
How to compute all Pointproofs

Alin Tomescu1

1VMware Research

Monday, November 30th, 2020

Abstract
In this short note, we explain how to reduce the time to compute all N proofs in the Pointproofs vector com-

mitment (VC) scheme by Gorbunov et al., fromO(N2) time toO(N logN). The key ingredient is representing the
computation of all proofs as a product between a Toeplitz matrix and the committed vector, which can be computed
fast using Discrete Fourier Transforms (DFTs). We quickly prototype our algorithm in C++ and show it is much
faster than the naive algorithm for computing all proofs in Pointproofs.

1 Introduction
Gorbunov et al. [GRWZ20] introduced Pointproofs, an elegant vector commitment (VC) scheme which enhances the
Libert-Yung VC [LY10] with subvector proofs and (cross)aggregation of proofs. Pointproofs was originally proposed
for stateless validation in cryptocurrencies with smart contracts, where each contract is allocated a small memory of
N = 1000 locations that can be committed to using the Pointproofs VC. In subsequent work, Leung et al. [LGG+20]
build an authenticated dictionary called Aardvark on top of the Pointproofs VC. Importantly, both of these applica-
tions would benefit greatly from faster proof computation.

Unfortunately, the fastest way to compute all N proofs in the Pointproofs VC is O(N2) time, which can be too
slow for large VCs. In this short paper, we give a faster O(N logN) time algorithm. We implement our algorithm
and observe it outperforms the naive one very quickly (see Fig. 1). We also observe that our O(N logN)-time proof
precomputation for Pointproofs is slightly faster than the O(N logN)-time proof precomputation in VCs based on
Kate-Zaverucha-Goldberg (KZG) polynomial commitments [KZG10, FK20,TAB+20].

2 Preliminaries

Notation. LetG1,G2,GT denote groups of prime order p. Let e : G1×G2 → GT [GPS08] be a Type III pairing (i.e.,
G1 ̸= G2 and there is no efficiently computable homomorphisms between G1 and G2). Let [N] = {1, 2, . . . , N}.
Let m = [m1,m2, . . . ,mN] be a vector of elements, indexed from 1 to N . Let m⊤ denote its transpose: a column
vector whose ith entry is mi. Let x ◦ y = [x1y1, x2y2, . . . , xNyN]⊤ denote the Hadamard product of two column
vectors. Let diag(m) denote theN ×N diagonal matrix whose entry at position (i, i) ismi and all other entries are
0. Also, diag(m) = diag(m⊤). Let m[S] = (mi)i∈S be a subvector of m consisting only of the positions i ∈ S.

2.1 Discrete Fourier Transform (DFT) on group elements
Let ωN denote a primitive N th root of unity in the finite field Zp. The Discrete Fourier Transform (DFT) of a vector
x = [x1, . . . , xN]⊤ ∈ GN

1 is defined as:

DFT(x) = x̂ = [x̂1, . . . , x̂N]⊤ ∈ GN
1 , where x̂i =

∏
j∈[N]

(xj)
(ωN)(i−1)(j−1)

,∀i ∈ [N] (1)

Importantly, the DFT can be computed in O(N logN) time [CLRS09]. Furthermore, it is invertible: one can define
DFT−1(·) such that DFT−1(DFT(x)) = DFT(DFT−1(x)) = x.

1

2.1.1 The DFT matrix

DFT(x) can also be computed as a matrix product as follows:

DFT(x) = WNx (2)

Here, WN is known as the DFT matrix:

WN =

1 1 1 1 · · · 1
1 (ωN)1 (ωN)2 (ωN)3 · · · (ωN)N−1

1 (ωN)2 (ωN)4 (ωN)6 · · · (ωN)2(N−1)

1 (ωN)3 (ωN)6 (ωN)9 · · · (ωN)3(N−1)

...
...

...
...

. . .
...

1 (ωN)N−1 (ωN)2(N−1) (ωN)3(N−1) · · · (ωN)(N−1)(N−1)

(3)

This makes it very easy to define the inverse DFT of a size-N column vector y as:

DFT−1(y) = (WN)−1y (4)

=
1

N
WNy (5)

Note that the inverse of the DFT matrix WN is simply 1
NWN . Thus, an inverse DFT can be reduced to computing a

normal DFT and scaling it by 1/N . As a result, an inverse DFT also takes O(N logN) time.

2.2 Circulant matrices
A circulant matrix of size N ×N is a matrix of the following form:

CN =

c0 cN−1 cN−2 · · · · · · c1

c1 c0 cN−1
. . .

...

c2 c1
.

...
...

