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Abstract Almost perfect nonlinear functions possess the optimal resistance
to the differential cryptanalysis and are widely studied. Most known APN
functions are obtained as functions over finite fields GF (2n) and very little
is known about combinatorial constructions of them in Fn

2 . In this work we
propose two approaches for obtaining quadratic APN functions in Fn

2 . The first
approach exploits a secondary construction idea, it considers how to obtain a
quadratic APN function in n+1 variables from a given quadratic APN function
in n variables using special restrictions on new terms. The second approach
is searching quadratic APN functions that have matrix form partially filled
with standard basis vectors in a cyclic manner. This approach allowed us to
find a new APN function in 7 variables. We proved that the updated list of
quadratic APN functions in dimension 7 is complete up to CCZ-equivalence.
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1 Introduction

Vectorial Boolean functions play the crucial role for protecting block ciphers
against various kinds of attacks. Functions that show an optimal resistance
to the differential attack are called almost perfect nonlinear (APN) functions.
APN functions are widely studied by many researchers, but there is still a sig-
nificant list [16] of important open questions, such as lower and upper bounds
on the number of APN functions, an upper bound on algebraic degree of an
APN function [8], the existence of bijective APN functions in even dimensions,
etc. To find secondary constructions of APN functions is a well known open
problem, in particular, it was stated as Problem 3.8 in [16]. Another problem is
to find new APN functions in vectorspace Fn

2 , since, to the best of our knowl-
edge all the known constructions of this class are found only as polynomials
over the finite fields, and there are only a few combinatorial approaches to
search for APN functions over Fn

2 . To find a classification of APN functions is
a hard open problem. The complete classification was obtained for APN func-
tions up to 5 variables, also, quadratic and cubic APN functions were classified
for dimension 6.

This paper is devoted to methods of searching for APN functions and
to corresponded problems. We investigate a few combinatorial approaches to
search for almost perfect nonlinear functions, in particular, quadratic APN
functions. Moreover, we provide the complete classification of quadratic APN
functions in dimension 7. Generally, quadratic APN functions are not suitable
as secure S-boxes due to the low algebraic degree, but obtaining new quadratic
representatives can lead us to another useful functions, we discuss it in this
work as well. This is especially important for even n > 8, since new APN
permutations CCZ-equivalent to quadratic functions can be found for these
dimensions [6].

We start in Section 2 by considering necessary definitions, discussing rel-
evant open problems and observing some results in this area. Further, we
propose two approaches for generating quadratic APN functions in Fn

2 . The
first approach is described in Section 3. It considers the algebraic normal form
of a given quadratic APN function G in n variables and extends it into an
ANF of a quadratic function F in n+ 1 variables, using special restrictions on
coefficients of new terms. In Section 4 we propose another method to generate
quadratic APN functions, so-called, cyclic approach. In this method we con-
sider special matrices that are partially filled with vectors of standard basis
and search for corresponding APN functions using the same idea of restric-
tions. Using this approach we found one previously unknown (in the sense of
CCZ-equivalence) quadratic APN function for n = 7. In Section 5 we show
that the updated list of quadratic APN functions in 7 variables is complete up
to CCZ-equivalence. Thus, there exist exactly 488 CCZ-equivalence classes of
APN functions that contains quadratic functions in 7 variables. In Section 6.1
we observe that quadratic parts of many non-quadratic APN functions have
a low differential uniformity. We introduce the new notion of stacked APN
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function and found such functions in dimensions up to 6 using quadratic APN
functions obtained with approaches mentioned above.

2 Preliminaries

2.1 Definitions

Let us recall some definitions. Let Fn
2 be the n-dimensional vector space over

F2. A function F from Fn
2 to Fm

2 , where n and m are integers, is called a
vectorial Boolean function. If m = 1 such a function is called Boolean. Every
vectorial Boolean function F can be represented as an ordered set of m coordi-
nate functions F = (f1, . . . , fm), where fi is a Boolean function in n variables.
Any vectorial function F can be represented uniquely in its algebraic normal
form (ANF):

F (x) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
,

where P(N) is a power set of N = {1, . . . , n} and aI ∈ Fm
2 . The algebraic

degree of a given function F is the degree of its ANF: deg (F ) =max{|I| :
aI 6= 0, I ∈ P(N)}. If algebraic degree of a function F is not more than 1
then F is called affine. If for an affine function F it holds F (0) = 0 then F is
called linear. If algebraic degree of a function F is equal to 2 then F is called
quadratic.

Let us further consider the case m = n only. It is well known that we can
put the finite field GF (2n) in one-to-one correspondence to the vector space
Fn
2 and consider vectorial Boolean functions as functions over F2n . Then any

vectorial function F has the unique univariate polynomial representation over
GF (2n):

F (x) =

2n−1∑
i=0

λix
i, λj ∈ F2n .

2.2 APN functions

Let F be a vectorial Boolean function from Fn
2 to Fn

2 . For vectors a, b ∈ Fn
2 ,

where a 6= 0, consider the value

δ(a, b) =
∣∣{ x ∈ Fn

2

∣∣ F (x+ a) + F (x) = b}
∣∣.

Denote by ∆F the following value:

∆F = max
a6=0, b∈Fn

2

δ(a, b).

Then F is called differentially ∆F -uniform function. The smaller the pa-
rameter ∆F , the better the resistance of a cipher containing F as an S-box
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Table 1 Known APN power functions xd on GF (2n).

