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Abstract. Vector commitments with subvector openings (SVC) [Lai-Malavolta, Boneh-Bunz-Fisch;
CRYPTO’19] allow one to open a committed vector at a set of positions with an opening of size
independent of both the vector’s length and the number of opened positions.

We continue the study of SVC with two goals in mind: improving their efficiency and making them more
suitable to decentralized settings. We address both problems by proposing a new notion for VC that
we call incremental aggregation and that allows one to merge openings in a succinct way an unbounded
number of times. This property leads to faster generation of openings via preprocessing and a method
to generate openings in a distributed way.

We then proceed to realize SVC with incremental aggregation. We provide two constructions in groups
of unknown order. The first one, similarly to that of Boneh et al. (which supports only one-hop ag-
gregation), has constant-size public parameters, commitments and openings. As an additional feature
for this construction we propose efficient arguments of knowledge of subvector openings which imme-
diately yields a keyless proof of storage with compact proofs. For our second construction, we propose
an incremental aggregation method for the SVC of Lai-Malavolta; this has linear-size parameters but
faster openings.

Finally, we address a problem closely related to that of SVC: storing a file efficiently in completely
decentralized networks. We introduce and construct verifiable decentralized storage (VDS), a crypto-
graphic primitive that allows to check the integrity of a file stored by a network of nodes in a distributed
and decentralized way. Our VDS constructions rely on our new vector commitment techniques.

1 Introduction

Commitment schemes are one of the most fundamental cryptographic primitives. They can be seen
as the digital equivalent of a sealed envelop: committing to a message m is akin to putting m in the
envelop; opening the commitment is like opening the envelop and revealing the value inside. They
have two basic properties. Hiding guarantees that a commitment reveals no information about the
underlying message. Binding instead ensures that one cannot change its mind about the committed
message; namely, it is not possible to open a commitment to two distinct values m 6= m′.

Vector commitments (VC) [LY10, CF13] are a special class of commitment schemes in which
one can commit to a vector v of length n and to later open the commitment at any position i ∈ [n].
The distinguishing feature of VCs is that both the commitment and an opening for a position i
have size independent of n. In terms of security, VCs should be position binding, i.e., one cannot
open a commitment at position i to two distinct values vi 6= v′i.

VCs were formalized by Catalano and Fiore [CF13] who also proposed two constructions based
on the CDH assumption in bilinear groups and the RSA assumption respectively. Both schemes
have constant-size commitments and openings but suffer from large public parameters that are



O(n2) and O(n) for the CDH- and RSA-based scheme respectively. Noteworthy is that Merkle
trees [Mer88] are VCs with O(log n)-size openings.

Two recent works [BBF19, LM19] proposed new constructions of vector commitments that en-
joy a new property called subvector openings (also called batch openings in [BBF19]). A VC with
subvector openings (called SVC, for short) allows one to open a commitment at a collection of posi-
tions I = {i1, . . . , im} with a constant-size proof, namely of size independent of the vector’s length
n and the subvector length m. This property has been shown useful for reducing communication
complexity in several applications, such as PCP/IOP-based succinct arguments [LM19, BBF19]
and keyless Proofs of Retrievability (PoR) [Fis18].

In this work we continue the study of VCs with subvector openings with two main goals: (1)
improving their efficiency, and (2) enabling their use in decentralized systems.

With respect to efficiency, although the most attractive feature of SVCs is the constant size
of their opening proofs, a drawback of all constructions is that generating each opening takes at
least time O(n) (i.e., as much as committing). This is costly and may harm the use of SVCs in
applications such as the ones mentioned above.

When it comes to decentralization, VCs have been proposed as a solution for integrity of a
distributed ledger (e.g., blockchains in the account model [BBF19]): the commitment is a succinct
representation of the ledger, and a user responsible for the i-th entry can hold the corresponding
opening and use it to prove validity of vi. In this case, though, it is not obvious how to create a
succinct subvector opening for, say, m positions held by different users each responsible only of its
own position/s in the vector. We elaborate more on the motivation around this problem in Section
1.2.

1.1 A new notion for SVCs: incremental aggregation

To address these concerns, we define and investigate a new property of vector commitments with
subvector openings called incremental aggregation. In a nutshell, aggregation means that different
subvector openings (say, for sets of positions I and J) can be merged together into a single concise
(i.e., constant-size) opening (for positions I∪J). This operation must be doable without knowing the
entire committed vector. Moreover, aggregation is incremental if aggregated proofs can be further
aggregated (e.g., two openings for I ∪ J and K can be merged into one for I ∪ J ∪K, and so on
an unbounded number of times) and disaggregated (i.e., given an opening for set I one can create
one for any K ⊂ I).

While a form of aggregation is already present in the VC of Boneh et al. [BBF19], in [BBF19]
this can be performed only once. In contrast, we define (and construct) the first VC schemes where
openings can be aggregated an unbounded number of times. This incremental property is key to
address efficiency and decentralized applications of SVCs, as we detail below.

Incremental aggregation for efficiency. To overcome the barrier of generating each opening in
linear time4 Oλ(n), we propose an alternative preprocessing-based method. The idea is to precom-
pute at commitment time an auxiliary information consisting of n/B openings, one for each batch
of B positions of the vector. Next, to generate an opening for an arbitrary subset of m positions, one
uses incremental aggregation in order to disaggregate the relevant subsets of precomputed openings,
and then further aggregate for the m positions. Concretely, with this method, in our construction

4 We use the notation Oλ(·) to include the factor depending on the security parameter λ. Writing “Oλ(t)” essentially
means “O(t) cryptographic operations”.
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we can do the preprocessing in time Oλ(n log n) and generate an opening for m positions in time
roughly Oλ(mB log n).

With the VC of [BBF19], a limited version of this approach is also viable: one precomputes an
opening for each bit of the vector in Oλ(n log n) time; and then, at opening time, one uses their one-
hop aggregation to aggregate relevant openings in time roughly Oλ(m log n). This however comes
with a huge drawback: one must store one opening (of size p(λ) = poly(λ) where λ is the security
parameter) for every bit of the vector, which causes a prohibitive storage overhead, i.e., p(λ) · n
bits in addition to storing the vector v itself.

With incremental aggregation, we can instead tune the chunk size B to obtain flexible time-
memory tradeoffs. For example, withB =

√
n one can use p(λ)

√
n bits of storage to getOλ(m

√
n log n)

opening time. Or, by setting B = p(λ) as the size of one opening, we can obtain a storage overhead
of exactly n bits and opening time Oλ(m log n).

Incremental aggregation for decentralization. Essentially, by its definition, incremental aggre-
gation enables generating subvector openings in a distributed fashion. Namely, consider a scenario
where different parties each hold an opening of some subvector; using aggregation they can create
an opening for the union of their subvectors, moreover the incremental property allows them to
perform this operation in a non-coordinated and asynchronous manner, i.e. without the need of
a central aggregator. We found this application of incrementally aggregatable SVCs to decentral-
ized systems worth exploring in more detail. To fully address this application, we propose a new
cryptographic primitive called verifiable decentralized storage which we discuss in Section 1.2.

Constructing VCs with incremental aggregation. Turning to realizing SVC schemes with our
new incremental aggregation property, we propose two SVC constructions that work in hidden-order
groups [DK02] (instantiatable using classical RSA groups or class groups [BH01]).

Our first SVC has constant-size public parameters and constant-size subvector openings, and its
security relies on the Strong RSA assumption and an argument of knowledge in the generic group
model. Asymptotically, its efficiency is similar to the SVC of Boneh et al. [BBF19], but concretely
we outperform [BBF19]. We implement5 our new SVC and show it can obtain very fast opening
times thanks to the preprocessing method described earlier: opening time reduces by several orders
of magnitude for various choices of vector and opening sizes, allowing us to obtain practical opening
times—of the order of seconds—that would be impossible without preprocessing—of the order of
hundred of seconds. In a file of 1 Mibit (220 bits), preprocessing reduces the time to open 2048 bits
from one hour to less than 5 seconds!

For the second construction, our technical contribution are new algorithms that make the RSA-
based SVC of [LM19] (which in turn extends the one of [CF13] to support subvector openings)
incrementally aggregatable. This results in a new VC candidate with this property; its drawback
(inherited from [CF13, LM19]) is to have linear-size parameters; on the good side, it is more efficient
and based on a standard assumption, Strong RSA.

Efficient Arguments of Knowledge of Subvector Opening. As an additional result, we
propose efficient arguments of knowledge (AoK) with constant-size proofs for our first VC. The first
AoK can prove knowledge of the subvector that opens a commitment at a public set of positions,
and it extends to proving that two commitments share a common subvector. The second AoK is
similar except that the subvector one proves knowledge of is also committed; essentially one can

5 Code publicly available at https://github.com/nicola/rust-yinyan
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create two vector commitments C and C ′ together with a short proof that C ′ is a commitment to
a subvector of the vector committed in C.

An immediate application of our first AoK is a keyless proof of storage (PoS) protocol with
compact proofs. PoS allows a client to verify that a server is storing intactly a file via a short-
communication challenge-response protocol. A PoS is said keyless if no secret key is needed by
clients, a property useful in open systems where the client is a set of distrustful parties (e.g.,
verifiers in a blockchain) and the server may even be one of these clients. A classical keyless PoS
is based on Merkle trees and random spot-checks [JK07], recently generalized to work with vector
commitments [Fis18]. A drawback of this construction is that proofs grow with the number of spot-
checks (and the size of the tree) and become undesirably large in some applications, e.g., if need
to be stored in a blockchain. With our AoK we can obtain openings of fixed size, as short as 2KB,
which is 40x shorter than those based on Merkle trees in a representative setting without relying
on SNARKs (that would be unfeasible in terms of time and memory)6.

From Updatable VCs to Verifiable Decentralized Storage. In their seminal work on VCs,
Catalano and Fiore [CF13] also defined updatable VCs. This means that if one changes the i-th
value of a vector from vi to v′i it is possible to update: a commitment C to v into a commitment
C ′ to v′, a valid opening for C (at any position) into a valid opening for C ′. And importantly,
these updates can be done without knowing the entire vector and in time that depends only on the
number of modified positions. As an application, in [CF13] it is shown how updatable VCs can be
used to realize verifiable databases (VDB) [BGV11], a primitive that enables a client to outsource
a database to an untrusted server in such a way that the client can retrieve (and update) a DB
record and be assured that it has not been tampered with by the server.

In this work we study how to extend this model to a scenario where storage is distributed
across different nodes of a decentralized network. This problem is motivated by the emerging trend
of decentralized storage networks (DSNs), a decentralized and open alternative to traditional cloud
storage and hosting services. Filecoin (which is built on top of IPFS), Storj, Dat, Freenet and
general-purpose blockchains like Ethereum7 are some emerging projects in this space.

Our contribution is to put forward a new cryptographic primitive called verifiable decentralized
storage (VDS) that can be used to obtain data integrity guarantees in DSNs. We propose a definition
of VDS and a construction obtained by extending the techniques of our VC scheme; in particular,
both incremental aggregation and the arguments of knowledge are key ingredients for building a
cost-effective VDS solution.

In the following section we elaborate on the VDS problem: we begin by discussing the require-
ments imposed by DSNs, and then give a description of our VDS primitive and realization.

1.2 Verifiable Decentralized Storage

Decentralized Storage Networks. Openness and decentralization are the main characteristics of
DSNs: anyone can enter the system (and participate as either a service provider or a consumer) and
the system works without any central management or trusted parties. Abstracting from the details
of each system, a DSN consists of participants called nodes that can be either a storage provider (aka
storage node) or a client node. Akin to centralized cloud storage, a client can outsource the storage

6 We provide further details in Section 5
7 https://filecoin.io, https://storj.io, https://datproject.org, https://freenetproject.org, https://

www.ethereum.org
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of large data; the key difference of DSN however is that storage is provided by, and distributed
across, a collection of nodes that can enter and leave the system at their wish. Also, DSNs can have
some reward mechanism to economically incentivize storage nodes.

The openness and the presence of economic incentives raise a number of security questions that
need to be solved in order to make these systems viable. In this work, we focus on the basic problem
of ensuring that the storage nodes of the DSN are doing their job properly, namely:

How can any client node check that the whole DSN
is storing correctly its data (in a distributed fashion)?

While this question is well studied in the centralized setting where the storage provider is a single
server, for decentralized systems the situation is less satisfactory. In what follows we elaborate on
the problem and the desired requirements, and then on our solution.

The Problem of Verifiable Decentralized Storage. Consider a client who outsources the
storage of a large file F , consisting of blocks (F1, . . . , FN ), to a collection of storage nodes. A
storage node can store a portion of F and the network is assumed to be designed in order to
self-coordinate so that the whole F is stored, and to be fault-resistant (e.g., by having the same
data block stored on multiple nodes). Once the file is stored, clients can request to the network to
retrieve or modify a data block Fi (or more), as well as to append (resp. delete) blocks to (resp.
from) the file.

In this scenario, our goal is to formalize a cryptographic primitive that can provide clients with
the guarantee of integrity of the outsourced data and its modifications. The basic idea of VDS is
that: (i) the client retains a short digest δF that “uniquely” points to the file F ; (ii) any operation
performed by the network, be it a retrieval or a file modification, can be proven by generating a
short certificate that is publicly verifiable given δF .

This problem is similar in scope to the one addressed by authenticated data structures (ADS)
[Tam03]. But while ADS is centralized, VDS is not. In VDS nodes act as storage in a distributed
and uncoordinated fashion. This is more challenging as VDS needs to preserve some basic properties
of the DSN:

Highly Local. The file is stored across multiple nodes and no node is required to hold the entire F :
in VDS every node should function with only its own local view of the system, which should be
much smaller than the whole F , e.g., logarithmic or constant in the size of F . Another challenge is
dynamic files: in VDS both the digest and the local view must be locally updatable, possibly with
the help of a short and publicly verifiable update advice that can be generated by the node who
holds the modified data blocks.

Decentralized Keyless Clients. In a decentralized system the notion of a client who outsources the
storage of a file is blurry. It may for example be a set of mutually distrustful parties (even the
entire DSN in the most extreme case, e.g., the file is a blockchain), or a collection of storage
nodes themselves that decide to make some data available to the network. This comes with two
implications:

1. VDS must work without any secret key on the clients side, so that everyone in the network can
delegate and verify storage. This keyless setting captures not only clients requiring no coordina-
tion, but also a stronger security model. Here the attacker may control both the storage node and
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the client, yet it must not be able to cheat when proving correctness of its storage. The latter is
crucial in DSNs with economic rewards to well-behaving storage nodes8.

2. In VDS a file F exists as long as some storage nodes provide its storage and a pointer to the file
is known to the network through its digest. When a file F is modified into F ′ and its digest δF
is updated into δF ′ , both versions of the file may coexist. Forks are possible and it is left to each
client (or the application) to choose which digest to track: the old one, the new one, or both.

Non-Coordinated Certificates Generation. There are multiple ways in which data retrieval queries
can be answered in a DSN. In some cases, e.g., IPFS, after executing a P2P protocol to discover
the storage nodes holding the desired data blocks, one gets such blocks from these nodes. In other
cases (e.g., Freenet [CSWH01] or the original Gnutella protocol), data retrieval is also answered in
a peer-to-peer non-coordinated fashion. When a query for blocks i1, . . . , im propagates through the
network, every storage node replies with the blocks that it owns and these answers are aggregated
and propagated in the network until they reach the client who asked for them. Notably, data
aggregation and propagation may follow different strategies.9 To accommodate flexible aggregation
strategies, in VDS we consider the incremental aggregation of query certificates in an arbitrary
and bandwidth-efficient fashion. For example, short certificates for file blocks Fi and Fj should
be mergeable into a short certificate for (Fi, Fj) and this aggregation process should be carried
on and on. Noteworthy that having certificates that stay short after each aggregation keeps the
communication overhead of the VDS integrity mechanism at a minimum.10

Defining VDS. We define VDS as a collection of algorithms that capture all the properties above;
these are the algorithms that can be executed by clients and storage nodes to maintain the system.
A client for a file F is anyone who holds a digest δF with which it can: verify retrieval queries,
verify and apply updates of F (that result in forks of δF into some other δF ′). A storage node for
some blocks FI = {Fi}i∈I of a file F is anyone that in addition to FI stores the digest δF and a
local state stFI with which it can: answer and certify retrieval queries for any subset of FI ; push
and certify updates of F that involve blocks in FI ; verify and apply updates of F from other nodes.
Finally, any node can aggregate retrieval certificates for different blocks of the same file.

In our VDS notion, an update of F can be: (i) a modification of some blocks, (ii) appending
new blocks, or (iii) deleting some blocks (from the end). In all cases, an update of F results into a
file F ′ and a new digest δF ′ .

In terms of efficiency, in VDS the digests and every certificate (for both retrieval queries or
modifications) are required to be of size at most O(log |F |); similarly, the storage node’s local state
stFI has size at most O(|FI |+ log |F |). In a nutshell, no node should run linearly in the size of the
file (unless it is explicitly storing it in full).

The main security property of a VDS scheme intuitively requires that no efficient adversary
can create a certificate for falsified data blocks (or updates) that passes verification. As an extra
security property, we also consider the possibility that anyone holding a digest δF can check if
the DSN is storing correctly F without having to retrieve it. Namely, we let VDS provide a Proof
of Storage mechanism, which we define similarly to Proof of Retrievability [JK07] and Proof of

8 Since in a decentralized system a storage node may also be a client, an attacker could “delegate storage to itself”
and use the client’s secret key to cheat in the proof in order to steal rewards (akin to the so-called “generation
attack” in Filecoin [Lab17]).

9 E.g., in Freenet data is sent back along the same route the query came through, with the goal of providing
anonymity between who requests and who delivers data.

10 The motivation of this property is similar to that of sequential aggregate signatures, see e.g., [LMRS04, BGR12].
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Data Possession [ABC+07]. Similarly to the case of data retrieval queries, the creation of these
proofs of storage must be possible while preserving the aforementioned properties of locality and
no-central-coordination.

Constructing VDS. We propose two constructions of VDS in hidden-order groups. Our first
scheme is obtained by extending the techniques of our new SVC scheme in order to handle updates
and to ensure that all such update operations can be performed locally. In particular we show
crucial use of the new properties of our construction: subvector openings, incremental aggregation
and disaggregation, and arguments of knowledge for sub-vector commitments. Our second scheme
instead is obtained by extending our incrementally aggregatable version of the [CF13, LM19] SVC;
notably, we show how to get rid, in the VDS setting, of the linear-size public parameters – a property
that is crucial in VDS.

Comparing our two VDS schemes, they are both based on standard assumptions (Strong RSA
[BP97] and Strong distinct-prime-product root [LM19]) and have similar performances. The second
scheme has the interesting property that the storage node can perform and propagate updates by
running in time that is independent of even its total local storage. Our first scheme instead supports
an additional type of update that we call “CreateFrom”. In it, a storage node holding a prefix F ′

of a file F can publish a new digest δF ′ corresponding to F ′ as a new file and to convince any client
about its correctness without the need for the client to know neither F nor F ′.11 As a potential
use case for this feature, consider a network that is supposed to store the entire editing history of
some data (e.g., one or more files of a Git project); namely the i-th block of the VDS file contains
the data value after the i-th edit (e.g., the i-th Git commit). Then “CreateFrom” can be used to
verifiably create a digest of any past version of the data (e.g., of a fork at any point in the past).

It is worth noting that by abstracting the ideas of our constructions, other VDS schemes can be
obtained using Merkle trees or RSA accumulators.12 Compared to a Merkle-tree based solution, we
can achieve constant-size certificates for every operation as well as to (efficiently) support compact
proofs of storage without expensive SNARKs13. Compared to RSA Accumulators, our first VDS
scheme takes advantage of our AoK thanks to which it supports CreateFrom updates and compact
proofs of storage.

Finally, we note that VDS shares similarities with the notion of updatable VCs [CF13] extended
with incrementally aggregatable subvector openings. One major difference is that in VDS the public
parameters must be short, otherwise nodes could not afford storing them. This is not necessarily
the case in VCs and in fact, to the best of our knowledge, there exists no VC construction with
short parameters that is updatable and has incrementally aggregatable subvector openings. We
believe this is an interesting open problem.

2 Preliminaries

In this section we describe notation and definitions used throughout the paper.

Notation. We denote the security parameter by λ and the set of all polynomial functions by
poly(λ). A function ε(λ) is said negligible – denoted ε(λ) ∈ negl(λ) – if it vanishes faster than the

11 This can be seen as a deletion that can be performed without holding the blocks to be deleted and is more efficient
to verify when the prefix F ′ is much smaller than F .

12 In fact, a similar idea from RSA accumulators was discussed in [BBF19].
13 In Merkle trees certificates depend logarithmically on the file size and linearly on the number of blocks (since they

are not aggregatable).
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inverse of any polynomial. An algorithm A is said PPT if it is modeled as a probabilistic Turing
machine that runs in time poly(λ). We denote by y ← A(x) the process of running A on input x
and assigning the output to y. For a set S, |S| denotes its cardinality, and x←$S denotes selecting
x uniformly at random over S. For a positive integer n ∈ N we let [n] := {1, . . . , n}. We denote
vectors v in bold, and for v ∈ Mn vi is its entry at position i. We let Primes(λ) be the set of all
prime integers less than 2λ.

2.1 Groups of Unknown Order and Computational Assumptions

Our constructions use a group G of unknown (aka hidden) order, in which the adaptive root
assumption [Wes18] and the Strong RSA assumption [BP97] or the Strong Distinct-Prime-Product
Root assumption [LM19] (defined below) hold.

We let Ggen(1λ) be a probabilistic algorithm that generates such a group G with order in a
specific range [ordmin, ordmax] such that 1

ordmin
, 1
ordmax

, 1
ordmax−ordmin ∈ negl(λ).

Definition 2.1 (Adaptive Root Assumption [Wes18]). We say that the adaptive root as-
sumption holds for Ggen if for any PPT adversary (A1,A2):

Pr

 u` = w

∧w 6= 1
:

G← Ggen(λ)

(w, state)← A1(G)

`←$ Primes(λ)

u← A2(`, state)

 = negl(λ)

Definition 2.2 (Strong-RSA Assumption [BP97]). We say that the strong RSA assumption
holds for Ggen if for any PPT adversary A:

Pr

 ue = g

∧e is prime
:

G← Ggen(λ)

g←$G
(u, e)← A(G, g)

 = negl(λ)

Definition 2.3 (Strong Distinct-Prime-Product Root assumption [LM19]). We say that
the Strong Distinct-Prime-Product Root assumption holds for Ggen if for any PPT adversary A:

Pr

 u
∏
i∈S ei = g

∧∀i ei ∈ Primes(λ)

∧∀i 6= j, ei 6= ej

:

G← Ggen(λ)

g←$G
(u, {ei}i∈S)← A(G, g)

 = negl(λ)

The assumption is implied by the strong RSA assumption over RSA groups.
As discussed in [BBF18, BBF19, LM19], two concrete instantiations of G are class groups [BH01]

and the quotient group Z∗N/{1,−1} of an RSA group [Wes18]. The reason why we cannot directly
use the RSA group is that the order of −1 ∈ Z∗N is known, and thus the adaptive root assumption
does not hold. In the quotient group, {−1, 1} is the identity element; hence, knowing the order of
−1 does not help in finding a root for a non-identity element and thus solving the adaptive root
assumption.

Shamir’s Trick. Informally speaking, Shamir’s trick [Sha83] is a way to compute an xy-root of a
group element g given an x-root and a y-root of it in groups of unknown order, when x and y are
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co-prime. That is, given ρx = g
1
x , ρy = g

1
y , x and y, one can compute a, b st ax + by = 1 using

the extended gcd algorithm. Then g
1
xy = g

ax+by
xy = g

a
y

+ b
x = ρay · ρbx. More formally, we recall the

following algorithm:

ShamirTrick(ρx, ρy, x, y)

if ρxx 6= ρyy then return ⊥
Use the extended Euclidean Algorithm to compute a, b, d s.t. ax+ by = d = gcd(x, y)

if d 6= 1 then return ⊥

return ρbxρ
a
y

2.2 Arguments of Knowledge

Let R : X × W → {0, 1} be an NP relation for a language L = {x : ∃w s.t. R(x,w) = 1}. An
argument system for R is a triple of algorithms (Setup,P,V) such that: Setup(1λ) takes as input a
security parameter λ and outputs a common reference string crs; the prover P(crs, x, w) takes as
input the crs, the statement x and witness w; the verifier V(crs, x) takes in the crs, the statement
x, and after interacting with the prover outputs 0 (reject) or 1 (accept). An execution between the
prover and verifier is denoted with 〈P(crs, x, w),V(crs, x)〉 = b, where b ∈ {0, 1} is the output of the
verifier. If V uses only public randomness, we say that the protocol is public coin.

Definition 2.4 (Completeness). We say that an argument system (Setup,P,V) for a relation
R : X ×W → {0, 1} is complete if, for all (x,w) ∈ X ×W such that R(x,w) = 1 we have

Pr
[
〈P(crs, x, w),V(crs, x)〉 = 1 : crs← Setup(1λ)

]
= 1.

