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Abstract

In this paper, we study the connections between pseudo-free families of computational Ω-algebras
(in appropriate varieties of Ω-algebras for suitable finite sets Ω of finitary operation symbols) and
certain standard cryptographic primitives. We restrict ourselves to families (Hd | d ∈ D) of computa-
tional Ω-algebras (where D ⊆ {0, 1}∗) such that for every d ∈ D, each element of Hd is represented
by a single bit string of length polynomial in the length of d. Very loosely speaking, our main results
are as follows: (i) pseudo-free families of computational mono-unary algebras with one-to-one fun-
damental operations (in the variety of all mono-unary algebras) exist if and only if one-way families
of permutations exist; (ii) for any m ≥ 2, pseudo-free families of computational m-unary algebras
with one-to-one fundamental operations (in the variety of all m-unary algebras) exist if and only if
claw-resistant families of m-tuples of permutations exist; (iii) for a certain Ω and a certain variety
V of Ω-algebras, the existence of pseudo-free families of computational Ω-algebras in V implies the
existence of families of trapdoor permutations.

Keywords: Universal algebra, family of computational universal algebras, pseudo-free family,
unary algebra, mono-unary algebra, one-way family of permutations, claw-resistant family of tuples
of permutations, family of trapdoor permutations.
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1 Introduction

Let Ω be a finite set of finitary operation symbols and let V be a variety of Ω-algebras. (See Subsection 2.2
for definitions.) Informally, a family of computational Ω-algebras is a family of Ω-algebras whose elements
are represented by bit strings in such a way that equality testing, the fundamental operations, and
generating random elements can be performed efficiently. Loosely speaking, a family of computational
Ω-algebras is called pseudo-free in V if all members of this family belong to V and, given a random
member H of the family (for a given security parameter) and random elements g1, . . . , gm ∈ H, it is
computationally hard to find a system of equations

vi(a1, . . . , am;x1, . . . , xn) = wi(a1, . . . , am;x1, . . . , xn), i ∈ {1, . . . , s}, (1)

in the variables x1, . . . , xn together with elements h1, . . . , hn ∈ H such that

• for each i ∈ {1, . . . , s}, vi(a1, . . . , am;x1, . . . , xn) and wi(a1, . . . , am;x1, . . . , xn) are elements of the
V-free Ω-algebra freely generated by a1, . . . , am, x1, . . . , xn,

• system (1) is unsatisfiable in the V-free Ω-algebra freely generated by a1, . . . , am, and

• vi(g1, . . . , gm;h1, . . . , hn) = wi(g1, . . . , gm;h1, . . . , hn) in H for all i ∈ {1, . . . , s}.

If a family of computational Ω-algebras satisfies this definition with the additional requirement that n = 0
(i.e., that the equations in (1) be variable-free), then this family is said to be weakly pseudo-free in V.
By fixing the number s of equations in the definition of a pseudo-free (resp., weakly pseudo-free) family
in V, we obtain a definition of an s-pseudo-free (resp., weakly s-pseudo-free) family in V. Of course,
pseudo-freeness (in any above version) may depend heavily on the form in which system (1) is required
to be found, i.e., on the representation of such systems.

The notion of pseudo-freeness (which is a variant of weak pseudo-freeness in the above sense) was
introduced by Hohenberger in [Hoh03, Section 4.5] for black-box groups. Rivest gave formal definitions
of a pseudo-free family of computational groups (see [Riv04a, Definition 2], [Riv04b, Slide 17]) and a
weakly pseudo-free one (see [Riv04b, Slide 11]). These authors consider (weak) pseudo-freeness only in
the varieties of all groups and of all abelian groups. Note that pseudo-freeness (resp., weak pseudo-
freeness) in those works is in fact 1-pseudo-freeness (resp., weak 1-pseudo-freeness) in our terminology.
For motivation of the study of pseudo-freeness, we refer the reader to [Hoh03, Riv04a, Mic10]. Surveys of
some results concerning pseudo-free families of computational groups can be found in [Fuk14, Chapter 1],
[Ano18, Section 1], and [Ano21, Subsection 1.1].

1.1 Related Work

Most researchers consider pseudo-freeness (in various versions) in the varieties of all groups [Hoh03,
Riv04a, Riv04b, HT07, HIST09, Ano13], of all abelian groups [Hoh03, Riv04a, Riv04b, HT07, Mic10,
JB09, CFW11, FHI+13, FHIS14a, FHIS14b, Ano18], and of all elementary abelian p-groups, where p is
a prime [Ano17]. Anokhin [Ano21] initiated the study of (weakly) pseudo-free families of computational
Ω-algebras in arbitrary varieties of Ω-algebras. In our opinion, the study of these families opens up new
opportunities for using (weak) pseudo-freeness in mathematical cryptography.

Let H = (Hd | d ∈ D) be a family of computational Ω-algebras, where D ⊆ {0, 1}∗. (We specify only
the Ω-algebras here.) This family is said to have exponential size if there exists a polynomial ξ such
that |Hd| ≤ 2ξ(|d|) for all d ∈ D (see also [Ano21, Definition 3.2]). The family H is called polynomially
bounded if there exists a polynomial η such that the length of any representation of every h ∈ Hd is
at most η(|d|) for all d ∈ D (see also [Ano21, Definition 3.3]). Of course, if H is polynomially bounded,
then it has exponential size. It should be noted that a (weakly) pseudo-free family can have applications
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in cryptography only if it is polynomially bounded or at least has exponential size. (Weakly) pseudo-
free families that do not have exponential size per se are of little interest; they can be constructed
unconditionally (see [Ano21, Subsection 3.4]). Finally, the family H is said to have unique representations
of elements if for every d ∈ D, each element of Hd is represented by a single bit string (see also [Ano21,
Definition 3.4]). This property seems to be useful in applications.

Micciancio [Mic10] proved that a specific polynomially bounded family of computational abelian
groups having unique representations of elements is pseudo-free in the variety A of all abelian groups
under a certain very strong number-theoretic hardness assumption. The same result, but with slightly
different representations of group elements by bit strings and different distributions of random elements
of the groups, was obtained by Jhanwar and Barua [JB09]. Moreover, Catalano, Fiore, and Warin-
schi [CFW11] proved that under the same assumption as in [Mic10], the family of computational abelian
groups from that work satisfies an apparently stronger condition than pseudo-freeness in A. That con-
dition, called adaptive pseudo-freeness, was introduced in [CFW11]. Anokhin [Ano13] constructed an
exponential-size pseudo-free family in the variety of all groups under the general integer factoring in-
tractability assumption. Also, he proved that a certain polynomially bounded family of computational
abelian groups having unique representations of elements is weakly pseudo-free in A under the general
integer factoring intractability assumption (see [Ano18]). Compared to the above result of Micciancio,
this is a weaker statement, but it is proved under a much weaker cryptographic assumption.

There are many constructions of cryptographic objects based on classical algebraic structures (e.g.,
groups). However, to the best of our knowledge, there are only a few works concerning both universal
algebra and cryptography. Probably the first such work is by Artamonov and Yashchenko [AY94]. In that
work, the authors introduced and studied the notion of a pk-algebra that naturally formalizes the syntax
of a one-round two-party key agreement scheme. See also the extended version [AKSY94] of [AY94].
Partala [Par18] proposed a generalization of the well-known Diffie–Hellman key agreement scheme based
on universal algebras. Moreover, he considered some approaches to the instantiation of the proposed
scheme. Loosely speaking, that scheme is secure if it is computationally hard to compute images under
an unknown homomorphism (in a certain setting). See also [Par11] (a preliminary version of [Par18]) and
the thesis [Par15].

In this paper, we address the following natural questions:

• Which cryptographic primitives can be constructed from polynomially bounded pseudo-free families
(in appropriate varieties of Ω-algebras for suitable finite sets Ω of finitary operation symbols)?

• In which varieties of Ω-algebras can polynomially bounded pseudo-free families be constructed from
standard cryptographic primitives?

Let O denote the variety of all Ω-algebras. In some (not very interesting) cases, polynomially bounded
(weakly) pseudo-free families in O exist unconditionally. Namely, if Ω consists of nullary operation
symbols only, then there exists a polynomially bounded pseudo-free family in O. This family consists of
free Ω-algebras. Now assume that Ω = Ω0 ∪{ω}, where Ω0 consists of nullary operation symbols and the
arity of ω is 1. Then in O there exist an exponential-size pseudo-free family and a polynomially bounded
weakly pseudo-free family. All these three families have unique representations of elements. See [Ano21,
Subsection 4.1] for details.

In many natural cases, collision-resistant hash function families can be constructed from polynomially
bounded weakly pseudo-free families in V (see [Ano21, Subsection 4.2]; note that by [Ano21, Remark 3.9],
weak 1-pseudo-freeness is equivalent to weak pseudo-freeness in the same variety). In particular, we can
do this if at least one of the following conditions holds (see [Ano21, Remark 4.7]):

• Ω contains a binary operation symbol ω and V is a nontrivial variety of Ω-algebras such that any
Ω-algebra in V is a groupoid with an identity element under ω. (Of course, this holds if V is a
nontrivial variety of monoids, loops, groups, or rings.)

• Ω contains two distinct unary operation symbols and V = O.

• Ω contains an m-ary operation symbol, where m ≥ 2, and V = O.

Assume that Ω consists of a single m-ary operation symbol, where m ≥ 1. In other words, we consider
m-ary groupoids. Furthermore, assume the existence of collision-resistant hash function families. Then
in O there exist a polynomially bounded weakly pseudo-free family having unique representations of
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elements and an exponential-size pseudo-free family. See [Ano21, Subsections 5.1–5.2] for details. As we
have already seen, if m = 1, then such (weakly) pseudo-free families exist unconditionally.

From now on, we assume that all families of computational Ω-algebras are polynomially bounded
and have unique representations of elements. Hence we can assume that every family of computational
Ω-algebras has the form ((Hd,Hd) | d ∈ D), where D ⊆ {0, 1}∗, Hd is an Ω-algebra such that Hd ⊆
{0, 1}≤η(|d|) for some fixed polynomial η, and Hd is a probability distribution on Hd for any d ∈ D. Thus,
the unique representation of each element h ∈ Hd (d ∈ D) is h itself.

Suppose p is an arbitrary fixed prime number and let Ap be the variety of all elementary abelian p-
groups. Then pseudo-free families in Ap exist if and only if certain homomorphic collision-resistant p-ary
hash function families exist or, equivalently, certain homomorphic one-way families of functions exist.
See [Ano17, Theorem 4.12] for details. Note that pseudo-freeness in Ap is equivalent to weak pseudo-
freeness in Ap for families of computational elementary abelian p-groups (see [Ano17, Theorem 3.7]).

1.2 Our Contributions and Organization of the Paper

The main results of this paper are as follows:

(i) Assume that Ω consists of a single unary operation symbol ω. (In this case, Ω-algebras are called
mono-unary algebras.) Suppose ((Hd,Hd) | d ∈ D) is a 1-pseudo-free (in particular, pseudo-free)
family of computational mono-unary algebras inO such that ω is a permutation ofHd for each d ∈
D and the probability ensemble (Hd | d ∈ D) is pseudo-uniform in the sense of Definition 2.4. Then
(ω : Hd → Hd | d ∈ D) is a one-way family of permutations (see Theorem 4.2). Conversely, if there
exists a one-way family of permutations, then there exists a pseudo-free family of computational
mono-unary algebras in O such that the fundamental operation of any mono-unary algebra in
this family is a permutation (see Corollary 4.7). The construction of this pseudo-free family is
explicit.

(ii) Assume that Ω consists of m distinct unary operation symbols ω1, . . . , ωm, where m ≥ 2. (In this
case, Ω-algebras are called m-unary algebras.) Suppose ((Hd,Hd) | d ∈ D) is a 1-pseudo-free (in
particular, pseudo-free) family of computational m-unary algebras in O such that ω1, . . . , ωm are
permutations of Hd for each d ∈ D and the probability ensemble (Hd | d ∈ D) is pseudo-uniform
in the sense of Definition 2.4. Then ((ω1, . . . , ωm : Hd → Hd) | d ∈ D) is a claw-resistant family
of m-tuples of permutations (see Theorem 5.2). Conversely, if there exists a claw-resistant family
of m-tuples of permutations, then there exists a pseudo-free family of computational m-unary
algebras in O such that the fundamental operations of any m-unary algebra in this family are
permutations (see Corollary 5.5). The construction of this pseudo-free family is explicit.

(iii) Assume that Ω consists of a single unary operation symbol ω and two distinct binary operation
symbols ϵ and δ. Let V be the variety generated by all finite Ω-algebras satisfying the identity
∀ z1, z2 (δ(z1, ϵ(ω(z1), z2)) = z2). Suppose ((Hd,Hd) | d ∈ D) is a 1-pseudo-free (in particular,
pseudo-free) family of computational Ω-algebras in V such that ω is a permutation of Hd for each
d ∈ D and the probability ensemble (Hd | d ∈ D) is pseudo-uniform in the sense of Definition 2.4.
For every d ∈ D and h, y ∈ Hd, put ψd,h(y) = ϵ(h, y) in Hd. Then (ψd,h | d ∈ D, h ∈ Hd)) is a
family of trapdoor permutations (see Theorem 6.2).

