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Abstract—An important security risk in cloud Field-
Programmable Gate Arrays (FPGAs) is power wasting, occurring
when a design exercises excessive switching activity with the
intention to cause voltage-drop related faults in the host FPGA
or, in the extreme case, FPGA reset and denial-of-service.

In this paper, we introduce the idea of infiltrating undercover
sensors for monitoring the fluctuations of FPGA core voltage.
Our approach ensures that the shell has full control over
sensor placement, done so that FPGA users do not have to
sacrifice an inch of their design space nor to be aware that the
voltage-fluctuations caused by their design are being monitored.
Additionally, we describe how to design voltage-drop sensors that
have higher coverage than the state-of-the-art alternatives and
experimentally demonstrate that our sensors are indeed able to
accurately monitor voltage fluctuations across the entire FPGA.
Finally, we propose a novel metric which, after applied on sensor
measurements, reveals the location of the source of the highest
activity on the FPGA.

I. INTRODUCTION

Latest generations of Field Programmable Gate Arrays
(FPGAs), extremely rich in programmable logic, routing,
embedded memories and versatile hardened modules, allow
digital designers almost limitless flexibility in designing pro-
grammable hardware accelerators. And, they are made avail-
able to almost anyone thanks to Cloud computing; for instance,
one can rent Xilinx Virtex UltraScale+ VU9P Xilinx chips
Amazon AWS cloud and design and employ custom FPGA
hardware accelerators remotely.

In cloud FPGAs, each FPGA is normally divided into two
partitions: one that is commonly referred to as shell and
one for custom logic. The shell implements external FPGA
peripherals, such as PCIe, DRAM, DMA, and interrupts. In
Catapult, FPGA-accelerated datacenters of Microsoft, shell
even implements and control networking and communication.
Custom logic partition is left available to hardware designed
by remote FPGA users. Shell and the custom logic interact
using well defined communication interfaces, which could be
extended to allow for two or more unrelated FPGA users
(tenants). However, prior to enabling multitenancy, security
risks must be identified and addressed.

One of the known security risks is power wasting, caused by
excessive circuit switching activity. It has been demonstrated
that power-wasting attack can put FPGA to reset [1], which
would cause denial-of-service in Cloud environments. To
reduce the likelihood of power-wasting attacks, AWS prevents
combinational loops in custom logic [2]. Yet, this does not
remove all the risks, as excessive switching activity may

be created even without combinational loops [3]. A power-
wasting attack does not have to always lead to denial-of-
service; it can create timing errors in logic that shares the same
FPGA die, be it the shell itself or a different tenant. Timing
faults result in unpredictable results of FPGA computations,
with an unlimited range of consequences, from breaking the
secret key [4], [5], to sending erroneous information and
making erroneous decisions and actions. Therefore, cloud
providers need efficient mechanisms for protecting themselves
and their users from power-wasting attacks.

Embedded system monitors on FPGAs provide information
on power supply voltage, but not as frequently and not with a
resolution that would allow observing fast-changing variations
in voltage across the FPGA. To overcome these limitations,
researchers have proposed designing voltage-fluctuation sen-
sors using FPGA logic and employing a network of such
sensors across the entire FPGA [6], [7]. This is acceptable
and feasible if one is the sole user of an FPGA. However, in
cloud environments, imposing on the users to waste some of
the logic to instantiate these sensors and, moreover, trusting
them not to tamper with the sensors, does not seem a viable
solution in the long term.

In this paper, we introduce a method for embedding sensors
undercover: our solution ensures that the shell has full control
over where and how the sensors are placed, without tenants
sacrificing any of their design space and without them even
being aware that their design contain sensors. Moreover, we
relax the extremely tight sensor design constraints and ex-
perimentally demonstrate that our sensors are able to reliably
monitor voltage fluctuations across FPGA.

This paper’s main contributions can be summarized as
follows:

• Undercover sensing: secretly embedding sensors into
tenant design after it has been placed and routed.

• Low cost sensing: minimized use of FPGA logic re-
sources for sensor implementation.

• Parametric and flexible design of sensor topology.
• A novel metric that can, using the sensor data, reliably

indicate the location of the center of power-wasting
activity.

We evaluate how feasible it is to insert undercover sensors
on the real-size industrial circuits from VTR benchmark suite.
We analyze the relation between sensor topology and the
measurement resolution and accuracy, and compare it to the
existing design alternatives. Finally, we evaluate both voltage-
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Fig. 1. Sensor topology definition.
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Fig. 2. Sensor topology definition.

measurement accuracy and the accuracy in locating the center
of the attack in realistic power-wasting scenario.

Our proposed sensors are able to successfully detect all the
clock regions of a large-scale attacker and detect the placement
of an ordinary tenant with acceptable power consumption
patter and make a difference between these two. Additionally,
in a challenging and realistic set-up where a large-scale
attacker and an ordinary tenant are collocated on the same
FPGA, our sensors correctly select 5 clock region (out of 6
clock regions with the attacker in them) and point to the center
of the power wasting activities. In all experiments, we compare
the results of our proposed sensors with those of the state-of-
the-art sensors. The results show that our sensors are not only
comparable, but also outperform in some cases.

II. DISTRIBUTED VOLTAGE SENSING

Conventional sensors for characterizing voltage noise or
thermal hotspots on FPGAs are based on a ring oscillator that
feeds a frequency counter. The oscillator is enabled during a
fixed period of time and the number of pulses counted. The
frequency of oscillation is then computed and related to the
physical quantity being monitored: voltage or temperature.

