay, we can safely remove it
from the execution.

4.3.3 General Condition for Global-Functionality Replacement.

With the previous theorem, we showed that a global subroutine can be safely replaced by its
emulation in all security statements which are proven via a simulator who does not access the global
subroutine. This however not only means that the simulator cannot manipulate the state of the
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global setup, but is also completely oblivious of it. This is often too strong of a condition. For
example, consider a simulator witnessing a protocol’s security in the presence of a global CRS. Such
a simulator should at least be allowed to read out the CRS, since, intuitively, the CRS is publicly
available information. Similarly, a simulator in a global ledger world should at least be allowed to
read the state of the ledger. And indeed, our next replacement theorem admits global replacements
that do not interfere with such simulators, as long as the power of the simulator is reflected in the
real world even with respect to the stronger emulation of the global subroutine.

To ease the technical presentation of the condition on the simulator, for the next theorem we
restrict ourselves to the special case of functionalities as global subroutines. The treatment could
be generalized to arbitrary global subroutines. Let us start with introducing some technical tools
which help us formalize interaction between adversaries and global functionalities.

Definition 4.6 (Ordered interaction). Let I be a set of queries. An ideal functionality G is called
I-ordered if G answers to inputs x ∈ I on the backdoor tape with (x, y), and uses format (⊥, ·)
otherwise.

The definition simply demands that ITM G, in his answers to the adversary, repeats what query
it responds to if the query belongs to some set I. Note that quite often in the literature, such an
association is necessary but left implicit in the description, since it is obvious which query will
result in which answer (by repeating the input and maintaining a clear order when answering
adversarial requests). Next, we define some useful notation when running two programs in one
machine. Essentially, we define a wrapper that routes incoming queries to the program which they
are intended for.

Definition 4.7 (Parallel composition of adversaries). Let S1 and S2 be two ITMs. Then [S1,S2]
denotes the adversary with the following shell: whenever activated with value (x, y) on the backdoor
tape, it activates Si if x was issued by Si and in any other case activates S2 by default. Conversely,
if activated with input (i, x) on the input tape (for any x), the shell activates Si on input x.

Definition 4.8 (Admissible backdoor-tape filter). Let SD be the simulator of condition (2), i.e.,
the construction of G from ψ. Let I be a subset of adversarial queries allowed by G, and let G be
I-ordered. Let further fI denote a simple program which takes inputs x ∈ I and writes them on
the backdoor tape of G, and if provided with input (x, y) on the backdoor tape, returns y to the
caller that provided the corresponding input x (other values on the subroutine output tape are
ignored by f). We say that fI is an admissible backdoor-tape filter for (SD, ψ,G) if there exists a
simulator [SfI

,D] such that execG,[fI ,SD],Z ≈ execψ,[SfI
,D],Z . We omit (SD, ψ,G) if it is clear from

the context.

Pictorially, fI is an admissible filter if there is a simulator SfI
such that:

G
Backdoor Tape

fI SD

≈ H′

ψ ψ

ψ

ψ

SfI D

comp. ind.

Note that a filter is nothing else than a program making the adversarial interface of G less
powerful while not interfering with the assumed simulator.
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Running Example. Let us assume that the ledger GweakLedger has adversarial interfaces J :=
{readState, permute, putEntry }. DarkCoin UC-emulates GweakLedger with simulator SD that, say,
only uses interface putEntry. Thus, f{readState} is admissible for (SD,DarkCoin,GweakLedger) since
SD does not depend on how often GweakLedger outputs the state. The simulator Sf{readState} simply
collects the state of the DarkCoin ledger from publicly available information. On the other hand,
f{permute} (and f{permute,readState}) can only be admissible if SD performs a good simulation regardless
of the order in which entries (including adversarial ones) appear on the ledger, and if there exists
an attacker Sf{permute} that can carry out a permuting attack against DarkCoin.

The next definition restricts the simulator’s usage of the global functionality. Essentially, the
simulator is not allowed to query the global G except for queries in some set I.

Definition 4.9 (G\I-agnostic). Let S denote an adversary interacting with global subroutine G
and let I denote a subset of the adversarial queries allowed by G, and let G be I-ordered. S is
called G\I-agnostic if the only external write requests (made by the simulator’s shell) destined for
G are either requests x ∈ I or those instructed by the environment directly, and any messages via
the backdoor tapes from the (sub-)parties of G are delivered directly to the environment without
activating the body of S, except when they are of the form (x, ·) where the query x ∈ I has been
issued by the body of S.

We are now ready to state our most general replacement theorem for global subroutines for
simulators that are global-agnostic except for queries in some set I that pass the backdoor-tape
filter of the shared subroutine. Those queries can be asked by the simulator any time. The intuition
is that, due to the admissible property, we know how to “attack” an instantiation of G to extract
information from it that is indistinguishable from what the filtered adversarial interface of G offers.

Running Example. Bitcoin is known to UC-emulate a ledger functionality Gledger [BMTZ17], which we
assume to offer an adversarial interface readState7. Let SD denote the simulator of this emulation
statement. Since any permissionless blockchain, and in particular Bitcoin, publicly encodes the
ledger state, it holds that f{readState} is admissible for (SD,Bitcoin,Gledger) (the simulator Sf{readState}
that witnesses admissibility is interacting with Bitcoin and obtains the state the same way an
honest miner would do). Now if some blockchain application π proven w.r.t Gledger comes with a
simulation that only queries Gledger with readState, the security statement remains valid when
Gledger is replaced with Bitcoin. That is, π is guaranteed to realize the same functionality, regardless
of whether Gledger or Bitcoin is used as global ledger.