Consider an adversary A = (A0,A1) modeled as a pair of algorithms such that A0(crs) →
(x, state) (i.e. outputs an instance x ∈ X after crs← Setup(λ) is run) and A1(crs, x, state) interacts
with a honest verifier. We want an argument of knowledge to satisfy the following properties:

Soundness. We say that an argument (Setup,P,V) is sound if for all PPT adversaries A = (A0,A1)
we have

Pr

[
〈A1(crs, x, state),V(crs, x)〉 = 1

and @w : R(x,w) = 1

∣∣∣∣ crs← Setup(λ)
(x, state)← A0(crs)

]
∈ negl(λ).

Knowledge Extractability. We say that (Setup,P,V) is an argument of knowledge if for all
polynomial time adversaries A1 there exists an extractor E running in polynomial time such that,
for all adversaries A0 it holds

Pr

 〈A1(crs, x, state),V(crs, x)〉 = 1
and (x,w′) /∈ R

∣∣∣∣∣∣
crs← Setup(λ)

(x, state)← A0(crs)
w′ ← E(crs, x, state)

 ∈ negl(λ).

Succinctness. Finally we informally recall the notion of succinct arguments, which requires the
communication and verifier’s running time in a protocol execution to be independent of the witness
length.
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Succinct Arguments of Knowledge for Hidden Order Groups. We recall two succinct
AoK protocols for the exponentiation relation in groups of unknown order that have been recently
proposed by Boneh et. al. [BBF19]. Both protocols work for a hidden order group G generated by
Ggen in which the adaptive root assumption holds. Also, they are public-coin protocols that can
be made non-interactive in the random oracle model using the Fiat-Shamir [FS87] heuristic and its
generalization to multi-round protocols [BCS16].

1. Protocol PoE: is an argument system for the following relation:

RPoE =
{

((u,w, x) ∈ G2 × Z,∅) : ux = w ∈ G
}

PoE is a sound argument system under the adaptive root assumption for Ggen. It is neither zero-
knowledge nor knowledge sound. Its main feature is succinctness, as the verifier can get convinced
about ux = w without having to execute the exponentiation herself. Moreover the information
sent by the prover is only 1 group element.14

2. Protocol PoKE∗: is an argument of knowledge for the following relation, parametrized by a gen-
erator g ∈ G:

RPoKE∗ =
{

(w, x) ∈ G× Z : gx = w ∈ G
}

PoKE∗ is an argument of knowledge that in [BBF19] is proven secure in the generic group model
for hidden order groups [DK02]. This protocol is also succinct consisting of only 1 group element
and 1 field element in Z2λ .

3. Protocol PoKE2: is an argument of knowledge for the following relation, parametrized by a gen-
erator g ∈ G:

RPoKE2 =
{

((w, u) ∈ G2, x ∈ Z) : ux = w ∈ G
}

PoKE2 is similar to PoKE∗ but it is secure for arbitrary bases u chosen by the adversary, instead
of bases randomly sampled a priori as in PoKE∗. Similarly, it is an argument of knowledge in the
generic group model for hidden order groups and is also succinct, with a proof consisting of 2
group elements and 1 element of Z2λ .

3 Vector Commitments with Incremental Aggregation

In this section, we recall the notion of vector commitment with subvector openings [CF13, LM19,
BBF19] and then we formally define our new incremental aggregation property.

3.1 Vector Commitments with Subvector Openings

A vector commitment (VC) [LY10, CF13] is a primitive that allows one to commit to a vector
v of length n in such a way that it can later open the commitment at any position i ∈ [n]. For
security, a VC should be position binding in the sense that it is not possible to open a commitment
to two different values at the same position. Also, what makes VC interesting is conciseness, which
requires commitment and openings to be of fixed size, independent of the vector’s length.

In our work we consider a generalization of vector commitments proposed by Lai and Malavolta
[LM19] that is called VCs with subvector openings,15 which is in turn a specialization of the notion

14 Technically, this protocol is not succinct as there is no witness and the verifier must read and process the exponent
x; however, verification is still more efficient than running the full exponentiation.

15 This is also called VCs with batchable openings in an independent work by Boneh et al. [BBF19].

10



of functional vector commitments by Libert et al. [LRY16]. In a nutshell, a functional VC is like
a VC with the additional possibility of opening the commitment to a function of the committed
vector, i.e., f(v). Subvector openings are a specific class of functions in which one can open the
commitment to an ordered collection of positions (with a short proof).

In this section we recall this generalization of vector commitments with subvector openings
(that for brevity we call SVC). It is easy to see that the original notion of Catalano and Fiore
[CF13] is a special case when the opened subvector includes one position only.

We begin by recalling the notion of subvectors from [LM19].

Definition 3.1 (Subvectors [LM19]). Let M be a set, n ∈ N be a positive integer and I =
{i1, . . . , i|I|} ⊆ [n] be an ordered index set. For a vector v ∈ Mn, the I-subvector of v is vI :=
(vi1 , . . . , vi|I|).

Let I, J ⊆ [n] be two sets, and let vI ,vJ be two subvectors of some vector v ∈Mn. The ordered
union of vI and vJ is the subvector vI∪J := (vk1 , . . . , vkm), where I ∪ J = {k1, . . . , km} is the
ordered sets union of I and J .

Definition 3.2 (Vector Commitments with Subvector Openings). A vector commitment
scheme with subvector openings (SVC) is a tuple of algorithms VC = (VC.Setup,VC.Com,VC.Open,
VC.Ver) that work as follows and satisfy correctness, position binding and conciseness defined below.

VC.Setup(1λ,M)→ crs Given the security parameter λ, and description of a message space M for
the vector components, the probabilistic setup algorithm outputs a common reference string crs.

VC.Com(crs,v)→ (C, aux) On input crs and a vector v ∈Mn, the committing algorithm outputs a
commitment C and an auxiliary information aux.

VC.Open(crs, I,y, aux)→ πI On input the CRS crs, a vector y ∈Mm, an ordered index set I ⊂ N
and auxiliary information aux, the opening algorithm outputs a proof πI that y is the I-subvector
of the committed message.

VC.Ver(crs, C, I,y, πI)→ b ∈ {0, 1} On input the CRS crs, a commitment C, an ordered set of
indices I ⊂ N, a vector y ∈Mm and a proof πI , the verification algorithm accepts (i.e., it outputs
1) only if πI is a valid proof that C was created to a vector v = (v1, . . . , vn) such that y = vI .

Correctness. A SVC scheme VC is (perfectly) correct if for all λ ∈ N, any vector length n any
ordered set of indices I ⊆ [n], and any v ∈Mn, we have:

Pr

VC.Ver(crs, C, I,vI , πI) = 1 :

crs← VC.Setup(1λ,M)

(C, aux)← VC.Com(crs,v)

πI ← VC.Open(crs, I,vI , aux)

 = 1

Position Binding. A SVC scheme VC satisfies position binding if for all PPT adversaries A we
have:

Pr

VC.Ver(crs, C, I,y, π) = 1

∧ y 6= y′ ∧
VC.Ver(crs, C, I,y′, π′) = 1

:
crs← VC.Setup(1λ,M)

(C, I,y, π,y′, π′)← A(crs)

 ∈ negl(λ)

Conciseness. A vector commitment is concise if there is a fixed polynomial p(λ) in the security
parameter such that the size of the commitment C and the outputs of VC.Open are both bounded by
p(λ), i.e., they are independent of n.
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Vector Commitments with Specializable Universal CRS. The notion of VCs defined above
slightly generalizes the previous ones in which the generation of public parameters (aka common
reference string) depends on a bound n on the length of the committed vectors. In contrast, in our
notion VC.Setup is length-independent. To highlight this property, we also call this primitive vector
commitments with universal CRS.

Here we formalize a class of VC schemes that lies in between VCs with universal CRS (as
defined above) and VCs with length-specific CRS (as defined in [CF13]). Inspired by the recent
work of Groth et al. [GKM+18], we call these schemes VCs with Specializable (Universal) CRS. In
a nutshell, these are schemes in which the algorithms VC.Com,VC.Open and VC.Ver work on input
a length-specific CRS crsn. However, this crsn is generated in two steps: (i) a length-independent,
probabilistic setup crs← VC.Setup(1λ,M), and (ii) a length-dependent, deterministic specialization
crsn ← VC.Specialize(crs, n). The advantage of this model is that, being VC.Specialize deterministic,
it can be executed by anyone, and it allows to re-use the same crs for multiple vectors lengths.

Definition 3.3 (VCs with Specializable CRS). A VC scheme VC has a specializable CRS if
there exists a DPT algorithm VC.Specialize(crs, n) that, on input a (universal) CRS crs generated
by VC.Setup(1λ,M) and an integer n = poly(λ), produces a specialized CRS crsn such that the
algorithms VC.Com, VC.Open and VC.Ver can be defined in terms of algorithms VC.Com?, VC.Open?

and VC.Ver? as follows:

– VC.Com(crs,v) sets n := |v|, runs crsn ← VC.Specialize(crs, n) and (C?, aux?)← VC.Com?(crsn,v),
and returns C := (C?, n) and aux := (aux?, n).

– VC.Open(crs, I,y, aux) parses aux := (aux?, n), runs crsn ← VC.Specialize(crs, n) and returns
πI ← VC.Open?(crsn, I,y, aux?).

– VC.Ver(crs, C, I,y, πI) parses C := (C?, n), runs crsn ← VC.Specialize(crs, n) and returns
VC.Ver?(crsn, C

?, I,y, πI).

Basically, for a VC with specializable CRS it is sufficient to describe the algorithms VC.Setup,
VC.Specialize,VC.Com?,VC.Open? and VC.Ver?. Furthermore, a concrete advantage is that when
working on multiple commitments, openings and verifications that involve the same length n, one
can execute crsn ← VC.Specialize(crs, n) only once.

3.2 Incrementally Aggregatable Subvector Openings

In a nutshell, aggregation means that different proofs of different subvector openings can be merged
together into a single short proof which can be created without knowing the entire committed vector.
Moreover, this aggregation is composable, namely aggregated proofs can be further aggregated.
Following a terminology similar to that of aggregate signatures, we call this property incremental
aggregation (but can also be called multi-hop aggregation). In addition to aggregating openings, we
also consider the possibility to “disaggregate” them, namely from an opening of positions in the
set I one can create an opening for positions in a set K ⊂ I.

We stress on the two main requirements that make aggregation and disaggregation non-trivial:
all openings must remain short (independently of the number of positions that are being opened),
and aggregation (resp. disaggregation) must be computable locally, i.e., without knowing the whole
committed vector. Without such requirements, one could achieve this property by simply concate-
nating openings of single positions.
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Definition 3.4 (Aggregatable Subvector Openings). A vector commitment scheme VC with
subvector openings is called aggregatable if there exists algorithms VC.Agg, VC.Disagg working as
follows:

VC.Agg(crs, (I,vI , πI), (J,vJ , πJ))→ πK takes as input two triples (I,vI , πI), (J,vJ , πJ) where I
and J are sets of indices, vI ∈ M|I| and vJ ∈ M|J | are subvectors, and πI and πJ are opening
proofs. It outputs a proof πK that is supposed to prove opening of values in positions K = I ∪ J .

VC.Disagg(crs, I,vI , πI ,K)→ πK takes as input a triple (I,vI , πI) and a set of indices K ⊂ I, and
it outputs a proof πK that is supposed to prove opening of values in positions K.

The aggregation algorithm VC.Agg must guarantee the following two properties:

Aggregation Correctness. Aggregation is (perfectly) correct if for all λ ∈ N, all honestly gener-
ated crs← VC.Setup(1λ,M), any commitment C and triple (I,vI , πI) s.t. VC.Ver(crs, C, I,vI , πI) =
1, the following two properties hold:

1. for any triple (J,vJ , πJ) such that VC.Ver(crs, C, J,vJ , πJ) = 1,

Pr
[
VC.Ver(crs, C,K,vK , πK) = 1 : πK←VC.Agg(crs, (I,vI , πI), (J,vJ , πJ))

]
=1

where K = I ∪ J and vK is the ordered union vI∪J of vI and vJ ;

2. for any subset of indices K ⊂ I,

Pr
[
VC.Ver(crs, C,K,vK , πK) = 1 : πK ← VC.Disagg(crs, I,vI , πI ,K)

]
= 1

where vK = (vil)il∈K , for vI = (vi1 , . . . , vi|I|).

Aggregation Conciseness. There exists a fixed polynomial p(·) in the security parameter such
that all openings produced by VC.Agg and VC.Disagg have length bounded by p(λ).

We remark that the notion of specializable CRS can apply to aggregatable VCs as well. In this
case, we let VC.Agg? (resp. VC.Disagg?) be the algorithm that works on input the specialized crsn
instead of crs.

4 Our Realizations of Incrementally Aggregatable Vector Commitments

In this section we describe our new SVC realizations.

4.1 Our First SVC Construction

An overview of our techniques. The basic idea underlying our VC can be described as a generic
construction from any accumulator with union proofs. Consider a vector of bits v = (v1, . . . , vn) ∈
{0, 1}n. In order to commit to this vector we produce two accumulator, Acc0 and Acc1, on two
partitions of the set S = {1, . . . , n}. Each accumulator Accb compresses the set of positions i such
that vi = b. In other words, Accb compresses the set S=b := {i ∈ S : vi = b} with b ∈ {0, 1}. In order
to open to bit b at position i, one can create an accumulator membership proof for the statement
i ∈ S̃b where we denote by S̃b the alleged set of positions that have value b.
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Setup(1λ) : run G←$Ggen(1λ), g1, g2, g3 ←$G, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (Y,C), (a, b)). Verifier’s input: (crs, (Y,C)).

V→ P: `←$Primes(λ)

P→ V: π := ((QY , QC), ra, rb) computed as follows
– (qa, qb, qc)← (ba/`c, bb/`c, bab/`c)
– (ra, rb)← (a mod `, b mod `)

– (QY , QC) := (gqa1 g
qb
2 , g

qc
3 )

V(crs, (Y,C), `, π):
– Compute rc ← ra · rb mod `

– Output 1 iff ra, rb ∈ [`] ∧ Q`Y g
ra
1 g

rb
2 = Y ∧ Q`Cg

rc
3 = C

Fig. 1. PoProd2 protocol

However, if the commitment to v is simply the pair of accumulators (Acc0,Acc1) we do not
achieve position binding as an adversary could for example include the same element i in both
accumulators. To solve this issue we set the commitment to be the pair of accumulators plus a
succinct non-interactive proof πS that the two sets S̃0, S̃1 they compress constitute together a
partition of S. Notably, this proof πS guarantees that each index i is in either S̃0 or S̃1, and thus
prevents an adversary from also opening the position i to the complement bit 1− b.

The construction described above could be instantiated with any accumulator scheme that
admits an efficient and succinct proof of union. We, though, directly present an efficient construction
based on RSA accumulators [Bd94, BP97, CL02, Lip12, BBF19] as this is efficient and has some
nice extra properties like aggregation and constant-size parameters. Also, part of our technical
contribution to construct this VC scheme is the construction of efficient and succinct protocols for
proving the union of two RSA accumulators built with different generators.

Succinct AoK Protocols for Union of RSA Accumulators Let G be a an hidden order
group as generated by Ggen, and let g1, g2, g3 ∈ G be three honestly sampled random generators.
We propose a succinct argument of knowledge for the following relation

RPoProd2 =
{

((Y,C), (a, b)) ∈ G2 × Z2 : Y = ga1g
b
2 ∧ C = ga·b3

}
Our protocol (described in Fig. 1) is inspired by a similar protocol of Boneh et al. [BBF19], PoDDH,
for a similar relation in which there is only one generator (i.e., g1 = g2 = g3, namely for DDH tuples
(ga, gb, gab)). Their protocol has a proof consisting of 3 groups elements and 2 integers of λ bits.

As we argue later PoProd2 is still sufficient for our construction, i.e., for the goal of proving
that C = gc3 is an accumulator to a set that is the union of sets represented by two accumulators
A = ga1 and B = gb2 respectively. The idea is to invoke PoProd2 on (Y,C) with Y = A ·B.

To prove the security of our protocol we rely on the adaptive root assumption and, in a non-
black-box way, on the knowledge extractability of the PoKRep and PoKE∗ protocols from [BBF19].
The latter is proven in the generic group model for hidden order groups (where also the adaptive
root assumption holds), therefore we state the following theorem.

Theorem 4.1. The PoProd2 protocol is an argument of knowledge for RPoProd2 in the generic group
model.
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Proof For ease of exposition we show a security proof for a slight variant of the protocol PoProd2.
Then, towards the end of this proof we show that security of this variant implies security for our
protocol. We let PoProd2

′ be the same protocol as PoProd2 with only difference that the prover
computes also rc ← ra · rb (mod `) and sends rc in the proof, and the verifier V checks in the
verification if rc = ra · rb (mod `).

Let A′ = (A′0,A′1) be an adversary of the Knowledge Extractability of PoProd2
′ such that:

((Y,C), state) ← A′0(crs), A′1(crs, (Y,C), state) executes with V(crs, (Y,C)) the protocol PoProd2
′

and the verifier accepts with a non-negligible probability ε. We will construct an extractor E ′ that
having access to the internal state of A′1 and on input (crs, (Y,C), state), outputs a witness (a, b)
of RPoProd2

′ with overwhelming probability and runs in (expected) polynomial time.

To prove knowledge extractability of PoProd2
′ we rely on the knowledge extractability of the

protocol PoKRep from [BBF19], which is indeed implicit in our protocol. More precisely, given
a PoProd2

′ execution between A′ and V, (`,QY , QC , ra, rb, rc), E ′ constructs an adversary AY =
(AY,0,AY,1) of PoKRep Knowledge Extractability and, by using the input and internal state of A′1,
simulates an execution betweenAY and V:AY,0 outputs (crsY , Y, state) := ((G, g1, g2), Y, state),AY,1
outputs (QY , ra, rb). It is obvious that if the initial execution is accepted by V so is the PoKRep
execution. From Knowledge Extractability of PoKRep we know that there exists an extractor EY
corresponding to AY,1 that outputs (a, b) such that ga1g

b
2 = Y . Additionally, it is implicit from the

extraction that a = ra (mod `) and b = rb (mod `) (for more details we refer to the Knowledge
Extractability proof of PoKRep in [BBF19]). So, E ′ uses EY and gets (a, b). Similarly, it simulates
PoKE∗ for gc3 = C, uses the extractor Ec and gets c.

As one can see, the expected running time of E ′ is the (expected) time to obtain a successful
execution of the protocol plus the running time of the 2 extractors: 1

ε + tEY + tEc = poly(λ).

Now what is left to prove to conclude our theorem is to show that the extracted a, b, c are such
that a · b = c with all but negligible probability. To this end, we observe that we could run E ′
a second time using a different random challenge `′; by using again EY , Ec (after simulating the
corresponding PoKRep and PoKE∗ executions) we would get a′, b′, c′ such that ga

′
1 g

b′
2 = Y = ga1g

b
2,

gc
′

3 = C = gc3. We argue that a = a′, b = b′ and c = c′ holds over the integers with overwhelming
probability under the assumption that computing a multiple of the order of the group G is hard
(such assumption is in turn implied by the adaptive root assumption). If such event does not hold
one can make a straightforward reduction to this problem. Therefore, we proceed by assuming that
from the two executions we have a = a′, b = b′, and c = c′ over the integers. Moreover, since both
executions are accepted we have r′c = r′a · r′b (mod `′) ⇒ c′ = a′ · b′ (mod `′) ⇒ c = a · b (mod `′),
but `′ was sampled uniformly at random from Primes(λ) after a, b, c were determined. So a · b = c

over the integers, unless with a negligible probability ≤ #{factors of ab−c}
|Primes(λ)| ≤ poly(λ)

|Primes(λ)| = negl(λ).

Finally, it is trivial to reduce the Knowledge Extractability of PoProd2 to Knowledge Ex-
tractability of PoProd2

′. Let a generic adversary A against the Knowledge Extractability of protocol
PoProd2 such that the verifier accepts with a non-negligible probability ε, we can construct a generic
adversary A′ against Knowledge Extractability of PoProd2

′, so that the verifier accepts with the
same probability. A′ runs the crs ← Setup(1λ) algorithm and sends crs to A. The adversary A
outputs ((Y,C), state)← A0(crs) and sends it to A′0, which outputs as it is. Then A′1 interacts with
V in the protocol PoProd2

′ (as a prover) and at the same time with A1 in PoProd2 (as a verifier).
After receiving ` from V it forwards it to A1. A1 answers with π := ((QY , QC), ra, rb). A′1 computes
rc ← rarb mod ` and sends π′ := ((QY , QC), ra, rb, rc) to V. The verifier V accepts π′ with the
same probability that a verifier of PoProd2 would accept π since rc = rarb mod ` in both cases.
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From Knowledge Extractability of PoProd2
′ we know that there is an extractor E ′ that outputs a

witness (a, b). Then E = E ′ is a valid extractor for PoProd2. �

In Appendix A we give a protocol PoProd that proves ga1 = A∧gb2 = B instead of ga1g
b
2 = Y (i.e.,

a version of PoDDH with different generators). Despite being conceptually simpler, it is slightly less
efficient than PoProd2, and thus use the latter in our VC construction.

Hash to prime function and non-interactive PoProd2. Our protocols can be made non-
interactive by applying the Fiat-Shamir transform. For this we need an hash function that can
be modeled as a random oracle and that maps arbitrary strings to prime numbers, i.e., Hprime :
{0, 1}∗ → Primes(2λ)16. A simple way to achieve such a function is to apply a standard hash
function H : {0, 1}∗ → {0, 1}2λ to an input y together with a counter i, and if py,i = H(y, i) is
prime then output py,i, otherwise continue to H(y, i+ 1) and so on, until a prime is found. Due to
the distribution of primes, the expected running time of this method is O(λ), assuming that H’s
outputs are uniformly distributed. We do not insist, though, in the previous or any other specific
instantiation of Hprime in this work. For more discussion on hash-to-prime functions we refer to
[GHR99, CMS99, CS99, BBF19, OWB19].

Our First SVC Construction Now we are ready to describe our SVC scheme. For an intuition
we refer the reader to the beginning of this section. Also, we note that while the intuition was given
for the case of committing to a vector of bits, our actual VC construction generalizes this idea to
vectors where each item is a block of k bits. This is done by creating 2k accumulators, each of them
holding sets of indices i for specific positions inside each block vj .

Notation and Building Blocks. To describe our scheme we use the notation below:

– Our message space isM = {0, 1}k. Then for a vector v ∈Mn, we denote with i ∈ [n] the vector’s
position, i.e., vi ∈ M, and with j ∈ [k] the position of its j’th bit. So vij denotes the j-th bit in
position i.

– We make use of a deterministic collision resistant function PrimeGen that maps integers to primes.
In our construction we do not need its outputs to be random (see e.g., [BBF19] for possible
instantiations).

– As a building block, we use the PoProd2 AoK from the previous section.

– PartndPrimeProd(I,y) → ((aI1, bI1), . . . , (aIk, bIk)): given a set of indices I = {i1, . . . , im} ⊆ [n]
and a vector y ∈Mm, this function computes

(aIj , bIj) :=

 m∏
l=1:ylj=0

pil ,
m∏

l=1:ylj=1

pil

 for j = 1, . . . , k

where pi ← PrimeGen(i) for all i.
Basically, for every bit position j ∈ [k], the function computes the products of primes that
correspond to, respectively, 0-bits and 1-bits.
In the special case where I = [n], we omit the set of indices from the notation of the outputs, i.e.,
PartndPrimeProd([n],v) outputs aj and bj .

16 As pointed out in [BBF18], although for the interactive version of such protocols the prime can be of size λ, the
non-interactive version requires at least a double-sized prime 2λ, as an explicit square root attack was presented.
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– PrimeProd(I) → uI : given a set of indices I, this function outputs the product of all primes
corresponding to indices in I. Namely, it returns uI :=

∏
i∈I pi. In the special case I = [n], we

denote the output of PrimeProd([n]) as un.
Notice that by construction, for any I and y, it always holds aIj · bIj = uI .

SVC Scheme. Below we describe our SVC scheme and then we show its incremental aggregation.

VC.Setup(1λ, {0, 1}k)→ crs generates a hidden order group G← Ggen(1λ) and samples three gen-
erators g, g0, g1 ← G. It also determines a deterministic collision resistant function PrimeGen that
maps integers to primes.
Returns crs = (G, g, g0, g1,PrimeGen)

VC.Specialize(crs, n)→ crsn computes un ← PrimeProd([n]) and Un = gu, and returns crsn ←
(crs, Un). One can think of Un as an accumulator to the set [n].

VC.Com?(crsn,v)→ (C?, aux?) does the following:

1. Compute ((a1, b1), . . . , (ak, bk))← PartndPrimeProd([n],v); next,

for all j ∈ [k] compute Aj = g
aj
0 and Bj = g

bj
1

One can think of each (Aj , Bj) as a pair of RSA accumulators for two sets that constitute a
partition of [n] done according to the bits of v1j , . . . , vnj . Namely Aj and Bj accumulate the
sets {i ∈ [n] : vij = 0} and {i ∈ [n] : vij = 1} respectively.