We emphasize that in the introduction, all the results are stated loosely. In particular, we ignore the
probability distribution (depending on the security parameter) according to which the index d is sampled.
Also, we do not specify the representation of elements of the (V-)free Ω-algebra by bit strings. (This
representation in used for representing systems of the form (1).) For precise statements, we refer the
reader to the cited works and to Sections 3–6 of this paper.

The rest of the paper is organized as follows. Section 2 contains notation, basic definitions, and general
results used in the paper. In particular, in Subsection 2.5 we formally define families of computational
Ω-algebras (with the above restrictions), as well as pseudo-free and s-pseudo-free ones. The main result of
Section 3 is as follows: If the arity of any operation symbol in Ω is at most 1, then for each positive integer
s, pseudo-freeness in O is equivalent to s-pseudo-freeness in O for families of computational Ω-algebras
with one-to-one unary fundamental operations (see Corollary 3.4). This result is used in Sections 4 and 5
and may be interesting in its own right. In Sections 4, 5, and 6, we prove main results (i), (ii), and (iii),
respectively. Finally, Section 7 concludes and suggests some directions for future research.
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2 Preliminaries

We mostly use the notation and conventions of [Ano21].

2.1 General Preliminaries

In this paper, N denotes the set of all nonnegative integers. The operation of disjoint union is denoted
by ⊔. Let Y be a set and let n ∈ N. We denote by Y n the set of all (ordered) n-tuples of elements
from Y . Furthermore, we put Y ≤n =

⊔n
i=0 Y

i and Y ∗ =
⊔∞

i=0 Y
i. In particular, ∅∗ consists only of the

empty tuple.
For some sets Y , we consider elements of Y ∗ as strings over Y . In particular, we do this for {0, 1}.

Suppose u, v are strings over a set. Then we denote by |u| the length of u and by uv the concatenation of
u and v. Moreover, un denotes the concatenation of n copies of u. In particular, the unary representation
of n, i.e., the string of n ones, is denoted by 1n. Also, we write u ⊑ v whenever u is a prefix of v, i.e.,
v = uw for some (unique) string w. The notation u ⊏ v means that u ⊑ v and u ̸= v.

Let I be a set. Suppose each i ∈ I is assigned an object qi. Then we denote by (qi | i ∈ I) the family
of all such objects and by {qi | i ∈ I} the set of all elements of this family.

When necessary, we assume that all “finite” objects (e.g., integers, tuples of integers, tuples of tuples
of integers) are represented by bit strings in some natural way. Sometimes we identify such objects with
their representations. Unless otherwise specified, integers are represented by their binary expansions.

Suppose ϕ is a function. We denote by domϕ the domain of ϕ. Also, we use the same notation for
ϕ and for the function (y1, . . . , yn) 7→ (ϕ(y1), . . . , ϕ(yn)), where n ∈ N and (y1, . . . , yn) ∈ (domϕ)n. The
identity function on the set Y is denoted by idY .

Let ρ be a function from a subset of {0, 1}∗ onto a set S and let s ∈ S. Then, unless otherwise
specified, [s]ρ denotes an arbitrary preimage of s under ρ. A similar notation was used by Boneh and
Lipton in [BL96] and by Hohenberger in [Hoh03]. In general, [s]ρ denotes many strings in {0, 1}∗ unless
ρ is one-to-one. We use any of these strings as a representation of s for computational purposes.

For convenience, we say that a function π : N → N \ {0} is a polynomial if there exist c ∈ N \ {0}
and d ∈ N such that π(n) = cnd for any n ∈ N \ {0} (π(0) can be an arbitrary positive integer). Of
course, every polynomial growth function from N to R+ = {r ∈ R | r ≥ 0} can be upper bounded by a
polynomial in this sense. Therefore this restricted notion of a polynomial is sufficient for our purposes.
For any c ∈ N \ {0}, the constant polynomial n 7→ c (n ∈ N) is denoted by c.

2.2 Algebraic Preliminaries

In this subsection, we recall the basic definitions and simple facts from universal algebra. For a detailed
introduction to this topic, the reader is referred to standard books, e.g., [Coh81], [BS12], or [Wec92].

Throughout the paper, Ω denotes a set of finitary operation symbols. Each ω ∈ Ω is assigned a
nonnegative integer called the arity of ω and denoted by arω. An Ω-algebra is a set H called the carrier
(or the underlying set) together with a family (ω̂ : Harω → H |ω ∈ Ω) of finitary operations on H called
the fundamental operations. We often denote an Ω-algebra and its carrier by the same symbol.

Let H be an Ω-algebra. Then its fundamental operation associated with a symbol ω ∈ Ω will be
denoted by ωH or simply by ω. A subset of H is called a subalgebra of H if it is closed under the
fundamental operations of H. If S is a system of elements of H, then we denote by ⟨S⟩ the subalgebra
of H generated by S, i.e., the smallest subalgebra of H containing S.

Suppose G is an Ω-algebra. A homomorphism of G to H is a function ϕ : G→ H such that for every
ω ∈ Ω and g1, . . . , garω ∈ G,

ϕ(ω(g1, . . . , garω)) = ω(ϕ(g1), . . . , ϕ(garω)).

If a homomorphism of G onto H is one-to-one, then it is called an isomorphism. Of course, the Ω-algebras
G and H are said to be isomorphic if there exists an isomorphism of G onto H.

Let (Hi | i ∈ I) be a family of Ω-algebras. Recall that the fundamental operations of the direct product
of this family are defined as follows:

ω((h1,i | i ∈ I), . . . , (harω,i | i ∈ I)) = (ω(h1,i, . . . , harω,i) | i ∈ I),
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where ω ∈ Ω and h1,i, . . . , harω,i ∈ Hi for all i ∈ I. In particular, the direct product of G and H is the
Ω-algebra with carrier G×H and the following fundamental operations:

ω((g1, h1), . . . , (garω, harω)) = (ω(g1, . . . , garω), ω(h1, . . . , harω)),

where ω ∈ Ω, g1, . . . , garω ∈ G, and h1, . . . , harω ∈ H.
An Ω-algebra with only one element is said to be trivial. It is obvious that all trivial Ω-algebras are

isomorphic.
For every i ∈ N, put Ωi = {ω ∈ Ω | arω = i}. We note that if Ω0 = ∅, then an Ω-algebra can be

empty. Whenever ω ∈ Ω0, it is common to write ω instead of ω().
We consider elements of Ω∗

1 as strings over Ω1. Of course, Ω∗
1 is a free monoid under the concatenation

operation. This monoid naturally acts (from the left) on H as follows:

(ω1 . . . ωn)h = ω1(ω2(. . . ωn(h) . . . )),

where n ∈ N, ω1, . . . , ωn ∈ Ω1, and h ∈ H. It is evident that if all unary fundamental operations of H
are one-to-one, then uh = uh′ ⇐⇒ h = h′ for any u ∈ Ω∗

1 and h, h′ ∈ H. We will tacitly use this fact in
the sequel.

Let Z be a set of objects called variables. We always assume that any variable is not in Ω. The set
Tm(Z) of all Ω-terms (or simply terms) over Z is defined as the smallest set such that Ω0 ⊔Z ⊆ Tm(Z)
and if ω ∈ Ω\Ω0 and v1, . . . , varω ∈ Tm(Z), then the formal expression ω(v1, . . . , varω) is in Tm(Z). The
Ω-terms can be considered as strings over the alphabet consisting of all symbols from Ω⊔Z, parentheses,
and comma. Of course, Tm(Z) is an Ω-algebra under the natural fundamental operations. This Ω-algebra
is called the Ω-term algebra over Z.

Suppose v ∈ Tm(Z). Let the string P (v) over Ω ⊔ Z be obtained from v by removing all parentheses
and commas. The string P (v) is known as the term v written in Polish notation. It is well known that
the function v 7→ P (v) (v ∈ Tm(Z)) is one-to-one. Moreover, if the arities of the operation symbols
occurring in v are known, then v can be easily recovered from P (v). See [Coh81, Chapter III, Section 2]
for details, although in that book reverse Polish notation is used.

Consider the case where Z = {z1, z2, . . . }, where z1, z2, . . . are distinct. Assume that v ∈
Tm({z1, . . . , zm}) for some m ∈ N. Furthermore, let h1, . . . , hm ∈ H. Then the element v(h1, . . . , hm) ∈
H is defined inductively in the natural way. It is easy to see that {v(h1, . . . , hm) | v ∈ Tm({z1, . . . , zm})} =
⟨h1, . . . , hm⟩.

An identity (or a law) over Ω is a closed first-order formula of the form ∀ z1, . . . , zm (v = w), where
m ∈ N and v, w ∈ Tm({z1, . . . , zm}). A class V of Ω-algebras is said to be a variety if it can be defined by
a set Υ of identities. This means that for any Ω-algebra G, G ∈ V if and only if G satisfies all identities
in Υ. By the famous Birkhoff variety theorem (see, e.g., [Coh81, Chapter IV, Theorem 3.1], [BS12,
Chapter II, Theorem 11.9], or [Wec92, Subsection 3.2.3, Theorem 21]), a class of Ω-algebras is a variety
if and only if it is closed under taking subalgebras, homomorphic images, and direct products. Note that
if a class of Ω-algebras is closed under taking direct products, then it contains a trivial Ω-algebra as the
direct product of the empty family of Ω-algebras.

The variety consisting of all Ω-algebras with at most one element is said to be trivial ; all other varieties
of Ω-algebras are called nontrivial. The trivial variety is defined by the identity ∀ z1, z2 (z1 = z2). When
Ω0 = ∅, the trivial variety contains not only trivial Ω-algebras, but also the empty Ω-algebra. If C is a
class of Ω-algebras, then the variety generated by C is the smallest variety of Ω-algebras containing C.
This variety is defined by the set of all identities holding in all Ω-algebras in C.

Let V be a variety of Ω-algebras. Then an Ω-algebra F ∈ V is said to be V-free if it has a generating
system (fi | i ∈ I) such that for every system of elements (gi | i ∈ I) of any Ω-algebra G ∈ V there exists a
homomorphism α : F → G satisfying α(fi) = gi for all i ∈ I (evidently, this homomorphism α is unique).
Any generating system (fi | i ∈ I) with this property is called free and the Ω-algebra F is said to be freely
generated by every such system. It is well known (see, e.g., [Coh81, Chapter IV, Corollary 3.3], [BS12,
Chapter II, Definition 10.9 and Theorem 10.10], or [Wec92, Subsection 3.2.3, Theorem 16]) that for any
set I there exists a unique V-free Ω-algebra (up to isomorphism) with a free generating system indexed
by I. It is easy to see that if V is nontrivial, then for each free generating system (fi | i ∈ I) of a V-free
Ω-algebra, fi are distinct. In this case, one can consider free generating systems as sets.

We denote by F∞,∞(V) the V-free Ω-algebra freely generated by a1, a2, . . . , x1, x2, . . . . Of course, if
V is nontrivial, then the elements of this free generating system are assumed to be distinct. Further-
more, suppose m,n ∈ N and let X = {x1, x2, . . . }, X ′ = {a1, a2, . . . , x1, x2, . . . }, X ′

m,n = {a1, . . . , am,
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x1, . . . , xn}, F∞(V) = ⟨a1, a2, . . . ⟩, Fm,n(V) = ⟨X ′
m,n⟩, and Fm(V) = Fm,0(V) = ⟨a1, . . . , am⟩. For

elements of Fm,n(V), we use the notation v(a1, . . . , am;x1, . . . , xn) = v(a;x), where v is an Ω-term. It
is well known that ai and xj can be considered as variables taking values in arbitrary Ω-algebra G ∈ V.
That is, for any v(a;x) ∈ Fm,n(V), g1, . . . , gm ∈ G, and h1, . . . , hn ∈ G (separated from g1, . . . , gm), the
element v(g1, . . . , gm;h1, . . . , hn) ∈ G is well defined as α(v(a;x)), where α is the unique homomorphism
of Fm,n(V) to G such that α(ai) = gi and α(xj) = hj for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. If
g = (g1, . . . , gm) and h = (h1, . . . , hn), then we sometimes write v(g;h) instead of v(g1, . . . , gm;h1, . . . , hn).
Whenever n = 0, we omit the semicolon in the above notation (e.g., v(a) = v(a; ) for any v(a; ) ∈ F∞(V)).

Unless otherwise specified, equations and systems of equations of the form v(a;x) = w(a;x), where
v, w ∈ F∞,∞(V), are considered in the variables in X.

Denote by O the variety of all Ω-algebras. We write F∞,∞, F∞, Fm,n, and Fm instead of F∞,∞(O),
F∞(O), Fm,n(O), and Fm(O), respectively. These Ω-algebras are the Ω-term algebras over the respective
sets of variables.