Theorem 4.10 (Full Replacement due to Agnostic Simulations II). Assume execψ,D,Z ≈ execG,SD,Z
and let I be a subset of adversarial queries allowed by G such that fI is an admissible backdoor-tape
filter for (SD, ψ,G). Let further π UC-emulate F in the presence of the global subroutine G such
that the simulator SA for this precondition is G\I-agnostic. Then, π, invoking ψ instead of G,
UC-emulates F , invoking ψ instead of G, and where ψ is the global subroutine.

Proof. We first state the theorem in the language of UCGS as before. Let π, F , ψ, G be protocols
and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that π is (ψ,G, ξ)-compliant, π, F , G,
ψ are subroutine exposing, G and ψ are subroutine respecting, π and F are subroutine respecting
except via calls to G and G is π-regular. Let ψ UC-emulate G with respect to ξ-identity-bounded
environments. Let SD denote the simulator of this condition, and be I a subset of adversarial queries
allowed by G such that fI is admissible for (SD, ψ,G). Let further π UC-emulate F in the presence
of G w.r.t. ξ′-identity-bounded environments. Let SA denote a simulator for this emulation, and let

7In [BMTZ17], any party, including the adversary, can obtain the ledger state by sending (READ, sid) to Gledger.
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SA be G\I-agnostic. Then M[πG→ψ, ψ] UC-emulates protocol M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded
environments.

The sequence of steps needed in this proof are the following.

π

π

π π

H G
Backdoor

A SD

A′

G
Backdoor≈

F
Backdoor

≈
F

Backdoor

H′

ψ ψ

ψ

ψ ≈
S ′

F
Backdoor

H′

ψ ψ

ψ

ψ

comp. ind.

SA G\I-agnostic

comp. ind.

≈π

π
π π

H

A

H′

ψ ψ

ψ

ψ
Lemma 1

UC-emulates

fI admissible

precondition (1)

precondition (2)

[fI ,SD]

SA′

SA

[SfI ,D]
SA

perf. ind.

S ′

More formally, we make the following transitions, going from top left to bottom right in the picture.

M[πG→ψ, ψ] UC-emulates M[π,G]. This directly follows from Lemma 4.1 and the precondition of
ψ UC-emulating G. Let A′ denote the simulator of this emulation.

execπ,A′,Z ≈ execF ,SA′ ,Z . We show how to simulate for the specific adversary A′. SA′ works as
SA, but lets the internally simulated A on π issue its external write requests to the global
subroutine directly to [fI ,SD] (using the adressing mechanism described in Definition 4.7),
which overall has the effect as if A and [fI ,SD] were combined when talking to the global
subroutine. We need to argue that the simulator SA (simulating π while interacting with
F) still performs a good simulation even against this combined attacker. Due to SA being
G\I-agnostic, SA’s requests reach G unmodified since they pass fI . Definition 4.9 further
ensures that SA acts as a dummy adversary regarding all requests between Z and [fI ,SD]. A
distinguisher Z between both distributions can thus be turned into a distinguisher between
executions π,A and F ,SA which runs program [fi,SD] internally, violating precondition (1).

execF ,SA′ ,Z ≈ execF ,S′,Z , where S ′ denotes the simulator SA sending requests to ψ via adversary
[SfI

,D]. Recall that SA′ combines SA and SD. If both executions are distinguishable, an
environment running SA and F could distinguish an execution of ψ and [SfI

,D] from an
execution of [fI ,SD] with G, violating the precondition that fI is an admissible backdoor-tape
filter for (SD, ψ,G).

4.4 Case study: Comparable Constructions and Random Oracles

The goal of composable frameworks is to obtain a library of constructions that are identified by
three elements: assumed functionality, the realized functionality, and the protocol that achieves the
construction. When one tries to achieve a new idealization, then one can safely take the known
constructions from the library, rely on those realized functionalities as setup, being assured that they
can be replaced by their already known implementations at any time. As we showed in this paper,
this idea generally fails for global (hybrid) setups, but is partly restored by the above theorems by
giving conditions on when such a replacement of a global setup is possible.

Still, the following mismatch might occur in such a modular protocol design which motivates
another important aspect of Theorem 4.10. Assume two protocols are proven with respect to
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different global setups, π1 realizes F1 in the GRO setting, and π2, which makes (local) calls to F1
and realizes F2 w.r.t. a GRO that allows the adversary upon request to program random points of
the function table and otherwise is identical to GRO. Therefore, it is hard to obtain a combined
security claim: they assume different global setups and hence F1’s usage in the presence of the
observable RO has never been formally realized. Therefore, applying the UCGS theorem is not
possible and replacing it by π1 must be deemed a heuristic.

However, Theorem 4.10 gives us a tool to figure out whether π2 actually achieves F2 in the
presence of the plain GRO (which in turn would allow us to apply the UCGS composition theorem):
For protocol π2 UC-emulating F2 in the presence of a global RO that supports, say, adversarial
queries I (e.g, including random-points programmability), it is therefore enough to specify the set
I ′ ⊆ I of filter request for which the preconditions of Theorem 4.10 is satisfied. In this case, it
follows that the very same construction can be proven with respect to any stronger version of the
assumed GRO that blocks inputs from any subset of I \ I ′ and hence preserving the queries that
are necessary for this simulator. The reason is that the simulator in the UC-emulation proof of
the construction π2 is agnostic to what happens aside of its filter requests, and this includes the
possibility that no request aside of its filter requests of queries in I ′ are made (and on the other
hand, the protocol in the real world is not disturbed by the exact set of queries since it is proven
w.r.t. the rpGRO).

The final conclusion is that incomparable constructions can become comparable by security
preservation results, such as the one in Theorem 4.10: if I ′ does not contain the programmability
request, then the two protocol π1 and π2 work for the same GRO as established by Theorem 4.10.
Hence, for those two constructions, π2 can replace hybrid F1 by π1, which is then not a heuristic
argument, but a sound composition step backed by the UCGS theorem.

