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Abstract

A quantum bit commitment scheme is to realize bit (rather than qubit) commitment by
exploiting quantum communication and quantum computation. In this work, we study the
binding property of a generic quantum computationally-binding bit commitment scheme com-
posed in parallel, which can be viewed as a quantum string commitment scheme. We show
that the resulting scheme satisfies a stronger quantum computational binding property than
the trivial honest-binding, which we call predicate-binding. Intuitively and very roughly, the
predicate-binding property guarantees that given any inconsistent predicate pair over a set of
strings (i.e. no strings in this set can satisfy both predicates), if a (claimed) quantum com-
mitment can be opened so that the revealed string satisfies one predicate with certainty, then
the same commitment cannot be opened so that the revealed string satisfies the other predicate
except for a negligible probability.

As an application, we plug a generic quantum perfectly(resp. statistically)-hiding computationally-
binding bit commitment scheme in Blum’s zero-knowledge protocol for the NP-complete lan-
guage Hamiltonian Cycle. The quantum computational soundness of the resulting protocol will
follow immediately from the quantum computational predicate-binding property of commit-
ments. Combined with the perfect(resp. statistical) zero-knowledge property which can be simi-
larly established as Watrous [Wat09], as well as known constructions of quantum computationally-
binding bit commitment scheme, this gives rise to the first quantum perfect(resp. statistical)
zero-knowledge argument system for all NP languages merely relying on quantum-secure one-
way functions.
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1 Introduction

Bit commitment is an important cryptographic primitive; it can be viewed as an electronic real-
ization of a locked box [Gol01]. Roughly speaking, a bit commitment scheme has two stages, the
commit stage and the reveal stage, providing two security guarantees: hiding and binding. Intu-
itively, the hiding property states that the commitments to 0 respective 1 are indistinguishable in
the commit stage, whereas the binding property states that any (claimed) bit commitment cannot
be opened (by the sender) as both 0 and 1 (except for a negligible probability) later in the reveal
stage. Unfortunately, hiding and binding properties cannot be satisfied information-theoretically
at the same time; one of them has to be conditional, e.g. based on complexity assumptions such as
the existence of one-way functions.

Turning to the quantum setting, there are two different meanings of quantum bit commit-
ment in the literature (depending on the context). The first refers to the classical realization of
bit commitment that is secure against quantum attacks, or the post-quantum secure (classical)
bit commitment [AC02, Unr16b, Unr16a]. The second refers to a realization of bit commitment
by exploiting quantum features [BB84, BC90, DMS00, CLS01, CDMS04, KO09, KO11, CKR11,
YWLQ15, FUYZ20, Yan20]. That is, now the honest parties in a bit commitment scheme are
allowed to be quantum computers and exchange quantum messages. We highlight that w.r.t. this
second meaning it is still a classical bit that we are trying to secure. Clearly, the first meaning of
quantum bit commitment can be viewed as a special case of the second one. In this paper, the
term “quantum bit commitment” will be reserved for the second, more general meaning.

The concept of quantum bit commitment is natural and sounds exciting. Unfortunately, con-
trary to its motivation, quantum bit commitment still cannot be realized unconditionally [May97,
LC98]. Another bad news is that by today’s quantum technology, the physical realization of a
general (conditional) quantum bit commitment scheme is still far beyond our reach. Even worse,
and somewhat counter-intuitive at the first glance, the binding property of a general quantum bit
commitment scheme (i.e. sum-binding [DMS00, Unr16a]) is inherently weaker than its classical
counterpart! This weakness of the quantum binding property comes from the possible superposi-
tion attack of the sender, who may commit to an arbitrary superposition of bits 0 and 1, and later
reveal this superposition (rather than a classical 0 or 1) with certainty [DMS00, CDMS04]. By this
kind of quantum superposition attack, a fixed quantum bit commitment is no longer bound to a
unique classical bit any more like in the classical setting.

Difficulties in basing security on quantum binding. It is natual to ask what happen if we
replace classical bit commitments with quantum bit commitments in cryptographic applications.
Since the quantum (sum-)binding property is inherently weaker than the classical one as aforemen-
tioned, the security based on the classical binding property may deteriorate after the replacement.
In greater detail, note that in applications we typically commit to a binary string by committing it
bitwisely ; later, a subset of bit commitments might be opened. Now the quantum cheating sender
may attack by making the opening information about which quantum bit commitments are to open
as what value in an arbitrary superposition, while still be able to convince the receiver to accept
with certainty. Henceforth, intuitively and very roughly, a (claimed) quantum commitment is no
longer bound to a unique string, but a superposition of possibly exponentially many of strings1.
This will make the security analysis much harder than the classical one.

Why quantum bit commitment is interesting? Despite its disadvantages, quantum bit com-
mitment still interests us for several reasons. First, since as early as 2000 researchers have come to

1Even this intuition is also simplified, because not all bit commitments are necessarily to open in applications.
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realize that merely based on quantum-secure one-way functions/permutations, one can construct
non-interactive quantum bit commitments of both flavors (i.e. statistical binding and statistical
hiding); that is, the commit stage consists of just a single quantum message from the sender to the
receiver [DMS00, KO09, KO11, Yan20]. It turns out that these constructions are not coincidences;
recently, Yan [Yan20] has shown that any (interactive) quantum bit commitment scheme can be
converted into a non-interactive one. This is in contrast to the constant [MP12] or even polynomial
[HHRS07] number of rounds in the commit stage by classical constructions of bit commitment.
Thus, using quantum bit commitments instead of the classical ones in applications can potentially
reduce the number of rounds of the interaction2 and meanwhile keeping the complexity assumption
to the minimum.

More interestingly, Yan [Yan20] actually has shown that it suffices to focus on a generic non-
interactive quantum bit commitment scheme, whose (either statistical or computational) binding
property is automatically information-theoretically strict. Here, the strictness of the quantum
binding property extends from the classical setting [Unr12, ARU14] in a straightforward way,
which roughly states that not only the revealed value but also the decommitment state used in
opening a quantum bit commitment are unique. It turns out that this strictness of the quantum
binding property can play an important role in applications. In particular, it can help circumvent
existing barriers only known for classical constructions, as confirmed in [FUYZ20]; this paper will
give another such example (Theorem 1).

In summary, if we are optimistic about the development of quantum technology and believe that
general quantum computation and communication will be available in future, then the application
of quantum bit commitment as a primitive in quantum cryptography is worthy of study.

Progress and perspective towards basing security on quantum binding. Due to the afore-
mentioned difficulties, in the past two decades there were only few works studying the security based
on the (sum-)binding property of a general quantum bit commitment scheme [YWLQ15]. Recently,
some generic techniques to cope with quantum statistical binding are developed in [FUYZ20], by
which in many cases the security analysis based on the classical statistical binding property can
be extended to the quantum setting. Unfortunately, when it comes to the security based on the
quantum computational binding property, the corresponding analysis appears more elusive. To
the best of our knowledge, we are aware of no such results before. In our opinion, the perhaps
most important open question towards using quantum bit commitment as a primitive in quantum
cryptography is:

Can we base quantum security on the computational (sum-)binding property of quantum
bit commitment?

Based on the state-of-the-art knowledge, the answer to the question above is unclear. On one
hand, intuitively it seems true if we view the superposition of the committed string underlying
quantum bit commitments as its corresponding probability distribution3. Actually, this intuition is
indeed true in many cases when perfectly/statistically-binding quantum bit commitments are used
[FUYZ20]. On the other hand, however, after a first attempt towards the security analysis, it turns
out that for a naive analysis (r.f. subsection 1.2) to work it requires that the binding error be sub-
exponentially or even exponentially small, rather than negligiblly small as typical in cryptography.
We will refer to this technical difficulty as “exponential curse”, which at a high level arises from
that the quantum state of polynomial number of qubits could be a superposition of exponentially

2The round complexity of any cryptographic task might be one of the most important parameters.
3Generally, a superposition is not equivalent to its corresponding probability distribution; actually, this is usually

where the quantum advantage comes from in algorithm design.
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many basis states. Moreover, the impossibility of general quantum rewindings [vdG97], as well
as other related impossibility results known for classical constructions of bit commitment secure
against quantum attacks [ARU14], may suggest a negative answer to the open question above.

One motivation of this work is to explore the application of quantum computationally-binding
bit commitments in cryptographic applications, notably in constructing quantum zero-knowledge
arguments for NP languages.

1.1 Our contribution

In spite of the technical difficulty and negative evidences just mentioned, we make some progress to-
wards answering the main open question affirmatively. Interestingly, the reason why this is possible
turns out to be completely different from the aforementioned intuition of viewing a superposition
of the committed string as its corresponding probability distribution.

Specifically, our contribution is two-fold.

1. A quantum construction of perfect/statistical zero-knowledge argument system for
all NP languages

We prove the following main theorem of this paper:

Theorem 1 Plugging a generic quantum perfectly(resp. statistically)-hiding computationally-binding
bit commitment scheme in Blum’s protocol [Blu86] gives rise to a three-round quantum perfect(resp.
statistical) zero-knowledge argument system for the NP-complete language Hamiltonian Cycle, with
perfect completeness and soundness error 1/2.

Following [YWLQ15, FUYZ20, Yan20], a generic quantum bit commitment scheme can be repre-
sented by an ensemble of quantum circuit pair {(Q0(n), Q1(n))}n (Definition 3). The theorem above
gives the first quantum perfect/statistical zero-knowledge argument for all NP languages based on
quantum-secure one-way functions. Compared with its classical counterpart, our quantum construc-
tion reduces the rounds of the interaction from polynomial to three, thanks to the non-interativeness
of a generic quantum computationally-binding bit commitment scheme [Yan20]. Compared with
the quantum zero-knowledge argument constructed in [Unr16b], it relies on a commitment scheme
with a stronger quantum computational binding property (known as the collapse-binding) and in
turn much stronger assumptions [Unr16b, Unr16a] than ours.

We also highlight that our proof of the theorem above relies heavily on (though implicitly) that
the (whether statistical or computational) binding property of a generic quantum bit commitment
scheme is information-theoretically strict [Unr12, Yan20]. It is this strict-binding property that en-
ables a simple quantum rewinding [YWLQ15, FUYZ20] to work even in our quantum computational
soundness analysis, circumventing an existing barrier which is only known for classical construc-
tions [ARU14]. We note that the computational binding property of a classical bit commitment
scheme cannot be information-theoretically strict: though it may be computationally hard to find
an alternative opening, there actually exists a bunch of them! We point out that this strict-binding
property of quantum bit commitment is achieved through the quantum entanglement as opposed
to the classical correlation [Unr12].