Functions Exponents Conditions References

Gold d = 2t + 1 gcd(t, n) = 1 [25], [36]

Kasami d = 22t − 2t + 1 gcd(t, n) = 1 [33], [32]

Welch 2t + 3 n = 2t+ 1 [15], [20]

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 [21], [30]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t+ 1 [2], [36]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [22]

to differential attack. For the vectorial functions from Fn
2 to Fn

2 the minimal
possible value of ∆F is equal to 2. In this case the function F is called almost
perfect nonlinear (APN). This notion was introduced by K. Nyberg in [36],
also differential properties of vectorial functions were investigated (see [28] of
of M. M. Glukhov) in USSR behind closed doors. APN functions are of central
interest in the area of vectorial Boolean functions and draw attention of many
researchers. Exhaustive discussion of the topic can be found in reviews [4] of
C. Blondeau and K. Nyberg, [16] of C. Carlet, [28] of M. M. Glukhov, [37] of
A. Pott, [38] of M. E. Tuzhilin, in books [7] of L. Budaghyan, [17] of C. Carlet
etc.

Most known APN functions are monomial functions over GF (2n), they are
provided in Table 1. Also, there exist many constructions and infinite families
of APN functions over finite fields (for example, see papers [9], [10], [11],
[12] and [13] of L. Budaghyan et al., [24] of Y. Edel et al., etc.). There were
proposed several combinatorial approaches how to search new APN functions
from known ones. In work [23] of Y. Edel and A. Pott there was proposed so-
called switching method that searches for suitable coordinate functions in order
to obtain a new APN function from a given one. A combinatorial approach
using subfunctions was proposed in [26] of A. Gorodilova. An approach for
finding APN permutations using 2-to-1 APN functions was introduced in [31]
of V. Idrisova.

2.3 Classifications of APN functions

Let us remind main relationships of equivalence that preserve an APN property
of a given vectorial function. Two vectorial functions F and G are extended
affinely equivalent (EA-equivalent) if F = A1 ◦ G ◦ A2 + A where A1, A2 are
affine permutations on Fn

2 and A is an affine function. Two functions F and
G are called Carlet-Charpin-Zinoviev [18] equivalent (CCZ-equivalent) if their
graphs {(x, y) ∈ Fn

2 × Fn
2

∣∣ y = F (x)} and {(x, y) ∈ Fn
2 × Fn

2

∣∣ y = G(x)} are
affinely equivalent, that is, if there exists an affine automorphism A = (A1, A2)
of Fn

2 × Fn
2 such that y = F (x) ⇔ A2(x, y) = G(A1(x, y)). Let us recall
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that in case of quadratic APN functions, CCZ-equivalence coincides with EA-
equivalence [39]. In [18] there was introduced the associated Boolean function
γF (a, b) in 2n variables for a given vectorial Boolean function F from Fn

2 to Fn
2 .

It takes value 1 if a is nonzero and equation F (x)+F (x+a) = b has solutions,
and 0 otherwise. Two functions F and G are called differentially equivalent if
γF = γG. This notion of equivalence was introduced by A. Gorodilova in [27].

To find the complete classification of APN functions under CCZ-equivalence
is complicated open question. A complete classification for APN functions was
found by M. Brinkmann and G. Leander in [5] only up to n = 5. When n = 6
APN functions classified only for degrees up to 3 (the list can be found in [5]
and the complete classification of cubics was described by P. Langevin in [35]).
Also, in paper [14] of M. Calderini EA-classes of all known APN functions in
6 variables were provided as well as partial results for 7, 8 and 9 variables.
Moreover, the classification up to n = 9 was obtained in [41] of Y. Yu et al.
for quadratic APN functions over GF (2n) with coefficients from GF (2). Un-
til recently there were known 487 CCZ-classes of quadratic APN functions in
7 variables and 8179 CCZ-classes of quadratic APN functions in 8 variables,
most of them were found in [40] of Y. Yu et al. However, in the very recent
breakthrough work [1] of C. Beierle and G. Leander there were found 12923
new quadratic APN functions in dimension 8, 35 new quadratic APN func-
tions in dimension 9 and five new quadratic APN functions in dimension 10
(all are different up to CCZ-equivalence). In the conference version of this pa-
per [34] we found a new APN function in 7 variables, later this function was
also independently found in [1].

3 On secondary approach to search for quadratic APN functions

Since EA-equivalence preserves the APN property, it is always possible to
omit linear and constant terms in the algebraic normal form of a given APN
function. We shall then consider quadratic vectorial Boolean functions that
have only quadratic terms in their ANF. The following result of T. Beth and
C. Ding gives a necessary condition on the ANF of a given APN function.

Theorem 1 (see Theorem 6 in [2]) Let F = (f1, . . . , fn) be an APN function
in n variables. Then every quadratic term xixj, where i 6= j, appears at least
in one coordinate function of F .

This property motivated us to suggest the following construction of quadratic
APN functions. Let G = (g1, . . . , gn) be a quadratic APN-function in n vari-
ables. Consider vectorial function F = (f1, . . . , fn, fn+1) in n + 1 variables
such that:
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f1 = g1 +

n∑
i=1

α1,ixixn+1;

. . .

fn = gn +

n∑
i=1

αn,ixixn+1;

fn+1 = gn+1 +

n∑
i=1

αn+1,ixixn+1,

(1)

where α1,i . . . , αn+1,i ∈ F2 for i = 1, . . . , n and gn+1 =
∑

16j<k6n βj,kxjxk
for some fixed βj,k ∈ F2. Note that if α1,i, . . . , αn,i are such that each term
xixn+1 appears at least in one of the coordinate functions f1, . . . , fn, then
the necessary condition of Theorem 1 is held for the constructed function F .
Since the exhaustive search for the given APN function becomes complicated
starting from n = 6, there is a need to find necessary and sufficient conditions
on new coefficients of F .