5 Generalization to many Global Subroutines
We now consider protocols that use more than one global setup. Such a situation often appears in
the literature, e.g., when a protocol makes use of a global ledger and a global clock, or a global
PKI and a global random oracle. Formally, such a protocol is subroutine respecting except via calls
to subroutines γi, i ∈ [n]. In this section, we show how to leverage the results from the previous
section to replace one, or several, or all of the global subroutines γi. A bit more formally, we now
assume precondition (1) be as follows:

(1) π UC-emulates F in the presence of global γ1, . . . , γn

Looking ahead, we will have to make some assumptions on the global subroutines γ1, . . . , γn and
the corresponding protocols ψ1, . . . , ψn to realize them. Roughly speaking, ψn will not depend on
any other global subroutine to realize γn, while ψn−1 (and hence also γn−1) is allowed to depend γn
but on no other global subroutine. We will be more formal about how to define “depend” in this
context.

Before formalizing our results, let us describe the idea behind them. Essentially, we will interpret
the setups γ1, . . . , γn as a single global setup γ̂. γ̂ simply runs all γi internally and dispatches
messages correspondingly. For this single global setup γ̂, we can interpret precondition (1) above as
precondition (1) from the previous section with single setup γ̂, and apply the replacement theorems
from the previous section. The only open question is: which protocol realizes the single global setup
γ̂? Note that this emulation is needed to replace precondition (2) in Section 4.1. So let ψ1, . . . , ψn
denote the protocols we want to replace the global subroutines with, i.e., ψi UC-emulates γi for all
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i. We show that, under the condition that all setups form a hierarchy regarding who gives input to
whom, ψ̂ UC-emulates γ̂.

We first state a general program structure:

Definition 5.1 (Merging subroutines.). Let ρ̂ρ1,...,ρn := [ρ1, . . . , ρn] be a program that accepts
inputs of the form (query, sid, i, x) and invokes subroutine ρi with input x, all with respect to the
same session sid.

In UC, we must ensure that this simple program structure can be made a compliant protocol
(and subroutine exposing) as we are going to replace its subroutines later. For two protocols γi, ψi,
the above program becomes (ψi, γi, ξ) compliant if it never relays inputs not satisfying the bound ξ
by its caller. The remaining, more technical conditions for compliance can be trivially satisfied. In
order not to overload notation, we assume such a predicate is known and enforced by ρ̂ρ1,...,ρn . 8

We identify UC-realization with multiple setups with the single global subroutine case as follows:

Definition 5.2 (UC emulation with multiple global setups). Let π, φ and γ1, . . . , γn be protocols.
We say that π ξ-UC-emulates φ in the presence of global subroutines γ1, . . . , γn if protocols π and
φ are formulated with respect to a global subroutine γ̂γ1,...,γn and M[π, γ̂γ1,...,γn ] ξ-UC-emulates
protocol M[φ, γ̂γ1,...,γn ].

Note that the overlay we define is just a dispatching service. Hence, a protocol designer might
still define π in the way of having π directly access each γi. This transition is straightforward.9

We hence obtained a reduction between the single global-subroutine world and the multiple
global-subroutine world.
Remark. The following theorem makes the hierarchy idea formal that we discussed at the onset
of this section. In order to express that γi does not depend on other subroutines γj , j < i we use
the concept of regularity to ensure that γi does only invoke global subroutines that presumably
already have been replaced (by condition 1. below, only the γi’s and no other protocol can be seen
as global). This facilitates that for any subroutine γi we can make use of precondition 3. that ψi
realizes γi in the presence of global subroutines γj , j < i, and be sure this is independent of what is
yet to be replaced later. This gives a sound order of replacements.

Theorem 5.3 (Reduction Theorem). Let γ1, . . . , γn and ψ1, . . . , ψn be protocols. ψ̂ψ1,...,ψn UC-
emulates γ̂γ1,...,γn if for each protocol ρi ∈ {γi, ψi} the following conditions hold:

1. ρi, when i < n, is subroutine respecting except for calls to γi+1, . . . , γn. ρn is subroutine
respecting. All ρi are subroutine exposing.

2. ρi, when i > 1, is γj-regular and ψj-regular for all j ∈ {1, . . . , i− 1}.

3. ψi ξ-UC-emulates γi, for i < n, in the presence of global subroutines γi+1, . . . , γn. And ψn
UC-emulates γn.

Proof. We again use the transitivity of indistinguishability of ensembles. The sequence of hybrid
worlds that are needed to conclude are depicted below for the case of three global subroutines.

8The remaining conditions are technicalities such as setting the forced-write flag and not calling ψi and γi with the
same session sid which obviously can be satisfied. For the UCGS theorem, this protocol is compliant if it additionally
never invokes a model element, which is obvious.

9Whether the transition is also trivial is a different question. In frameworks that have a complex runtime
structure, introducing such an intermediate dispatching machine might be costly and would require π to request more
runtime-resources. In UC, this would cost k import more for π, where k denotes a security parameter.
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Each step is characterized by two elements: a single context protocol µi, and the number i which
protocol is to be replaced. Let µi := [ψ1, . . . , ψi, γi+1, . . . , γn], i = 1, . . . , n and µ0 := γ̂γ1,...,γn . We
start with µn := ψ̂ψ1,...,ψn .

Step 1: In the context protocol µn−1 we perform the replacement µγn→ψn
n−1 , resulting in µn. By

the Theorem’s precondition, we can invoke the UC composition theorem, since γn and ψn
are subroutine respecting and subroutine exposing and µn is compliant. Therefore, the UC
composition theorem implies execµn,D,Z ≈ execµn−1,Sn,Z .