2. A non-trivial computational binding property of the quantum string commitment
scheme obtained by composing a generic non-interactive quantum bit commitment
scheme in parallel

A natural way to construct a string commitment scheme is to compose a bit commitment
scheme in parallel, i.e. committing a string bitwisely using a bit commitment scheme. For the
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purpose of proving Theorem 1, we introduce a new binding property of quantum string commitment
which we call predicate-binding. We show that the parallel composition of a generic quantum bit
commitment scheme gives rise to a quantum computationally predicate-binding string commitment
scheme (Theorem 3). It turns out that the quantum computational soundness of Blum’s protocol
in which a generic quantum computationally-binding bit commitment scheme is plugged in, as
required towards establishing Theorem 1, can be easily based on the predicate-binding property of
the quantum string commitment.

Informally speaking, the predicate-binding property guarantees that given an arbitrary pair
of inconsistent predicates on a set of strings of the same length (i.e. no strings in this set can
satisfy both predicates), if a (claimed) quantum commitment can be opened such that the revealed
string4 satisfies one predicate with certainty, then the same commitment cannot be opened so as
to satisfy the other predicate (except for a negligible probability). Clearly, this quantum predicate-
binding property is stronger than the honest-binding property [YWLQ15], which roughly states
that the honest commitment to a string cannot be opened as any other string (except for a negligible
probability).

We note that the parallel composition of classical bit commitments gives a string commitment
that is trivially predicate-binding. While the parallel composition of a generic quantum bit com-
mitment scheme trivially gives a quantum honest-binding string commitment scheme [YWLQ15],
it becomes highly non-trivial to show that it also satisfies the stronger predicate-binding prop-
erty. This is due to the fairly weak quantum bit binding property aforementioned. To the best
of our knowledge, we are aware of no (quantum) security reduction from any non-trivial quantum
computational string binding property to quantum computational bit binding property in previous
work. In [CDMS04], a non-trivial computational binding property of quantum string commitment
is proposed for its application (i.e. quantum oblivious transfer); however, it is still open whether
such a quantum string commitment scheme can be obtained by composing a general quantum bit
commitment scheme that is only sum-binding in parallel.

Actually, in this work we did not prove the full quantum predicate-binding property (i.e. w.r.t.
the most general inconsistent predicate pairs). Instead, we only allow one predicate to be of the
general form, whereas the other is subject to the restriction that it only depends on a fixed portion of
the string. In spite of this restriction, the binding property we obtain is sufficient for establishing
Theorem 1. Any extension of our result is left as an open problem. We believe that quantum
predicate-binding string commitment could be of independent interest and will be found useful
elsewhere.

1.2 Technical overview

We sketch the soundness analysis of Blum’s protocol in which a generic quantum computationally-
binding bit commitment scheme is plugged in, which is the key step towards establishing Theorem
1. Our goal is to reduce the soundness of the resulting protocol to the predicate-binding property
of quantum string commitment (Lemma 11).

We assume that readers are familar with Blum’s protocol [Blu86], which is also sketched in
subsection 2.3. In its soundness analysis, the (possibly cheating) prover’s first message constitutes a
(claimed) quantum string commitment. The (honest) verifier’s acceptance conditions corresponding
to the challenges 0 respective 1 induce two predicates on graphs with the same number of vertices as
the input graph; when the input graph is not Hamiltonian, these two predicates will be inconsistent

4Generally, the revealed value of a quantum string commitment could be a probability distribution over this set
of strings.
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in the sense that no single graph can satisfy both of them simultaneously. Technically, at the
heart of the reduction from the soundness of Blum’s protocol to the predicate-binding property of
the quantum string commitment lies in a simple quantum rewinding technique that is similar to
ones used in [Unr12, YWLQ15, FUYZ20], which basically states that if the verifier’s acceptance
probability is high, then the quantum rewinding via reversible computations works. In greater
detail, we can extend the quantum rewinding lemma that is suitable for the quantum statistical
binding setting [FUYZ20] to the quantum computational binding setting (Lemma 1), We remark
that though this extension is technically trivial, conceptually why it is possible relies heavily on
that a generic quantum computationally-binding bit commitment scheme is information-theoretical
strict-binding.

We are then left with showing that the parallel composition of a generic quantum computationally-
binding bit commitment scheme indeed gives rise to a quantum computationally predicate-binding
string commitment scheme (Theorem 3). This is the main technical part of the paper. In the
below, we first explain a technical difficulty towards this goal by a naive try, and then sketch at
a high level how to overcome it. But before doing this, we first set up some notations that are
necessary for our exposition.

Notations. A generic quantum bit commitment commitment scheme can be represented by a
quantum circuit pair5 (Q0, Q1) performing on quantum registers (C,R). To commit a bit b ∈ {0, 1},
in the commit stage the sender performs the quantum circuit Qb on quantum registers (C,R)
initialized in the state |0〉, and then sends the commitment register C to the receiver; later in the
reveal stage, the sender sends the bit b together with the decommitment register R to the receiver,
who then does the reversible computation (i.e. performing the quantum circuit Q†b) to decide
whether to accept or not (i.e. checking whether the registers (C,R) return to the all |0〉 state).
Informally, we say that the quantum bit commitment scheme (Q0, Q1) is computationally binding
if for any polynomial-time realizable unitary transformation U performing on the register R, the
inner product

∣∣ 〈0|Q†1UQ0 |0〉
∣∣ is negligible; that is, unit vectors UQ0 |0〉 and Q1 |0〉 are almost

orthogonal6.
To commit a string of length m, we commit it bitwisely using the scheme (Q0, Q1). Let Qs

denote the corresponding quantum circuit used to commit the string s; that is, Qs =
⊗m

i=1Qsi ,
which performs on m copies of the quantum registers (C,R).

Let P1, P2 be two predicates on all m-bit strings. We use s ∈ P1 (resp. P2) to denote that
the string s ∈ {0, 1}m satisfies the predicate P1 (resp. P2). We say that two predicates P1, P2

are inconsistent if no string s ∈ {0, 1}m can satisfy both P1 and P2. More details about the
formalization of predicates are referred to subsection 4.1.

A technical difficulty: exponential curse. We first consider the simplest scenario, in which an
m-bit string is firstly committed and later all (bit) commitments are to open. Note that a cheating
sender can first prepare an arbitrary superposition of the form

∑
s∈P1

αs |s〉D (Qs |0〉)C
⊗mR⊗m

(resp.∑
s∈P2

βs |s〉Qs |0〉) in registers (D,C⊗m,R⊗m), and then send all commiment registers C⊗m to the
receiver in the commit stage. Later in the reveal stage, the sender sends the opening register D,
together with all decommitment registers R⊗m, to the receiver. By this strategy, the sender can
open all commitments as a distribution (which is determined by coefficients αs’s (resp. βs’s)) of
strings that satisfy the predicate P1 (resp. P2) with certainty. To show predicate-binding, we are

5For the moment, we drop the security parameter to simplify the notation.
6The formal definitions of a generic quantum bit commitment scheme and its computational binding propery are

referred to Definition 3. Here for simplification, we neglect the auxiliary input state that the cheating sender may
receive.
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sufficient to show that up to any polynomial-time realizable unitary transformation U that does not
touch commitment registers C⊗m (which represents the sender’s strategy in opening commitments),
any two superpositions

∑
s∈P1

αs |s〉Qs |0〉 and
∑

s∈P2
βs |s〉Qs |0〉 are almost orthogonal, i.e. their

inner product is negligible, w.r.t. any inconsistent predicate pair (P1, P2). A technical difficulty in
showing this lies in that a potential exponential blow-up may occur in bounding this inner product.
This difficulty is referred to as the exponential curse in [YWLQ15, FUYZ20], which we believe is
universal when one tries to base security on quantum binding; a similar difficulty also appears in
[CDMS04]. Now let us get into the details in the below.

By the computational binding property of the quantum bit commitment scheme (Q0, Q1), the

inner product | 〈0|Q†s′UQs |0〉 | where s 6= s′ can be bounded by its binding error, which is negligible
(as typical in cryptography). Thus, a naive way to bound the inner product∣∣ ∑

s∈P1

α∗s 〈s| (〈0|Q†s) U
∑
s′∈P2

βs′
∣∣s′〉 (Qs′ |0〉)

∣∣
is first to expand it and bound each term indexed by (s, s′) using the binding error bound (while
neglecting its coefficient that can be bounded by 1), and then apply the triangle inequality. However,
when there are super-polynomial (typically exponentially many) strings s ∈ P1 or s′ ∈ P2, this naive
approach will fail.

Actually, whether the inner product above could really be bounded by some negligible quantity
is questionable a prior. This is because generally, two superpositions of the form

∑
x αx |φx〉 and∑

y βy |ξy〉, where {|φx〉}x and {|ξy〉}y are two orthonormal bases, are not necessarily almost or-
thogonal, even when |φx〉 and |ξy〉 are almost orthogonal for each (x, y) pair. To see this, consider
the following simple example. The Hilbert space is induced by m qubits, where {|x〉}x∈{0,1}m is the

standard basis and {H⊗m |y〉}y∈{0,1}m is the Hadamard basis. Then consider an arbitrary vector in
this space, which can be written as a superposition of basis vectors either in the standard basis or
the Hadamard basis. Clearly, these two superpositions are actually the same vector, so that their
inner product is one. But the inner product between |x〉 and H⊗m |y〉 for arbitrary x, y ∈ {0, 1}m
is exponentially small! This example tells us that to bound the inner product aforementioned, we
need to exploit the structures of the two superpositions (which are induced by the structures of
predicates P1 and P2).

Similar technical difficulty also appears in the quantum statistical binding setting, where two
generic techniques were invented to overcome this exponential curse: perturbation and hypothet-
ical commitment measurement [YWLQ15, FUYZ20]. Unfortunately, neither of them extend to
the quantum computational binding setting studied here straightforwardly. For the reason, the
fundamental difference between these two settings lies in that in the quantum statistical binding
setting, the bit commitments to 0 respective 1 (stored in the commitment register C) themselves
are already almost orthogonal, and which will never be touched by the (possibly cheating) sender
after they are sent. Thus, we can assume that commitments will collapse immediately by hypo-
thetical commitment measurements at the moment they are sent; after the collapse, everything will
be similar to that in the classical perfect binding setting. However, in the quantum computational
binding setting, commitments to 0 respective 1 could be close or even identical, where we are only
guaranteed that in the reveal stage the joint states of the commitment register C and the decom-
mitment register R are almost orthogonal. But the state of the decommitment register R can be
affected by the sender’s operation after the commitment stage. In turn, the hypothetical-collapse
trick to handle quantum statistically-binding commitments [FUYZ20] fails completely here.

