
On Leakage-resilient Secret Sharing

Hemanta K. Maji, Anat Paskin-Cherniavsky, Tom Suad, and Mingyuan Wang

Abstract. The security of cryptographic primitives typically relies on
the storage of private secrets by each participant in a perfect manner.
However, increasingly, side-channel attacks are demonstrating the pitfalls
of assuming these cryptographic entities as opaque monolithic objects
over the entire duration the primitive remains alive. Motivated by such
concerns, there is a significant interest in revisiting well-established cryp-
tographic primitives and their implementations to identify whether their
security continues to hold in the presence of such side-channel attacks.
Although there are compilers to convert any secret sharing scheme into
one that is robust to local leakage on each of their shares, it is not
feasible to replace every instance of traditional secret sharing schemes
in use with a leakage-resilient counterpart. Beyond efficiency consider-
ations, there may be an appropriate structure in specific secret-sharing
schemes that are fundamental to their usage in a particular context. For
example, the use of a linear secret sharing scheme helps perform secure
aggregation of statistics in parallel (for example, the sum of the private
inputs of the participants) even in the presence of malicious parties. The
reconstruction threshold of these secret sharing schemes determines the
threshold of corruption permissible in the secure computation protocol;
a lower reconstruction threshold implies a higher efficiency.
This paper makes a two-fold contribution. First, we continue to study
the local leakage resilience of Reed-Solomon codes as initiated by Ben-
hamouda, Degwekar, Ishai, and Rabin (2018). We improve their lower
bound on the reconstruction threshold for Reed Solomon codes from
0.907n to 0.867n for one-bit leakage from each secret share, where n
represents the number of parties receiving the secret shares.
Next, we explore whether, in the presence of local leakage, there is
something inherent to maximum-distance separable (MDS) codes (Reed
Solomon code is a particular example from this class of codes) that in-
nately demands high reconstruction thresholds. Towards this investiga-
tion, we study random MDS codes and their necessary reconstruction
threshold to remain resilient to a constant local leakage from each share.
Given any δ ∈ (0, 1/2), we prove that most random MDS codes over suit-
ably large fields with reconstruction threshold (1/2+ δ)n are resilient to
constant local leakage.
In terms of techniques, both results rely on a Fourier-analytic approach
to this problem. In particular, the second result relies on new and subtle
analysis techniques for random MDS codes, which we believe shall be of
independent interest.
Finally, we also contribute to the impossibility of designing secret-sharing
schemes based on MDS codes over prime-order fields, where the dimen-
sion of the code is very small. If one insists on exponentially small in-
distinguishability among the shares generated by two different secrets,

then the dimension of the code needs to be Ω(n/ logn) even when the
adversary obtains only m = 1 bit leakage from each of the shares and
the field size is arbitrarily large.

Keywords: Randommaximum distance separable codes, Local leakage resilience,
Discrete Fourier analysis.

1 Introduction

Traditionally, we interpret participants in cryptographic protocols as impervious
objects interacting with their computing devices remaining shielded from all
external snooping or meddling. However, sophisticated side-channel attacks have
increasingly proven this assumption false. Private keys, for example, may leak
during storage or computation via surprisingly novel side-channel attacks [12].
The cryptographic protocols are typically not designed to be robust to such
leakage. However, some primitives have turned out to be robust to such leakage
attacks [4].

One such fundamental primitive is secret-sharing schemes. In the presence of
local leakage from each secret share, our objective is to characterize the specific
security achieved by these secret-sharing schemes. For example, if an adversary
can perform one-bit local leakage from each party’s secret share, then any lin-
ear secret-sharing scheme over fields of characteristic two is rendered entirely
insecure; because an adversary who learns the last bit of each secret share can
reconstruct the last bit of the secret as well.

Consequently, there are compilers to convert a linear secret sharing scheme
into one that is resilient to m-bit local leakage from every share. However, the
leakage-resilient counterpart may not be able to replace every instance of the
original secret sharing scheme. The scenarios where one uses these secret-sharing
schemes possibly rely on other salient features innate to them, for example, their
additive nature, their ability to participate in cut-and-choose protocols, and their
ability to efficiently correct errors during reconstruction. Typically, one may use
linear secret sharing schemes (over large prime fields) for secure data aggrega-
tion (for example, performing the summation of private inputs of parties) in the
presence of malicious participants. A reduction in the reconstruction threshold
allows a smaller set of parties to recover the secret. Therefore, such a scheme can
tolerate a higher number of (colluding) malicious parties in the secure computa-
tion protocol (as long as the reconstruction threshold is higher than the number
of adversarial parties).