Step 2 ≤ i ≤ n: starting with context protocol µn−i we replace µγn→ψn
n−i which results in µn−i+1.

For this step, we can invoke the UCGS theorem since the preconditions of the UCGS theorem
are satisfied: γi resp. ψi can be treated as protocols that are subroutine respecting except with
calls to γi+1, . . . , γn and hence Definition 5.2 applies. Furthermore, all protocols are subroutine
exposing, and formally, the “global setup” of this construction, i.e., the subsystem consisting of
γi+1, . . . , γn, is γi- and ψi-regular as demanded by the precondition, i.e., they never send input
to any of the subroutine prior to i that have not yet been replaced. Hence, the UCGS theorem
yields that µn−i UC-emulates µn−i+1 and in other words, execµn−i+1,A,Z ≈ execµn−i,Sn−i+1,Z .

The final step follows by applying transitivity to obtain the final simulator Sfin for the overall
construction. Since we started with the dummy real-world adversary for ψ̂ψ1,...,ψn this formally
yields a simulator for the dummy adversary that proves exec

ψ̂,D,Z ≈ execγ̂,SDfin,Z
.

We now set ψ := ψ̂ψ1,...,ψn , G := γ̂γ1,...,γn and SD := SDfin in precondition (2) in Section 4.1.
This yields a precondition that lets us replace all global subroutines using the various replacement
theorems from the previous section.
Remark. In some situations, we might want to replace only one global subroutine but not all of
them. As an example, consider a protocol accessing a global PKI functionality γ1, which in turn
uses a global RO γ2. In an instantiation, the global PKI is likely replaced by an interactive protocol
ψ1 (potentially involving a certificate authority, but still using the global RO). To ensure that the
protocol’s security proof remains valid under this replacement, we need to replace only γ1 but not γ2.
However, due to the fact that every protocol trivially UC-emulates itself, we can apply Theorem 5.3
with ψ2 := γ2, which will leave the global RO as a proof element.
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Appendix

A Examples Illustrating Impossibilities
We sketch two artificial but technically easy examples that show that security statements can indeed
fail completely, once a global setup is replaced by another one that UC-emulates it. Here, we replace
the global setup by a stronger variant to achieve the contradiction. In the first example, we show
that the commitment problem [Nie02] can occur all of a sudden, and in the second one, we illustrate
how security guarantees can be blurred when exploiting adversarial capabilities of the global setup.

A.1 Global Repository and PKE

Consider the following communication protocol π with sender S that assumes access to a global
repository. S first generates a key pair (pk, sk) and sends pk to the repository. It then takes any
input message m and pushes an encryption c := Encpk(m) to the global repository and additionally
sends c on the network to, say, a list of receiving parties. It also internally stores m and returns the
activation to the caller. We point out that we assume here an ordinary encryption scheme. Assume
that the global repository records (S, x) if sender S provides input x and allows the adversary
to read out any recorded pair. We point out that such a functionality is essentially realized by
authenticated broadcast.

The ideal functionality FS this protocol realizes is clearly the following: FS takes input m from
S and asks the simulator for a public key pk (and never leaks m). Upon receiving pk, FS encrypts
m and provides the ciphertext as input to the repository in the name of S10. To prove that the
protocol realizes FS , we have to come up with a proper simulator. This is easy: the simulator
simulates a public-private key pair, provide FS with the public key, and simply take the ciphertext
that the functionality pushed to the repository to simulate the ciphertext on the network.

Now, assume we replace this repository by a stronger one that works identically except that the
adversary only receives the length |x| when reading any of the sender’s records. This corresponds
to encrypted broadcast to a list of honest receivers. One would now assume that working with a
stronger repository, i.e., using encrypted broadcast rather than authenticated, is better for everyone.
However, this is not the case. This change does not only make the above simulation strategy
impossible, but in fact, no simulator exists to prove that π realizes FS unless we change the protocol
(e.g, by forcing it to use a non-committing encryption scheme): no simulator has access to the
ciphertext and hence a good simulator must simulate a ciphertext without knowing the underlying
message m and the simulation is trapped in the commitment problem [Nie02]. The environment can
now perform the standard trick: after seeing the ciphertext on the network (either real or simulated),
the distinguisher can afterwards instruct the (dummy) adversary to corrupt the sender S and check
that the ciphertext contains the right message. Ordinary encryption schemes do with substantial
probability not allow to simulate this situation correctly and therefore no simulator exists if π is
run with the stronger repository (or when using encrypted broadcast).

A.2 A Global Ledger with Adversarial Reordering

Assume a simple protocol φ for some party P that works as follows: it expects as input transactions
of a certain type. Before submitting them to a global transaction ledger, φ orders the transactions
according to size and submits this list to the ledger. Assume that the ledger is a transaction ledger

10We refer to [BCH+20] for a definition of this
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similar to the one in [BMTZ17] that allows the adversary to re-order transactions before a block is
formed and added to the immutable ledger state.

The ideal functionality Fφ that this protocol realizes can be the following: it takes as input
the list of transactions provided by P , and orders them differently, say according to lexicographic
order, and submits this list to the global transaction ledger. This is of course weird, but possible to
simulate: to prove this construction, we observe that the simulator has the freedom to reorder freely
and chooses the ordering that equals the one induced by the actions of the real-world adversary,
which even yields a perfect simulation!