In summary, new techniques are needed to establish the quantum computational predicate-
binding property (if possible).
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Our approach. Instead of considering the aforementioned inner product, now let us equivalently
consider the projection of an arbitrary superposition of the form

∑
s∈P1

αs |s〉Qs |0〉, up to any
polynomial-time realizable unitary transformation U that does not touch commitment registers
C⊗m, on the subspace induced by the predicate P2, i.e.

∑
s∈P2
|s〉 〈s| ⊗ (Qs |0〉 〈0|Q†s), which we

also denote by P2. Our goal then becomes to show that this projection is negligible. Our idea is
based on the following key observation: when the predicate P1 is sparse, i.e. the number of the
m-bit strings satisfying it is polynomially bounded, then combining a new perturbation technique
(which looks similar but is inherently different from the one developed in the quantum statistical
binding setting [YWLQ15, FUYZ20]) and the triangle inequality, we can bound the aforementioned
projection by a negligible quantity. However, to remove this sparsity requirement, we still need to
overcome the exponential curse. To this end, we need to take into account of the coefficients of
the superposition, and make an essential use of the following structure of predicates P1 and P2: to
check whether a string satisfies P1 or P2, all its bits are to examine.

For more technical details, we are to bound the norm∥∥∥ ∑
s∈P1

αs P2U (|s〉Qs |0〉)
∥∥∥,

where in the summation there could be exponentially many terms. At a high level, our trick is
to order these terms properly in such a way that they can be treated as leaves of a binary tree,
whose internal nodes will correspond to the summation of leaves of the subtree it determines; in
particular, the root of the tree will correspond to the summation of all leaves, whose norm is just
what we want to bound. We will actually bound the norm of all internal nodes, including the root,
in a bottom-up fashion. It turns out that the accumulated error will grow only linearly in the depth
of the tree, which is just m. The formal proof (of Lemma 9) is by induction on the depth of internal
nodes.

As a final remark, we note that our security analysis did not achieve a totally uniform security
reduction (from the quantum computational string predicate-binding property to the quantum
computational binding property of a generic quantum bit commitment scheme); rather, we make
an essential use of a certain amount of both classical and quantum non-uniformity. (More detail
about this is referred to the discussion at the end of subsection 4.3.)

Extension. However, the (simplest) scenario (i.e. all commitments are to open) considered above
is usually not sufficient for applications. This is because in many cases where bit commitments are
used in a larger protocol, not all bit commitments are required to open for a verification. Even
worse, positions of which bit commitments are to open may not even be fixed: they may depend
on the party who plays the role of the (cheating) sender. For example, consider an execution of
Blum’s protocol in which a Hamiltonian cycle is challenged to open.

Fortunately, we can extend the predicate-binding property established in the simplest case to
a more general case in which it holds that for at least one predicate (P1 or P2), the positions of
which bit commitments are to open for its verification are fixed, while the other predicate could
be arbitrary (Theorem 3). It turns out that this extension already suffices for our purpose of
establishing Theorem 1.

For the formal proof of such extension, there are more technical issues we need to handle. (More
detail is referred to the proof of Theorem 3 (in Appendix A)). Among others, we highlight that
the computational binding property of a generic quantum bit commitment scheme needs to be
strengthened (Lemma 4) for use.

Organization. We first give preliminaries in Section 2. In Section 3, we derive a more general
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computational binding property of a generic quantum bit commitment scheme from the stan-
dard one, which will be useful in the subsequent Section 4, where we establish the computational
predicate-binding property of the quantum string commitment scheme obtained by composing a
generic quantum computationally-binding bit commitment scheme in parallel. As an application
of the predicate-binding property, in Section 5 we show that Blum’s zero-knowledge protocol for
the NP-complete language Hamiltonian Cycle with a generic quantum computationally-binding bit
commitment scheme plugged in is sound against any quantum computationally bounded prover.
We conclude with Section 6.

2 Preliminaries

A quantum system or register induces a Hilbert space. A quantum operation performing on a
quantum system induces an operator acting on the Hilbert space associated with the system. In
particular, a unitary operation induces a unitary transformation, and a binary projective measure-
ment induces a projector (corresponding to the outcome one). We will interchangeably use quantum
system and its induced Hilbert space, quantum operation and its induced operator. For example,
we may say that a unitary transformation or a projector perform on or do not touch a quantum
register.

Notations. We will explicitly write quantum register(s) as a superscript of an operator to indicate
or highlight on which register(s) this operator performs. Similarly, we will also explicitly write
quantum register(s) as a superscript of a quantum state to indicate or highlight in which register(s)
this quantum state is stored. For example, let A be a quantum register. Then we may write UA,
|ψ〉A (resp. ρA), to indicate that the operator U performs on the register A, the quantum pure
(resp. mixed) state |ψ〉 (resp. ρ) is stored in the register A, respectively. We may also write U ⊗1A
to highlight that the operation U does not touch the register A. But when it is clear from the
context, we often drop such superscripts or the tensor product with the identity to simplify the
notation; this in particular happens in many of derivations within our proofs, where we often write
out registers as superscripts or the tensor product with the identity explicitly in the first step, while
dropping them subsequently. When there are m copies of register A, and a unitary transformation
U performs on the copies of the register A indexed by the subset T ⊆ {1, 2, . . . ,m}, then we write

⊗T as the superscript, i.e. UA⊗T
; in particular, when the subset T is the whole set, we then just

write A⊗m to simplify the notation.

Efficiently realizable quantum computation. In this work, without loss of generality, we
restrict to consider the following quantum computational model:

1. Quantum systems or registers are constituted of qubits.

2. There are only two kinds of quantum operations: unitary transformation and projective mea-
surement.

We also need to formalize efficiently realizable quantum operations. By [Yao93], any efficiently
realizable quantum algorithm or unitary transformation can be formalized by a family of quantum
circuits {Qn}n≥1 such that:

1. Each gate of the quantum circuit Qn comes from a pre-fixed finite, unitary, and universal
quantum gate set, e.g. {Hadamard, phase,cnot, π/8} [NC00].
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2. Quantum circuit Qn is of polynomial size (w.r.t. the index n).

3. The quantum circuit family {Qn}n≥1 can be uniformly generated, i.e. there exists a polynomial-
time classical algorithm A which on input 1n outputs the description of the quantum circuit
Qn.

Since any projective measurement can be realized by first performing a unitary transformation,
followed by a measurement of all qubits in the standard basis, we say that a projective measurement
is efficiently realizable if the corresponding unitary transformation is efficiently realizable.

Any projector Π induces a binary measurement {Π,1−Π}, which produces the outcome 1
(resp. 0) when the quantum state collapses into the subspace induced the projector Π (resp.
1 − Π). We say that the projector Π is efficient realizable if its induced binary measurement is
efficiently realizable.

Quantum rewinding. A quantum rewinding technique as stated in the lemma below is adapted
from the one given in [FUYZ20] directly, where now we restrict to consider projectors and unitary
transformations that are efficiently realizable. In spite of this, its proof follows the same line as the
one in [FUYZ20].

Lemma 1 (A quantum rewinding) Let X and Y be two Hilbert spaces. Unit vector |ψ〉 ∈ X⊗Y.
Efficiently realizable projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, and efficiently realizable
unitary transformations U1, . . . , Uk perform on the space Y. If 1/k ·

∑k
i=1

∥∥Γi(Ui ⊗ 1X) |ψ〉
∥∥2 ≥

1− η, where 0 ≤ η ≤ 1, then∥∥∥(U †k ⊗ 1
X)Γk(Uk ⊗ 1X) · · · (U †1 ⊗ 1

X)Γ1(U1 ⊗ 1X) |ψ〉
∥∥∥ ≥ 1−

√
kη. (1)

2.1 A generic quantum bit commitment scheme

We first need to define quantum (in)distinguishability based on the efficiently realizable quantum
computation we fixed above. Our definition follows [Wat09].

Definition 2 ((In)distinguishability of quantum state ensembles) Two quantum state en-
sembles {ρn}n≥1 and {ξn}n≥1 are quantum statistically (resp. computationally) indistinguishable if
for any quantum state ensemble {σn}n≥1 and any unbounded (resp. efficiently realizable) quantum
algorithm D which outputs a single qubit that will be measured in the standard basis, it holds that

|Pr[D(1n, ρn ⊗ σn) = 1]− Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n, where negl(·) is some negligible function.

Following Yan [Yan20], the definition of a generic quantum computationally-binding bit com-
mitment scheme is given as below.

Definition 3 (Quantum bit commitment scheme, QBC) A non-interactive quantum bit com-
mitment scheme is a two-party, two-stage protocol. It can be represented by an ensemble of
polynomial-time uniformly generated quantum circuit pair {(Q0(n), Q1(n))}n≥1. Specifically,

• The scheme involves two parties, a sender and a receiver, proceeding in two stages: a commit
stage followed by a reveal stage.
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• In the commit stage, to commit bit b ∈ {0, 1}, the sender performs the quantum circuit
Qb(n) on quantum registers (C,R) initialized in all |0〉’s state. Then the sender sends the
commitment register C, whose state at this moment denoted by ρb(n), to the receiver.

• In the (canonical) reveal stage, the sender announces b, and sends the decommitment register
R to the receiver. The receiver then performs Qb(n)† on the registers (C, R), accepting if (C,
R) return to all |0〉’s state.

We are next to define the hiding (or concealing) and the binding properties of the scheme
{(Q0(n), Q1(n))}n≥1.

• Statistically hiding. We say that the scheme is statistically hiding if the quantum state
ensembles {ρ0(n)}n≥1 and {ρ1(n)}n≥1 are quantum statistically indistinguishable.