Let us denote the lexicographically ordered elements of Fn
2 as x0, . . . , x2

n−1.
Since all the values G(x0), . . . , G(x2

n−1) of the function G are known, we
can represent values of the constructed function F only through unknown
coefficients αi,k and some constant terms. Since F is an APN function, for a
nonzero a all sums F (x) + F (x + a) and F (y) + F (y + a), where x 6= y and
x 6= y+a, should be pairwise different. This fact applies special restrictions on
coefficients αi,k. For the convenient representation of these restrictions further
we consider the following matrix approach that was also proposed by T. Beth
and C. Ding in [2].

Each quadratic vectorial function G in n variables can be considered as
a symmetric matrix G = (gij), where each element gij ∈ Fn

2 is a vector of
coefficients corresponding to term xixj in the algebraic normal form of G and
all diagonal elements gii are null.

Example 1 Let us consider function G = (g1, g2, g3) = (x1x2, x2x3, x1x3) =1
0
0

 · x1x2 +

0
0
1

 · x1x3 +

0
1
0

 · x2x3.

Then the corresponding matrix G is the following:

G =

(000) (100) (001)
(100) (000) (010)
(001) (010) (000)


It is necessary to mention that these matrices also were used in [40] and [41]

to construct and classify a lot of new quadratic APN functions over finite fields.
Using these matrices the APN property can be formulated in the following way:
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Proposition 1 Let G be the matrix that corresponds to quadratic vectorial
function G. Then function G is APN if and only if x · (G ·a) 6= 0 for all x 6= a,
where a, x ∈ Fn

2 and a 6= 0.

Proof The proof follows directly from the Theorem 10 of [2], which states that
G is APN if and only if rank(G · a) is equal to n− 1 for any nonzero a ∈ Fn

2 .

In terms of matrices method (1) can be considered as an extension of a
given G with an extra bit that represents gn+1 in every element and an extra
pair of row and column that represents a set of new terms xixn+1.

Example 2 For the considered function G = (g1, g2, g3) = (x1x2, x2x3, x1x3)
we choose null gn+1 and construct APN function F = (f1, f2, f3, f4) in 4
variables, where:

f1 = g1;
f2 = g2 + x3x4;
f3 = g3 + x2x4 + x3x4;
f4 = x1x4 + x3x4.
Then the corresponding matrix F is the following:

F =


(0000) (1000) (0010) (0001)
(1000) (0000) (0100) (0010)
(0010) (0100) (0000) (0111)
(0001) (0010) (0111) (0000)


The next result directly follows from the Proposition 1 and an almost

identical property was described as main idea of Algorithm 1 in [40]. Consider
a quadratic APN function G and the corresponding n × n matrix G. Denote
the vector of nonzero coefficients for new variables as α = (α1, . . . , αn), where
αi ∈ Fn+1

2 . Let us fix gn+1 and construct (n+ 1)× (n+ 1) matrix F by adding
(α1, . . . , αn, 0) to G as the last column and the last row and adding new bit
to every element of G according to the choice of gn+1. Let us denote as G′
the submatrix (fij) of F , such that i, j < n + 1. Let 〈X〉 denote the linear
span of an arbitrary set X ⊆ Fn

2 and F be the quadratic vectorial function
corresponding to the constructed matrix F . Then the following proposition is
true.

Proposition 2 F is APN if and only if α · a′ does not belong to 〈G′ · a′〉 for
all a′ ∈ Fn

2 , a′ 6= 0.

Remark 1 Let us note that Proposition 2 exactly shows how to obtain restric-
tions on new coefficients in the convenient form. Our algorithm for searching
APN functions using these restrictions is very similar to Algorithm 1 in [40],
but in our work we start from an APN function matrix n×n, add an extra bit
to each element that is corresponding to gn+1 and search through all possible
last column in order to build an APN function matrix (n + 1) × (n + 1). In
work [40] the authors started from an APN function matrix n×n and searched
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through all possible last column (or more columns) in order to build an APN
function matrix n× n.

Let us show that our method can be also extended to the case when G is
not an APN function, but the ANF of G and gn+1 together contain all possible
quadratic terms. The following proposition describes the necessary condition
on the choice of such functions.

Proposition 3 Let G be a quadratic vectorial function in n variables and F
be an APN function in n+ 1 variables that it is obtained from G using method
(1). Then ∆G 6 4.

Proof Consider vectorial function F = (f1, . . . , fn+1) that is obtained from
vectorial function G = (g1, . . . , gn) using method (1). Then for all arguments
x = (x1, . . . , xn+1) such that xn+1 = 0 holds F (x) = (g1, . . . , gn, gn+1), where
gn+1 is a coordinate function that was added according to the method. Since
function F (x) is APN for all nonzero a = (a1, . . . , an+1) such that an+1 = 0
and any b ∈ Fn+1

2 equation F (x) +F (x+ a) = b has no more than 2 solutions
among x such that xn+1 = 0. Therefore, for any nonzero a = (a1, . . . , an) and
any b ∈ Fn

2 equation G(x) +G(x+ a) = b has no more than 4 solutions and G
is APN or differentially 4-uniform.

