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Abstract

The lack of privacy in the first generation of cryptocurrencies such as Bitcoin, Ethereum,
etc. is a well known problem in cryptocurrency research. To overcome this problem, several new
cryptocurrencies were designed to guarantee transaction privacy and anonymity for their users
(examples include ZCash, Monero, etc.).

However, the anonymity provided by such systems appears to be fundamentally problematic
in current business and legislation settings: banks and other financial institutions must follow
rules such as “Know your customer” (KYC), “Anti Money Laundering” (AML), etc. It is also
well known that the (alleged or real) anonymity guarantees provided by cryptocurrencies have
attracted ill-intentioned individual to this space, who look at cryptocurrencies as a way of
facilitating illegal activities (tax-evasion, ransom-ware, trading of illegal substances, etc.).

The fact that current cryptocurrencies do not comply with such regulations can in part
explain why traditional financial institutions have so far been very sceptical of the ongoing
cryptocurrency and Blockchain revolution.

In this paper, we propose a novel design principle for identity management in Blockchains.
The goal of our design is to maintain privacy, while still allowing compliance with current regula-
tions and preventing exploitations of Blockchain technology for purposes which are incompatible
with the social good.
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1 Introduction

Early applications of blockchain to payment systems such as Bitcoin do not guarantee privacy. In
the Bitcoin blockchain, blocks posted on the public ledger consist of transactions, making Bitcoin
transparent – transactions are there for everybody to see. However, the identities are pseudony-
mous, and not tied to real world identities. Consequently, Bitcoin has the property that while the
ownership of money is implicitly anonymous, the flow of money is globally visible. While this was
perceived to be truly anonymous early on, there have been several works that deanonymize Bitcoin
flow by analysing the payment graph [MPJ+13]. To overcome the problem of lack of privacy in
the first generation of cryptocurrencies such as Bitcoin, Ethereum, etc., new systems were designed
to guarantee transaction privacy and anonymity for their users [BCG+14, PBF+19, FMMO19].
Systems like Zerocash [BCG+14] fully hide both the value inside a transaction, and the sender
and receiver identities. Most blockchain use-cases, however, are hindered by complete privacy as
they need accountability and identity management. Privacy-preserving systems like ZCash are not
designed with accountability in mind. In order to conform with regulations like “Know your cus-
tomer” (KYC) and “Anti-money laundering” (AML), a legal authority should be able to learn the
value and identities of the parties involved in any transaction; this requirement seems to be at odds
with privacy. The seemingly contradictory requirements of transaction privacy & user anonymity,
and regulatory requirements such as KYC/AML imposed on financial and banking institutions is
a major hurdle in widespread adoption of the blockchain.

Our Contribution. In this work, we address the problem of balancing accountability with pri-
vacy in blockchain-based systems. We propose a new architectural design of an “identity layer”
that will provide privacy for its users – that is, no one, observing the network transactions and the
status of the Blockchain should be able to learn about the identity of the owner of any account in
the system. At the same time, the identity layer achieves accountability in the sense that in the
presence of a reasonable suspicion, law-enforcement agencies (or other authorized parties), will be
able to access the transaction history of a given user and/or block its funds, in a way similar to
what is guaranteed today by traditional financial institutions. We develop cryptographic mecha-
nisms that enhance accountability measures against misuse of the blockchain, while still providing
privacy. Towards this end, we employ cryptographic techniques to design provably secure protocols,
with both privacy and accountability guarantees. We prove the security of our constructions in
the Universal Composability (UC) framework. We provide a high-level overview of the design of
the system, and then discuss the techniques and cryptographic tools used. We believe that such
an identity layer design will make Blockchain and cryptocurrencies more attractive for regulators,
public institutions and traditional businesses which are interested in complying with existing leg-
islation. In fact, the identity layer of Concordium1, an upcoming major Blockchain project, is
based on the design presented in this paper.

Overview of the System. In the proposed system, the identity and credentials of each partici-
pant in the network are initially verified and stored by authorized parties called Identity Providers
(IPs). Each user can open a limited number of accounts where an account has an identifier that is
derived from a PRF applied to a value that is between 1 and the maximal number of accounts, say
n. The PRF key K is held by the user. When a user registers with an IP, K is encrypted through a

1concordium.com
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threshold encryption scheme, and this ciphertext is stored with the IP. This is set up such that an
appropriate number of Anonymity Revokers (ARs) would be able to decrypt. Standard anonymous
credentials are used to certify additional attributes of the user.

When a user creates an account, they prepare some data to be published on the blockchain. This
includes a threshold encryption of the account holder’s public key (that was also stored with the
IP at registration time). It also includes zero-knowledge proofs that the attributes the user chooses
to publish in the account have been signed by the IP, and that the account identifier has been
correctly computed. Thus, an account may contain complete identification of the account holder,
if the user chooses to include it, or it may reveal less information, for instance the citizenship and
age of the account holder.

Finally, an account includes various account specific public keys. Using the corresponding secret
keys, the account holder can then perform transactions anonymously in the network. Depending
on the key material included in accounts, several different ways to do transactions can be realized –
this is a problem orthogonal to that of implementing the identity layer, and we give some informal
examples of how this could be done in Section E.

If it is suspected that an account is used for fraudulent purposes, the encrypted account infor-
mation can be decrypted by a qualified set of the ARs, and an anonymous account can be linked
(via the public key) to an id provided by the IP. On the other hand, if a particular user is suspected
of fraud, the IP can provide its record for this user, and a qualified set of ARs can decrypt the
information to learn the PRF key K. Now, they can generate the set of all values PRFK(x) for
x = 1, . . . , n which are all the possible values for an account identifier. One can then identify all
accounts of the user by searching the blockchain for accounts with these identifiers. Privacy is
therefore guaranteed for all users, except those whose anonymity is revoked by a sufficient number
of ARs.

Note that the above also implies that we have a mechanism for preventing a user from opening
an unbounded number of accounts using a single certificate from the IP: if this were possible, it
would open the door for attacks where an individual registers with an IP and then allow other
individuals to open accounts in their name, perhaps after payment of a small sum of money. On
the other hand, we do not want the account holder to have to interact with the IP for every
new account it wants to create, as this would affect efficiency. Our technique allows to achieve a
reasonable tradeoff: The zero-knowledge proofs force the user to compute the account id’s correctly,
which only allows n different id’s. Thus, if one attempts to open more accounts than allowed, this
must result in a pre-existing account identifier, and the Blockchain will reject it.

We prove security of the system when either any number of account holders are actively corrupt,
or when the identity providers are semi-honest corrupt. Note that, similar to certification authorities
in standard PKI, we need some trust in the IPs: a malicious identity provider (equivalently, a
malicious AH colluding with a semi-honest IP and therefore learning the key), could produce
certificates containing false identities, therefore undermining the system. Finally, depending on
which properties we want to emphasize, we could tolerate different corruption levels among the
anonymity revokers. Thus our system is secure in the presence of actively corrupt users and a
threshold number of passively corrupt anonymity revokers; or, in the presence of passively corrupt
identity-provider and a threshold number of passively corrupt anonymity revokers. In our design
it is paramount that the service provided by the anonymity revokers be available, and we want
to emphasize privacy. Thus, we opt for assuming a majority of semi-honest ARs. Using standard
methods, we could instead tolerate a minority of actively corrupted ARs.
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Overview of technical ideas. We use cryptographic schemes such as Pedersen commitments [Ped92],
Dodis-Yampolskiy PRF [DY05], Pointcheval-Sanders (PS) signature scheme [PS16], CL encryption
scheme [CL15]. We use zkSNARKs in combination with commitments signatures in the spirit
of [AGM18, CFQ19]: the PS blind signature we use is defined using groups of a certain prime
order, and when a user proves knowledge of a signature, the message that is signed is committed
to using a Pedersen-type commitment in such a group. Now, we can use standard sigma-protocols
to provide commitments to individual attributes of the user in the same group, and finally use
SNARKs on committed messages to show statements such as “the age attribute of the user is a
number greater than 18”. In this way, we only need to use SNARKs on rather small circuits, and we
can achieve much greater efficiency than if we had to convert large statements involving, e.g, group
operations into a Boolean circuit to be evaluated inside the SNARK. In this way, creating an ac-
count requires a constant number of exponentiations (i.e., independent of the security parameter),
and likewise, the number of group elements in an account is constant.

We provide a generic lifting transformation for Fiat Shamir NIZKs for DL-languages into UC
NIZKs. While such a transformation by encrypting the witness under a key that is part of the CRS
(and the secret key part of the CRS trapdoor) is folklore [DP92], using the CL encryption scheme
allows us to efficiently prove statements about values in the exponent, which is novel to the best
of our knowledge.

Related Work. The cryptographic tools used in building our solution, like commitment schemes,
blind signatures, zero-knowledge proofs, and threshold encryption are based on anonymous creden-
tials technology. Anonymous credentials [Cha83] allow a party to prove to a verifier that one has
a set of credentials without revealing anything beyond this fact. Revocable anonymity [CMS96,
KTY04] allows a trusted third party to discover the identity of all otherwise anonymous participants.
Conditional anonymity requires that a user’s transactions remain anonymous until certain condi-
tions are violated [CHL05, DDP06, CHK+06]. In [DDP06], an unclonable identification scheme is
introduced, that is, roughly, an identification scheme where honest users can identify themselves
anonymously as members of a group, but where clones of users can be detected and have their iden-
tities revealed if they identify themselves simultaneously. This was extended from one-time authen-
tication to n-times anonymous authentication in [CHK+06] where a certain number of unlinkable
accounts are derived that can later be efficiently traced. The works of [TFS04, NS05, ASM06, TS06]
addressed related problems of allowing a user to show a credential anonymously and unlinkably up
to n times to a particular verifier. The potential for abuse of unconditional anonymity by misbehav-
ing users has been articulated in the context of group signatures. In a group signature scheme, each
group member can sign a message on behalf of a group such that anyone can verify that the group
signature is produced by someone in the group, but not who exactly. Our idea for identifying all
accounts of a user in case of revocation by using a PRF to generate account identifiers is reminiscent
of the work of traceable signatures [Cho09] that enable a tracing agent to identify all signatures
produced by a particular member. The idea of deriving a certain number of unlinkable accounts
that can later be efficiently traced has been used in various forms in the anonymous credential
literature [CHK+06, ASMC12, Cho09] for the purposes of balancing accountability and anonymity.

Unfortunately none of the previous works seem to fit our intended use case, which motivated
us to degin the system described in this paper. Moreover, the toolbox of efficient tools available
to the protocol designer has grown in recent years (e.g., the CL encryption scheme, advances in
SNARKs, etc.), which also motivates exploring new designs.
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The zkLedger protocol [NVV18] is an asset transfer scheme that hides transaction amounts
and sender-receiver relationship, and supports auditing. The protocol is for a setting where the
transacting parties are banks, and requires the participation of the banks for an audit to take place.
The work of [ACC+20] presents a privacy-preserving token management system that supports
auditing in permissioned blockchains. The system of [ACC+20] is in the UTXO framwork, where
users own tokens that are certified, and prove ownership of tokens in a privacy-preserving manner.
In contrast, we work in the account-based model; and our design is modular – the identity layer is
separate from the transaction layer. One main difference of our work from the works of [NVV18]
and [ACC+20] is that while both these works assume that the entire system is permissioned, again
our design is more modular: our ID layer obviously assumes that IPs and ARs are known (and
trusted to some extent) and is therefore in some sense permissioned. However, the ID layer can
work on top of the consensus mechanism of a permissionless blockchain.

2 Preliminaries and Building Blocks

This section defines our notation and introduces the cryptographic schemes we use in our construc-
tion.

2.1 Notation

For any positive integer n, [n] denotes the set {1, . . . , n}. We write f(λ) ≈λ g(λ) if the difference
between f and g is negligible in λ. We use DPT (resp. PPT) to mean a deterministic (resp.
probabilistic) polynomial time algorithm. We denote by Y ←$ F(X) a probabilistic algorithm F
that on input X outputs Y . Similarly, notation Y ← F(X) is used for a deterministic algorithm
with input X and output Y . All adversaries will be stateful. We use the identifier AH for account
holder, IP for identity provider and AR for anonymity revoker. By an identifier, we mean an
arbitrary string that uniquely identifies a party. Throughout the paper, Fq will denote the field
with q elements.

2.2 Pseudorandom Functions

We recall the standard notion of pseudorandom functions.fullversion

Definition 2.1 (PRF). Let PRF : K × D → R be a family of functions and let Γ be the set of all
functions D → R. We say that PRF is a pseudorandom function (PRF) (family) if it is efficiently
computable and for all PPT distinguishers D∣∣∣Pr

[
K←$K,DPRFK(·)(1λ)

]
− Pr

[
g←$ Γ,Dg(·)(1λ)

]∣∣∣ ≈λ 0.

We define a weak notion of PRF robustness, meaning that is should be hard to find a key that
produce collisions with the PRF of an honest user. Our definition is similar to the one in [FOR17],
but here one of the two keys is chosen honestly.

Definition 2.2 (Weakly Robust PRF). A PRF is weakly robust if:

Pr[K←$ Gen(1λ), (x∗,K∗)←$APRFK(·)(1λ) : ∃(x, y) ∈ Q,PRFK∗(x∗) = y] ≈λ 0

where Q is the set of inputs/outputs of the oracle available to the adversary.
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2.2.1 Instantiation with Dodis-Yampolskiy PRF.

We use the PRF of Dodis and Yampolskiy [DY05] that operates in a group G of order q with
generator g. On input x and the PRF key K←$ Fq, PRFK(x) = g1/K+x. This is shown to be
pseudorandom under the Decisional Diffie-Hellman Inversion assumption in group G. Note that
the security holds only for small domains, namely inputs that are slightly superlogarithmic in the
security parameter, but this is sufficient for our work, as the maximum number of accounts a user
can open is less than a constant MaxACC. It can also be easily shown that the Dodis-Yampolskiy
PRF is weakly robust: using the PRF assumption, we can replace the output of the PRF oracle
with random group elements. If the adversary outputs an input x∗ and key K∗ that are compatible
with one of the output of the oracles, we can compute the discrete logarithm of that element as
1/(K∗ + x∗).

2.3 Blind Signature Schemes

We adapt the notation of [SU12] to two-round blind signature schemes.