• Computationally ε(n)-binding. We say that the scheme is quantum computationally
ε(n)-binding if for any state |ψ〉 in auxiliary register Z, and any efficiently realizable unitary
transformation U performing on (R, Z),∥∥∥(Q1 |0〉 〈0|Q†1

)CR
URZ

(
(Q0 |0〉)CR |ψ〉Z

)∥∥∥ < ε(n), (2)

By the reversibility of quantum computation, the binding property can also be equivalently
defined by swapping the roles of Q0 and Q1 in the above. Then the inequality (2) becomes∥∥∥(Q0 |0〉 〈0|Q†0

)CR
URZ

(
(Q1 |0〉)CR |ψ〉Z

)∥∥∥ < ε(n). (3)

We call ε(n) the binding error. When ε(n) is some negligible function, we usually drop it and
just say that the scheme is computationally binding.

Remark. The (computational) binding property stated in the definition above is actually the
honest-binding, which is equivalent to sum-binding w.r.t. a generic non-interactive quantum bit
commitment scheme [Yan20].

In the sequel, to simplify the notation we often drop the security parameter n and just write
(Q0, Q1) to denote a generic quantum computationally-binding bit commitment scheme.

We will use the scheme (Q0, Q1) to commit a binary string bitwisely. Namely, the quantum
circuit to commit a string s = s1s2 · · · sm ∈ {0, 1}m is given by

Qs
def
=

m⊗
i=1

Qsi , (4)

which performs on m copies of the quantum register pair (C,R).

2.2 Modeling an attack of the sender of quantum commitments

When a quantum bit commitment scheme is used within a larger protocol, we consider the following
scenario: suppose that the cheating party in a running of the larger protocol plays the role of the
sender in the quantum bit commitment scheme. This cheating party is supposed to first commit
to a string in {0, 1}m bitwisely, and later try to open the commitments in a way as determined by
the larger protocol. Then the behavior of this cheating party, or an attack of the sender, can be
modeled by (U, |ψ〉) such that:
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1. The sender prepares the whole system (C⊗m,R⊗m,D,Z) in the quantum state |ψ〉 at the end
of the commit stage, and sends the commitment registers C⊗m to the receiver.

2. Later in the reveal stage, the sender first performs the unitary transformation U on the system
in its hands, which in particular includes registers (R⊗m,D), and then sends registers (R⊗m,D)
to the receiver. Intuitively, the register D contains the classical information indicating which
quantum bit commitments are to open as what value, and the register R⊗m are decommitment
registers.

We remark that in the second item above, we assume without loss of generality that all de-
commitment registers R⊗m are sent to the receiver in the reveal stage, though sometimes only a
proper subset of commitments are required to open7. Briefly, we can do this because the receiver
is honest. The detail is referred to [FUYZ20].

2.3 Blum’s zero-knowledge protocol for Hamiltonian Cycle

Basically, Blum’s protocol [Blu86] proceeds as follows: on input a graph G (assuming it is repre-
sented by its adjacency matrix) with n vertices:

1. The prover first chooses a random permutation Π ∈ Sn, where Sn consists of all permutations
over the set {1, 2, . . . , n}. Then it commits to the graph π(G), sending all n2 (quantum) bit
commitments to the verifier.

2. Upon receiving the prover’s commitments, the verifier tosses a random coin to obtain the
challenge bit b ∈ {0, 1} and sends it to the prover.

3. If the challenge b = 0, then the prover sends the permutation π together with the decommit-
ment registers for all bit commitments to the verifier. If the challenge b = 1, then the prover
sends the location of a Hamiltonian cycle H together with the decommitment registers for
the commitments of all edges of the cycle H to the verifier.

4. If the challenge b = 0, then the verifier accepts if all bit commitments are opened as π(G)
successfully. If the challenge b = 1, then the verifier accepts if the H is a possible location of
a Hamiltonian cycle and all commitments to the edges of H are opened as 1 successfully.

3 Generalized quantum computational binding

In our definition of quantum computational binding (inequalities (2) and (3) within Definition 3),
we quantify over all efficiently realizable unitary transformations that do not touch the commitment.
In this section, we show that we can generalize the quantum computational binding property by
additionally quantifying over all efficiently realizable projectors. (Recall that we call a projector Π
efficiently realizable if its induced binary measurement {Π,1−Π} is efficiently realizable).

We remark that such a generalization is introduced mainly for a technical reason. (Refer to the
subsequent section for its application.) Intuitively, such a generalization is needed because a larger
quantum protocol within which quantum bit commitments are used may involve not only unitary
transformations but also (projective) measurements. For its proof, it makes an essential use of the
arbitrarity of the efficiently realizable unitary transformation U and the auxiliary input state |ψ〉
in the definition of quantum computational binding (Definition 3).

7For example, consider a running of Blum’s zero-knowledge protocol for the language Hamiltonian Cycle in which
the cheating prover responds to the challenge 1 of the verifier.
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Lemma 4 Inherit all notations in Definition 3. Let the operator Γ = UkΠk · · ·U1Π1 be an arbitrary
alternation of efficiently realizable unitary transformations and projectors, where k ≥ 1 is an integer,
and for each i (1 ≤ i ≤ k) both the unitary transformation Ui and the projector Πi perform on the
quantum registers (R, Z). If the inequality (2) holds, then∥∥∥(Q1 |0〉 〈0|Q∗1)CRΓRZ

(
(Q0 |0〉)CR |ψ〉Z

)∥∥∥ < ε(n),∥∥∥(Q0 |0〉 〈0|Q∗0)CRΓRZ
(
(Q1 |0〉)CR |ψ〉Z

)∥∥∥ < ε(n).

Proof: We just prove the first inequality; the second one can be proved symmetrically.
By the definition of quantum computationally binding (Definition 3), the first inequality trivially

holds when the operator Γ is a unitary transformation. To handle projectors, the basic idea is
simulation: namely, each binary projective measurement {Πi,1−Πi} (1 ≤ i ≤ k) performing
on the registers (R, Z) can be simulated by a unitary transformation Vi performing on registers
(R,Z,Yi) in the standard way, where the register Yi is a single qubit register initialized in the state
|0〉. Note that if the binary measurement {Πi,1−Πi} is efficiently realizable, then so is Vi. Put it
formally,

V RZYi
i

(
|0〉Yi (Q0 |0〉)CR |ψ〉Z

)
= |1〉Yi⊗ΠRZ

i

(
(Q0 |0〉)CR |ψ〉Z

)
+|0〉Yi⊗(1−Πi)

RZ
(
(Q0 |0〉)CR |ψ〉Z

)
.

For each index i (1 ≤ i ≤ k) and each bit b ∈ {0, 1}, we introduce the projector

Πb
i
def
=

{
Πi, if b = 1

1−Πi, if b = 0
,

and the register Y = (Y1, . . . ,Yk). Then

(URZk V RZYk
k · · ·URZ1 V RZY1

1 )
(
|0k〉Y (Q0 |0〉)CR |ψ〉Z

)
=

∑
s∈{0,1}k

|s〉Y ⊗ UkΠsk
k · · ·U1Πs1

1

(
(Q0 |0〉) |ψ〉

)
.

Hence, ∥∥∥(Q1 |0〉 〈0|Q∗1)CR(URZk V RZYk
k · · ·URZ1 V RZY1

1 )
(
|0k〉YQ0 |0〉CR |ψ〉Z

)∥∥∥2

=
∥∥∥ ∑
s∈{0,1}k

|s〉Y ⊗ (Q1 |0〉 〈0|Q∗1)UkΠ
sk
k · · ·U1Πs1

1

(
(Q0 |0〉) |ψ〉

)∥∥∥2

=
∑

s∈{0,1}k

∥∥∥ |s〉 ⊗ (Q1 |0〉 〈0|Q∗1)UkΠ
sk
k · · ·U1Πs1

1

(
(Q0 |0〉) |ψ〉

)∥∥∥2

≥
∥∥∥|1k〉 ⊗ (Q1 |0〉 〈0|Q∗1)UkΠ

1
k · · ·U1Π1

1

(
(Q0 |0〉) |ψ〉

)∥∥∥2

=
∥∥(Q1 |0〉 〈0|Q∗1)UkΠk · · ·U1Π1

(
(Q0 |0〉) |ψ〉

)∥∥2

=
∥∥(Q1 |0〉 〈0|Q∗1) Γ

(
(Q0 |0〉) |ψ〉

)∥∥2
.

While the r.h.s. of the inequality above is exactly what we want to bound, the l.h.s. can be bounded
by ε2 due to the inequality (2) (which holds for any efficiently realizable unitary transformation
and any auxiliary input state, in particular the unitary UkVk · · ·U1V1 and the state

∣∣0k〉 |ψ〉, re-
spectively). Then take the square root of both sides will finish the proof of the first inequality. �

A straightforward corollary of the lemma above in the following will also be useful in our security
analysis.
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Corollary 5 Inherit all notations in Definition 3. Operator Γ is the same as introduced in Lemma
4. Quantum states |ψ0〉 , |ψ1〉 are two possible states of the register Z. Then∣∣∣((〈0|Q†1)CR 〈ψ1|Z

)
ΓRZ

(
(Q0 |0〉)CR |ψ0〉Z

)∣∣∣ < ε(n).

Proof:∣∣∣((〈0|Q†1)CR 〈ψ1|Z
)
ΓRZ

(
(Q0 |0〉)CR |ψ0〉Z

)∣∣∣ ≤ ∥∥∥(Q1 |0〉 〈0|Q∗1)CRΓRZ
(
(Q0 |0〉)CR |ψ0〉Z

)∥∥∥ < ε(n).

�

4 The predicate-binding property of quantum string commitment

In this section, we first introduce the notion of NP-predicate and then the predicate-binding prop-
erty of quantum string commitments. Next, we show that the parallel composition of a generic
quantum computationally-binding bit commitment scheme gives rise to a quantum string commit-
ment scheme that is predicate-binding w.r.t. a pair of inconsistent NP-predicates of a special form.
Last, we extend this predicate-binding property to a setting that is sufficient for our application,
i.e. quantum zero-knowledge arguments for NP.

4.1 NP-predicate

Informally, the NP-predicate defined in the below states that for a string to satisfy some predicate,
it should exhibit a certain “pattern” somewhere. The intuition underlying our definition is that in
typical applications of bit commitments, the receiver will check whether the value of the opened
commitments will cause it to accept.

Definition 6 (NP-predicate) An NP-predicate P on binary strings {0, 1}m (m ≥ 1) can be
represented by a pair of functions (T (·), s(·)), where: given a witness w ∈ {0, 1}poly(m), T (w)
is a subset of {1, 2, . . . ,m} and s(w) is a string of length |T (w)|; both T (w) and s(w) can be
computed in poly(m) time. A string str ∈ {0, 1}m satisfies the predicate P if there exists a witness
w ∈ {0, 1}poly(m) satisfying str[T (w)] = s(w), where str[T (w)] denotes the substring obtained from
the string str by projecting it on coordinates in the subset T (w).