2.3 Probabilistic Preliminaries

Let Y be a probability distribution on a finite or countably infinite sample space Y . Then we denote by
suppY the support of Y, i.e., the set {y ∈ Y | PrY{y} ̸= 0}. In many cases, one can consider Y as a
distribution on suppY. The same notation will be used for random variables taking values in Y . Namely,
if y is such a random variable, then suppy is the support of the distribution of y.

Suppose Z is a finite or countably infinite set and α is a function from Y to Z. Then the image of
Y under α, which is a probability distribution on Z, is denoted by α(Y). This distribution is defined by
Prα(Y){z} = PrY α

−1(z) for each z ∈ Z. Note that if a random variable y is distributed according to Y,
then the random variable α(y) is distributed according to α(Y).

We use the notation y1, . . . ,yn ∼ Y to indicate that y1, . . . ,yn (denoted by upright bold letters)
are independent random variables distributed according to Y. We assume that these random variables
are independent of all other random variables defined in such a way. Furthermore, all occurrences of an
upright bold letter (possibly indexed or primed) in a probabilistic statement refer to the same (unique)
random variable. Of course, all random variables in a probabilistic statement are assumed to be defined on
the same sample space. Other specifics of random variables do not matter for us. Note that the probability
distribution Y in this notation can be random. For example, suppose (Yi | i ∈ I) is a probability ensemble
consisting of distributions on the set Y , where the set I is finite or countably infinite. Moreover, let I be
a probability distribution on I. Then i ∼ I and y ∼ Yi mean that the joint distribution of the random
variables i and y is given by Pr[i = i, y = y] = PrI{i}PrYi

{y} for each i ∈ I and y ∈ Y .
By a probabilistic function from Y to Z we mean a function from Y to the set of all probability

distributions on Z. If F is a probabilistic function from Y to Z, then F(Y) is the probability distribution
on Z such that for each z ∈ Z, PrF(Y){z} is the expectation of PrF(y){z} taken with respect to y
distributed according to Y. In other words, if we consider the probability ensemble (F(y) | y ∈ Y ) and
define random variables y ∼ Y and z ∼ F(y) (see the previous paragraph), then F(Y) is the distribution
of z.

Suppose each i ∈ {1, . . . , n} (where n ∈ N) is assigned a probability distribution Yi on a finite or
countably infinite sample space Yi. Then the probability distribution Y1 × · · · × Yn on Y1 × · · · × Yn is
defined as the distribution of a random variable (y1, . . . ,yn), where yi ∼ Yi for every i ∈ {1, . . . , n}. (Of
course, the distribution of this random variable does not depend on the choice of independent random
variables y1, . . . ,yn distributed according to Y1, . . . ,Yn, respectively.) In particular, Yn = Y × · · · × Y,
where Y occurs n times. Furthermore, for a nonempty finite set Z, U(Z) denotes the uniform probability
distribution on Z.

The notation y1, . . . , yn ← Y indicates that y1, . . . , yn (denoted by upright medium-weight letters)
are fixed elements of the set Y chosen independently at random according to the distribution Y.

Let R and S be probability distributions on the sample space Y . Then the statistical distance (also
known as variation distance) between R and S is defined as

∆(R,S) = 1

2

∑
y∈Y

|PrR{y} − PrS{y}|.

The following properties of the statistical distance are well known and/or can be proved straightforwardly:

7



• ∆(R,S) = maxM⊆Y |PrRM − PrS M |.

• ∆ is a metric on the set of all probability distributions on Y .

• If F is a probabilistic function from Y to Z, then ∆(F(R),F(S)) ≤ ∆(R,S). (In particular, this
holds for deterministic functions.)

See also [Sho08, Section 8.8], [AB07, Subsection A.2.6], and [Ano18, Lemma 2.3].

2.4 Cryptographic Preliminaries

Let P = (Pi | i ∈ I) be a probability ensemble consisting of distributions on {0, 1}∗, where I ⊆ {0, 1}∗.
Then P is called polynomial-time samplable (or polynomial-time constructible) if there exists a proba-
bilistic polynomial-time algorithm A such that for every i ∈ I the random variable A(i) is distributed
according to Pi. It is easy to see that if P is polynomial-time samplable, then there exists a polynomial
π satisfying suppPi ⊆ {0, 1}≤π(|i|) for any i ∈ I. Furthermore, let Q = (Qj | j ∈ J) be a probability
ensemble consisting of distributions on {0, 1}∗, where J ⊆ N. Usually, when it comes to polynomial-time
samplability of Q, the indices are assumed to be represented in binary. If, however, these indices are repre-
sented in unary, then we specify this explicitly. Thus, the ensemble Q is called polynomial-time samplable
when the indices are represented in unary if there exists a probabilistic polynomial-time algorithm B such
that for every j ∈ J the random variable B(1j) is distributed according to Qj .

Suppose K is an infinite subset of N, D is a subset of {0, 1}∗, and D = (Dk | k ∈ K) is a probability
ensemble consisting of distributions on D. We assume that D is polynomial-time samplable when the
indices are represented in unary. This notation is used throughout the paper.

A function ν : K → R+ is called negligible if for every polynomial π there exists a nonnegative integer
n such that ν(k) ≤ 1/π(k) whenever k ∈ K and k ≥ n. Of course, if ϵ, ν : K → R+, ν is negligible,
and ϵ(k) ≤ ν(k) for all sufficiently large k ∈ K, then ϵ is also negligible. Moreover, it is easy to see
that if ν, ν′ : K → R+ are negligible and η is a polynomial, then ν(k) + ν′(k) and η(k)ν(k) are negligible
as functions of k ∈ K. We denote by negl an unspecified negligible function on K. Any (in)equality
containing negl(k) is meant to hold for all k ∈ K.

Suppose Y and Z are finite or countably infinite sets, as in Subsection 2.3. Let (Rk | k ∈ K) and
(Sk | k ∈ K) be probability ensembles consisting of distributions on Y . Then these ensembles are called
statistically indistinguishable if ∆(Rk,Sk) = negl(k). The properties of the statistical distance listed at
the end of Subsection 2.3 imply the following properties of statistical indistinguishability:

• If (Rk | k ∈ K) and (Sk | k ∈ K) are statistically indistinguishable and (Mk | k ∈ K) is a family of
subsets of Y , then |PrRk

Mk − PrSk
Mk| = negl(k).

• Statistical indistinguishability is an equivalence relation on the set of all probability ensembles
indexed by K and consisting of distributions on Y .

• If (Rk | k ∈ K) and (Sk | k ∈ K) are statistically indistinguishable and (Fk | k ∈ K) is a family of
probabilistic functions from Y to Z, then (Fk(Rk) | k ∈ K) and (Fk(Sk) | k ∈ K) are statistically
indistinguishable. (In particular, this holds for families of deterministic functions.)

The notion of statistical indistinguishability can be naturally extended to probability ensembles in-
dexed by K and consisting of random variables that take values in Y . Namely, suppose vk and wk (where
k ∈ K) are random variables taking values in Y . Let Vk and Wk be the distributions of vk and wk, re-
spectively. Then (vk | k ∈ K) and (wk | k ∈ K) are said to be statistically indistinguishable if (Vk | k ∈ K)
and (Wk | k ∈ K) are statistically indistinguishable. In this case, we write vk ≈s wk.

Suppose (rk | k ∈ K) and (sk | k ∈ K) are probability ensembles consisting of random variables taking
values in {0, 1}∗. Then these ensembles are called computationally indistinguishable (or polynomial-time
indistinguishable) if for any probabilistic polynomial-time algorithm A,

|Pr[A(1k, rk) = 1]− Pr[A(1k, sk) = 1]| = negl(k).

In this case, we write rk ≈c sk.
For each k ∈ K, letRk and Sk be the distributions of rk and sk, respectively. Of course, computational

indistinguishability of (rk | k ∈ K) and (sk | k ∈ K) depends only on the probability ensembles (Rk | k ∈
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K) and (Sk | k ∈ K). Therefore the notion of computational indistinguishability can be naturally extended
to probability ensembles indexed byK and consisting of distributions on {0, 1}∗. Namely, such probability
ensembles (Vk | k ∈ K) and (Wk | k ∈ K) are said to be computationally indistinguishable if vk ≈c wk,
where vk ∼ Vk and wk ∼ Wk for all k ∈ K.

The following properties of computational indistinguishability are well known and/or can be proved
straightforwardly:

• If rk ≈s sk, then rk ≈c sk.

• Computational indistinguishability is an equivalence relation on the set of all probability ensembles
indexed by K and consisting of distributions on {0, 1}∗.

• If rk ≈c sk and B is a probabilistic polynomial-time algorithm, then B(1k, rk) ≈c B(1k, sk).

Throughout the paper, by indistinguishability we mean either statistical or computational indistin-
guishability. Note that after choosing one of these types of indistinguishability, we use only this type.
Whenever (rk | k ∈ K) and (sk | k ∈ K) are indistinguishable, we write rk ≈ sk.

Remark 2.1. The above properties of statistical and computational indistinguishability imply the fol-
lowing common properties of these types of indistinguishability:

(i) If rk ≈ sk and A is a probabilistic polynomial-time algorithm, then Pr[A(1k, rk) = 1] ≤
Pr[A(1k, sk) = 1] + negl(k).

(ii) Indistinguishability is an equivalence relation on the set of all probability ensembles indexed by K
and consisting of distributions on {0, 1}∗. Of course, the same holds for the set of all probability
ensembles indexed by K and consisting of random variables taking values in {0, 1}∗.

(iii) If rk ≈ sk and B is a probabilistic polynomial-time algorithm, then B(1k, rk) ≈ B(1k, sk).

Let (Yd | d ∈ D) be a family of subsets of {0, 1}∗.

Definition 2.2 (polynomially bounded family). We say that the family (Yd | d ∈ D) is polynomially
bounded if there exists a polynomial η such that Yd ⊆ {0, 1}≤η(|d|) for all d ∈ D.

Definition 2.3 (polynomial-time decidable family). We call the family (Yd | d ∈ D) polynomial-time
decidable if there exists a deterministic polynomial-time algorithm that, given d ∈ D and u ∈ {0, 1}∗,
decides whether u ∈ Yd.

In other words, polynomial-time decidability of the family (Yd | d ∈ D) means that, given d ∈ D, the
membership problem for Yd is decidable in polynomial time.

Suppose Y = (Yd | d ∈ D) is a probability ensemble such that Yd is a probability distribution on Yd
for any d ∈ D.

Definition 2.4 (pseudo-uniform probability ensemble). Assume that for all d ∈ D, Yd is finite. For each
k ∈ K, let d ∼ Dk, y ∼ Yd, and u ∼ U(Yd). We call the ensemble Y pseudo-uniform with respect to
(Yd | d ∈ D) and D if (d,y) ≈ (d,u). Moreover, if we are using computational indistinguishability, then
we additionally require that (Yd | d ∈ D) be polynomial-time decidable.

Let Φ = (ϕd : Yd → {0, 1}∗ | d ∈ D) be a family of functions. Recall that the family Φ is called
polynomial-time computable if the function (d, y) 7→ ϕd(y) (where d ∈ D and y ∈ Yd) is polynomial-time
computable.

Remark 2.5. Assume that the following conditions hold:

• For each d ∈ D, ϕd is a permutation of Yd.

• If we are using computational indistinguishability, then the family Φ is polynomial-time computable.

• The probability ensemble Y is pseudo-uniform with respect to (Yd | d ∈ D) and D.

Let k ∈ K, d ∼ Dk, y ∼ Yd, and u ∼ U(Yd). Then (d,y) ≈ (d,u) and hence (d, ϕd(y)) ≈ (d, ϕd(u)) (see
property (iii) in Remark 2.1), where (d,u) and (d, ϕd(u)) are identically distributed. By property (ii) in
Remark 2.1, (d, ϕd(y)) ≈ (d,y).
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2.5 Pseudo-Free Families of Computational Ω-Algebras

From now on, we assume that Ω is finite and that algorithms can work with its elements. A general
definition of a family of computational Ω-algebras was given in [Ano21, Definition 3.1]. These families
consist of triples of the form (Hd, ρd,Rd), where d ranges over D, Hd is an Ω-algebra, ρd is a function
from a subset of {0, 1}∗ onto Hd, and Rd is a probability distribution on dom ρd for any d ∈ D. In this
paper, we consider only polynomially bounded families ((Hd, ρd,Rd) | d ∈ D) of computational Ω-algebras
that have unique representations of elements. This means that the following conditions hold:

• The family (dom ρd | d ∈ D) is polynomially bounded. See also [Ano21, Definition 3.3].

• For each d ∈ D, the function ρd is one-to-one. Hence we can assume that for every d ∈ D,
Hd ⊆ {0, 1}∗ and the unique representation of each element h ∈ Hd is h itself. Namely, we use the
family ((dom ρd, iddom ρd

,Rd) | d ∈ D) instead of ((Hd, ρd,Rd) | d ∈ D). Here dom ρd is considered
as the unique Ω-algebra such that ρd is an isomorphism of this Ω-algebra onto Hd (d ∈ D). See
also [Ano21, Definition 3.4 and Remark 3.5]. Moreover, if Hd ⊆ {0, 1}∗, then we write (Hd,Rd)
instead of (Hd, idHd

,Rd).