2. For all j ∈ [k], compute Cj = Aj ·Bj ∈ G and a proof π
(j)
prod ← PoProd2.P(crs, (Cj , Un), (aj , bj)).

Such proof ensures that the sets represented by Aj and Bj are a partition of the set represented
by Un. Since Un is part of the CRS (i.e., it is trusted), this ensures the well-formedness of Aj
and Bj .

Return C? :=
(
{A1, B1, . . . , Ak, Bk} ,

{
π

(1)
prod, ..., π

(k)
prod

})
and aux? := v.

VC.Open?(crsn, I,y, aux?)→ πI proceeds as follows:

– let J = [n] \ I and compute ((aJ1, bJ1), . . . , (aJk, bJk))←PartndPrimeProd(J,vJ);

– for all j ∈ [k] compute

ΓIj := g
aJj
0 and ∆Ij = g

bJj
1

Notice that aJj = aj/aIj and bJj = bj/bIj . Also ΓIj is a membership witness for the set {il ∈ I :
ylj = 0} in the accumulator Aj , and similarly for ∆Ij .
Return πI := {πI1, . . . , πIk} ← {(ΓI1, ∆I1), . . . , (ΓIk, ∆Ik)}

VC.Ver?(crsn, C
?, I,y, πI)→ b computes ((aI1, bI1), . . . , (aIk, bIk)) using

PartndPrimeProd(I,y), and then returns b← bacc ∧ bprod where:

bacc ←
k∧
j=1

(
Γ
aIj
Ij = Aj ∧∆

bIj
Ij = Bj

)
(1)

bprod ←
k∧
j=1

(
PoProd2.V(crs, (Aj ·Bj , Un), π

(j)
prod)

)
(2)

Remark 4.1. For more efficient verification, in the VC.Open? algorithm can be included 2k proofs
of exponentiation PoE. In this way the verifier doesn’t have to perform all the exponentiations
in VC.Ver?. As noted in [BBF19], although asymptotically the verification cost is the same, the
operations are in Zλ instead of G, which concretely makes up an improvement.
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The correctness of the vector commitment scheme described above is obvious by inspection
(assuming correctness of PoProd2).

Incremental Aggregation. Here we show that our SVC scheme is incrementally aggregatable.

VC.Disagg(crs, I,vI , πI ,K)→ πK . Let L := I \K, and vL be the subvector of vI at positions in
L. Then compute {aLj , bLj}j∈[k] ← PartndPrimeProd(L,vL), and for each j ∈ [k] set:

ΓKj ← Γ
aLj
Ij , ∆Kj ← ∆

bLj
Ij

and return πK := {πK1, . . . , πKk} := {(ΓK1, ∆K1), . . . , (ΓKk, ∆Kk)}
VC.Agg(crs, (I,vI , πI), (J,vJ , πJ))→ πK := {(ΓK1, ∆K1), . . . , (ΓKk, ∆Kk)}.
1. Let L := I∩J . If L 6= ∅, set I ′ := I\L and compute πI′ ← VC.Disagg(crs, I,vI , πI , I

′); otherwise
let πI′ = πI .

2. Compute {aI′j , bI′j}j∈[k] ← PartndPrimeProd(I,vI′) and {aJj , bJj}j∈[k] ← PartndPrimeProd(J,vJ).

3. Parse πI′ :=
{

(ΓI′j , ∆I′j)
}k
j=1

, πJ := {(ΓJj , ∆Jj)}kj=1, and for all j ∈ [k], compute

ΓKj ← ShamirTrick(ΓI′j , ΓJj , aI′j , aJj), ∆Kj ← ShamirTrick(∆I′j , ∆Jj , bI′j , bJj).

Note that our algorithms above can work directly with the universal CRS crs, and do not need the
specialized one crsn.

Aggregation Correctness. The second property of aggregation correctness (the one about VC.Disagg)
is straightforward by construction:
if we let {aKj , bKj}j∈[k] ← PartndPrimeProd(K,vK), then aIj = aLj · aKj , and thus Aj = Γ

aIj
Ij =

Γ
aLj ·aKj
Ij = Γ

aKj
Kj (and similarly for ∆Kj).

The first property instead follows from the correctness of Shamir’s trick if the integer values
provided as input are coprime; however since I ′∩J = ∅, aI′j and aJj (resp. bI′j and bJj) are coprime
unless a collision occurs in PrimeGen.

Efficiency. We summarize the efficiency of our construction in terms of both the computational
cost of the algorithms and the communication (CRS, commitment and openings size). For this
analysis we consider an instantiation of PrimeGen with a deterministic function that maps every
integer in [n] into a unique prime number, which can be of log n bits.

Our scheme is presented in order to support vectors of length n of k-bits-long strings. We
summarize efficiency in terms of k and n. However, we note that k is actually only a parameter and
our scheme can work with any setting of vectors v of length N of `-bits long strings. In this case, it
is sufficient to fix an arbitrary k that divides ` and to spread each vi ∈ {0, 1}` over `/k positions.

In terms of computation, VC.Setup generates the group description and samples 3 generators,
while VC.Specialize computes one exponentiation in G with an (n log n)-long integer. The CRS
consists of 3 elements of G, and the specialized CRS (for any n) is one group element. Committing
to a vector v ∈ ({0, 1}k)n requires about k exponentiations with an (n log n)-long integer each.
A commitment consists of 4k elements of G and 2k integers in Z2λ . Creating an opening for a
set I of m positions has about the same cost of committing, and the opening consists of 2k group
elements (resp. 4k elements when using the PoE to make verification more efficient, see Remark 4.1).
Verifying an opening for set I requires about k exponentiations with (m · log n)-bit integers (resp.
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4k exponentiations with λ-bit integers, 2k multiplications in G and O(km log(n)) multiplications
in Z2λ , when using PoE) to check equation (1), plus 5k exponentiations with λ-bit integers and 3k
multiplications in G to verify PoProd2 proofs in equation (2).

Security. The security of our SVC scheme, i.e., position binding, can be reduced to the Strong
RSA and Adaptive root assumptions in the hidden order group G used in the construction and to
the knowledge extractability of PoProd2.

A bit more in detail the steps of the proof are as follows. Let an adversary to the position
binding output (C, I,y, π,y′, π′). First from knowledge extractability of PoProd2 it comes that

AjBj = g
aj
1 g

bj
2 and gajbj = Un = gun . However, this does not necessarily means that ajbj = un

over the integers and to prove it we need the Adaptive root assumptions, under which it holds.

Afterwards we prove that since AjBj = g
aj
1 g

bj
2 no different proofs π, π′ for the same positions

can pass the verification under the strong RSA assumption, which is the core of our proof. The

main caveat of the proof is that instead of knowing that Aj = g
aj
1 and Bjg

bj
2 we know only that

AjBj = g
aj
1 g

bj
2 . The former case would directly reduce to RSA Accumulator’s security (strong RSA

assumption). For this we first need to prove an intermediate lemma (lemma 4.5) which shows that

specifically for our case AjBj = g
aj
1 g

bj
2 is enough, since the choice of the primes pi in the exponent

is restricted to a polynomially bounded set.

Theorem 4.2 (Position-Binding). Let Ggen be the generator of hidden order groups where the
Strong RSA and Adaptive Root assumptions hold, and let PoProd2 be an argument of knowledge for
RPoProd2. Then the subVector Commitment scheme defined above is position binding.

Proof To prove the theorem we use a hybrid argument. We start by defining the game G0 as
the actual position binding game of Definition 3.2, and our goal is to prove that for any PPT A,
Pr[G0 = 1] ∈ negl(λ).

Game G0:

G0 = PosBindAVC(λ)

crs← VC.Setup(1λ,M)

(C, I,y, π,y′, π′)← A(crs)

b← VC.Ver(crs, C, I,y, π) = 1 ∧ y 6= y′ ∧ VC.Ver(crs, C, I,y′, π′) = 1

return b

Lemma 4.1. For any PPT A in game G0 there exists an algorithm E and an experiment G1 such
that

Pr[G0 = 1] ≤ Pr[G1 = 1] + negl(λ)

Proof By construction of VC.Com, the commitment C returned by the adversary A in game G0

contains k proofs of PoProd2, and by construction of VC.Ver if G0 returns 1 all these proofs verify.
It is not hard to argue that for any adversary A playing in game G0 there is an extractor E that
outputs the k witnesses {aj , bj}j∈[k].

Game G1: is the same as G0 except that we also execute E , which outputs {aj , bj}j∈[k], and we

additionally check that Un = gajbj for all j ∈ [k]. Below is a detailed description of G1 in which we
“open the box” of the VC algorithms.
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G1

crs← VC.Setup(1λ,M); bad1 ← false

({Aj , Bjπ(j)
prod}j∈[k], n), I,y, {ΓIj ,∆Ij}j∈[k],y

′, {Γ ′Ij ,∆′Ij}j∈[k])← A(crs)

{aj , bj}j∈[k] ← E(crs)

un ← PrimeProd(n);Un ← gun

bprod ←
k∧
j=1

(
PoProd2.V(crs, (Aj ·Bj , Un), π

(j)
prod)

)

bwit ←
k∧
j=1

Aj ·Bj = g
aj
0 g

bj
j ∧ Un = gaj ·bj

if bprod = 1 ∧ bwit = 0 then bad1 ← true

{aIj , bIj}j∈[k] ← PartndPrimeProd(I,y);
{
a′Ij , b

′
Ij

}
j∈[k]

← PartndPrimeProd(I,y′)

b← bprod ∧
k∧
j=1

(
ΓIj

aIj = Aj ∧∆Ij
bIj = Bj

)
∧ y 6= y′∧

k∧
j=1

(
Γ ′Ij

a′Ij = Aj ∧∆′Ij
b′Ij = Bj

)
if bad1 = true then b← 0

return b

Clearly, the games G0 and G1 are identical except if the flag bad1 is raised true, i.e., Pr[G0 =
1]−Pr[G1 = 1] ≤ Pr[bad1 = true]. However, the event in which bad1 is set true is the event in which
one of the witnesses returned by the extractor is not correct. By the knowledge extractability of
PoProd2 we immediately get that Pr[bad1 = true] ∈ negl(λ). �

Game G2: is the same as G1 except that G2 outputs 0 if there is an index j such that Un = gaj ·bj

but un 6= aj · bj . Precisely, if this happens a flag bad2 is set true and the outcome of the experiment
is 0. See below for the detailed description of G2.
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G2

crs← VC.Setup(1λ,M); bad1, bad2 ← false

({Aj , Bjπ(j)
prod}j∈[k], n), I,y, {ΓIj ,∆Ij}j∈[k],y

′, {Γ ′Ij ,∆′Ij}j∈[k])← A(crs)

{aj , bj}j∈[k] ← E(crs)

un ← PrimeProd(n);Un ← gun

bprod ←
k∧
j=1

(
PoProd2.V(crs, (Aj ·Bj , Un), π

(j)
prod)

)

bwit ←
k∧
j=1

Aj ·Bj = g
aj
0 g

bj
j ∧ Un = gaj ·bj

if bprod = 1 ∧ bwit = 0 then bad1 ← true

bcol ←
k∧
j=1

un = aj · bj

if bprod = 1 ∧ bcol = 0 then bad2 ← true

{aIj , bIj}j∈[k] ← PartndPrimeProd(I,y);
{
a′Ij , b

′
Ij

}
j∈[k]

← PartndPrimeProd(I,y′)

b← bprod ∧
k∧
j=1

(
ΓIj

aIj = Aj ∧∆Ij
bIj = Bj

)
∧ y 6= y′∧

k∧
j=1

(
Γ ′Ij

a′Ij = Aj ∧∆′Ij
b′Ij = Bj

)
if bad1 = true ∨ bad2 = true then b← 0

return b

Lemma 4.2. If the adaptive root assumption holds for Ggen, then Pr[G1 = 1] − Pr[G2 = 1] ≤
negl(λ).

Proof Clearly, G1 and G2 proceed identically except if bad2 is set true. We claim that Pr[bad2 =
true] is negligible for any A, E running in G2. If this event happens, one indeed obtains an integer
v = un − aj · bj such that gv = 1 ∈ G, i.e., v is a multiple of the group order, and this implies an
algorithm that efficiently solve the adaptive root assumption. A formal reduction is straightforward
and is omitted. �

Game G3: is an experiment that can be seen as a simplification of G2.

G3

crs← VC.Setup(1λ,M)

(v, {Aj , Bj}j∈[k], I,y, {ΓIj ,∆Ij}j∈[k],y
′, {Γ ′Ij ,∆′Ij}j∈[k])← A′(crs)

{aj , bj}j∈[k] ← PartndPrimeProd([n],v)

{aIj , bIj}j∈[k] ← PartndPrimeProd(I,y);
{
a′Ij , b

′
Ij

}
j∈[k]

← PartndPrimeProd(I,y′)

b←
k∧
j=1

(Aj ·Bj = g
aj
0 · g

bj
1 )

k∧
j=1

(
ΓIj

aIj = Aj ∧∆Ij
bIj = Bj

)
∧ y 6= y′∧

k∧
j=1

(
Γ ′Ij

a′Ij = Aj ∧∆′Ij
b′Ij = Bj

)
return b
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First, we show the following lemma that relates the probability of winning in G3 with that of
winning in G2.

Lemma 4.3. For any (A, E) running in G2 there is an A′ running in G3 such that Pr[G2 = 1] =
Pr[G3 = 1].

Proof We build A′ from (A, E) as follows. On input crs, A′ executes

({Aj , Bj , π(j)
prod}j∈[k], n), I,y, {ΓIj , ∆Ij}j∈[k],y

′, {Γ ′Ij , ∆′Ij}j∈[k])← A(crs) and {aj , bj}j∈[k] ← E(crs).

Next, A′ reconstructs a vector v ∈ ({0, 1}k)n from the set {aj , bj}j∈[k]. This can be done by setting
vij = 0 if pi | aj and vij = 1 if pi | bj , where pi ← PrimeGen(i) (in case both or neither cases occur,
abort). Finally, A′ runs all the checks as in game G2, and if G2 would output 1, then A′ outputs
(v, {Aj , Bj}j∈[k], I,y, {ΓIj , ∆Ij}j∈[k],y

′, {Γ ′Ij , ∆′Ij}j∈[k]), otherwise A′ aborts.

To claim that Pr[G2 = 1] = Pr[G3 = 1], we observe that whenever G2 returns 1 it is the case
that aj · bj = un =

∏n
i=1 pi for all j ∈ [k]; therefore A′ never aborts. �

Game G4: this is the same as game G3 except that the game outputs 0 if during any computation
of lines 3 and 4 it happens that PrimeGen(i) = PrimeGen(i′) for distinct i 6= i′. It is straightforward
to show that the probability of this event is bounded by the probability of finding collisions in
PrimeGen, i.e., that under the collision resistance of PrimeGen it holds Pr[G3]− Pr[G4] ∈ negl(λ).

To conclude the proof of our Theorem, we prove that any PPT adversary can win in G4 with
only negligible probability assuming that the strong RSA assumption holds in G.

Lemma 4.4. If the strong RSA assumption holds for Ggen, then for every PPT adversary A′
running in game G4 we have that Pr[G4 = 1] ∈ negl(λ).

Proof For the proof, we rely on the following lemma that defines a computational problem that
we prove it is implied by the Strong RSA assumption.

Lemma 4.5. Let Ggen be a hidden order group generation algorithm where the strong RSA as-
sumption holds and PrimeGen a deterministic collision resistant function that maps integers to
primes. Then for any PPT adversary A and any n = poly(λ), the probability below is negligible:

Pr


up = ga0 · gb1
∧(p - a ∨ p - b)

∧u ∈ G ∧ (a, b) ∈ Z2 ∧ p ∈ S
:

G← Ggen(λ)

g0, g1 ← G
S = {pi ← PrimeGen(i)}ni=1

(u, p, a, b)← A(G, g0, g1, S)

 ∈ negl(λ)

We proceed assuming that the lemma holds; its proof is deferred to the end.

Suppose by contradiction the existence of a PPT adversary A′ such that Pr[G4] = ε with ε
non-negligible. Below we show how to construct an adversary B that uses A′ in order to solve the
problem of Lemma 4.5 with probability ε.

– B (G, g0, g1) samples a random g←$G, determines a PrimeGen as in VC.Setup, sets
crs← (G, g, g0, g1,PrimeGen), and runs A on input crs.

– A(crs) responds with a tuple (v, {Aj , Bj}j∈[k], I,y, π,y
′, π′).
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– B computes {aj , bj}j∈[k] ← PartndPrimeProd([n],v),

{aIj , bIj}j∈[k] ← PartndPrimeProd(I,y) and

{a′Ij , b′Ij}j∈[k] ← PartndPrimeProd(I,y′) as in game G3.

– If A′ wins the game then we have that all the following conditions holds:

y 6= y′,

k∧
j=1

(
ΓIj

aIj = Aj ∧∆Ij
bIj = Bj

)
= 1,

k∧
j=1

(
Γ ′Ij

a′Ij = Aj ∧∆′Ij
b′Ij = Bj

)
= 1

,
k∧
j=1

(Aj ·Bj = g
aj
0 · g

bj
1 ).

From y 6= y′ we get that there is at least one pair of indices l ∈ [m] and j ∈ [k] such that ylj 6= y′lj .
Say wlog that ylj = 0 and y′lj = 1. Also, if we parse I = {i1, . . . , im}, we let i = il ∈ [m]. So we
fix these indices i and j, and let pi = PrimeGen(i) be the corresponding prime.
Notice that by construction of PartndPrimeProd (and since we assumed no collision occurs in
PrimeGen) we have that either pi - aj or pi - bj holds. Additionally, by our assumption that
ylj = 0 and y′lj = 1, the following holds: pi | aIj , pi - bIj , pi - a′Ij , pi | b′Ij .
From the other condition on the validity of the proofs, B can compute two group elements Γ̂ , ∆̂
such that Γ̂ pi = Aj and ∆̂pi = Bj .

Combining this with the condition Aj ·Bj = g
aj
0 · g

bj
1 , we have that (Γ̂ · ∆̂)pi = g

aj
0 · g

bj
1 .

– B sets w = Γ̂ · ∆̂ and outputs the tuple (w, pi, aj , bj).

From all the above observations, if A′ makes game G4 return 1, then the tuple returned by B
is a suitable solution for the problem of Lemma 4.5, which in turn reduces to the Strong RSA
assumption. �

By combining all the lemmas we have that any PPT adversary has at most negligible probability
of breaking the position binding of our SVC scheme. �

Proof [Proof of Lemma 4.5] Suppose that for a PPT adversary A the above probability is a
non-negligible value ε. We will construct an adversary B that breaks strong RSA assumption with
a non-negligible probability. B takes as input (G, g). We denote as GA the game defined in lemma
(parametrized by an adversary A). We define two different reductions:

Reduction 1. In reduction 1 the adversary B breaks strong RSA assumption only in case where
the adversary A outputs a tuple (u, p, a, b) such that p | a (and thus from assumption p - b) and
fails otherwise. B proceeds as follows.
B(G, g) samples γ←$ [1, 2λordmax], where ordmax is the upper bound of the order of G outputted

by Ggen(1λ) (see section 2.1), and sets g0 ← gγ , g1 ← g. B runs A on input (G, g0, g1). γ is sampled
from a large enough domain so that gγ is statistically close to a uniformly distributed g0 from G
hence g0, g1 are indistinguishable to two uniformly random elements of G. A(G, g0, g1, S) responds
with a tuple (u, p, a, b) and sends it to B. We condition our analysis on the event p | a, meaning
that B stops in case p - a.

Assume that up = ga0 · gb1 ∧ (p | a ∧ p - b) ∧ u ∈ G ∧ (a, b) ∈ Z2 ∧ p ∈ S then we will show
that B can break the strong RSA assumption. We argue that p | a leads to gcd(p, γa + b) = 1.
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Let gcd(p, γa + b) 6= 1, meaning that gcd(p, γa + b) = p, then p | γa + b ⇒ γa + b = 0 (mod p).
However, p | a⇒ a = 0 (mod p). From the two previous facts we infer that b = 0 (mod p)⇒ p | b,
hence p | a ∧ p | b, which is a contradiction. Therefore, assuming that gcd(p, γa + b) = 1, B uses
the extended Euclidean algorithm to compute (α, β) such that αp+ β(aγ + b) = 1. We know that

up = ga0g
b
1 = gaγ+b ⇒ u = g

aγ+b
p hence it follows that g1/p = g

αp+β(aγ+b)=1
p = g

α+β aγ+b
p = gα · uβ.

Finally, B outputs (gα · uβ, p) which is a valid strong-RSA solution.

Reduction 2. In reduction 2 the adversary B breaks strong RSA assumption only in case where
the adversary A outputs a tuple (u, p, a, b) such that p - a and fails otherwise.

B(G, g) samples γ←$ [1, 2λordmax], where ordmax is the upper bound of the order of G outputted
by Ggen(1λ) (see section 2.1), defines S := {pi ← PrimeGen(i)}ni=1 and prod ←

∏n
i=1 pi and sets

g0 ← g, g1 ← gγ·prod. B sends (G, g0, g1) to A. γ is sampled from a large enough domain so that gγ

is statistically close to a uniformly distributed g1 from G hence g0, g1 are indistinguishable to two
uniformly random elements of G. A(G, g0, g1, S) responds with a tuple (u, p, a, b) and sends it to
B. We condition our analysis on the event p - a, meaning that B stops in case p | a.

Assume that up = ga0 · gb1∧p - a∧u ∈ G∧ (a, b) ∈ Z2∧p ∈ S then we will show that B can break
the strong RSA assumption. We argue that gcd(p, a + bγprod) = 1. Let gcd(p, a + bγprod) 6= 1,
meaning that gcd(p, a+ bγprod) = p, then p | a+ bγprod⇒ a+ bγprod = 0 (mod p). However, prod
includes p (p ∈ S) we know that p | bγprod⇒ bγprod = 0 (mod p). From the two previous facts we
infer that a = 0 (mod p)⇒ p | a which is a contradiction. B uses the extended Euclidean algorithm
to compute (α, β) such that αp + β(a + bγprod) = 1. We know that up = ga0g

b
1 = ga+bγprod ⇒ u =

g
a+bγprod

p hence it follows that g1/p = g
αp+β(a+bγprod)=1

p = g
α+β a+bγprod

p = gα · uβ. Finally, B outputs
(gα · uβ, p) which is a valid strong-RSA solution.

To conclude the proof, notice that:

Pr[GA = 1] = Pr[GA = 1|p | a] Pr[p | a] + Pr[GA = 1|p - a] Pr[p - a]

≤ Pr[GA = 1|p | a] + Pr[GA = 1|p - a]

The reductions 1 and 2 described above show that under the strong RSA assumption Pr[GA =
1|p | a] and Pr[GA = 1|p - a] respectively are negligible. Hence, we have that Pr[GA = 1] ∈ negl(λ),
which concludes the proof. �

On concrete instantiation. Our SVC construction is described generically from a hidden order
group G, an AoK PoProd2, and a mapping to primes PrimeGen. The concrete scheme we analyze
is the one where PoProd2 is instantiated with the non-interactive version of the PoProd2 protocol
described in Sec. 4.1. The non-interactive version needs a hash-to-prime function Hprime. We note
that the same function can be used to instantiate PrimeGen, though for the sake of PrimeGen we
do not need its randomness properties. One can choose a different mapping to primes for PrimeGen
and even just a bijective mapping (which is inherently collision resistant) would be enough: this
is actually the instantiation we consider in our efficiency analysis. Finally, see Section 2.1 for a
discussion on possible instantiations of G.

We note that by using the specific PoProd2 protocol given in Sec. 4.1 we are assuming adversaries
that are generic with respect to the group G. Therefore, our SVC is ultimately position binding in
the generic group model.
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4.2 Incremental Aggregation of the RSA-based SVC of [LM19]

As a second result, we show that the subvector commitment scheme of [LM19] that is based on the
RSA assumption (which in turn extends the one of [CF13] to support subvector openings) can have
incremental aggregation. For completeness, we recall their SVC scheme in appendix C, while we
give here an informal explanation of [CF13]. In brief, a commitment to a vector v is C = Sv1

1 · · ·Svnn ,

where each Si := g
∏
j∈[n]\{i} ej with g ∈ G a random generator and ej being distinct prime numbers.

The opening for position i is an element Λi such that Λeii · S
vi
i = C and the key idea is that such

Λi is an ei-th root that can be publicly computed as long as one does it for the correct position i
and value vi. In the following, we use the notation SI := g

∏
i∈I ei for a set of indices I, where ei’s

are part of the crs, as a generalization of Si.

VC.Disagg(crs, I,vI , πI ,K)→ πK . First compute SK (either directly or with sequential shamir’s

tricks from Si’s) and then S
1/

∏
i∈K ei

j for each j ∈ I \K by using Shamir’s trick:
χj ← ShamirTrick(SK , Sj ,

∏
i∈K ei, ej).

