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Abstract. Optimization of finite field arithmetic is important for the
deployment of public key cryptography, particularly in the context of
elliptic curve cryptography. Until now the primary concern has been op-
erations over the prime field Fp, where p is a prime. With the advent
of pairing-based cryptography there arises a need to also look at opti-
mal arithmetic over extension fields Fpn for small values of n. Here we
focus on the determination of quadratic residuosity and the calculation
of inverses and square roots over these fields, operations often carried
out in conjunction with one another. We demonstrate with a minor im-
provement in a hash-to-curve algorithm, and a major speed-up in the
calculation of square roots in quadratic extensions.
Keywords: Elliptic Curves, Pairing-based cryptography, Implementa-
tions

1 Introduction

Finite field arithmetic is a well established topic in number theory. However
when moving from theory to practise such that implementations are optimal, an
implementor must take into account the fact that the theoretically asymptoti-
cally fastest method is not necessarily the best (or indeed even the fastest) in
the context of cryptography, where the range of interest is typically restricted to
numbers of a few hundreds or thousands of bits. The need to bake in side channel
resistance in the form of constant time implementation, is also a major consider-
ation, as some algorithms are more constant-time-friendly than others. Typically
implementors avoid extreme methods that are theoretically faster for very large
numbers, and consider that they are working in a context where school-boy (or
at a stretch Karatsuba-based) methods of basic arithmetic are optimal, or close
to optimal. Even then some extra insight is required, which often manifests in
the deployment of what are sometimes called “tricks”. We start by reviewing
some of these tricks as they apply over the base field Fp, where p is a large odd
prime modulus.

1.1 Modular inversion

Modular inversion is a good place to start. As is well known the fastest method
for modular inversion is based on the extended Euclidean algorithm (algorithm



2.107 [12]). If we assume the modulus is of size m bits then the complexity of
the method is O(m2). The inverse is found indirectly by applying the extended
Euclidean algorithm given x and p to find a and b such that ax+ bp = gcd(x, p).
As x and p are co-prime then ax + bp = 1 and ax = 1 mod p, and therefore
a = 1/x mod p. This method is fast, but difficult, although not impossible [5],
to implement in constant time (although as an alternative to a constant time
implementation, random blinding might also be used to protect against side-
channel attacks, see [5] footnote 1).

An alternative method based on Fermat’s Little Theorem (fact 2.127 [12]) cal-
culates the inverse of a non-zero field element directly as a = 1/x = xp−2 mod p.
This method, based as it is on modular exponentiation, has a complexity of
O(m3). Not only is it slower in theory, it is slower in practice as well. However
the Fermat based method is commonly used as it is much easier to implement
deterministicly in constant time. And as we will see it has other advantages.
Another consideration is that it is often possible to implement cryptographic
algorithms in such a way that modular inversions are only rarely required, for
example by using projective coordinates in the context of elliptic curve cryptog-
raphy, in which case performance may not be an issue and the slower but simpler
and safer Fermat approach may be preferred.

1.2 Quadratic residuosity

Here we seek to determine whether or not a non-zero field element x is, or is
not, a quadratic residue (QR) with respect to a prime modulus p. If it is, it has
two square roots, if it is not, it does not have any square roots. In the context
of a prime modulus this requires the calculation of the Legendre symbol. Again
there are two approaches. The fastest way is to exploit the law of quadratic
reciprocity in a Euclid-like algorithm (algorithm 2.149 [12]), but again this is
difficult to implement in constant time. But as with modular inversion there
is also a simpler, but slower, method based on modular exponentiation which
calculates quadratic residuosity as the value of x(p−1)/2 mod p. If this evaluates
as +1 then x is a quadratic residue and one can go on to calculate its square
roots. Alternatively if it evaluates as p−1, that is −1 mod p, then x is a quadratic
non-residue (QNR), and has no square roots.

1.3 Modular square roots

If an element x is a quadratic residue then we can go on to find a square root.
In this case there is no avoidance of modular exponentiation. Furthermore the
solution becomes dependent on the exact form of p. Often an assumption is
made that p = 3 mod 4, which allows square roots to be evaluated as ±x(p+1)/4,
and also conveniently guarantees that -1 is a quadratic non-residue. Here we
avoid specialising in this way, as in fact cases where p 6= 3 mod 4 are quite
common (p = 5 mod 8 often arises [6], and see also the recently proposed JubJub
[17] and Tweedledum/Tweedledee [7] elliptic curves). To this end we introduce
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the Tonelli-Shanks method (algorithm 3.34 [12]) for calculating modular square
roots.