Now we give a formal definition of a family of computational Ω-algebras with the above restrictions.
Let H = ((Hd,Hd) | d ∈ D) be a family of pairs, where Hd ⊆ {0, 1}∗ is an Ω-algebra and Hd is a probability
distribution on Hd for any d ∈ D.

Definition 2.6 (family of computational Ω-algebras, see also [Ano21, Definition 3.1]). The family H is
called a family of computational Ω-algebras if the following conditions hold:

(i) The family (Hd | d ∈ D) is polynomially bounded.

(ii) For every ω ∈ Ω, the family (ωHd | d ∈ D) is polynomial-time computable.

(iii) The probability ensemble (Hd | d ∈ D) is polynomial-time samplable.

Throughout the paper, we denote by V a variety of Ω-algebras and by σ a function from a subset
of {0, 1}∗ onto F∞,∞(V). Also, suppose s ∈ N \ {0}, H ∈ V, and g ∈ Hm, where m ∈ N \ {0}. Then
Σs(H,V, σ, g) denotes the set of all tuples

(([v1]σ, [w1]σ), . . . , ([vs]σ, [ws]σ), (h1, . . . , hn))

such that the following conditions hold:

• n ∈ N, vi, wi ∈ Fm,n(V) for all i ∈ {1, . . . , s}, and hj ∈ H for all j ∈ {1, . . . , n};

• the system of equations
vi(a;x) = wi(a;x), i ∈ {1, . . . , s},

is unsatisfiable in Fm(V) (or, equivalently, in F∞(V));

• vi(g;h) = wi(g;h) in H for each i ∈ {1, . . . , s}, where h = (h1, . . . , hn).

Note that in this definition of Σs(H,V, σ, g), [vi]σ and [wi]σ (i ∈ {1, . . . , s}) denote all preimages rather
than arbitrarily chosen ones. Moreover, let

Σ(H,V, σ, g) =

∞⊔
t=1

Σt(H,V, σ, g).

We say that the family H = ((Hd,Hd) | d ∈ D) is in V if Hd ∈ V for all d ∈ D. In the rest of this
subsection, we assume that H is a family of computational Ω-algebras in V.

Definition 2.7 (pseudo-free and s-pseudo-free family). The family H is said to be pseudo-free (resp., s-
pseudo-free) in V with respect to D and σ if for any polynomial π and any probabilistic polynomial-time
algorithm A,

Pr[A(1k,d,g) ∈ Σ(Hd,V, σ,g)] = negl(k), (resp., Pr[A(1k,d,g) ∈ Σs(Hd,V, σ,g)] = negl(k)),

where d ∼ Dk and g ∼ Hπ(k)
d .
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Thus, the definition of s-pseudo-freeness in V with respect to D and σ is obtained by replacing
Σ(Hd,V, σ,g) by Σs(Hd,V, σ,g) in the definition of pseudo-freeness in V with respect to D and σ. See
also [Ano21, Definition 3.6 and Remark 3.9]. We say that the algorithm A from Definition 2.7 tries to
break the pseudo-freeness or s-pseudo-freeness of the family H for the polynomial π.

Remark 2.8. It is evident that if H is pseudo-free in V with respect to D and σ, then H is s-pseudo-free
in V with respect to D and σ. See also [Ano21, Remark 3.9]. Furthermore, let t be an integer such that
1 ≤ t ≤ s. We note that if H is s-pseudo-free in V with respect to D and σ, then H is t-pseudo-free in
V with respect to D and σ. This is because for any p1, . . . , pt ∈ (domσ)2, d ∈ D, h ∈ H∗

d , and g ∈ Hm
d

(m ∈ N \ {0}), we have

(p1, . . . , pt, h) ∈ Σt(Hd,V, σ, g) ⇐⇒ (p1, . . . , pt, (u, u), . . . , (u, u)︸ ︷︷ ︸
s−t pairs

, h) ∈ Σs(Hd,V, σ, g),

where u = [a1]σ.

Of course, this remark remains valid if the family H is not necessarily polynomially bounded and does
not necessarily have unique representations of elements.

In the next two examples, we introduce the functions nat and SLP. See also [Ano21, Subsection 3.3].
In what follows, we will often assume that σ = nat. However, the theorems and corollaries mentioned at
the end of Remark 2.11 also hold when σ = SLP.

Example 2.9 (natural representation, see also [Ano21, Example 3.12]). Denote by T∞,∞ the Ω-term
algebra over the set {a1, a2, . . . , x1, x2, . . . } of distinct variables. Let v(a;x) be an arbitrary element of
F∞,∞(V), where v ∈ T∞,∞. In general, unless V = O, the term v is not uniquely determined by v(a;x).
We represent v(a;x) by the term v written in Polish notation. Moreover, we encode each variable bi by
bi = bbin i, where b ∈ {a, x}, i ∈ N \ {0}, and bin i is the binary representation of i without leading
zeros. More formally, consider the term v as a string over the alphabet consisting of all symbols from
Ω ⊔ {bi | b ∈ {a, x}, i ∈ N \ {0}}, parentheses, and comma. Let v be obtained from v by removing all
parentheses and commas and replacing all occurrences of bi by bi for every b ∈ {a, x} and i ∈ N \ {0},
where bi is defined above. Then v 7→ v is a one-to-one function from T∞,∞ to the set of all strings over the
finite alphabet Ω ⊔ {a, x, 0, 1}. It is convenient to use v as a representation of v(a;x) for computational
purposes. We call this representation natural and denote the function v 7→ v(a;x), where v ∈ T∞,∞,
by nat. Of course, nat is well defined and is a function onto F∞,∞(V).

Assume that V = O. In this case, the function nat is one-to-one. For every i ∈ N \ {0}, we identify
ai with ai and xi with xi. Then nat−1(w) = w for all w ∈ F∞,∞. This allows us to simplify the notation.

Example 2.10 (representation by straight-line programs, see also [Ano21, Example 3.13]). By a straight-
line program over F∞,∞(V) we mean a sequence (u1, . . . , un) of tuples such that n ∈ N \ {0} and for any
i ∈ {1, . . . , n}, either ui = (b,m), where b ∈ {a, x} and m ∈ N \ {0}, or ui = (ω,m1, . . . ,marω), where
ω ∈ Ω and m1, . . . ,marω ∈ {1, . . . , i − 1}. Here a and x are considered as symbols that are not in Ω.
Any straight-line program u = (u1, . . . , un) over F∞,∞(V) naturally defines the sequence (v1, . . . , vn) of
elements of F∞,∞(V) by induction. Namely, for every i ∈ {1, . . . , n}, we put vi = bm if ui = (b,m) and
vi = ω(vm1 , . . . , vmarω ) if ui = (ω,m1, . . . ,marω), where b, m, ω, and m1, . . . ,marω are as above. The
straight-line program u is said to represent the element vn. We denote by SLP the function u 7→ vn,
where u = (u1, . . . , un) is a straight-line program over F∞,∞(V) and vn is defined above. It is evident
that SLP is a function onto F∞,∞(V). Note that this method of representation (for elements of the free
group) was used in [Hoh03].

Remark 2.11. It is easy to see that, given [w]nat for arbitrary w ∈ F∞,∞(V), one can compute [w]SLP
in polynomial time. Therefore pseudo-freeness (resp., s-pseudo-freeness) in V with respect to D and
SLP implies pseudo-freeness (resp., s-pseudo-freeness) in V with respect to D and nat. The inverse
transformation [w]SLP 7→ [w]nat, in general, cannot be performed in polynomial time. This is because
the unique representation [w]nat (when V = O) can have length exponential in the length of the binary
representation of [w]SLP. See also [Ano21, Remark 3.16]. However, if arω ≤ 1 for all ω ∈ Ω, then,
given [w]SLP for arbitrary w ∈ F∞,∞(V), one can compute [w]nat in polynomial time. Hence in this case
pseudo-freeness (resp., s-pseudo-freeness) in V with respect to D and SLP is equivalent to pseudo-freeness
(resp., s-pseudo-freeness) in V with respect to D and nat. This shows that Theorems 4.6 and 5.4 and
Corollaries 3.4, 4.7, and 5.5 remain valid if we replace nat by SLP in their statements.
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2.6 Families Having Almost No Short Collisions

In this subsection, we assume that Ω consists of m unary operation symbols, where m ∈ N \ {0}. In
this case, Ω-algebras are called m-unary algebras. We note that 1-unary algebras are called mono-unary
algebras.

Let n ∈ N \ {0}. Denote by Zn the m-unary algebra with carrier {0, . . . , n − 1} and fundamental
operations defined by ω(z) = (z + 1) mod n for every ω ∈ Ω and z ∈ {0, . . . , n− 1}. (Of course, y mod n
denotes the remainder of y ∈ Z divided by n.) In is obvious that uz = (z+ |u|) mod n for all u ∈ Ω∗ and
z ∈ Zn.

Suppose (Hd | d ∈ D) is a family of m-unary algebras.

Definition 2.12 (family having almost no short collisions). We say that the family (Hd | d ∈ D) has
almost no short collisions with respect to D if for any polynomial π,

Pr[∃u, v ∈ Ω≤π(k) ∃h ∈ Hd s.t. u ⊏ v ∧ uh = vh] = negl(k),

where d ∼ Dk.

Construction 2.13. Let E = {(1k, d) | k ∈ K, d ∈ suppDk} and let (1k, d) ∈ E. For any ω ∈ Ω, it is
evident that ω is a permutation of Z2k × Hd if and only if ω is a permutation of Hd. Furthermore, if
u, v ∈ Ω∗, u ⊏ v, (z, h) ∈ Z2k × Hd, and u(z, h) = v(z, h), then |u| ≡ |v| (mod 2k) and hence |v| ≥ 2k

because 0 ≤ |u| < |v|. This implies that if π is a polynomial, then

Pr[∃u, v ∈ Ω≤π(k) ∃ (z, h) ∈ Z2k ×Hd s.t. u ⊏ v ∧ u(z, h) = v(z, h)] = 0

for all sufficiently large k ∈ K, where d ∼ Dk. In particular, (Z2k × Hd | (1k, d) ∈ E) has almost no
short collisions with respect to E = (U({1k}) × Dk | k ∈ K). (Clearly, the probability ensemble E is
polynomial-time samplable when the indices are represented in unary.)

3 A Transformation of Unsatisfiable Systems of Equations into
Single Unsatisfiable Equations

In this section, we assume that the arity of any operation symbol in Ω is at most 1 (i.e., Ω = Ω0 ⊔ Ω1)
and that V = O. It is easy to see that for any g ∈ F∞,∞ there exist unique v ∈ Ω∗

1 and b ∈ Ω0 ⊔ X ′

satisfying g = vb. Also, vf = vf for every v ∈ Ω∗
1 and f ∈ F∞,∞.

Suppose v ∈ Ω∗
1 and b ∈ Ω0 ⊔X ′

m,n, where m,n ∈ N. Then for any Ω-algebra H and any g ∈ Hm and
h ∈ Hn, we have (vb)(g;h) = v(b(g;h)). We use the notation vb(g;h) for this element. In particular, we
put vb(a;x) = (vb)(a;x) = v(b(a;x)).

Lemma 3.1. Let v, w ∈ Ω∗
1 and b, c ∈ Ω0 ⊔X ′. Assume that vb ̸= wc. Then the equation

vb(a;x) = wc(a;x) (2)

is satisfiable in F∞ if and only if

b ̸= c ∧ ((b ∈ X ∧ v ⊑ w) ∨ (c ∈ X ∧ w ⊑ v)). (3)

Proof. First assume that (2) is satisfiable in F∞. Since vb ̸= wc, we have b ∈ X or c ∈ X. By
interchanging, if necessary, vb and wc, we may assume that b ∈ X. Consider the case where c /∈ X.
Then (2) is an equation in the single variable b. Suppose b 7→ rf , where r ∈ Ω∗

1 and f ∈ Ω0⊔{a1, a2, . . . },
is an assignment that satisfies this equation. Then we have vrf = wc. This implies that vr = w and
v ⊑ w. Furthermore, it is obvious that b ̸= c. Thus, in this case condition (3) holds.

Now consider the case where c ∈ X. If b = c, then v ̸= w and vr ̸= wr for any r ∈ Ω∗
1. Therefore (2)

is unsatisfiable in F∞. This contradiction shows that b ̸= c. Let b 7→ rf , c 7→ ug, where r, u ∈ Ω∗
1 and

f, g ∈ Ω0⊔{a1, a2, . . . }, be an assignment that satisfies equation (2). Then we have vrf = wug and hence
vr = wu. This implies that v ⊑ w or w ⊑ v. Thus, in this case condition (3) also holds.