Return

πK := π

∏
i∈I\K ei

I ·
∏

j∈I\K

χ
vj
j

VC.Agg(crs, (I,vI , πI), (J,vJ , πJ))→ πK First compute SI and SJ (either directly or with sequen-

tial Shamir’s tricks from Si’s) and then S
1/

∏
i∈I ei

j for each j ∈ J and similarly S
1/

∏
i∈J ei

j

for each j ∈ I by using Shamir’s trick: φj ← ShamirTrick(SI , Sj ,
∏
i∈I ei, ej) and ψj ←

ShamirTrick(SJ , Sj ,
∏
i∈J ei, ej). Then compute

ρI ←
πI∏
j∈J φ

vj
j

and σJ ←
πJ∏
j∈I ψ

vj
j

Return πI∪J ← ShamirTrick(ρI , σJ ,
∏
i∈I ei,

∏
i∈J ei)

For simplicity above we present the aggregation for the case I ∩J = ∅. Otherwise, one could simply
disaggregate πI (or πJ) to πI\J (or πJ\I) and then proceed as above.

Aggregation Correctness. It follows from the correctness of Shamir’s trick and by construction.
For the disaggregation algorithm:

πK := π

∏
i∈I\K ei

I ·
∏

j∈I\K

χ
vj
j =

 n∏
j=1,j /∈I

S
vj
j

 1∏
i∈I ei

∏
i∈I\K ei

·
∏

j∈I\K

(
S

1/
∏
i∈K ei

j

)vj

=

 n∏
j=1,j /∈I

S
vj
j

 1∏
i∈K ei

·

 ∏
j∈I\K

S
vj
j

1/
∏
i∈K ei

=

 n∏
j=1,j /∈K

S
vj
j

1/
∏
i∈K ei

which is a valid opening for the K-subvector. And for the aggregation algorithm:

ρI :=
πI∏
j∈J φ

vj
j

=

 n∏
j=1,j /∈I∪J

S
vj
j

1/
∏
i∈I ei

and σJ :=
πJ∏
j∈I ψ

vj
j

=

 n∏
j=1,j /∈J∪I

S
vj
j

1/
∏
i∈J ei
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so

πI∪J := ShamirTrick(ρI , σJ ,
∏
i∈I

ei,
∏
i∈J

ei)

= ShamirTrick


 n∏
j=1,j /∈I∪J

S
vj
j

1/
∏
i∈I ei

,

 n∏
j=1,j /∈J∪I

S
vj
j

1/
∏
i∈J ei

,
∏
i∈I

ei,
∏
i∈J

ei


=

 n∏
j=1,j /∈I∪J

S
vj
j

 1∏
i∈I ei

∏
i∈J ei

=

 n∏
j=1,j /∈I∪J

S
vj
j

 1∏
i∈I∪J ei

which is a valid opening for the I ∪ J-subvector

4.3 Comparison with Related Work

We compare our results (the new incrementally aggregatable SVC of Section 4.1 and the incremental
aggregation algorithms for [LM19]) with the recent scheme proposed by Boneh et al. [BBF19] and
the one by Lai and Malavolta [LM19], which extends [CF13] to support subvector openings.17 We
present a detailed comparison in Table 1, considering to work with vectors of length N of `-bit
elements and security parameter λ. In particular we consider an instantiation of our scheme with
k = 1 (and thus n = N · `).

Setup Model. [BBF19] works with a fully universal CRS, whereas our scheme has a universal CRS
with deterministic specialization, which however, in comparison to [LM19], outputs constant-size
parameters instead of linear.

Aggregation. The VC of [BBF19] supports aggregation only on openings created by VC.Open
(i.e., it is one-hop) and does not have disaggregatable proofs (unless in a different model where
one works linearly in the length of the vector or knows the full vector). In contrast, we show the
first solutions that satisfy incremental aggregation, both by giving a new SVC scheme and by
proposing new algorithms for incremental aggregation of [LM19]. As we mention later, incremental
aggregation can be very useful to precompute openings for a certain number of vector blocks
allowing for interesting time-space tradeoffs that can speedup the running time of VC.Open.

Efficiency. From the table, one can see that our new SVC has: slightly worse commitments size
than [BBF19, LM19], computational asymptotic performances similar to [BBF19], and opening size
slightly better than [BBF19]. However, when considering applications in which a user creates the
commitment to a vector and (at some later points in time) is requested to produce openings for
various subvectors, our incremental aggregation results leads to use preprocessing to achieve more
favorable time and memory costs. The idea is that in such a setting one can precompute and store
information that allows to speedup the generation of openings, in particular by making opening
time less dependent on the total length of the vector. Notably, in comparison to a similar solution
for [BBF19] our new SVC can save a factor ` in storage.

The idea is the following. In our first VC one can precompute and store an aggregated opening
(two group elements) for each sequence of B `-bit-long substrings of the vector. Upon opening, the
user has to disaggregate some openings and then aggregate for the requested positions. This way,

17 We refer to [BBF19] to see how these schemes compare with Merkle trees.
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our opening time for m positions goes from, roughly, O((n−m) log n) down to O(mB logm log n),
which is way more efficient. This is possible by storing 2n/(B`) group elements. Interestingly, our
incremental aggregation/disaggregation property allows us to choose B in a flexible way allowing
for different time-space tradeoffs. For instance we can choose B =

√
n so as to get O(

√
n) storage

and about O(m
√
n log n) opening time, or can even choose B according to applications-dependent

heuristics. Such flexibility is not possible in the VC of [BBF19] where one must store (a portion of)
a non-membership witness for every bit of the vector. Even in the simplest case of B = 1 (shown
in Table 1) our solution saves a factor ` in storage, which concretely turns into 3× less storage. A
detailed analysis of this precomputation technique is provided in the next section.A similar idea
can also be applied to the [CF13, LM19] SVC to obtain similar storage requirements and even
faster opening time. For this scheme, however, the preprocessing time in the commitment phase is
quadratic O(n2) which makes it less appealing in practice.

Metric Our First SVC [BBF19] [CF13, LM19]

Setup

VC.Setup O(1) O(1) O(1)

|crs| 3 |G| 1 |G| 1 |G|
VC.Specialize O(` ·N · log(`N)) G — O(` ·N · logN) G

|crsN | 1 |G| — N |G|
Commit a vector v ∈ ({0, 1}`)N

VC.Com O(` ·N · log(`N)) G O(` ·N · log(`N)) G O(` ·N) G
|C| 4 |G|+ 2 |Z2λ | 1 |G| 1 |G|

Opening and Verification for vI with |I| = m

VC.Open O(` · (N −m) · log(`N)) G O(` · (N −m) · log(`N)) G O(` · (N −m) ·m logm) G
|πI | 4 |G| 5 |G|+ 1 |Z2λ | 1 |G|

VC.Ver O(m · ` · log(`N)) Z2λ +O(λ) G O(m · ` · log(`N)) Z2λ +O(λ) G O(` ·m) G
Commitment and Opening with Precomputation

VC.Com O(` ·N · log(` ·N) · log(N)) G O(` ·N · log(` ·N) · log(N)) G O(` ·N2)

|aux| O(N) |G| O(N) |G|+O(` ·N)|Z2λ | O(N) |G|
VC.Open O(m · ` · log(m) log(`N)) G O(m · ` · log(m) log(`N)) G O(m · ` · log(m)) G

Aggregation Incremental One-hop Incremental

Disaggregation Yes No Yes

Table 1. Comparison between the SVC’s of [BBF19], [LM19] and this work (including our incremental aggregation
for [LM19]); our contributions highlighted in gray. We consider committing to a vector v ∈ ({0, 1}`)N of length N ,
and opening and verifying for a set I of m positions. By ‘O(x) G’ we mean O(x) group operations in G; |G| denotes
the bit length of an element of G. An alternative algorithm for VC.Open in [LM19] costs O(` · (N −m) · log(N −m)).

4.4 Detailed Efficiency Comparison for Committing and Opening with
Precomputation

We provide a detailed efficiency comparison between the VC of [BBF19] and our construction of
Section 4.1 in the scenario where one a user commits to a vector and then must generate openings for
various subvectors. This is for example the use case when the VC is used for proofs of retrievability
and IOPs [BBF19]. In such a case, both the VC of [BBF19] and ours allow the user to precompute
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and store some advice information that can speedup the opening creation. In particular, in both
constructions various storage-computation tradeoffs are possible. In what follows we investigate
what the opener should store so that computation of openings is practical.

As before, we consider a vector v of N blocks of ` bits each and consider the instantiation of
our construction with k = 1 and n = N`. Similarly we consider an instantiation of [BBF19] VC for
binary vectors of length n = N`.

Boneh-Bunz-Fisch VC. Let us recall that in [BBF19] a commitment to v ∈ {0, 1}n is Acc = gb

with b =
∏
j∈[n],vj=1 pj .

When asked for opening of some positions in the set I, the vector owner has to provide a batched
membership proof for all {pj : j = (i− 1)`+ l, i ∈ I, l ∈ [`], vj = 1} and a batched non-membership
proof for all {pj : j = (i− 1)`+ l, i ∈ I, l ∈ [`], vj = 0}.

For the membership proof, in the commitment phase one can precompute {Wi = gb/bi : i ∈
[N ]} where bi =

∏
l∈[`],vil=1 p(i−1)`+l, which can be done in time O(N logN · ` log(`N)) and adds

N elements of G to the advice information. Next, in the opening phase, in order to compute a
membership witness for a set of positions I one can use the aggregation property to compute a
witness WI from all Wi with i ∈ I.

For the non-membership proof, there are instead two options:

1. Compute the batch-nonmembership witness from scratch

2. Precompute and store (unbatched) non-membership witnesses for all 0’s of the vector and then
aggregate the necessary ones to provide the opening asked.

We argue that an intermediate solution of precomputing a fraction of non-membership witnesses and
computing the rest from scratch does not provide any benefit since even if a single non-membership
witness needs to be computed, it requires the whole vector and computing the corresponding
product of primes. So, in the end the intermediate solution will be more costly than both the above
ones.

1. Compute non-membership witness from scratch To compute a non-membership witness
one needs the product b of all the primes in the accumulator (i.e., all primes that correspond to 1’s
in v). There are in turn two possible ways to deal with this:

– Precompute and store b, which requires O(log(N`)·N ·`) computation and |b| = O(N ·`·log(N`))
bits of storage.

– Compute b online from all pi’s, which requires O(log(N`) ·N · `) computing power.

The computations needed to obtain a single non-membership witness is proportional to the size
of b, which is O(` · N · log(`N)) G. Hence, virtually there is no big improvement in the opening
time by precomputing b, since the group exponentiations are more costly (although concretely it
saves the online computation of it). Furthermore, keeping |b| = O(N · ` · log(N`)) bits of storage
may get impractical for big N .

2. Precompute non-membership witnesses and then aggregate. The idea is similar to the
aggregation technique mentioned above for membership witnesses. However, a crucial difference is
that, as stated in the [BBF19], for non-membership witnesses one has only one-hop aggregation.
This means one must precompute and store non-membership witnesses for each block of the vector
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that. However these non-membership witnesses have size proportional to the number of bits of the
each block (plus one group element).

This technique requires storage of O(N) group elements plus O(N · `) field elemetns on average.
Precisely, the size non-membeship witness for each block is |G|+ log(N`)×#{0-bits in the block},
hence the total siez of non-membership witnesses is N |G| + N` log(N`) in the worst case and
N |G| + N` log(N`)/2 in an average case where half of the bits of the vector are 0. To conclude,
with the VC of [BBF19], one would need, on average, to precompute and store 2N |G|+N` log(N`)/2
bits.

Our SVC of Section 4.1. Here we show that with our VC construction one could save on storage
space and is also possible to achieve flexible solutions that offerent different time-memory tradeoffs.
This is possible thanks to the incremental aggregation and disaggregation properties of our scheme.

The idea is the following. Assume one wants to commit to a vector v of N positions of ` bits
each. Let B be an integer parameter such that B | N . In the commitment phase, one can create
openings for N ′ = N/B subvectors of v that covers the all vector (e.g., B contiguous positions18).
Let πI1 , . . . , πIN′ be such openings; these elements are stored as advice information. The storage

space needed is 2N
B |G| bits of memory.

Next, in the opening phase, in order to compute the opening for a subvector vI of m positions,
one should: (i) fetch the subset of openings πIj such that, for some S, I ⊆ ∪j∈SIj , (ii) possibly
unaggregate some of them and then aggregate in order to compute πI . The computation time for
this operation, is in the worst case:

m log(m) · ` · log(N`) + (mB −m)` log(N`) G

This computing time is obtained by considering the application of pairwise aggregation in a tree
fashion, which in turn requires running the extended gcd algorithm on integers of growing size.

To give a very general example of the above process, assume one has stored π{1,2} and π{3,4,5}
and is asked for π{2,3}, then she has to compute first π2 and π3 by unaggregating π{1,2} and π{3,4,5}
respectively, and then aggregate them to π{2,3}. Below are two more examples in picture:

B = 2:

v1 v2 v3 v4 v5

1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0

Γ{1,2}, ∆{1,2} Γ{3,4}, ∆{3,4} Γ{5}, ∆{5}

2 · |G| · n/2 bits in opening advice

B = n:

v1 v2 v3 v4 v5

1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0

Γ{1,2,3,4,5}, ∆{1,2,3,4,5}

2 · |G| · 1 bits in opening advice

To conclude, even if we consider the case B = 1, our approach requires much less storage than
in [BBF19]: 2N |G| vs.2N |G| + N` log(N`)/2 bits, while the computing time for an opening of m
blocks requires at least 50% more time for the non-membership witnesses in [BBF19] (which leads
to 25% more time in the average case).

18 One could actually choose many different ways to group subvectors in precomputation; the best way could be
application-dependent, e.g., based on the expected structure of the positions to be opened one could optimize the
grouping so as to minimize the need of unaggregating openings.
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Using Incremental Aggregation of Section 4.2. We note that a similar technique can be
applied by reluing on our incremental aggregation result for the [CF13, LM19] SVC scheme. A
summary of the preprocessing costs is in Table 1. We omit details here, also considering that the
quadratic committing (with preprocessing) time makes the approach less appealing for this scheme.

5 Arguments of Knowledge for our SVC

We propose three Arguments of Knowledge (AoK) related to our vector commitment scheme pre-
sented in section 4.1. More specifically, the first AoK allows one to prove knowledge of an opening
of a subvector. The second AoK, is a direct outcome of the first and allows one to prove that two
given commitments share a common subvector. Finally, the third protocol allows one to commit to
a prefix-subvector of a vector and prove the knowledge of it succinctly.

Similarly to section 4.1, our protocols build on the techniques for succinct proofs in groups of
unknown order from [BBF19]. Furthermore, these arguments of knowledge are not zero knowledge
and they serve efficiency purposes. Interestingly, one can prove knowledge of a portion of a vector
committed without having to send the actual vector values. The proofs are constant-size which leads
to an improvement of communication complexity linear in the size of the opening.

5.1 Building block: A Stronger Proof of Product

Before proceeding to describing the main protocols, we introduce another one that is used as
building block. This is an argument of knowledge, called PoProd∗, for the relation RPoProd∗ described
below, which uses a common reference string consisting of a hidden order group G← Ggen(1λ) and
a random generator g ∈ G:

RPoProd∗ =
{

((A,B,C, Γ,∆), (a, b)) ∈ G5 × Z2 : A = Γ a ∧B = ∆b ∧ C = ga·b
}

The relation RPoProd∗ is similar to RPoProd defined in Section 4.1 with the difference that now
the first two bases Γ and ∆ are not part of the common reference string, but part of the statement
instead. As argued in [BBF19] the PoKE∗ protocol is not secure anymore for adversarially chosen
bases, therefore we cannot use PoProd protocol which assumes knowledge extractability of PoKE∗.
To deal with this problem, we thus modify the protocol by using the protocol PoKE2, which is
secure for arbitrary bases. This comes with some cost: in our PoProd∗ a proof consists of 5 group
elements and 2 field elements, that is 2 group elements more comparing to proofs of PoProd. The
protocol is in Fig. 2.

Theorem 5.1. The PoProd∗ protocol in Fig. 2 is an argument of knowledge for RPoProd∗ in the
generic group model.

The proof of the theorem above is similar to the proof of Theorem 4.1, except that we use
the extractor EPoKE2 of the protocol PoKE2 from [BBF19] in order to extract integers a and b and
EPoKE∗ in order to extract the exponent of C.

5.2 A Succinct AoK of Opening for our VC Construction

We show an argument of knowledge of an I-opening with respect to a commitment C to a vector,
where I is a set of positions. We emphasize that the goal of this protocol is not to keep the opening
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Fig. 2. PoProd∗ protocol

Setup(1λ) : run G←$Ggen(1λ), g←$G, set crs∗ := (G, g).
Prover’s input: (crs∗, (A,B,C, Γ,∆), (a, b)). Verifier’s input: (crs∗, (A,B,C, Γ,∆)).

V→ P: h←$G
P→ V: z := (za, zb) computed as za ← ha, zb ← hb

V→ P: `←$Primes(λ) and α←$ [0, 2λ)

P→ V: π := ((QA, QB , QC), ra, rb) computed as follows
– (qa, qb, qab)← (ba/`c, bb/`c, bab/`c)
– (ra, rb)← (a mod `, b mod `)

– (QA, QB , QC) := (Γ qahαqa ,∆qbhαqb , gqab)

V(crs, (A,B,C), za, zb, `, α, π):
– Compute rc ← ra · rb mod `

– Output 1 iff ra, rb ∈ [`] ∧ Q`AΓ
rahαra = Azαa ∧ Q`B∆

rbhαrb = Bzαb ∧ Q`Cg
rc = C

secret (i.e., the protocol is not zero knowledge, also our vector commitment scheme is not hiding).
The goal is to reduce the communication complexity of an opening by proving knowledge of the
subvector at positions I without having to actually send the values vI . Even though the argument
of knowledge itself adds an overhead it is independent of the number of the positions. Hence, the
protocol makes more sense for large sets of positions I as for a small number of positions the
overhead of the AoK would exceed the size of the opening values.

Let VC = (VC.Setup,VC.Specialize,VC.Com,VC.Open,VC.Ver) be our SVC scheme from Section
4.1, and let us define the following relation

RPoKOpen = {( (C, I), (y, πI) ) : VC.Ver(crs, C, I,y, πI) = 1}

that is parametrized by a CRS crs ← VC.Setup(1λ,M), and where the statement consists of a
commitment C and a set of indices I ⊆ [n], and the witness consists of a vector y ∈ M|I| and an
opening πI .

For simplicity we present a protocol PoKOpen for the case when k = 1 in our VC (see section 4.1);
extension to larger k is immediate. The idea of our protocol is that, given a commitment C :=
((A,B), πprod) and a set of indices I, the prover, holding πI := (ΓI , ∆I), first sends πI to the verifier

and then provides an AoK of (aI , bI) such that Γ aII = A ∧∆bI
I = B ∧ gaI ·bI = UI , where UI ← guI

with uI ← PrimeProd(I). This can be proven by using the PoProd∗ protocol presented above.
Finally the verifier should also verify the πprod proof as in the normal verification of an opening
algorithm.
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PoKOpen protocol

Prover’s input: (crs, (C, I), (y, πI). Verifier’s input: (crs, (C, I)).

V Compute uI ← PrimeProd(I) and then UI ← guI .
Similarly compute un ← PrimeProd([n]) and then Un ← gun

P: Parse crs := (G, g, g0, g1,PrimeGen, Un), C := ({A,B}, πprod), πI := (ΓI , ∆I). Compute
(aI , bI)← PartndPrimeProd(I,y) and then uI ← PrimeProd(I) and UI ← guI .

P→ V: (ΓI , ∆I)

Finally a PoProd∗ protocol (with an additional check of the commitment) between
P((G, g), (A,B,UI , ΓI , ∆I), (aI , bI)) and V((G, g), (A,B,UI , ΓI , ∆I)) is executed:

V→ P: h←$G
P→ V: z := (za, zb) computed as za ← haI , zb ← hbI

V→ P: `←$ Primes(λ) and α←$ [0, 2λ)

P→ V: π := ((QA, QB, QC), ra, rb) computed as follows
– (qa, qb, qab)← (baI/`c, bbI/`c, baIbI/`c)
– (ra, rb)← (aI mod `, bI mod `)

– (QA, QB, QC) :=
(
Γ qaI hαqa , ∆qb

I h
αqb , gqab

)
V: Parse crs := (G, g, g0, g1,PrimeGen, Un) and C := ({A,B}, πprod).
– Compute rc ← ra · rb mod `

– Output 1 iff ra, rb ∈ [`] ∧ Q`AΓ
ra
I hαra = Azαa ∧ Q`B∆

rb
I h

αrb = Bzαb ∧ Q`Cg
rc = UI ∧

PoProd2.V(crs, (A ·B,Un), πprod)

We state the following theorem.

Theorem 5.2. If PoProd∗ is a succinct argument of knowledge for RPoProd∗, then protocol PoKOpen
is a succinct argument of knowledge for relation RPoKOpen with respect to algorithm VC.Ver of our
construction of Section 4.1.

Proof LetA be an adversary of the Knowledge Extractability of PoKOpen such that: ((C, I), state)←
A0(pp), A1(pp, (C, I), state) executes with V(pp, (C, I)) the protocol PoKOpen and the verifier ac-
cepts with a non-negligible probability ε. We will construct an extractor E that having access to
the internal state of A1 and on input (pp, (C, I), state), outputs a witness (y, πI) of RPoKOpen with
overwhelming probability and runs in (expected) polynomial time.

To prove knowledge extractability of PoKOpen we rely on the knowledge extractability of
PoProd∗. More precisely, given a PoKOpen execution between A and V, (ΓI , ∆I , πPoProd′), E con-
structs an adversary A′ = (A′0,A′1) of PoProd∗ Knowledge Extractability and, by using the input
and internal state ofA1, simulates an execution betweenA′ and V:A′0 outputs (((G, g), (A,B,UI , ΓI , ∆I)), state),
A′1 outputs tuple
(za, zb, (QA, QB, QC), ra, rb). It is obvious that if the initial execution is accepted by V so is the
PoProd∗ execution. From Knowledge Extractability of PoProd we know that there exists an extrac-
tor E ′ corresponding to A′1 that outputs (aI , bI) such that A = Γ aII ∧B = ∆bI

I ∧ UI = gaI ·bI . Since
UI is also computed from V it holds that UI = guI , unless with a negligible probability that A′
can find an x 6= uI such that gx = UI = guI (which implies finding a multiple of the order of G).
Therefore guI = UI = gaI ·bI and using the same argument we know that uI = aI · bI (unless with
negligible probability).
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So, E uses E ′ and gets a (aI , bI) such that A = Γ aII ∧ B = ∆bI
I ∧ UI = gaI ·bI . Then computes

uI ← PrimeProd(I) and works as follows: for each i ∈ I computes pi ← PrimeGen(i) and if pi | aI
then sets yi = 0, otherwise if pi | aI then sets yi = 1. It is clear that pi divides exactly one of
aI , bI since aI · bI = uI =

∏
i∈I pi :=

∏
i∈I PrimeGen(i) (unless with a negligible probability that

a collision happened in PrimeGen). Finally sets the subvector y = (yi)i∈I and πI = (ΓI , ∆I). As
stated above Γ aII = A ∧ ∆bI

I = B and also since V verifies the PoKOpen protocol it holds that
PoProd2.V(pp, (A ·B,Un), πprod) which means that VC.Ver(pp, C, I,y, πI) = 1.

As one can see, the expected running time of E is the (expected) time to obtain a successful
execution of the protocol plus the running time to obtain y plus the running time of E ′. To obtain
y it will need to make |I| divisibility checks which takes time Õ(|I|) plus |I| calls of PrimeGen,
which takes poly(λ) time. So overall the expected time is 1

ε + tE ′ + Õ(|I|) + poly(λ) = poly(λ). �

Non-interactive PoKOpen. A non-interactive version of the protocol PoKOpen after applying the
generalized Fiat-Shamir transform [BCS16] is shortly presented below:

PoKOpen.P(crs, (C, I), (y, πI))→ π: Parse crs := (G, g, g0, g1,PrimeGen, Un), C := ({A,B}, πprod),
πI := (ΓI , ∆I). Compute (aI , bI) ← PartndPrimeProd(I,y) and then uI ← PrimeProd(I) and
UI ← guI . Finally compute a proof πPoProd∗ ← PoProd∗.P((G, g), (A,B,UI , ΓI , ∆I), (aI , bI)).

Return π ← (ΓI , ∆I , πPoProd∗)

PoKOpen.V(crs, (C, I), πPoProd∗)→ b: Parse crs := (G, g, g0, g1,PrimeGen, Un), C := ({A,B}, πprod)
and π := (ΓI , ∆I , πPoProd∗). Compute uI ← PrimeProd(I) and then UI ← guI .

Return 1 if both PoProd2.V(crs, (A ·B,Un), πprod) and
PoProd∗.V((G, g), (A,B, ΓI , ∆I , UI), πPoProd∗) output 1, and 0 otherwise.