Now assume we use a stronger transaction ledger that does not allow to reorder the transaction
list in the ledger and hence makes the adversarial capabilities less powerful. However, since no
simulator can now change the order, the order of transactions in the transaction ledger directly
signals to the environment, whether it interacts with the ideal world (lexicographic order) or the
real world (size). Therefore, using a stronger ledger (which UC-realizes the weaker one) renders
the construction invalid: no simulator will exist. The point here is that every simulator must
crucially carry out a reordering attack and that there is no other strategy to rectify the ideal world if
re-ordering is impossible. This shows how usage of a global ideal ledger can create false impressions
of security, since Fφ is impossible to realize w.r.t any real transaction ledger protocol which disallows
arbitrary reordering.

B Overview of the UC Framework
This section gives a summary of the main concepts of the UC framework by Canetti [Can01]. Since
its introduction in 2001, the UC framework has undergone a sequence of versions, and this work
is based on the UC version of 2020 as specified in [Can20], which for compactness, we refer to as
UC 2020 in this work. While we assume some familiarity with the general concepts of universal
composition, we introduce the definitions used in this work for the sake of self-containment and,
along the way, point out some of the key differences of UC 2020 with the previous versions of the
framework.

To give the reader an overview which notions she should be familiar with, and to provide a
glossary of terms for conveniently accessing them, we list the notions and results from UC 2020 that
are restated in this section:

Def. B.1: ITI configuration, extended identity Def. B.7: Structured protocol

Def. B.2: External-write request Def. B.8: Subroutine-exposing protocol

Def. B.3: Identity-bound environment Def. B.10: UC Emulation

Def. B.5: Compliant protocol Def. B.11: UC Operator

Def. B.6: Subroutine-respecting protocol Thm. B.12: UC Composition Theorem

B.1 Basics

The UC framework aims to capture what it means for a protocol to securely carry out a task and to
guarantee this statement in any context in which the protocol is used. To achieve this, UC defines
the real process of executing a protocol in some environment and in the presence of an adversary.
Along the same lines, an ideal process is defined to capture what the protocol should achieve. A
security proof consists of showing that no (efficient) environment can distinguish the real process
and the ideal process. The core defining element of the ideal process is the ideal functionality
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that specifies what guarantee each party obtains from the protocol. If a protocol execution is
indistinguishable from its ideal process, then we say that the protocol UC-emulates the ideal process.

Protocol and protocol instances. A protocol π is an algorithm for a distributed system and is
formalized as an interactive Turing machine (ITM). An ITM has several tapes; the basic tapes are
the identity tape (read-only), an activation tape (to encode whether this ITM is active) and the
outgoing message tape that is used to store external-write requests (these are instructions to allow
a program to give input to another program).

An ITM has three externally writable tapes for holding information that is considered as input
from other programs. The input tape intuitively holds the information from the calling program
and the subroutine-output tape holds return values from called programs. Last but not least, there
is the backdoor tape which formalizes the interaction of an ITM, e.g., a functionality, with the
adversary. The backdoor tape is also used by the adversary to send corruption messages to parties
to take control over them. (In earlier versions of the UC framework the backdoor tapes were called
the communication tapes; however they functioned in the same way.)

While an ITM is a static object, UC defines the notion of an ITM instance (denoted ITI), which
is defined as the pair M = (µ, id), where µ is the description of an ITM and id = (sid||pid) is its
identity, consisting of a session identifier sid and a party identifier pid. Each instance is associated
with a Turing machine configuration, which is as usual the contents of all of its tapes and positions
of its heads, and the state of the Turing machine. The identity tape of ITI M contains an encoding
of M = (µ, id). An instance of a protocol µ, also called a session (of the protocol), with respect
to a session identifier sid, is defined as a set of ITIs (µ, id1), (µ, id2), . . . with idi = sid||pidi. Each
such ITI in a given protocol instance is called a party or main party of that instance. The extended
instance s of protocol µ is then the transitive closure of machines spawned as a consequence of
running µ, i.e., each newly invoked ITI M becomes part of the extended instance if (a) M is a main
party of this instance, or (b) M is a subroutine of an ITI that is already in the extended instance,
or (c) M was invoked by an ITI that is already a sub-party of this extended instance. An ITI is a
sub-party of an extended instance if it is in the extended instance but is not a main party of the
instance.11

Executions. An execution of a system of ITMs is formally a pair (I, C), where I is the initial
ITM and C is the control function. The initial configuration of I (which has identity 0) is the first
ITI that gets activated by definition. Using the external-write mechanism, any ITI can pass input
to another ITI. (If the target ITI does not yet exist, a new instance is spawned using the code and
identity specified in the request.) An external-write request specifies, amongst other elements, the
message as well as source and destination ITI, including whether this is a subroutine output or
an input to the destination ITI. The control function is responsible for writing the message (and
possibly the identity of the source ITI) on the respective tape of the destination ITI. The control
function also defines which ITI is activated next; typically, the destination ITI of the last processed
external write request is activated next. An execution consists of a sequence of activations. An
activated ITI can change its configuration according to the rules of its code. An activation ends by
issuing one external-write request (in case an ITI halts without issuing an external-write request,
the initial ITI is activated). The control function guarantees that all invoked ITIs have unique
values on their identity tapes, i.e., there are never two ITIs with identical pairs (µ, id) with code µ
and identity id.

11The extended session includes the transitive closure of the invocation relation when viewed as rooted at the main
ITIs of the instance and disregarding invocations made by the main ITIs via their subroutine output tapes.

30



Execution of a protocol, adversary, and corruption models. In the context of executing
a protocol, say π, the above general idea of an execution is instantiated by having the initial ITI
be called the environment and defining a specific control function [Can20] to capture a meaningful
notion of execution of a protocol: the environment is allowed to only spawn one session of π, i.e.,
only issue external-write requests that specify a destination ITI with code π and all having the
same session identifier. In UC 2020, one can further specify which identities an environment can
set as source identities in an input to the protocol. This mechanism can be used to model flexible
context restrictions. Note that prior to UC 2020, all source identities except for those that share
the session identifier with the test session π were allowed.