Consequently, there is a significant interest in constructing secret-sharing
schemes with lower reconstruction threshold. However, ensuring local leakage
resilience may require the reconstruction threshold to be high. This paper stud-
ies the reconstruction threshold necessary for some fundamental secret-sharing
schemes.

2

1.1 Our Contribution

Our paper makes two contributions towards enhancing our understanding of
local leakage resilience of secret-sharing schemes over prime-order fields. Briefly,
in this setting, an adversary chooses an arbitrary vector of leakage functions with
m bit output each to be applied to every share, and receives the output of these
functions to a random sharing of a secret. Its goal is to distinguish between some
pair of secrets with as large an advantage as possible. The m-leakage error of a
scheme corresponds to the distinguishing advantage of the best such adversary.
See [4] for more details and motivation on the setting.

In this paper, we focus on the easiest case for local leakage resilience ofm = 1
bits of leakage, which is still far from well-understood. First, we study the local
leakage resilience of the Shamir secret-sharing scheme.

Informal Theorem 1 (Shamir Secret Sharing: Reconstruction Thresh-
old for One-bit Leakage) Consider (n, t)-Shamir secret sharing scheme over
a prime-order field Fp, where t is the reconstruction threshold. If the reconstruc-
tion threshold satisfies t ≥ 0.867n then the leakage error for m = 1 is at most
2−Ω(n).

Recently, Benhamouda, Degwekar, Ishai, and Rabin [4] proved that the thresh-
old needs to be t ≥ 0.907n.1 The decrease in the reconstruction threshold for the
Shamir’s secret sharing scheme potentially helps increase the security of its ap-
plications; for example, in a verifiable secret sharing scheme implemented using
a linear error-correcting code, the reconstruction threshold directly translates
into the number of honest parties required to force adversarial parties into be-
having honestly. So, a higher reconstruction threshold must need a large number
of honest parties. Shamir’s scheme is, in fact, a special case of a linear scheme for
(n, t)-threshold access structure derived from a linear [n + 1, t,Fp]-MDS codes
via [17]. In fact, both our and [4]’s result holds for every such scheme derived from
an MDS code as described above - hereafter referred to as a ‘Massey scheme [17].’

Next, we proceed to exploring whether the structure of linear maximum dis-
tance separable (MDS) codes have some inimical property to local leakage re-
silience. Towards this objective, we explore the local leakage resilience of random
linear MDS codes over prime-order fields of sufficiently large (yet still practical)
size. We prove that, roughly, a random Massey scheme is m-leakage resilient for
constant m for t arbitrarily close to n/2 with high probability.

Informal Theorem 2 (Random MDS Codes: Reconstruction Thresh-
old for Constant Leakage) Fix a constant δ ∈ (0, 1/2) and a constant leakage
threshold m. Let n be the number of parties receiving the secret shares. Let C be
1 Our techniques can be used to improve the upper bounds for larger m appearing
in [4] to a certain extent, but we explicitly state the results for m = 1 for simplicity
and clarity. The eprint version of their paper [5] claims a smaller constant in Theorem
1.2, which is a consequence of an incorrect calculation. We have interacted with the
authors to ensure that the constant mentioned here is an accurate reflection of their
result.

3

a random MDS code over a prime-order field F = Fp such that |F| = 2Oδ,m(n).
Let ShC be the secret sharing scheme corresponding to the code C with recon-
struction threshold t. An adversary can perform at most m-bit leakage from each
party’s secret share. If the reconstruction threshold of ShC is t ≥ (1/2+δ)n then
it is m-leakage resilient with leakage error 2−Ω(n) with overwhelming probability
over the choice of C.