Although these sensors have been very successfully used to
characterize the FPGA behavior [7], [6], The utility of these
sensors for online monitoring of spatial variations of voltage
or temperature is limited by the associated hardware overhead.
For instance, to characterize on-chip voltage variations, Prove-
lengios et al. [6], used a network of 46 sensors, each composed
of a 19-stage ring oscillator and 20-bit counter. Embedding a
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Fig. 3. Block architecture of the voltage-sensor network.

number of those sensors inside a tenant circuit incurs a non-
negligible loss of resources for the tenant and, most certainly,
is not easy to hide from the tenant.

Knowing that it is cloud shell that, ultimately, is controlling
the sensors, reading the sensor data, processing it or sending
it for offline processing, we decide to place only the ring
oscillators, the core of the sensors, in different chip locations,
and to move all frequency counters inside the shell. This
simple strategy significantly reduces the use of logic resources
by the sensors in the out-of-the-shell area.

In the following subsections, we describe our novel ap-
proach to ring-oscillator design and the way our network of
spatially distributed sensors is designed.

A. Ring Oscillators as Voltage Sensors

In FPGAs, both LUT-dominated and routing-dominated
paths are sensitive to voltage variations [8]. Yet, so far,
researchers focused solely on LUT variations and tried to
pack ring oscillator logic in as small area as possible. As a
consequence, they would increase the total number of sensors
on the chip, to increase the coverage. However, we take a
different approach, in which we take advantage of the routing-
path sensitivity to voltage variations to create ring oscillators
that, instead of measuring very local variations, cover a much
larger surface. Therefore, we build a our ring oscillators using
distant LUTs and long routing paths that connect them.

By definition, a ring oscillator is a sequence of an odd
number of inverters closed in a loop. However, this definition
can be quite relaxed. For instance, not all elements in the
sequence need to be inverters; as long as there is an odd
number of inversions on the signal path, that circuit will
oscillate. Minimizing the number of inversions in the oscillator
loop is advantageous as it reduces sensor power consumption.
However, lowering the number of inversions, lowers the mea-
surement resolution. Aware of that risk, we configure only one
of the LUTs in the ring oscillator loop as inverter and all the
remaining ones as buffers.



To define ring oscillator architecture in FPGA, it suffices to
specify which LUTs are in use (their location), which function
each LUT performs (inverting or noninverting), and in which
order they should be connected to form a loop. Figure 1
illustres two sample ROs out of very many possible topologies.
The RO on the left contains only four LUTs, whereas the RO
on the right contains six LUTs. In both configurations in the
Figure, only one LUT inverts the signal polarity. Red lines
symbolize routing wires and the arrows indicate the direction
in which signals propagate. The location of every LUT can
be almost arbitrary, as well as the order in which they are
connected. Consequently, the number of ways one LUT-based
RO can be built is very high.

In this paper, for simplicity, we choose to define the topol-
ogy of ring oscillators using the following three parameters:

• N , the number of unique x-coordinates among all the
LUTs that take part in the ring oscillator loop. In Figure 1,
N = 2 for the loop on the left side, whereas N = 3, for
the loop on the right side.

• Stride S, the distance between every two neighboring
sensor columns.

• H , the height of sensor column, corresponding to the the
distance between the two RO LUTs in the same column.
All columns have the same height.

Additionally, we choose to connect the LUTs in the following
order: starting from the top LUT in the column with the lowest
x-coordinate and continuing downwards, right, upwards, right,
downwards, right, etc, until the last LUT. The last LUT in the
sequence is configured to perform signal inversion. To close
the loop, signal exiting the last LUT is routed back to the input
of the first LUT.

B. Spatially-Distributed Sensing

Reconfigurable partitions in FPGAs often have constraints
linked to the use of clock signals and clock regions. For
example, in Xilinx FPGAs, a clock region cannot be shared
by two reconfigurable partition blocks if one of them (or
both) have a global clock source [9]. Moreover, for best
quality of results, it is advised to align the placement blocks
with clock region boundaries. This suggests that, in a multi-
tenant scenario, cloud providers may find it pragmatic to
assign to FPGA users reconfigurable partitions composed of
an integer multiple of clock regions, in which case it would
be particularly beneficial to have at least one sensor per clock
region. Consequently, and unlike in other related works where
an arbitrary number of sensors is placed on the FPGA [6],
[10], we choose to instantiate only one sensor per FPGA clock
region.

Sensor accuracy depends on how much of the signal it
picks up is generated within its clock region and how much is
generated in the remaining parts of the FPGA [7]. To increase
sensor accuracy and have it pick up the disturbances caused
by the activity in the left, right, upper, and bottom half of
the clock region, we align the center of the ring oscillator
loop with the center of the clock region. Figure 2 illustrates
the placement of a ring oscillator with two columns inside

one clock region. Figure 3 shows the block architecture of
the entire sensor network, composed of one ring oscillator per
clock region, one frequency counter per ring oscillator, and
logic to enable, read, and control the data acquisition. The
latter is to be placed inside the FPGA shell, together with the
IPs and interfaces.