Now assume that condition (3) holds. By interchanging, if necessary, vb and wc, we may assume
that b ̸= c, b ∈ X, and v ⊑ w. Suppose r is the unique string in Ω∗

1 such that vr = w. If c /∈ X,
then the assignment b 7→ rc ∈ F∞ satisfies equation (2). If, however, c ∈ X, then for every f ∈ F∞,
the assignment b 7→ rf , c 7→ f satisfies (2). Note that in both these cases, there are no other satisfying
F∞-valued assignments for (2). Thus, equation (2) is satisfiable in F∞.
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Corollary 3.2. Let v, w ∈ Ω∗
1 and b, c ∈ Ω0 ⊔X ′. Assume that |v| ≤ |w|. Then the equation vb(a;x) =

wc(a;x) is unsatisfiable in F∞ if and only if one of the following mutually exclusive conditions holds:

(i) v = w, b ̸= c, and b, c /∈ X;

(ii) v ⊏ w and b = c ∈ X;

(iii) v ⊏ w and b /∈ X;

(iv) v ̸⊑ w.

Proof. Lemma 3.1 imply that the equation vb(a;x) = wc(a;x) is unsatisfiable in F∞ if and only if

(b ̸= c ∨ v ̸= w) ∧ (b = c ∨ ((b /∈ X ∨ v ̸⊑ w) ∧ (c /∈ X ∨ w ̸⊑ v))). (4)

(Of course, if this equation is unsatisfiable in F∞, then vb ̸= wc, i.e., b ̸= c or v ̸= w.) The corollary
follows immediately from the following facts:

• If v = w, then (4) is equivalent to the condition b ̸= c ∧ b /∈ X ∧ c /∈ X.

• If v ⊏ w, then (4) is equivalent to the condition b = c ∨ b /∈ X.

• If v ̸⊑ w, then w ̸⊑ v and (4) holds.

In the next lemma, we say that a system of equations

vi(a;x) = wi(a;x), i ∈ {1, . . . , s},

where vi, wi ∈ F∞,∞ for all i ∈ {1, . . . , s}, is represented by ((v1, w1), . . . , (vs, ws)).

Lemma 3.3. There exists a deterministic polynomial-time algorithm C such that the following holds.
Let u = ((v1, w1), . . . , (vs, ws)), where vi, wi ∈ Fm,n for all i ∈ {1, . . . , s} with m,n, s ∈ N. Then

(i) if the system of equations represented by u is unsatisfiable in F∞, then C(u) = (v, w), where
v, w ∈ Fm,n are such that

• the equation v(a;x) = w(a;x) is unsatisfiable in F∞ and

• the quasi-identity

∀ z1, . . . , zm, t1, . . . , tn (v1(z; t) = w1(z; t) ∧ · · · ∧ vs(z; t) = ws(z; t)→ v(z; t) = w(z; t)),

where z1, . . . , zm, t1, . . . , tn are distinct variables, z = (z1, . . . , zm), and t = (t1, . . . , tn),
holds in any Ω-algebra with one-to-one unary fundamental operations;

(ii) if the system of equations represented by u is satisfiable in F∞, then C(u) is a message reporting
this.

Proof. Suppose C is a deterministic polynomial-time algorithm that maintains an ordered list L of ele-
ments of (domnat)2 and proceeds on input u as follows:

1. Initialize the list L with u.

2. For each (v, w) ∈ L (in ascending order), do the following:

• If the equation v(a;x) = w(a;x) is unsatisfiable in F∞, then output (v, w) and stop. (It
follows from Lemma 3.1 that this condition can be checked in polynomial time.)

• If v = w, then remove the current pair (v, w) from the list L and go to the next pair in this
list.

• Assume that the equation v(a;x) = w(a;x) is satisfiable in F∞ and v ̸= w. Let v = v′b and
w = w′c, where v′, w′ ∈ Ω∗

1 and b, c ∈ Ω0 ⊔X ′
m,n. By Lemma 3.1,

b ̸= c ∧ ((b ∈ X ∧ v′ ⊑ w′) ∨ (c ∈ X ∧ w′ ⊑ v′)).

By interchanging, if necessary, v and w, we may assume that b ̸= c, b ∈ X, and v′ ⊑ w′.
Let r be the unique string in Ω∗

1 such that v′r = w′. Then replace the current pair (v, w)
by (b, rc) in L and substitute all occurrences of b in the elements of the subsequent pairs in
L by rc.
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3. If this point is reached (i.e., the list L is exhausted and the algorithm C did not terminate), then
output a message reporting that the system of equations represented by u is satisfiable in F∞.

Suppose H is an Ω-algebra with one-to-one unary fundamental operations. Let SH(L) be the set of
all H-valued assignments to variables in X ′

m,n (i.e., functions from X ′
m,n to H) that satisfy the system of

equations represented by the list L maintained by C. It is easy to see that all the transformations of the
list L made by C during the computation on input u preserve the set SH(L). Assume that C(u) = (v, w).
Then (v, w) is in the list L at the end of the computation of C. Hence H satisfies the quasi-identity
from condition (i). In particular, this quasi-identity holds in F∞. Since the equation v(a;x) = w(a;x) is
unsatisfiable in F∞, the system of equations represented by u is also unsatisfiable in F∞. This implies
condition (ii).

Now assume that C(u) is a message reporting that the system of equations represented by u is
satisfiable in F∞. This system is equivalent to the system of equations represented by L at the end of
the computation of C. The last system has the form

bi = rici, i ∈ {1, . . . , q}, (5)

where ri ∈ Ω∗
1, bi ∈ X ∩ X ′

m,n = {x1, . . . , xn}, and ci ∈ Ω0 ⊔ X ′
m,n for all i ∈ {1, . . . , q}. Moreover,

bi /∈ {ci, bi+1, ci+1, . . . , bq, cq} for every i ∈ {1, . . . , q}. But the last condition implies that (5) is satisfiable
in F∞. Namely, we can

• assign an arbitrary value in F∞ to cq if cq ∈ X,

• find the assignment to the variable bq from the equation bq = rqcq (because bq ̸= cq),

• assign an arbitrary value in F∞ to cq−1 if cq−1 ∈ X and it is still unassigned,

• find the assignment to the variable bq−1 from the equation bq−1 = rq−1cq−1 (because bq−1 /∈
{cq−1, bq, cq}) and so on.

Therefore the system of equations represented by u is indeed satisfiable in F∞. Hence, if this system is
unsatisfiable in F∞, then C(u) = (v, w), where v, w ∈ Fm,n are such that the equation v(a;x) = w(a;x) is
unsatisfiable in F∞. We have already seen that v and w also satisfy the second condition required in (i).
Thus, condition (i) holds.

Corollary 3.4. Let H = ((Hd,Hd) | d ∈ D) be a family of computational Ω-algebras and let s ∈ N \ {0}.
Assume that for any d ∈ D, all unary fundamental operations of Hd are one-to-one. Then H is pseudo-free
in O with respect to D and nat if and only if H is s-pseudo-free in O with respect to D and nat.

Proof. Let C be a deterministic polynomial-time algorithm from Lemma 3.3. It is easy to see that if
(p1, . . . , ps, h) ∈ Σ(Hd,O,nat, g), where p1, . . . , ps ∈ (domnat)2, d ∈ D, h ∈ H∗

d , and g ∈ H l
d (l ∈ N\{0}),

then (C(p1, . . . , ps), h) ∈ Σ1(Hd,O,nat, g). This shows that if H is 1-pseudo-free in O with respect to D
and nat, then it is pseudo-free in O with respect to D and nat. The required equivalence follows from
Remark 2.8 and this implication.

We note that this corollary remains valid if the family H is not necessarily polynomially bounded and
does not necessarily have unique representations of elements.

4 Pseudo-Free Families of Computational Mono-Unary Alge-
bras and One-Way Families of Permutations

In this section, we assume that Ω = {ω}, where arω = 1. In other words, we consider mono-unary
algebras. Furthermore, let V be the variety O of all mono-unary algebras.

Throughout this section, suppose

• (Yd | d ∈ D) is a polynomially bounded family of subsets of {0, 1}∗,

• Y = (Yd | d ∈ D) is a polynomial-time samplable probability ensemble such that Yd is a probability
distribution on Yd for any d ∈ D, and
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• Φ = (ϕd : Yd → {0, 1}∗ | d ∈ D) is a family of functions.

Definition 4.1 (one-way family). The family Φ is called one-way with respect to D and Y if it is
polynomial-time computable and for any probabilistic polynomial-time algorithm A, Pr[A(1k,d, z) ∈
ϕ−1
d (z)] = negl(k), where d ∼ Dk and z ∼ ϕd(Yd).

Of course, if ϕd is a permutation of Yd for every d ∈ D, then we use the term “one-way family of
permutations” instead of “one-way family of functions.”

We prefer the term “one-way family of functions” to the more common term “family of one-way
functions” because one-wayness is a property of the whole family of functions rather than of its individual
members.

Theorem 4.2. Let H = ((Hd,Hd) | d ∈ D) be a 1-pseudo-free (in particular, pseudo-free) family of
computational mono-unary algebras in O with respect to D and σ. Moreover, assume that the following
additional conditions hold:

• For each d ∈ D, ω is a permutation of Hd.

• The probability ensemble (Hd | d ∈ D) is pseudo-uniform with respect to (Hd | d ∈ D) and D.

Then Φ′ = (ωHd | d ∈ D) is a one-way family of permutations with respect to D and (Hd | d ∈ D).

Proof. It is evident that Φ′ is polynomial-time computable. Suppose A is a probabilistic polynomial-time
algorithm trying to break the one-wayness of Φ′. Let B be a probabilistic polynomial-time algorithm
(trying to break the 1-pseudo-freeness of H for the polynomial 1) that on input (1k, d, g) for arbitrary
k ∈ K, d ∈ suppDk, and g ∈ Hd runs A on this input. If A returns an output y, then B returns
(([ω(x1)]σ, [a1]σ), y). Otherwise, the algorithm B fails. It is easy to see that A(1k, d, g) = ω−1(g) (in Hd)
if and only if B(1k, d, g) ∈ Σ1(Hd,O, σ, g).

Let k ∈ K, d ∼ Dk, and g ∼ Hd. Then (d, ω(g)) ≈ (d,g) by Remark 2.5. Furthermore, given
(d, g, u), where d ∈ D, g ∈ Hd, and u ∈ {0, 1}∗, the condition u = ω−1(g) (which implies that u ∈ Hd)
can be checked in polynomial time if we are using computational indistinguishability. Hence,

Pr[A(1k,d, ω(g)) = g] ≤ Pr[A(1k,d,g) = ω−1(g)] + negl(k)

= Pr[B(1k,d,g) ∈ Σ1(Hd,O, σ,g)] + negl(k) = negl(k)

(see property (i) in Remark 2.1). Thus, Φ′ is one-way with respect to D and (Hd | d ∈ D).

Remark 4.3. Assume that the family Φ is one-way with respect to D and Y. Suppose A is a probabilistic
polynomial-time algorithm (trying to break the one-wayness of Φ) that on input (1k, d, z) for arbitrary
k ∈ K, d ∈ suppDk, and z ∈ suppϕd(Yd) chooses y ← Yd and outputs it. Let k ∈ K, d ∼ Dk, and
z, z′ ∼ ϕd(Yd). Then

Pr[z = z′] = Pr[A(1k,d, z) ∈ ϕ−1
d (z)] = negl(k).

Lemma 4.4. Assume that the family Φ is one-way with respect to D and Y. Then for any polynomial π
and any probabilistic polynomial-time algorithm A,

Pr[∃ i ∈ {1, . . . , π(k)} s.t. A(1k,d, (z1, . . . , zπ(k))) ∈ ϕ−1
d (zi)] = negl(k), (6)

where d ∼ Dk and z1, . . . , zπ(k) ∼ ϕd(Yd).

Proof. Let π be a polynomial and let A be a probabilistic polynomial-time algorithm trying to violate
condition (6) for π. Define the function η : K → N \ {0} by η(k) = 2⌈log2 π(k)⌉ for each k ∈ K. Then
π(k) ≤ η(k) and η(k) is a power of 2 for all k ∈ K. Furthermore, the function 1k → 1η(k) (k ∈ K) is
polynomial-time computable. (In other words, η is a polynomial parameter on K in the sense of [Ano17,
Definition 2.2] and [Ano21, Definition 2.2]; see also [Lub96, Preliminaries].) Suppose B is a probabilistic
polynomial-time algorithm (trying to break the one-wayness of Φ) that on input (1k, d, w) for every k ∈ K,
d ∈ suppDk, and w ∈ suppϕd(Yd) proceeds as follows:

1. Choose j← U({1, . . . , η(k)}) and z1, . . . , zπ(k) ← ϕd(Yd). Let z = (z1, . . . , zπ(k)).

2. If j ≤ π(k), then replace zj by w in z.
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3. Run A on input (1k, d, z) and return the output if it exists.

Let k ∈ K, d ∼ Dk, j ∼ U({1, . . . , η(k)}), v1, . . . ,vj−1,vj+1, . . . ,vη(k),w ∼ ϕd(Yd), vj = w, and

I = {i ∈ {1, . . . , π(k)} |A(1k,d, (v1, . . . ,vπ(k))) ∈ ϕ−1
d (vi)}.