Our proof of the above theorem is non-constructive, making use of the proba-
bilistic method (overcoming some technical hurdles to get reasonable parameters
for the size of p). This leaves open the intriguing question of whether a threshold
below n/2 is possible. A positive answer would open the door to “BGW-based”
information-theoretic leakage resilient MPC with honest majority for general
functions in the plain model. As we show below, new analysis techniques are
required to resolve this question.

On applications to MPC. Leakage resilient MPC has been constructed in vari-
ous setting based on leakage resilient secret sharing schemes constructed using
general compilers as described above against local leakage with very large m,
approaching share size. However, these compilers do not preserve linearity of the
secret sharing scheme, for instance, incurring additional overhead on the result-
ing MPC scheme. Furthermore, it is important to note that achieving an LSSS
for t < 0.5n is not directly sufficient for general MPC. The LSSS should also
be multiplicative, as is Shamir’s scheme, but additional linear schemes have this
property as well (see [6] for details). We hope that if we manage to prove that
a random [n, t,Fp] linear code is an LSSS with high probability, we will be able
to make a similar argument for random multiplicative additive codes.

Both positive results above proceed by undertaking a Fourier analytic ap-
proach to the problem of upper bounding the distinguishing advantage for m-bit
local leakage from each party’s secret share. In particular, our bound for Shamir
secret sharing proceeds along the lines of [4]’s analysis, and we gain an extra ad-
vantage by more precise accounting for the 0-coordinates of the dual code C⊥ of
the Reed-Solomon code corresponding to Shamir’s secret sharing. In a nutshell,
this helps as these 0-coordinates correspond to the 0-Fourier coefficients of cer-
tain boolean functions related to the leakage functions, which are the largest (in
absolute value) coefficient for each of these functions. For a given local leakage
function vector, the leakage error is such that many large coefficients in a sin-
gle codeword of C⊥ make a large contribution to the overall achievable leakage
error.

The analysis of the second result proceeds by carefully carrying out subtle
accounting for the magnitude of Fourier coefficients. In some more detail, we
observe that non-0 coefficients may be large as well, and rely on Parseval’s iden-
tity to bound their number in each coordinates’ leakage function. Then, we prove
that with high probability over the choice of the code, only few codewords of C⊥
have “many” coordinates corresponding to large Fourier coefficients simultane-
ously, so their overall contribution to the maximal achievable leakage advantage
can not be very large.

4

We also extend the known lower-bounds for locally leakage-resilient secret
sharing schemes that are constructed from MDS error-correcting codes. First,
we observe that k, the dimension of the error-correcting code, cannot be very
small relative to n, if an exponentially-small local leakage resilience of ε = 2−Ω(n)

is to be achieved even for m = 1 bits of local leakage, for any field size p. In
particular, we must have k = Ω(n/ log(n)). Previously, a similar bound was
known only for fields of size polynomial in n [19].

Informal Theorem 3 (Lower bound on k) Let C denote an linear MDS code
[n+1, k,Fp] such that the corresponding (k, n)-secret sharing scheme (ShC , RecC)
has leakage resilience ε = 2−Ω(n) for m = 1 bits of leakage from each share, and
any field size p(n). Then, it must be the case that k = Ω(n/ log(n)).

In a somewhat different direction, we observe regarding natural hurdles to
proving the result for k < n/2 using Fourier analytic techniques used in the LSS
papers so far (including the current results). Consider an approach where we
bound the Fourier coefficients using only their absolute values and rely on the
Parseval’s identity. Then, such approaches shall fail in meaningfully bounding
the distinguishing advantage. We provide a (hypothetical) Fourier spectrum that
is transparent to the class of techniques used in the line of work. In this example,
the upper-bound for the distinguishing advantage diverges (to infinity) with the
field size p. This indicates that additional properties of the Fourier spectrum of
boolean functions should be used to improve the upper bounds, if at all.

1.2 Prior Works

Leakage-resilience has been a major topic in cryptography and there is a vast
literature in this line of work (to name a few, [14, 9, 15, 13, 18, 8, 7]). Below, we
only discuss those works that are closely related to this work.