For example, for differentially 4-uniform function G = (g1, g2, g3, g4, g5),
where:

g1 = x1x2 + x3x5 + x4x5;
g2 = x1x3 + x4x5;
g3 = x2x3 + x1x4 + x3x5 + x4x5;
g4 = x2x4 + x1x5 + x4x5;
g5 = x3x4 + x2x5 + x4x5.
and g6 contains all the terms xixj , where i < j 6 n, we obtained 13 CCZ

classes of APN functions among constructed functions. Let us recall that there
exist only 13 CCZ classes of quadratic APN functions in dimension 6.

Remark 2 It can be seen that any quadratic APN function in n variables can
be obtained using method (1) from quadratic APN or differential 4-uniform
function in n− 1 variables .

It is also worth mentioning that when n = 3, 4 and 5 for APN functions
that are CCZ classes representatives we obtained all the possible classes of
quadratic APN functions for 4, 5 and 6 variables from the classification [5] and
large variety of classes for constructing from 6 to 7 variables.

Note that for the given APN function G in n variables we have 2
(n2−n)

2

possibilities to choose gn+1. It is interesting that the choice of gn+1 affects
the capability to obtain APN function F in n + 1 variables, the number of
such constructed functions and the variety of different CCZ-classes among
constructed classes. For example, when n = 5 and gn+1 is null both quadratic
CCZ-representatives give us the only one CCZ-class for 6 variables (class 11
in the list from [5]). At the same time, when gn+1 contains all quadratic
terms xixj , these functions give 13 CCZ-classes of quadratic APN functions
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in 6 variables. Unfortunately, for n > 7 it becomes computationally harder
to choose the proper initial function and gn+1 and to obtain a large amount
of generated functions. It seems that method (1) is not so efficient on large
dimensions.

OPEN QUESTION Q1: How to choose properly the initial function G
in this approach? It seems that for most APN functions in n variables it is
possible to find corresponding APN functions in n+1 variables for some gn+1,
but we have found one counterexample for n = 6.

OPEN QUESTION Q2: Given APN (or differentially 4-uniform) function
G, how to choose function gn+1 such that the number of classes of obtained
APN functions is maximal?

4 On cyclic approach to search for quadratic APN functions

As noted earlier, each row/column of a symmetric matrix that is correspond-
ing to an APN function in n variables consists of n − 1 linear independent
vectors from Fn

2 . In this section we consider, in some sense, the minimal values
for such vectors, using basis vectors for filling the matrix. Let us introduce
another approach for constructing quadratic APN functions using matrix rep-
resentation from previous section. Let e1, . . . , en be the standard basis in Fn

2 .
For the given n consider the following matrix with elements from Fn

2 :

T =



0 e1 e2 e3 . . . en−2 en−1
e1 0 e3 e4 . . . en−1 en
e2 e3 0 e5 . . . en t3,n
e3 e4 e5 0 . . . t4,n−1 t4,n
...

...
...

...
. . .

...
...

en−2 en−1 en tn−1,4 . . . 0 tn−1,n
en−1 en tn,3 tn,4 . . . tn,n−1 0


,

where ti,j = tj,i and ti,j denote some unknown elements in Fn
2 . Our aim

is to find values of missed matrix elements such that matrix T represents
APN function. We can apply the approach with restrictions from the previous
section.

Let us consider the following procedure.

1. Without loss of generality consider the first unknown element of matrix
T that is t3,n. According to Proposition 2 the last column of T should
satisfy (en−1, en, t3,n, . . . , 0) · a′ /∈ 〈T ′ · a′〉, where a′ ∈ Fn−1

2 , a′ 6= 0 and
T ′ = T \ (en−1, en, t3,n, . . . , 0).

2. We consider all a′ = a′1, . . . , a
′
n−1 such that a′3 = 1 and a′i = 0, if i > 3,

and obtain restrictions on the value of t3,n that are independent from any
other unknown element of T .

Repeating this procedure step by step for every new element after fixing values
of previous variables ti,j allows us to obtain all possible fillings for the given
matrix T .
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For n = 3, 4 and 5 this construction covered all quadratic CCZ classes
of APN functions. For n = 6 it covered 11 out of 13 classes. Unfortunately,
for larger dimensions the number of generated functions dropped dramatically
and the construction covers only 7 classes for n = 7 and the only one class
for n = 8. As a consequence, we consider the following generalization of this
construction.

Let T be the same matrix that contains k unknown elements. Consider
the diagonal that contains all elements en in T . It is easy to see that we can
remove any element en from this diagonal and apply the above procedure to
the new matrix with k + 1 unknown elements. Moreover, we can remove any
number of elements from T and the more elements are deleted the more APN
functions can be constructed using this matrix.

For n = 6 when we removed one element en from the diagonal in T the new
matrix had already covered all 13 CCZ classes of quadratic APN functions. For
n = 7 and the matrix that has no elements en on the diagonal we generated
more than 2 millions of quadratic APN functions. We have found a new CCZ
class for n = 7 among obtained functions. Here we provide a representative of
this class in the univariate form:

F (x) = a100x+ a88x2 + a89x3 + a107x4 + a57x5 + a98x6 + a56x8 + a9x9 +
a58x10+a60x12+a109x16+a47x17+a44x18+a27x20+a91x24+a71x32+a96x33+
a101x34 +a7x36 +a12x40 +a34x48 +a66x64 +a4x65 +a4x66 +a73x68 +a73x72 +
a56x80 + a20x96,

where a is the primitive element whose minimal polynomial over F27 is
x7 + x+ 1.