In this work, for convenience we often drop the prefix “NP” and just write the “predicate” to
refer to an NP-predicate. For a predicate P , it induces a subset P (by abusing the notation) of
strings in {0, 1}m such that a string s ∈ P if and only if it satisfies the predicate P ; we will identify
a predicate as the subset induced by it. We say that two predicates P1, P2 on the set {0, 1}m are
inconsistent if P1∩P2 = ∅; that is, no strings in {0, 1}m can satisfy both P1 and P2 simultaneously.

Consider a larger protocol within which commitments are used. At some stage of a running
of this protocol, the party who plays the role of the possibly cheating sender of commitments will
open commitments, and the party who plays the role of the honest receiver of commitments will
do some verification. It is this verification that natually induces an NP-predicate, which will be
referred to as the predicate induced by openig commitments. See the following example.

Example. Consider a running of Blum’s zero-knowledge protocol for the NP-complete language
Hamiltonian Cycle, in which the verifier is honest while the prover might be cheating, and the
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common input graph G has n vertices. Let m = n2. Graphs of n vertices can be represented
by strings of length m. This running of Blum’s protocol induces two predicates on strings over
{0, 1}m, corresponding to the verifier’s verifications w.r.t. two possible challenges, respectively. In
more detail, when the verifier’s challenge is 0, it will check that all bit commitments are opened as
a graph that is isomorphic to the input graph. This induces a predicate P0 which consists of all
graphs that are isomorphic to the input graph. Moreover, for each graph in P0, any isomorphism π
between this graph and the input graph can serve as its witness; in particular, T (·) ≡ {1, 2, . . . ,m}
and s(π) = π(G). When the verifier’s challenge is 1, it will check that n (out of n2) bit commitments
are opened as all 1’s; moreover, these n positions (of bit commitments to open) should correspond
to a possible location of a Hamiltonian cycle. This induces a predicate P1 which consists of all
graphs containing a Hamiltonian cycle. Moreover, for each graph in P1, the location of any of its
Hamiltonian cycle H can serve as its witness; in particular, T (H) is set of coordinates corresponding
to edges of H and s(·) ≡ 1n. If the input graph is not Hamiltonian, then the two predicates P0 and
P1 are obliviously inconsistent.

4.2 String predicate-binding

We first give an informal definition of the predicate-binding property of a quantum string commit-
ment scheme, and then make it formal w.r.t. the scheme obtained by composing a generic quantum
bit commitment scheme in parallel.

Definition 7 (Predicate-binding, informal) Let P1, P2 be two inconsistent NP-predicates. We
say that a quantum string commitment scheme is predicate-binding w.r.t. (P1, P2) if any cheating
sender, who can succeed in convincing the receiver that the committed value of the (claimed) quan-
tum string commitment satisfies the predicate P1 with certainty, will fail to convince the receiver
that the committed value satisfies the predicate P2 (except for a negligible probability). We say
that a quantum string commitment scheme is predicate-binding if it is predicate-binding w.r.t. any
pair of inconsistent predicates.

Remark. Classical commitments secure against classical attacks are trivially predicate-binding,
simply because there is at most one string (i.e. the committed value) associated with each (claimed)
commitment. However, this no longer holds w.r.t. either classical or quantum commitment secure
against quantum attacks.

Now we restrict to consider the quantum string commitment scheme obtained by composing
a generic quantum bit commitment scheme (Q0, Q1) in parallel. We know that this resulting
quantum string commitment scheme is honest-binding [Yan20]. Our goal is to show that it also
satisfies the stronger predicate-binding property, which turns out to be more useful in security
analysis of quantum cryptography.

Suppose that a cheating sender who is modeled as in Section 2.2 tries to convince the (honest)
receiver that the committed value of a (claimed) quantum string commitment satisfies a predicate
P , i.e. the (claimed) commitment can be opened in such a way that if the witness is w then the bit
commitments indexed by the subset T (w) are opened as the string s(w). The predicate P natually
induces a projector P (also by abusing the notation) whose expression is given by

P =
∑
w

(
|w〉 〈w|

)D ⊗ (Qs(w) |0〉 〈0|Q
†
s(w)

)C⊗T (w)R⊗T (w)

, (5)

where the summation is over all legal witnesses for m-bit strings in P1 and the quantum circuit
Qs(w) (whose meaning is referred to the equation (4)) performs on the copies of the quantum
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register pair (C,R) indexed by the subset T (w); in the reveal stage, the receiver will perform the
binary measurement {P,1− P} to decide whether to accept or not. Hence, the sender’s success
probability of convincing the receiver to accept is given by ‖PU |ψ〉‖2, where recall that the |ψ〉
is the quantum state of the whole system at the end of the commit stage and U is the sender’s
operation in the reveal stage.

Based on the expression (5), we can formalize the predicate-binding property of the paralleliza-
tion of a generic quantum bit commitment scheme as follows.

Definition 8 (Predicate-binding w.r.t. the parallel composition of QBC) Let P1, P2 be two
inconsistent NP-predicates. We say that the quantum string commitment scheme obtained by com-
posing a generic quantum bit commitment scheme (Q0, Q1) in parallel is predicate-binding w.r.t.
(P1, P2) if ‖P2UP1 |ψ〉‖2 is negligible, where |ψ〉 is an arbitrary state of registers (C⊗m,R⊗m,D,Z),
and U could be any efficiently realizable unitary transformations that do not touch the quantum
commitment (i.e. the commitment registers C⊗m). We say that this quantum string commitment
scheme is predicate-binding if it is predicate-binding w.r.t. any pair of inconsistent predicates.

4.3 A special case

We first restrict to consider a special kind of predicates which arise in the setting where a generic
quantum bit commitment scheme is run stand-alone to commit a string bitwisely, and later all
(bit) commitments are to open. Thus, the witness for any string in {0, 1}m that satisfies such kind
of predicates could be the string itself. That is, for such a predicate P = (T (·), s(·)), it holds that
T (·) ≡ {1, 2, . . . ,m}, and s(·) is the identity function. Imposing these restrictions on the equation
(5), the expression of the projector P becomes

P =
∑
s∈P

(
|s〉 〈s|

)D ⊗ (Qs |0〉 〈0|Q†s)C⊗mR⊗m

. (6)

For any inconsistent predicate pair (P1, P2) such that both predicates P1 and P2 are of the form
(6), we have the following main technical lemma of this work.

Lemma 9 Suppose that the scheme (Q0, Q1) is computationally ε-binding for some arbitrary negli-
gible function ε(·). Both predicates P1 and P2 are of the form given by the expression (6). Then for
any quantum state |ψ〉 of registers (C⊗m,R⊗m,D,Z), and any efficiently realizable unitary transfor-
mation U that does not touch the commitment registers C⊗m, we have ‖P2UP1 |ψ〉‖2 ≤ m2ε2 +2mε.

Proof: According to the expression (6), we can write

P1 |ψ〉 =
∑
s∈P1

αs |s〉D ⊗Qs |0〉C
⊗mR⊗m

⊗ |φs〉Z (7)

=
∑

s∈{0,1}m
αs |s〉D ⊗Qs |0〉C

⊗mR⊗m

⊗ |φs〉Z , (8)

where for s 6∈ P1, we let αs = 0 and |φs〉 be arbitrary; moreover, the complex coefficients αs’s
satisfy

∑
s∈{0,1}m |αs|

2 ≤ 1. For convenience, we introduce the shorthand

|ψs〉
def
= |s〉 ⊗Qs |0〉 ⊗ |φs〉 (9)
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for each s ∈ {0, 1}m. With these notations, our goal becomes to show∥∥∥P2U
∑

s∈{0,1}m
αs |ψs〉

∥∥∥2
≤ m2ε2 + 2mε. (10)

We will actually prove a strengthening of the inequality (10) by induction. Specifically, we will
prove that for each k (0 ≤ k ≤ m) and each string x ∈ {0, 1}m−k, it holds that∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs〉
∥∥∥2
≤ (m2ε2 + 2kε)

∑
s∈{0,1}k◦x

|αs|2 , (11)

where {0, 1}k ◦ x denotes the set of all m-bit strings with a suffix x of length m − k. If we view
for each x ∈ {0, 1}m−k, where 0 ≤ k ≤ m, it induces an internal node/leaf of a binarty tree which
corresponds to the summation P2U

∑
s∈{0,1}k◦x αs |ψs〉, then we will bound the (squared) norm of

each internal node in a bottom-up way. Thus, the root of the tree will correspond to the case where
k = m (then x becomes an empty string), i.e. l.h.s. of the inequality (10) without the squred norm.
If we can prove the inequality (11), then plugging in k = m and the inequality

∑
s∈{0,1}m |αs|

2 ≤ 1,
we will arrive at the inequality (10).

Now we are ready to prove the inequality (11) by induction on k, where 0 ≤ k ≤ m.

Base. We show that the inequality (11) holds when k = 0. In this case, x is a string of length
m. Since the coefficient αx = 0 for x 6∈ P1, in which case the inequality (11) holds trivially, we
suffice to fix an arbitrary x ∈ P1 and show that ‖P2U |ψx〉‖ ≤ mε. To this end, our technique is
the perturbation that is similar to the quantum statistical binding setting [FUYZ20]. Specifically,
we will first show that the unit vector U |ψx〉 is negligibly close to the (unnormalized) vector

|ψ̃x〉
def
=

m⊗
i=1

(
1− (Qx̄i |0〉 〈0|Q

†
x̄i)
)
U |ψx〉 , (12)

where x̄i = 1 − xi, and the projector Qx̄i |0〉 〈0|Q
†
x̄i performs on the i-the copy of the register

pair (C,R). Second, we show that from the inconsistency of the predicate pair (P1, P2), it follows
that the vector |ψ̃x〉 is orthogonal to the subspace P2. Combining these two facts, we know that
‖P2U |ψx〉‖ is negligible. Detail follows.

We first show that
∥∥U |ψx〉−|ψ̃x〉∥∥ < mε via a simple hybrid argument. Specifically, we introduce

hybrids for each 0 ≤ j ≤ m such that Hj
def
=
⊗j

i=1

(
1−Qx̄i |0〉 〈0|Q

†
x̄i

)
U |ψx〉; then U |ψx〉 = H0 and

|ψ̃x〉 = Hm. We suffice to show that any two adjacent hybrids are negligibly close: if this is true,
then applying the triangle inequality of the operator norm m times will yield the desired bound.