III. INFILTRATING UNDERCOVER SENSORS

Embedding our sensors undercover means that the users
should not be aware of some of the logic and wiring in
their design space being occupied and used by the shell.
Hence, the user design should be placed and routed, and only
then, before partial-bitstream is generated, should our sensors
be implanted (placed and routed). This, somewhat unusual
procedure, requires the use of tools that allow modifications
to the already placed and routed designs, such as, for instance,
RapidWright tool. In this section, we explain the steps towards
infiltrating sensors undercover: specifying sensor location and
shape, design flow, and the algorithm for finding free LUTs
to be allocated to the sensors.

A. Describing Sensor Topology and Location

As a first step towards infiltrating sensors, one needs to
describe their topology and location, for example by listing
all LUTs to be used, the desired location of every LUT (in
x and y coordinates), and the LUT functionality (inverting
or noninverting). The following two lines give an example of
how we describe one ring oscillator having N = 2, S = 20,
and H = 10, spanning from x = 150 to x = 175, and from
y = 320 to y = 330:
"[155,320 ’Unisim.AND2’]",
"[155,330,’Unisim.AND2’]",
"[175,320,’Unisim.AND2’]",
"[175,330,’Unisim.NAND2’]".

Implicitly, we assume that the order in which intra-LUT
signals should be routed corresponds to the order of the
LUTs in the sensor description. Being extremely flexible, this
topology and location description format allows specifying
almost arbitrary sensor shapes.

B. Design Flow

Figure 4 illustrates the tools and the steps for embeding
sensors undercover. The procedure begins and ends with stan-
dard FPGA design flow performed by Xilinx Vivado Design
Suite. However, in our modified design flow, we intercept the
conventional procedure to use RapidWright [11], an open-
source gateway to backend tools of Vivado, and manipulate
the FPGA design by injecting the sensors.

1) Vivado Pre-Processing: The first phase of the design
flow is entirely standard. No special directive or setting is
required to ensure compatibility with the rest of the flow.
User design is synthesized, placed and routed, and the design
checkpoint (DCP) is saved.
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Fig. 4. Steps in the procedure for infiltrating undercover sensors.

2) RapidWright: In the second phase, we make use of
RapidWright [11], a Xilinx open-source framework, which
allows FPGA users to customize their implementations beyond
the limits and constraints imposed by commercial EDA tools.
Post-implementation debug insertion [12] is a popular target
for these custom tools.

As a first step, we import the design checkpoint, with user-
design placed and routed. Then, from the database of sensor
topologies, we retrieve the details of the desired sensor place-
ment (coordinates of sensor LUTs and their functionality). At
this point, Rapidwright could be asked to place the sensors.
However, conflicts with the user design space may likely occur,
which is why we implement an algorithm that, for every sensor
LUT, searches for and returns an unused LUT at a location
closest to the desired.

The search for the closest free LUT starts at the desired
location; if not found, the search proceeds by inquiring Rapid-
Wright if any of the LUTs at Manhattan distance MD = 1
from the desired location are free. If not, the search distance
is incremented. This iterative search stops either when the
free LUT is found or when the user-defined maximum search
radius is exceeded. In our experimental explorations, the
maximum search radius is set to 2, corresponding to 10−20%
of the sensor height. Once all sensor cells are successfully
mapped to free LUTs, RapidWright is called to place the
sensor cells and connects them.

This entire procedure is repeated, until all sensors are
inserted. As the last step, new design checkpoint is created.

3) Vivado Post-Processing: In the third (and last) phase,
we revert to the standard FPGA design flow. Vivado reads
the design check point after it was modified by RapidWright,
routes the connections to and from the sensors, and performs
design integrity checks, before it generates the bitstream.

IV. EXPERIMENTAL SETUP AND RESULTS

In all our experiments, we use Vivado Design Suite ver.
2019.1, RapidWright ver. 2019.1, and Xilinx Virtex-7 FPGA
VC707 Evaluation kit. The clock frequency is set to 200 MHz
and we sample the output of the monitors every 29 clock
cycles, or 2.56µs. We use our novel metric, to be explained
in Section IV-A, to interpret and compare sensor readings.

Depending on the experiment, we might report the absolute
sensor output or normalized with respect to the maximum
obtained across all sensors.

The duration of every measurement is set to 218 clock
periods (or 1.3 ms), during which time 512 samples per
sensor are recorded. Each experiement is repeated 10 times.
To offload the data from the board, we use Integrated Logic
Analyzer (ILA).

In this section we use an attacker composed of 135000
instances of the one-inverter power wasting circuits [6]. Ac-
cording to our experiments for an attacker size of 135 k, the
longest activation period is 10 µs and the board needs at least
40 µs to stabilize so that it does not go into a reset if the
attacker is enabled again.

A. Comparing Sensor Readings

In this section we explain how to compare data collected by
different sensors. To this end, we devise a novel metric, which,
as it will be demonstrated experimentally, can accurately and
reliably capture and compare the voltage fluctuations recorded
by the different sensors.

The output of a ring oscillator based sensor is the number
of counts that a digital counter, clocked by the output of
the ring oscillator, has made during a fixed period of time
(Figure 3. We refer to this fixed time interval as the sensor
sampling period. The sensor output varies over time and it is
mostly affected by the changes in the voltage. Even though
other environmental factors, such as temperature, affect the
frequency of the oscillation (and, consequently, the number
of the counts), according to previous works, voltage effects
dominate [13].