. cN−1 cN−2

...
. . . c1 c0 cN−1

cN−1 · · · · · · c2 c1 c0

(6)

In other words, as you go from left to right, each column is set to the previous column but “rotated down” by
one. (Looked at differently, each row is set to the row above it but “rotated to the right” by one.)

Vector representation. Note that CN is uniquely determined by its first column, which we denote by cN =
[c0, c1, c2, . . . cN−1]

⊤.

An example. The following matrix is a circulant matrix:
7 3 8 1
3 7 3 8
8 3 7 3
1 8 3 7

 (7)

2.2.1 Multiplying a circulant matrix by a vector

It is well-known that one can diagonalize [Wik20] any circulant matrix CN with vector representation cN as:

CN = (WN)−1diag(DFT(cN))WN (8)

2

Let m = [m1, . . . ,mN]⊤ be a vector. Recall x ◦ y = [x1y1, x2y2, . . . , xNyN]⊤ is the Hadamard product of two
column vectors. It is also well-known that the above diagonalization can be leveraged to efficiently compute matrix-
vector products CNm as:

CNm = ((WN)−1diag(DFT(cN))WN)m (9)
= (WN)−1diag(DFT(cN))(WNm) (10)
= ((WN)−1diag(DFT(cN)))DFT(m) (11)
= (WN)−1(DFT(cN) ◦ DFT(m)) (12)
= DFT−1(DFT(cN) ◦ DFT(m)) (13)

In other words, such products by circulant matrices reduce to computing two DFTs and one inverse DFT. Overall,
this takes O(N logN) time.

Observation: The DFT on m is a DFT on field elements, rather than group elements:

DFT(m) = m̂ = [m̂1, . . . , m̂N]⊤ ∈ Zp, where m̂i =
∏

j∈[N]

mj(ωN)(i−1)(j−1),∀i ∈ [N] (14)

2.3 Toeplitz matrices
A Toeplitz matrix or diagonal-constant matrix of size N ×N is a matrix of the following form:

AN =

a0 a−1 a−2 · · · · · · a−(N−1)

a1 a0 a−1
. . .

...

a2 a1
.

...
...

. a−1 a−2

...
. . . a1 a0 a−1

aN−1 · · · · · · a2 a1 a0

(15)

In other words, all of AN ’s descending diagonals (from left to right) have the same entries. For simplicity, we are
slightly abusing notation here and using negative indices for the entries of the matrix. Note that a circulant matrix
(see Section 2.2) is a special kind of Toeplitz matrix with a−i = aN−i,∀i ∈ [N − 1].

An example. The following matrix is a Toeplitz matrix:
7 11 5 6
3 7 11 5
8 3 7 11
1 8 3 7

 (16)

2.3.1 Multiplying a Toeplitz matrix by a vector

Suppose we want to multiply a Toeplitz matrix AN by a size-N colum vector m. Note that we can turn any such
AN into a circulant matrix of size 2N by finding another matrix BN so that the following matrix is circulant:

C2N =

[
AN BN

BN AN

]
(17)

For now, assume we can find such a BN . Then, let m′ =

[
m
0N

]
be an extension of the column vector m with N

extra zeros appended to it, which are denoted by the size-N column vector 0N . Finally, note that:

C2Nm′ =

[
AN BN

BN AN

] [
m
0N

]
=

[
ANm
BNm

]
(18)

3

In other words, we can compute ANm by computing C2Nm′, which can be done in O(N logN) time (see Sec-
tion 2.2.1).

How to find the matrix BN? First, let us take a small example A4:

A4 =

a0 a−1 a−2 a−3

a1 a0 a−1 a−2

a2 a1 a0 a−1

a3 a2 a1 a0

 (19)

Let us start embedding it in a circulant matrix C8:

C8 =

[
A4 B4

B4 A4

]
=

a0 a−1 a−2 a−3 ? ? ? ?
a1 a0 a−1 a−2 ? ? ? ?
a2 a1 a0 a−1 ? ? ? ?
a3 a2 a1 a0 ? ? ? ?
? ? ? ? a0 a−1 a−2 a−3

? ? ? ? a1 a0 a−1 a−2

? ? ? ? a2 a1 a0 a−1

? ? ? ? a3 a2 a1 a0

(20)

The remaining task is to fill in the gaps that define B4 while ensuring C8 remains circulant. Fortunately, we can
easily fill in some of the gaps:

C8 =

[
A4 B4

B4 A4

]
=

a0 a−1 a−2 a−3 ? ? ? ?
a1 a0 a−1 a−2 a−3 ? ? ?
a2 a1 a0 a−1 a−2 a−3 ? ?
a3 a2 a1 a0 a−1 a−2 a−3 ?
? a3 a2 a1 a0 a−1 a−2 a−3

? ? a3 a2 a1 a0 a−1 a−2

? ? ? a3 a2 a1 a0 a−1

? ? ? ? a3 a2 a1 a0

(21)

The only thing missing is B4’s descending diagonal, since we have defined all of its other entries above! Note that
C8 will be circulant as long as this diagonal has the same entries. Thus, for simplicity, we set them all to a0.