Additionally, the environment is allowed to invoke an adversary. Within this execution, the
adversary, typically denoted by A, is simply another ITI just with the special identity (⊥,⊥) on
its identity tape. The adversary can communicate with other ITIs by writing (only) on their
respective backdoor tapes. This tape can therefore be used to model security properties provided by
functionalities (e.g., a secure channel could leak the length of the message via the backdoor tape).
The backdoor tapes are also used to model party corruption: The adversary can, at any time, issue
special corruption messages in order to corrupt ITIs. The exact model of corruption—passive/active,
static/adaptive—is specified by how ITIs react to these messages on the backdoor tape. The plain
UC model does not prescribe or require any specific corruption model. It is instructive to keep in
mind the standard interpretation: when an ITI gets corrupted, it tells the adversary the contents
of all tapes, inform the adversary upon any input, and allow the adversary to decide on the next
output (in the name of this ITI). This corruption dynamics corresponds to active and adaptive. By
default, ideal functionalities cannot be corrupted.

Compared to its previous versions, the UC model does not include a built-in form of communica-
tion. If one wants to model potentially insecure communication within a protocol, such as messages
sent between different protocol parties (in the sense that an adversary could interrupt, read, and
modify the message), then one should specify a channel functionality that the parties use for this
communication.

UC emulation. The concept of emulation induces a relation among protocols. Intuitively, a
protocol π UC-emulates another protocol φ if for any adversary A against π there is another
adversary S against φ such that no (efficient) environment can tell, from the observed input-output
behavior, whether it is running with π and A or with φ and S. This indicates that any attack on π
can be translated to attacks on φ, and thus, π does not admit more attacks than φ.

The typical incarnation of this notion is when φ is an ideal protocol: More specifically, the
ideal protocol is formulated with respect to an ITM F which is called an ideal functionality and
captures “a trusted third party” implementing a protocol task. In the ideal process, the environment
Z interacts with an ideal-world adversary (simulator) S and a set of trivial, i.e., dummy ITIs
representing the protocol machines that only relay inputs to the functionality and forward the
outputs. These dummy ITIs are the “access points” of a calling program; they give the environment
the impression of interacting with structured protocol ITIs of a party and not an ideal functionality.
(The dummy protocol for ideal functionality F is denoted as idealF .) F has to specify all outputs
generated for each party, and the amount of information the ideal-world adversary learns (via
the backdoor tape) and what its active influence is via its interaction with F . Functionalities
directly handle the corruption requests by an adversary via the backdoor tape in UC 2020 (and can
adjust their behavior based on this information). Note that one always assumes that a corruption
mechanism exposes towards the environment enough information about who is corrupted to enforce
that the real and ideal world adversaries corrupt, for example, the same parties—identified by the
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party identifier. If a protocol π UC emulates the ideal process with F , then one says that π securely
realizes F .

B.2 Technical Definitions

We now state the formal definitions from [Can20] that are used in this work.

B.2.1 Executions

We state the definition of ITI configuration and the extended identity of an ITI.

Definition B.1 (ITI configuration, extended identity). Let M denote an instance of an ITM µ,
i.e., the pair M = (µ, id), where id = sid||pid is an identity string consisting of two parts. A Turing
machine configuration of µ is a configuration of an ITI M if the contents of the identity tape
contains M—which is henceforth referred to as the extended identity eid = M . Let further an
activation of an ITI M refer to a sequence of configurations of M , i.e., state transitions that follow
the rules described by µ starting from an active configuration of M until an inactive configuration
is reached in which case the ITI waits for the next activation.

ITIs can write to each other’s writable tapes via external-write requests that are interpreted by
the control function that “delivers” the message.

Definition B.2 (External-write request). An external-write request is a message written by an ITI
onto its outgoing message tape. It must have the format (f, eiddest , t, r, eidsrc,m). In this vector,
eiddest = (πdest , siddest‖piddest) is the destination ITI with target code π and target session identifier
siddest , and t ∈ {input, subroutine-output, backdoor} is the tape that message m shall be written to.
If the reveal-sender flag r is set, then eidsrc is written on t as well. Finally, the forced-write mode
f = 1 indicates that if ITI eiddest does not exist yet, then one is created in its initial configuration.

The UC control function requires that the field eidsrc in the external write request match the
contents of the identity tape of the ITI creating the request, unless the initial ITI with identity 0 is
creating the request.

When the environment Z provides input to an ITI in the system, it can choose an arbitrary
value for the source identifier eidsrc it uses in the external-write request. We refer to the source
identifiers chosen by the environment in a particular execution as external identities. The latest
revision of the UC paper [Can20] specifies a method to restrict the external identities that the
environment is allowed to choose in an execution, based on a predicate ξ. Predicate ξ is evaluated
on the complete view of the environment, namely all inputs and outputs the environment provides
to or obtains from other ITIs in the system. One natural predicate is the one that disallows Z to
use as external identity the extended identity of any ITI that it provides input to in the system.
Other choices of predicates may be helpful in various scenarios.

Of course, the more relaxed the predicate ξ, the more general the security statement. More
restrictive predicates in turn lead to more restrictions on the contexts in which the protocols proved
secure with respect to those predicates can be executed.

Definition B.3 (Identity-bounded environment). Let ξ be a predicate on the view of an environment.
A ξ-identity-bounded environment is an environment Z that only claims external identities eid (as
the source of an input to an ITI eid′) such that the predicate ξ on the view of each execution of Z
evaluates to 1. ξ is then also called the identity bound.
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It is often handy and realistic to assume that the universe of identity bounds has the property
that if one proves an UC-emulation statement with no restriction, then this implies the same UC-
emulation statement with respect to any more restrictive predicate ξ in the universe of predicates,
more precisely:

Definition B.4 (Special class of identity-bound predicates.). The class Ξ of ξ-identity-bounded
environments for predicates ξ are defined on the sequence of values appearing on the outgoing
message tape and the subroutine output tape of the initial ITI Z (instead of the entire view of each
execution of Z).