Definition 2.3 (Blind Signature Schemes). An interactive signature scheme between a signer S and
user U consists of a tuple of efficient algorithms BS = (Setup,KeyGen,Sign1, Sign2,Unblind,VerifySig)
where

• Setup(1λ), on input the security parameter 1λ outputs pp, which is given implicitly as input
to all other algorithms, even when omitted.

• KeyGen(pp), on input the public parameter pp generates a key pair (sk, pk) for security pa-
rameter λ.

• Sign1(pk,m), which is run by U , takes as input pk and a message m ∈ {0, 1}∗ and outputs
sign1 and ω (wlog ω can be thought of as the randomness used to run Sign1).

• Sign2(sk, sign1), which is run by S, takes as input sk and sign1 and outputs sign2.

• Unblind(sign2, ω), which is run by U , takes as input sign2, ω and outputs σ.

• VerifySig(pk,m, σ) outputs a bit.

Remark 2.4. Note that a blind signature scheme implicitly defines a normal signature scheme
as well, where the signing algorithm Sign(sk,m) simply emulates a blind signature protocol and
outputs the resulting signature σ.

The correctness property of the scheme requires that the following holds: for any (pp)←$ Setup(1λ),
(sk, pk)←$ KeyGen(pp), any messagem ∈ {0, 1}∗, if (sign1, ω)←$ Sign1(pk,m), sign2←$ Sign2(sk, sign1),
σ = Unblind(sign2, ω) then VerifySig(pk,m, σ) = 1 with overwhelming probability over λ ∈ N.

We require the standard notion of existential unforgeability under chosen message attacks (EUF-
CMA) [GMR88]. The blind signature scheme we use should additionally satisfy two properties,
namely Blindness and simulatability, where the second is an ad-hoc definition required for our UC
proof of security that ensures the existence of an additional simulation algorithm Sim that can
simulate sign2. The formal definition of these properties can be found in Appendix A.3.
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2.4 (Ad-hoc) Threshold Encryption Scheme

We recall the definition of an ad-hoc threshold encryption scheme here.

Definition 2.5. A (n, d)-threshold encryption scheme TE = (TKeyGen,TEnc, ShareDec,TCombine)
over message space M consists of the following algorithms:

• TKeyGen(1λ) is a randomized key generation algorithm that takes the security parameter λ as
input and returns a private-public key pair (sk, pk).

• TEncn,d
~pkR

(m), a probabilistic encryption algorithm that encrypts a message m ∈M to a set of

public keys ~pkR = {pki}i∈R in such a way that any size d +1 subset of the recipient set should
jointly be able to decrypt. We sometimes write TEncn,d

~pkR

(m; r) when we want to be able to fix
the value of the randomness r to a specific value.

• ShareDecn,d
~pkR,ski

(ct), on input a ciphertext ct and a secret key ski, outputs a decryption share
µi.

• TCombinen,d
~pkR

(ct, {µi}i∈I), a deterministic algorithm that takes a subset I ⊂ [n] with size d+1
of decryption shares {µi}i∈I and outputs either a message m ∈M or ⊥.

We use the static security definition of Reyzin et al. [RSY18] for threshold encryption schemes
which requires two properties, namely static semantic security and partial decryption simulatability
as defined in Appendix A.4.

Definition 2.6. A threshold encryption scheme TE = (KeyGen,TEnc,ShareDec,TCombine) is
(n, d)-statically secure if it is both (n, d)-statically semantically secure (Definition A.5) and (n, d)-
partial decryption simulatable (Definition A.6)

The definitions of Commitments scheme, Secret Sharing and Zero-Knowledge can be found in
Appendix A.

3 System Design

We give a high-level overview of the design of the identity layer in terms of the entities involved,
data objects and protocols beteween the entities.

3.1 Entities Involved

The following entities are involved in our design:

• Account Holders (AH): those are individuals who hold accounts on the block-chain. We
assume AHs possess some mean for performing legal identification (e.g., a passport), in the
country where they live. They are interested in opening accounts and performing transactions
on the blockchain but, before doing so, they have to register with an Identity Provider (IP).

• Identity Provider (IP): an identity provider is an entity that, as the name suggests, can
provide a digital identity to an AH. The identity provider “authorizes” a user to open accounts
on the blockchain, and therefore to perform transaction. Jumping ahead, when observing
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transactions on the blockchain, it should not be possible to find out the identity of an AH
(not even for the IP itself), while everyone should be able to see which IP has authorized a
given account, thus creating trust in the account.

• Anonymity Revoker (AR): anonymity revokers are parties which are involved in case where
law-enforcement or other authorized entities need to be able to extract the identity of the
owner of some account on the blockchain. We can make threshold assumptions on the AR
and e.g., require that at least d + 1 ARs must give an approval before the anonymity of a
user is revoked.

3.2 Data Objects

We now describe the data objects that held by the entities.

Account Holder Certificate (AHC). After an account holder registers with an identity provider, the
AH obtains a certificate containing:

• A public identity credential IDcredPUB and a secret identity credential IDcredSEC.

• A key K for a pseudorandom function PRF.

• One or more attribute lists AL such as some identifier, age, citizenship, expiration date, etc.

• A signature on (IDcredSEC,K,AL) that can be checked using pkIP. A valid signature proves
that an AH with attributes as in AL has registered with IP and has proved knowledge of
IDcredSEC corresponding to IDcredPUB.

Account Creation Information (ACI). Given an AHC, an account holder can create new accounts
and post the corresponding ACI on the ledger, containing:

• RegIDACC, an account registration ID. This is defined to be RegIDACC = PRFK(x) where K is
a key held by AH and signed by the IP, and where the account in question is the x’th account
opened by the AH based on a given AHC. If AH behaves honestly, then RegIDACC is unique
for the account, and x ≤ MaxACC. The latter condition is enforced by the proof below, the
former can be checked publicly.

• Anonymity revocation data: this is a threshold encryption EID = TEncn,d
PKAR

(IDcredPUB), where
any subset of size d + 1 of anonymity revokers are able to decrypt EID and obtain IDcredPUB.

• The identity IP of the identity provider who did the signature in the AHC used for this account.

• An account specific public key pkACC. It will be used, for instance, to verify transactions
related to the account.

• A policy P, which asserts some information about the attribute list AL.

• A proof π that can be checked using pkIP and verifies that ACI can only be created by an
AH that has obtained an AHC from IP, such that P(AL) = >, where AH knows the secret
keys corresponding to pkACC, as well as IDcredSEC corresponding to the IDcredPUB that was
presented to the IP, and where RegIDACC,EID,ERegID are correctly generated.

10



Identity Provider’s information on Account Holder (IPIAH). This is the data record that the IP
stores after an AH has registered. It contains:

• The name AH of the account holder and its public identity credential IDcredPUB.

• A set of anonymity revokers AR1, ...,ARn with public keys PKAR and an encryption ERegID =
TEncn,d

PKAR
(K). Here, K is the PRF key chosen by the AH at registration time.

3.3 Protocols

The following are the main protocols composing our design.

Account Holder Registration. The protocol takes place between an IP and an AH who owns a key
pair (IDcredSEC, IDcredPUB) and an attribute list AL. At the end of the protocol, the AH receives an
AHC and the IP obtains a IPIAH as described above. The AH sends their attribute list AL to IP
and proves (via non-cryptographic means) their identity to IP. More concretely, this means that
the IP must verify that the entity it is talking to indeed has the name AH and hence it received AL
from the correct entity. It should also verify that the attributes in AL are correct w.r.t. the AH.
The AH aslo sends to IP her public key IDcredPUB and an encryption ERegID = TEncn,d

PKAR
(K) where

K is a PRF key. Next, AH and IP engage in a blind signature scheme, which allows AH to receive a
signature on (IDcredSEC,K,AL) that is generated under the secret key skIP of the IP. In addition, AH
proves (cryptographically, in ZK) that he knows IDcredSEC corresponding to IDcredPUB, that the same
IDcredSEC was input to the blind signature, and that the encryption contains the same K that was
input to the blind signature scheme. IP stores IPIAH = (IDAH, IDcredPUB,AL,ERegID,AR1, . . . ,ARn).
Create New Account. An account holder AH wants to create an account that satisfies some policy P
(e.g., above 18, resident in country X, etc.). They take as input an AHC, a policy P and the public
key pkAR of one (or more) anonymity revoker(s) with name AR. At the end, AH produces some ACI
that can be posted to the blockchain. They also need to store secret key skACC that is specific to
the account. The protocol works as follows: AH generates an account key pair (pkACC, skACC) and
an encryption of their public identity credential IDcredPUB under the public key of the anonymity
revokers’ PKAR, i.e., EID = TEncn,d

PKAR
(IDcredPUB). Next, AH calculates RegIDACC = PRFK(x), where

we assume this is x’th account that is opened using the AHC that is input. At last, AH produces a
a non-interactive zero-knowledge (NIZK) proof of knowledge π for statement

st = (P,EID,RegIDACC, IP, pkACC)

using secret witness
w = (σ, IDcredSEC,K,AL, skACC)

for the relation R(st, w) that outputs > if:

1. σ is a valid signature under pkIP for a message of form (IDcredSEC,K,AL).

2. AL satisfies the policy i.e., P(AL) = >.

3. RegIDACC = PRFK(x) for some x ≤ MaxACC.

4. EID = TEncn,d
PKAR

(IDcredPUB).

11



5. (pkACC, skACC) is a valid key pair.

Let ACI = (RegIDACC,EID,AR1, ...,ARn, IP, pkACC,P, π).
Revoke Anonymity of Account. Revocation of the anonymity of an account can be done by at least
d+1 of the n ARs involved in the set-up of the account, working together with the IP with whom the
AH registered. The input is an account identifier RegIDACC and the output is the name AH of the
account holder. The protocol proceeds as follows: Given an account RegIDACC whose anonymity
needs to be revoked, the ARs find the ACI containing RegIDACC on the blockchain, collaborate
to decrypt EID and learn IDcredPUB. The registration information also contains the public name
IP of the identity provider who registered IDcredPUB. The AR’s contact this IP who then locates
the IPIAH = (AH, IDcredPUB,AL,ERegID,AR1, ...,ARn) record that contains the IDcredPUB that was
decrypted. This record also includes AH, thus IP and the set of ARs have now identified the AH.
Trace accounts of User. If a user with a given name AH is suspected of engaging in illegal activities,
the IP and a set of at least d + 1 ARs can identify all accounts of that user. The IP searches its
database to locate the IPIAH = (AH, IDcredPUB,AL,ERegID,AR1, ...,ARn) containing the relevant AH.
This record also contains the names of the relevant AR’s. A qualified set of these could decrypt the
ERegID to learn the PRF key K and generate all values PRFK(x) for x = 1, . . . ,MaxACC in public.
However, due to technicalities in the security reduction, this would require the PRF to satisfy some
form of “selective opening attack” security. Instead, we let the AR’s decrypt the ciphertext and
evaluate the PRF on x = 1, . . . ,MaxACC inside an MPC protocol, so that K is never revealed to
anyone. Either way, the produced values are all the possible values for RegIDACC that the AH could
have used to form valid accounts, so one can now search the blockchain for accounts with these
registration IDs.

3.4 Informal Analysis of the Design

If an AH misbehaves and opens more accounts than they are allowed to, this must result in two
or more accounts with the same RegIDACC. This can be publicly detected by the chain, and the
second account will be discarded. Moreover, the construction satisfies revocability and traceability,
meaning a malicious AH cannot create a valid account such that the anonymity revokers together
with the identity provider are unable to revoke its anonymity or trace it. This follows from the
soundness of the underlying zero-knowledge proofs which imply EID = TEncn,d

PKAR
(IDcredPUB) and

ERegID = TEncn,d
PKAR

(K). Thus, any subset of size d + 1 of anonymity revokers can decrypt EID (resp.
ERegID) and revoke the AH’s anonymity (resp. trace all the AH’s accounts). Lastly, due to the
security of the underlying PRF and the threshold encryption scheme and also the ZK property
of the proof π ∈ ACI, our design supports anonymity of the account holders, in the sense that a
malicious identity provider even by cooperating with d anonymity revokers and other dishonest
account holders cannot link a valid account to an account holder. Since we are using a Blockchain
e.g., an imperfect bullettin board, we also need to worry that a malicious AH can’t “rush” and
steal an honset user account number by maliciously chosing a PRF key K which “hits” some of the
account numbers of the honest users which have not yet been finalized by the Blockchain. In order
to do this we define and use a weakly robust PRF.
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4 ID-layer Formalization

4.1 The UC-Model

e use the UC-security [Can01] framework with static corruption. In the following, the reader is
assumed to be familiar with the basic concepts of UC security and is referred to [Can01] for a more
detailed description.

Let Z denote the environment. For a protocol Π and an adversary A, we write REALΠ,A,Z
to denote the ensemble corresponding to the protocol execution. For an ideal functionality F
and a simulator S, we write IDEALF,S,Z to denote the distribution ensemble of the ideal world
execution. We say that a protocol Π UC-realizes a functionality F if for all PPT adversaries A
corrupting a subset of parties, there exists a simulator S such that for all environments Z, the
ensembles REALΠ,A,Z and IDEALF,S,Z are computationally indistinguishable. In the rest of the
section we describe the main ideal functionalities in our construction. We defer other (standard)
ideal functionalities used by our protocol in Appendix G.

4.2 The ID Layer Functionality

The functionality Fid-layer captures the security properties offered by the design of our identity layer
while hiding the implementation details. After the functionality is initialized, it allows identity
providers IP to issue credentials to acccount holders AH based on their attribute lists AL. At the
level of the ideal functionality, a credential is just a pointer to a record storing the tuple (AH, IP,AL).
Armed with a credential, an AH can create up to MaxACC accounts. When creating an account,
the AH can choose a predicate P of their attributes to be made public (e.g., “I am over 18, I am
resident of country X” etc.) which, together with the IP who authorized this account, are the only
information which are made public. We capture this by having the functionality leak only the fact
that an account was created and not the identity of the AH.2 Moreover, when creating an account,
the AH also registers a key-pair associated to this account. The functionality is parametrized by
any key-pair relation, which allows our ideal functionality to be used as a building block in more
complex protocols, where the AH then can use those keys for authentication, encryption, etc. Our
functionality also exposes some of the details about the underlying ledger on top of which it is
implemented, thus new accounts are added to a buffer which can be permuted by the adversary
before becoming finalized. This is inevitable as we run this on top of a ledger which has the same
properties. The final two commands of the ideal functionality, revoke and trace, allow a qualified
set of anonymity revokers AR and an IP to respectively disclose the AH behind a given account, or
to find all accounts belonging to a certain AH.