To filter out noise and outliers—caused by non-linear
response of the voltage distribution system to sudden
disturbances—we compute trimean T and a custom standard
deviation:

T =
(Q1 + 2Q2 +Q3)

4
(1)

and

ST =

√∑N
i=1(xi − T )2
N − 1

. (2)
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Fig. 5. Sensor topologies tested in the experiment described in Section IV-B.
Every sensor is described by a triple (N,S,H). Black dots are LUTs
performing signal inversion, while the hollow dots are LUTs acting as delay
elements.

Instead of mean, which is very susceptible to outliers, we
choose trimean: a robust measure of central tendency of a
set of numbers. In Eq. (1), Q2 is the dataset mean, while
Q1 and Q3 are the upper and lower quartiles, respectively. In
Eq. (2), N is the number of sensor samples while xi are their
values. In statistics, standard deviation is commonly used to
quantify the amount of variation or dispersion of a set of data.
However, given that we use trimean to compute the central
value of all samples—and not the mean—we compute the
standard deviation with respect to the trimean as well.

Finally, our novel metric that allows comparing the entire
data sets, where each data set contains readings collected by
the corresponding sensor, is the following ratio

NDT =
ST

T
. (3)

We will refer to it as normalized deviation with respect to
trimean or NDT. The logic behind this metric is the following:
we expect that the sensors located in places with higher
voltage fluctuation produce RO frequency counts that highly
vary over time or, in other words, produce data with higher
standard deviation. However, as different regions of the FPGA
might be supplied by different voltage or be affected by
different environmental factors, one needs to scale the amount
of variation in the data set recorded by each sensor with the
central tendency of all the samples of the corresponding sensor
(trimean). Only then can one make the comparison between
the data collected by different sensors.

B. Sensor Configuration

To compare various sensor topologies and find good values
for the sensor topology variables N , H , S, we conduct a set of
experiments. In all of them, sensors are centered with respect
to the corresponding clock region, and one clock region is
reserved for the controller inside the shell (Figure 3).

Fig. 6. Vivado placement of an attacker of 135,000 fast ring oscillator units,
and the placement of undercover sensors. The topology is one among those
illustrated in Figure 5: N = 3, S = 40, and H = 10.

For topology parameter N , defined in Section II-A, we
consider two values: N = 2 and N = 3. When N = 2,
sensors may work at higher frequency but cover only four
LUTs of the clock region. When N = 3, sensors may work
at lower frequency, but have a potentially higher coverage as
they use more (six) LUTs and longer routing.

Before choosing sensor stride S and height H , one needs to
take into account the dimensions of the FPGA. In our Xilinx
Virtex-7 FPGA, clock regions have a total height of 50 slices
and a total width of 108 (left half) and 110 (right half) slices.

To have a comprehensive analysis, we explore three values
for S (10, 20, 40) and two values for H (10, 20). Figure 5
illustrates all combinations of N , S, and H we tested; some
of these topologies should result in similar oscillation frequen-
cies, but different coverage, allowing us to evaluate the effect
of coverage on sensor accuracy.

Sensor placement and routing may vary depending on the
density of the user design. Therefore, instead of running the
experiments on an entirely unused FPGA, we choose to design
what can be a real power-wasting attacker circuit: 135,000
instances of a single, extremely fast, ring oscillator. The
attacker size is deliberately chosen to be just a bit smaller
than 140,000, as an attacker of size 140,000 ring oscillator
units, once activated, infallibly puts our FPGA board to reset.
We let Vivado freely place the attacker circuit and enable it
using a periodic activation signal pattern [4].



TABLE I
MINIMUM, MAXIMUM, AND AVERAGE SENSOR FREQUENCY ACROSS
FPGA CLOCK REGIONS. SENSOR TOPOLOGIES ARE ILLUSTRATED IN
FIGURE 5. THESE DATA CORRESPOND TO TOPOLOGIES WITH N = 2.

N = 2 H = 10 H = 10 H = 10 H = 20 H = 10
S = 10 S = 20 S = 40 S = 40 S = 80

min 212.5 MHz 175.4 MHz 134.6 MHz 132.7 MHz 109.3 MHz
max 320.9 MHz 218.0 MHz 189.8 MHz 170.0 MHz 147.9 MHz
mean 271.5 MHz 198.1 MHz 168.5 MHz 157.3 MHz 131.6 MHz
stdev 34.6 MHz 14.1 MHz 17.3 MHz 13.0 MHz 14.2 MHz

TABLE II
MINIMUM, MAXIMUM, AND AVERAGE SENSOR FREQUENCY ACROSS
FPGA CLOCK REGIONS. SENSOR TOPOLOGIES ARE ILLUSTRATED IN
FIGURE 5. THESE DATA CORRESPOND TO TOPOLOGIES WITH N = 3.

N = 3 H = 10 H = 10 H = 20 H = 10
S = 10 S = 20 S = 20 S = 40

min 130.1 MHz 112.9 MHz 101.0 MHz 88.5 MHz
max 187.2 MHz 140.3 MHz 124.5 MHz 117.9 MHz
mean 161.5 MHz 131.7 MHz 116.9 MHz 104.9 MHz
stdev 18.5 MHz 8.1 MHz 7.3 MHz 8.9 MHz

Figure 6 shows the design placement; the attacker circuit
is densely placed across six clock regions: X0Y 5, X1Y 5,
X0Y 4, X1Y 4, X0Y 3, and X1Y 3. In the same figure, white
connected lines show the placement and topology of one of
the sensors from our test set.