The definition of run-time changed significantly in recent versions of the UC framework (see
[Can20], Section 3.2, for the most recent definition). Each message sent between ITIs contains an
explicit field called import, which encodes a natural number. The number of computation steps
performed by an ITI must be, at any point in time, bounded by a polynomial in the accumulated
import received by the ITI minus the accumulated import sent by this ITI. In a system of ITMs
that is parameterized by k ∈ N, each ITI only starts executing after it received import at least k.

B.2.2 Protocol Properties

The composition theorem makes certain preconditions on the protocol it applies to. We start by
introducing some nomenclature from [Can20]. In a given execution that includes two ITIs M and
M ′, ITI M ′ is a subroutine of M if M has passed input to M ′ or M ′ passed subroutine output to M .
ITI M ′ is a subsidiary of M if it is a subroutine of M or a subroutine of another subsidiary of M .

For the composition theorem to work, the parent protocol (often called ρ) must adhere to certain
restrictions. For instance, ρ should not call both π and φ with the same session identifier: this
would clearly make ρ and ρφ→π distinguishable, since the latter protocol would then only invoke one
instance of π (this follows from the uniqueness requirement on extended identities in an execution
of ITIs). Also, if there exists an identity-bound ξ on the environment when proving a protocol, say
π secure, then any protocol using π must use it in the way allowed by ξ.

The following condition, which in this form was introduced in UC 2020, formalizes a restriction
to prevent such cases together with restrictions that ensure that the input-output communication
between different ITIs is trustworthy:

Definition B.5 (Compliant protocols [Can20]). Let ρ, π, and φ be protocols, and let ξ be a
predicate on extended identities. Protocol ρ is called (π, φ, ξ)−compliant if the following holds in
any execution with a (potentially ξ-identity-bounded) environment:

1. All external-writes made by parties and sub-parties of ρ, where the target tape is the input
tape, use the forced-write mode as in Definition B.2. Similarly, all messages received on
the subroutine-output tapes of these ITIs are expected to have reveal-sender-id flag on; other
subroutine-outputs are rejected.

2. No two external-write instructions, out of all external-write instructions made by the members
of an extended instance of ρ, where one instruction has target code π, and the other instruction
has target code φ, have the same target session identifier.

3. The extended identities of all the ITIs in any extended instance of ρ (in any execution) that
pass inputs to ITIs with code either π or φ satisfy the predicate ξ (based on the view of the
interaction with those subroutines with code either π or φ).
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Composition has a further precondition that is referred to as subroutine respecting. On a high
level, this condition means that all sub-protocols of a protocol π receive all their inputs and provide
all their outputs through π. This condition is a natural requirement for composition: if sub-protocols
of π interacted with protocols outside of π, then the ideal protocol φ that is to be realized by π
would have to resemble the same structure. Subroutine respecting is the requirement that these
inner workings of the protocols remain hidden from the outside.

Definition B.6 (Subroutine respecting [Can20]). Protocol π is subroutine respecting if each session
s of π, occurring within an execution of any protocol with any environment satisfies the following
four requirements, in any execution of any protocol ρ with any adversary and environment (as per
the definition of protocol execution; it is stressed that these requirements must be satisfied even
when session s of π is a subroutine of ρ, and in particular when the execution involves ITIs which
are not members of that extended session s):

1. The sub-parties of session s reject all inputs passed from an ITI which is not already a main
party or subsidiary of session s (note that rejecting a message means that the recipient ITI
returns to its state prior to receiving the message and ends the activation without sending any
message; see [Can20, Section 3.1.2]).

2. The main parties and sub-parties of session s reject all incoming subroutine outputs passed
from an ITI which is not already a main party or subsidiary of session s.

3. No sub-party of session s passes subroutine output to an existing ITI that is not already a
main party or sub-party of session s.

4. No main party or sub-party of session s passes input to an existing ITI that is not already a
main party or sub-party of session s.

A protocol ρ making calls to a subroutine π can be subroutine respecting even if π is not.
Consider a case where ρ provides input to subroutines of π, which means that π is not subroutine
respecting. At the same time, protocol π and all of its subroutines ignore all inputs from protocols
outside of the session of ρ and also do not provide subroutine output to any protocol outside of ρ.

It is convenient to consider protocols that consist of two parts: a shell part that takes care of
model functionality such as corruption or subroutine replacement, and a body part that encodes the
actual cryptographic protocol. One advantage of this modeling is that the body is not cluttered
with model formalism such as addressing and communication mechanisms. Furthermore, different
corruption models can be formalized by using different shells, while leaving the body with the core
protocol untouched. It is important to note that the shell mechanism lies at the core of many
important definitions in [Can20] and that a protocol body can again consist of a protocol (consisting
of shell and body) which yields a sequence of shells (with a clear distinction into inner shells and
outer shells). This hierarchy of shells is quite vital to many definitions in UC (for example, the shell
introduced by the UC operator is outer to the corruption shell and hence the corruption model does
not interfere with the subroutine replacement mechanism). We refer the reader to [Can20, Section
5.1] for further details.

A protocol that follows this structure is called a structured protocol.

Definition B.7 (Structured protocol [Can20]). A structured protocol12 consists of a shell and a
body. The shell can read and modify the state of the body, but the body does not have access to
the state of the shell. An activation of a structured protocol starts by running the shell, which may

12This property was called compliant in previous versions of UC.
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(or may not) execute the body sub-process. In case the body executes, it keeps executing until it
reaches a special “end of activation state”, at which point the shell resumes executing. The body
may prepare all the information necessary for executing an external-write operation, but it may not
execute this operation. Only the shell executes external-write instructions.