We also computed CCZ-invariants (∆-rank and Γ -rank) for this new func-
tion. We provide these values in the table below.

Table 2 Invariants of the new APN function.

Γ -rank ∆-rank

4044 212

5 Classification of quadratic APN functions in dimension 7

Let us recall that APN functions are classified only up to n = 5 and up to
degree 3 for the case n = 6. Here we show that there is no quadratic APN
functions in 7 variables other than known ones.

A quadratic APN function F is given, let F be it’s corresponding symmetric
matrix. It is easy to see that the first row of F is equal to (0 1 2 4 8 16 32)
up to EA-equivalence. It was shown in [40] (see Corollary 1) that if APN
functions F and G are EA-equivalent, then for their matrices F and G the
following relation hold:
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G = L(PFP t),

where P is a bijective matrix with elements from F2 and L is a linear
permutation on Fn

2 . Let us briefly describe the procedure of finding lexico-
graphically minimal matrix in the EA-class. Our aim is to transform first k
(for n = 7 we considered case k = 2) rows of a given matrix in order to obtain
lexicographically minimal ones using only transformations that are preserve
EA-equivalence.

For all possible first two rows of matrices F such that the condition from
Proposition 1 is true we implement the search through all possible matrices P
of the form:

P =



x x 0 0 0 0 0
x x 0 0 0 0 0
∗ ∗ x x x x x
∗ ∗ x x x x x
∗ ∗ x x x x x
∗ ∗ x x x x x
∗ ∗ x x x x x


,

where upper left square 2 × 2 and lower right square 5 × 5 are bijective
matrices and lower left part can be any matrix 5×2. We consider such matrices
P since our aim is to find minimal first two rows for a given EA-class and we
do not want a diffusion of first two rows with the rest of the rows. For each
matrix P we:

P1: Search through all possible L such that first row of G is equal to
(0 1 2 4 8 16 32);

P2: If P and L are such that G < F lexicographically, we discard F .
We implemented the above procedure and obtained that there are only

five possible options for the second row of a given quadratic matrix up to the
EA-equivalence. We list below these options and the number of inequivalent
APN functions that have such a lexicographically minimal matrix:

1. Case (1 0 4 8 16 32 64) contains 3 quadratic APN functions up to
EA-equivalence (all are equivalent to monomial functions);

2. Case (1 0 4 6 16 32 64) contains 2 functions;
3. Case (1 0 4 6 16 32 24) contains no functions;
4. Case (1 0 4 6 16 26 64) contains 220 functions;
5. Case (1 0 4 6 16 24 64) contains 263 functions.

Thus, there exist only 488 quadratic APN functions up to CCZ-equivalence
and the updated list is complete.

For n = 8 we implemented the procedure as well and there exist 11 possible
options for the second row of a given quadratic matrix (while the first row is
equal to (0 1 2 4 8 16 32 64)):

1. Case (1 0 4 8 16 32 64 128);
2. Case (1 0 4 8 16 32 64 18);
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3. Case (1 0 4 8 16 32 64 6);
4. Case (1 0 4 6 16 32 64 128);
5. Case (1 0 4 6 16 32 64 24);
6. Case (1 0 4 8 16 32 24 128);
7. Case (1 0 4 8 16 26 64 128);
8. Case (1 0 4 8 16 26 64 104);
9. Case (1 0 4 8 16 24 64 128);

10. Case (1 0 4 8 16 24 64 98);
11. Case (1 0 4 8 16 24 64 96).

The number of inequivalent APN functions for each case are being com-
puted at the moment.

6 The use of quadratic functions to search for APN fuctions of
higher degrees

In this section we disscuss possible approaches of the use of quadratic functions
with low differential uniformity to search for APN fuctions of higher degrees.
Also, we introduce the notion of stacked APN functions as APN functions of
algebraic degree d such that eliminating monomials of degrees k+ 1, . . . , d for
any k < d results in APN function of degree k.

6.1 The differential uniformity of quadratic parts of APN functions and the
class of stacked APN functions

Let F be a vectorial Boolean function of algebraic degree d. Then it can be
represented as sum F = F (c) + F (1) + F (2) + . . . + F (d), where each function
F (j) contains only monomials of algebraic degree j and F (c) is a constant
term. We observed that if F is an APN function then its quadratic part F (2)

has a low differential uniformity. In particular, the following proposition was
computationally proven:

Proposition 4 Let F be an APN function in 4 variables. Then ∆F (2) 6 4.

Many APN functions in 5, 6 and 7 variables have a quadratic part with
differential uniformity not more than 4. For Dillon (see Dillon) permutation P
of Fn

2 value ∆P (2) is equal to 8. When n = 8, 9 there also exist APN functions
F (e.g. Kasami power functions for n = 8 and Inverse function for n = 9)
such that ∆F (2) = 8. Nevertheless, for these large dimensions the differential
uniformity of quadratic parts is still quite low. Further we consider only func-
tions without affine terms. The observation on low differential uniformity of
quadratic parts of APN functions motivated us to introduce a new subclass of
APN functions.