Tables I and II list the minimum, maximum, and average
sensor frequencies; sensor frequencies are computed as the
ratio of the number of counts registered during the sampling
period and the sampling period. We observe that the lowest
sensor frequencies are always measured in the FPGA area
densely occupied by the attacker, as expected, given the at-
tacker activity. Standard deviation of the measured frequencies
is ≈ 10% of the average sensor frequency, due to slight
variations between sensor actual placement and routing and,
mostly, due to attacker activity. From the collected data, we
can compute the measurement accuracy; it ranges from 1.2 to
4.4 parts per thousand.

To compare all the data collected by different sensors,
we compute the value of our normalized robust metric NDT
defined in Eq. (3) for every sensor and draw color maps shown
in Figure 7 and Figure 8. The higher the NDT value, the darker
the color shade. Sensor placement is described using clock
region names, on y-axis. Above each column, the H and S
values of the sensor topology are indicated.

These results suggest that the sensors with shorter total
length, and thus higher frequency, are more accurate: using
their readings and metric in Eq. (3), one can accurately
locate not only one but all clock regions occupied by the
attacker. Comparing the sensors with different N , those with
configuration (N = 2, S = 40, and H = 20) and (N = 3,
S = 20, and H = 20) suggest that frequency is not the only
factor impacting the accuracy in locating the source of high
activity: sensor coverage might come into the play and affect
the accuracy.

The conclusion from this experiment is that as the total
length and therefore the total delay of the sensors increases,
the frequency measurement accuracy drops. Moreover, the
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Fig. 7. Color map plot for N=2. The attacker is placed in the clock
regions X0Y 5, X1Y 5, X0Y 4, X1Y 4, X0Y 3, and X1Y 3. Darker squares
correspond to higher NDT, while lighter squares correspond to lower NDT.
This figure demonstrates that the sensors with smaller delay and higher
coverage over the clock region help achieve higher accuracy in locating high
power-wasting activities.
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Fig. 8. Color map plot for N=3. The attacker is placed in the clock
regions X0Y 5, X1Y 5, X0Y 4, X1Y 4, X0Y 3, and X1Y 3. Darker squares
correspond to higher NDT, while lighter squares correspond to lower NDT.
This figure demonstrates that the sensors with smaller delay and higher
coverage over the clock region help achieve higher accuracy in locating high
power-wasting activities.

possibility to locate the clock regions with high-activity de-
creases as well. This is clearly visible in Figures 7 and 8 by
the concentration of the dark blue cells where the attacker is
placed, or the dark blue cells being dispersed across all clock
regions.

Finally, in the rest of experimental evaluation, we will keep
two of the optimal sensor topologies:

1) N = 2, S = 20, H = 10, and
2) N = 3, S = 20, H = 20.

C. Feasibility of Undercover Sensing

Success in finding free LUTs and free routing resources
is not granted; it is important to test how likely it is to
successfully embed sensors inside a typical user design. To
that purpose, we pick twelve circuits from VTR benchmark
set [14], covering various application domains (finance, math,
computer vision, etc.). Function TestFeasibility, de-
scribed in Algorithm 1, is designed to traverse the input
benchmark set and run the entire design flow (Figure 4)
on every benchmark. Maximum search radius rMAX, in our
experiments, is set to 2. Function TestFeasibility reads
sensor topology, and tries to find placement for all sensor



Algorithm 1: Function TestFeasibility, which
takes benchmark circuits, a set of sensor topologies, and
maximum search radius, to attempt to infiltrate sensors into
the user design.

Input: Set B = {bi}, i = 1, ..|B| of benchmark circuits.
Input: Sensor topology t.
Input: Maximum search radius rMAX.
Output: Feasibility.
Variables: Design checkpoints dIN, dRW, and dOUT.
Variables: Boolean variable Success .
BS ← 0
foreach benchmark bi ∈ B do

Vivado.Sytnhesis(bi)
Vivado.Implementation(bi)
dIN ←
Vivado.ExportDesignCheckpoint(bi)
dRW ←
RapidWright.ImportDesignCheckpoint(dIN)
r ← 0
while radius r < rMAX do

Success ← False
NS ← 0
if EmbedUndercover(dRW, t, r) = True then

foreach successfully embedded sensor s do
dOUT ← dRW ∪ s
NS ← NS + 1

if Vivado.Implementation(dOUT) =
True then

Success ← True
BS ← BS + 1

Feasibility [r][i]← Success
r ← r + 1

LUTs and in all the clock regions occupied by the benchmark.
Initially, search radius r (equivalent to Manhattan distance
from the desired location) is set to zero. If placement fails for
at least one sensor LUT, new search iteration starts, this time
with r incremented. The function terminates once all sensor
cells are successfully placed (by RapidWright) and routed (by
Vivado), or when the maximum search radius is exceeded.

The results of this experiment are summarized in Table III.
First and last column list circuit names and application do-
mains. These benchmarks, albeit among the largest in VTR
suite, are spreaded in 1–6 clock regions on our Virtex-7 FPGA.
The Manhattan distance between the desired and the feasible
location of all sensor cells, averaged across all clock regions in
use by the corresponding benchmark, is shown in the central
two columns. Two sensor topologies were tested: (1) N = 2,
S = 20, H = 10 and (2) N = 3, S = 20, H = 20. Every
experiment succeeded at search radius exactly 2 (in all of them,
at least one sensor cell was placed at MD = 2 away from the
desired location). The median of all averaged displacements
is, interestingly, the same for both sensor topologies: 1.50.