Indeed, for each 1 ≤ j ≤ m,

‖Hj − Hj−1‖

=

∥∥∥∥∥
j⊗
i=1

(
1−Qx̄i |0〉 〈0|Q

†
x̄i

)
U |ψx〉 −

j−1⊗
i=1

(
1−Qx̄i |0〉 〈0|Q

†
x̄i

)
U |ψx〉

∥∥∥∥∥
≤

∥∥∥(1−Qx̄j |0〉 〈0|Q†x̄j)U |ψx〉 − U |ψx〉∥∥∥
=

∥∥∥(Qx̄j |0〉 〈0|Q†x̄j)U(|x〉Qx |0〉 |φx〉)
∥∥∥

< ε,
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where the last “<” follows from Lemma 4 by considering the j-th quantum bit commitment. In
greater detail, to apply Lemma 4 we replace the |ψ〉 and T in Lemma 4 with |x〉

(⊗
i 6=j Qxi |0〉

)
|φx〉

and U here, respectively.
We then show that the (unnormalized) vector |ψ̃x〉 is orthogonal to the subspace P2, i.e.∥∥P2|ψ̃x〉

∥∥ = 0. This follows straightforwardly from the assumption that the predicate P2 is in-
consistent with the predicate P1. In greater detail, for each s ∈ P2, we know that it is different
from the string x ∈ P1; that is, there exists some index j (1 ≤ j ≤ m) such that sj = x̄j . Combining
this with the equation (12), it follows that∥∥∥( |s〉 〈s| ⊗Qs |0〉 〈0|Q†s)|ψ̃x〉∥∥∥ ≤ ∥∥∥(Qs |0〉 〈0|Q†s)|ψ̃x〉∥∥∥

≤
∥∥∥(Qx̄j |0〉 〈0|Q†x̄j)( m⊗

i=1

(
1− (Qx̄i |0〉 〈0|Q

†
x̄i)
)
U |ψx〉

)∥∥∥
= 0.

Then summing over all s ∈ P2, we obtain∥∥∥ ∑
s∈P2

(
|s〉 〈s| ⊗Qs |0〉 〈0|Q†s

)
|ψ̃x〉

∥∥∥ =
∥∥P2|ψ̃x〉

∥∥ = 0.

Combining
∥∥U |ψx〉 − |ψ̃x〉∥∥ < mε with

∥∥P2|ψ̃x〉
∥∥ = 0, we arrive at ‖P2U |ψx〉‖ ≤ mε.

Induction. Now suppose that the inequality (11) holds for k− 1 and each binary string x of length
m− (k − 1). We are to show that it also holds for k and an arbitrary binary string x of length of
m− k.

For an arbitrary x ∈ {0, 1}m−k, we first expand the l.h.s. of the inequality (11):∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs〉
∥∥∥2

=
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs〉+ P2U
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∥∥∥2

≤
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs〉
∥∥∥2

+
∥∥∥P2U

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∥∥∥2

(13)

+2
∣∣∣ ∑
s∈{0,1}k−1◦0x

αs 〈ψs| · U †P2U ·
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∣∣∣.

For convenience, we introduce shorthands

α2
0x

def
=

∑
s∈{0,1}k−1◦0x

|αs|2 , α2
1x

def
=

∑
s′∈{0,1}k−1◦1x

|αs′ |2 , α2
x

def
= α2

0x + α2
1x.

Without loss of generality, we can assume that all α0x, α1x, αx ≥ 0. With these notations, our goal
(i.e. inequality (11)) becomes to show∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs〉
∥∥∥2
≤ α2

x(m2ε2 + 2kε),

and the induction hypothesis implies∥∥∥P2U
∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥∥∥2
≤ α2

0x(m2ε2 + 2(k − 1)ε),

∥∥∥P2U
∑

s∈{0,1}k−1◦1x

αs |ψs〉
∥∥∥2
≤ α2

1x(m2ε2 + 2(k − 1)ε).
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The remainder of the analysis splits into two cases.

Case 1: either α0x = 0 or α1x = 0. Without loss of generality, we can assume that α1x = 0.
This implies that αs′ = 0 for each s′ ∈ {0, 1}k−1 ◦ 1x. Thus,∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs〉
∥∥∥2

=
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs〉
∥∥∥2
≤ α2

0x(m2ε2 + 2(k−1)ε) ≤ α2
x(m2ε2 + 2kε),

where the first “≤” uses the induction hypothesis.

Case 2: both α0x > 0 and α1x > 0. Following the inequality (13) and using the induction
hypothesis, we have∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs〉
∥∥∥2
≤ α2

0x(m2ε2 + (k − 1)ε) + α2
1x(m2ε2 + 2(k − 1)ε)

+2α0xα1x ·
∣∣∣ 1

α0x

∑
s∈{0,1}k−1◦0x

αs 〈ψs| · U †P2U ·
1

α1x

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∣∣∣

︸ ︷︷ ︸
(∗)

.

We claim (refer to Claim 10 in the below) that the absolute value (∗) in the above can be bounded
by 2ε. Then

∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs〉
∥∥∥2
≤ (α2

0x + α2
1x)(m2ε2 + 2(k − 1)ε) + 2α0xα1x · 2ε

≤ (α2
0x + α2

1x)(m2ε2 + 2(k − 1)ε) + (α2
0x + α2

1x) · 2ε
= α2

x(m2ε2 + 2kε).

The induction step is thus completed in both cases.

We finish the proof the inequality (11), and in turn the whole lemma. �

We are left to prove the following claim.

Claim 10 The absolute value (∗) is less than 2ε.

Proof: Inherit all notations introduced within the statement and the proof of Lemma 9. Our idea
is (again) using perturbation. Detail follows.

Plugging in the equation (9), unit vectors

1/α0x

∑
s∈{0,1}k−1◦0x

αs |ψs〉 and 1/α1x

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′〉

can be written in the form

Q0 |0〉 ⊗ |ξ0〉 and Q1 |0〉 ⊗ |ξ1〉 ,
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respectively, where both Q0 |0〉 and Q1 |0〉 are the states of the k-th quantum register pair (C, R),
and

|ξ0〉 =
1

α0x

∑
s∈{0,1}k−1◦0x

αs |s〉 ⊗Qs[k̄] |0〉 ⊗ |φs〉 ,

|ξ1〉 =
1

α1x

∑
s′∈{0,1}k−1◦1x

αs′
∣∣s′〉⊗Qs′[k̄] |0〉 ⊗ |φs′〉 ;

here s[k̄] and s′[k̄] denote the substrings of s and s′ with the k-th bit dropped, respectively.
We introduce more shorthands as follows:

|η0〉
def
= U(Q0 |0〉 ⊗ |ξ0〉), |η̃0〉

def
=
(
1− (Q1 |0〉 〈0|Q†1)

)
U(Q0 |0〉 ⊗ |ξ0〉),

|η1〉
def
= U(Q1 |0〉 ⊗ |ξ0〉), |η̃1〉

def
=
(
1− (Q0 |0〉 〈0|Q†0)

)
U(Q1 |0〉 ⊗ |ξ0〉),

(14)

where both projectors 1 − (Q1 |0〉 〈0|Q†1) and 1 − (Q0 |0〉 〈0|Q†0) perform on the k-th quantum
register pair (C, R). With these notations, our goal becomes to show

|〈η0|P2 |η1〉| < 2ε.

To this end, it suffices to show:

1. ‖|η0〉 − |η̃0〉‖ < ε;

2. ‖|η1〉 − |η̃1〉‖ < ε;

3. 〈η̃0|P2 |η̃1〉 = 0.

This is because if all of the three items above hold, then a simple triangle inequality will finish the
job.

Indeed, for the first item,

‖|η0〉 − |η̃0〉‖ =
∥∥∥(Q1 |0〉 〈0|Q†1

)
U(Q0 |0〉 ⊗ |ξ0〉)

∥∥∥ < ε,

which follows immediately from the quantum computational binding property (Lemma 4).
Symmetrically, we can prove the second item.
For the third item, according to the equation (6),

P2 =
∑
s∈P2

(
|s〉 〈s|

)D ⊗ (Qs |0〉 〈0|Q†s)C⊗mR⊗m

=
∑
s∈P2

(
|s〉 〈s|

)D ⊗ (Qsk |0〉 〈0|Q∗sk)⊗ (Qs[k̄] |0〉 〈0|Q∗s[k̄]

)
,

where the projector Qsk |0〉 〈0|Q∗sk performs on the k-th quantum register pair (C, R), and the
projector Qs[k̄] |0〉 〈0|Q∗s[k̄]

performs on the remaining m− 1 copies of the quantum register pair (C,

R). Whether sk = 0 or 1, following from the equations in (14),

〈η̃0| (Qsk |0〉 〈0|Q
†
sk

) |η̃1〉 = 0.

Thus, 〈η̃0| (|s〉 〈s| ⊗Qsk |0〉 〈0|Q
†
sk) |η̃1〉 = 0. Summing over all s ∈ P2 will yield 〈η̃0|P2 |η̃1〉 = 0.
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This finishes the proof of the claim. �

A closer look at our security reduction. In our security analysis above, we did not achieve a
uniform security reduction; rather, we make an essential use of a certain amount of both classical
and quantum non-uniformity. In greater detail, note that the only places we use the computational
binding property of quantum bit commitment lies in the base step and in bounding the absolute
value (∗) within the induction step (Claim 10). Thus, if there were a successful attack (U, |ψ〉) of
the predicate-binding property w.r.t. an inconsistent predicate pair (P1, P2), then by contradiction
there are two possibilities:

1. The inequality (11) fails for k = 0, some x ∈ {0, 1}m, and the quantum state |ψx〉.

2. Claim 10 fails for some k where 1 ≤ k ≤ m, some x ∈ {0, 1}m−k, and quantum states
1/α0x

∑
s∈{0,1}k−1◦0x αs |ψs〉 and 1/α1x

∑
s′∈{0,1}k−1◦1x αs′ |ψs′〉.

Given the classical and quantum non-uniformity in either of the items above, we can construct an
attack against the computational binding property of the scheme (Q0, Q1).

4.4 Extension

By slightly adapting its proof, we can extend Lemma 9 to hold for more general inconsistent
predicate pairs so as to be useful in cryptographic applications. Specifically, we can prove the
following theorem, whose formal statement is referred to Theorem 3.