Definition 1 Let F = F (2)+. . .+F (d) be an APN function of algebraic degree
d. If all functions F −F (d), F −F (d)−F (d−1), . . . , F −F (d)−F (d−1)− . . .−F 3

are APN functions then F is called a stacked APN function.
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Let us describe one of the possible approaches to construct stacked APN
functions of degree 3. Let h be a cubic Boolean function in n variables with no
affine or quadratic terms, i.e. homogenous one. Let us call vectorial function
H a cubic shift if H = h · v for a nonzero vector v in Fn

2 . In work [23] of Y.
Edel and A. Pott there was introduced a new approach for searching APN
functions, so-called the switching method. It describes how to find new APN
function from known one by changing it’s coordinates functions. In particular,
the following result for functions of the form F + f · v was obtained.

Theorem 2 (Theorem 3 in [23]) Let F be an APN function from Fn
2 to Fn

2 .
Let v be a nonzero vector in Fn

2 , and h be a Boolean function in n variables.
Then function F + h · v is an APN if and only if

h(x) + h(x+ a) + h(y) + h(y + a) = 0

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = 0

and x 6= y, x 6= y + a.

Proposition 5 Let F be an APN function in n variables. Let v be a nonzero
vector in Fn

2 , and h1, h2 be different Boolean functions in n variables. If both
functions F + h1 · v and F + h2 · v are APN functions, then function F + h1 ·
v + h2 · v is also APN.

Proof This property directly follows from the Theorem 2 since if

h1(x) + h1(x+ a) + h1(y) + h1(y + a) = 0

and
h2(x) + h2(x+ a) + h2(y) + h2(y + a) = 0

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = 0

and x 6= y, x 6= y + a, then

h1(x)+h2(x)+h1(x+a)+h2(x+a)+h1(y)+h2(y)+h1(y+a)+h2(y+a) = 0

for these x, y, a either. Therefore, F + h1 · v + h2 · v is also an APN function.

The next simple corollary follows from Proposition 5 and allows us to
potentially reduce the search of cubic shifts.

Corollary 1 Let F be a quadratic APN function in n variables. Suppose that
there exist homogenous cubic Boolean functions h1, h2 such that both functions
F + h1 · v and F + h2 · v are APN. Therefore, there exist Boolean function
h, where h = h1 or h = h2 or h = h1 + h2, such that h contains even (or,
equivalently, odd) number of monomials and F + h · v is an APN function.
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For n = 4, 5 we implemented the search of cubic APN functions F =
F (2) + F (3) such that F (3) is some cubic part and F (2) is an APN quadratic
function, that is constructed using the cyclic matrix T from the previous
section. For n = 6 we implemented the similar search, but F (3) was a cubic
shift since it is computationally hard to search through all the possible cubic
parts. We have found a large amount of cubic stacked APN functions for
n = 4, 5, 6. Some examples are listed in Table 3.

Table 3 Examples of stacked cubic APN functions (both F and F (2) are APN).

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F (x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 11 12

F (2)(x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F (x) 0 0 0 1 0 2 4 7 0 4 10 15 19 21 28 27
0 8 16 25 11 1 29 22 15 3 17 28 31 17 6 9

F (2)(x) 0 0 0 1 0 2 4 7 0 4 10 15 19 21 29 26
0 8 16 25 11 1 31 20 15 3 21 24 23 25 9 6

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

F (x) 0 0 0 1 0 2 4 13 0 4 8 7 16 22 28 27
0 8 16 19 9 3 29 22 45 33 53 56 52 58 40 45
0 16 60 45 26 8 34 59 55 35 3 28 61 43 13 26
5 29 41 58 22 12 62 37 31 3 59 38 28 2 60 41

F (2)(x) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27
0 8 16 25 9 3 29 22 45 33 53 56 52 58 40 39
0 16 60 45 26 8 34 49 55 35 3 22 61 43 13 26
5 29 41 48 22 12 62 37 31 3 59 38 28 2 60 35

It is worth mentioning that for quadratic APN functions from different
CCZ classes for n = 6 we have found more than 70 000 cubic stacked APN
functions and all these functions belong to the same CCZ-class that is the
only known class that does not contain quadratic functions (class number 13
in the list from [5]), despite that all 14 CCZ classes contains (see [14]) cubic
representatives.
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6.2 A generalization of the switching method on differentially 4-uniform
functions

Here we show that the switching method mentioned earlier can be applied not
only to APN functions, but also to differentially 4-uniform functions.

Proposition 6 Let F be a vectorial Boolean function in n variables. Let v be
a nonzero vector in Fn

2 , and h be a Boolean function in n variables, such that
F + h · v is an APN function. Then there are exist vectorial function G, such
that G is EA-equivalent to F such that G+ h · e1 is APN.

Proof Consider the bijective linear mapping L such that L(v) = e1. Then
L(F + h · v) = L(F ) + h · e1 = G+ h · e1 and G is EA-equivalent to F .

It is interesting that for n = 4, 6 there were found cubic APN functions C
such that C = F +h ·e1, where F is APN and h is homogenous cubic function,
consisting of the only one monomial. An example of such F and C for n = 4
can be found in Table 3. An example for n = 6 is the following:

f1 = x1x2 + x4x6 + x5x6 + x2x3x5;
f2 = x1x3 + x3x5 + x4x5 + x2x6 + x5x6;
f3 = x2x3 + x1x4 + x4x5 + x5x6;
f4 = x2x4 + x1x5 + x3x5 + x2x6 + x3x6 + x4x6 + x5x6;
f5 = x3x4 + x2x5 + x3x5 + x4x5 + x1x6 + x2x6 + x3x6 + x5x6;
f6 = x3x5 + x2x6 + x5x6.