C8 =

[
A4 B4

B4 A4

]
=

a0 a−1 a−2 a−3 a0 a3 a2 a1
a1 a0 a−1 a−2 a−3 a0 a3 a2
a2 a1 a0 a−1 a−2 a−3 a0 a3
a3 a2 a1 a0 a−1 a−2 a−3 a0
a0 a3 a2 a1 a0 a−1 a−2 a−3

a−3 a0 a3 a2 a1 a0 a−1 a−2

a−2 a−3 a0 a3 a2 a1 a0 a−1

a−1 a−2 a−3 a0 a3 a2 a1 a0

(22)

We can now generalize converting any AN to a circulant matrix C2N . Let [a0, a1, . . . , aN−1]
⊤ be the first column

of AN , and let [a0, a−1, a−2, . . . , a−(N−1)] be the first row of AN , which together fully define the matrix AN . We
can let BN be a Toeplitz matrix whose first column is:

[a0, a−(N−1), a−(N−2), . . . , a−1]
⊤ (23)

and whose first row is:

[a0, aN−1, aN−2, . . . , a1]
⊤ (24)

This ensures that C2N is circulant, which allows us to multiply it by m′ in O(N logN) time (see Section 2.2.1) and
obtain ANm as per Eq. (18). Note that the vector representation of C2N is:

c2N = [a0, a1, . . . , aN−1, a0, a−(N−1), a−(N−2), . . . , a−1]
⊤ (25)

4

2.4 Pointproofs
Gorbunov et al. [GRWZ20] enhance the VC by Libert and Yung [LY10] with the ability to aggregate multiple proofs
into a subvector proof. Additionally, they also enable aggregation of subvector proofs across different vector com-
mitments, which they show is useful for stateless smart contract validation in cryptocurrencies.
Public parameters. The Pointproofs VC is bounded: it can only commit to vectors of max size N . Let g1, g2, gT be
generators ofG1,G2 andGT respectively, which everybody knows. The O(N)-sized proving key used to commit to
a vector is:

prk = (gα1 , . . . , g
αN

1 ; gα
N+2

1 , . . . , gα
2N

1) (26)

The O(N)-sized verification key used to verify proofs is:

vrk = (gα2 , . . . , g
αN

2 ; gα
N+1

T) (27)

Note that gαN+1

1 is “missing” from the proving key, which is essential for security. Together, prk and vrk constitute
the public parameters of the scheme and must be generated securely via a trusted setup.
Commitment. A commitment C to a vector m = [m1, . . . ,mN] is:

C =
∏

i∈[N]

(
gα

i

1

)mi

= g
∑

i∈[N] miα
i

1 (28)

The commitment can be computed with O(N) G1 exponentiations.
Proofs for a mi. A proof for mi is obtained by re-committing to v so that mi “lands” at position N + 1 (i.e., has
coefficient αN+1) rather than “landing” at position i (i.e., has coefficient αi). Furthermore, this commitment will not
contain mi: it cannot, since that would require knowledge of gαN+1

1 , which is not part of the proving key prk. To
get position i to N + 1, we must “shift” it (and every other position) by (N + 1)− i. Thus, the proof is:

πi = g
∑

j∈[N]\{i} mjα
j+(N+1)−i

1 (29)

=

(
g
∑

j∈[N]\{i} mjα
j

1

)α(N+1)−i

(30)

=

g
∑

j∈[N] mjα
j

1

gmiαi

1

α(N+1)−i

(31)

= (C/gmiα
i

1)α
(N+1)−i

(32)

The proof is constant-sized and can be computed with O(N) G1 exponentiations. Given gα
(N+1)−i

2 from the verifi-
cation key vrk, it can be verified in constant-time using two pairings:

e(C, gα
(N+1)−i

2)
?
= e(πi, g2) · gα

N+1mi

T (33)

Other features. Updating the commitment after position i changes is possible in O(1) time given gα
i as auxiliary

information. Updating proofs is not discussed but can be done in O(1) time, if given some auxiliary information
associated with the changed position j and the proved position i. In addition to computing proofs πi for a single
vector element mi, Pointproofs additionally supports computing constant-sized proofs for a subvector m[S]. Im-
portantly, Pointproofs supports aggregating individual proofs πi, i ∈ S into a subvector proof πS for m[S], as well
as cross-aggregating multiple subvector proofs π̂j each for a different subvector mj [Sj] and each with respect to a
different commitment Cj , into a single proof π. We refer the reader to the original paper for details on subvector
proofs and (cross)aggregation [GRWZ20].
Precomputing all proofs. Precomputing all proofs efficiently in Pointproofs is not discussed. Naively, it can be
done in O(N2) time by computing each proof πi in O(N) time. In Section 3, we show how this can be done in
O(N logN) time using a Toeplitz matrix multiplication.