Then
Pr[∃ i ∈ {1, . . . , π(k)} s.t. A(1k,d, (v1, . . . ,vπ(k))) ∈ ϕ−1

d (vi)] = Pr[I ̸= ∅] (7)

and
Pr[j ∈ I] ≤ Pr[B(1k,d,w) ∈ ϕ−1

d (w)] = negl(k). (8)

It is easy to see that the random variables j and (d, (v1, . . . ,vπ(k))) are independent. Therefore j and I
are also independent. If Pr[I ̸= ∅] ̸= 0, then this implies that Pr[j ∈ I | I ̸= ∅] ≥ 1/η(k), or, equivalently,

Pr[I ̸= ∅] ≤ η(k) Pr[j ∈ I]. (9)

If Pr[I ̸= ∅] = 0, then (9) is trivial.
Let z1, . . . , zπ(k) ∼ ϕd(Yd). Since j and (d, (v1, . . . ,vπ(k))) are independent, the latter random variable

and (d, (z1, . . . , zπ(k))) are identically distributed. Condition (6) follows immediately from this fact
and (7)–(9).

Corollary 4.5. Let (Td | d ∈ D) be a probability ensemble consisting of distributions on {0, 1}∗. Assume
that the following conditions hold:

• The family Φ is one-way with respect to D and Y.

• If d ∼ Dk, t ∼ Td, and z ∼ ϕd(Yd) (k ∈ K), then (d, t) ≈ (d, z).

• When we are using computational indistinguishability, (Yd | d ∈ D) is polynomial-time decidable and
(Td | d ∈ D) is polynomial-time samplable.

Then for any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[∃ i ∈ {1, . . . , π(k)} s.t. A(1k,d, (t1, . . . , tπ(k))) ∈ ϕ−1
d (ti)] = negl(k), (10)

where t1, . . . , tπ(k) ∼ Td.

Proof. Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm trying to vio-
late condition (10) for π. Let k ∈ K, d ∼ Dk, t1, . . . , tπ(k) ∼ Td, and z1, . . . , zπ(k) ∼ ϕd(Yd).
Then (d, t1, . . . , tπ(k)) ≈ (d, z1, . . . , zπ(k)). This can be easily proved by a standard hybrid argument
(see [Sho08, proof of Theorem 8.34] or [Gol01, Subsection 3.8.4, Exercise 7] for statistical indistinguisha-
bility and [Gol01, proof of Theorem 3.2.6] for computational indistinguishability). Furthermore, given
(d, v, w), where d ∈ D and v, w ∈ {0, 1}∗, the condition w ∈ ϕ−1

d (v) (which implies that w ∈ Yd) can be
checked in polynomial time if we are using computational indistinguishability. Hence, using property (i)
in Remark 2.1 together with Lemma 4.4, we have

Pr[∃ i ∈ {1, . . . , π(k)} s.t. A(1k,d, (t1, . . . , tπ(k))) ∈ ϕ−1
d (ti)]

≤ Pr[∃ i ∈ {1, . . . , π(k)} s.t. A(1k,d, (z1, . . . , zπ(k))) ∈ ϕ−1
d (zi)] + negl(k) = negl(k).

Theorem 4.6. Assume that the following conditions hold:

• For every d ∈ D, ϕd is a permutation of Yd.

• The family Φ is one-way with respect to D and Y.

For each d ∈ D, let Hd be the mono-unary algebra with carrier Yd and fundamental operation ϕd. Assume
that the family (Hd | d ∈ D) has almost no short collisions with respect to D. Then H = ((Hd, ϕd(Yd) | d ∈
D) is a pseudo-free family of computational mono-unary algebras in O with respect to D and nat.
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Proof. It is easy to see that H is a family of computational mono-unary algebras. By Corollary 3.4, it
suffices to prove that H is 1-pseudo-free in O with respect to D and nat. Let π be a polynomial and let A
be a probabilistic polynomial-time algorithm trying to break the 1-pseudo-freeness of H for π. Suppose B
is a probabilistic polynomial-time algorithm (trying to violate the condition proved in Lemma 4.4 for Φ
and π) that on input (1k, d, g) for every k ∈ K, d ∈ suppDk, and g = (g1, . . . , gπ(k)) ∈ (suppϕd(Yd))π(k)
proceeds as follows:

1. Run A on input (1k, d, g). Assume that the output is ((v, w), h) ∈ Σ1(Hd,O,nat, g), where
v, w ∈ Fπ(k),n and h = (h1, . . . , hn) ∈ Hn

d for some n ∈ N. (Note that, in general, the algorithm
B cannot check this condition. However, if it is not true, then further execution of B does not
matter.)

2. If {v, w} = {ωias, ω
jb}, where i, j ∈ N, i < j, s ∈ {1, . . . , π(k)}, and b ∈ X ′

π(k),n, then output

ωj−i−1b(g;h). (Since ωigs = ωjb(g;h), this output is equal to ω−1(gs) = ϕ−1
d (gs).) Otherwise,

the algorithm B fails.

Suppose the assumption of stage 1 of the algorithm B holds. Then the equation v(a;x) = w(a;x) is
unsatisfiable in F∞ and v(g;h) = w(g;h) in Hd. By Corollary 3.2, one of the following mutually exclusive
conditions holds:

(i) {v, w} = {ωias, ω
iat}, where i ∈ N, s, t ∈ {1, . . . , π(k)}, and s ̸= t (in this case, gs = gt);

(ii) {v, w} = {ωixs, ω
jxs}, where i, j ∈ N, i < j, and s ∈ {1, . . . , n} (in this case, ωihs = ωjhs);

(iii) {v, w} = {ωias, ω
jb}, where i, j ∈ N, i < j, s ∈ {1, . . . , π(k)}, and b ∈ X ′

π(k),n (in this case, B

outputs ϕ−1
d (gs)).

Note that each of these conditions corresponds to the condition of Corollary 3.2 with the same number.
Condition (iv) of this corollary cannot hold for strings in {ω}∗.

Let k ∈ K, d ∼ Dk, g1, . . . ,gπ(k) ∼ ϕd(Yd), and g = (g1, . . . ,gπ(k)). Denote by S
(i)
k , S

(ii)
k , and

S
(iii)
k the events that A on input (1k,d,g) outputs ((v, w), h) ∈ Σ1(Hd,O,nat,g), where {v, w} satisfies

conditions (i), (ii), and (iii), respectively, and h = (h1, . . . , hn) ∈ Hn
d for some n ∈ N. Then

PrS
(i)
k ≤ Pr[g1, . . . ,gπ(k) are not distinct] ≤ π(k)(π(k)− 1)

2
Pr[z = z′] = negl(k), (11)

where z, z′ ∼ ϕd(Yd). This is because Pr[z = z′] = negl(k) by Remark 4.3. Furthermore, suppose ξ is a

polynomial such that if ((ωixs, ωjxs), h) ∈ suppA(1k, d, g), where i, j ∈ N, i ̸= j, s ∈ N\{0}, d ∈ suppDk,
and g ∈ (suppϕd(Yd))π(k), then i, j ≤ ξ(k). Then it is easy to see that

PrS
(ii)
k ≤ Pr[∃ i, j ∈ {0, . . . , ξ(k)} ∃ y ∈ Hd s.t. i < j ∧ ωiy = ωjy] = negl(k) (12)

because (Hd | d ∈ D) has almost no short collisions with respect to D. Finally,

PrS
(iii)
k ≤ Pr[∃ s ∈ {1, . . . , π(k)} s.t. B(1k,d,g) = ϕ−1

d (gs)] = negl(k) (13)

by Lemma 4.4.

Note that the events S
(i)
k , S

(ii)
k , and S

(iii)
k are mutually exclusive. Using (11)–(13), we have

Pr[A(1k,d,g) ∈ Σ1(Hd,O,nat,g)] = Pr S
(i)
k + Pr S

(ii)
k + Pr S

(iii)
k = negl(k).

This shows that H is 1-pseudo-free in O with respect to D and nat.

Corollary 4.7. Assume that there exists a one-way family of permutations with respect to some probability
ensembles of the required form. Then there exists a pseudo-free family of computational mono-unary
algebras in O with respect to some probability ensemble of the required form and nat. Moreover, the
fundamental operation of any mono-unary algebra in this family is a permutation.
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Proof. Assume that ϕd is a permutation of Yd for every d ∈ D and that the family Φ is one-way with
respect to D and Y. For each d ∈ D, let Hd be the mono-unary algebra with carrier Yd and fundamental
operation ϕd (as in Theorem 4.6). Suppose E and E are as in Construction 2.13. (Recall that E =
{(1k, d) | k ∈ K, d ∈ suppDk} and E = (U({1k})×Dk | k ∈ K).) Then ω is a permutation of Ge = Z2k×Hd

for every e = (1k, d) ∈ E and the family (Ge | e ∈ E) has almost no short collisions with respect to E (see
Construction 2.13 with m = 1). Moreover, it is easy to see that the family (ωGe | e ∈ E) is one-way with
respect to E and (Ge | e ∈ E), where Ge = U(Z2k)×Yd for each e = (1k, d) ∈ E. Finally, by Theorem 4.6,
((Ge, ω(Ge)) | e ∈ E) is a pseudo-free family of computational mono-unary algebras in O with respect to
E and nat. (Note that ω(Ge) = U(Z2k) × ϕd(Yd) for all e = (1k, d) ∈ E. Also, it is evident that E is
polynomial-time samplable when the indices are represented in unary.)

5 Pseudo-Free Families of Computational m-Unary Algebras
and Claw-Resistant Families of m-Tuples of Permutations

In this section, we assume that Ω consists of m distinct unary operation symbols ω1, . . . , ωm, where
m ≥ 2. In other words, we consider m-unary algebras. Furthermore, suppose V is the variety O of all
m-unary algebras.

For arbitrary functions ψ1, . . . , ψm : Y → Z, a pair (y, y′) ∈ Y 2 is said to be a claw for (ψ1, . . . , ψm)
if there exist distinct indices i, j ∈ {1, . . . ,m} such that ψi(y) = ψj(y

′). Throughout this section, let
(Yd | d ∈ D) be a polynomially bounded family of subsets of {0, 1}∗ and let Ψ = ((ψ1,d, . . . , ψm,d) | d ∈ D)
be a family of m-tuples of functions, where ψ1,d, . . . , ψm,d : Yd → {0, 1}∗ for all d ∈ D.

Definition 5.1 (claw-resistant family). The family Ψ is called claw-resistant (or claw-free) with respect
to D if the following conditions hold:

(i) For every i ∈ {1, . . . ,m}, the family (ψi,d | d ∈ D) is polynomial-time computable.

(ii) If we are using computational indistinguishability, then the family (Yd | d ∈ D) is polynomial-time
decidable.

(iii) For every i ∈ {1, . . . ,m} and d ∈ D, there exists a probability distribution Ri,d on Yd such that

• for each i ∈ {1, . . . ,m}, the probability ensemble (Ri,d | d ∈ D) is polynomial-time samplable
and

• for any i, j ∈ {1, . . . ,m}, (d, si) ≈ (d, sj), where d ∼ Dk, si ∼ ψi,d(Ri,d), and sj ∼
ψj,d(Rj,d) (k ∈ K).

(iv) For any probabilistic polynomial-time algorithm A, Pr[A(1k,d) is a claw for (ψ1,d, . . . , ψm,d)] =
negl(k), where d ∼ Dk.

Whenever ψ1,d, . . . , ψm,d are permutations of Yd for every d ∈ D, we use the term “claw-resistant
family of m-tuples of permutations” instead of “claw-resistant family of m-tuples of functions.”

We prefer the term “claw-resistant family of m-tuples of functions (resp., permutations)” to the more
common term “family of claw-free functions (resp., permutations)” for the following reasons:

• such a family consists of m-tuples of functions (resp., permutations) rather than of functions (resp.,
permutations),

• claw-resistance is a property of the whole family rather than of its individual members, and

• it is required that claws for a random m-tuple of functions are computationally hard to find rather
than do not exist.

We note that Definition 5.1 is one of the possible definitions of a claw-resistant family. For exam-
ple, in [Gol01, Definition 2.4.6], m = 2, the functions ψ1,d and ψ2,d may have different domains, and
ψ1,d(R1,d) = ψ2,d(R2,d) for all d ∈ D (in our notation). Most researchers consider claw-resistant fam-
ilies of pairs, although claw-resistant families of tuples were defined already in the pioneering work of
Damg̊ard [Dam88] (see Definition 2.3 of that work).
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Theorem 5.2. Let H = ((Hd,Hd) | d ∈ D) be a 1-pseudo-free (in particular, pseudo-free) family of
computational m-unary algebras in O with respect to D and σ. Moreover, assume that the following
additional conditions hold:

• For each i ∈ {1, . . . ,m} and d ∈ D, ωi is a permutation of Hd.

• The probability ensemble (Hd | d ∈ D) is pseudo-uniform with respect to (Hd | d ∈ D) and D.

Then the family Ψ′ = ((ωHd
1 , . . . , ωHd

m ) | d ∈ D) of m-tuples of permutations is claw-resistant with respect
to D.