2Note that the environment provides all inputs and sees all outputs. It can therefore observe that an account is
created right after it instructed an account holder to create an account, and can make the connection between the
two. This corresponds to the fact that in a real application an adversary may know that in a long time interval, only
one user creates an account, and so the next account that shows up on chain must belong to that user. Of course, our
system cannot prevent this - the best we can do is to make sure that the account itself is anonymous. This follows
in our model because the ideal adversary - the simulator - will not learn the identity of the holder and will still have
to produce account information which are indistinguishable from the real protocol, thus proving that the account
information leaks no information about its holder.
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Functionality Identity layer Fid-layer

We assume that {IP1, . . . , IPm,AR1, . . . ,ARn} is the set of identifiers for identity providers
and anonymity revokers. The functionality is parameterized by values m, n and threshold d,
together with an NP (key-pair) relation RACC such that when parties input CreateACC, they
also specify a key-pair and the functionality verifies if the key-pair satisfiesRACC. Moreover, the
functionality maintains the following initially empty records: Count, where Count[cid] counts
the number of accounts created by certificate cid, and two records Cert and ACC, respectively
for keeping track of certificates and accounts and a list L of public account information.

Initialize
On (INITIALIZE) from party P ∈ {IP1, . . . , IPm,AR1, . . . ,ARn}, output to A
(INITIALIZED, P ).
If all parties have been initialized, store (READY).

Issue
On (ISSUE, IP,AL) from an honest account holder AH (or the adversary in the name of
corrupted account holder AH) and input (ISSUE,AH) from identity provider IP:

• If not (READY), then ignore.
• If there is already a cid with Cert[cid] = (AH, IP, ·, ·), then abort; otherwise, if IP is

honest (resp. corrupt), then send (ISSUE) (resp. (ISSUE,AH, IP,AL)) to A.
• Upon receiving (cid, ISSUE) from A, if cid = ⊥ (in the case of corrupt IP) or if

there already exists cid s.t. Cert[cid] 6= ⊥, then abort. Otherwise, set Cert[cid] ←
(AH, IP,AL) and output (ISSUED, cid) to AH.

Account Creation
Upon inputs (CreateACC, cid,P, (skACC, pkACC)) from honest account holders AH (or the
adversary in the name of corrupted account holder AH), if not (READY), then ignore.
Else, proceed as follows:

• If Cert[cid] = ⊥ then abort, else retrieve (AH′, IP,AL)← Cert[cid].
• Check if AH′ = AH and Count[cid] < MaxACC and that AL satisfies the policy P.
• Verify that the key pair (skACC, pkACC) satisfies the relation RACC and abort other-

wise.
• Output (CreateACC,P, pkACC, IP) to A.
• Receiving a response (CreateACC, aid) from A, if aid = ⊥ or ACC[aid] 6= ⊥, then

abort, else do the followings:
– set ACC[aid]← (cid,P, skACC).
– set Count[cid]← Count[cid] + 1.
– add the tuple (aid,P, pkACC, IP) to the account buffer.

• Return (Created, aid) to AH.
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Account Buffer Release
Upon input (RELEASE,Π) from the adversary A, remove all tuples from the account
buffer and adds the permuted tuples (aid,P, pkACC, IP) of accounts to the account list L.

Accounts Retrieve
On (RETRIEVE) from an account holder or party P ∈ {IP1, . . . , IPm,AR1, . . . ,ARn}, output
a list including all existing tuples (aid,P, pkACC, IP) in the account list L.

Revoke
Upon input (REVOKE, aid) from a (possibly corrupt) identity provider IP and a set of
(possibly corrupt) anonymity revokers {ARi}i∈I⊆[n], proceed as follows:

• If ACC[aid] = ⊥ then return ⊥. Otherwise, retrieve (cid,P, skACC)← ACC[aid].
• If IP is the same as the identity provider in Cert[cid] and |I| > d, then return

(aid,AH) to the IP and {ARi}i∈I . Otherwise, return ⊥. Moreover, if the identity
provider or at least one anonymity revoker is corrupt, output (aid,AH) to A as well.

Trace
Upon input (TRACE,AH) from a (possibly corrupt) identity provider IP and a set of
(possibly corrupt) anonymity revokers {ARi}i∈I , proceed as follows:

• If there is no record (AH, IP, ·, ·) in Cert, then return ⊥. Otherwise, retrieve
(AH, IP, ·)← Cert[cid].
• If |I| > d, return to IP and {ARi}i∈I the list of all aid’s such that ACC[aid] = (cid, ·, ·).

Moreover, if the identity provider or at least one anonymity revoker is corrupt,
return the list to A as well.

4.3 Issuing Credentials – the Functionality

We describe here Fissue, an ideal functionality capturing the desired properties of the issue protocol,
which allows an identity provider to issue credentials to account holders. Note that the functionality
can be seen as an augmented blind signature functionality: the account holder receives a signature
(under the secret key of the identity provider) on a secret message m (as in blind signatures) but
also on some public auxiliary information aux and on a secret key chosen by the account holder. The
identity provider is not supposed to learn m (as in blind signatures), but in addition the identity
provider learns a ciphertext which is guaranteed to contain an encryption of m and the public key
corresponding to the secret key which is being signed.

Functionality Issue FR,TE,SIG
issue

The functionality is parametrized by an NP relation R corresponding to the account holders
key pair, a signature scheme SIG = (Setup,KeyGen, Sign,VerifySig) and a (n, d)-threshold en-
cryption scheme TE = (TKeyGen,TEnc,TDec). We assume that {IP1, . . . , IPm} is the set of
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identifiers for identity providers.

Setup

• Upon input (SETUP) from any party, and only once, run pp←$ Setup(1λ) and return
(SETUPREADY, pp) to all parties.

Initialize

• Upon input (INITIALIZE, (skIP, pkIP)) from identity provider IP, ignore if the party
is already initialized or if SETUPREADY has not been returned yet. Otherwise, if
(skIP, pkIP) is a valid key pair according to the relation defined by KeyGen(pp),
store (skIP, pkIP) for this party and output (INITIALIZED, pkIP, IP) to A.
• If all parties have been initialized, store (READY).

Issue
On input

(
ISSUE, (ct,m, r, pkAR), aux, (skAH, pkAH), IP

)
from account holder AH and in-

put (ISSUE,AH, pkAR) from identity provider IP:

• If not (READY), then ignore.
• If (skAH, pkAH) 6∈ R or ct 6= TEncn,d

PKAR
(m; r) then abort.

• Otherwise compute σ←$ Sign((skAH,m, aux), skIP).
• Output σ to AH and (pkAH, aux, ct) to IP.

5 Formal Protocols Specifications

5.1 Identity Layer Protocol

The protocol Πid-layer is run by parties interacting with ideal functionalities Freg,Fissue,Fnizk, Fcrs,
and Fledger. Let R and RACC be NP relations corresponding to the account holders’ key-pair and
accounts’ key-pair, respectively. Let TE = (TKeyGen,TEnc,TDec) denote a threshold encryption
scheme, PRF a pseudorandom function and SIG = (KeyGen,Sign,VerifySig) a signature scheme.
Protocol Πid-layer proceeds as follows.

Protocol Identity layer Πid-layer

Parameters for ideal functionalities.

• We use a Fledger that implements the following VALIDATE predicate: the predicate accepts
if the NIZK proof π is valid and if RegIDACC has not been seen before.

• We use a Fcrs functionality that outputs the public parameters for the signature scheme
and the threshold encryption scheme.

The protocol description for an account holder AH.
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• On input (ISSUE, IP,AL), retrieve the public key PKIP of identity provider IP and the
vector PKAR of all public keys of the anonymity revokers via Freg and proceed as follows:

– Generate a key pair (IDcredSEC, IDcredPUB) satisfying R.
– Choose a random key K for PRF and compute the encryption ERegID =

TEncn,d
PKAR

(K; r) with randomness r.

– Call FR,TE,BS
issue on input

(
ISSUE, (ERegID,K, r,PKAR),AL, (IDcredSEC, IDcredPUB), IP

)
.

After receiving the response σ from FR,TE,BS
issue , set cid = (IP,AL, IDcredSEC, σ,K).

• On input (CreateACC, cid,P), proceed as follows

– If there is no record cid = (IP,AL, IDcredSEC, σ,K), then abort.
– Generate an account key pair (pkACC, skACC) satisfying RACC.
– Compute EID = TEncn,d

PKAR
(IDcredPUB; r′).

– Compute RegIDACC = PRFK(x), where this is x’th account that is created using cid.
– Produce a NIZK π by calling Fnizk for statement

st = (P,EID,RegIDACC, IP, pkACC)

using secret witness

w = (σ, x, r′, IDcredSEC,K,AL, skACC, IDcredPUB)

for the relation R(st, w) that outputs > if:
1. The signature σ is valid for (IDcredSEC,K,AL) under pkIP.
2. AL satisfies the policy i.e., P(AL) = >.
3. RegIDACC = PRFK(x) for some 0 < x ≤ MaxACC.
4. EID = TEncn,d

PKAR
(IDcredPUB; r′).

5. (pkACC, skACC) is a valid key pair according to RACC.
6. (IDcredSEC, IDcredPUB) is a valid key pair according to R

– Let ACI = (RegIDACC,EID, IP, pkACC,P, st, π) and SIACC = skACC. Send the input
(APPEND,ACI) to Fledger.

– Store tuple (ACI,SIACC) internally and return (Created,RegIDACC).

• On input (RETRIEVE), call Fledger on input RETRIEVE. After receiving (RETRIEVE, L) from
Fledger, output L.

The protocol description for identity providers and anonymity revokers.

• On input INITIALIZE from P ∈ {IP1, . . . , IPm}, obtain crs from Fcrs, generate key pair
(skIP, pkIP)←$ KeyGen(1λ) and input (INITIALIZE, (skIP, pkIP)) to FR,TE,SIG

issue .
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• On input INITIALIZE from P ∈ {AR1, . . . ,ARn}, obtain crs from Fcrs, generate key pair
(skAR, pkAR)←$ TKeyGen(1λ) and input (REGISTER, skAR, pkAR) to Freg.

• On input (ISSUE,AH) from identity provider IP, call FR,TE,SIG
issue with input (ISSUE,AH,

pkAR). After receiving the response (IDcredPUB,AL,ERegID) from FR,TE,SIG
issue , set IPIAH =

(AH, IDcredPUB,AL,ERegID).

• On input (RETRIEVE), call Fledger on input RETRIEVE. After receiving (RETRIEVE, L) from
Fledger, output L.

• On input (REVOKE,RegIDACC) from an identity provider IP and a set of anonymity revokers
{ARi}i∈I⊆[n], proceed as follows:

– Anonymity revokers call Fledger on input RETRIEVE. After receiving (RETRIEVE, L)
from Fledger, they first look up ACI in L that contains RegIDACC. Next, each
ARi decrypts the EID of the ACI by computing µi = ShareDecn,d

~pkI ,ski
(EID). Fi-

nally, all anonymity revokers combine their shares and compute IDcredPUB =
TCombinen,d

p̃kR
(EID, {µi}i∈I) and return IDcredPUB to the IP.

– The ACI contains the public name IP of the identity provider who registered
IDcredPUB. If IP is different from the requester, then ignore. Else, the IP locates
the IPIAH = (AH, IDcredPUB,AL,ERegID) record, containing the IDcredPUB that was
decrypted and outputs AH.

• On input (TRACE,AH) from an identity provider IP and a set of anonymity revokers
{ARi}i∈I⊆[n], proceed as follows:

– IP searches the database to locate the IPIAH = (AH, IDcredPUB,AL,ERegID) containing
the relevant AH and sends ERegID via Fsmt to the set of anonymity revokers.

– Each ARi computes Ki = ShareDecn,d
~pkI ,ski

(ERegID). Then, they call FMPC−PRF on
input (COMPUTE,Ki) and receive all values PRFK(x) for x = 1, . . . ,MaxACC. These
values are all the possible values for RegIDACC that the AH could have used to form
valid accounts.

5.2 Proof of Security for Identity Layer

Tolerated Corruptions. We prove security in two separate cases: with arbitrarily many malicious
AHs and up to threshold semi-honest ARs, or with semi honest IP and up to threshold semi-honest
ARs. Note that for technical reasons we cannot let the IP be corrupt (even if only semi-honest) at
the same time with a malicious AH, since in this case the (monolithic) adversary would learn the
secret key of the corrupt IP and would be able to forge invalid credentials for the corrrupt AH’s.
Assumptions on the environment. We consider executions with restricted adversaries and
environments, that only input attribute lists AL in the ISSUE command which are valid with
respect to the account holder. This restriction captures the fact that an honest IP in the real world
is trusted to check (by non-cryptographic means) that an account holder AH actually satisfies the
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claimed attribute list AL.

Theorem 5.1. Suppose that TE = (TKeyGen,TEnc,TDec) is a (n, d)-threshold encryption scheme,
PRF is a weakly robust pseudorandom function, R a hard relation, and SIG = (KeyGen,Sign,
VerifySig) is a EUF-CMA signature scheme, then Πid-layer, for all restricted environment (as defined
above), securely implements Fid-layer in the {Fcrs,Freg,Fnizk,Fsmt,FR,TE,SIG

issue ,Fledger}-hybrid model in
the presence of an actively corrupted AH, and d semi-honest anonymity revokers AR1, . . . ,ARd, or
semi-honest IPs and d semi-honest anonymity revokers AR1, . . . ,ARd.

Proof. The simulator Sim is internally emulating the functionalities Fcrs,Freg,Fnizk,Fsmt, FR,TE,SIG
issue ,Fledger.

At the start Sim initializes empty lists listisse, listacc, listledger, listh−aid, listh−pk, listh−sig.
Here is the description of the simulator:

• Command INITIALIZE: Sim emulates Fcrs and generates public paramters for the signature
scheme and threshold encryption scheme. Every time a honest or semi-honest IP or AR invokes
the initialize command, the simulator generates a key-pair for them.