First we categorise the prime moduli according to the value of e, where e is the
maximum integer such that 2e|p − 1. We will assume that e is relatively small.
Also needed will be a precomputed 2e-th root of unity, that is z = d(p−1)/2e ,
where d is any small quadratic non-residue. Then the square root is found by
first calculating

y = x(p−2e−1)/2e+1

mod p

using modular exponentiation. For reasons that will become clear we call
this y value the progenitor. Then the algorithm to find the square root of x, the
Tonelli-Shanks algorithm, proceeds as follows (in a Pythoneque pseudo-code,
where the cmov function moves the second parameter into its first parameter if
the condition specified in its third parameter is true. Such a function is a staple
of constant-time implementation).

s=y*x

t=s*y

for k in range(e,1,-1) :

b=t

for i in range(1,k-1) :

b*=b

cmov(s,s*z,b!=1)

z*=z

cmov(t,t*z,b!=1)

The square root will be the final value of s. Observe that in the case where e =
1 the for loop is not executed, and the calculation collapses into that described
above. For small values of e there is a minor amount of extra work, still dominated
by the initial calculation of y. Note that this calculation can be carried out even
if x is not a quadratic residue, although of course it will not return a correct
answer. Note also that outside of this square root calculation, we are no longer
concerned with the form of p, and all of the complications that can arise from
special case handling are thus avoided.

2 Some useful tricks

Consider the calculation of multiple inverses of a diverse set of field elements. In
theory of course this is not interesting, simply calculate them all individually.
However there is a much better way in practice. The idea, known as “Mont-
gomery’s trick”, due to Peter Montgomery, is for example to calculate 1/x and
1/y modulo p as 1/x = y/(xy) and 1/y = x/(xy). Now only one expensive mod-
ular inversion of 1/(xy) is required, and indeed it is easy to see that the same
basic idea extends to n modular inversions which can be found at the cost of a
single inversion. This trick has surprisingly widespread application in a number
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of different contexts. For example multiple elliptic curve points can be trans-
lated from projective to affine form at the major cost of just a single modular
inversion.

In some situations inverses and square roots are needed in combination. First
observe that from a precalculated progenitor y, we can quickly calculate the
modular inverse after a few more multiplications and squarings as

1/x = xp−2 = x2
e−1.y2

e+1

= x2
e−1−1.(xy4)2

e−1

mod p

The inverse square root trick [6] finds
√
u/v as√

u/v = u2.
1

u3v
.
√
u3v

Clearly the same progenitor value for x = u3.v can be used for both the
inversion and the square root. As claimed in [6] the overall calculation “takes
just a few multiplications more than a single exponentiation”. Obviously setting
u = 1 finds the inverse of the square root.

Hamburg takes this idea further [11], and demonstrates that an inversion and
a square root of two distinct elements can be found with a single exponentiation,
that required to calculate a single progenitor, this time for x = u2.v.

1/u = uv/(u2.v)
√
v = (1/u).

√
u2.v

This idea can be considered as an extension of Montgomery’s trick: It is
now possible to calculate multiple inverses and a single square root modulo a
prime p with just one exponentiation. However there remains an issue - what if
the square root does not exist, that is if the x value is a quadratic non-residue?
Clearly the inverse square root trick breaks down completely. The Hamburg trick
still returns the correct inverse, but a false square root.

Fortunately quadratic residuosity can also be determined from the same pro-
genitor, as the value of (xy2)2

e−1

= x(p−1)/2. So now at little extra cost we
can easily flag if the inverse square root and Hamburg tricks have in fact re-
turned valid square roots. Alternatively one can simply go ahead and apply the
Tonelli-Shanks method, and test its output for correctness by squaring it.

2.1 Tweaking the Progenitor

It may be that in some circumstances a calculation may involve consideration of
two inputs, one of which differs from x by a small fixed multiplier c. For example
if our attention should switch from x to cx, then the progenitor for cx would
be c(p−2e−1)/2e+1

.y, where y is the progenitor derived from x. In these cases
c(p−2e−1)/2e+1

can be stored as a precalculated constant, and the progenitor for
cx obtained for the extra cost of a single multiplication. This might occur in a
context where such a tweak may result in generating a cx which is a quadratic
residue.
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3 Application – Point Decompression

It is common for an elliptic curve point to be transmitted in compressed form,
typically as just the x coordinate plus a single bit to indicate the correct sign of
y. Decompression involves inserting x into the curve equation and solving for y,
using the single bit to indicate the correct square root. For curves in Weierstrass
form, this is quite straightforward. However for a twisted Edwards curve in the
form ax2 + y2 = 1 + dx2y2, at first glance this appears more complicated.

y = ±
√

(ax2 − 1)/dx2 − 1)

But of course as pointed out by [6], this requires a simple application of the
inverse square root trick to reduce the cost again to just one exponentiation.