Remark 3 Let F be an APN function in n variables. If there exist Boolean
function f such that G = F + f · e1 then ∆G 6 4, since changing of one
coordinate does not change the differential uniformity more than twice. This
implies the following result:

Corollary 2 Let F be a vectorial Boolean function in n variables. Let v be a
nonzero vector in Fn

2 , and h be a Boolean function in n variables, such that
F + h · v is an APN function. Then ∆F 6 4.

This corollary implies that the switching method for obtaining APN func-
tions can be applied only to APN and differentially 4-uniform functions. Let
us provide an analog of Theorem 2 for differentially 4-uniform functions below
(the proof is straightforward).

Theorem 3 Let F be a differentially 4-uniform function from Fn
2 to Fn

2 . Let
v be a nonzero vector in Fn

2 , and h be a Boolean function in n variables. Then
function F + h · v is an APN if and only if the following conditions hold:

C1.
h(x) + h(x+ a) + h(y) + h(y + a) = 0

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = v
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and x 6= y, x 6= y + a.
C2.

h(x) + h(x+ a) + h(y) + h(y + a) = 1

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = 0

and x 6= y, x 6= y + a.

Remark 4 Similarly to results in [23] the searching for the switching candidates
for the given differentially 4-uniform can be implemented through solving the
system of linear equations. Let us note that there exist differential 4-uniform
functions such that function F is given, there are no nonzero vector v and
Boolean function h (in this example h is not necessarily cubic) such that
function F + h · v is an APN.

Remark 5 These results are humble, but they emphasize the possible role of
quadratic APN and differential 4-uniform functions in obtaining new APN
functions of higher degrees and motivates to continue research in this direction.

OPEN QUESTION Q3: Are there exist stacked APN functions of larger
algebraic degrees?

OPEN QUESTION Q4: Are there exist stacked APN functions for larger
dimensions?

7 Conclusion

In this paper we considered two combinatorial approaches that allow to search
for quadratic APN functions using special matrices. Given a quadratic APN
function in n variables the first approach searches for quadratic APN func-
tions in n + 1 variables using restrictions that can be described in terms of
matrices. The second approach uses minimal matrices of cyclic form to gen-
erate quadratic APN functions. Using these approaches we found a new APN
functions in 7 variables. Moreover, we obtained the complete classification of
quadratic APN functions up to CCZ-equivalence in dimension 7 and proved
that the list of quadratic APN functions updated with this new function is
complete now. Also, we noted that quadratic parts of many APN functions
have a low differential uniformity and introduced the notion of stacked APN
functions.

Acknowledgements We would like to cordially thank Natalia Tokareva for her valuable
remarks. We are much indebted to the reviewers of SETA-2020 conference for their helpful
reviews. We are grateful to Anastasia Gorodilova and Nikolay Kolomeec for their useful
observations and fruitful discussions. The work is supported by Mathematical Center in
Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and
Higher Education of the Russian Federation and Laboratory of Cryptography JetBrains
Research. We are grateful to the Supercomputing Center of the Novosibirsk State University
for provided computational resources.



The classification of quadratic APN functions in 7 variables 17

References

1. Beierle C., Leander G.: New Instances of Quadratic APN Functions. CoRR
abs/2009.07204 (2020).

2. Beth T., Ding C.: On almost perfect nonlinear permutations. Advances in Cryptology,
EUROCRYPT’93, Lecture Notes in Computer Science, vol. 765, pp. 65-76 (1993).

3. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. Journal of
Cryptology, vol. 4(1), pp. 3-72 (1991).

4. Blondeau C., Nyberg K.: Perfect nonlinear functions and cryptography. Finite Fields and
Their Applications, vol.32 (March), pp. 120-147(2015).

5. Brinkmann M., Leander G.: On the classification of APN functions up to dimension five.
Des. Codes Cryptogr., vol. 49, Issue 13, pp. 273-288 (2008).

6. Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J.: An APN Permutation in
Dimension Six. Post-proceedings of the 9-th International Conference on Finite Fields and
Their Applications Fq’09, Contemporary Math., AMS, vol. 518, pp. 33-42 (2010).

7. Budaghyan L.: Construction and analysis of cryptographic functions. Springer Interna-
tional Publishing, VIII, 168 pp. (2014).

8. Budaghyan L., Carlet C., Helleseth T., Li N. and Sun B.: On Upper Bounds for Algebraic
Degrees of APN Functions. IEEE Transactions on Information Theory, vol. 64, no. 6, pp.
4399-4411 (2018).

9. Budaghyan L., Carlet C., Leander G.: Constructing new APN Functions from known
ones. Finite Fields and Their Applications, vol. 15, I. 2, pp. 150-159 (2009).

10. Budaghyan L., Carlet C. and Leander G.: On a construction of quadratic APN functions.
2009 IEEE Information Theory Workshop, Taormina, pp. 374-378 (2009) .

11. Budaghyan L., Calderini M., Carlet C., Coulter R. S. and Villa I.: Constructing APN
Functions Through Isotopic Shifts. IEEE Transactions on Information Theory, vol. 66, no.
8, pp. 5299-5309 (2020).

12. Budaghyan L., Carlet C. and Pott A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 1141-
1152 (2006).

13. Budaghyan L. and Carlet C.: Classes of Quadratic APN Trinomials and Hexanomials
and Related Structures. IEEE Transactions on Information Theory, vol. 54, no. 5, pp.
2354-2357 (2008).