• Command ISSUE. Passively corrupted IP, honest AH. The simulator receives (ISSUE,AH, IP,AL)
in case of corrupt IP from the ideal functionality Fid-layer, and has to produce a view in-
distinguishable from the protocol which is consistent with this. The simulator does so by
emulating the output Fissue for IP namely (IDcredPUB,AL,ERegID) to IP where the simulator
encrypts a dummy value for ERegID and IDcredPUB is generated according to R. The simu-
lator adds ERegID to listh−ct and IDcredPUB to listh−pk. Sim adds to listissue the entry
〈(AH,AL, IP); (ERegID, IDcredPUB,AL)〉.

Malicious AH, honest IP. When a corrupt AH invokes FR,TE,SIG
issue on command

(
ISSUE, (ERegID,

K, r,PKAR), AL, (IDcredSEC, IDcredPUB), IP
)
, Sim aborts if ERegID is not an encryption of K or

if (IDcredSEC, IDcredPUB) is not a valid keypair; Sim outputs fail if ERegID ∈ listh−ct or if
IDcredPUB ∈ listh−pk.
Otherwise, Sim calls command ISSUE of the functionality on input (IP,AL) and returns cid =
(IP,AL, IDcredSEC, σ,K) to AH where σ is a signature computed by Sim using Sign of SIG (since
the simulator is internally emulating the honest IP w.r.t. the corrupt account holder AH).
Sim adds (σ; (IDcredSEC,K,AL); IP) to listh−sig.

• Command CreateACC. Malicious AH. When a corrupt AH invokes Fledger on input ACI =
(st, π) (where st = (P,EID,RegIDACC, IP, pkACC)), the simulator Sim uses Fnizk to extract the
witness w = (σ, x, r′, IDcredSEC,K,AL, skACC, IDcredPUB) (or abort if the proof doesn’t verify). If
the simulator sees a repeated accounts (RegIDACC,EID, IP, pkACC,P, π) ∈ listacc. Otherwise,
the simulator outputs fail if one of the following condition holds: (σ; (IDcredSEC,K,AL);
IP) 6∈ listh−sig, if IDcredPUB ∈ listh−pk, if EID ∈ listh−ct, if RegIDACC ∈ listh−aid, or if
x ≥ MaxACC.
Otherwise the simulator inputs the CreateACC(cid,P, (skACC, pkACC)) command to the ideal
functionality and, when asked, inputs aid = RegIDACC to the ideal functionality.
Honest AH. For an honest account holder, the simulator upon receiving (CreateACC,P,
pkACC, IP) from the ideal functionality, picks a random aid in the domain of the PRF and
forwards it to the functionality (also adds it into listh−aid). Then, the simulator prepares
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st = (P,EID,RegIDACC = aid, IP, pkACC) where EID is an encryption of a dummy value (and
is added to listh−ct), simulates a proof π via Fnizk and appends (st, π) to the buffer of the
ledger.
Add entry (RegIDACC,EID, IP, pkACC,P, π) in listacc.

• Command RELEASE: the simulator simulates these commands directly simulating the calls to
Fledger e.g., when the adversary invokes (RELEASE,Π) adds the permuted buffer to the list
listledger and then resets the buffer.

• Command RETRIEVE Sim emulates the retrieve command in Fledger and gives as output
listledger.

• Command REVOKE. Semi-honest IP and up to d AR, honest AH. When the IP and a qualified
set of AR (of which up to d are corrupt) invoke REVOKE, the simulator Sim obtains RegIDACC =
aid and AH from the input/output of the functionality Fid-layer. Now Sim, using RegIDACC,
searches listacc and retrieves the corresponding EID. Similarly, using (AH, IP), searches
listissue and retrieves the corresponding IDcredPUB. Then the simulator Sim equivocates the
decryption of EID to IDcredPUB using SimShare (defined in the simulatability property of the
threshold encryption scheme).
Malicious AH and up to d AR. The simulator receives (RegIDACC,AH) from the ideal func-
tionality, looks up the ciphertext EID corresponding to RegIDACC and runs the threshold
decryption protocol as honest parties would do.

• Command TRACE. Semi-honest IP and up to d AR, honest AH. When the IP and a qualified
set of AR (of which up to d are corrupt) invoke TRACE, the simulator Sim receives AH and a
list listRegIDACC of aid’s from the input/output of the functionality Fid-layer. Now Sim recovers
the ciphertext ERegID. Finally Sim programs the output of FMPC-PRF to be consistent with
listRegIDACC .
Malicious AH and up to d AR. The simulator receives AH and a list of accounts {RegIDACC}
from the ideal functionality. The simulator looks up the ciphertex ERegID corresponding to
AH and emulates FMPC-PRF to output the list {RegIDACC}.

We now argue that the view of the environment in the real world and in the ideal world with
the simulator described above are indistinguishable.

Analysis of the Simulated Game. We first argue that the probability of the simulator out-
putting fail is negligible. In the ISSUE command, since the emulation of the Fissue functionality
is unconditionally secure, the simulator outputs fail only in the following cases: 1. the adver-
sary submits the opening for a ciphertext ERegID generated by the simulator (whose randomness is
never used anywhere else, and for which the simulator only uses less than d shares of the secret
key). An adversary that makes the simulation fail this way can be turned into an attack on the
semantic security of the threshold encryption scheme; 2. the adversarry submits the secret key
for a public key IDcredPUB generated by the simulator (whose secret key is never used by the sim-
ulator). An adversary that makes the simulation fail this way can be turned into an attack onto
the one-wayness of the key generation algorithm (which contradicts the assumption that R is a
hard-relation). In the CreateACC command, since the emulation of the Fnizk functionality is uncon-
ditionally secure, and since the adversary cannot make the ledger accept replayed acccounts, the
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simulator outputs fail only in the following cases: 3. the adversary outputs a message/signature
pair (σ; (IDcredSEC,K,AL); IP) which passes the verification algorithm for the public key of IP and
was not generated by the simulator. An adversary that make the simulation fail this way can be
turned into an attack on the unforgeability of the signature scheme; 4. the adversary inputs to the
Fnizk functionality the secret key for a public key IDcredPUB generated by the simulator (see bullet
2. above); 5. the adversary submits the opening for a ciphertext EID generated by the simulator
(see bullet 1. above); 6. the adversary inputs to the Fnizk functionality an account id RegIDACC,
together with the key K and input x such that RegIDACC = PRF(K, x) and that same RegIDACC also
had been chosen at random by the simulator when simulating an honest party. An adversary that
can make the simulation fail this way can be turned into an attack on the weak robust property of
the PRF. 7. the adversary creates an account with x ≥ MaxACC. Since the Fnizk is emulated with
unconditional security, the probability that the simulator outputs fail in this way is 0.

We now slowly turn the simulated game into the real protocol via a series of hybrids.

Hybrid 0. This is the simulated protocol with the exception that we never output fail. As ar-
gued above, the probability that the simulator outputs fail is negligible, therefore the distribution
generated by the simulated game and this hybrid is computationally close.

Hybrid 1. In the first hybrid we change the way in which the simulator samples the account id’s
aid for for honest AH. Now, instead of picking random values, the simulator picks keys K for each
pair of honest account holders and certificate id (AH, cid) and computes the aid as PRFK(x) where
x counts how many accounts where opened by that account holder for that cid. An adversary
that can distinguish between this hybird and the simulated protocol can be used to break the
pseudorandomness property of PRF.

Hybrid 2. In the second hybrid we change the way in which the simulator generates the cipher-
texts EID for the honest parties during the simulation of CreateACC. Now the simulator encrypts
the value IDcredPUB corresponding to the certificate cid of the account holder AH. An adversary
that can distinguish between this hybrid and the previous one can be used to break the semantic
security of the threshold encryption scheme.

Hybrid 3. In the third hybrid we change the way in which the simulator generates the ciphertexts
ERegID for the honest parties during the simulation of ISSUE. Now the simulator encrypts the value
K corresponding to the certificate cid of the account holder AH, consistently with the value of K
which had been sampled for that cid in hybrid 1. An adversary that can distinguish between this
hybrid and the previous one can be used to break the semantic security of the threshold encryption
scheme.

Hybrid 4. In the fourth hybrid we change the behaviour of the simulator during REVOKE for honest
AH. Now we let the simulator run the threshold decryption protocol honestly. Note that, since we
changed the encryptions ERegID in a previous hybrid to encrypt the right value, the output of the
decryption in this and the previous hybrid is identical. Hence, an adversary that can distinguish
between this and the previous hybrid can be used to break the partial decryption simulatability
(PDS) of the threhsold encryption scheme.
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Hybrid 5. In this hybrid we change the behaviour of the simulator during TRACE for honest AH.
Now we let the simulator run the code of FMPC−PRF honestly instead of programming the output of
the functionality. Note that, since we changed the encryptions EID in a previous hybrid to encrypt
the right value, the output of the decryption in this and the previous hybrid is identical. Since the
simulation of FMPC−PRF is perfect, this hybrid is identically distributed to the previous one.

Hybrid 6. In the final hybrid we change the behaviour of the simulator when simulating the
proofs π for honest account holders AH. Up until now the simulator had simply picked random
strings π, stored them together with the statement x, and then emulated the answers to VERIFY
queries of the adversary for such proofs by outputting 1 on behalf of the Fnizk functionality. Now
instead the simulator runs the code of the functionality Fnizk, that is it only outputs that a proof
is valid if it can come up with a witness for it. Note that, since we changed all elements in the
statement (the encryption, the account id, etc.) in previous hybrids to match the behaviour of a
honest account holder, the simulator knows the necessary witnesses, thus the previously simulated
proofs still verify, and this hybrid is identically distributed to the previous one.

Since hybrid 6 is identical to the real protocol (that is, the real protocol run in the hybrid world
where all the helping functionalities are available), this concludes the proof.

5.3 Credential Issue Protocol

The issue protocol Πissue uses as its main ingredient a two-round blind signature scheme (as defined
in Section 2.3), augmented with a NIZK that proves that the input to the blind-signature protocol
is consistent with the ciphertext and the public-key that the account holder sends to the identity
provider.

Protocol Issue Πissue

The protocol operates in the {Fcrs,Freg,Fnizk,Fsmt}-hybrid model. Let BS =
(Setup,KeyGen,Sign1,Sign2,Unblind,VerifySig) be a blind signature scheme and TE =
(TKeyGen,TEnc,TDec) be a (n, d)-threshold encryption scheme, and R an NP relation cor-
responding to the account holder’s key pair.

• Upon input (SETUP), use FSetup
crs to generate pp←$ Setup(1λ) and publicize it to all parties.

• Upon input (INITIALIZE, (skIP, pkIP)), the identity provider IP checks if the key pair has
a correct distribution with respect to the KeyGen(pp). If yes, stores (skIP, pkIP) and sends
(REGISTER, skIP, pkIP) to Freg.

• Upon an input
(
ISSUE, (ct,m, r, pkAR), aux, (skAH, pkAH), IP

)
to the account holder AH

and an input (ISSUE,AH, pkAR) to an identity provider IP, proceed as follows:

1. AH retrieves pkIP from Freg, computes sign1 = Sign1(pkIP, (skAH,m, aux), pp; r′)
and sends (PROVE, st, w) to Fnizk for statement st = (pkAH, sign1, ct, aux, pp) using
secret witness w = (skAH,m, r

′, r) for the relation R1(st, w) that outputs > if:
(a) (skAH, pkAH) ∈ R.
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(b) sign1 = Sign1(pkIP, (skAH,m, aux), pp; r′).
(c) ct = TEncn,d

PKAR
(m; r)

2. Upon receiving the proof π, AH sends (SEND, IP, (st, π)) to Fsmt.
3. Upon receiving (SENT,AH, (st, π)) from Fsmt, IP inputs (VERIFY, st, π) (for rela-

tion R1) to Fnizk. If they pass, IP computes and sends (through Fsmt) sign2 ←
Sign2(skIP, sign1).
AH runs Unblind(sign2, r

′) and obtains a signature σ on (skAH,m, aux).

5.4 Proof of Security for Issue Protocol

Theorem 5.2. Assume that BS = (Setup,KeyGen,Sign1,Sign2,Unblind,VerifySig) is a blind signa-
ture scheme. Then, Πissue securely implements Fissue in the {Fcrs,Freg,Fnizk,Fsmt}-hybrid model in
the presence of an actively corrupted AH or a passively corrupted IP.

Proof. We consider corruptions of AH and IP separately.
(Actively) Corrupt AH. The simulator for a corrupt AH receives (st, π) from the Fsmt func-
tionality and extracts the witness w from Fnizk (or abort if the proof doesn’t verify). Now the
simulator can input the ISSUE command to the ideal functionality which includes the message and
randomness used to generate ct, the auxiliary inforrmation, and the account public and secret keys.
The simulator therefore receives a signature σ from the ideal functionality. Using the simulator
guaranteed from the simulatability property (Definition A.3), the simulator computes the appropri-
ate sign2 message. Note that we can use this simulator since (due to the soundness of the NIZK)
we know that sign1 was computed according to the protocol and our simulator knows the message
m and the randomness r′ which is used by the adversary to do so.

We claim that this simulation is indistinguishable from the real protocol. To see why, notice
that the output of the IP is identical in the real and ideal world (remember that in the Fnizk hybrid
model the proofs are unconditionally sound). Moreover, the view of the corrupted AH consists
only of the message sign2. Therefore, an adversary that can distinguish between the real and
simulated protocol can directly be turned into an adversary that breaks the simulatability property
(Definition A.3) of the blind signature scheme.
(Passively) Corrupt IP. The case of a corrupted IP is relatively simple since we only consider
passively corrupt IP: Here the simulator gets the input and output of the IP from the ideal func-
tionality (which consists of the account public key, the ciphertext, and the auxiliary information),
and has to produce a view indistinguishable from the protocol which is consistent with this output.
The simulator does so by computing the first message of the blind signature sign1 by running Sign1
with some dummy input. Note that all other parts of the statement st are at this point known to
the simulator, which therefore only needs to simulate the proof π, but this is trivial to do in the
Fnizk-hybrid model by simply appending an arbitrary proof π∗ to the view, and then answering
verify qeuries so that π∗ is a valid proof for the statement st.

We claim that this simulation is indistinguishable from the real protocol. To see why, notice that
the only difference in the view of IP between the real and simulated protocol is in the distribution
of sign1 and therefore an adversary that can distinguish between the real and simulated protocol

23



can directly be turned into an adversary that breaks the blindness property (Definition A.2) of the
blind signature scheme.