Proof. Conditions (i) and (ii) of Definition 5.1 are evident for Ψ′. Condition (iii) of that definition holds
because if k ∈ K, d ∼ Dk, and h ∼ Hd, then (d, ωi(h)) ≈ (d,h) ≈ (d, ωj(h)) for any i, j ∈ {1, . . . ,m}
(see Remark 2.5). Therefore we can take Hd as Ri,d for every i ∈ {1, . . . ,m} and d ∈ D. It remains to
prove condition (iv) of Definition 5.1 for Ψ′. Let A be a probabilistic polynomial-time algorithm trying
to violate this condition. Suppose B is a probabilistic polynomial-time algorithm (trying to break the
1-pseudo-freeness of H for the polynomial 1) that on input (1k, d, g) for arbitrary k ∈ K, d ∈ suppDk,
and g ∈ suppHd proceeds as follows:

1. Run A on input (1k, d). Assume that the output is (h1, h2) ∈ H2
d . (Note that, in general, the

algorithm B cannot check this condition. However, if it is not true, then further execution of B
does not matter.)

2. For each i ∈ {1, . . . ,m}, compute ωi(h1) and ωi(h2). If there exist distinct indices i, j ∈
{1, . . . ,m} such that ωi(h1) = ωj(h2), then output (([ωi(x1)]σ, [ωj(x2)]σ), (h1, h2)) for some such
i and j. (Since the equation ωi(x1) = ωj(x2) is unsatisfiable in F∞ (see Lemma 3.1), this output
is in Σ1(Hd,O, σ, g).) Otherwise, the algorithm B fails.

Let k ∈ K, d ∼ Dk, and g ∼ Hd. Then

Pr[A(1k,d) is a claw for (ωHd
1 , . . . , ωHd

m )] ≤ Pr[B(1k,d,g) ∈ Σ1(Hd,O, σ,g)] = negl(k).

Thus, condition (iv) of Definition 5.1 holds for Ψ′.

The next lemma is probably well known (see also [Gol01, Subsection 2.7.4, Exercise 22]).

Lemma 5.3. Assume that the family ((ψ1,d, . . . , ψm,d) | d ∈ D) is claw-resistant with respect to D. More-
over, suppose Ri,d (i ∈ {1, . . . ,m}, d ∈ D) are probability distributions satisfying condition (iii) of
Definition 5.1 for Ψ. Then for each i ∈ {1, . . . ,m}, the family Ψi = (ψi,d | d ∈ D) is one-way with respect
to D and (Ri,d | d ∈ D).

Proof. Let i ∈ {1, . . . ,m}. By condition (i) of Definition 5.1, the family Ψi is polynomial-time computable.
Suppose A is a probabilistic polynomial-time algorithm trying to break the one-wayness of Ψi. Choose
an arbitrary j ∈ {1, . . . ,m} \ {i}. Let B be a probabilistic polynomial-time algorithm (trying to violate
condition (iv) of Definition 5.1 for Ψ) that on input (1k, d) for every k ∈ K and d ∈ suppDk proceeds as
follows:

1. Choose r←Rj,d.

2. Run A on input (1k, d, ψj,d(r)). If A returns an output y, then return (y, r). (It is evident that if A
outputs a preimage of ψj,d(r) under ψi,d, then B outputs a claw for (ψ1,d, . . . , ψm,d).) Otherwise,
the algorithm B fails.

Let k ∈ K, d ∼ Dk, si ∼ ψi,d(Ri,d), and sj ∼ ψj,d(Rj,d). Then (d, si) ≈ (d, sj). Furthermore, given
(d, v, w), where d ∈ D and v, w ∈ {0, 1}∗, the condition w ∈ ψ−1

i,d (v) (which implies that w ∈ Yd) can be
checked in polynomial time if we are using computational indistinguishability. Therefore,

Pr[A(1k,d, si) ∈ ψ−1
i,d(si)] ≤ Pr[A(1k,d, sj) ∈ ψ−1

i,d(sj)] + negl(k)

≤ Pr[B(1k,d) is a claw for (ψ1,d, . . . , ψm,d)] + negl(k) = negl(k)

(see property (i) in Remark 2.1). Thus, the family Ψi is one-way with respect to D and (Ri,d | d ∈ D).
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Theorem 5.4. Assume that the following conditions hold:

• For every i ∈ {1, . . . ,m} and d ∈ D, ψi,d is a permutation of Yd.

• The family Ψ is claw-resistant with respect to D.

For each d ∈ D, let Hd be the m-unary algebra with carrier Yd and fundamental operations ψ1,d, . . . , ψm,d

associated with ω1, . . . , ωm, respectively. Assume that the family (Hd | d ∈ D) has almost no short colli-
sions with respect to D. Furthermore, suppose Ri,d (i ∈ {1, . . . ,m}, d ∈ D) are probability distributions
satisfying condition (iii) of Definition 5.1 for Ψ. Then for any i ∈ {1, . . . ,m}, Hi = ((Hd, ψi,d(Ri,d)) | d ∈
D) is a pseudo-free family of computational m-unary algebras in O with respect to D and nat.

Proof. Let i ∈ {1, . . . ,m}. It is easy to see that Hi is a family of computational m-unary algebras. By
Corollary 3.4, it suffices to prove that Hi is 1-pseudo-free in O with respect to D and nat. Suppose π is
a polynomial and A is a probabilistic polynomial-time algorithm trying to break the 1-pseudo-freeness
of Hi for π. For each j ∈ {1, . . . ,m}, let Bj be a probabilistic polynomial-time algorithm that on input
(1k, d, g) for every k ∈ K, d ∈ suppDk, and g = (g1, . . . , gπ(k)) ∈ (suppψi,d(Ri,d))

π(k) proceeds as follows:

1. Run A on input (1k, d, g). Assume that the output is ((v, w), h) ∈ Σ1(Hd,O,nat, g), where
v, w ∈ Fπ(k),n and h = (h1, . . . , hn) ∈ Hn

d for some n ∈ N. (Note that, in general, the algorithm
Bj cannot check this condition. However, if it is not true, then further execution of Bj does not
matter.)

2. If {v, w} = {uas, uωju
′b}, where u, u′ ∈ Ω∗, s ∈ {1, . . . , π(k)}, and b ∈ X ′

π(k),n, then output

u′b(g;h) (Since ugs = uωju
′b(g;h), this output is equal to ω−1

j (gs) = ψ−1
j,d (gs).) Otherwise, the

algorithm Bj fails.

We note that the algorithm Bj tries to violate condition (10) in Corollary 4.5 for Td = ψi,d(Ri,d) (d ∈ D),
Φ = (ψj,d | d ∈ D), and π. Also, let C be a probabilistic polynomial-time algorithm (trying to violate
condition (iv) of Definition 5.1 for Ψ) that on input (1k, d) for every k ∈ K and d ∈ suppDk proceeds as
follows:

1. Choose g← (ψi,d(Ri,d))
π(k).

2. Run A on input (1k, d, g). Assume that the output is ((v, w), h) ∈ Σ1(Hd,O,nat, g), where
v, w ∈ Fπ(k),n and h = (h1, . . . , hn) ∈ Hn

d for some n ∈ N. (In general, similarly to the algorithm
Bj , C cannot check this condition. However, if it is not true, then further execution of C does
not matter.)

3. If {v, w} = {uωsu
′b, uωtu

′′c}, where u, u′, u′′ ∈ Ω∗, s, t ∈ {1, . . . ,m}, s ̸= t, and b, c ∈ X ′
π(k),n,

then output (u′b(g;h), u′′c(g;h)) (Since uωsu
′b(g;h) = uωtu

′′c(g;h), this output is a claw for
(ωHd

1 , . . . , ωHd
m ) = (ψ1,d, . . . , ψm,d).) Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by Bj for some j ∈ {1, . . . ,m} or by C on input (1k, d, g)
(where k ∈ K, d ∈ suppDk, and g = (g1, . . . , gπ(k)) ∈ (suppψi,d(Ri,d))

π(k)) and that the output of A is
((v, w), h) ∈ Σ1(Hd,O,nat, g) with v, w ∈ Fπ(k),n and h = (h1, . . . , hn) ∈ Hn

d for some n ∈ N. Then the
equation v(a;x) = w(a;x) is unsatisfiable in F∞ and v(g;h) = w(g;h) in Hd. By Corollary 3.2, one of
the following mutually exclusive conditions holds:

(i) {v, w} = {uas, uat}, where u ∈ Ω∗, s, t ∈ {1, . . . , π(k)}, and s ̸= t (in this case, gs = gt);

(ii) {v, w} = {uxs, u′xs}, where u, u′ ∈ Ω∗, u ⊏ u′, and s ∈ {1, . . . , n} (in this case, uhs = u′hs);

(iii) {v, w} = {uas, uωju
′b}, where u, u′ ∈ Ω∗, s ∈ {1, . . . , π(k)}, j ∈ {1, . . . ,m}, and b ∈ X ′

π(k),n (in

this case, Bj outputs ψ−1
j,d (gs));

(iv) {v, w} = {uωsu
′b, uωtu

′′c}, where u, u′, u′′ ∈ Ω∗, s, t ∈ {1, . . . ,m}, s ̸= t, and b, c ∈ X ′
π(k),n (in

this case, C outputs a claw for (ψ1,d, . . . , ψm,d)).
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Note that each of these conditions corresponds to the condition of Corollary 3.2 with the same number.

Let k ∈ K, d ∼ Dk, g1, . . . ,gπ(k) ∼ ψi,d(Ri,d), and g = (g1, . . . ,gπ(k)). Denote by T
(i)
k , T

(ii)
k , T

(iii)
k ,

and T
(iv)
k the events that A on input (1k,d,g) outputs ((v, w), h) ∈ Σ1(Hd,O,nat,g), where {v, w}

satisfies conditions (i), (ii), (iii), and (iv), respectively, and h = (h1, . . . , hn) ∈ Hn
d for some n ∈ N.

By Lemma 5.3, for all j ∈ {1, . . . ,m}, (ψj,d | d ∈ D) is one-way with respect to D and (Rj,d | d ∈ D).
Using Corollary 4.5 for Td = ψi,d(Ri,d) (d ∈ D) and Φ = (ψj,d | d ∈ D) for each j ∈ {1, . . . ,m}, we obtain

PrT
(iii)
k ≤

m∑
j=1

Pr[∃ s ∈ {1, . . . , π(k)} s.t. Bj(1
k,d,g) = ψ−1

j,d(gs)] = negl(k). (14)

Let z, z′ ∼ ψi,d(Ri,d). Then Pr[z = z′] = negl(k) by Remark 4.3 and hence

PrT
(i)
k ≤ Pr[g1, . . . ,gπ(k) are not distinct] ≤ π(k)(π(k)− 1)

2
Pr[z = z′] = negl(k). (15)

Furthermore, suppose ξ is a polynomial such that if ((uxs, u′xs), h) ∈ suppA(1k, d, g), where u, u′ ∈ Ω∗,
u ⊏ u′, s ∈ N, d ∈ suppDk, and g ∈ (suppψi,d(Ri,d))

π(k), then |u|, |u′| ≤ ξ(k). Then it is easy to see that

PrT
(ii)
k ≤ Pr[∃u, u′ ∈ Ω≤ξ(k) ∃ y ∈ Hd s.t. u ⊏ u′ ∧ uy = u′y] = negl(k) (16)

because (Hd | d ∈ D) has almost no short collisions with respect to D. Finally,

PrT
(iv)
k ≤ Pr[C(1k,d) is a claw for (ψ1,d, . . . , ψm,d)] = negl(k). (17)

Note that the events T
(i)
k , T

(ii)
k , T

(iii)
k , and T

(iv)
k are mutually exclusive. Using (14)–(17), we have

Pr[A(1k,d,g) ∈ Σ1(Hd,O,nat,g)] = PrT
(i)
k + PrT

(ii)
k + PrT

(iii)
k + PrT

(iv)
k = negl(k).

This shows that Hi is 1-pseudo-free in O with respect to D and nat.

Corollary 5.5. Assume that there exists a claw-resistant family of m-tuples of permutations with respect
to some probability ensemble of the required form. Then there exists a pseudo-free family of computational
m-unary algebras in O with respect to some probability ensemble of the required form and nat. Moreover,
the fundamental operations of any m-unary algebra in this family are permutations.

Proof. Assume that ψi,d is a permutation of Yd for every i ∈ {1, . . . ,m} and d ∈ D and that the family
Ψ is claw-resistant with respect to D. Suppose Ri,d (i ∈ {1, . . . ,m}, d ∈ D) are probability distributions
satisfying condition (iii) of Definition 5.1 for Ψ. For each d ∈ D, let Hd be the m-unary algebra with
carrier Yd and fundamental operations ψ1,d, . . . , ψm,d associated with ω1, . . . , ωm, respectively (as in
Theorem 5.4). Also, suppose E and E are as in Construction 2.13. (Recall that E = {(1k, d) | k ∈
K, d ∈ suppDk} and E = (U({1k})×Dk | k ∈ K).) Then ω1, . . . , ωm are permutations of Ge = Z2k ×Hd

for every e = (1k, d) ∈ E and the family (Ge | e ∈ E) has almost no short collisions with respect to
E (see Construction 2.13). Moreover, it is easy to see that the family ((ωGe

1 , . . . , ωGe
m ) | e ∈ E) is claw-

resistant with respect to E . In particular, the probability distributions U(Z2k) × Ri,d (i ∈ {1, . . . ,m},
(1k, d) ∈ E) satisfy condition (iii) of Definition 5.1 for this claw-resistant family. Finally, by Theorem 5.4,
if i ∈ {1, . . . ,m} and Ge = ωi(U(Z2k) × Ri,d) = U(Z2k) × ψi,d(Ri,d) for each e = (1k, d) ∈ E, then
((Ge,Ge) | e ∈ E) is a pseudo-free family of computational m-unary algebras in O with respect to E
and nat. (It is evident that E is polynomial-time samplable when the indices are represented in unary.)