In the model of execution described above, parties of a protocol can generate subroutines with
arbitrary codes and identities. Upon the first external-write request to an extended identity, the ITI
with that identity is created and will start following its instructions. One effect of this modeling
is that the adversary is not necessarily aware of all subroutines that exist in the system as, for
instance, session identities may be chosen at random. This is usually undesired, as it renders those
subroutines effectively incorruptible. This undesired effect is countered in UC 2020 by the definition
of subroutine exposing, in which specific ITIs that are readable by the adversary hold a directory of
all existing members of an extended instance. We give here a direct constructive definition of this
property as it is sufficient to follow this work and refer to [Can20] for a deeper discussion on the
subroutine-exposure property.

Definition B.8 (Exposure mechanism of subroutines). A protocol π implements the subroutine
exposing mechanism if for each instance s of π there exists a special directory ITI with identity
tape (π, s||>) that contains the list of the extended identities of all parties and sub-parties of this
(extended) instance of π, and returns this list to the adversary upon request. More precisely, this
list is a sequence of eid’s ordered according to invocation. Each ITI that is a main- or sub-party of
this instance notifies the directory ITI of its extended identity immediately upon its invocation,
and also of each newly invoked ITI before invoking it. When notified by an ITI M that it has been
invoked, the directory ITI adds M to its database if M is a main party of session s, or if some ITI
already in the database invoked it.

B.2.3 Emulation and Composition

We are now ready to state the UC security definition—which is protocol emulation—the composition
operation, and finally the composition theorem. The security notion targets computational security
and is based on the computational indistinguishability of random variables.

The output of the execution of protocol π in presence of adversary A and in environment Z
is the output of Z, which we assume to be a binary value v ∈ {0, 1}. We denote this output by
execπ,A,Z(k, z, r) where k is the security parameter, z ∈ {0, 1}∗ is the input to the environment, and
randomness r for the entire experiment. Let execπ,A,Z(k, z) denote the random variable obtained by
choosing the randomness r uniformly at random and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z
denote the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Definition B.9. Denote by X = {X(k, z)}k∈N,z∈{0,1}∗ and Y = {Y (k, z)}k∈N,z∈{0,1}∗ two distribu-
tion ensembles over {0, 1}. We say that X and Y are (computationally) indistinguishable if for any
c, d ∈ N there exists a k0 ∈ N such that |Pr[X(k, z) = 1] − Pr[Y (k, z) = 1] | < k−c for all k > k0
and all z ∈

⋃
κ≤kd{0, 1}κ. We use the shorthand notation X ≈ Y to denote two indistinguishable

ensembles.

UC-realization. The UC security definition is stated in terms of emulation of protocols. Intu-
itively, a protocol π emulates another protocol φ if π is at least as secure as φ. This is formalized
following the simulation paradigm [GMR85], by showing that for every adversary A against π there
exists an ideal adversary (or simulator) S against φ that emulates A’s attack. The additional
strength of UC comes from the requirement that the statement hold true in presence of every
environment Z.
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Definition B.10. Let n ∈ N, Let π and φ be subroutine respecting protocols. We say that π
UC-emulates φ if for any (efficient) adversary A there exists an (efficient) ideal-world adversary
(the simulator) S such that for every (efficient and balanced13) environment Z it holds that
execπ,A,Z ≈ execφ,S,Z . If Z is ξ-identity-bounded then we say π ξ-UC-emulates φ.

Composition. Let π be a protocol that presumably UC-emulates another protocol φ. The
composition operation in UC is then defined as replacing, in a given protocol ρ, all subroutine calls
to protocols with code φ by subroutine calls to protocols with code π. The underlying idea here is
that one designs protocol ρ with an idealized, simple and abstract protocol φ in mind, and later
realizes φ with the concrete protocol π.

We first state the definition of the UC operator that formalizes the operation on protocols
described above [Can20].

Definition B.11 (UC Operator). The UC-operator is a transformation denoted by

ρφ→π := UC(ρ, π, φ)

and maps a (context) protocol ρ, which presumably makes subroutine calls to φ, to a (context)
protocol ρφ→π that makes subroutine calls (i.e., provides input) to π whenever ρ (or a sub-party of
an extended instance of ρ) makes a call to φ (more precisely, gives input to any top-level instance of
φ in an extended instance of ρ). For the technical definition, we refer to [Can20, Section 6.1].

It is important to note that the UC-operator replaces φ by π in a code-oblivious fashion, meaning
that the transformed protocol has only a different input-output behavior due to the fact that π and φ
might have a different behavior, and not by the fact that the source eid on the subroutine-output tape
denotes π instead of φ. The technical definition in [Can20] basically rewrites the shell instructions
of the context protocol to ensure a proper replacement (and is overall similar to the approach taken
in this paper).

We are finally ready to state the composition theorem. It basically states that if protocol π
emulates protocol φ, then protocol ρφ→π emulates protocol ρ, for any protocol ρ fulfilling certain
preconditions.

Theorem B.12 (UC Theorem). Let ρ, π, φ be protocols and let ξ be a predicate on extended
identities, such that ρ is (π, φ, ξ)-compliant, both φ and π are subroutine exposing and subroutine
respecting, and π UC-emulates φ with respect to ξ-identity-bounded environments. Then ρφ→π

UC-emulates protocol ρ.

13An environment is balanced if it, intuitively speaking, allocates to the adversary at least as much runtime as it
allocates to the honest parties. As this notion is not crucial for this work, we refer to [Can20] for details.
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