Remark 5.1 (Achieving sub-linear verification time). For ease of exposition we presented the case
of k = 1 in the above. For the case of arbitrary k one should prove knowledge of (aIj , bIj) such

that
∧k
j=1 Γ

aIj
Ij = Aj

∧k
j=1∆

bIj
Ij = B∧gaIj ·bIj = UI , where UI ← guI and uI ← PrimeProd(I). Using

the same technique as above the size of the AoK is O(k) (as is the commitment and the opening
proof). However, since the UI is the same for each j, the verification is done in O(|I|/k+λ ·k) time.
Interestingly, if k =

√
|I| the verification time gets O(

√
|I|), which is sublinear in the size of the

opening. Essentially, in cases where the opening queries are (approximately) fixed, one can trade a
larger commitment size O(

√
|I|) in order to achieve an argument of knowledge of subvectors that

has sublinear size and sublinear verification time O(
√
|I|).

Applications to Compact Proofs of Storage. We observe that the protocol PoKOpen for our
VC immediately implies a keyless proof of storage, or more precisely a proof of retrievable commit-
ment (PoRC) [Fis18] with non-black-box extraction. In a nutshell, a PoRC is a proof of retrievability
[JK07] of a committed file. In [Fis18] Fisch defines PoRC and proposes a construction based on
vector commitments – called VC-PoRC – which abstracts away a classical proof of retrievability
based on Merkle trees. A bit more in detail, in the VC-PoRC scheme the prover uses a VC to
commit to a file (seen as a vector of blocks); then at every audit the verifier chooses a challenge
by picking a set of λpos randomly chosen positions I = {i←$ [n]}, and the prover responds by
sending the subvector vI and an opening πI . Here λpos is a statistical parameter that governs the
probability of catching an adversary that deletes (or corrupts) a fraction of the file. For example, if
the file is first encoded using an erasure code with constant rate µ (i.e., one where a µ-fraction of

33



blocks suffices to decode and such that the encoded file has size roughly µ−1 · |F |), then an erasing
adversary has probability at most µλpos of passing an audit.

Our PoRC scheme is obtained by modifying the VC-PoRC of [Fis18] in such a way that the
VC opening is replaced by a PoKOpen AoK. This change saves the cost of sending the λpos vector
values, which gives us proofs of fixed size, 7 elements of G and 2 values of Z2λ . As drawback, our
scheme is not black-box extractable; strictly speaking, this means it is not a PoR in the sense of
[JK07] since the extractor does not exist in the real world.19

We note that another solution with fixed-size proofs can be achieved by using a SNARK to
prove knowledge of the VC openings so that the VC-PoRC verifier would accept. For the Merkle
tree VC, this means proving knowledge of λpos Merkle tree openings, which amounts to proving
correctness of about λpos log n hash computations. On a file of 220 bits with 128 spot-checks, this
solution would reduce proof size from 80KB to less than 1KB. But its concrete proving costs are
high (more than 20 minutes and hundreds of GB of RAM).

In contrast we can estimate our AoK to be generated in less than 20 seconds and of size roughly
2KB.

Since our PoRC scheme is a straightforward modification of Fisch’s VC-PoRC construction, a
complete description is omitted. We stress that our technical contribution here is the design of the
AoK.

Finally, we note that we can apply the observation of the previous remark in order to also
achieve verification time sub-linear in the size |I| of the challenged subvector at the expense of
slightly larger commitments (of size

√
|I|).

5.3 An AoK for commitments with common subvector

We note that a simple AND composition of two PoKOpen arguments of knowledge on two different
vector commitments can serve as a protocol proving knowledge of a common subvector of the two
vectors committed. More specifically given two vector commitments, C1, C2 on two different vector
v1,v2 respectively, one can prove knowledge of a common subvector vI with a succinct (constant
sized) argument without having to send the actual subvector. The two commitments should share
the same CRS crs ← VC.Setup(1λ,M) though they can have distinct specialized CRSs crsn1 and
crsn2 respectively (i.e., v1 and v2 may have different length). The underlying relation is:

RPoKComSub = {( (C1, C2, I), (vI , πI,1, πI,2) ) : VC.Ver?(crsn1 , C1, I,vI , πI,1) = 1

∧ VC.Ver?(crsn2 , C2, I,vI , πI,2) = 1}

As mentioned above, it is straightforward to show that an AND composition of PoKOpen on
different vector commitments C1 and C2 is a protocol for the above relation. That is the prover,
holding πI,1 := (ΓI,1, ∆I,1) and πI,2 := (ΓI,2, ∆I,2), first sends πI,1, πI,2 to the verifier and then

provides an argument of knowledge of (aI , bI) such that Γ aII,1 = A1∧∆bI
I,1 = B1∧gaI ·bI = UI ∧Γ aII,2 =

A2 ∧∆bI
I,2 = B2, where UI ← guI and uI ← PrimeProd(I).

5.4 A Succinct AoK for Commitment on Subvector

Here we present a protocol which succinctly proves that a commitment C ′ opens to an I-subvector
vI of the opening v of another commitment C. Since C ′ is a vector commitment vI should be a

19 The notion of PoR with non-black-box extractability is close to that of robust proof of data possession [ABC+07,
ABC+11].
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normal vector instead of a general subvector, i.e. I should be a set of consecutive positions starting
from 1, I = {1, . . . , n′} for some n′ ∈ N. We note though that both commitments should share the
same crs (but not the same specialized CRS). Below is the relation of the AoK that is parametrized
by the two specialized CRSs crsn ← VC.Specialize(crs, n) and crsn′ ← VC.Specialize(crs, n′) where
crs← VC.Setup(1λ,M) is common.

RPoKSubV = {( (C,C ′, I), (vI , πI , π
′
I) ) : VC.Ver?(crsn, C, I,vI , πI) = 1

∧ VC.Ver?(crsn′ , C
′, I,vI , π

′
I) = 1 ∧ |vI | = n′}

The idea of our protocol is that since the opening vI is the I-subvector of v one can provide a
succinct proof of knowledge of the opening at these positions using the PoKOpen protocol presented
above. However this is not enough as one should bind the opening proof with C ′. This concretely can
happen if one embeds a proof of product for the two components, A′ and B′, of C ′ inside the proof
of opening. More specifically the prover provides an opening proof πI := (ΓI , ∆I) then computes
(aI , bI) ← PartndPrimeProd(I,vI) and proves that gaI0 = A′ ∧ gbI1 = B′ ∧ Un′ = gaI ·bI ∧ Γ aII =

A ∧ ∆bI
I = B. Notice that the last three equalities correspond to the proof of opening protocol

and the first three to the proof of product. So a conjunction of PoKOpen and PoProd protocol
is sufficient. Lastly g, g0, g1 and Un′ are part of crsn′ and (A,B), (A′, B′) part of the C and C ′

commitments respectively.

Fig. 3. PoKSubV protocol

Prover input: ((crsn, crsn′), (C,C
′, I), (vI , πI). Verifier input: ((crsn, crsn′), (C,C

′, I)).

P→ V: πI := (ΓI ,∆I)

A conjuction of PoProd∗ and PoKOpen protocols between P(crsn, crsn′ , (C,C
′, I), (vI , πI)) and V(crsn, crsn′ , (C,C

′, I))
is executed:

V→ P: h←$G
P→ V: z := (za, zb) computed as za ← haI , zb ← hbI

V→ P: `←$Primes(λ) and α←$ [0, 2λ)

P→ V: π := ((QA, QB , Q
′
A, Q

′
B , QC), ra, rb) computed as follows

– (qa, qb, qab)← (baI/`c, bbI/`c, baIbI/`c)
– (ra, rb)← (aI mod `, bI mod `)

– (QA′ , QB′ , QA, QB , QC) := (gqa0 , g
qb
1 , Γ

qa
I hαqa ,∆

qb
I h

αqb , gqab)

V: Parse crsn := (G, g, g0, g1,PrimeGen, Un), crsn′ := (G, g, g0, g1,PrimeGen, Un′) and C := ({A,B}, πprod).
– Compute rc ← ra · rb mod `

– Output 1 iff ra, rb ∈ [`] ∧ Q`A′g
ra
0 = A′ ∧ Q`B′g

rb
1 = B′ ∧ Q`AΓ raI hαra = Azαa ∧ Q`B∆

rb
I h

αrb = Bzαb ∧ Q`Cgrc =
Un′ ∧ PoProd2.V(pp, (A ·B,Un), πprod)

We state the following theorem for the security of the protocol above.

Theorem 5.3. If PoProd∗ and PoKOpen are succinct arguments of knowledge for RPoProd∗ and
RPoKOpen, then protocol PoKSubV in Fig. 3 is a succinct argument of knowledge for relation RPoKSubV

with respect to algorithm VC.Ver of our construction of Section 4.1.

The intuition of the proof is that one proves knowledge of an opening I for C, namely that vI
is an I-subvector of C, where (aI , bI)← PartndPrimeProd(I,vI), with a normal proof of subvector
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opening. This is equivalent to VC.Ver?(crsn, C, I,vI , πI) = 1. Then in the same proof proves that
the accumulators of C ′ are composed by the same (aI , bI) which results to proving that C ′ commits
to vI . The last point is equivalent to VC.Ver?(crsn′ , C

′, I,vI , π
′
I) = 1 ∧ |vI | = n′.

6 Verifiable Decentralized Storage

In this section we introduce verifiable decentralized storage (VDS). We recall that in VDS there
are two types of parties (called nodes): the generic client nodes and the more specialized storage
nodes (a storage node can also act as a client node). The main goal of client nodes is to retrieve
some blocks (i.e., a portion) of a given file. The role of a storage node is instead to store a portion
of a file (or more files) and to answer to the retrieval queries of clients that are relevant to the
portion it stores. In terms of security, VDS guarantees that malicious storage nodes cannot send to
the clients blocks of the file that have been tampered with.

We refer the reader to Section 1.2 for a discussion on the motivation and requirements of VDS.
In Table 2 we summarize the main roles/capabilities of VDS nodes.

All Participating Nodes

Storage Nodes
Store current digest. Store a portion of the file.
Can retrieve blocks of the file and verify responses. Can answer and certify retrievals of subportions.
Can aggregate proofs they received. Can produce and publish updates to their view.
Can update the digest following updates from other nodes Can apply updates from other nodes efficiently.

Table 2. Roles in a decentralized verifiable database.

6.1 Syntax

Here we introduce the syntax of VDS. A VDS scheme is defined by a collection of algorithms that
are to be executed by either storage nodes or client nodes. The only exception is the Bootstrap
algorithm that is used to bootstrap the entire system and is assumed to be executed by a trusted
party, or to be implemented in a distributed fashion (which is easy if it is public coin).

The syntax of VDS reflects its goal: guaranteeing data integrity in a highly dynamic and de-
centralized setting (the file can change and expend/shrink often and no single node stores it all).
In VDS we create both parameters and an initial commitment for an empty file at the beginning
(through the probabilistic Bootstrap algorithm, which requires a trusted execution). From then on
this commitment is changed through incremental updates (of arbitrary size). Updating is divided
in two parts. A node can carry out an update it and “push” it to all the other nodes, i.e. providing
auxiliary information (that we call “update hint”) other nodes can use to update their local certifi-
cates (if affected by the change) and a new digest20. These operations are done respectively trough
StrgNode.PushUpdate and StrgNode.ApplyUpdate. Opening and verifying are where VC (with incre-
mental aggregation) and VDS share the same mechanism. To respond to a query, a storage node

20 One can also see this update hint as a certificate to check that a new digest is consistent with some changes. This
issue does not arise in our context as all but the Bootstrap algorithms are deterministic.
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can produce (possibly partial) proofs of opening, nodes can use algorithm StrgNode.Retrieve. If
these proofs needs to be aggregated, any node can use algorithm AggregateCertificates. Anyone can
verify a proof through ClntNode.VerRetrieve.

In VDS we model the files to be stored as vectors in some message space M (e.g., M = {0, 1}
or {0, 1}`), i.e., F = (F1, . . . ,FN ). Given a file F, we define a portion of it as a pair (I,FI) where FI
is essentially the I-subvector of F.

Definition 6.1 (Verifiable Decentralized Storage).
Algorithm to bootstrap the system:

Bootstrap(1λ)→ (pp, δ0, st0) Given the security parameter λ, the probabilistic bootstrap algorithm
outputs public parameters pp, initial digest δ0 and state st0. δ0 and st0 correspond to the digest
and storage node’s local state respectively for an empty file.
All the algorithms below implicitly take as input the public parameters pp.

The algorithms for storage nodes are:

StrgNode.AddStorage(δ, n, st, I,FI , Q,FQ, πQ)→ (st′, J,FJ) This algorithm allows a storage node to
add more blocks of a given file F to its local storage. Its first inputs are the local view of the storage
node that is defined by a digest δ, a length n, a state st, and a file portion (I,FI). Then it takes
as input a file subportion (Q,FQ) together with a valid retrieval certificate πQ. The output is an
updated view of the storage node, that is a new state st′ and file portion (J,FJ) := (I,FI)∪(Q,FQ).
Note that this algorithm can be used to enable anyone who holds a valid retrieval certificate for a
file portion FQ to become a storage node of such portion.

StrgNode.RmvStorage(δ, n, st, I,FI ,K)→ (st′, J,FJ) This algorithm allows a storage node to remove
blocks of a given file F from its local storage. Its first inputs are the local view of the storage node
that is defined by a digest δ, a length n, a state st, and a file portion (I,FI). Then it takes as
input a set of positions K ⊆ I, and the output is an updated view of the storage node, that is a
new state st′ and file portion (J,FJ) := (I,FI) \ (K, ·).

StrgNode.CreateFrom(δ, n, st, I,FI , J)→ (δ′, n′, st′, J,FJ , ΥJ) This algorithm allows a storage node
for a file subportion FI to create a new file containing only a subset FJ of FI along with the
corresponding digest δ′ and length n′ and a hint to help other nodes generate their own digest.
The algorithm takes as input the local view of the storage node, i.e., digest δ, length n, local state
st and file portion (I,FI), and a set of indices J ⊆ I. The algorithm returns a new digest δ′,
length n′, a local state st′, a file portion (J,FJ) and an advice Υ . This advice can be used by a
client holding only the former digest δ to obtain the new digest δ′, by using the ClntNode.GetCreate
algorithm described below.

StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆)→ (δ′, n′, st′, J,F′J , Υ∆) This algorithm allow a storage node
of a file subportion FI to perform an update on the file and to generate a corresponding digest,
length and local view, along with a hint other nodes can use to accordingly update their digests and
local views. The inputs include the local view of the storage node, i.e., digest δ, length n, local state
st and file portion (I,FI), an update operation op ∈ {mod, add, del} and an update description ∆.
The outputs are a new digest δ′ and length n′, a new local state st′, an updated file portion (J,F′J)
and an update hint Υ∆. If op = mod, then ∆ contains a file portion (K,F′K) such that K ⊆ I and
F′K represents the new content to be written in positions K. If op = add, it is also ∆ = (K,F′K)
except that K is a set of new (sequential) positions K ∩ I = ∅ that start from n+ 1 (and end to
n + |K|). If op = del, then ∆ only contains a set of positions K ⊆ I, which are the ones to be
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deleted (and are ought to be the |K| last sequential positions). The proof Υ∆ can be used by client
nodes holding δ in order to check the validity of the new digest δ′, and by other storage nodes,
holding additionally the length n, in order to check the validity of the changes and to update their
local views accordingly.

StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆)→ (b, δ′, n′, st′, J,F′J) This algorithm allows a stor-
age node to incorporate changes in a file pushed by another node. The inputs include the local
view of the storage node, i.e., digest δ, length n, local state st and file portion (I,FI), an update
operation op ∈ {mod, add, del}, an update description ∆ and an update hint Υ∆. The algorithm
returns a bit b (to accept/reject the update) and (if b = 1) a new digest δ′, a new length n′, a new
(local) state st′ and an updated file subportion (J,F′J). If op ∈ {mod, add} we have that J = I,
i.e., the node keeps storing the same indices; if op = del then J is I minus the deleted indices.

StrgNode.Retrieve(δ, n, st, I,FI , Q)→ (FQ, πQ) This algorithm allows a storage node to answer a
retrieval query for blocks with indices in Q and to create a certificate vouching for the correctness
of the returned blocks. The inputs include the local view of the storage node, i.e., digest δ, length
n local state st and file portion (I,FI), and a set of indices Q. The output is a file portion FQ and
a retrieval certificate πQ.

The algorithms for clients nodes are:

ClntNode.GetCreate(δ, J, ΥJ)→ (b, δ′) On input a digest δ, a set of indices J and a creation advice
ΥJ , this algorithm returns a bit b (to accept/reject) and (if b = 1) a new digest δ′ that corresponds
to a file F′ that is the prefix with indices J of the file represented by digest δ.

ClntNode.ApplyUpdate(δ, op, ∆, Υ∆)→ (b, δ′) On input a digest δ, an update operation
op ∈ {mod, add, del}, an update description ∆ and an update hint Υ∆, it returns a bit b (to
accept/reject update) and (if b = 1) a new digest δ′.

ClntNode.VerRetrieve(δ,Q,FQ, πQ)→ b On input a digest δ, a file portion (Q,FQ) and a certificate
πQ, this algorithm accepts (i.e. it outputs 1) only if πQ is a valid proof that δ corresponds to a
file F with length n of which FQ is the portion corresponding to indices Q.

AggregateCertificates(δ, (I,FI , πI), (J,FJ , πJ))→ πK On input a digest δ and two certificated re-
trieval outputs (I,FI , πI) and (J,FJ , πJ), this algorithm aggregates their certificates into a single
certificate πK (with K := I ∪ J). In a running VDS system, this algorithm can be used by any
node to aggregate two (or more) incoming certified data blocks into a single certified data block.

Remark 6.1 (On CreateFrom). For completeness, our VDS syntax also includes the functionalitis
(StrgNode.CreateFrom,ClntNode.GetCreate) that allow a storage node to initialize storage (and cor-
responding digest) for a new file that is a subset of an existing one, and a client node to verify
such resulting digest. Although this feature can be interesting in some application scenarios (see
the Introduction), we still see it as an extra feature that may or may not be satisfied by a VDS
construction.

6.2 Correctness and Efficiency of VDS

Intuitively, we say that a VDS scheme is efficient if running VDS has a “small” overhead in terms
of the storage required by all the nodes and the bandwidth to transmit certificates. More formally,
a VDS scheme is said efficient if there is a fixed polynomial p(·) such that p(λ, log n) (with λ the
security parameter and n the length of the file) is a bound for all certificates and advices generated
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by the VDS algorithms as well as for digests δ and the local state st of storage nodes. Note that
combining this bound with the requirement that all algorithms are polynomial time in their input,
we also get that no VDS algorithm can run linearly in the size of the file (except in the trivial case
that the file is processed in one shot, e.g., in the first StrgNode.AddStorage).

Efficiency essentially models that running VDS is cost-effective for all the nodes in the sense
that it does not require them to store significantly more data then they would have to store
without. Notice that by requiring certificates to have a fixed size implies that they do not grow
with aggregation.

For correctness, intuitively speaking, we want that for any (valid) evolution of the system in
which the VDS algorithms are honestly executed we get that any storage node storing a portion
of a file F can successfully convince a client holding a digest of F about retrieval of any portion
of F. And such (intuitive notion of) correctness is also preserved when updates, aggregations, or
creations of new files are done.

Turning this intuition into a formal correctness definition turned out to be nontrivial. This is
due to the distributed nature of this primitive and the fact that there could be many possible
ways in which, at the time of answering a retrieval query, a storage node may have reached its
state starting from the empty node state. The basic idea of our definition is that an empty node is
“valid”, and then any “valid” storage node that runs StrgNode.PushUpdate “transfers” such validity
to both itself and to other nodes that apply such update. A bit more precisely, we model “validity”
as the ability to correctly certify retrievals of any subsets of the stored portion. A formal definition
correctness follows. To begin with, we define the notion of validity for the view of a storage node.

Definition 6.2 (Validity of storage node’s view). Let pp be public parameters as generated
by Bootstrap. We say that a local view (δ, n, st, I,FI) of a storage node is valid if ∀Q ⊆ I:

ClntNode.VerRetrieve(δ,Q,FQ, πQ) = 1

where (FQ, πQ)← StrgNode.Retrieve(δ, n, st, I,FI , Q)

Remark 6.2. By Definition 6.2 the output of a bootstrapping algorithm (pp, δ0, st0)← Bootstrap(1λ)
is always such that (pp, δ0, 0, st0, ∅, ∅) is valid. This provides a “base case” for Definition 6.4.

Second, we define the notion of admissible update, which intuitively models when a given update
can be meaningfully processed, locally, by a storage node.

Definition 6.3 (Admissible Update). An update (op, ∆) is admissible for (n, I,FI) if:

– for op = mod, K ⊆ I and |F′K | = |K|, where ∆ := (K,F′K).

– for op = add, K∩I = ∅ and |F′K | = |K| and K = {n+1, n+2, . . . , n+ |K|}, where ∆ := (K,F′K).

– for op = del, K ⊆ I and K = {n− |K|+ 1, . . . , n}, where ∆ := K.

In words, the above definition formalizes that: to push a modification at positions K, the storage
node must store those positions; to push an addition, the new positions K must extend the currently
stored length of the file; to push a deletion of position K, the storage node must store data of the
positions to be deleted and those positions must also be the last |K| positions of the currently
stored file (i.e., the file length is reduced).
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Definition 6.4 (Correctness of VDS). A VDS scheme VDS is correct if for all honestly gen-
erated parameters (pp, δ0, st0)← Bootstrap(1λ) and any storage node’s local view (δ, n, st, I,FI) that
is valid, the following conditions hold.
Update Correctness. For any update (op, ∆) that is admissible for (n, I,FI) and for any (δ′, n′,
st′, J,F′J , Υ∆)← StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆):

1. (pp, δ′, n′, st′, J,F′J) is valid;

2. for any valid (δ, n, sts, Is,FIs), if (bs, δ
′
s, n
′, st′s, I

′
s,F
′
s)←StrgNode.ApplyUpdate(δ, n, sts, Is,FIs , op,

∆, Υ∆) then we have: bs = 1, δ′s = δ′, n′s = n′, and (δ′s, n
′
s, st′s, I

′
s,F
′
s) is valid;

3. if (bc, δ
′
c)← ClntNode.ApplyUpdate(δ, op, ∆, Υ∆), then δ′c = δ′ and bc = 1.

Add-Storage Correctness. For any (Q,FQ, πQ) such that
ClntNode.VerRetrieve(δ,Q,FQ, πQ) = 1, if (st′, J,FJ) ← StrgNode.AddStorage(δ, st, I,F, Q,FQ, πQ)
then (δ, n, st′, J,FJ) is valid.
Remove-Storage Correctness. For any K ⊆ I,
if (st′, J,FJ)← StrgNode.RmvStorage(δ, st, I,F,K) then (δ, n, st′, J,FJ) is valid.
Create Correctness. For any J ⊆ I, if (δ′, n′, st′, J,FJ , ΥJ) is output of
StrgNode.CreateFrom(δ, n, st, I,FI , J) and (b, δ′′) ← ClntNode.GetCreate(δ, J, ΥJ), then b = 1, n′ =
|J |, δ′′ = δ′ and (pp, δ′, n′, st′, J,FJ) is valid.
Aggregate Correctness. For any pair of triples (I,FI , πI) and (J,FJ , πJ) such that
ClntNode.VerRetrieve(δ, I,FI , πI) = 1 and ClntNode.VerRetrieve(δ, J,FJ , πJ) = 1,
if πK ← AggregateCertificates((I,FI , πI), (J,FJ , πJ)) and (K,FK) := (I,FI) ∪ (J,FJ), then
ClntNode.VerRetrieve(δ,K,FK , πK) = 1.

Remark 6.3 (Relation with Updatable VCs). Our notion of VDS is very close to the notion of
updatable VCs [CF13] extended to support subvector openings and incremental aggregation. On
a syntactical level, in comparison to updatable VCs, our VDS notion makes more evident the
decentralized nature of the primitive, which is reflected in the definition of our algorithms where
for example it is clear that no one ever needs to store/know the entire file. One major difference
is that in VDS the public parameters must necessarily be short since no node can run linearly in
the size of the file (nor it can afford such storage), whereas in VCs this may not be necessarily
the case. Another difference is that in updatable VCs [CF13] updates can be received without any
hint, which is instead the case in VDS. Finally, it is interesting to note that, as of today, there
exists no VC scheme that is updatable, incrementally aggregatable and with subvector openings,
that enjoys short parameters and has the required short verification time. So, in a way, our two
VDS realizations show how to bypass this barrier of updatable VC by moving to a slightly different
(and practically motivated) model.