Finally, note that at first glance it might appear strange that the proof does not mention at all
the security of the threshold encryption scheme. However, this is because our ideal functionality
just guarantees that the ciphertext is correctly computed according to the encryption algorithm.
Thus, our protocol securely implements the functionality regardless of which security (if any) is
guaranteed by the encryption scheme!

6 Putting Everything Together

We presented all components of the system in a modular way. We now describe how to instantiate
each of the components needed in the ID-layer.

UC-NIZK. We use two different types of non-interactive zero knowledge proofs in our imple-
mentation. One is based on Σ-protocols made non-interactive with the Fiat-Shamir (FS) trans-
form [FS87], and the other is preprocessing-based zkSNARKs [GGPR13, PHGR13] in the crs model.
Unfortunately, known instantiations of both types of NIZKs do not satisfy UC-security.

In order to lift SNARK to be UC-secure we use the transformation of Kosba et al. [KZM+15],
which is recalled in Appendix F.2. At a high level, the transformation works having the prover prove
an augmented relation RL′ that is given in Appendix F.2. A pair of one-time signing/verification
keys are generated for each proof. The prover is additionally required to show that a ciphertext
encrypts the witness of the underlying relation RL, or the PRF was correctly evaluated on the
signature key under a committed key. Then the prover is required to sign the statement together
with the proof of L′. Since our goal is to use SNARKs on small circuits for the purposes of
prover efficiency, we treat the augmented relation RL′ as a composite statement [AGM18, CFQ19]
and use a combination of SNARKs and sigma protocols to prove the augmented relation of the
transformation. We use the CL scheme [CL15] for encryption, and an algebraic PRF [Nie02] that
is a variant of the Naor-Reingold PRF [NR97]. The PRF of [Nie02] is shown to be secure under the
DDH assumption, and we can use a variant of the sigma protocol in Appendix B.5 to prove correct
evaluation of the PRF given public input, public output and committed key. A standard sigma
protocol proof of equality of discrete logarithms can be used to prove equality of CL encrypted and
Pedersen committed messages. The composition theorem from [AGM18] can be invoked to argue
security of the NIZK for the composite statement formed as the AND of the statements of the
lifting transformation.

In Appendix F.1, we show that a simulation-sound NIZK (such as Fiat-Shamir as shown
in [FKMV12]) and a perfectly correct CPA-secure encryption scheme are sufficient to instanti-
ate a simulation-extractable NIZK by transforming the relation to include a ciphertext encrypting
the witness.3

While this lifting technique for transforming a (sound) NIZK to a knowledge-sound NIZK is
folklore, the use of CL encryption scheme [CL15] for this goal is novel up to our knowledge. Our
choice of the CL encryption scheme in the transformation means that we can at the same time
encrypt messages in the same plaintext space as the commitment schemes (thus allowing for efficient
proofs of equality of discrete logarithms), and guarantee efficient decryption by the extractor. This
is as opposed to using e.g., Pailler (where we could have efficient decryption but would need range

3The notions of black-box simulation extractable NIZK and UC-secure NIZK are interchangeable [Gro06, CLOS02].
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proofs to prove equality of exponents in different groups) or ElGamal “in the exponent” (where
the group order could be the same but efficient decryption can only be achieved by encrypting the
witness in short chunks).

Implementation of Πissue. We instantiate the blind signature scheme BS by the Pointcheval-
Sanders (PS) signature scheme [PS16]. We recall the PS scheme in Appendix A.3, and prove that
the PS signature satisfies the definitions of Blindness A.2 (here we prove a stronger variant than
what given in the original paper) and Simulatability A.3 (which we define, as it is needed for
proving UC security of the overall construction). We adopt the threshold encryption TE scheme
(Definition A.5) described in [DHMR07] which follows the share and encrypt paradigm. We use the
CL encryption scheme [CL15] to encrypt. Once again, our choice of CL encryption scheme means
that we can at the same time encrypt messages in the same plaintext space as the commitment
schemes (for efficient equality proofs) and guarantee efficient decryption when needed in the TRACE
command by the ARs.

We now describe the Σ-protocols we use to prove relation R1 in Πissue. We let R be the the
discrete log relation where pk = gsk. Then, we can prove that public keys and secret keys satisfy
R using the standard Σ-protocol dlog from Appendix B.3. The message output by Sign1 in the
PS blind signature is essentially a Pedersen commitment for vectors (see Appendix A.3). So we
prove that Sign1 was executed correctly using the AggregateDL protocol described in Appendix B.6
(note that due to the homomorphic nature of Pedersen commitment we don’t need to prove that
the values in the AL which are leaked to the IP are correct, since both parties can add those to
the commitment “in public”). Finally, we use the protocol in Appendix C.1 for proving that the
ciphertext encrypts the right value, and use standard “AND” composition of Σ-protocols to assert
that the values appearing in different proofs are consistent.

Implementation of Πid−layer. We instantiate the weakly robust PRF scheme (Definition 2.2)
with Dodis-Yampolskiy PRF [DY05]. In this case we use ElGamal as the base encryption scheme for
the “share-and-encrypt” ad-hoc trhreshold encryption scheme TE (Definition A.5). This is because
we are encrypting the public key as a group element, which can also be seen as an encryption of the
secret key for “ElGamal in the exponent”. Note that this allows to both easily prove knowledge of
the secret key, and to make sure that the AR’s will only learn the AH public key when decrypting.
Due to the algebraic nature of the DY PRF, we can efficiently evaluate it inside an MPC protocol
as required to implement FMPC-PRF using techniques described in [ST19, DOK+20].

When creating a new account, we use both SNARKs and Sigma protocols for proving a sin-
gle composite statement consisting of a circuit-part and an algebraic part using the technique
of [AGM18] to obtain SNARK on algebraically committed input. This commitment is used to tie
the witness of the Sigma protocol to the witness used in the SNARK. We describe briefly how we
use a combination of Σ-protocols and SNARKs in order to prove relation R in Πid−layer. We use the
protocol in Appendix C.2 for proving knowledge of a signature. We use SNARKs on committed in-
put to prove that account holder’s attribute list satisfies a certain policy. The protocols for proving
that RegIDACC = PRFK(x) and EID = TEncn,d

PKAR
(IDcredPUB) are described in Appendix C.2. We use

the protocol dlog from Appendix B.3 to prove that public key and secret key satisfy the discrete
log relation. Note that all the Σ-protocol proofs are made non-interactive using Fiat-Shamir as
discussed in Appendix B.2.

Implementation of a transaction layer. In Appendix E, we include a high-level description
of a method for transferring money on the ledger in the accounts-based model.
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A Additional Definitions

A.1 Bilinear groups

Throughout the paper we let G be a bilinear group generator that on input security parameter λ
returns (q,G, G̃,GT , e, g, g̃)←$G(1λ) with the following properties:

• G, G̃,GT are groups of prime order q.

• e : G × G̃ → GT is a non-degenerate efficiently computable bilinear map such that ∀U ∈
G,∀V ∈ G̃,∀a, b ∈ Z : e(Ua, V b) = e(U, V )ab.

• g and g̃ are generators for G and G̃ respectively.

A.2 Commitment Schemes

Definition A.1 (Commitment Schemes). A commitment scheme COM = (Setup,Commit,OpenVrf)
consists of the following algorithms:

• Setup(1λ): given the security parameter 1λ, it outputs a commitment key ck.

• Commitck(m): a probabilistic algorithm that given a message m, outputs a pair (cm, rcm)←$ Commitck(m)
of commitment cm and an opening rcm. We sometimes write Commitck(m; rcm) when we want
to be able to fix the value of the randomness rcm to a specific value.

• OpenVrfck(cm,m, rcm): a deterministic algorithm that outputs a bit indicating acceptance or
rejection.

Hiding property. We say that COM is hiding if for all non-uniform PPT adversary A, there
exists a negligible function negl(λ) such that∣∣∣∣∣∣∣

1
2 − Pr

 ck←$ Setup(1λ); (m0,m1)← A(ck);
b′ = b

b←$ {0, 1}; (cm, rcm)←$ Commitck(mb); b′←$A(cm);


∣∣∣∣∣∣∣ ≤ negl(λ)
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ExpBlind
A (λ)

pp←$ Setup(1λ); (sk, pk)←$ KeyGen(pp);
(m0,m1)← A(sk, pp);
b←$ {0, 1};
(sign1, ω)←$ Sign1(pk,mb);
(sign1, ω)←$ Sign1(pk,m1−b);
sign2, sign2 ← A(sign1, sign1);
let σb, σ1−b denote the (possibly undefined) local outputs of
Unblind(sign2, ω) and Unblind(sign2, ω) respectively.
if VerifySig(pk,m0, σ0) = 0 or VerifySig(pk,m1, σ1) = 0, then(σ0, σ1) = (⊥,⊥);
b∗ ← A(σ0, σ1);
if b = b∗ ∧ |m0| = |m1|, then return 1; else return 0;

Figure 1: Experiment in the definition of blindness property

where the probability is over the randomness of A, Setup, Commit and the choice of bit b. We say
that COM is perfectly hiding if negl(λ) = 0.

Binding property. A commitment scheme COM is binding if for all non-uniform PPT adver-
sary A, there exists a negligible function negl(λ) such that

Pr


ck←$ Setup(1λ);

OpenVrfck(cm,m0, r0) = 1∧
OpenVrfck(cm,m1, r1) = 1 ∧m0 6= m1

(cm,m0,m1, r0, r1)←$A(ck);

 ≤ negl(λ)

where the probability is over the randomness of A and Setup. We say that COM is perfectly
binding if negl(λ) = 0.

A.3 (Blind) Signature Scheme

We define the properties we require from blind signature schemes in this work – Blindness and
Simulatability. Blindness captures the requirement that we run two blind signing protocols on
two messages of the adversary’s choice, and the adversary should not be able to say which input-
signature pair corresponds to which execution. This is stronger than the definition in [PS16];
however, we can show that the PS blind signature scheme can be made to satisfy this stronger,
standard definition. This follows from the rerandomizability of PS signatures.

Definition A.2 (Blindness). An interactive signature scheme BS = (Setup,KeyGen,Sign1, Sign2,
Unblind,VerifySig) is called blind if for any PPT adversary A, Pr[ExpBlind

A (λ) = 1] ≈λ 1/2, where
the experiment ExpBlind

A (λ) is defined in Fig. 1.

Definition A.3 (Simulatability). An interactive signature scheme BS = (Setup,KeyGen, Sign1,
Sign2,Unblind,VerifySig) is called simulatable if there exist a PPT algorithm Sim s.t. for any PPT
adversary A, Pr[ExpSim

A (λ) = 1] ≈λ 1/2, where the experiment ExpSim
A (λ) is defined in Fig. 2.
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ExpSim
A (λ)

pp←$ Setup(1λ); (sk, pk)←$ KeyGen(pp);
b←$ {0, 1};
(m; r)← A(sk, pp);
(sign1, ω)←$ Sign1(pk,m; r);
sign0

2←$ Sign2(sk, sign1);
σ = Unblind(sign0

2, ω);
sign1

2←$ Sim(pk,m, ω, σ);
b∗ ← A(σ,m, signb2);
if b = b∗, then return 1; else return 0;

Figure 2: Experiment in the definition of simulatability property

A.3.1 Instantiation with PS Signature scheme [PS16]

We specify here the multi-message Pointcheval-Sanders (PS) signature scheme and how it realizes
our definition of Blind signature. The PS scheme is a randomizable signature that uses groups with
asymmetric pairing and allows to sign messages that are completely unknown to the signer.

• Setup(1λ): Sample pp := (q,G, G̃,GT , e, g, g̃)←$G(1λ).

• KeyGen(pp): Given (q,G, G̃,GT , e, g, g̃), the key generation works as follows:

1. Choose x, yi←$ Fq for i = 1, . . . , `4.
2. Set X = gx, X̃ = g̃x, Yi = gyi and Ỹi = g̃yi for i = 1, . . . , `.
3. The public key is now (X̃, {Yi}i∈[`], {Ỹi}i∈[`]), while the secret key is X.

• Sign1(pk,m = (m1, . . . ,m`)): The user chooses ω←$ Fq, and computes sign1 = gω
∏`
i=1 Y

mi
i .

Note that ω is random and not used for anything else, and therefore sign1 perfectly hides
the rest of the mi.

• Sign2(sk, sign1): The signer chooses α←$ Fq and sets a′ = gα 6= 1G and b′ = (X · sign1)α.
He outputs sign2 = (a′, b′).

• Unblind(sign2, ω): For sign2 = (a′, b′), the user first computes σ̂ = (a′, b′/a′ω). Then, he
rerandomizes σ̂ by choosing γ←$ Fq and computing σ = σ̂γ = (σ̂γ1 , σ̂

γ
2 ). The user returns σ.

• VerifySig(pk,m = (m1, . . . ,m`), σ): The algorithm parses σ as (σ1, σ2) and outputs 1 if the
following checks pass:

1. σ1 6= 1G.
2. e(σ1, X̃

∏
Ỹ
mj

j ) = e(σ2, g̃).
4Note that the scheme allows to sign vectors over Fq of length `, so ` should be chosen with this in mind.
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PS satisfies Correctness, Unforgeability, Blindness and Simulatability. Correctness. If σ = (σ1 =
h, σ2 = hx+

∑
yjmj ), then

e(σ1, X̃
∏

Ỹ
mj

j ) = e(h, X̃
∏

Ỹ
mj

j ) = e(h, g̃)x+
∑

yjmj

= e(hx+
∑

yjmj , g̃) = e(σ2, g̃).

Unforgeability. As shown in [PS16], the EUF-CMA security of this signature is equivalent to the
single-message version, where its security relies on the following assumption5.

Definition A.4 (PS Assumption 1 [PS16]). Let (q,G, G̃,GT , e, g, g̃) be a bilinear group setting of
type 3. For (X = gx, Y = gy) and (X̃ = g̃x, Ỹ = g̃y), where x and y are random scalars in
Zq, we define the oracle O(m) on input m ∈ Zq that chooses a random h ∈ G and outputs the
pair P = (h, hx+my). Given (g, Y, g̃, X̃, Ỹ ) and unlimited access to this oracle, no adversary can
efficiently generate such a pair, with h 6= 1G, for a new scalar m∗, not asked to O.