In the field of code repairing, Guruswami and Wootters [11] showed that, for
fields of characteristic 2, it might be possible to recover the secret by learning one-
bit information from each share. Inspired by their work, Benhamouda, Degwekar,
Ishai, and Rabin [4] initiated the study of leakage resilience of linear secret
sharing schemes over a prime order field. Subsequently, Nielsen and Simkin [19]
studied the upper bound on the amount of leakage. In particular, for (n, t)-
Shamir-secret sharing, they showed that the amount of leakage from each share
cannot exceed t logn

n−t .
Recently, there also have been many works [10, 2, 16, 20, 1] trying to con-

struct compilers that strengthen existing secret-sharing schemes with various
guarantees of leakage-resilience.

2 Preliminaries

We denote by I(p) = −p · ln(p) − (1 − p) · ln(1 − p) the Shannon entropy of
0 < p < 1. For j ≤ k, where (n − j)/n, j/n = Θ(1) it follows from Stirling’s

5

approximation that (
n

j

)
= (1 + o(1)) 2I(j/n)n (1)

By log(x) we refer to the base 2 logarithm unless stated otherwise.
Given two matrices M1 ∈ Fa1×b,M2 ∈ Fa2×b, we denote by (M1;M2) the

matrix resulting from concatenating M2 under M1, i.e., the matrix
[
M1

M2

]
. We

denote the rows (resp., columns) of M1 by Rows(M1) (resp., Cols(M1)), and
the number of rows (resp., columns) by rows(M1) (resp., cols(M1)). By default,
vectors are row vectors (which are sometimes viewed as 1 × a matrices). A
submatrix corresponding to index sets of rows and columns X,Y respectively
is denoted by M [X,Y]. In this context, ‘*’ stands for the set of all rows or
columns respectively, and abbreviate singleton sets via the element contained
in it. We sometimes use M [X] as an abbreviation for M [X, ∗]. Similarly, for a
vector v, v[I] denotes the vector resulting from projecting v to a subset I of its
coordinates. For a set of vectors G ⊆ Ar, and a set of indices I ⊆ [r], we also
denote G[I] = {a[I] | a ∈ G}.

For a set A, when there is no risk of confusion, we sometimes abuse notation,
and view A as the uniform distribution over A.

2.1 Error correcting codes.

An [n, k,Fp] linear error-correcting code (ECC) C is a subspace of Fnp of dimen-
sion k. A code is said to have distance d if every pair of distinct codewords have
Hamming distance at least d. A generating matrix G = (g1; ...; gn) ∈ Fn×kp of C
is a matrix whose columns constitute a basis of C. The dual code C⊥ of a linear
code C is {x ∈ Fnp | ∀c ∈ C, 〈x, c〉 = 0}, and we denote the generating matrix of
C⊥ by H = (h1; . . . ;hn) ∈ Fn×(n−k)p .

We say a code is Maximum Distance Separable (MDS) if d = n− k + 1. We
will need a few well known equivalent formulations of MDS codes.

Claim. Let C be a linear [n, k,Fp] code. Then the following statements are equiv-
alent:

– C is a linear [n, k,Fp]-MDS code.
– C⊥ is a linear [n, k′ = n− k,Fp]-MDS code.
– Every set of k rows of G are linearly independent.

2.2 Fourier Analysis

For our purposes, we only recall Fourier analysis for G which is the additive
group of a finite field. Let F = {0, . . . , p − 1} be a field of order p, where p is
prime. Let f : F → C be an arbitrary complex-valued function. For z ∈ C, we
let z denote the complex conjugate of z. We define the inner-product of two
functions f, g : F→ C as follows

〈f, g〉 := 1

p

∑
x∈F

f(x)g(x). (2)

6

A character of F is a homomorphism from the additive group F to the multiplica-
tive group C∗. The set of characters of F, to which we refer to as F̂ itself forms
a group under coordinate-wise multiplications. In fact F̂ = {χ0, χ1, . . . , χp−1}
precisely satisfies χi(x) = exp (2πı · ix/p). The χi’s form an orthonormal basis
of Cp. That is, we have:

〈χi, χj〉 =

{
0, if i 6= j

1, if i = j
. (3)

For i ∈ F, we define the Fourier coefficient f̂(i) := 〈f, χi〉. Furthermore, the
mapping f 7→ f̂ is a full-rank linear mapping. Parseval’s identity states that

〈f, f〉 =
∑
i∈F

f̂(i)2. (4)

As [5], we follow the “standard” notation in additive combinatorics. In this
notation, when working over F, the Haar measure as in Equation 2, and the
counting measure assigning 1 to each i ∈ F̂ is used when working over F̂. So,
norms will be taken with respect to the underlying measure. Using this conven-
tion, we can compactly rephrase Parseval’s identity as 〈f, f〉 = 〈f̂ , f̂〉.