4 Application – Hash to Curve

Constant time hashing of a string to a point on an elliptic curve is one of the
more complex requirements for many applications of elliptic curve cryptography.
A randomly generated x coordinate will not necessarily map to an (x, y) point
on an elliptic curve in short Weierstrass form, y2 = g(x) = x3 + Ax + B, as
the right-hand side has only a 50% chance of being a quadratic residue for a
randomly generated x. Therefore schemes have been proposed to ensure that an
x value generated from a string can be pre-processed in such a way as to ensure
that it does indeed coincide with a curve point. As always, we would like the
operation to be fast, as well as for it to be constant time.

In the context of Edwards and Montgomery curves, the Elligator 2 method [4]
exploits the inverse square root trick so that the cost of constant time hashing is
essentially that of a single exponentiation. However the situation for Weierstrass
curves has not been so clear, until the recent work of Wahby and Boneh [16]
who demonstrated that in most cases a single exponentiation is again sufficient.
For Weierstrass curves the simplified SWU method appears to be the method of
choice [15], [8], [16]. However it only applies where A 6= 0 and B 6= 0, and unfor-
tunately curves that violate this condition are quite commonly used, particularly
in the context of pairing-based cryptography [13]. The Wahby-Boneh solution
is to find an isogeneous curve with non-zero A and B, hash to that curve, then
use the isogeny to return the point to the original curve. This process, while
complicated, is computationally fast as long as a suitable isogeny can be found.

Here we review the Wahby-Boneh method, and by careful use of our bag of
tricks show how it may be implemented at the cost of a single exponentiation,
plus some negligible amount of work including an optional application of an
isogeny. In the process we make a small improvement to the scheme as originally
described.

Concentrating on the implementational aspects of the method, we start by
generating a carefully crafted x1 value derived from the input u in a rational
form x1 = n/d. Substituting this into the curve equation we find g(x1) = (n3 +
And2 +Bd3)/d3 = f/d3. By construction we also have a second candidate x2 =
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(Z.u2).x1, such that g(x2) = (Z.u2)3.g(x1) = Z.(Z.u3)2.g(x1), where Z is a
small QNR. Either g(x1) or g(x2) will be a QR, as the product of two QNRs
is a QR. We start by calculating a progenitor value based on fd, this being
our one and only exponentiation. Clearly the quadratic residuosity of g(x1) can
be determined by testing whether or not fd is a QR. To find the candidate x
coordinates, we also use the progenitor to calculate 1/fd and hence 1/d, and
then x1 and x2 as non-rational field elements.

If g(x1) is not a quadratic residue, then Z.g(x1) will be, so next we tweak
the progenitor for this latter case by multiplying it by a precomputed constant
derived from Z. We select one or the other of this pair along with x1 or x2 in
constant time depending on the original QR test, calculate the square root, and
finally obtain y by multipling by a correction factor of either 1/d2 or Z.u3/d2,
again selected depending on the QR test.

Since our resulting point (x, y) is in affine co-ordinates, it is now a simple
matter to apply an isogeny if such should be necessary, producing a final result
in projective coordinates. As originally described by Wahby-Boneh the method
required the isogeny to handle input points in projective coordinates, which
required more complex processing, see [16] section 4.3.

5 Extension fields

First we recap on the field norm of a finite extension field element ∈ Fqm , where
q is a prime power. If K = Fq is the base field and L = Fqm is the extension,
then the field norm of an element α in the extension field L can be calculated
as NL/K(α) = α.αq...αqm−1

. Field norms have a nice multiplicative property,
such that NL/K(ab) = NL/K(a).NL/K(b). Calculation of the norm is simplified
by exploiting the Frobenius map, that is the exponentiation of a field element
to the power of q, which is a cheap operation.

Next we consider the quadratic extension L = Fp2 over K = Fp where p is a
prime, as it arises in the context of BN [3] and BLS12 [2] pairing friendly curves,
common targets of standardisation attention due to their ability to reach the
AES-128 level of security, and their relatively good performance. Recall that a
pairing is a mapping G1 ×G2 → GT [13] and that for both the BN and BLS12
curves the group G2 is of elliptic curve points over the quadratic extension field
Fp2 .

Elements in the quadratic extension field can be represented as a+ ib, were
a, b ∈ Fp, and i2 − β = 0, where β is a small quadratic non-residue. In the
case that p = 3 mod 4, then β = −1 and i =

√
−1 and the analogy with

complex arithmetic can be helpful. In this case the norm of the field element is
NL/K(a + ib) = δ = a2 − βb2 ∈ Fp. When the context is obvious we will drop
the norm subscript notation.

An important observation is that while the cost of quadratic residuosity test-
ing and multiplicative inverses do not rise above the cost of a single exponenti-
ation over the base field Fp, the cost of square rooting will increase.
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5.1 Inversion

The inverse of an element in Fp2 can be descended to an exponentiation in Fp

using the inverse of the norm, and a multiplication by the conjugate.