14. Calderini M.: On the EA-classes of known APN functions in small dimensions. Cryptogr.
Commun., vol. 12, pp.821-840 (2020).

15. Canteaut A., Charpin P., Dobbertin H.: Binary m-sequences with three-valued cross-
correlation: a proof of Welch conjecture, IEEE Trans. Inf. Theory., vol. 46(1), pp. 4-8
(2000).

16. Carlet C.: Open Questions on Nonlinearity and on APN Functions. Arithmetic of Finite
Fields. WAIFI 2014. Lecture Notes in Computer Science, vol. 9061, pp 83-107 (2015).

17. Carlet C.: Vectorial Boolean functions for cryptography. Ch. 9 of the monograph Boolean
Methods and Models in Mathematics, Computer Science, and Engineering, Cambridge
Univ. Press, pp. 398-472 (2010).

18. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for
DES-like cryptosystems. Des. Codes Cryptogr., vol. 15, pp. 125-156 (1998).

19. Dobbertin, H.: One-to-One Highly Nonlinear Power Functions on GF (2n). Appl. Alge-
bra Eng. Commun. Comput., vol. 9(2), pp. 139-152 (1998).

20. Dobbertin H.: Almost perfect nonlinear power functions on GF (2n): the Welch case.
IEEE Trans. Inf. Theory., vol. 45(4), pp. 1271-1275 (1999).

21. Dobbertin H.: Almost perfect nonlinear functions over GFGF (2n): the Niho case. In-
form. and Comput., vol.151, pp. 57-72 (1999).

22. Dobbertin H.: Almost perfect nonlinear power functions over GF (2n): a new case for n
divisible by 5. Proceedings of Finite Fields and Applications FQ5, pp. 113-121 (2000).

23. Edel Y., Pott A.: A new almost perfect nonlinear function which is not quadratic.
Advances in Mathematics of Communications, vol. 3 (1), pp. 59-81 (2009).

24. Edel Y., Kyureghyan G. and Pott A.: A new APN function which is not equivalent to
a power mapping. IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 744-747
(2006).



18 Konstantin Kalgin, Valeriya Idrisova

25. Gold R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions.
IEEE Trans. Inform. Theory, vol. 14, pp.154-156 (1968).

26. Gorodilova A A.: Characterization of almost perfect nonlinear functions in terms of
subfunctions, Diskr. Mat., vol. 27(3), pp. 3-16 (2015); Discrete Math. Appl., vol. 26(4),
pp. 193-202 (2016).

27. Gorodilova, A.: On the differential equivalence of APN functions. Cryptography and
Communications, 11(4), pp. 793-813 (2019).

28. Glukhov M. M.: On the approximation of discrete functions by linear functions. Matem-
aticheskie Voprosy Kriptografii, vol. 7(4), pp. 29-50 (2016) (in Russian).

29. Glukhov M. M.: On the matrices of transitions of differences for some modular groups.
Matematicheskie Voprosy Kriptografii, vol. 4(4), pp. 27-47 (2013) (in Russian).

30. Hollmann H., Xiang Q.: A proof of the Welch and Niho conjectures on crosscorrelations
of binary m-sequences. Finite Fields and Their Applications, vol. 7, pp. 253-286 (2001).

31. Idrisova V.: On an algorithm generating 2-to-1 APN functions and its applications to
the big APN problem. Cryptogr. Commun. 11, 2139 (2019).

32. Janwa H., Wilson R.: Hyperplane sections of Fermat varieties in P 3 in char. 2 and
some applications to cyclic codes. Proceedings of AAECC-10, Lecture Notes in Computer
Science, vol. 673, Berlin, Springer-Verlag, pp. 180-194 (1993).

33. Kasami T.: The weight enumerators for several classes of subcodes of the second order
binary Reed-Muller codes. Inform. and Control. 18, pp. 369-394 (1971).

34. Kalgin K., Idrisova V.: On secondary and cyclic approaches to search for quadratic
APN functions. Proceedings of the 11th international conference on Sequences and Their
Applications — SETA-2020 (Saint-Petersburg, Russia, September 22-25, 2020).

35. Langevin P., Saygi Z. and Saygi E.: Classification of APN cubics in dimension 6 over
GF(2): http://langevin.univ-tln.fr/project/apn-6/apn-6.html

36. Nyberg K.: Differentially uniform mappings for cryptography. Advances in Cryptogra-
phy, EUROCRYPT’93, Lecture Notes in Computer Science, vol. 765, pp. 55-64 (1994).

37. Pott A.: Almost perfect and planar functions. Des. Codes Cryptography 78(1), pp.141-
195 (2016).

38. Tuzhilin M. E.: APN functions. Prikladnaya Diskretnaya Matematika, vol. 3, pp. 1420
(2009) (in Russian).

39. Yoshiara S.: Equivalences of quadratic APN functions. Journal of Algebraic Combina-
torics, 35,461475 (2012).

40. Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN functions.
Des. Codes Cryptogr. 73, 587-600 (2014).

41. Yu Y., Kaleyski N. S., Budaghyan L., Li Y.: Classification of quadratic APN functions
with coefficients in GF(2) for dimensions up to 9. IACR Cryptol. ePrint Arch.: 1491 (2019).


	Introduction
	Preliminaries
	On secondary approach to search for quadratic APN functions
	On cyclic approach to search for quadratic APN functions
	Classification of quadratic APN functions in dimension 7
	The use of quadratic functions to search for APN fuctions of higher degrees
	Conclusion