Quoting for completeness, the lemma states that
∑
`i
|1̂`i(α)| = 1 if α = 0

and is upper-bounded by the constant cm < 1 otherwise (for every constant
m ≥ 1). For instance, limp→∞ c1 = 2/π when m = 1.

We will need the following technical Lemma from [5].

Lemma 1. (Lemma 4.17, [5]) Let L ∈ Lm,n,p, where m is a constant. Then,
for each i ∈ [n], it holds that{∑

`i
|1̂`i(α)| = 1 if α = 0∑

`i
|1̂`i(α)| ≤ cm if α 6= 0

for cm = 2m sin (π/2m)
p sin (π/p) . Furthermore, cm = 1−Ωm(1), for sufficiently large p.2

2.3 Leakage resilient secret sharing

We consider the standard notion of perfect secret sharing schemes for general
(monotone) access structures A ⊆ P ([n]) (specifying the qualified sets of parties)
for some n parties. For the t-threshold access structure, where the qualified
subsets I ⊆ [n] are those of size at least t, we refer to secret sharing schemes
implementing this access structure by (n, t)-secret sharing scheme. We will only
consider linear secret sharing schemes over some finite field Fp. Recall, that such
a secret sharing scheme is a pair of algorithms (Sh,Rec), where Sh : Fp →
S1 × . . . × Sn is a randomized mapping taking a secret s ∈ Fp to a sequence of
shares sh = (sh1, . . . , shn), where Si = F`ip for some `i ∈ N+. For I ⊆ [n], let us

2 For instance, for limp→∞ c1 = 2/π.

7

denote shI = (shi)i∈I . Additionally, for each a, b, s0, s1 ∈ Fp, and valid sharings
sh0, sh1 respectively, it holds that ash0 + bsh1 ∈ support(Sh(as0 + bs1)). A
secret sharing scheme (not necessarily linear) implementing A is correct in the
sense that for each I ∈ A, and sh ← Sh(s), it holds that Rec(I, shI) = s with
probability 1 (over the random choices of Sh). It is private in the sense that
for every pair of secrets s0, s1, sh0 ← Sh(s0), sh1 ← Sh(s1), and every I /∈ A,
SD
(
shI0, sh

I
1

)
= 0. See [3] for more details.

In this work, we study the leakage resilience of secret sharing schemes arising
from linear codes in a natural way as in Massey’s construction [17]. That is, given
a linear [n + 1, k,Fp] code C+ with generating matrix G+ = (g+1 ; ...; g

+
n+1), the

corresponding Massey (linear) n-party secret sharing scheme over Fp is defined
as follows. Sh(s) samples a random vector β = (β1, . . . , βk) ∈ Fkp conditioned
on (G+ · βT)[n + 1] = s, and sets the share of party i to be shi = 〈β, g+i 〉. For
I ⊆ [n] such that Rows(G+[I]) spans G+[n + 1] (otherwise I is not qualified)
via

∑
i∈I αiG

+[i], Rec(I, shI) outputs s =
∑
i∈I αish

i.3

We observe that the set of sharings of s = 0 is a linear [n, k − 1,Fp] code,
we denote by C. We denote the secret sharing above by (ShC , RecC).4 We will
mostly work with C+ which are MDS codes. Note that in this case, C is also an
MDS code, and (ShC , RecC) is a (n, t = k− 1)-secret sharing scheme. Here and
elsewhere, when we refer to [5], we refer to their eprint version [5]. We follow the
definition of local leakage resilient secret sharing schemes as in [5], Definition
4.1. For completeness, we briefly recall this notion, restricted to Massey secret
sharing schemes.