1/(a+ ib) = (a− ib)/δ

5.2 Quadratic Residuosity

The determination of the quadratic character of a+ib can similarly be descended
to an exponentiation in Fp by exploiting the Frobenius operator, as shown by
[1]. It is simply the quadratic residuosity of the norm, δ(p−1)/2 in Fp.

5.3 Square roots

The cost of square roots over quadratic extensions was considered in detail by
Adj and Rodriguez-Henriquez [1]. An old idea from complex arithmetic [14], [10]
provides us with a simple “complex” formula for calculating square roots in this
extension field.

√
a+ ib = ±(

√
(a±

√
a2 − βb2)/2 + i.(b/2)/(

√
(a±

√
a2 − βb2)/2))

It should be clear from the above that a progenitor calculated from the Fp

norm of δ = a2 − βb2 allows the full determination of the quadratic character of
a+ ib and a partial determination of the square root of a+ ib in the form of

√
δ.

However if δ = N(a + ib) is a quadratic residue in Fp we can be assured that
a+ ib is a quadratic residue, and hence that its square roots exist.

If a + ib is a quadratic residue, then one of (a +
√
a2 − βb2)/2 or (a −√

a2 − βb2)/2 will be a quadratic residue in Fp. And indeed this must be the
case since their product is equal to βb2/4. This is a QNR times a perfect square,
and hence a QNR. If a QNR is the product of two other field elements then
one of them must be a QR, and the other a QNR. Therefore substituting δ for
a2 − βb2

(a−
√
δ)/2 = (βb2/4)/((a+

√
δ)/2)

and √
(a−

√
δ)/2 = ±(b/2).

√
β/((a+

√
δ)/2)

So now the two candidates for the correct square roots are

√
a+ ib = ±(

√
(a+

√
δ)/2 + i.(b/2)/(

√
(a+

√
δ)/2))

and
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√
a+ ib = ±(b/2)/

√
((a+

√
δ)/2)/β) + i.

√
((a+

√
δ)/2)/β))

Now the point of this development becomes clear: A single progenitor for
(a +

√
δ)/2 will now suffice for all required square roots and inversions. In the

case that the second pair of square roots are the correct ones, the progenitor can
be tweaked by multiplication by a precalculated constant N(β−1)(p−2e−1)/2e+1

.
For a constant time implementation both should be calculated, with the correct
one selected based on the quadratic residuosity of (a+

√
δ)/2.

Adj and Rodriguez-Henriquez [1] cost this complex method of square root
calculation at two residuosity tests, two square roots and one inversion. However
it is now apparent that the residuosity tests can be absorbed into the square root
costs, and that the inverse square root trick implies that the cost of the inversion
can also be eliminated. It will also be apparent that an existing progenitor, prob-
ably from a prior residuosity test, can also be used to calculate

√
δ, and hence

the cost of the full square root can be reduced to just one extra exponentiation
in Fp, associated with the calculation of the square root of either (a+

√
δ)/2 or

((a+
√
δ)/2)/β.

As a consequence we can conclude that hash-to-curve in the group G2 for
a BN or BLS12 curve, using the same basic method as described above, now
requires a total cost of just two Fp exponentiations. We note that a similar idea
in the context of point decompression on the FourQ elliptic curve is described
in [9].

5.4 Higher extensions

For standards currently under consideration the extension n in G2 would be
n = 2, 4 and 8 respectively for BN/BLS12, BLS24 and BLS48 pairing friendly
curves [13]. By applying the above method for the quadratic extension recur-
sively, the cost of hash-to-curve will be n exponentiations in the base field Fp.
Whereas the quadratic character and inverse calculations descend again to a
single Fp exponentiation, the cost of a final square root increases linearly with
the extension.

As pointed out by Adj and Rodriguez-Henriquez [1], the case for odd exten-
sions like Fp3 must be handled differently. Inverses and the test for quadratic
residuosity of a field element α ∈ Fpm can again be descended to a multiplica-
tion by the inverse of the Fp norm δ = N(α), and the quadratic residuosity of
that same norm. For the square root the complex method does not appear to
generalise easily, but the Tonelli-Shanks method can be used directly, based on
a progenitor derived from the computation of αd where d = (p − 2e − 1)/2e+1,
where the bulk of the work has been reduced to this smaller calculation by
suitable application of the Frobenius as described in [1], [14], using the identity

(pm − 2e − 1)/2e+1 = d+ p[pd+ (2e + 1)d+ 2e−1 + 1]

(m−3)/2∑
i=0

p2i
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6 Conclusion

While non-exponentiation methods for calculating modular inverses and for de-
termining quadratic residuosity may be faster for one-off calculations, in many
cases exponentiation-based methods are to be preferred on the grounds of sim-
plicity, constant-time-friendliness, and the fact that an initial progenitor calcu-
lation may in fact find multiple uses and re-uses in the context of more complex
algorithms.
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