TABLE III
RESULTS OF THE FEASIBILITY TESTS ON TWELVE LARGE VTR

BENCHMARKS. FIRST AND THE LAST COLUMN LIST CIRCUIT NAMES AND
APPLICATION DOMAINS. NUMBER OF CLOCK REGIONS OCCUPIED BY THE

BENCHMARKS, AFTER VIVADO PLACEMENT AND ROUTING, RANGE
BETWEEN 1 AND 6. CENTRAL TWO COLUMNS SHOW THE AVERAGE

MANHATTAN DISTANCE BETWEEN THE DESIRED AND THE FEASIBLE
LOCATION OF ALL SENSOR CELLS AND ACROSS ALL CLOCK REGIONS IN

USE BY THE CORRESPONDING BENCHMARK.

Benchmark No. clock (2,20,10) (3,20,20) Application
Name regions AVG MD AVG MD Domain
bgm 2 1.50 1.75 Finance
blob merge 2 1.50 1.08 Image Proc.
boundtop 1 1.25 1.67 Ray Tracing
LU32PEEng 1 1.50 1.83 Math
LU64PEEng 1 1.75 1.67 Math
LU8PEEng 1 1.50 1.50 Math
or1200 2 1.25 1.50 Soft Processor
raygentop 1 1.00 1.67 Ray Tracing
sha 1 2.00 1.33 Cryptograhy
stereovision0 4 1.56 1.29 Comp. Vision
stereovision1 2 2.00 1.50 Comp. Vision
stereovision2 6 1.54 1.47 Comp. Vision
median 1.50 1.50

D. Sensor Functionality

In this section we demonstrate the ability of our proposed
sensors to detect the ongoing power wasting activities on
the board, to locate where an attacker is, and to make a
difference between a normal user and a user with power-
wasting activities.

In order to test the functionality of our sensors we have used
the largest attacker size that does not put the board into reset
(135,000 single-stage ring oscillators). In these experiments,
we activate the attacker for the longest period of time which
does not result in board reset (10 µs) and then deactivate it
for the shortest period of time that allows the board to recover
(40 µs). We assume an attacker repeatedly gets activated and
deactivated throughout the experiments to make the worst-case
voltage fluctuations.

As a representative of a normal user, which we call the
Tenant; we have used the bgm circuit from VTR benchmark
suite. This circuit is a Monte Carlo simulation for a financial
application and it models the price derivatives using BGM
interest rates. It has eight 32-bit inputs and one 32-bit output.
It uses 30,089 6-LUTs, 5,362 FFs, and 11 multipliers [14].
We generate the inputs of the circuit using eight 32-bit
linear-feedback shift registers (LFSRs) to maximize its power
consumption.

In the following, We will focus on four cases:

• Sensors are located on the board and they are alone
(sensors alone);

• An attacker is working alone on the board and sensors
are inserted into it (attacker alone);

• An ordinary tenant is working alone on the board and
sensors are inserted into it (tenant alone);

• Both an ordinary tenant and an attacker are running on
the board and the sensors are inserted into them (tenant
and the attacker collocated).



In addition to collecting the sensor outputs for these scenar-
ios, we experiment with one of the state-of-the-art sensors that
researchers use to measure on-chip voltage fluctuations. For
instance, Provelengios et. al. [15] have used a 19-stage ring-
oscillator based sensor to find the center of the power-wasting
circuit. We developed a very similar sensor (18 buffers and one
inverter in a loop connected to a 20-bit counter). According
to our experiments, this sensor has a frequency of 106 MHz,
very similar to 104 MHz, frequency reported by Provelengios
et. al. [6]. However, the 19-stage sensor, if instantiated only
once in the center of a clock region, turned out to be less
successful in detecting an attacker compared to our sensors.
In our experiments, this state-of-the-art sensor reported one
false positive alert while detecting the clock regions with
the attacker in them, whereas our sensors detected all clock
regions occupied by the attacker correctly. Therefore, we try
reducing the number of stages in the state-of-the art sensor,
until we found one that is able to detect all clock regions with
the attacker circuit equally well as ours: 5-stage ring-oscillator
based sensor, oscillating at 335 MHz.

In all the experiments, we report the results for 2 type of
sensors:

• our proposed sensors
1) N=2, S=20, H=10
2) N=3, S=20, H=20

• state-of-the-art
1) 5-stage

1) Sensors Alone: We need a baseline with which to
compare all the following experimental results and therefore
in this section we collect the sensor readings when no design
is running on the board except the controller. The results
are illustrated in Figure 9. We will use the results of this
experiment in the next two subsections to show how precise
is the output of our sensors.

2) Attacker Alone: In this experiment, we limit the con-
troller to a single clock region and let the attacker be freely
placed by Vivado (Figure 6). We let the attacker and the
sensors run for 1.31 ms and gather 512 samples of the
sensors output. The attacker is located in clock regions X0Y 5,
X1Y 5, X0Y 4, X1Y 4, X0Y 3, and X1Y 3. The results of
this experiment are reported in Figure 10. The clock regions
on the x-axis are sorted so that those with the attacker in
them are sequential (we have started from the first free clock
region in the top and iterated to the last free clock region).
Figure 10 suggests that both sensor configurations—(2,20,10)
and (3, 20, 20) (represented based on our convention of
(N ,S,H))—coupled with our NDT metric, can successfully
detect where the attacker is located. The six highest data points
in Figure 10 are located precisely in the clock regions which
contain attacker in them. The results of the state-of-the-art 5-
stage RO sensor, shown in red, agree with those of our sensors.