6 Constructing a Family of Trapdoor Permutations from a Cer-
tain Pseudo-Free Family of Computational Algebras

In this section, we assume that Ω = {ω, ϵ, δ}, where ω is a unary operation symbol and ϵ and δ are
distinct binary operation symbols. Furthermore, suppose V is the variety generated by all finite Ω-
algebras satisfying the identity ∀ z1, z2 (δ(z1, ϵ(ω(z1), z2)) = z2).

Let P = (Pk | k ∈ K), where Pk is a probability distribution on D × {0, 1}∗ for each k ∈ K. Assume
that P is polynomial-time samplable when the indices are represented in unary. If (d, t) ∼ Pk, where
k ∈ K, then we denote by P ′

k the distribution of the random variable d. Furthermore, as in Section 4,
suppose
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• (Yd | d ∈ D) is a polynomially bounded family of subsets of {0, 1}∗,

• Y = (Yd | d ∈ D) is a polynomial-time samplable probability ensemble such that Yd is a probability
distribution on Yd for any d ∈ D, and

• Φ = (ϕd : Yd → {0, 1}∗ | d ∈ D) is a family of functions.

Definition 6.1 (family of trapdoor functions). The family Φ is said to be a family of trapdoor functions
with respect to P and Y if it is one-way with respect to (P ′

k | k ∈ K) and Y and there exists a deterministic
polynomial-time algorithm B such that B(1k, d, t, w) ∈ ϕ−1

d (z) for all k ∈ K, (d, t) ∈ suppPk, and
w ∈ ϕd(Yd).

Again, if ϕd is a permutation of Yd for every d ∈ D, then we use the term “family of trapdoor
permutations” instead of “family of trapdoor functions.”

Theorem 6.2. Let H = ((Hd,Hd) | d ∈ D) be a 1-pseudo-free (in particular, pseudo-free) family of
computational Ω-algebras in V with respect to D and σ. Moreover, assume that the following additional
conditions hold:

• For each d ∈ D, ω is a permutation of Hd.

• The probability ensemble (Hd | d ∈ D) is pseudo-uniform with respect to (Hd | d ∈ D) and D.

For every d ∈ D and h, y ∈ Hd, put ψd,h(y) = ϵHd(h, y). For all k ∈ K, suppose Qk is the distribution
of the random variable ((d, ω(h)),h), where d ∼ Dk and h ∼ Hd. Then Ψ = (ψd,h | d ∈ D, h ∈ Hd) is a
family of trapdoor permutations with respect to (Qk | k ∈ K) and (Hd | d ∈ D, h ∈ Hd).

Proof. It is evident that Ψ is polynomial-time computable. Let d ∈ D and h ∈ Hd. Since Hd ∈ V, ψd,h is
a permutation of Hd and y 7→ δ(ω−1(h), y) (y ∈ Hd) is its inverse. In particular, ψ−1

d,ω(h)(y) = δ(h, y) for

all y ∈ Hd. This shows that, given d and h, the permutation ψd,ω(h) can be inverted in polynomial time.
Suppose A is a probabilistic polynomial-time algorithm trying to break the one-wayness of Ψ. Let B be

a probabilistic polynomial-time algorithm (trying to break the 1-pseudo-freeness of H for the polynomial 2)
that on input (1k, d, (h, g)) for arbitrary k ∈ K, d ∈ suppDk, and h, g ∈ Hd runs A on input (1k, (d, h), g).
If A returns an output y, then B returns (([ϵ(a1, x1)]σ, [a2]σ), y). Otherwise, the algorithm B fails.

Consider the Ω-algebra G with carrier {0, 1} and fundamental operations defined as follows:

ω(b) = 1, ϵ(0, c) = 0, ϵ(1, c) = c, δ(b, c) = c

for all b, c ∈ {0, 1}. Then it is easy to see that G ∈ V and the equation ϵ(0, x1) = 1 is unsat-
isfiable in G. This implies that the equation ϵ(a1, x1) = a2 (in the variable x1) is unsatisfiable in
F2(V) (or, equivalently, in F∞(V)). Using this fact, we see that A(1k, (d, h), g) = ψ−1

d,h(g) if and only if

B(1k, d, (h, g)) ∈ Σ1(Hd,V, σ, (h, g)).
Let k ∈ K, d ∼ Dk, and h,g ∼ Hd. By Remark 2.5, (d, ω(h)) ≈ (d,h). Therefore, (d, ω(h),g) ≈

(d,h,g) and
(d, ω(h), ψd,ω(h)(g)) ≈ (d,h, ψd,h(g)) (18)

by property (iii) in Remark 2.1. It is easy to see that the probability ensemble (Hd | d ∈ D, h ∈ Hd) is
pseudo-uniform with respect to (Hd | d ∈ D, h ∈ Hd) and (Ek | k ∈ K), where Ek is the distribution of the
random variable (d,h). By Remark 2.5,

(d,h, ψd,h(g)) ≈ (d,h,g). (19)

It follows from (18) and (19) that (d, ω(h), ψd,ω(h)(g)) ≈ (d,h,g) (see property (ii) in Remark 2.1). Fur-

thermore, given ((d, h), g, u), where d ∈ D, h, g ∈ Hd, and u ∈ {0, 1}∗, the condition u = ψ−1
d,h(g) (which

implies that u ∈ Hd) can be checked in polynomial time if we are using computational indistinguishability.
Hence,

Pr[A(1k, (d, ω(h)), ψd,ω(h)(g)) = g] ≤ Pr[A(1k, (d,h),g) = ψ−1
d,h(g)] + negl(k)

= Pr[B(1k,d, (h,g)) ∈ Σ1(Hd,V, σ, (h,g))] + negl(k) = negl(k)

(see property (i) in Remark 2.1). Thus, Ψ is one-way with respect to (Q′
k | k ∈ K) and (Hd | d ∈ D, h ∈

Hd), where Q′
k is the distribution of the random variable (d, ω(h)).
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Unfortunately, we are unable to construct a pseudo-free (or even 1-pseudo-free) family of computa-
tional Ω-algebras in V under some natural cryptographic assumption. This probably requires a good
description of F∞,∞(V) and a classification of the (un)satisfiable systems of equations

vi(a;x) = wi(a;x), i ∈ {1, . . . , s},

where vi, wi ∈ F∞,∞(V) for all i ∈ {1, . . . , s}. By [Ano21, Remark 3.10], if there exists a 1-pseudo-
free family of finite computational Ω-algebras (even in the more general sense of [Ano21, Definitions 3.1
and 3.6 and Remark 3.9]) in a variety of Ω-algebras, then this variety is generated by its finite Ω-algebras.
Of course, the variety V satisfies the consequent of this implication.

7 Conclusion

We have shown that pseudo-free families of computational Ω-algebras (in appropriate varieties of Ω-
algebras for suitable finite sets Ω of finitary operation symbols) are closely connected with certain standard
cryptographic primitives. This is an additional motivation for studying such pseudo-free families. Here
are some suggestions for further research:

• Find other applications of (weakly) pseudo-free families of computational Ω-algebras. For example,
it would be interesting to construct a secure cryptographic protocol from a polynomially bounded
or exponential-size (weakly) pseudo-free family in a suitable variety of Ω-algebras.

• Construct a polynomially bounded or exponential-size (weakly) pseudo-free family in some inter-
esting variety of Ω-algebras under a standard cryptographic assumption.

• Modify the definition of a (weakly) pseudo-free family of computational Ω-algebras to make this
definition more useful.

See also [Ano21, Section 6].
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A Table of Notation

For the convenience of the reader, we briefly recall the notation introduced in Section 2 (in order of
appearance).

N = {0, 1, . . . }
⊔ the operation of disjoint union
Y n the set of all (ordered) n-tuples of elements from Y
Y ≤n =

⊔n
i=0 Y

i

Y ∗ =
⊔∞

i=0 Y
i

|u| the length of string u
uv the concatenation of strings u and v
un the concatenation of n copies of string u
1n the unary representation of n ∈ N, i.e., the string of n ones
u ⊑ v means that string u is a prefix of string v
u ⊏ v means that u ⊑ v and u ̸= v
(qi | i ∈ I) the family of objects qi (i ∈ I)
domϕ the domain of function ϕ
idY the identity function on Y
[s]ρ an arbitrary preimage of s under function ρ (unless otherwise specified)
R+ = {r ∈ R | r ≥ 0}
Ω a set of finitary operation symbols (from Subsection 2.5 on, Ω is finite)
arω the arity of ω ∈ Ω
ωH the fundamental operation associated with ω ∈ Ω of Ω-algebra H
⟨S⟩ the subalgebra generated by S
G×H the direct product of Ω-algebras G and H
Ωi the set of all i-ary operation symbols in Ω
(ω1 . . . ωn)h = ω1(ω2(. . . ωn(h) . . . )), where ω1, . . . , ωn ∈ Ω1 and h is an element of an

Ω-algebra
Tm(Z) the Ω-term algebra over Z
V a variety of Ω-algebras
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F∞,∞(V) the V-free Ω-algebra freely generated by a1, a2, . . . , x1, x2, . . .
X = {x1, x2, . . . }
X ′ = {a1, a2, . . . , x1, x2, . . . }
X ′

m,n = {a1, . . . , am, x1, . . . , xn}
F∞(V) = ⟨a1, a2, . . . ⟩
Fm,n(V) = ⟨X ′

m,n⟩
Fm(V) = Fm,0(V) = ⟨a1, . . . , am⟩
v(a;x) = v(a1, . . . , am;x1, . . . , xn) for v ∈ Fm,n(V)
v(g;h) = v(g1, . . . , gm;h1, . . . , hn) for v ∈ Fm,n(V), g = (g1, . . . , gm) ∈ Gm, and

h = (h1, . . . , hn) ∈ Gn, where G ∈ V
v(a) = v(a1, . . . , am) for v ∈ Fm(V)
v(g) = v(g1, . . . , gm) for v ∈ Fm(V) and g = (g1, . . . , gm) ∈ Gm, where G ∈ V
O the variety of all Ω-algebras
F∞,∞ = F∞,∞(O)
F∞ = F∞(O)
Fm,n = Fm,n(O)
Fm = Fm(O)
suppY the support of probability distribution Y on a finite or countably infinite

sample space Y , i.e., {y ∈ Y | PrY{y} ̸= 0}
suppy the support of the distribution of random variable y
α(Y) the image of probability distribution Y under function α
y1, . . . ,yn ∼ Y means that y1, . . . ,yn are independent random variables distributed ac-

cording to probability distribution Y
Y1 × · · · × Yn the distribution of a random variable (y1, . . . ,yn), where y1, . . . ,yn are

independent random variables distributed according to probability distri-
butions Y1, . . . ,Yn, respectively

Yn = Y × · · · × Y, where probability distribution Y occurs n times
U(Z) the uniform probability distribution on Z
y1, . . . , yn ← Y means that y1, . . . , yn are fixed elements chosen independently at random

according to probability distribution Y
∆(R,S) the statistical distance between probability distributions R and S
K an infinite subset of N
D a subset of {0, 1}∗
D = (Dk | k ∈ K) a polynomial-time samplable (when the indices are represented in unary)

probability ensemble consisting of distributions on D
negl an unspecified negligible function on K
rk ≈s sk means that probability ensembles (rk | k ∈ K) and (sk | k ∈ K) are statis-

tically indistinguishable
rk ≈c sk means that probability ensembles (rk | k ∈ K) and (sk | k ∈ K) are com-

putationally indistinguishable
rk ≈ sk means that rk ≈s sk or rk ≈c sk (only one type of indistinguishability is

used everywhere)
σ a function from a subset of {0, 1}∗ onto F∞,∞(V)
Σs(H,V, σ, g) the set defined in Subsection 2.5
Σ(H,V, σ, g) =

⊔∞
t=1 Σt(H,V, σ, g)

v Ω-term v over {a1, a2, . . . , x1, x2, . . . } (or over X ′ when V = O) written in
Polish notation, where the indices of variables are represented in binary
(see Example 2.9)

nat the function v 7→ v(a;x) that provides the natural representation of ele-
ments of F∞,∞(V) (see Example 2.9)

SLP the function that provides the representation of elements of F∞,∞(V) by
straight-line programs (see Example 2.10)

Zn the m-unary algebra with carrier {0, . . . , n − 1} and fundamental op-
erations defined by ω(z) = (z + 1) mod n for every ω ∈ Ω and z ∈
{0, . . . , n− 1}
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