Blindness. Let us define a a game H0 which is define as game ExpBlind
A with the only difference

that b = 0. We can also define a symmetrical experiment H1 where the bit b = 1.
To claim indistinguishability between this two games we make the following observations: 1)

sign1 perfectly hides m; 2) the message sign2 coming from a corrupted signer is rerandomized
(thought Unblind algorithm) before the final signature σ is given to adversary A. From the above
two observations follow that the execution in which A participates first in the computation of σ0
and then of σ1 is identical distribute to the one where A partecipate first in the computation of σ1
and then of σ0. Therefore H0 is indistinguishable from H1.

Simulatability. We start by defining the simulator Sim. Sim given m, ω and the signature
σ = (σ1, σ2) chooses β←$ Fq and returns sign2 = (a′, b′) where a′ = σβ1 and b′ = σβ2 · σ

ω·β
1 .

We now argue that the game H0 where sign2 is computed honestly (i.e., as output of Sign2) is
identical distribute to a simulated game H1 where sign2 is computed by Sim. This indistinguisha-
bility follows from the fact that distribution of the message sign2 output by Sim and the distribution
of the output of Sign2 are identical. We conclude the proof observing that H0 corresponds to the
experiment ExpSim

A where the bit b = 0 and H1 corresponds to ExpSim
A with b = 1.

A.4 Threshold Encryption Scheme

Definition A.5. A (n, d)-threshold encryption scheme TE = (TKeyGen,TEnc, ShareDec,TCombine)
is (n, d)-statically semantic secure (SSS) if for all PPT adversaries A, Pr[ExpSSS

A (λ, n, d) = 1] ≈λ
1/2, where the experiment ExpSSS

A (λ, n, d) is defined in Fig. 3.

Definition A.6. We say that a (n, d)-threshold encryption scheme TE = (TKeyGen,TEnc, ShareDec,TCombine)
is (n, d)-partial decryption simulatable (PDS) if there exists an efficient algorithm SimPart such that
for all PPT adversaries A, Pr[ExpPDS

A (λ, n, d) = 1] ≈λ 1/2, where the experiment ExpPDS
A (λ, n, d) is

described in Fig. 4.

5The assumption is related to the LRSW assumption and is proved in [PS16] to hold in the bilinear generic group
model.
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ExpSSS
A (λ, n, d)

[n] ⊇ C ← A(λ, n, d);
(ski, pki)←$ TKeyGen(1λ) for i ∈ [n];
([n] ⊇ R,m0,m1)← A({pki}i∈[n], {ski}i∈C);
b←$ {0, 1}; ct←$ TEncn,d

~pkR

(mb);

b′ ← A(ct);

if
(
b′ = b ∧ |m0| = |m1| ∧ |R ∩ C| ≤ d

)
;

then return 1; else return 0;

Figure 3: Static Semantic Security Experiment for Threshold Encryption

ExpPDS
A (λ, n, d)

[n] ⊇ C ← A(λ, n, d);
(ski, pki)←$ TKeyGen(1λ) for i ∈ [n];
([n] ⊇ R,m0,m1)← A({pki}i∈[n], {ski}i∈C);
b←$ {0, 1}; ct0←$ TEncn,d

~pkR

(m0); ct1←$ TEncn,d
~pkR

(m1);

if b = 0 then µi = ShareDecn,d
~pkR,ski

(ct0) for i ∈ R\C;

else if b = 1 then
(
µi = ShareDecn,d

~pkR,ski
(ct1) for i ∈ R ∩ C

∧ µi = SimPart(n, d, ~pkR, c0, {µj}j∈R∩C ,m0) for i ∈ R\C
)

;

b′ ← A(ctb, {µj}j∈R\C);

if
(
b′ = b ∧ |m0| = |m1| ∧ |R ∩ C| ≤ d

)
;

then return 1; else return 0;

Figure 4: Partial Decryption Simulatability Experiment for Threshold Encryption

A.4.1 Construction based on Share and Encrypt paradigm.

Below, we recall the construction of [DHMR07]. Let PKE = (KeyGen,Enc,Dec) be a public key
encryption scheme and SS = (Share,Reconstruct) be a secret sharing scheme.

• TKeyGen(1λ): return KeyGen(1λ).

• TEncn,d
~pkR

(m): return ct = (ct1, . . . , ctn), where cti = Encpki
(mi) for i ∈ R and (m1, . . . ,mn) =

Sharen,d(m).

• ShareDecn,d
~pkR,ski

(ct): let ct = (ct1, . . . , ctn). Return decryption share µi = Decski
(cti).

• TCombinen,d
~pkR

(ct, {µi}i∈I): Return m = Reconstructn,d({µi}i∈I).

The following theorem is proved in [RSY18] ( see Appendix D, Thm. 11 of [RSY18] ).

34



ExpSS−Sim
A (λ, n, d)

(C, s0, s1)← A(n, d);
if s0 6∈ S ∨ s1 6∈ S ∨ |s0| 6= |s1| then return 0;
([s0]1, . . . , [s0]n)← Sharen,d(s0);
([s1]1, . . . , [s1]n)← Sharen,d(s1);
{[s′0]i}i∈[n]\C ← SimShare(n, d, {[s1]i}i∈C , s0);
b← {0, 1}; if b = 0 then x = {[s0]i}i∈[n];
else x = {[s1]i}i∈C ∪ {[s′0]i}i∈[n]\C ;
b′ ← A(x); if b′ = b ∧ |C| ≤ d then return 1;
else return 0;

Figure 5: Share Simulatability experiment for Secret Sharing

Lemma A.7. The threshold encryption scheme TE described above is (n, d)-statically secure, as
long as SS is a secure share simulatable (n, d)-secret sharing scheme, and PKE is a CPA-secure
public key encryption scheme.

A.5 Secret Sharing Scheme

Informally, a (n, d)-secret sharing of a secret value s is an encoding of s into n shares, such that
any d + 1 shares together can reconstruct s, whereas fewer shares reveal no information about s.

Definition A.8. A (n, d)-secret sharing scheme SS = (Share,Reconstruct) over message space S
consists of the following algorithms:

• Sharen,d(s; r) → ([s]1, . . . , [s]n) is a randomized algorithm that on any input s ∈ S and ran-
domness r, outputs n shares ([s]1, . . . , [s]n).

• Reconstructn,d([s]i1 , . . . , [s]id+1) → s′ is a deterministic algorithm that takes d + 1 shares as
input and returns the reconstructed message s′ ∈ S.

Informally, correctness requires that s′ = s, and privacy requires that given d or fewer shares of
either s0 or s1, no efficient adversary can guess which message was shared.

Share Simulatability. We additionally use another property for a secret sharing as defined in
[RSY18] which requires that given any set of d or fewer shares of s0 and given s1, there exists a PPT
algorithm SimShare that generates the rest of the shares in such a way that is indistinguishable
from a fresh sharing of s1.

Definition A.9 (Share Simulatability). We say that a (n, d)-secret sharing scheme SS = (Share,Reconstruct)
over message space S is share simulatable if there exists an efficient simulation algorithm SimShare
such that for all PPT adversaries A, Pr[ExpSS−Sim

A (λ, n, d) = 1] ≈λ 1/2, where the experiment
ExpSS−Sim

A (λ, n, d) is described in Fig. 5.

A.6 Non-Interactive Zero-Knowledge Proofs

Definition A.10 (NIZK). A non-interactive zero-knowledge proof system (NIZK) for an NP lan-
guage L with relation RL consists of the following four algorithms:
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• CRSGen(1λ,L). On input 1λ and the description of the language L, generates a common
reference string crs, a trapdoor τ and an extraction key ek.

• Prove(crs, x,w). On input of a crs, a statement x with witness w, outputs a proof π.

• Verify(crs, x, π). Given a crs, a statement x and a proof π, outputs a bit indicating accept or
reject.

• SimProve(crs, τ, x). On input a crs, a trapdoor τ and a statement x, outputs a simulated proof
π without needing a witness for x.

Completeness. A NIZK is (perfectly) complete, if an honest prover with a valid witness can
always convince an honest verifier. More formally, for any (x,w) ∈ RL, we have:

Pr
[

(crs, τ, ek)← CRSGen(1λ,L), π ← Prove(crs, x,w) :
Verify(crs, x, π) = 1

]
= 1

Soundness. A NIZK scheme for the language L is called (computationally) sound, if for all PPT
adversaries A, we have:

Pr
[

(crs, τ, ek)← CRSGen(1λ,L), (x, π)← A(crs) :
Verify(crs, x, π) = 1 ∧ x 6∈ L

]
≈λ 0

Zero-knowledge. A NIZK scheme for the language L is called (computationally) zero-knowledge
if for all PPT adversary A,

Pr
[

(crs, τ, ek)← CRSGen(1λ,L) : AProve(crs,·,·)(crs) = 1
]

≈λ Pr
[

(crs, τ, ek)← CRSGen(1λ,L) : ASimProve(crs,τ,·)(crs) = 1
]

Simulation Soundness. A NIZK proof for the language L is called simulation sound if for all
PPT adversaries A,

Pr
[

(crs, τ, ek)← CRSGen(1λ,L); (x, π)← ASimProve(crs,τ,·)(crs) :
(x, π) /∈ Q ∧ x /∈ L ∧ Verify(crs, x, π) = 1

]
≈λ 0

where Q is the list of simulation queries and responses (xi, πi).

Simulation extractability. This is a strong notion which requires that for any adversary that
outputs a proof after seeing many simulated proofs (for either true or false statements), there exists
an efficient extractor that can extract the witness from the proof. More formally, we say that a
NIZK scheme for the language L is simulation extractable if there exists an efficient algorithm Ext
(called extractor), such that for any PPT adversary A, we have:

Pr
[

(crs, τ, ek)← CRSGen(1λ,L); (x, π)← ASimProve(crs,τ,·)(crs, ek);
w← Ext(crs, ek, x, π) : (x, π) 6∈ Q ∧ (x,w) 6∈ RL ∧ Verify(crs, x, π) = 1

]
≈λ 0
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where Q contains the list of statement-proof pairs that A asks the oracle SimProve(crs, τ, ·).
Note that this definition considers a strong version of simulation extractability, where the adversary
should not even be able to generate a new proof (different from oracle’s response) for a statement
that has been queried before. We can relax this definition by considering a weaker version where
the adversary may be able to generate a new proof for a queried statements. However, for the
universally composable NIZKs that we use for realizing Fnizk (defined in section 4), we require the
stronger definition. Thus, when we discuss about the notion of simulation extractability in section
F, we mean the stronger version defined above.

B Implementation Details

This section contains a detailed description of the protocols to implement for the ID layer.

B.1 Auxiliary Σ-protocols.

Let (q,G, G̃,GT , e, g, g̃) be a bilinear group as defined in A.1. In the Σ protocols described in the
following we assume that all group elements and commitment keys and public keys for signature and
encryption schemes come from a group of order q, where in some cases it does not matter if we use G,
G̃ or GT , but there are also cases where a particular group has to be used. The protocol applying a
Σ-protocol will specify which group is used. We denote by PK{(x, y, · · · ) : statements about x, y},
a zero knowledge proof of knowledge of x, y, · · · that satisfies statements. Here, x, y, · · · are private
(witness), and other values in statements are public. The sigma protocols we describe below are
standard protocols that have appeared in other works [Sch90, CS97] and follow from the pre-image
protocol of Maurer [Mau09] for proving knowledge of a pre-image of a group homomorphism that
unifies and generalizes a large class of protocols in literature.

B.2 Using Fiat-Shamir for non-interactive Proof

All Σ protocols below are described as interactive 2-party protocols. When using them for non-
interactive proofs, we use the Fiat-Shamir paradigm with hash function to replace a random oracle.
More precisely, this will be done as follows: Suppose the messages in the protocol are (a, c, z),
where c is the random challenge from the verifier, and where x is the public input. Then the prover
executes the protocol on his own as follows: he computes a first, and then HRO(x, a). He sets c to be
the first blog2 qc bits of the hash value. Finally he computes the last message z. The non-interactive
proof is (c, z).

To verify a proof we use the fact that all our Σ protocols have a verification equation that
allows you to compute a from x, c and z. So given x and e, z, the verifier computes a, HRO(x, a)
and compares c to the first blog2 qc bits of the hash value.

If a proof consists of several, say T Σ protocols, we do them all in parallel as follows: the prover
computes all T first messages and concatenates them to get M1. Then he computes HRO(X,M1)
where X is the concatenation of all public inputs to the protocols. He sets c to be the first blog2 qc
bits of the hash value. Finally he computes the T last messages and concatenates them all to get
M2. The non-interactive proof is (c,M2).

To verify X and (c,M2), where X contains all the public inputs, the verifier splits M2 into
T individual last messages. As above, he uses the verification equations to compute the T first
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messages. He concatenates them to get M1, computes HRO(X,M1) and sets c to the first blog2 qc
bits of the hash value.

B.3 Sigma protocol for proving knowledge of discrete log

Protocol dlog : PK{(x) : y = gx}

• The prover computes and sends a = gα for randomly chosen α ∈ Z∗q .

• The verifier sends a random challenge c at random from Zq.

• The prover sends z = α+ cx mod q

• The verifier checks if a = g−zyc. If yes, the verifier accepts.

We describe here for completeness the non-interactive variant using Fiat-Shamir but remember
that this approach will be used in parallel for several protocols for applications that require more
than one Sigma protocol.

Protocol NI dlog : PK{(x) : y = gx}

• The prover computes a = gα for randomly chosen α ∈ Z∗q , c = H(y||a), z = α + cx and
sends (c, z) to the verifier.

• The verifier computes if a = y−cgz and checks that c = H(y||a). If yes, the verifier
accepts.

B.4 Sigma protocol for proving equality of committed value and Elgamal en-
crypted value

The prover has produced an ElGamal encryption (e1, e2) = (gR1 , gx1hR1 ) under public key g1, h1 that
is an encryption of gx1 with randomness R. He has also committed to x: C = gxhr and wants to
show that the same x appears in the encryption and in the commitment.

Protocol com−enc−eq : PK{(x, r,R) : e1 = gR1 ∧ e2 = gx1h
R
1 ∧ C = gxhr}

1. The prover computes a1 = gα1 , a2 = gβ1h
α
1 , a3 = gβhγ for randomly chosen α, β, γ ∈ Z∗q

and sends (a1, a2, a3) to the verifier.