6.3 Security of VDS

In this section we define the security of VDS schemes. Intuitively speaking, we require that a
malicious storage node (or a coalition of them) cannot convince a client of a false data block in a
retrieval query. To formalize this, we let the adversary fully choose a history of the VDS system
that starts from the empty state and consists of a sequence of steps, where each step is either an
update (addition, deletion, modification) or a creation (from an existing file) and is accompanied
by an advice. A client’s digest δ is updated following such history and using the adversarial advices,
and similarly one gets a file F corresponding to such digest. At this point, the adversary’s goal is
to provide a tuple (Q, πQ,F

∗
Q) that is accepted by a client with digest δ but where F∗Q 6= FQ.
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Definition 6.5 (History for Decentralized Storage). Let VDS be a verifiable decentralized
storage scheme. A history for VDS is a sequence H = (opi, ∆i, Υ i∆)i∈[`] of tuples, where opi is either
in {mod, add, del} (i.e., it is an update of the file), or opi = cfrom (i.e., it is the creation of a new
file related to the current one), in which case ∆i is a set of indices. In order to define valid histories
we define the function EvalHistory(pp, δ0, st0,H) as follows
EvalHistory(pp, δ0, st0,H)

F0 ← ∅; b← 1

for i ∈ [`]

Fi ← FileChange(Fi−1, op
i,∆i)

if opi ∈ {mod, add, del} then

(bi, δi)← ClntNode.ApplyUpdate(δi−1, op
i,∆i, Υ i∆)

elseif opi = cfrom then

(bi, δi)← ClntNode.GetCreate(δi−1,∆
i, Υ i∆)

endif

b← b ∧ bi
endfor

return (b, δ`,F`)

FileChange(F, op, ∆)

if op ∈ {mod, add} parse ∆ = (K,F′K)

∀i ∈ K : F∗i ← F′i;∀i ∈ [|F|] \K : F∗i ← Fi,

elseif op = del parse ∆ = K

∀i ∈ [|F|] \K : F∗i ← Fi,

elseif op = cfrom parse ∆ = K

∀i ∈ K : F∗i ← Fi,

endif return F∗

We say that a history H is valid w.r.t. public parameters pp and initial digest δ0 and state st0

if EvalHistory(pp, δ0, st0,H) returns bit b = 1.

Definition 6.6 (Security for Verifiable Decentralized Storage). Consider the experiment
VDS-SecurityAVDS(λ) below. Then we say that a VDS scheme VDS is secure if for all PPT A we
have Pr[VDS-SecurityAVDS(λ) = 1] ∈ negl(λ).

VDS-SecurityAVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

(H, Q,F∗Q, π∗)← A(pp, δ0, st0)

(b, δ,F)← EvalHistory(pp, δ0, st0,H)

b← b ∧ F∗Q 6= FQ∧
ClntNode.VerRetrieve(pp, δ, Q,F∗Q, π

∗)

return b

7 Our Realizations of VDS in Hidden-Order Groups

In this section, we present two constructions of VDS that work in hidden-order groups. The two
schemes are presented in Sections 7.1 and 7.2 respectively, and we discuss a comparison in Section
7.3.
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7.1 Our First VDS Construction

We build our first scheme by extending the techniques used to construct our VC scheme from
Section 4.1. In particular, we start from a modified version of our VC that achieves a weaker
position binding property (in which the adversary reveals the full vector, yet its goal is to find two
distinct openings for the same position) and then show how to make this scheme dynamic (i.e., to
change vector values or its length) and fully distributed (i.e., updates can be performed without
knowing the entire vector).

Preliminaries. We begin by describing the simplified version of our VC, considering the case of
k = 1, which fits best our V DS construction, regarding efficiency and communication complexity.
For convenience of the reader we describe again shortly the algorithms and functions (and variations
of them) from sections 4.1 and 4.1 that are used in the scheme (for more details we refer to the
corresponding section):

– PrimeGen, a deterministic collision resistant function that maps integers to primes.

– PartndPrimeProd(I,y) → (aI , bI): given a set of indices I = {i1, . . . , im} ⊆ [n] and a vector

y ∈Mm, the function computes (aI , bI) :=
(∏m

l=1:yl=0 pil ,
∏m
l=1:yl=1 pil

)
, where pi ← PrimeGen(i)

for all i ∈ N.

VC.Setup(1λ, {0, 1}k)→ crs := (G, g, g0, g1,PrimeGen).

VC.Com′(crs,v)→ C compute (a, b) ← PartndPrimeProd([n],v), where n ← |v|; next compute
A = ga0 and B = gb1. Return C := (C?, n) := ((A,B), |v|).

VC.Ver′(crs, C, I,y, πI)→ b compute (aI , bI)← PartndPrimeProd(I,y), and then parse πI := (ΓI , ∆I)
and return b← (Γ aII = A) ∧ (∆bI

I = B).

VC.Disagg′(crs, I,vI , πI ,K)→ πK let L := I \ K, and vL be the subvector of vI at positions in
L. Then compute aL, bL ← PartndPrimeProd(L,vL) parse πI := (ΓI , ∆I) and set (ΓK , ∆K) ←
(Γ aLI , ∆bL

I ). Return πK ← (ΓK , ∆K).

VC.Agg′(crs, (I,vI , πI), (J,vJ , πJ))→ πK :
1. Let L := I∩J . If L 6= ∅, set I ′ := I\L and compute πI′ ← VC.Disagg(crs, I,vI , πI , I

′); otherwise
let πI′ = πI .

2. Compute (aI′ , bI′)← PartndPrimeProd(I,vI′) and {aJ , bJ} ← PartndPrimeProd(J,vJ).

3. Parse πI′ := (ΓI′ , ∆I′), πJ := (ΓJ , ∆J) and compute ΓK ← ShamirTrick(ΓI′ , ΓJ , aI′ , aJ) and
∆K ← ShamirTrick(∆I′ , ∆J , bI′ , bJ)

4. Return πK ← (ΓK , ∆K)

Finally, let PoKSubV′ be the same protocol as in section 5 but adjusted according to the above
algorithms. That is the CRS of is simply crs instead of the two specialized CRSs. Furthermore,
since C is not accompanied with PoProd2 the verifier does not have to check the validity of it. The
rest of the protocol remains the same and the underlying relation is:

RPoKSubV′ = {( (C,C ′, I), (vI , πI , π
′
I) ) : VC.Ver′(crs, C, I,vI , πI) = 1

∧ VC.Ver′(crs, C ′, I,vI , π
′
I) = 1 ∧ |vI | = n′}

Finally, we note that for simplicity in the following we abuse the notation for Shamir’s trick by
writing e.g. (Γ ′I , ∆

′
I) ←

(
ShamirTrick(ΓI , ΓK ,FI ,FK)a

′
K , ShamirTrick(∆I , ∆K ,FI ,FK)b

′
K

)
in-

stead of writing, more precisely, (Γ ′I , ∆
′
I)←

(
ShamirTrick(ΓI , ΓK , aI , aK)a

′
K , ShamirTrick(∆I , ∆K , bI , bK)b

′
K

)
.
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Our scheme VDS1. The algorithms of the VDS scheme VDS1 are the following:21

Bootstrap(1λ)→ (pp, δ0, n0, st0) Execute VC.Setup(1λ, {0, 1}k) and get pp := (G, g, g0, g1,PrimeGen).
Set n0 ← 0, δ0 ← ((g0, g1), n0) and st0 ← (g0, g1).

The algorithms for storage nodes are:

StrgNode.AddStorage(δ, n, st, I,FI , Q,FQ, πQ)→ (st′, J,FJ) If I = ∅ then set st′ ← πQ, otherwise
st := πI . Then compute st′ ← VC.Agg′(pp, (I,FI , πI), (Q,FQ, πQ)). The computation of J and FJ
is straightforward: (J,FJ)← (I ∪Q,FI ∪ FQ).

StrgNode.RmvStorage(δ, n, st, I,FI ,K)→ (st′, J,FJ) Compute J ← I \ K and the corresponding
FJ . Then πJ ← VC.Disagg′(pp, I,FI , πI , J) and set st′ ← πJ .

StrgNode.CreateFrom(δ, n, st, I,FI , J)→ (δ′, n′, st′, J,FJ , ΥJ) The new digest δ′ of FJ is computed
with the commitment algorithm δ′ ← VC.Com′(pp,FJ). The new length gets n′ ← |J |. The
previous local state is st = πI and the new local state gets st′ ← VC.Disagg(pp, I,FI , πI , J).
Finally, for ΥJ it computes an argument of knowledge of subvector (see section 5), πPoKSubV′ ←
PoKSubV′.P(pp, (δ, δ′, J), (vJ , πI)) and sets ΥJ ← (δ′, πPoKSubV′).

StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆)→ (δ′, n′, st′, J,F′J , Υ∆) The algorithm works according to
the type of update operation op:
– op = mod: parse ∆ := (K,F′K) and st := πI . Execute πK ← VC.Disagg′(pp, I,FI , πI ,K)

and parse πK := (ΓK , ∆K). Then compute (a′K , b
′
K) ← PartndPrimeProd(K,F′K) and set δ′ ←

((Γ
a′K
K , ∆

b′K
K ), n) (i.e., n′ = n remains the same). st′ is the new opening of I, π′I ← πI , which

is the same so the local state does not change st′ ← st. Since it is a modification operation
(J,F′J) ← (I,F′I), where F′I is simply the modified file F′I = (FI \ FK) ∪ F′K . Finally, set Υ∆ ←
(FK , πK).

– op = add: parse ∆ := (K,F′K), st := πI , and the old digest δ := ((A,B), n). Then compute
(a′K , b

′
K)← PartndPrimeProd(K,F′K) and the new digest gets δ′ ← ((Aa

′
K , Bb′K ), n′) where n′ ←

n + |K|. The new state refers to the new file subportion (J,F′J) ← (I ∪K,FI ∪ FK), st′ := π′J ,
and is the same as the old one st′ ← st since πI = π′J . Finally, set Υ∆ ← ∅.

– op = del: parse ∆ := K and st := πI . Execute πK ← VC.Disagg′(pp, I,FI , πI ,K) and parse
πK := (ΓK , ∆K). Then the new digest is δ′ ← ((ΓK , ∆K), n′) where n′ ← n − |K|. The new
state refers to the new file subportion (J,F′J)← (I \K,FI \FK)) and is the same as the old one
st′ ← st since πI = π′J . Finally set Υ∆ ← (FK , πK).

StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆)→ (b, δ′, n′, st′, J,F′J) Again, it works according to
the type of update operation op:
– op = mod: parse ∆ := (K,F′K), st := πI and Υ∆ := (FK , πK). Compute acceptance bit
b ← VC.Ver′(pp, δ,K,FK , πK). Then, if b = 1 parse πK := (ΓK , ∆K), compute (a′K , b

′
K) ←

PartndPrimeProd(K,F′K) and set δ′ ← ((Γ
a′K
K , ∆

b′K
K ), n′) where n′ ← n. It is clear that in the case

of a modify operation (J,F′J)← (I,F′I), where F′I is simply the modified file F′I = (FI \FK)∪F′K .
For the new local state st′ that we discern three cases:
• I ∩K = ∅: then compute

(Γ ′I , ∆
′
I)←

(
ShamirTrick(ΓI , ΓK ,FI ,FK)a

′
K , ShamirTrick(∆I , ∆K ,FI ,FK)b

′
K

)
and set st′ ←

π′I := (Γ ′I , ∆
′
I).

21 Since the scheme has several parts in common with the above VC algorithms, we use those algorithms as shorthands
in the description.

43



• I ∩K = K: compute (Γ ′I , ∆
′
I)← (ΓI , ∆I) and set st′ ← π′I := (Γ ′I , ∆

′
I).

• For the case where neither I ∩ K = ∅ nor I ∩ K = K, i.e. I ∩ K = L /∈ {K, ∅} we parti-
tion K as K = L ∪ L̄ and apply two sequential updates to πI , one with L′ (s.t. I ∩ L̄ = ∅)
and one with L (s.t. I∩L = L). That is, compute (a′

L̄
, b′
L̄

)← PartndPrimeProd(L̄,F′
L̄

) and then

(Γ ′I , ∆
′
I)←

(
ShamirTrick(ΓI , ΓL̄,FI ,FL̄)a

′
L̄ , ShamirTrick(∆I , ∆L̄,FI ,FL̄)b

′
L̄

)
. Then (Γ ′′I , ∆

′′
I )←

(Γ ′I , ∆
′
I). Finally, set st′ ← (Γ ′′I , ∆

′′
I ). Essentially, since the case of I ∩L = L doesn’t cause any

change to the state, computationally it is as a single update.

– op = add: parse ∆ := (K,F′K), st := πI and the old digest as δ := ((A,B), n). Set b = 1 iff
K = {n+ 1, . . . , n+ |K|}. Then if b = 1 compute (a′K , b

′
K)← PartndPrimeProd(K,F′K) and the

new digest becomes δ′ ← ((Aa
′
K , Bb′K ), n′) where n′ ← n + |K|. For the new local state, first

parse the old one st := πI := (ΓI , ∆I) and the new one gets st′ ← π′I where π′I ← (Γ
a′K
I , ∆

b′K
I ).

Finally set (J,F′J)← (I,FI), i.e., the file remains unchanged.

– op = del: parse ∆ := K, st := πI , and Υ∆ := (FK , πK). Set b = 1 iff K = {n− |K|+ 1, . . . , n}∧
VC.Ver′(pp, δ,K,FK , πK) = 1. Then if b = 1 sets δ′ ← ((ΓK , ∆K), n′) where n′ ← n − |K|. For
the new local state, similarly to the modify operation, we discern three cases. If I ∩K = ∅ then
(Γ ′I , ∆

′
I)← (ShamirTrick(ΓI , ΓK ,FI ,FK) , ShamirTrick(∆I , ∆K ,FI ,FK)) and set st′ ← πK :=

(Γ ′I , ∆
′
I); else if I ∩K = K st′ = st, else if I ∩K = L then (let L̄ = K \ L)

(Γ ′I , ∆
′
I) ← (ShamirTrick(ΓI , ΓL̄,FI ,FL̄) , ShamirTrick(∆I , ∆L̄,FI ,FL̄)) and set st′ ← πI :=

(Γ ′I , ∆
′
I) (similarly to the op = mod case). Finally (J,F′J)← (I \ L,FI \ FL).

StrgNode.Retrieve(δ, n, st, I,FI , Q)→ (FQ, πQ) Compute both portion FQ ⊆ FI as well as proof
πQ ← VC.Disagg′(pp, I,FI , st, Q).

The algorithms for client nodes are:

ClntNode.GetCreate(δ, J, ΥJ)→ (b, δ′) Parse ΥJ := (δ′, πPoKSubV′), set n′ = |J | and output b ←
PoKSubV′.V(pp, (δ, δ′, J), πJ) ∧ J = {1, . . . , |J |} and δ′.

ClntNode.VerRetrieve(δ,Q,FQ, πQ)→ b Output b← VC.Ver′(pp, δ, Q,FQ, πQ)

ClntNode.ApplyUpdate(δ, op, ∆, Υ∆)→ (b, δ′) This algorithm is almost identical to the first part of
the Storage Node algorithm StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆). The difference is that
it executes only the parts that are related to the output of b and δ.

AggregateCertificates(δ, (I,FI , πI), (J,FJ , πJ))→ πK
Return πK ← VC.Agg′(pp, (I,FI , πI), (J,FJ , πJ)).

Correctness. Here we state and prove the correctness of VDS1.

Theorem 7.1. The scheme VDS1 presented above is a correct verifiable decentralized storage scheme.

Proof In the following we will always assume that st := (st1, st2) and δ := (δ?, n) := ((δ1, δ2), n).
Furthermore, whenever (aI , bI) appear, we assume that they are the outputs of PartndPrimeProd(I,FI),
for each set of indices I. Finally for each set of indices I we assume πI := (ΓI , ∆I).

First we note that in our construction it is sufficient for a local view (pp, δ, n, st, I,FI) of a
storage node to be valid that
ClntNode.VerRetrieve(δ, I, StrgNode.Retrieve(δ, n, st, I,FI , I)) = 1 holds. More concretely this trans-

lates to staI1 = δ1∧stbI2 = δ2 and due to the correctness of disaggregation property st
′aQ
1 = δ1∧st

′bQ
2 =

δ2 holds where st′ ← StrgNode.Retrieve(δ, n, st, I,FI , Q) for each Q ⊆ I. To put things clear, a local
view of a storage node (pp, δ, n, st, I,FI) is valid if staI1 = δ1 ∧ stbI2 = δ2.
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Let (pp, δ, n, st, I,FI) be a valid local view of a storage node:
Update Correctness. Let (op, ∆) be an admissible update for (I,FI , n) and (δ′, n′, st′, J,F′J , Υ∆)
be the output of StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆). We discern three cases depending on
the type of update:

– op = mod:

1. According to our construction δ?
′

= (Γ
a′K
K , ∆

b′K
K ), where

(ΓK , ∆K) = (Γ
aI\K
I , ∆

bI\K
I ) = (st

aI
aK
1 , st

bI
bK
2 ) (due to VC.Disagg′). So δ′ = (st

aI
aK

a′K
1 , st

bI
bK

b′K
2 ). Fur-

thermore st′ = st and J = I, so

(st
′a′J
1 , st

′b′J
1 ) = (st

aI
aK

a′K
1 , st

bI
bK

b′K
2 ) = (δ′1, δ

′
2)

2. Let (δ, n, sts, Is,FIs) be valid and (bs, δ
′
s, n
′
s, st′s, Js,F

′
Js

) be the output of
StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆). bs = 1, δ′s = δ′ and n′s = n′ come from inspection.
If I ∩K = ∅ then
(st′s,1, st′s,2)←

(
ShamirTrick(sts,1, ΓK ,FI ,FK)a

′
K , ShamirTrick(sts,2, ∆K ,FI ,FK)b

′
K

)
=

= (st

a′K
aK
s,1 , st

b′K
bK
s,2 ) and (a′I , b

′
I) = (aI , bI) remains the same. So

(st
′a′I
s,1 , st

′b′I
s,2) = (st

a′K
aK

aI

s,1 , st

b′K
bK

bI

s,2 ) = (δs,1, δs,2)

If I ∩K = K then sts doesn’t change and (a′I , b
′
I) = ( aIaK a

′
K ,

bI
bK
b′K), hence

(st
′a′I
s,1 , st

′b′I
s,2) = (δ′s,1, δ

′
s,2)

The validity of (pp, δ′s, n
′
s, st′s, Js,F

′
Js

) in the case of I ∩K = L /∈ {∅,K} is covered by the above
two, since it essentially is a sequence of the two above cases.

3. Let (bc, δc) be the output of ClntNode.ApplyUpdate(δ, op, ∆, Υ∆). It follows directly from the
definition of ClntNode.ApplyUpdate (and its similarity with StrgNode.ApplyUpdate) that bc =
bs = 1 and δ′c = δ′s = δ′.

– op = add:

1. According to our construction δ?
′

= (δ
a′K
1 , δ

b′K
2 ) and st′ = st. Also, J = I ∪ K and (a′J , b

′
J) =

(aIa
′
K , bIb

′
K) and so

(st
′a′J
1 , st

′b′J
1 ) = (st

aIa
′
K

1 , st
bIb
′
K

2 ) = (δ
a′K
1 , δ

b′K
2 ) = (δ′1, δ

′
2)

2. Let (δ, n, sts, Is,FIs) be valid and (bs, δ
′
s, n
′
s, st′s, Js,F

′
Js

) be the output of
StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆). bs = 1, δ′s = δ′ and n′s = n′ come from inspection.

Also J = I so (a′J , b
′
J) = (aI , bI). st′ = (st

a′K
1 , st

b′K
2 ) and δ?

′
= (δ

a′K
1 , δ

b′K
2 ) so

(st
′a′J
1 , st

′b′J
1 ) = (st

a′KaI
1 , st

b′KbI
2 ) = (δ′1, δ

′
1)

3. Let (bc, δc) be the output of ClntNode.ApplyUpdate(δ, op, ∆, Υ∆). Again correctness comes di-
rectly from the definition of ClntNode.ApplyUpdate.

– op = del:
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1. According to our construction (δ′1, δ
′
2) = (ΓK , ∆K) = (δ

1
aK
1 , δ

1
bK
2 ), st′ = st and J = I \ K.

Furthermore, (a′J , b
′
J) = ( aIaK ,

bI
bK

)

(st
′a′J
1 , st

′b′J
1 ) = (st

aI
aK
1 , st

bI
bK
2 ) = (δ

1
aK
1 , δ

1
bK
2 ) = (δ′1, δ

′
2)

2. Let (δ, n, sts, Is,FIs) be valid and (bs, δ
′
s, n
′
s, st′s, Js,F

′
Js

) be the output of
StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆). bs = 1, δ′s = δ′ and n′s = n′ come from inspection.
Also let L = I ∩K then J = I \ L and if L̄ = K \ L then

(st′1, st′2)← (ShamirTrick(st1, ΓL̄,FI ,FL̄) , ShamirTrick(st2, ∆L̄,FI ,FL̄)) = (st
1
aL̄
1 , st

1
bL̄
2 )

(st
′a′J
1 , st

′b′J
1 ) = (st

aJ
aL̄
1 , st

bJ
bL̄
2 ) = (st

aI/aL
aK/aL
1 , st

bI/bL
bK/bL
1 ) = (δ

1
aK
1 , δ

1
bK
2 ) = (δ′1, δ

′
2)

3. Let (bc, δc) be the output of ClntNode.ApplyUpdate(δ, op, ∆, Υ∆). bc = bs = 1 and δ′c = δ′s = δ′

from inspection.

Add Storage Correctness. It comes directly from aggregation correctness of VC.Agg′ (see
section 4.1).

Remove Storage Correctness. It comes directly from disaggregation correctness of VC.Disagg′

(see section 4.1).

Create Correctness. Let J ⊆ I and (δ′, n′, st′, J,FJ , ΥJ) be the output of
StrgNode.CreateFrom(δ, n, st, I,FI , J) and (b, δ′′) the output of ClntNode.GetCreate(δ, J, ΥJ), then
n′ = |J | comes from inspection of StrgNode.CreateFrom, δ′′ = δ′ comes from inspection of
ClntNode.GetCreate algorithm and validity of (pp, δ′, n′, st′, J,FJ) comes from correctness of VC.Com′

and VC.Agg. Finally, b = 1 comes from correctness of PoKSubV′ protocol.

Aggregate Correctness. It comes directly from aggregation correctness of VC.Agg′ (see sec-
tion 4.1).

�

Security. Below we state and prove the security of our VDS1 scheme.

Theorem 7.2 (Security). Let G ← Ggen(1λ) be a hidden order group where the strong RSA
assumption holds, then the scheme VDS1 presented above is a secure Verifiable Decentralized Storage
scheme in the generic group model.

Proof First we observe that in our scheme, for every valid history H, with Bootstrap(1λ) →
(pp, δ0, st0) := ((G, g, g0, g1,PrimeGen) , ((g0, g1), 0) , (g0, g1)), the digest that arises is the same
as a commitment of the file with VC.Com′. Concretely, let (b, δ,F) ← EvalHistory(pp, δ0, st0,H)
then if b = 1 it holds that δ = VC.Com′(pp,F) or δ? = (δ1, δ2) = (ga0 , g

b
1), where (a, b) ←

PartndPrimeProd([|F|],F). Particularly this is central to our construction and one can validate that
it holds by inspecting all the algorithms that alter the digest.

To prove the theorem we use a hybrid argument. We start by defining the game G0 as the actual
V DS security game of Definition 6.6, and our goal is to prove that for any PPT A, Pr[G0 = 1] ∈
negl(λ).

Game G0:
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G0 = VDS-SecurityAVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

(H, Q,F∗Q, π∗)← A(pp, δ0, st0)

(b, δ,F)← EvalHistory(pp, δ0, st0,H)

b← b ∧ F∗Q 6= FQ∧
ClntNode.VerRetrieve(pp, δ, Q,F∗Q, π

∗)

return b

EvalHistory(pp, δ0, st0,H)

F0 ← ∅; b← 1

for i ∈ [`]

Fi ← FileChange(Fi−1, op
i,∆i)

if opi ∈ {mod, add, del} then

(bi, δi)← ClntNode.ApplyUpdate(δi−1, op
i,∆i, Υ i∆)

elseif opi = cfrom then

(bi, δi)← ClntNode.GetCreate(δi−1,∆
i, Υ i∆)

endif

b← b ∧ bi
endfor

return (b, δ`,F`)

Recall that H = (opi, ∆i, Υ i∆)i∈[`] where:

– for opi = mod: ∆i := (Ki,Fi
Ki), Υ

i
∆ := (Fi−1

Ki , π
i−1
Ki ) and ClntNode.ApplyUpdate(δi−1, opi, ∆i, Υ i∆)

outputs bi = 1 if VC.Ver′(pp, δi−1,Ki,Fi−1
Ki , π

i−1
Ki ) = 1 or (Γ

aKi
Ki = δi−1

1 ) ∧ (∆
bKi
Ki = δi−1

2 ).

– for opi = add: ∆i := (K,Fi
Ki), Υ

i
∆ := ∅ and ClntNode.ApplyUpdate(δi−1, opi, ∆i, Υ i∆) outputs

bi = 1 if Ki = {ni−1 + 1, . . . , ni−1 + |Ki|}.
– opi = del: ∆i := Ki, Υ i∆ := (Fi−1

Ki , π
i−1
Ki ) and ClntNode.ApplyUpdate(δi−1, opi, ∆i, Υ i∆) outputs

bi = 1 if (Ki = {ni−1−|Ki|+1, . . . , ni−1})∧VC.Ver′(pp, δi−1,Ki−1,Fi−1
Ki , π

i−1
Ki )) or (Ki = {ni−1−

|Ki|+ 1, . . . , ni−1} ∧ (Γ
aKi
Ki = δi−1

1 ) ∧ (∆
bKi
Ki = δi−1

2 ).