Theorem 2 Suppose that the quantum bit commitment scheme (Q0, Q1) is computationally bind-
ing. Let P1, P2 be two inconsistent predicates on the set {0, 1}m such that for (at least) one of
them, the verification of whether an m-bit string satisfies it needs to examine the bits at some
fixed positions of the string (regardless of the given witness). Then the parallel composition of
the scheme (Q0, Q1) gives rise to a quantum string commitment scheme that is computationally
predicate-binding w.r.t. (P1, P2).

In the remainder of this subsection, we will first sketch why such an extension as described in
the theorem above is possible, and then state this theorem in a more formal way.

The generalization of the predicate P2. It is not hard to extend Lemma 9 to the case in which
the predicate P2 is of the most general form as described by the equation (5) (while the restriction
on the predicate P1 remains the same). This extension turns out to be already sufficient for our
application (section 5). Now let us briefly mention how to adapt the proof of Lemma 9 to this case
in the below.

Recall that the proof of Lemma 9 is by induction. For the base step, which essentially relies
on the inconsistency of predicates P1 and P2, almost the same proof as that of Lemma 9 goes
through even if the predicate P2 is generalized. For the induction step, however, we will encounter
new difficulty in bounding 〈η̃0|P2 |η̃1〉 within the proof of Claim 10 for the extension: now it may

happen that some projectors of the form |w〉 〈w| ⊗
(
Qs(w) |0〉 〈0|Q

†
s(w)

)
in the summation over all

legal witnesses of the equation (5) do not touch the k-th register pair (C, R). Thus, new technique
is needed to handle such projectors for the purpose of bounding the absolute value (∗). Actually,
this is where we really need to generalize the quantum computational binding property (refer to
Definition 3) so as to cope with not only unitary transformations but also projectors (Lemma 4).

In greater detail, to bound the absolute value (∗) now we divide the summation over all legal
witnesses in the equation (5) into two parts: the summations of those projectors that touch the
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k-th register pair (C, R), and those do not. Correspondingly, we can bound the absolute value
of each of these two parts separately, and then use the triangle inequality to get a bound of the
absolute value (∗). In particular, the absolute value of the former part can be bounded by 2ε in
a similar way as that of the proof of Claim 10, whereas the absolute value of the latter part can
be bounded by ε, thanks to the generalized computational binding property (Lemma 4). Combing
them we obtain a 3ε bound of the absolute value (∗) in case of the generalized predicate P2.

The generalization of the predicate P1. Unfortunately, it seems unlikely that we can generalize
the predicate P1 to the most general form (5) like the predicate P2 above by our technique. This
is because the special form of the projector P1 (equation (6)) seem to play an important role in
bounding the absolute value (∗) within the induction proof of Lemma 9. In more detail, it seems
that we make an essential of the following structure of the superposition (8) (which is induced
by the projector P1): for distinct s, s′ ∈ {0, 1}m, say si 6= s′i, the projections of unit vectors

|s〉D ⊗Qs |0〉C
⊗mR⊗m

⊗ |φs〉Z and |s′〉D ⊗Qs′ |0〉C
⊗mR⊗m

⊗ |φs′〉Z on the i-th quantum register pair
(C, R) correspond to commitments to different bit value. It is this structure that makes our strategy
of bounding the l.h.s. of the inequality (10) work.

In spite of the difficulty mentioned above, we still can generalize the predicate P1 to the case
in which the associated function T (·) is any constant function; that is, which bits are to examine
for the verification of P1 are fixed. (In comparison, in the special form given by the equation (6),
the function T (·) is fixed to output the whole set and the function s(·) is fixed to be the identity
function.)

To have a glimpse of why such a generalization of P1 is possible, we first rewrite its expression in
a proper form. Specifically, let T1 be the fixed subset that prescribes which bits are to examine for
the verification of P1. In this case whether a string s ∈ {0, 1}m satisfies the predicate P1 actually
only depends on its substring s[T1]. Let l = |T1|. The predicate P1 in turn induces a predicate
P1[T1] on the set {0, 1}l such that all l bits need to examine to check whether an l-bit string satisfies
the predicate P1[T1]. Following the equation (5), the projector P1 can be written as

P1 =
∑
w

(
|w〉 〈w|

)D ⊗ (Qs(w) |0〉 〈0|Q
†
s(w)

)C⊗T1R⊗T1
(15)

=
∑

s∈P1[T1]

∑
w:s(w)=s

(
|w〉 〈w|

)D ⊗ (Qs |0〉 〈0|Q†s)C⊗T1R⊗T1
. (16)

Note that for distinct s, s′ ∈ P1[T1], the two projectors
∑

w:s(w)=s |w〉 〈w| and
∑

w:s(w)=s′ |w〉 〈w|
induce two subspaces that are orthogonal. Then similar to the equation (7), we can write

P1 |ψ〉 =
∑

s∈P1[T1]

αs |ωs〉D ⊗Qs |0〉C
⊗T1R⊗T1 ⊗ |φs〉C

⊗(m−l)R⊗(m−l)Z , (17)

where the unit vector |ωs〉 is of the form
∑

w:s(w)=s αw |w〉
D, and vectors |ωs〉 and |ωs′〉 are orthogonal

for distinct s, s′ ∈ P1[T1].
It is not hard to verify that if we replace this P1 |ψ〉 given by the equation (17) with the one

given by the equation (7) in the proof of Lemma 9, then almost the same proof goes through.

A formal statement of Theorem 2. It turns out that predicates P1 and P2 in Lemma 9 can
be generalized in the way as discussed above simultaneously. Thus, Theorem 2 can be stated in a
more formal way as in the theorem below, whose proof is deferred to Appendix A.
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Theorem 3 Suppose that the scheme (Q0, Q1) is computationally ε-binding. Let P1, P2 be two
inconsistent predicates on the set {0, 1}m, which induce two projectors of the form (16) and (5),
respectively. Then for any quantum state |ψ〉 of registers (C⊗m,R⊗m,D,Z), and any efficiently
realizable unitary transformation U that does not touch the commitment registers C⊗m, we have
‖P2UP1 |ψ〉‖2 ≤ m2ε2 + 3mε.

5 Application: quantum zero-knowledge argument

In this section, we give an application of the quantum computationally predicate-binding string
commitment scheme as shown in the proceeding section. Specifically, we show that Blum’s protocol
for the NP-complete language Hamiltonian Cycle [Blu86] with a generic quantum computationally-
binding bit commitment scheme plugged in gives rise to a quantum zero-knowledge argument sys-
tem. While its quantum (perfect or statistical) zero-knowledge property can be obtained by a
straightforward application of Watrous’s quantum rewinding technique [Wat09, Unr12, Unr16b,
YWLQ15], its quantum computational soundness is established by Lemma 11 as stated below.
Combing them we arrive at Theorem 1.

Lemma 11 Blum’s protocol for the language Hamiltonian Cycle with a generic quantum computationally-
binding bit commitment scheme (Q0, Q1) plugged in is sound against any quantum provers who are
polynomial-time bounded, with soundness error 1/2 + negl(·).

Proof: This can be proved by instantiating Theorem 3 with proper predicates induced by Blum’s
protocol. Detail follows.

Suppose that the binding error of the scheme (Q0, Q1) is ε(·), which is a negligible function.
We inherit notations as introduced in Subsection 2.3. Following Subsection 2.2, we can model a
generic attack of the prover of Blum’s protocol in the following way. The combined (quantum)

system of the (cheating) prover and the (honest) verifier is given by (P,D,C⊗n
2
,R⊗n

2
), where the

n2 copies of the register pair (C,R) are used for (in total n2) quantum bit commitments; the
register D will hold the classical information of the prover’s response (i.e. the permutation π when
the challenge b = 0 or the location of a Hamiltonian cycle H when b = 1); the register P is the
prover’s (private) workspace. Suppose that the whole system is initialized in the state |ψ〉. The

prover sends the quantum register C⊗n
2

to the verifier as its first message. Then depending on
the challenge b, the prover will perform some polynomial-time realizable unitary transformation Ub
on the registers (P,D,R⊗n

2
). After receiving the prover’s response, the verifier will perform some

binary measurement, which also depends on the challenge b (as prescribed in the below), to decide
to whether accept or not.

Formally, depending on the challenge b, the verifier’s accepting conditions induce two NP-
predicates, which in turn induces two efficiently realizable projectors/binary measurements as fol-
lows:

1. The projector corresponding to b = 0 is given by

P0 =
∑
π∈Sn

(
|π〉 〈π|

)D ⊗ (Qπ(G) |0〉 〈0|Q
†
π(G)

)C⊗n2
R⊗n2

.

2. The projector corresponding to b = 1 is given by

P1 =
∑

H:n cycle

(
|H〉 〈H|

)D ⊗ (Q1n |0〉 〈0|Q†1n
)C⊗HR⊗H

,
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where the projector Q1n |0〉 〈0|Q†1n performs on the n copies of the register pair (C,R) that
are determined by the location of the Hamiltonian cycle H.

We highlight that here we implicitly assume that the verifier just performs a big binary measurement
(induced by either P0 or P1) to decide whether to accept or not; it in particular does not measure
the register D to extract any classical information. It is easy to see that whether measuring the
register D or not will not change the verifier’s acceptance probability. But by doing this, we are
then allowed to apply the quantum rewinding lemma (Lemma 1).

Now we are ready to argue the quantum computational soundness of Blum’s protocol. Suppose
for contradiction that there exists a efficiently realizable cheating prover given by (|ψ〉 , U0, U1) as
aforementioned who can break the quantum computational soundness. Namely,

1

2

∑
b∈{0,1}

‖PbUb |ψ〉‖2 >
1

2
+ n−c,

where c is some constant. Then applying the quantum rewinding lemma (Lemma 1), it follows that∥∥∥P1U1U
†
0P0U0 |ψ〉

∥∥∥ > n−c. (18)

On the other hand, we invoke Theorem 3 by doing the replacements as summarized in the
following table:

Theorem 3 Blum’s protocol

m n2

Registers (C⊗m,R⊗m) Registers (C⊗m,R⊗m)

Register D Register D

Register Z Register P

Projector P1 Projector P0

Projector P2 Projector P1

Quantum state |ψ〉 Quantum state U0 |ψ〉
Unitary transformation U Unitary transformation U1U

†
0

In case that the input graph G is not Hamiltonian, the two predicates P0 and P1 are inconsistent.
Applying Theorem 3 will yield an upper bound n4ε2+3n2ε of the squared norm

∥∥P1U1U
†
0P0U0 |ψ〉

∥∥2
,

which is negligible. But this contradicts with the inequality (18).
We finish the proof of the lemma. �

6 Conclusion and open problems

In this work, we show that the parallel composition of a generic quantum computationally-binding
bit commitment scheme gives rise to a quantum string commitment scheme that is computationally
predicate-binding. This new notion of quantum computational string binding property is stronger
than the trivial honest-binding property, and turns out to be useful in constructing quantum zero-
knowledge arguments for NP languages. The main technical part of this work lies in establishing
this quantum computational predicate-binding property, which is highly non-trivial.