2. The verifier sends a random challenge c at random from Zq.

3. The prover computes z1 = α + cR mod q, z2 = β + cx mod q, z3 = γ + cr mod q and
sends (z1, z2, z3) to the verifier.

4. The verifier checks if a1 = g−z1
1 ec1, a2 = g−z2

1 h−z1
1 ec2, a3 = g−z2h−z3Cc. If yes, the verifier

accepts.
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B.5 Proof of Equality of Aggregated Discrete Logs & Commitments

We now describe a protocol for proving equality of the discrete logarithms (a1, . . . , an) in y =∏n
i=1G

ai
i and individual algebraic commitments to them. Using standard notation, we denote the

protocol by PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn}.

Let G, H be groups of prime order q. Given y =
∏
Gai
i and Ci = gaihri , where Gi are generators

of the group G, g is a generator of H and h is a random element in H. The prover does not know
the discrete logarithm of h with respect to g, and the discrete logarithms of Gis with respect to
each other. We want to prove equality of the discrete logarithms in y and the respective values
committed to in Cis.

Protocol comEq : PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n
i=1G

ai
i ∧C1 = ga1hr1∧· · ·∧Cn = ganhrn}

Given y =
∏n
i=1G

ai
i and Ci = gaihri

1. The prover computes the following values: u =
∏n
i=1G

αi
i and vi = gαihRi for randomly

chosen αi, Ri ∈ Zq and sends u, vi to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < q,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (si, ti)

si = αi − cai (mod q), ti = Ri − cri (mod q)

4. Verification: Check if u = yc
∏
Gsi
i and vi = (Ci)cgsihti . The verifier accepts if checks

succeed for all i.

B.6 Proof of Aggregated Discrete Logs

This is a specialization of the previous protocol and proves knowledge of discrete logarithms
(a1, . . . , an) in y =

∏n
i=1G

ai
i . Protocol is denoted by PK{(a1, . . . , an) : y =

∏n
i=1G

ai
i }. The protocol

is derived by simply ignoring in the previous protocol everything related to the commitments Ci.

Protocol AggregateDL : PK{(a1, . . . , an) : y =
∏n
i=1G

ai
i }

Given y =
∏n
i=1G

ai
i

1. The prover computes the following values: u =
∏n
i=1G

αi
i for randomly chosen αi ∈ Zq

and sends u to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < q,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (si)

si = αi − cai (mod q)
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4. Verification: Check if u = yc
∏
Gsi
i . The verifier accepts if checks succeed for all i.

B.7 Proof of Equality for Commitments in Different Groups

This is essentially a specialization of the protocol from section B.5. Assume we have discrete
logarithms (a1, a2) in y = Ga1

1 G
a2
2 which can be seen as a commitment to a1 with randomness

a2, as well as a commitment to a1 in a different group. Using standard notation, we denote the
protocol by PK{(a1, a2, r) : y = Ga1

1 G
a2
2 ∧ C = ga1hr}.

Let G, H be groups of prime order q. Given y = Ga1
1 G

a2
2 and C = ga1hr, where Gi are generators

of the group G, g is a generator of H and h is a random element in H. The prover does not know
the discrete logarithm of h with respect to g, and the discrete logarithms of Gis with respect to
each other. We want to prove that y and C are commitments to the same value.

Protocol PK{(a1, a2, r) : y = Ga1
1 G

a2
2 ∧ C = ga1hr}

Given y = Ga1
1 G

a2
2 and C = ga1hr

1. The prover computes the following values: u = Gα1
1 Gα2

2 and v = gα1hR for randomly
chosen αi, R ∈ Zq and sends u, v to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < q,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (s1, s2, t), computed as
follows:

s1 = α1 − ca1 (mod q), s2 = α2 − ca2 (mod q), t = R− cr (mod q)

4. Verification: Check if u = yc
∏
Gs1

1 G
s2
2 and v = Ccgs1ht. The verifier accepts if all checks

succeed.

B.8 Proof of multiplicative relation on committed values

This protocol proves, for committed values a1, a2, a3 in commitments C1, C2, C3, that a1a2 =
a3 mod q. Protocol is denoted by PK{(a1, a2, a3, r1, r2, r3) : Ci = gaihri for i = 1..3 ∧ a1a2 =
a3 mod q}.

Protocol comMult : PK{(a1, a2, a3, r1, r2, r3) : Ci = gaihri for i = 1..3 ∧ a1a2 = a3 mod q}

Given Ci = gaihri for i = 1, 2, 3, we will prove the relation a1a2 = a3 mod q by proving that
C3 = Ca2

1 hr in parallel with proving that Ci = gaihri for i = 1, 2, 3. The condition is satisfied
if we set r = r3 − r1a2 mod q, so the prover can do this.
If the proof succeeds, it follows that C3 can be opened to both a3 and a1a2, so we get what
we want unless the binding condition is broken.

40



1. The prover computes the following values: vi = gαihRi for i = 1, 2, 3, v = Cα2
1 hR for

randomly chosen αi, Ri, α,R ∈ Zq and sends {vi}, v to the verifier.
Note that v will later be used in a verification equation to test C3 = Ca2

1 hr. This is why
we need to use α2 in the exponent of C1 in the expression for v.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < q,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (si, ti) for i = 1, 2, 3 and t:

si = αi − cai (mod q), ti = Ri − cri (mod q), t = R− cr (mod q)

4. Verification: Check if vi = (Ci)cgsihti for i = 1, 2, 3 and v = Cc3C
s2
1 h

t. The verifier
accepts if all checks succeed.

C Protocols for ID layer

C.1 Protocol for Πissue

Protocol For proving that ct = TEncn,d
PKAR

(m; r)

Recall that we follow the share-and-encrypt paradigm for the threshold encryption by using
Shamir Secret sharing and the CL encryption scheme. This means that the encryption of m is
supposed to be consisting of n ciphertexts CL.Enc(pkARi

, sh(m)i) for i = 1, . . . , n where sh(m)i
is the i’th share of m.
Let M ′ be the commitment of m on group G̃. The prover AH proves to the verifier IP that M ′
contains the same value m as does ct:

1. AH makes a commitment B0 to m under the default commitment key ck (which is in the
CRS), so B0 ∈ H. He uses the protocol from Section B.7 to show that M ′ and B0 both
contain m.

2. AH establishes a commitment Mi to each share sh(m)i of m as follows: when AH secret-
shares m, she uses a polynomial g to get shares sh(m)i. Let the coefficients of g be
b0 = m, b1, ..., bd. Note that we have sh(m)i = g(i) =

∑d
j=0 bj ·ij . Now, the AH makes and

sends commitmentsBj to bj , where we notice thatB0 has already been constructed above.
Using the homomorphic property of commitments one can compute Ki =

∏d
j=0B

ij
j which

is a commitment to sh(m)i. Since AH, the prover, has created the Bi’s, he also knows
how to open the Ki’s.

3. AH finally runs a protocol similar to com−enc−eq from section B.4 but for the CL
encryption scheme to show the IP that each CL.Enc(pkARi

, sh(m)i) contains the same
value as Ki for i = 1...n.
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C.2 Protocol for Πid−layer

Proving that you know a signature. The user has a signature σ = (a, b) on a message
(m0, ...,m`) and wants to convince a verifier of this fact. This is done as follows:

Protocol For proving knowledge of a signature

1. Choose r, r′ ← Fq, and compute a blinded version of the signature as follows:

â = ar, b̂ = (b · ar′)r

and sends the blinded signature (â, b̂) to the verifier.

2. Both parties compute locally the following values:

v1 = e(â, g̃), v2 = e(b̂, g̃), v3 = e(â, X̃), ui = e(â, Ỹi)

3. The verifier checks that â 6= 1G. If not, the verifier rejects. The user gives a ZK proof of
knowledge:

PK((m0, ...,m`, r
′) : v2 = v3 · vr

′
1
∏̀
i=1

umi
i )

4. The verifier accepts if the proof is valid.

Adaptation for Implementing Πid−layer. In the ID layer, the AH will act as user/prover
and anyone else can act as verifier. However, the above protocol needs to be further
adapted so we can show specific properties of attributes: recall that we set (m0, ...,m`) =
(r, IDcredSEC,K, a1, ..., av), padding the right-hand side with 0’s if needed to get ` entries. The
AH can supply also commitments to all fields and attributes: i = 1...` : Ci = Commitck(mi, ri).
So we execute the protocol exactly as specified above, but the proof of knowledge in step 3 is
extended as follows:

PK((m0, ...,m`, r
′) : v2 = v3 · vr

′
1
∏̀
i=1

umi
i , Ci = Commitck(mi, ri) for i = 1...`).

For this proof of knowledge, we use the comEq protocol from section B.5-
The AH can now use the Ci to prove desired properties of the fields and attributes. This is
fleshed out later in this appendix.

Protocol For proving that RegIDACC = PRFK(x) for some x ≤ MaxACC

Recall that PRFK(x) = ḡ1/(x+K). This value can be seen as Commitck(1/(K + x)) where the
randomness is 0. Let C1 = Commitck(K) and C3 = Commitck(a1) = Commitck(MaxACC).

1. AH makes commitments Fx = Commitck(x) and F1 = g which can be written as
Commitck(1) where the randomness is 0. Note that C1Fx = Commitck(K + x).
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2. AH runs Protocol comMult from Section B.8 with input commitments C1Fx,RegIDACC
and F1. This shows that RegIDACC = PRFK(x).

3. AH finally uses a zkSNARK on committed inputs based on Fx and C3 to show that
x ≤ MaxACC.

Protocol For proving that EID = TEncn,d
PKAR

(IDcredPUB; r′)

Let C0 be the commitment to IDcredSEC. Recall that we follow share-and-encrypt paradigm for
the threshold encryption (see A.4.1) which means in order to encrypt IDcredPUB correctly, AH
first secret shares IDcredSEC using a polynomial f to get shares sh(IDcredSEC)i and then computes
the i’th component of EID as Elgamal encryption EncpkARi

(ḡsh(IDcredSEC)i ; r′i). Let the coefficients
of f be a0 = IDcredSEC, a1, ..., ad. Note that we have sh(IDcredSEC)i = f(i) =

∑d
j=0 aj · ij. Now,

1. AH makes commitments Aj to aj , where we set A0 = C0. Using the homomorphic
property of commitments one can compute Si =

∏d
j=0A

ij
j which is a commitment to

sh(IDcredSEC)i. Since AH, the prover, has created the Ai’s, he also knows how to open
the Si’s.

2. For i = 1...n, the AH runs the protocol com−enc−eq from section B.4 using the two
components in EpkARi

(ḡsh(IDcredSEC)i ; r′i) as e1, e2 and Si as C.

D CL Framework

In [CL15], Castagnos and Laguillaumie introduced the so-called CL framework, which allows to
construct cyclic groups G where the decisional Diffie-Hellman (DDH) assumption is believed to
hold and furthermore, there exists a subgroup H of G such that the discrete logarithm problem in
H is easy. As the main application of this framework, they construct the first practical linearly
homomorphic encryption scheme where the plaintext space is Zq with prime order q, where the
size of q can be made independent of the security parameter. We make use of the CL encryption
schemes in some of our constructions. In particular, the CL framework allows to encrypt values “in
the exponent”, so that proving statements about the message is easy using Σ-protocols, while at the
same time allowing for efficient decryption. (As opposed to standard ElGamal encryption, where
it is necessary to limit the size of the message in the exponent to allow for decryption). This will
be useful both to instantiate our threshold encryption scheme (used to allow anonymity revokers
to “trace” a suspicious account holders), and in our construction of extractable NIZK proofs in the
crs model (see F).

In the following, we recall the definition of CL framework from [CCL+20].

D.1 Definition

Let λ be a positive integer and q be a µ-bit prime for µ ≥ λ. The framework GenCL consists of two
algorithms GenCL = (Gen, Solve) defined as follows:
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• Gen(1λ, q)→ pp := (Ĝ,G,H,Gq, s̃, g, h, gq): the algorithm takes the security parameter λ and
a prime q as inputs and outputs a tuple pp := (Ĝ,G,H,Gq, s̃, g, h, gq), where

– (Ĝ, ·) is a finite abelian group with order n̂ := q · ŝ where the bitsize of ŝ is a function of
λ and gcd(q, ŝ) = 1. It is required that valid encodings of elements in Ĝ can efficiently
be recognized.

– (G, ·) is a cyclic subgroup of Ĝ of order n := q · s where s divides ŝ.
– (H, ·) is the unique cyclic subgroup of Ĝ of order q, generated by h.
– Gq := {xq|x ∈ G} is the subgroup of G of order s. Since H ⊂ G, it holds that G ' Gq×H.
– s̃ is an upper bound of ŝ.
– g, h and gq are respectively the generators of G, H and Gq, where g := h · gq.

• Solve(q, pp, X) → x′: this is a DPT algorithm that solves the discrete logarithm problem in
H:

Pr
[
x = x′ : pp←$ Gen(1λ, q), x←$ Z/qZ, X ← hx

x′ ← Solve (q, pp, X)] = 1

D.2 Hard Subgroup Membership Problem

We now recall the hard subgroup membership problem within a group with an easy DL subgroup
(HSM-CL) from [CLT18]. The HSM-CL assumption states that it is hard to distinguish the elements
of Gq in G.

Definition D.1 (HSM-CL assumption). Let λ be a positive integer and GenCL = (Gen, Solve) be a
generator that generates a group with an easy DL subgroup as defined above. Let D (resp. Dq) be
a distribution over the integers such that the distance between the distribution {gx, x←$D} (resp.
{gxq , x←$Dq}) and uniform distribution in G (resp. in Gq) is less than δ(λ) = negl(λ). The
advantage of an adversary A for the HSM-CL problem is now defined as

Advhsm−cl
A (λ) =|Pr[b = b′ : pp←$ Gen(1λ, q), |q| ≥ λ, x←$D, x′←$Dq,

b←$ {0, 1}, X0 ← gx, X1 ← gx
′
q , b

′ ← A (q, pp, Xb,Solve(·))]− 1/2|

We say that the HSM-CL problem is ε-hard for GenCL if for all PPT adversary A, Advhsm−cl
A (λ) ≤

ε(λ). And we say HSM-CL holds for GenCL if it is ε-hard for GenCL and ε(λ) = negl(λ).

D.3 PKE scheme under HSM-CL assumption

We recall the scheme described in [CLT18] with the following setting: the plaintext space is Zq for
µ-bit prime q and µ ≥ λ; and the secret key x and randomness r are drawn from distribution Dq.
As shown in [CLT18] (lemma 4), to instantiate Dq in practice, one can use the uniform distribution
on {0, . . . , S} for S := 2λ−2 · s̃. The scheme is depicted in Fig.