For n-party secret sharing schemes with Si = Fp, we let Lm,n,p denote the set
of all functions Fnp → ({0, 1}m)

n (representing m-bit local leakage on each share
of the n parties). We say the scheme (ShC , RecC) is a (m, ε)-Leakage resilient se-
cret sharing scheme, if for all leakage function vectors L = (L1, . . . , Ln) ∈ Lm,n,p,
and all pairs of secrets s0, s1 ∈ Fp, we have SD (L(ShC(s0)),L(ShC(s1))) ≤ ε.

For a party Pi, and `i ∈ {0, 1}m, let Ai,`i = {x ∈ Fp|Li(x) = `i}. We denote
by 1Ai,`i (x) : Fp → C the boolean function mapping x to 1 if x ∈ Ai,`i and to
0 otherwise. When i is clear from the context we sometimes abuse notation and
let 1`i denote 1Ai,`i .

For simplicity, our definition above corresponds to the setting with Θ = 0
as considered in [5], where the adversary does not see any parties’ shares, but
only the output of the leakage function, so we exclude Θ from the notation. Our
results can be translated into resilience for other values with a certain loss in
parameters of Θ as explained in [5].

It is observed in [5] that given a leakage functions vector L = (L1, . . . , Ln), the
leakage advantage (maxL∈Lm,n,p,s0∈Fp,s1∈Fp SD (L(Sh(s0)),L(Sh(s1)))) of the scheme

3 Massey schemes in fact capture exactly the linear secret sharing schemes where each
party’s share is a single field element.

4 This will usually suffice for our purposes, although some of the information defined
by G+ is not stated explicitly. For instance, when C+ is MDS, the (threshold) access
structure implemented by the scheme is known from C.

8

is upper bounded by the statistical distance of L(X),L(Y) for a certain pair of
distributions X,Y .

Observation 1 Let (ShC , RecC) denote an n-player Massey secret sharing scheme
over Fp. Fix an integer m ≤ log(p). Then for m-bit local leakage functions vector
L ∈ Lm,n,p, we have: maxL,s0,s1 SD (L(Sh(s0)),L(Sh(s1))) ≤ 2maxL SD

(
L(C),L(Fnp)

)
.

We include a proof, since [5] only prove it for a special case.

Proof. This the case as for every L, s0, s1,

SD (L(Sh(s0)),L(Sh(s1))) ≤ SD
(
L(C + v0),L(Fnp)

)
+ SD

(
L(C + v1),L(Fnp)

)
(5)

≤ 2max
L

SD
(
L(C),L(Fnp)

)
(6)

Here v0, v1 are some sharings of secrets s0, s1 respectively, both are multiples
of the same vector v. The inequality 5 is due to the triangle inequality for the
Euclidean space with the `1-norm. Indeed, by linearity of the scheme, ShC(s0)
is uniformly distributed over C+v0 for v0 = s0v, for every s0 ∈ Fp. The inequal-
ity 6 follows from the claim that SD

(
L(C + v0),L(Fnp)

)
= SD

(
L′(C),L′(Fnp)

)
for L′ = (L′1, . . . , L

′
n), where L′j(x) = Lj(x + s0v[j]) for each j ∈ [n]. In

particular, SD
(
L′(C),L′(Fnp)

)
≤ maxL SD

(
L(C),L(Fnp)

)
. Finally, we get that

SD
(
L(C + v0),L(Fnp)

)
≤ maxL SD

(
L(C),L(Fnp)

)
. By similar reasoning it holds

that SD
(
L(C + v1),L(Fnp)

)
≤ maxL SD

(
L(C),L(Fnp)

)
, and the claim follows. 5

We will need the following claim from [5] connecting SD
(
L(C),L(Fnp)

)
to

evaluations of the 1̂`i stemming from L on elements of C⊥. See Lemma 4.18 [5]
for proof details.