5

3 Computing all Pointproofs

Recall from Eq. (29) that a proof πi for an element mi of m = [m1, . . . ,mN]⊤ is:

πi = g
∑

j∈[N]\{i} mjα
j+(N+1)−i

1 (34)

=
∏

j∈[N]\{i}

g
mjα

j+(N+1)−i

1 (35)

We first give an example for computing all proofs when N = 4 and then generalize to arbitrary N . Note that, in
this case, our four proofs will be:

π1 = gm2α
6

1 gm3α
7

1 gm4α
8

1 (36)

π2 = gm1α
4

1 gm3α
6

1 gm4α
7

1 (37)

π3 = gm1α
3

1 gm2α
4

1 gm4α
6

1 (38)

π4 = gm1α
2

1 gm2α
3

1 gm3α
4

1 (39)

First, observe that each πi is missing gα
N+1mi

1 , since the element being proved is not actually part of the proof (see
Eq. (29)). Second, observe that the exponents αj shift by one to the right as we move down to the next proof. Third,
observe these equations can be rewritten as inner products. Specifically, if we let:

a1 = [g01 , g
α6

1 , gα
7

1 , gα
8

1] (40)

a2 = [gα
4

1 , g01 , g
α6

1 , gα
7

1] (41)

a3 = [gα
3

1 , gα
4

1 , g01 , g
α6

1] (42)

a3 = [gα
2

1 , gα
3

1 , gα
4

1 , g01] (43)

Then, each proof πi is an inner product between ai and m:

π1 = a1m (44)
π2 = a2m (45)
π3 = a3m (46)
π4 = a4m (47)

As a result, the vector of proofs π can be computed using a matrix product:
π1

π2

π3

π4

 =

−−− a1 −−−
−−− a2 −−−
−−− a3 −−−
−−− a4 −−−

m1

m2

m3

m4

 =

g01 gα

6

1 gα
7

1 gα
8

1

gα
4

1 g01 gα
6

1 gα
7

1

gα
3

1 gα
4

1 g01 gα
6

1

gα
2

1 gα
3

1 gα
4

1 g01

m1

m2

m3

m4

 (48)

In other words, we have π = Am, where A is the matrix whose ith row is ai and π is a column vector whose ith
entry is the proof πi.

Key observation: The matrix A is a Toeplitz matrix, which means multiplying it by m can be done in O(N logN)
time, as explained in Section 2.3. As a result, all proofs can be computed in O(N logN) time, which is much faster
than the naive O(N2).

Generalizing to any N . Recall that the proof πi is just a commitment to the vector, but “shifted” by (N + 1) − i
to the right. Looking at mj ’s coefficients in Eq. (35), we can define ai as:

ai =
[
g
1+(N+1)−i
1 , g

2+(N+1)−i
1 , . . . , g

(i−1)+(N+1)−i
1 , g01 , g

(i+1)+(N+1)−i
1 , . . . , g

N+(N+1)−i
1

]
(49)

6

Next, the matrix A is just the matrix whose ith row is ai:

A =

−−− a1 −−−
−−− a2 −−−

...
−−− aN −−−

 (50)

And all proofs π = [π1, . . . , πN]⊤ can be computed as:

π = Am (51)

Using the techniques from Section 2.3.1, this can be done inO(N logN) time. The key step is constructing a circulant
matrix C2N that contains A. First, A is defined by its first column, denoted by c1, and first row, denoted by a1:

c1 = [g01 , g
N
1 , gN−1

1 , . . . , g21]
⊤ (52)

a1 = [g01 , g
N+2
1 , gN+3

1 , . . . , g2N1] (53)

As explained in Section 2.3.1, the circulant matrix C2N will have vector representation:

c2N = [c1, g
0
1 , g

2N
1 , · · · , gN+3

1 , gN+2
1]⊤ (54)

= [g01 , g
N
1 , gN−1

1 , . . . , g21 , g
0
1 , g

2N
1 , · · · , gN+3

1 , gN+2
1]⊤ (55)

(56)