– opi = cfrom: ∆i := Ki, Υ i∆ := (δi, πi
PoKSubV′

) and ClntNode.GetCreate(δi−1, ∆i, Υ i∆) outputs bi = 1
if PoKSubV′.V(pp, (δi−1, δi, |Ki|,Ki), πi

Ki) = 1.

Game Gi: define Gi be the same as Gi−1 except for the update i:

– if opi = mod: ∆i := (Ki,Fi
Ki), Υ

i
∆ := (Fi−1

Ki , π
i−1
Ki ) but in the i-th step of EvalHistory bi is instead

output of:
bi ← (aKi |a) ∧ (bKi |b)

where (a, b)← PartndPrimeProd([|Fi−1|],Fi−1)
In case bi = 0 aborts (aborti). Otherwise δi is computed normally from
ClntNode.ApplyUpdate(δi−1, opi, ∆i, Υ i∆).

– for opi = add: ∆i := (K,Fi
Ki), Υ

i
∆ := ∅ and everything is the same as in Gi−1. I.e. (bi, δi) is the

output of ClntNode.ApplyUpdate(δi−1, opi, ∆i, Υ i∆).
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– opi = del: ∆i := Ki, Υ i∆ := (Fi−1
Ki , π

i−1
Ki ). Similarly to the mod case bi is the output of:

bi ← (aKi |a) ∧ (bKi |b) ∧ (Ki = {ni−1 − |Ki|+ 1, . . . , ni−1})

where (a, b)← PartndPrimeProd([|Fi−1|],Fi−1)
In case bi = 0 aborts (aborti). Otherwise δi is computed normally from
ClntNode.ApplyUpdate(δi−1, opi, ∆i, Υ i∆).

– opi = cfrom: ∆i := Ki, Υ i∆ := (δi, πi
PoKSubV′

) but in the i-th step of EvalHistory bi is instead:

bi ← (Fi−1
Ki ⊆ Fi−1) ∧ δi = VC.Com′(pp,Fi−1

Ki ) ∧ J = {1, . . . , |J |}
In case bi = 0 aborts (aborti).

Lemma 7.1. Let opi = mod then if the strong RSA assumption holds for Ggen, Pr[Gi−1 = 1] ≤
Pr[Gi = 1] + negl(λ).

Proof It is straightforward that the only difference between Gi−1 and Gi is in the computation

of bi inside the EvalHistory. That is in Gi−1 : bi = (Γ
aKi
Ki = δi−1

1 ) ∧ (∆
bKi
Ki = δi−1

2 ) and in Gi : bi =
(aKi |a) ∧ (bKi |b). Since abort1, abort2, . . . , aborti−2 have not happen, from correctness of the V DS
scheme it comes that (δi−1

1 , δi−1
2 ) = (ga0 , g

b
1), where (a, b)← PartndPrimeProd([|Fi−1|],Fi−1).

|Pr[Gi−1 = 1]− Pr[Gi = 1]| = Pr[aborti] = Pr[bi = 0] = Pr[(aKi |a) ∧ (bKi |b)]. But since

aborti−1 didn’t happen (Γ
aKi
Ki = ga0 ) ∧ (∆

bKi
Ki = gb1). Therefore it is straightforward to aborti to

the strong RSA assumption, i.e. Pr[aborti] = negl(λ). �

Lemma 7.2. Let opi = del then if the strong RSA assumption holds for Ggen, Pr[Gi−1 = 1] ≤
Pr[Gi = 1] + negl(λ).

Proof The same as the above case of opi = mod holds. �

Lemma 7.3. Let opi = add then Pr[Gi−1 = 1] = Pr[Gi = 1].

Proof Gi−1 and Gi are identical. �

Lemma 7.4. Let opi = cfrom then for any PPT A in Gi there exists an algorithm E such that
Pr[Gi−1 = 1] ≤ Pr[Gi = 1] + negl(λ) of the strong RSA assumption holds.

Proof Let E be the extractor of PoKSubV′ protocol that corresponds to A. Since PoKSubV′

is knowledge sound, E outputs (Fi−1
Ki , πKi , π′Ki) such that VC.Ver′(pp, δi−1,Ki,Fi−1

Ki , πKi) = 1 ∧
VC.Ver′(pp, δi,Ki,Fi−1

Ki , π
′
Ki) = 1∧|Fi−1

Ki | = n′, where δi = (δ?i, ni). Since abort1, abort2, . . . , aborti−2

have not happen, from correctness of the V DS scheme it comes that δi−1 = VC.Com′(pp,Fi−1).
From the first verification equation above we get that under strong RSA assumption Fi−1

Ki
⊆ Fi−1.

From the second verification equation above we get that Fi−1
Ki

is an opening of δi. From the third

equation above we get that δi is a digest for a file of size |Fi−1
Ki
|. From the last two points we get

that δi = VC.Com′(pp,Fi−1
Ki ).

So Pr[Gi−1 = 1] ≤ Pr[Gi = 1] + negl(λ). �

We conclude that in any case Pr[Gi−1 = 1] ≤ Pr[Gi = 1] + negl(λ). Since |H| = ` = poly(λ)
with a hybrid argument we get that Pr[G0 = 1] ≤ Pr[G` = 1] + negl(λ). But clearly G` = 0 always
(since no abort has happened), and thus Pr[VDS-SecurityAVDS(λ) = 1] = P [G0 = 1] = negl(λ). �
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7.2 Our Second VDS Construction

to construct our second VDS scheme, denoted VDS2, we build on the [CF13, LM19] VC scheme
and our aggregation/disaggregation techniques for it that we described in section 4.2.

An intuition of our construction. The main difficulty that we face in turning that VC scheme
into a VDS is that its public parameters are linear in the size of the vector, which contradicts the
central idea of VDS: small local storage is essential. To solve this problem, our key idea is to include
in the digest δ of a file F of length n an accumulator U = g

∏
i∈[n] ei . This value essentially keeps

track of the file’s length, and includes all ei’s, one for each position i. Notably, U can be built
progressively while the file is extended or reduced. Namely, when adding new positions from the
set K to the file, all ei’s in K are added to the accumulator, i.e. U ′ ← U

∏
i∈K ei .

Each storage node holding subfile in positions I is responsible for keeping a witness for I,
SI = U1/

∏
i∈I ei , and to return it with each operation that the node is making (update or retrieval

answering). So, we add SI to the VC opening proof (and the update hint). Then the rest of the

nodes do not need to store Si for i ∈ I but only to verify that S
∏
i∈I ei

I = U for the SI they received.
Soundness holds due to the RSA Accumulator soundness (strong RSA assumption). U is part of
the digest, meaning that is evaluated honestly (see def. 6.6) which ensures that it has the correct

form U = g
∏
i∈n ei . Finally after receiving SI anyone can compute Si ← S

∏
j∈I\{i} ej

I for each i ∈ I
(which makes it clear that there is no need to store the Si’s). This procedure resembles a verifiable
distribution of the parameters.

Our scheme VDS2. As mentioned above, we make use of the [LM19] SVC scheme (appendix
C) VC = (VC.Setup,VC.Com,VC.Open,VC.Ver,VC.Update,VC.ProofUpdate) and the corresponding
VC.Agg,VC.Disagg algorithms of section 4.2, with a modification related to the parameters: instead
of taking crs as input they take only the SI ’s which are necessary for each specific operation.

In the following δ := ((C,U), n), st := πI , where we define πI := (SI , ΛI). C denotes the
commitment related to the VC and ΛI a VC subvector opening (since both VDS and VC openings
are denoted as π, here we denote the VC opening as Λ instead, to avoid confusion). Also, each ei
is computed as ei ← PrimeGen(i); so PrimeGen(i) is omitted for simplicity in the description. We

highlight again that possession of SI allows anyone to compute SJ ← S

∏
j∈I\J ej

I for each J ⊆ I,
thus for simplicity we omit explicitly refer to the procedure of computing any such SJ .

Bootstrap(1λ, `)→ (pp, δ0, n0, st0) generates a hidden order group G ← Ggen(1λ) and samples a
generator g←$G. It also determines a deterministic collision resistant function PrimeGen that
maps integers to primes of `+ 1 bits. Set n0 ← 0, δ0 ← ((1, g), n0) and st0 ← g.

StrgNode.AddStorage(δ, n, st, I,FI , Q,FQ, πQ)→ (st′, J,FJ) aggregates the parameters and the open-
ing proofs

SI∪Q ← ShamirTrick(SI , SQ,
∏
i∈I

ei,
∏
i∈Q

ei) and ΛI∪Q ← VC.Agg((SI , SJ), (I,FI , ΛI), (J,FJ , ΛJ))

StrgNode.RmvStorage(δ, n, st, I,FI ,K)→ (st′, J,FJ) disaggregates

SJ ← S
∏
i∈I∩K ei

I and ΛJ ← VC.Disagg(SJ , I,FI , ΛI , J)

StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆)→ (δ′, n′, st′, J,F′J , Υ∆) the algorithm works according to
the type of update operation op:
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– op = mod: ∆ := (K,F′K).

C ′ ← C ·
∏
i∈K

S
F′i−Fi
i , U ′ ← U, Λ′I ← ΛI , S′I ← SI Υ∆ ← (FK , SK)

– op = add: ∆ := (K,F′K).

C ′ ← C ·
∏
j∈K

S
Fj
j , U ′ ← U

∏
i∈K ei , Λ′I ← ΛI , S′I ← SI , Υ∆ ← SK

– op = del: ∆ := K.

C ′ ← C∏
j∈K S

Fj
j

, U ′ ← S

∏
i∈I\K ei

I = SK , Λ′I ← Λ
∏
j∈K ej

I , S′I ← SI , Υ∆ ← (FK , SK)

StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆)→ (b, δ′, n′, st′, J,F′J) Again, it works according to
the type of update operation op:

– op = mod: ∆ := (K,F′K) and Υ∆ := SK . Compute b← (S
∏
j∈K ej

K = U) and if b = 1:

C ′ ← C·
∏
i∈K

S
F′i−Fi
i , U ′ ← U, Λ′I ← ΛI ·

 ∏
j∈K\I

S
1/

∏
i∈I ei

j

F′j−Fj

, S′I ← SI Υ∆ ← (FK , SK)

– op = add: ∆ := (K,F′K) and Υ∆ := SK . Compute b← (S
∏
j∈K ej

K = U) and if b = 1:

C ′ ← C ·
∏
j∈K

S
Fj
j , U ′ ← U

∏
i∈K ei , Λ′I ← ΛI ·

∏
j∈K

(
S

1/
∏
i∈I ei

j

)Fj
, S′I ← S

∏
i∈K ei

I

where S
1/

∏
i∈I ei

j = ShamirTrick(SI , Sj ,
∏
i∈I ei, ej) for each j ∈ K.

– op = del: ∆ := K and Υ∆ := (FK , SK). Compute b← (S
∏
j∈K ej

K = U) and if b = 1:

C ′ ← C∏
j∈K S

Fj
j

, U ′ ← SK ,

Λ′I ←
Λ
∏
i∈K∩I ei

I∏
j∈K\I

(
S

1/
∏
i∈K∩I ei

j

)Fj , S′I ← ShamirTrick(SI , SK\I ,
∏
i∈I

ei,
∏
i∈K\I

ei)

StrgNode.Retrieve(δ, n, st, I,FI , Q)→ (FQ, πQ) disaggregates

SQ ← S

∏
i∈I\Q ei

I and ΛQ ← VC.Disagg(SQ, I,FI , ΛI , Q)

The algorithms for client nodes are:

ClntNode.VerRetrieve(δ,Q,FQ, πQ)→ b output

b← VC.Ver(pp, C,Q,FQ, ΛQ) ∧ S
∏
i∈Q ei

Q = U
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ClntNode.ApplyUpdate(δ, op, ∆, Υ∆)→ (b, δ′) This algorithm is almost identical to the first part of
the Storage Node algorithm StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆). The difference is that
it executes only the parts that are related to the output of b and δ.

AggregateCertificates(δ, (I,FI , πI), (J,FJ , πJ))→ πK return

SI∪J ← ShamirTrick(SI , SJ ,
∏
i∈I

ei,
∏
i∈J

ei) and ΛK ← VC.Agg ((SI , SJ), (I,FI , ΛI), (J,FJ , ΛJ))

We note that we do not define an efficient StrgNode.CreateFrom operation for the VDS2 construc-
tion. While general-purpose SNARKs would work to achieve this result, they would be extremely
expensive. We leave it as an open problem to find an efficient arguments of knowledge of subvector
opening for this scheme.

Theorem 7.3 (VDS2). Let G ← Ggen(1λ) be a hidden order group where the strong distinct-
prime-product root assumption holds. Then the VDS scheme presented above is a correct and secure
Verifiable Decentralized Storage scheme.

The intuition of the above theorem is as follows: the VDS scheme can be seen as preserving
and updating a vector commitment C and an RSA Accumulator U . So correctness of VDS comes
from correctness of the updatable vector commitment VC and correctness of updates of the RSA
Accumulator (see [BBF19]). Similarly, security comes from security of VC and the RSA accumu-
lator’s security, which in turn rely on the strong distinct-prime-product root assumption and the
strong RSA assumption respectively. Note that strong distinct-prime-product root implies strong
RSA (the opposite also holds in RSA groups).

Recall that U is an RSA accumulator of all ei’s and is used to verify SI ’s. The RSA accumulator’s
security demands that the accumulated value U is honestly computed, which is ensured in the VDS
setting since we assume a valid history. So given a valid history one knows that U is of correct
form (i.e. U = g

∏
i∈[n] ei) and then can securely check that SI is of correct form (by checking

S
∏
i∈I ei

I = U), which is ensured from RSA Accumulator’s security. After checking the validity of
SI it all boils down to position binding of the vector commitment. To conclude, the gap between
position binding of the original VC and security of our VDS construction is to ensure that SI is
well formed, which in turn relies on the correct form of U .

7.3 Efficiency and Comparison

In Table 3 we provide a detailed efficiency analysis and comparison of the two VDS schemes, VDS1

and VDS2, proposed in the two earlier sections.

In terms of performances, the two schemes do similarly, though VDS2 outperforms the first one
by a logarithmic factor. Its efficiency advantage comes from the fact that operations are not bit-by-
bit as in the first one. More in detail, in VDS1 most of the operations require one exponentiation
with an α-bit prime for each bit and each position of the subfile, roughly O(` · |I| · α) group
operations. In VDS2, the main overhead is related to handling the distributed parameters {Si}.
In fact, computing Si for each i ∈ I, given SI takes O(I log |I|) exponentiations with (` + 1)-bit
primes, roughly O(` · |I| · log |I|) group operations.

To compare the two methods, recall that α is at least log(`n) (since we need at least `n distinct
primes), which means that VDS1 has a (logarithmic) dependence on the size of the file. On the
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other hand, VDS2’s cost depends only on the size of the subfile that is processed. Hence, since
α > log(`n) > log(n) ≥ log(|I|) the VDS2 always outperforms VDS1 (see Table 3).

Another notable difference regards the StrgNode.PushUpdate algorithm for op = mod. In VDS2,
the running time depends solely on the size of the update, whereas in VDS1 it depends on the size
of the entire subfile stored locally. This can be a huge difference for nodes that decide to store large
portions, and it constitutes a major theoretical (and practical) improvement of VDS2 over VDS1.

In terms of security, VDS1 is based on a weaker assumption, over groups of unknown order, than
VDS2 (although for the specific case of RSA groups the two assumptions are equivalent). Finally, in
terms of functionality, VDS1 is the only scheme that supports efficiently the StrgNode.CreateFrom
functionality and the (compact) Proofs of Data Possession; this is thanks to its compatibility with
the efficient succinct arguments of knowledge that we propose in section 5.
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Metric VDS1 VDS2

Bootstrap O(1) O(1)

|pp| 3 |G| 1 |G|
Digest |δ| 2 |G|+ log |F| 2 |G|+ log |F|
Storage Node storing (I,FI)

State |stI | 2 |G| 2 |G|
StrgNode.AddStorage (K) O(` · α · (|I|+ |K|)) O(` · (|I| log |I|+ |K| log |K|))
StrgNode.RmvStorage (K) O(` · α · |K|) O(` · |K| log |K|)
StrgNode.CreateFrom (J) O(` · α · |I|)

no 1

|ΥJ | 9 |G|+ 2 |Z2λ |

StrgNode.PushUpdate (∆)

mod O(` · α · |I|) O(` · |∆| log |∆|)
add O(` · α · |∆|) O(` · |∆| log |∆|)
del O(` · α · (|I| − |∆|)) O(` · (|I| − |∆|+ |∆| log |∆|))

|Υ∆|
mod, del O(|∆|) + 2 · |G| O(|∆|) + 1 · |G|

add ∅ 1

StrgNode.ApplyUpdate (∆)

mod O(` · α · (|I|+ |∆|)) O(` · (|I| log |I|+ |∆| log |∆|))
add O(` · α · |∆|) O(` · |∆| log |∆|)
del O(` · α · (|I|+ |∆|)) O(` · (|I|+ |∆| log |∆|))

StrgNode.Retrieve (Q) O(` · α · (|I| − |Q|)) O(` · (|I| − |Q|) log(|I| − |Q|))
|πQ| 2 |G| 2 |G|

Client Node

ClntNode.GetCreate (J) O(` · α · |J |) no 1

ClntNode.VerRetrieve (Q) O(` · α · |Q|) O(` · |Q| log |Q|)
ClntNode.ApplyUpdate (∆) (mod, add, del) O(` · α · |∆|) O(` · |∆| log |∆|)

AggregateCertificates (I, J) O(` · α · (|I|+ |J |)) O(` · (|I| log |I|+ |J | log |J |))
PoR yes yes

PDP yes no 1

Table 3. Comparison between our two VDS schemes. The running time is expressed in number of G-group oper-
ations. Notation for the sets of positions: I are the ones held by the storage node, K the ones added or removed
from local storage by the storage node, J the ones used to create the file in StrgNode.CreateFrom, ∆ the updated
ones, and Q the ones of a retrieval query. In VDS1, α denotes the size of the primes (returned by PrimeGen); so
α ≥ log(n`) where n is the size of the file and ` the bit-size of each position (i.e. F ∈ ({0, 1}`)n).
1 There is such a protocol but it is either prover inefficient (SNARKs) or the communication complexity overhead
is big (Σ-protocols or PoKE∗-based).

8 VDS Proof of Storage

For a VDS scheme we additionally consider the possibility to ensure a client that a given file
is stored by the network at a certain point of time without having to retrieve it. To this end,
we extend the VDS notion to provide a proof of storage mechanism in the form of a proof of
retrievability (PoR) [JK07] or a proof of data possession (PDP) [ABC+07]. Our proof of storage
model for VDS is such that proofs are publicly verifiable given the file’s digest. Also, in order to
support the decentralized and open nature of DSNs, the entire proof mechanism should not use any
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secret. Finally, a main distinguishing feature compared to existing PoRs/PDPs is that proofs are
generated in a distributed fashion by a collection of storage nodes and remain compact regardless
of the number of nodes involved in the their generation.

Below we begin by defining the syntax and correctness of proof of storage for a VDS scheme;
these are defined the same for modeling both retrievability and data possession. The difference
between the two is only in the security notion.

A VDS scheme VDS as in Definition 6.1 admits proofs of storage if there exist algorithms
(StrgNode.PoS-Challenge, StrgNode.PoS-Prove,ClntNode.PoS-Ver) that work as follows.

StrgNode.PoS-Challenge(δ)→ r This is a probabilistic algorithm that, given a file’s digest δ, outputs
a challenge r.

StrgNode.PoS-Prove(δ, n, st, I,FI , r)→ πr This algorithm allows a storage node to (partially) an-
swer a PoS challenge r. The inputs include the local view of the storage node, i.e., digest δ, length
n local state st and file portion (I,FI), and a challenge r ∈ C. The output is a proof πr.

StrgNode.PoS-Aggregate(δ, r, πr,1, πr,2)→ (b, πr) On input a digest δ, a challenge r ∈ C and two
partial proofs πr,1, πr,2, this algorithm outputs an aggregated proof πr and a bit b such that b = 1
iff πr is a “complete” proof for challenge r (i.e., it can be verified).

ClntNode.PoS-Ver(δ, r, πr)→ b On input a digest δ, a challenge r ∈ C and a “complete” proof πr,
this algorithm accepts (outputs 1) or rejects (outputs 0).

Definition 8.1 (Correctness of VDS PoS). A VDS scheme VDS has a correct PoS mechanism
if VDS is correct and if for all honestly generated parameters (pp, δ0, st0)← Bootstrap(1λ), any file F
of length n and any set of ` valid storage node’s local views (δ, n, stj , Ij ,FIj ) such that

⋃`
j=1(Ij ,FIj ) =

([n],F), the following holds:

if r←$ StrgNode.PoS-Challenge(δ), πr,j ← StrgNode.PoS-Prove(δ, n, stj , Ij ,FIj , r) for all j ∈
[`], and πr is obtained by aggregating {πr,j}j∈[`] in an arbitrary order using repeated usage of
StrgNode.PoS-Aggregate until getting b = 1, then ClntNode.PoS-Ver(δ, r, πr) = 1.

PoS Security. Here we define two security properties for the above PoS mechanism: retrievability
and data possession. Similarly to [JK07, ABC+07], the idea is to ask that from any adversary, con-
trolling all storage nodes, who creates a proof πr that is accepted with sufficiently high probability
it is possible to extract the entire file. In the retrievability case, this is formalized through requiring
the existence of an extractor that extracts the file by interacting multiple times with such prover
(via rewinding). In the data possession case, it is the same except that the extractor is non-black-
box, i.e., we assume that for any adversary there is an extractor; in other words, the extractor is
a cryptographic one that does not exist in the real world, and for this reason the data possession
notion is weaker than retrievability.

We build our definitions inspired to the one of Proof of Retrievable commitment (PoRC) sound-
ness in [Fis18]. To this end, we define the following two experiments.
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VDSPoSAdmAVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

(H∗, α∗)← A1(pp, δ0, st0)

(b∗, δ∗,F∗)← EvalHistory(pp, δ0, st0,H∗)
if b∗ = 0 abort,

else r←$StrgNode.PoS-Challenge(δ∗);

π∗r ← A2(pp, δ0, st0, δ
∗, α∗, r)

return ClntNode.PoS-Ver(δ∗, r, π∗r )

VDSPoSExtrA,EVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

(H∗, α∗)← A1(pp, δ0, st0)

(b∗, δ∗,F∗)← EvalHistory(pp, δ0, st0,H∗)

F̂← EA2(pp,δ0,st0,δ
∗,α∗,·)(pp, δ0, st0, δ

∗)

return 1 iff F̂ 6= ⊥ ∧ F∗ 6≡δ F̂

Above, given two files F ∈ Mn and F′ ∈ Mn′ and a parameter µ ∈ [0, 1] we say that F agrees
on a µ-fraction with F′, denoted F ≡µ F′, if and only if n = n′ and |{i ∈ [n] : Fi = F′i}| ≥ µ · n.

The experiment VDSPoSAdmAVDS(λ) is parametrized by a two-stage adversary A = (A1,A2)
and models the interaction between an adversarial prover that creates a (valid) VDS history which
results into a digest δ∗ and then replies to one honestly generated challenge. This experiment is
used to formalize the notion of ε-admissible adversaries, which in brief are adversaries that in
this game answer successfully to the challenge with probability at least ε. The second experiment
VDSPoSExtrA,EVDS(λ) is again parametrized by a two-stage adversary A = (A1,A2), and additionally

by an extractor E having oracle access to A2. The goal of the extractor is to return a file F̂ which
agrees on a µ-fraction of indices with the file F∗ implicitly returned by A1.

Definition 8.2 (Admissible VDS PoS Adversary). A VDS adversary A = (A1,A2) is ε-
admissible if and only if the experiment VDSPoRAdmAVDS(λ) does not abort with probability 1 −
negl(λ) and Pr[VDSPoRAdmAVDS(λ,F) = 1] ≥ ε.

Definition 8.3 (Retrievability for VDS). A VDS scheme VDS is (µ, ε)-retrievable if it is secure
and for some λε,µ ∈ O(log ε/ logµ) and every λ > λε,µ there exists an extractor E that runs in time

poly(λ, n, 1/ε) such that for any adversary A which is ε-admissible we have Pr[VDSPoSExtrA,EVDS(λ) =
1] ∈ negl(λ).

Definition 8.4 (Data Possession for VDS). A VDS scheme VDS has ε-data-possession if it
is secure and for some λε,µ ∈ O(log ε/ logµ) and every λ > λε,µ and every adversary A which is ε-

admissible there is an extractor E that runs in time poly(λ, n, 1/ε) such that Pr[VDSPoSExtrA,EVDS(λ) =
1] ∈ negl(λ).

Parallel Proof of Storage. We extend our PoS notion for VDS to a setting where one can
simultaneously check storage of k different files of the same length with a single challenge. The
syntactical change we do is to assume that one can generate a challenge by only knowing the length
of the files. Informally, the parallel version of retrievability (resp. data possession) is a parallel
repetition of the protocol, and then from any adversary that answers successfully for all files it is
possible to extract files so that each is consistent with at least a µ-fraction of the original one.