3) Tenant Alone: Until now we have demonstrated the
correctness of the sensor outputs when an attacker is present
and active. Here we will go one step further and show how
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Fig. 9. Sensors output (NDT) when no other circuit except the sensors and
the controller are working on the FPGA. Axis x shows the clock region where
the sensor is located and the Y axis reports the sensor output in NDT. Sensors
configuration has been indicated in the format of (N ,S,H).
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Fig. 10. Sensors output (NDT normalized with respect to the maximum output
in NDT) when the attacker is running on the FPGA alone. Axis x shows the
clock region where the sensor is located and the Y axis reports the normalized
NDT outputs in percentage. Sensors configuration has been indicated in the
format of (N ,S,H). The attacker is located in clock regions X0Y 5, X1Y 5,
X0Y 4, X1Y 4, X0Y 3, and X1Y 3.

the sensors react to a circuit which has an ordinary pattern of
power consumption. As we are making the experimental set-
up realistic we will reserve top two clock regions of the board
for the shell and divide the remaining clock regions between
the tenant and an attacker in a way that both of them have
the same access to the shell. We keep the controller in the
same place as before to minimize the changes in the design
between different experiments. The results of this experiment
are illustrated in Figure 11. On the x-axis, we have again
sorted the clock regions so that those containing the circuit
are sequential. The x axis starts with the clock regions on the
left and it continues to the clock regions on the right. In the
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Fig. 11. Sensors output (NDT normalized with respect to the maximum output
in NDT) when the tenant is running on the FPGA alone. Axis x shows the
clock region where the sensor is located and the Y axis reports the normalized
NDT outputs in percentage. Sensors configuration has been indicated in the
format of (N ,S,H).For the graph in the top, the tenant is located in clock
regions X0Y 4 and X0Y 3. For the graph in bottom, the tenant is located in
clock regions X0Y 5 and X0Y 4

top graph, values reported for our proposed sensors are in blue
and green and the tenant is located in clock regions X0Y 4 and
X0Y 3. In the below graph, values reported for the 5-stage RO
sensor in red and the tenant is located in clock regions X0Y 5
and X0Y 4. As shown in Figure 11, our proposed sensors
detect the location of the tenant correctly (the highest data
point in the graph for sensor with configuration (3,20,20) is in
region X0Y 4 and the highest data point for the sensor with
the configuration (2,20,10) is in region X0Y 3). Both of them
locate one of the clock regions of the tenant. On the other hand,
the 5-stage state-of-the-art sensors fail to detect the tenant.
The highest data point in the corresponding plot lies in region
X1Y 1, yet no circuit is active there. One possible reason for
this result is due to the effective coverage of the state-of-the-
art sensors being very low, as they are densely packed (it is
composed of 5 LUTs in 5 consecutive SLICEs of the FPGA).
Consequently, having a single such sensor in the center of the
region is not sufficient.

Figure 12 illustrates the ratio of sensor output of an attacker
with power wasting activities or a tenant with normal power
consumption to the sensor output when they are running alone.
The values reported in y axis shows how much the sensor
output in NDT is higher in two experiments (Tenant alone
and attacker alone) compared to when nobody is running
on the board. The dashed line show the ratio for the board
with only the attacker and continuous line shows the ratio for
when only the tenant is on the board. As the values for the
two configuration is very similar in the case of tenant alone
experiment, the continuous blue line and continues green line
almost overlap. Even though the maximum gap for the state
of the art sensor is much higher (800X) but for our sensors
this gap is more predictable and steady, suggesting that the
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on the board and when a tenant is alone on the board . Axis x shows the clock
region where the sensor is located and the Y axis reports the normalized NDT
outputs. Sensors configuration has been indicated in the format of (N ,S,H).

results of our proposed sensors are more precise and reliable
compared to the state of the art sensors.

4) Tenant and the attacker collocated: In this experiment
we demonstrate the ability of our sensors to be used in a
real setting. We co-locate the attacker and the tenant on the
FPGA (as described in the previous section, tenant on the
right and the attacker on the left). In order to 1) fit both the
circuits on the FPGA and 2) have a symmetric placement,
we are forced to decrease the size of the attacker to fit it
in 6 clock regions. The attacker size in this experiment is
120,000 inverters. The set-up of this experiment is illustrated
in Figure 13. The orange LUTs are chosen to implement
our proposed sensor with configuration (2,20,10) and the blue
LUTs are used in the attacker and the tenant. Please note that
the orange LUTs were initially unused and therefore we have
not enforced any constraints on the tenant and the attacker to
monitor their activity. The pblocks of the controller, tenant,
and the attacker are shown in purple. As shown in Figure 13,
the attacker is located in clock region X0Y 5, X0Y 4, X0Y 3,
X0Y 2, and X0Y 1. The tenant is mostly located in clock
region X1Y 5 and X1Y 6. This set-up is a challenging design
where the density of the used LUTs is high and it shown
the feasibility of our proposed free LUT search algorithm.
The results of this experiment is illustrated in Figure 14. We
sort the clock region on the x axis based on their locations.
The x axis starts with the clock regions on the left and it
continues to the clock regions on the right so that the clock
regions of the same design are sequential. The results show our
proposed senors are able to correctly detect 5 clock regions out
of the total 6 clock regions with the attacker. The sensors with
configuration (2,20,10) misses to selects clock region X0Y 0
instead of clock region X0Y 1 as the 6th clock region with
high sensor outputs. Similarly, the sensor with configuration