Let m′ = [m,0N]⊤ be a size-2N vector that extends m with N zeros. Then, π can be computed as the first N
entries of π′, which will be of size 2N :

π′ = DFT−1(DFT(c2N) ◦ DFT(m′)) (57)

4 Quick prototype
We implemented our fast technique for Pointproofs using libff [SCI16]. We also implemented the Feist and Khovra-
tovich (FK) [FK20] technique for computing all proofs in KZG-based VCs [TAB+20]. Our code is available at:

https://github.com/alinush/libvectcom

We ran three benchmarks on a Macbook Pro with a 2.4 GHz 8-Core Intel Core i9 and 32 GB of RAM, for different
vectors of size N = 2, 4, 8, 16, . . . , 1024. We measured:

• Our fast O(N logN)-time proof precomputation in Pointproofs from Section 3,

• The naive O(N2)-time proof precomputation for Pointproofs,

• The fast O(N logN)-time proof precomputation for KZG-based VCs via the FK technique.
We plot the results in Fig. 1. We find that our O(N logN) algorithm for Pointproofs scales much better than the
naive, O(N2) one. We also find that computing all proofs in Pointproofs using our algorithm is slightly faster than
computing all proofs in KZG-based VCs using the FK technique. This is because the FK techniques requires an
additional DFT on group elements.

5 Conclusion
In this short paper, we reduced the time to compute allN proofs in the Pointproofs vector commitment scheme from
O(N2) toO(N logN). The key ingredient was representing the proof computation as a product between a Toeplitz
matrix and a vector, which can be computed fast via Discrete Fourier Transforms (DFTs) on group elements. Our
implementation shows our O(N logN) algorithm is considerably faster when compared to the naive O(N2) proof
precomputation algorithm in Pointproofs. It is also slightly faster than the FK-based [FK20] proof precomputation
in KZG-based VCs such as [TAB+20].
Acknowledgements. We thank Leonid Reyzin for suggesting to look at Pointproofs from the lens of polynomial
commitments, which inspired the author to devise this technique for computing all proofs fast.

7

https://github.com/alinush/libvectcom

Precomputing all N proofs in Pointproofs and in KZG-based VCs

Figure 1: The x-axis is log2 N , where N is the size of the vector of messages m. The y-axis is the time to compute
all N proofs for the specified scheme, in microseconds.

8

References
[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,

Third Edition. The MIT Press, 3rd edition, 2009.

[FK20] Dankrad Feist and Dmitry Khovratovich. Fast amortized Kate proofs, 2020. https://github.
com/khovratovich/Kate.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113 – 3121, 2008. Applications of Algebra to Cryptography.

[GRWZ20] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating Proofs
for Multiple Vector Commitments. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’20, page 2007–2023, New York, NY, USA, 2020. Association for Comput-
ing Machinery.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Commitments to Polynomials and
Their Applications. In ASIACRYPT’10, 2010.

[LGG+20] Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, and Nickolai Zeldovich. Aardvark: A Con-
current Authenticated Dictionary with Short Proofs. Cryptology ePrint Archive, Report 2020/975, 2020.
https://eprint.iacr.org/2020/975.

[LY10] Benoît Libert andMoti Yung. ConciseMercurial Vector Commitments and Independent Zero-Knowledge
Sets with Short Proofs. In TCC’10, 2010.

[SCI16] SCIPR Lab. libff. https://github.com/scipr-lab/libff, 2016. Accessed: 2018-07-28.

[TAB+20] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich.
Aggregatable Subvector Commitments for Stateless Cryptocurrencies. In Clemente Galdi and Vladimir
Kolesnikov, editors, Security and Cryptography for Networks, pages 45–64, Cham, 2020. Springer Inter-
national Publishing.

[Tom19] Alin Tomescu. libpolycrypto, 2019. https://github.com/alinush/libpolycrypto/
tree/fk.

[Wik20] Wikipedia contributors. Diagonalizable matrix — Wikipedia, the free encyclopedia, 2020. [Online; ac-
cessed 2-December-2020].

9

https://github.com/khovratovich/Kate
https://github.com/khovratovich/Kate
https://eprint.iacr.org/2020/975
https://github.com/scipr-lab/libff
https://github.com/alinush/libpolycrypto/tree/fk
https://github.com/alinush/libpolycrypto/tree/fk

	Introduction
	Preliminaries
	Discrete Fourier Transform (DFT) on group elements
	The DFT matrix

	Circulant matrices
	Multiplying a circulant matrix by a vector

	Toeplitz matrices
	Multiplying a Toeplitz matrix by a vector

	Pointproofs

	Computing all Pointproofs
	Quick prototype
	Conclusion