The parallel security experiments are as follows.
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VDSPoS-Par-AdmAVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

{(H∗i , α∗i )}ki=1 ← A1(pp, δ0, st0)

{(b∗i , δ∗i ,F∗i )← EvalHistory(pp, δ0, st0,H∗i )}ki=1

if ∃i ∈ [k] : b∗i = 0 ∨ ¬(∧i∈[k−1]|F∗i | = |F∗i+1|) abort,

else r←$ StrgNode.PoS-Challenge(|F∗1|);
{π∗r,i}ki=1 ← A2(pp, δ0, st0, {δ∗i , α∗i }ki=1, r)

return 1 iff ClntNode.PoS-Ver(δ∗i , r, π
∗
r,i) ∀i ∈ [k]

VDSPoS-Par-ExtrA,EVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

{(H∗i , α∗i )}ki=1 ← A1(pp, δ0, st0)

{(b∗i , δ∗i ,F∗i )← EvalHistory(pp, δ0, st0,H∗i )}ki=1

{F̂i}ki=1 ← EA2(pp,δ0,st0,δ
∗
i ,α
∗
i ,·)(pp, δ0, st0, {δ∗i }ki=1)

return 1 iff ∀i ∈ [k] : F̂i 6= ⊥ ∧ ∃j ∈ [k] : F∗j 6≡δ F̂j

Definition 8.5 (Admissible VDS PoS Parallel Adversary). A VDS adversary A = (A1,A2)
is parallel ε-admissible if and only if the experiment VDSPoS-Par-AdmAVDS(λ) does not abort with
probability 1− negl(λ) and
Pr[VDSPoS-Par-AdmAVDS(λ,F) = 1] ≥ ε.

Definition 8.6 (Parallel Retrievability for VDS). A VDS scheme VDS is parallel (µ, ε)-
retrievable if it is secure and for some λε,µ ∈ O(log ε/ logµ) and every λ > λε,µ there exists an
extractor E that runs in time poly(λ, n, 1/ε) such that for any adversary A which is parallel ε-
admissible we have
Pr[VDSPoS-Par-ExtrA,EVDS(λ) = 1] ∈ negl(λ).

Definition 8.7 (Parallel Data Possession for VDS). A VDS scheme VDS has parallel ε-
data-possession if it is secure and for some λε,µ ∈ O(log ε/ logµ) and every λ > λε,µ and every
adversary A which is ε-admissible there is an extractor E that runs in time poly(λ, n, 1/ε) such that
Pr[VDSPoS-Par-ExtrA,EVDS(λ) = 1] ∈ negl(λ).

With the following theorem we show that it is enough to prove security in the (nonparallel)
setting. The idea of the proof is that one can construct an extractor for the parallel game by running
k extractors of the nonparallel game. The analysis of this reduction is rather simple and is therefore
omitted.

Theorem 8.1. A VDS scheme that has (µ, ε)-retrievability (resp. data possession) also achieves
parallel (µ, ε)-retrievability (resp. data possession).

8.1 Proof of Storage for our first VDS

In this section we show that our first VDS scheme from Section 7.1 admits both a PoR and a PDP
mechanism, while our second VDS scheme from Section 7.2 admits a PoR.

Retrievability. In the case of PoR we can describe the algorithms generically from the VDS
algorithms. Namely, any VDS always admits a PoR.
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StrgNode.PoS-Challenge(n)→ r samples λpos integers r1, . . . , rλpos ←$ [n] and define r = {r1, . . . , rλpos}.
StrgNode.PoS-Prove(δ, n, st, I,FI , r)→ πr Parse r := {r1, . . . , rλpos} and let Q := I ∩ r, compute

(FQ, πQ)← StrgNode.Retrieve(δ, n, st, I,FI , Q) and return πr,Q := (Q,FQ, πQ, Q).

StrgNode.PoS-Aggregate(δ, r, πr,1, πr,2)→ (b, πr) Parse πr,1 := (Q1,FQ1 , πQ1) and πr,2 := (Q2,FQ2 , πQ2).

If ∃i ∈ {1, 2} such that Qi = r set b := 1 and πr := πr,i.

Otherwise, compute (Q,FQ) := (Q1,FQ1) ∪ (Q2,FQ2) and
πQ ← AggregateCertificates(δ, (Q1,FQ1 , πQ1), (Q2,FQ2 , πQ2)), and set πr := (Q,FQ, πQ). If Q = r,
set b := 1, otherwise set b := 0.

Return (b, πr)

ClntNode.PoS-Ver(δ, r, πr)→ b parse πr := (Q,FQ, πQ) and return 1 iffQ = r and ClntNode.VerRetrieve(δ,
Q,FQ, πQ) = 1.

Correctness is easy by inspection and by the correctness of VDS.

For security we state the following theorem. The proof is omitted since it is almost identical to
the proof of the VC-PoRC construction in [Fis18]; the only difference is that instead of reducing to
the position binding of the VC we reduce to the security of the VDS scheme.22

Theorem 8.2. If the VDS scheme VDS from Section 7.1 is secure then its extension with the
PoS algorithms described above is a (µ, ε)-retrievable VDS for any ε > 0 such that ε − µλpos is
non-negligible in λ.

Data Possession. The PDP for our VDS is almost the same as the PoR described above except
that the last step of aggregation “compacts” the proof by generating an AoK of opening (see Section
5). More precisely, let PoKOpen′ be the same as protocol PoKOpen but adjusted for the simpler
version of our VC scheme given in Section 7.1. Namely, the one where the commitment is (A,B)
and the verification is the VC.Ver′ algorithm. So, the relation proven by PoKOpen′ is:

RPoKOpen′ = {( (C, I), (y, πI) ) : VC.Ver′(pp, C, I,y, πI) = 1}.

Then, the PDP aggregation algorithm works as follows.

StrgNode.PoS-Aggregate(δ, r, πr,1, πr,2)→ (b, πr) Parse πr,1 := (Q1,FQ1 , πQ1) and πr,2 := (Q2,FQ2 , πQ2).

If ∃i ∈ {1, 2} such that Qi = r set b := 1 and (Q,FQ, πQ) := πr,i.

Otherwise, compute (Q,FQ) := (Q1,FQ1) ∪ (Q2,FQ2) and
πQ ← AggregateCertificates(δ, (Q1,FQ1 , πQ1), (Q2,FQ2 , πQ2)).

If Q 6= r, set πr := (Q,FQ, πQ) and return (0, πr). Otherwise, proceed to compute an AoK of
opening, i.e., compute πr ← PoKOpen′.P((δ,Q), (FQ, πQ)), and then return (1, πr)

ClntNode.PoS-Ver(δ, r, πr)→ b return PoKOpen′.V((δ, r), πr).

Correctness is easy by inspection and by the correctness of VDS.

For security we state the following theorem. The proof is essentially the same as the one for
retrievability except that in this case we define a non-black-box extractor which is build from the
extractor for PoKOpen′.

22 For this we also observe that Fisch’s proof could go through even assuming a weaker notion of position binding
in which the adversary declares the whole committed vector in addition to the two discording openings for one
position.
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Theorem 8.3. If PoKOpen′ is a secure AoK for relation RPoKOpen′ and the VDS scheme VDS from
Section 7.1 is secure, then its extension with the PoS algorithms described above satisfies (µ, ε)-data
possession for any ε > 0 such that ε− µλpos is non-negligible in λ.

Parallel PDP. We observe that in the case of executing the PDP protocol in parallel for k different
digests, our construction has an interesting efficiency property. While verifying one PDP takes time
O(λpos) due to the computation of the group element Ur := gur with ur := PrimeProd(r), in the
case of verifying k PDPs with the same challenge the element Ur can be reused. This yields a total
verification time O(λpos + k) instead of O(k · λpos).

9 Experimental Evaluation

We have implemented in Rust our new SVC scheme of section 4.1 (with and without preprocessing)
and the recent SVC of [BBF19] (referred as BBF in what follows). Here we discuss an experimen-
tal evaluation of these three schemes. 23 Below is a summary of the comparison, details of the
experiments are in Appendix E.

– Our SVC construction is faster in opening and verification than BBF (up to 2.5× and 2.3× faster
respectively), but at the cost of a slower commitment stage (up to 6× slower). These differences
tend to flatten for larger vectors and opening sizes.

– Our SVC construction with preprocessing allows for extremely fast opening times compared to
non-preprocessing constructions. Namely, it can reduce the running time by several orders of
magnitude for various choices of vector and opening sizes, allowing to obtain practical opening
times—of the order of seconds—that would be impossible without preprocessing—of the order of
hundred of seconds. In a file of 1 Mibit (220 bits), preprocessing reduces the time to open 2048
bits from one hour to less than 5 seconds! This efficient opening, however, comes at the cost of a
one-time preprocessing (during commitment) and higher storage requirements. We discuss how to
mitigate these space requirements by trading for opening time and/or communication complexity
later in this section. We stress that it is thanks to the incremental aggregation property of our
construction that allows these tradeoffs (they are not possible in BBF with preprocessing).

– Although our SVC construction with preprocessing has an expensive commitment stage, this
tends to be amortized throughout very few openings24, as few as 30 (see Figure 6 in Appendix E).
These effects are particularly significant over a higher number of openings: over 1000 openings
our SVC construction with preprocessing has an amortized cost of less than 6 seconds, while our
SVC construction and BBF have amortized openings above 90 seconds.

Mitigating Space Requirements for Preprocessing Construction The experiments illus-
trated so far show the benefit of using preprocessing to speedup opening time. This comes at the
cost of storing an auxiliary information—N openings—which, in spite of being much smaller than
in BBF, can still be quite large. Here we discuss two ways to mitigate this storage cost, which can
be used either separately or together.

23 We did not include BBF with precomputation in our experimental evaluation because this scheme has worse
performances than our preprocessing construction in terms of both required storage and running time. We elaborate
on this in Appendix E

24 Amortized opening time roughly represents how computationally expensive a scheme is “in total” throughout all
its operations. Amortized opening time for m openings is the cost of one commitment plus the cost of m openings,
all averaged over the m openings.
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– Hashing in blocks. Let us recall that by selecting a block size ` = 2λ (e.g., 256) one can
combine our VC with a collision-resistant hash function and support larger vectors at virtually
the same cost. Concretely, given a vector v of N blocks, each of `H bits, one can obtain a vector
v′ ∈ ({0, 1}`)N by hashing each `H -bits block into a `-bits one. The downside of this approach is
that subvector openings with respect to the original vector v are less fine grained. On the good
side, though, one gets that the efficiency of a VC for a vector of size N ·`H is virtually the same25 as
the one for a VC for a vector of size N2λ. For example, by selecting `H = 2 Kibit our timings for a
vector of 262 144 bits would work for one of 1 Mibit. This would yield a committing/preprocessing
time of roughly 10 minutes. These advantages also translate opening times: for example, if we
expect openings of roughly M = 211 bits we can expect a virtually instantaneous opening time
(as we just need to look up a cached precomputed proof). A larger opening size such as M = 214

(resp. M = 217) bits, would yield a running time of roughly 4 seconds (resp. 70 seconds).

– Selecting larger precomputed chunks. Another possibility to reduce storage is to precom-
pute less openings by storing more aggregated openings, namely instead of an opening for every
chunk of ` bits, store one opening for every chunk of B · ` bits. This technique requires a bit more
computation in order to compute disaggregations—about m(B − 1) G operations in the worst
case for m positions (cf. Section 4.4)—but opens the way to various tradeoffs to be explored.
For instance, one could use certain application-dependent heuristics to choose which positions
to precompute aggregated. As an example in the VC application to proofs of space and repli-
cation [Fis19] one opens a set of randomly chosen positions, and for each of them, also a set of
predetermined positions.26
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A PoProd protocol for Union of RSA Accumulators

Let G be a an hidden order group as generated by Ggen, and let g1, g2, g3 ∈ G be three honestly
sampled random generators. A more straightforward succinct argument of knowledge for the union
of RSA Accumulators is for the following relation

RPoProd =
{

((A,B,C), (a, b)) ∈ G3 × Z2 : A = ga1 ∧B = gb2 ∧ C = ga·b3

}
Our protocol PoProd is described below.

PoProd protocol

Setup(1λ) : run G←$ Ggen(1λ), g1, g2, g3←$G, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (A,B,C), (a, b)). Verifier’s input: (crs, (A,B,C)).

V→ P: `←$ Primes(λ)

P→ V: π := ((QA, QB, QC), ra, rb) computed as follows
– (qa, qb, qc)← (ba/`c, bb/`c, bab/`c)
– (ra, rb)← (a mod `, b mod `)

– (QA, QB, QC) := (gqa1 , g
qb
2 , g

qc
3 )

V(crs, (A,B,C), `, π):
– Compute rc ← ra · rb mod `

– Output 1 iff ra, rb ∈ [`] ∧ Q`Ag
ra
1 = A ∧ Q`Bg

rb
2 = B ∧ Q`Cg

rc
3 = C

To prove the security of our protocol we rely on the adaptive root assumption and, in a non-
black-box way, on the knowledge extractability of the PoKE∗ protocol from [BBF19]. The latter is
proven in the generic group model for hidden order groups (where also the adaptive root assumption
holds).

Theorem A.1. The PoProd protocol is an argument of knowledge for RPoProd in the generic group
model.

The proof is quite similar to the one of theorem 4.1 only instead of using the extractor if PoKRep
protocol we use the extractors of two PoKE∗ protocols (one for ga1 = A and one for gb2 = B).
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B Succinct Arguments of Knowledge for VDS

All the protocols below are for simplicity presented for the case of k = 1.

AoK of correct change

RPoKChange =

{
( (C,C ′, I), (πI ,vI ,v

′
I) ) : VC.VerUpdate(crs, C, (I, πI ,vI ,v

′
I)) = 1

∧C ′ = VC.ComUpdate(crs, C, (I, πI ,vI ,v
′
I))

}

In case of an update the new commitment is normally C ′ := (A′, B′) = (Γ bII , ∆
aI
I ). Therefore the

prover first sends the proof πI := (ΓI , ∆I) to the verifier. Then provides knowledge of the opening of
positions I with respect to C and further that Γ bII = A′∧∆aI

I = B′. Putting all together the prover

proves knowledge of (aI , bI) such that Γ aII = A ∧ ∆bI
I = B ∧ gaI ·bI = UI ∧ Γ bII = A′ ∧ ∆aI

I = B′,
where UI ← guI and uI ← PrimeProd(I).

AoK of correct add

RPoKAdd =

{
( (C,C ′, I),v′I ) : VC.VerUpdate(crs, C, (I,∅,∅,v′I)) = 1

∧C ′ = VC.ComUpdate(crs, C, (I,∅,∅,v′I))

}

The prover provides an argument of knowledge of (a′I , b
′
I) such that Aa

′
I = A′∧Bb′I = B′∧gaI ·bI =

UI , where UI ← guI and uI ← PrimeProd(I). Also, C := (A,B) and C ′ = (A′, B′) are part of the
statement.

AoK of correct delete

RPoKDelete =

{
( (C,C ′, I), (πI ,vI) ) : VC.VerUpdate(crs, C, (I, πI ,vI ,∅)) = 1

∧C ′ = VC.ComUpdate(crs, C, (I, πI ,vI ,∅))

}

Recall that in case of deletion the new commitment C ′ is simply the proof πI of the subvector
deleted. So the prover has only to provide an argument of knowledge of opening in the deleted
positions I. That is (aI , bI) such that A′aI = A ∧ B′bI = B ∧ gaI ·bI = UI , where UI ← guI and
uI ← PrimeProd(I). Also, C := (A,B) and C ′ = (A′, B′) are part of the statement.

C [CF13, LM19] Subvector Commitment

We recall the vector commitment of [CF13] that was generalized to subvector commitment in
[LM19].

VC.Setup(1λ, `, n)→ crs generates a hidden order group G ← Ggen(1λ) and samples a generator
g←$G. Choose n (` + 1)-bit primes e1, . . . , en, according to a function PrimeGen, and compute

for each i ∈ [n] Si ← g
∏
j∈[n]\{i} ej

Return crs := (G, g, S1, . . . , Sn, e1, . . . , en)

VC.Com(crs,v)→ (C, aux) Computes C ← Se11 . . . Senn and aux← (v1, . . . , vn)
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VC.Open(crs, I,y, aux)→ πI Computes

πI ←
n∏

j=1,j /∈I

(
S

1/
∏
i∈I ei

j

)yj
=

 n∏
j=1,j /∈I

S
yj
j

1/
∏
i∈I ei

VC.Ver(crs, C, I,y, πI)→ b return

b← C = π
∏
i∈I ei

I

∏
i∈I

Syii

VC.Update(crs, C,vI ,v
′
I , I)→ C ′ return C ′ ← C ·

∏
i∈I S

v′i−vi
i

VC.ProofUpdate(crs, C, πI ,v
′
J , J,vJ)→ C ′ compute

π′I ← πI ·

 ∏
j∈J\I

S
1/

∏
i∈I ei

j

v′j−vj

= πI ·

 ∏
j∈J\I

S
v′j−vj
j

1/
∏
i∈I ei

Note that in case J ⊆ I, π′I = πI .

In VC.Open and VC.ProofUpdate each S
1/

∏
i∈I ei

j can be computed efficiently by the use of
ShamirTrick(SI , Sj ,

∏
i∈I ei, ej).

Security. The Position Binding of the scheme holds either under the strong distinct-prime-product
root assumption in the standard model or under the adaptive root assumption in the random oracle
model, i.e. if we model PrimeGen as a random oracle. For the details of the proofs we refer to [LM19].

D A Variant VDS Construction with Strong Security

We define a stronger notion of security for VDS schemes where the digest is chosen adversarially,
namely without having the verifier need to check the corresponding history. Also, we show that a
variant of our second VDS construction can be proven secure under this strong notion; this however
comes at the price of dropping one of the efficiency requirements as now the verifier may sometimes
run in time linear in the size of the file (still all proofs remain short).

D.1 Strong Security

In this notion the digest can diverge from a valid history, meaning that the VDS scheme is secure
independently of the corresponding history: an adversary cannot convince a client of a false data
block in a retrieval query for any arbitrary digest δ (that is possibly not an EvalHistory). This
notion is analogous to the position binding of vector commitments. This allows a client that has
not followed the complete history of the VDS to make certain that for the given digest no invalid
retrieval answers can be given.

Definition D.1 (Strong Security for Verifiable Decentralized Storage). Consider the ex-
periment VDS-strongSecurityAVDS(λ) below. Then we say that a VDS scheme VDS is strongly-secure
if for all PPT A we have Pr[VDS-strongSecurityAVDS(λ) = 1] ∈ negl(λ).
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VDS-strongSecurityAVDS(λ)

(pp, δ0, st0)← Bootstrap(1λ)

(δ∗, Q,FQ, π,F
′
Q, π

′)← A(pp, δ0, st0)

b← ClntNode.VerRetrieve(pp, δ∗, Q,F′Q, π
′)∧

ClntNode.VerRetrieve(pp, δ∗, Q,FQ, π) ∧ F′Q 6= FQ

return b

D.2 A VDS Construction with Strong Security

Our second VDS scheme from Section 7.2 is built upon the [CF13, LM19] SVC. Therefore it comes
from position binding that even for adversarially chosen C’s, which possibly do not come from a
valid history, no PPT adversary can provide openings πQ, π

′
Q for different subfiles.

What prevents our VDS scheme to be strongly secure is the U -part of the digest. For U it must
be ensured that it has the correct form U ← g

∏
i∈[n] ei . There are two ways to ensure this, either one

follows the history of the VDS or it computes it from scratch when necessary. The first case leads
to the VDS scheme of Section 7.2, while the second one leads to a strongly-secure VDS scheme,
let us call it VDS′, that however has the drawback of having linear-time (in the size of the file)
verification of a retrieval.

We note that in practice a client may not need to check U at each retrieval. Observe that it
only depends on the size of the file and not on its context, meaning that only addition and deletion
updates affect it. So one may keep Un = g

∏
i∈[n] ei stored and at the time of the query verification

update it with the new file length n′. This gives an O(|n− n′|) computational cost for verification
at the cost of storing a single group element, U .

Let the alternative verification algorithm be:

ClntNode.VerRetrieve′(δ,Q,FQ, πQ)→ b compute U ← g
∏
i∈[n] ei and output acceptance bit

b← VC.Ver(pp, C,Q,FQ, πQ) ∧ S
∏
i∈Q ei

Q = U

and the corresponding VDS scheme be the same as the one in Section 7.2 except for the verification
of retrieval query algorithm, i.e.,

VDS′ = (Bootstrap, StrgNode.AddStorage,StrgNode.RmvStorage,StrgNode.PushUpdate,

StrgNode.ApplyUpdate,StrgNode.Retrieve,ClntNode.VerRetrieve′,ClntNode.ApplyUpdate,

AggregateCertificates)

Theorem D.1 (Security). Let G← Ggen(1λ) be a hidden order group where the Strong Distinct-
Prime-Product Root assumption, then the VDS′ scheme presented above is a strongly-secure Verifi-
able Decentralized Storage scheme in the standard model.

The proof is almost the same to the one of Theorem 7.3 and is omitted.

E Experimental Results

In this section we include complete tables and plots for our benchmarks.
In some of the tables and plots we show only results for openings of size at most 25% of the

vector size as this is often the case in practice. We remark that the timings for verification of our
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SVC construction and BBF do not use proofs of knowledge of exponent, thus both timings can
in practice be reduced through the use of this technique. Finally, although we show amortized
openings (Figure 6) for only openings of size 2048 bits, we stress that different choices of file and
opening size show very similar patterns.

We exclude BBF with precomputation from our experiments as its storage requirements and
running times dominate those of our construction with preprocessing. In terms of storage it is linear
in the number of the bits in the vector. For our choice of security parameters and block size, it
would require 3×more memory independently of the size of the vector. In terms of time, the running
times of BBF with preprocessing always dominate those of our preprocessing scheme. Concretely
opening and verification of each zero bit requires one more group exponentiation. Finally, the lack
of incremental aggregation makes this scheme less flexible than ours as it does not allow to choose
different tradeoffs in terms of memory/running time.

The Experimental Setting We implemented our VC, its preprocessing variant and BBF27 in
Rust. We executed our experiments on a virtual machine running Debian GNU/Linux with 8 Xeon
Gold 6154 cores and 30 GB of RAM.

We measured running times for the commitment stage (including or not a preprocessing), open-
ing and verification for different choices of vector length (N) and subvector openings (m). Vectors
have blocks of ` = 256 bits (which is representative of vectors where blocks are hash outputs) and
their total size n = N` range from 16 kibibit (Kibit) to 1 mebibit (Mibit)28. For preprocessing we
considered the basic case in which we precompute one proof per block, i.e., a total of n/` proofs is
precomputed. We chose m, the opening size to be of 1, 8 or 64 blocks (i.e. 256, 2048 or 16536 bits).
On security parameters: our experiments always used an RSA modulus of 2048 bits and primes of
64 bits for accumulation.

n (file size in bits) Running Time

16 384 52s
32 768 1m 56s
64 536 4m 23s
131 072 10m 7s
262 144 24m 5s
524 288 1h 1m

1 048 576 2h 54m

Table 4. Commitment times for our preprocessing construction (block size ` = 256).

27 https://github.com/nicola/rust-yinyan
28 1 Kibit = 210 bits; 1 Mibit = 210 Kibit. We choose powers of two for convenience.
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n (size in bits) This work BBF

16 384 18s 3s
32 768 37s 8s
64 536 1m 19s 18s
131 072 3m 0s 45s
262 144 7m 22s 2m 29s
524 288 20m 12s 7m 8s

1 048 576 1h 10m 29m 54s

Table 5. Commitment Times (no preprocessing)

n (size in bits) This work (precomp.) This work BBF

16 384 2 · 10−4 5.56 5.86
32 768 2 · 10−4 11.17 11.69
64 536 2 · 10−4 22.44 23.26
131 072 2 · 10−4 44.68 45.49
262 144 2 · 10−4 88.98 90.72
524 288 2 · 10−4 178.94 184.86

1 048 576 2 · 10−4 357.50 370.82

Table 6. Opening Times (in s) for openings of 256 bits

n (size in bits) This work (precomp.) This work BBF

16 384 4.27 5.70 7.96
32 768 4.27 11.34 14.75
64 536 4.27 22.84 28.10
131 072 4.27 45.44 54.17
262 144 4.27 91.45 108.69
524 288 4.27 182.29 222.47

1 048 576 4.27 362.50 453.28

Table 7. Opening Times (in s) for openings of 2048 bits

n (size in bits) This work (precomp.) This work BBF

64 536 73.57 25.96 66.16
131 072 73.57 52.42 122.68
262 144 73.57 104.63 238.07
524 288 73.57 210.40 521.89

1 048 576 73.57 423.48 1100.10

Table 8. Opening Times (in s) for openings of 16384 bits

m · ` (opening in bits) This work BBF

256 3.31 7.72
2048 8.97 13.28
16384 309.82 314.28

Table 9. Verification Times (in ms)
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Fig. 4. Commitment Experiments

67



Fig. 5. Opening Experiments
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Fig. 6. Amortized Opening Experiments for a file of size 128 Kibib.
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