Theorem D.2. [CLT18] The scheme described in Fig. 6 is semantically secure under chosen
plaintext attacks (IND-CPA) under the HSM-CL assumption.
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CL.Setup(1λ, 1µ)

1. sample a µ-bit prime q
2. pp←$ Gen(1λ, q)
3. return pp

CL.KeyGen(pp)

1. sample α←$Dq and y ← gαq

2. set pk := y and sk := α

3. return (pk, sk)

CL.Enc(pk,m)

1. sample r←$Dq
2. return (grq , hmyr)

CL.Dec(sk, (c1, c2))

1. compute M ← c2/c
α
1

2. return Solve(q, pp,M)

Figure 6: Encryption scheme from HSM-CL [CLT18]
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E Transaction Layer

Our paper shows how account holders in our design can create accounts after registering with
identity providers. As we have seen, an account includes an account-specific public key where the
account holder has the private key. Since our protocol is completely generic, the “key” can in fact
be a vector of keys which includes a key for encryption, one for signatures, etc. and therefore
accounts can be used for transactions in many different ways.

In this section, we include an informal presentation of one way in which accounts can be used
for transferring money on the blockchain, assuming each account has a public signing key and a
public encryption key. We stress that this is just as example of one of many possible ways of doing
this and, as we prove our ID layer secure in the UC framewok one can use our ID layer with any
other transaction layer, or even other applications not involving payments.

The system we sketch supports plaintext transactions and encrypted transactions. All transac-
tions must be signed by the account holder from which the transaction originates. When a trans-
action is published, the ledger will check the signature and allow the transaction to go through
if the signature is valid, and possibly if other constraints (described in detail below) are satisfied.
Note that payments are linked to the sending and the receiving account and if several payments
are made between the same accounts this will be visible on chain. We allow this to have a trade-off
between efficiency and privacy: one can make several payments from an account and only suffer
the cost of opening it once. On the other hand, one can also choose to use each account once for
complete privacy.

Let ACC be an account with encryption key ekACC. An account will hold a public amount p and
a secret amount s. The secret amount is represented as a set S = {Si}|S|i=1, where Si = EncekACC(si)
and s =

∑
i si.

E.1 Plaintext Transactions

Plaintext transactions happens by a matched reduction and increment of the public amounts on
the sending and receiving accounts.

E.2 Encrypted Transactions

Let S1 = {Si}ni=1 be the representation of the secret amount for account ACC1 owned by AH1,
where Si = EncekACC1

(si). To do an encrypted transaction of amount a from ACC1 to some account
ACC2, AH1 proceeds as follows:

1. Compute s′ =
∑n
i=1 si − a.

2. Create S′ = EncekACC1
(s′).

3. Create A = EncekACC2
(a).

4. Compute a NIZK proof π that (S′, A, S1, . . . , Sn) contains numbers (s′, a, s1, . . . , sn) such that

a ≥ 0, (1)
s′ ≥ 0, (2)

s′ =
n∑
i=1

si − a. (3)
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The transaction contains (S′, A, π). When the transaction is executed, the ledger checks the proof
and if it is valid, then let S1 = {S′} and S2 = S2∪{A}, where S2 is the representation of the secret
amount for ACC2.

E.3 Compressing an account

From the above, it follows that after receiving some number of transactions, the receiving account
will contain several encrypted amounts, and this may become impractical to handle at some point.
Also, note that an account owner does not actually know the amount on his account until he has
decrypted the transactions that come into his account. To solve this, the account owner of ACC2
can execute a compression transaction, which works as follows:

1. Let S = {Si} be the representation of existing secret amount for ACC2. Use decryption
key dkACC2 to decrypt all Si and let s be the sum of the decrypted amounts. Compute
e = EncekACC2

(s) and let S ′ = {e}. Compute a NIZK proof π showing that e contains the sum
of the amounts in the Si’s.

2. publish a compression transaction that contains the identity of the account and S ′, π.

When a compression transaction appears, the ledger checks the proof π and if it is valid, then
update the account of ACC2 to contain S ′ instead of S.

F Universally Composable Non-interactive Zero-Knowledge

F.1 Simulation Extractable NIZK

In this section we briefly recall how to construct a simulation extractable NIZK Π′ = (CRSGen′,Prove′,Verify′)
from a simulation-sound NIZK Π = (CRSGen,Prove,Verify) and a CPA-secure encryption scheme
ES = (KeyGen,Enc,Dec).

In Figure 7 is described the construction of the simulation-sound NIZK Π′ = (CRSGen′,Prove′,
Verify′) for the NP-language L. Π = (CRSGen,Prove,Verify) is associated to the NP-language L′
and the relation R′ = {(x, enc, pk) : (sk,w) s.t. w← Dec(enc, pk, sk) ∧ (x,w) ∈ R}.

Theorem F.1. Assume that ES = (KeyGen,Enc,Dec) is a CPA-secure encryption scheme and
Π = (CRSGen,Prove,Verify) is a simulation-sound NIZK for the NP-language L′. Then Π′ =
(CRSGen′,Prove′,Verify′) for the NP-language L, described in Figure 7, is simulation extractable.

Proof. (Sketch.) Let Sim the corresponding simulator associated to Π. Let us now describe the
simulator-extractor Sim′ of Π′.

CRS generation: Sim′ runs Sim to obtain the simulated CRS crs, τ, ek and she computes pk, sk←
KeyGen(1λ). She sets the crs′ = (crs, pk).

Simulation: When A asks to see a proof for the statement x, Sim′ computes an encryption of a
dummy value enc and runs Sim on input (x, enc, τ, ek) to obtain π.

Extraction: On input π′ = (π, enc) received by A the simulator Sim runs the decryption
algorithm of ES and outputs w for theorem x.

We first observe that the zero-knowledge property of Π′ follows from the zero-knowledge prop-
erty of Π and the CPA-security of ES.

47



• CRSGen′(1λ,L):

– Run (crs, τ, ek)← CRSGen(1λ,L′)
– Run pk, sk← KeyGen(1λ)
– Output crs′ = (crs, pk)

• Prove′(crs′, x,w):

– Compute enc← Enc(sk,w)
– Compute π ← Prove(crs′, (x, enc),w)
– Output π

• Verify′(crs′, x, π) outputs 1 if and only if Verify(crs, x, π) = 1

Figure 7: Simulation-extractable NIZK.

The proof proceeds by contradiction. Let us assume that A is able to produce valid proofs
but the extraction procedure described above fails with non-negligible probability. If this is the
case, then A is able to produce valid proofs (different from the one received from the oracle) for
the statements of the form (x, enc), where enc is not an encryption of a valid w for x ∈ L (by
assumption) and therefore we can show a reduction to the simulation-sound property of Π.

F.2 SNARK-Lifting transformations via C∅C∅ framework [KZM+15]

To transform a SNARK into a strong simulation extractable SNARK, Kosba et al. [KZM+15] makes
use of four primitives: a pseudo-random function, a perfectly-binding commitment scheme, a one-
time signature (OTS) and a public key encryption (PKE) scheme. Let PRFK be a pseudorandom
function with key K such that without the knowledge of K, PRFK(·) behaves like a random function,
whereas given K, computing PRFK(·) is easy. Let COM = (Commit,OpenVrf) be a commitment
scheme. Let Ω = (KeyGen,Enc,Dec) be a PKE scheme and ΣOT = (KeyGen, Sign,VerifySig) be a
OTS scheme. Given a language L with NP relation RL, let L′ be the language with relation RL′
defined as follows: {(x, c, µ, pkOT, pke, ρ), (w, r1, r0,K)} ∈ RL′ iff:

c = Encpke(w; r1) ∧
(
(x,w) ∈ RL ∨(

µ = PRFK(vkOT) ∧ ρ = Commit(K; r0)
))

The transformation from a NIZK Π to one that satisfies SSE is then defined in Fig. 8.
The following theorem is taken from [KZM+15].

Theorem F.2. Assume that the NIZK scheme Π = (CRSGen,Prove,Verify) satisfies perfect com-
pleteness, computational soundness, computational zero-knowledge, that the encryption scheme
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Ω = (KeyGen,Enc,Dec) is semantically secure and perfectly correct, that the pseudo-random func-
tion family PRFK is secure, that the commitment scheme COM = (Commit,OpenVrf) is perfectly
binding and computational hiding, and that the one-time signature scheme is strongly unforgeable.
Then the resulting transformation described in Fig. 8 is a zero-knowledge proof system satisfy-
ing perfect completeness, computational zero-knowledge, and strongly simulation extractability as
defined in Section A.6.

CRSGen(1λ,L)
- Π.crs← Π.CRSGen(1λ,L′); (pke, ske)← Ω.KeyGen(1λ);
- τ := (s0, r0)←$ {0, 1}λ; ρ← Commit(s0; r0);
- return (crs := (Π.crs, pke, ρ), τ, ek := ske)

Prove(crs, x,w)
- Parse crs := (Π.crs, pke, ρ);
- (vkOT, skOT)← ΣOT.KeyGen(1λ); r1, z0, z1, z2←$ {0, 1}λ;
- c = Ω.Enc(pke,w; r1);
- πΠ ← Π.Prove(Π.crs, (x, c, z0, pke, vkOT, ρ), (w, r1, z1, z2));
- σOT ← ΣOT.Sign(skOT, (x, c, z0, πΠ));
- return π := (c, z0, πΠ, vkOT, σOT);

Verify(crs, x, π)
- Parse crs := (Π.crs, pke, ρ) and π := (c, µ, πΠ, vkOT, σOT);
- if ΣOT.Verify(vkOT, (x, c, µ, πΠ), σOT) = 0
- ∨Π.Verify(Π.crs, (x, c, µ, pke, vkOT, ρ), πΠ) = 0
- then return 0 else return 1;

SimProve(crs, τ, x)
- Parse crs := (Π.crs, pke, ρ) and τ := (s0, r0);
- (vkOT, skOT)← ΣOT.KeyGen(1λ);µ = PRFs0(vkOT);
- r1, z3←$ {0, 1}λ; c← Ω.Enc(pke, z3; r1);
- πΠ ← Π.Prove(Π.crs, (x, c, µ, pke, vkOT, ρ), (r1, r0, z3, s0));
- σOT ← ΣOT.Sign(skOT, (x, c, µ, πΠ));
- return π := (c, µ, πΠ, vkOT, σOT);

Ext(crs, x, π, ek)
- Parse π := (c, µ, πΠ, vkOT, σOT);
- return w← Ω.Dec(ek, c);

Figure 8: The strong version of C∅C∅ transformation [KZM+15]

G Standard Ideal Functionalities

We describe here some of the (standard) ideal functionalities that are used in our protocol design.
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Functionality Fcrs

The functionality is parametrized by a distribution D and proceeds as follows.

• Choose a value crs←$D.

• On input (CRS) from a party P , return (CRS, crs) to P .

Functionality Fsmt

The functionality models a secure channel between a sender S and a receiver R.

• Upon input (SEND, R,m) from a party S, if both S and R are honest, output (SENT, S,m)
to R and (SENT, S,R, |m|) to A. Otherwise, if at least one of S and R is corrupt, output
(SENT, S,R,m) to A.

G.1 Registration Functionality

The functionality allows identity providers and anonymity revokers to input a key pair (sk, pk) ∈
{0, 1}∗×{0, 1}∗ once such that they would not be allowed to modify or delete it later. The account
holders can retrieve the public keys of registered parties by the RETRIEVE command.

Functionality Freg

Register
Upon receiving a message (REGISTER, skP , pkP ) from party P , if this is the first request
from P , then keep the record (P, skP , pkP ) and return (INITIALIZED, P ). Otherwise,
ignore the message.

Retrieve
Upon receiving a message (RETRIEVE, Pi) from some party Pj or the adversary, output
(RETRIEVE, Pi, pkPi

) to Pj where pkPi
= ⊥ if no record (Pi, skPi , pkPi

) exists.

G.2 NIZK Functionality

We use Fnizk as defined by Groth et al. in [GOS12].
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Functionality Fnizk

The functionality is parametrized by a relation R for which we can efficiently check member-
ship.

Proof

• On input (PROVE, x, w) from party P , ignore if (x,w) 6∈ R. Send (PROVE, x) to A.
• Upon receiving the answer (PROOF, π) from A, store (x, π) and send (PROOF, π) to
P .

Verify

• On input (VERIFY, x, π) from V check whether (x, π) is stored. If not send
(VERIFY, x, π) to A.
• Upon receiving the answer (WITNESS, w) from A, check (x,w) ∈ R and if so,

store (x, π). If (x, π) has been stored, output (VERIFICATION, 1) to V , else out-
put (VERIFICATION, 0).

G.3 Ledger Functionality

The functionality Fledger (which is an adapted and simplified version of the functionality given
by [KZZ16]) abstracts a public ledger which can be accessed globally by protocol parties or en-
vironment Z. When accounts are created and posted by account holders, the ideal functionality
first validates the account and then appends them to the buffer. The environment can later specify
when to free the buffer and append it to the ledger.

Functionality Fledger

The functionality is globally available to all parties and is parameterized by a predicate
VALIDATE, an initially empty list L of bit strings and a variable buffer initially set to ε.

Append
Upon input (APPEND, x) from party P, if VALIDATE(state, (buffer, x)) = 1, then set
buffer← buffer||x.

Retrieve
Upon input (RETRIEVE) from a party P or A, return (RETRIEVE, L) to the requestor in
case of an honest party or (RETRIEVE, L, buffer) in case of a corrupt party.

Buffer Release
Upon input (RELEASE,Π) from A, append a permutation Π of buffer to L by setting
L← L||Π(buffer) and set buffer := ε.
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G.4 Functionality for MPC of PRF output

This functionality allows a set of parties who own secret shares of a PRF key to evaluate the PRF
on a fixed set of inputs.

Functionality FMPC−PRF

The functionality interacts with parties P1, . . . , Pn and is parameterized by a pseudo-random
function PRF, a constant MaxACC, and a (n, d)-secret sharing scheme SS.

Compute
Upon input (COMPUTE,Ki) from at least d + 1 distinct Pi, proceed as follows:

• compute K = Reconstructn,d(Ki1 , . . . ,Kid+1).
• evaluate PRFK(x) on all inputs x ∈ [MaxACC] and return the list of outputs to all

the requesters Pi for i ∈ n.
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