There are many open problems following this work. In the below, we just mention some that
interest us most:
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1. Can we extend our technique to prove predicate-binding w.r.t. more general inconsistent
predicate pair than the one stated in Theorem 3? Can we prove predicate-binding w.r.t.
other inconsistent predicate pairs with inherently different structures?

2. Can we extend our technique to prove predicate-binding w.r.t. multiple (≥ 3) inconsis-
tent predicates? If we can do this, then we may show that the GMW zero-knowledge pro-
tocol for the NP-complete language Graph 3-Coloring [GMW91] with a generic quantum
computationally-binding bit commitment scheme plugged in gives rise to a quantum zero-
knowledge argument.

3. Can we prove even stronger binding (than the predicate-binding) property of the quan-
tum string commitment scheme obtained by composing a generic quantum computationally-
binding bit commitment scheme in parallel? Further, if this is possible, then can it yield
any interesting applications? In [CDMS04], a so-called computational f -binding property
of quantum string commitment scheme w.r.t. a function f : {0, 1}m → {0, 1}l is proposed,
where integers l ≤ m. Such binding property w.r.t. some specific functions turns out to be
useful in constructing quantum oblivious transfer. Can we extend our technique to show f -
binding of the quantum string commitment scheme obtained by composing a generic quantum
computationally-binding bit commitment scheme in parallel w.r.t. any interesting functions,
in particular those needed in [CDMS04]? We note that the string predicate-binding prop-
erty we established can also be viewed as the f -binding w.r.t. to any efficiently computable
function f whose image is just the set {0, 1}, where the preimages mapped to 1 induce the
prediate P1 while the preimages mapped to 0 induce the prediate P2.

We also note that in the case of quantum statistical binding, the strongest string binding
property, the so called string sum-binding, can be established; it implies the statistical f -
binding w.r.t. any function f [FUYZ20].

4. Can we show that plugging a generic quantum computationally-binding bit commitment
scheme in a variant of Blum’s protocol [Unr12, FUYZ20] gives rise to a quantum zero-
knowledge argument-of-knowledge for the NP-complete language Hamiltonian Cycle?

5. How about plugging a generic computationally-binding quantum bit commitment scheme in
[GK96] to obtain a quantum ε-zero-knowledge proof in constant rounds like in [CCY20]? If
this is true, then we can relax the complexity assumption required in [CCY20] to quantum-
secure one-way functions by a quantum construction.

Acknowledgements. We thank Dominique Unruh for helpful and inspiring discussions on the
strictness of the quantum binding property and the possibility of basing quantum zero-knowledge
argument for NP on computationally-binding quantum bit commitments at the early stage of this
work.
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A A proof of Theorem 3

We just highlight how to adapt the proof of Lemma 9 to the setting of Theorem 3, in which both
predicates P1 and P2 are generalized in the way as stated in Section 4.4.

According to the equation (17), we can replace the equations (7), (8) in the proof of Lemma 9
with

P1 |ψ〉 =
∑

s∈P1[T1]

αs |ωs〉D ⊗Qs |0〉C
⊗T1R⊗T1 ⊗ |φs〉C

⊗(m−l)R⊗(m−l)Z

=
∑

s∈{0,1}l
αs |ωs〉D ⊗Qs |0〉C

⊗T1R⊗T1 ⊗ |φs〉C
⊗(m−l)R⊗(m−l)Z ,
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where for s 6∈ P1[T1], we let αs = 0, and the corresponding |ωs〉 and |φs〉 be arbitrary8; moreover,
the complex coefficients αs’s satisfy

∑
s∈{0,1}l |αs|

2 ≤ 1. We similarly introduce the shorthand

|ψs〉
def
= |ωs〉 ⊗Qs |0〉 ⊗ |φs〉 ,

and our goal becomes to show∥∥∥P2U
∑

s∈{0,1}l
αs |ψs〉

∥∥∥2
≤ m2ε2 + 3mε.

We are to strengthen the inequality above and prove by induction that for each k (0 ≤ k ≤ l) and
each string x ∈ {0, 1}l−k, it holds that∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs〉
∥∥∥2
≤ (l2ε2 + 3kε)

∑
s∈{0,1}k◦x

|αs|2 , (19)

Base. We first show that the inequality (19) holds when k = 0. In this case, x ∈ {0, 1}l. Since the
coefficient αx = 0 when x 6∈ P1[T1], in which case the inequality (19) trivially hold, we suffice to fix
an arbitrary x ∈ P1[T1] and show that ‖P2U |ψx〉‖ ≤ lε.

It is not hard to see that the proof of the base step of Lemma 9 almost goes through here,
except that now we apply the perturbation

⊗l
i=1

(
1 − (Qx̄i |0〉 〈0|Q

†
x̄i)
)

to the subspace induced
by the l copies of the quantum register pair (C, R) indexed by the subset T1. In more detail, we
introduce the (unnormalized) vector

|ψ̃x〉
def
=

l⊗
i=1

(
1−Qx̄i |0〉 〈0|Q

†
x̄i

)
U |ψx〉 ,

which will play the same role of the equation (12) in the proof of the base step of Lemma 9.
We remark that here we will make an essential use of the fact that predicates P1 and P2 are
inconsistent, so that the string s(w) w.r.t. each witness w within the expression of the projector P2

(refer to the equation (5)) must differ with the string x ∈ P1[T1] in at least one common coordinate
i ∈ T1 ∩ T2(w).

Induction step. Now suppose that the inequality (19) holds for k − 1 and each binary string x of
the length l − (k − 1). We are to show that it also holds for k and an arbitrary binary string x of
the length of l − k.

Similar to the induction step of the proof of Lemma 9, now for each x ∈ {0, 1}l−k, we similarly
introduce shorthands

α2
0x

def
=

∑
s∈{0,1}k−1◦0x

|αs|2 , α2
1x

def
=

∑
s′∈{0,1}k−1◦1x

|αs′ |2 , α2
x

def
= α2

0x + α2
1x,

where α0x, α1x, αx ≥ 0. Then our goal becomes to show that∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs〉
∥∥∥2
≤ α2

x(l2ε2 + 3kε).

8We stress that our purpose of introducing αs, |ωs〉 , |φs〉 for s 6∈ P1[T1] is mainly for a cleaner way of writing the
proof; it will not affect the places in our proof where the (generalized) quantum computational binding property
(Lemma 4) is applied.
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Indeed,∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs〉
∥∥∥2

=
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs〉+ P2U
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∥∥∥2

≤
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs〉
∥∥∥2

+
∥∥∥P2U

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∥∥∥2

+2
∣∣∣ ∑
s∈{0,1}k−1◦0x

αs 〈ψs| · U †P2U ·
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∣∣∣.

The remaining analysis also splits into two cases like that of the proof of Lemma 9, depending on
whether at least one of α0x or α1x are zero. Now in the case that both α0x > 0 and α1x > 0, we
will encounter new difficulty in bounding the absolute value∣∣∣ 1

α0x

∑
s∈{0,1}k−1◦0x

αs 〈ψs| · U †P2U ·
1

α1x

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′〉
∣∣∣, (20)

the counterpart of the absolute value (∗) within the proof of Lemma 9.
We will bound the expression (20) by 3ε in the following claim, which can be viewed as the

counterpart of Claim 10. Once this is done, then we can complete the induction step similarly to
that of the proof of Lemma 9 and establish Theorem 3.

We are left to prove the following claim.

Claim 12 The expression (20) is less than 3ε.

Proof Sketch: We just highlight how to adapt the proof of Claim 10 to the setting here.
Compared with the proof of Claim 10, the new difficulty is: since now the projector P2 is

of the most general form as given by the equation (5), it could happen that for some projector

|w〉 〈w|⊗Qs(w) |0〉 〈0|Q
†
s(w) in the summation of P2, k 6∈ T (w); that is, this projector does not touch

the k-th quantum register pair (C, R). This will cause our argument for the equality 〈η̃0|P2 |η̃1〉 = 0
within the proof of Claim 10 to fail.

To overcome this new difficulty, our idea is to split the projector P2 into two parts: the sum of
projectors that touch the k-th quantum register pair (C, R), i.e. k ∈ T (w), which we denote by P 1

2 ,
and the sum of those do not, which we denote by P 2

2 . Then for the projector P 1
2 , almost the same

proof as that of Claim 10 will yield an upper bound 2ε, whereas for the projector P 2
2 , we will use

the generalized quantum computational binding property (Lemma 4) to obtain an upper bound ε.
In more detail, after introducing similar notations |ξ0〉 , |ξ1〉 , |η0〉 , |η1〉 , |η̃0〉 , |η̃1〉 as in the proof

of Claim 10, our goal is to show that |〈η0|P2 |η1〉| < 3ε. Plugging in P2 = P 1
2 + P 2

2 , we will prove
that

1.
∣∣〈η0|P 1

2 |η1〉
∣∣ < 2ε, and

2.
∣∣〈η0|P 2

2 |η1〉
∣∣ < ε.

For the item 1, by the property of the projector P 1
2 , i.e. each projector in the summation of P 1

2

touches the k-th quantum register pair (C,R), almost the same proof as that of Claim 10 will yield
the same upper bound 2ε.

For the item 2, the projector P 2
2 does not touch the k-th quantum register pair (C,R). We then

apply Corollary 5, with the operator Γ replaced by UP 2
2U
†, which will yield

∣∣〈η0|P 2
2 |η1〉

∣∣ < ε. We
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additionally highlight that to apply Corollary 5, we need to show that the projector P 2
2 is efficiently

realizable given that the projector P2 is. This is indeed the case: conditioned on a quantum state
collapsing to the subspace induced by the projector P2, we can further compute the function T (w)
given the witness w and check that k 6∈ T (w).

Combining items 1 and 2 above, the absolute value (20) can be bound by 3ε. This finishes the
proof of the claim. �
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