Fig. 13. Colocation of the tenant and the attacker on the FPGA

(3,20,20) select clock region X1Y 4 instead of X0Y 1 as the
6th clock region with high values. In both cases only the
lowest value of the top 6 sensor output is a false alarm. If
one is to decide either to revoke a suspecting tenant or not,
she will make the correct decision when using the outputs of
our proposed sensor because 5 regions out of 6 regions of the
tenant are detected to have power wasting attacks. On the other
hand, the output of state of the art sensor is not as accurate
as us. The top 6 sensor outputs of the 5-stage RO sensor is
located in clock regions X0Y 3, X0Y 2, X1Y 2, X0Y 1, X1Y 1
and X0Y 0. We have two false positive alerts here and even
though the center of the attacker is located in X0Y 3, state
of the art sensor suggest that the attacker is centered in the
bottom of the board.

V. RELATED WORK

The idea to use ring oscillators to measure voltage and
temperature across a VLSI circuit dates back to an early paper
by Quéntot et al. [16]. Associated measurement procedures
for detecting variations in local temperature and voltage of
an IC were later described in the patent by Krishnamoorthy
and Detofsky [17]; there, the authors suggest embedding 96
sensors across the IC die. Later, Zick et al. [7] designed
an experimental FPGA-based system, instrumented it with
112 sensor nodes, and used it for detailed characterization
of delay, temperature, and voltage variations. Zick et al.
favored transistor-dominated paths over wire-dominated paths
in their ring oscillators, to enhance the sensor sensitivity to
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Fig. 14. Sensors output (NDT normalized with respect to the maximum output
in NDT) when both the attacker and the tenant are running on the FPGA. Axis
x shows the clock region where the sensor is located and the Y axis reports
the normalized NDT outputs in percentage. Sensors configuration has been
indicated in the format of (N ,S,H).The attacker is located in clock region
X0Y 5, X0Y 4, X0Y 3, X0Y 2, and X0Y 1. The tenant is mostly located in
clock region X1Y 4 and X1Y 5.

temperature changes. In contrast, in this work we demonstrate
that the above is not a true requirement when ring-oscillators
are used to sense fast voltage transients.

Gnad et al. [10] performed a detailed experimental anal-
ysis of transient voltage fluctuations in FPGAs using delay-
line based sensors instead of ring oscillators. Those sensors,
although allowing higher measurement resolution than ring os-
cillators, are subject to extremely tight placement constraints,
can be implemented only on FPGAs that have embedded
carry-chain logic, and incur higher resource overhead, because
every sensor uses a priority encoder to transform the delay-line
output to a binary number. This makes them highly impractical
for undercover embedding.

Most recently, Provelengios et al. [6] used a network of
40 ring-oscillator sensors, distributed in grid-like fashion, to
characterize the relationship between sudden high-amplitude
voltage droops and the number of delay faults in Cyclone V
FPGAs. Additionally, they show that approximating the gra-
dient of voltage changes (as a replacement for missing sensor
readings) can result in a map pointing towards the center of
the attack. The procedure or algorithm to compute gradients
is not explained, nor is the complexity of that procedure
analyzed. In this paper, we show that using only one sensor
per clock region, together with the novel statistical metric
we propose, one can locate not only the center of the attack
but also the clock regions occupied by the attacker, while
the amount of resources inside the user-logic region of the
FPGA is considerably reduced. Moreover, we experimentally
compare our sensors to that of Provelengios et al. [6] and find
that we can distinguish between used and unused FPGA clock
regions with 10× higher confidence, when the same number
of sensors is used.



VI. CONCLUSIONS

This paper introduces the idea of embedding undercover
sensors across the FPGA to monitor on-chip voltage fluctu-
ations and demonstrates the feasibility and the functionality
of these sensors. These undercover sensors are by no means
malicious: they do not interfere with the circuits running on
FPGA in any way, nor they occupy any otherwise required
space. Their purpose is to allow the centralized FPGA con-
troller (shell) to monitor FPGA tenant activity, signal excessive
activity, and take countermeasures. In addition, we design new
sensor topologies that have better coverage at significantly
lower resource usage than the state-of-the-art alternatives.
Finally, a novel metric for analyzing the sensor readings is
introduced. This metric, as detailed experimental evaluation
demonstrates, enables to reliably and accurately locate not only
the center of the highest on-chip activity but the entire FPGA
regions in which this activity is taking place. We believe these
contributions to be of great interest to cloud-providers and
researchers, for real-time monitoring, alarming, and forensics.

REFERENCES

[1] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on FPGAs using valid bitstreams,” in Proceedings of the 27th
International Conference on Field-Programmable Logic and Applica-
tions, Ghent, Belgium, Sep. 2017, pp. 1–7.

[2] A. W. S. (AWS), “Combinational loops disabled,” Amazon
Web Services, Seatle, WA, USA, 2017. [Online]. Available:
forums.aws.amazon.com/message.jspa?messageID=806151

[3] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Measuring long wire
leakage with ring oscillators in cloud FPGAs,” in Proceedings of
the 29th International Conference on Field-Programmable Logic and
Applications, Barcelona, Spain, Sep. 2019, pp. 1–8.
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