Claim. Let C be a linear [n, k,Fp] code and let L ∈ Lm,n,p be an m-bit local
leakage functions vector. Then,

SD
(
L(C),L(Fnp)

)
=

∑
`∈({0,1}m)n

∣∣∣∣∣∣
∑

α∈C⊥\{0}

n∏
i=1

1̂`i(αi)

∣∣∣∣∣∣
=

∑
`∈({0,1}m)n

∣∣∣∣∣∣
∑

β∈Fn−t+1
p \{0}

n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣∣
Remark 1. Both our positive results, those applying to all MDS-induced Massey
schemes with given parameters n, t (Theorem 1) and those applying to a large
fraction of such schemes (Theorem 2), can be extended to work for non-MDS
schemes with a certain loss of parameters. The details are a subject of currently
ongoing subsequent.
5 The last step generalizes the reasoning of Claim 4.8.1 in [5]. for additive secret
sharing schemes

9

3 Improved result for Shamir Secret Sharing and m = 1

As in [5], we prove that for every linear [n, k,Fp]-MDS code C, the (n, t = k)-
secret sharing scheme ShC induced by it is leakage resilient for sufficiently large
t. We improve from about t > 0.907 · n in [5] (their full version), to a smaller
constant for Shamir and the case of m = 1 and leakage advantage ε = 2−Ω(n).
Our analysis improves the bound for larger constant m as well, but the bound
t = Ω(n) quickly approaches 1 as m grows (similarly to [5] analysis, albeit
slightly slower).

Theorem 1. There exists a constant ε > 0, so that for every linear [n, k,Fp]-MDS code
C, the corresponding Massey (n, t = k)-secret sharing scheme (ShC , RecC) al-
lows for a leakage of a single bit (m = 1) and error ≤ 2−εn, for sufficiently large
n and any t ≥ 0.867 · n.

Because of space constraints, we shall only present a proof overview for this
theorem. A complete proof is included in Appendix A.
Proof overview. We follow a Fourier-analysis based approach. We start with
a description of [5]’s analysis, and explain where our analysis departs from it.
In [5] they prove the following upper bound on the leakage advantage achieved
by a leakage functions vector L = (L1, . . . , Ln) for a Massey scheme based on a
linear [n, k,Fp]-MDS code. Let H denote the generating matrix of C⊥. Then

SD
(
L(C),L(Fnp)

)
=

∑
`∈({0,1}m)n

∣∣∣∣∣∣
∑

β∈Fkp\{0}

n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣∣ (7)

Then, rearrange the sums and take an absolute value of all summands:

SD
(
L(C),L(Fnp)

)
≤

∑
β∈Fkp\{0}

n∏
i=1

(∑
`i

∣∣∣1̂`i(〈β, hi〉)∣∣∣)

Recall that by Observation 1, 2maxL SD
(
L(C),L(Fnp)

)
upper bounds the

leakage error of C (but does not necessarily lower-bounds it well). This step
may lose on parameters, but greatly simplifies analysis.6 To evaluate the above
bound, one uses the fact that there are at most k−1 zero coordinates αi in every
codeword. Thus, the contribution of some β corresponds to

∆β =
∏
i∈[n]

(∑
`i

∣∣∣1̂`i(〈β, hi〉)∣∣∣) (8)

Since every boolean function’s Fourier coefficient f̂(0) is the largest one (in
absolute value), it makes sense to bound the number of such coefficients appear-
ing together.
6 Indeed, as we demonstrate in Section 5.2, taking absolute values is very likely sub-
optimal.

10

Then, leaving out many details, they bound the contribution of any individ-
ual non-0 coefficients as maxα6=0 f̂(α) by some constant c1 < 1, resulting in a
contribution bounded by ck1 of each β.7 However, bounding every contribution
individually turns out to yield very weak bounds on t = (1 − o(1))n (even for
m = 1). Cauchy-Schwartz combined with Parseval’s identity allows to obtain
a better bound. Parseval’s identity is useful here, as it bounds the `2-norm of
each 1̂`i by |Ai,`i |/p ≤ 1. The final bound takes advantage of the fact that f̂(0)
is not much larger than f̂ ′(α) for nice boolean functions f ′. Then, they replace
the 1`i ’s involved by such nice functions, in a way that the expression for the
bound can only increase, and bound this expression instead. The need for the
replacement stems from the fact that nothing is assumed about the locations of
the 0-coefficients in HβT (indeed, these locations vary for different β’s).

Our improvement here stems by grouping the β’s by the locations of HβT ’s
0-coefficients, and bounding the contribution of each group separately. Knowing
the locations of 0’s allows to use a bound on maxα 6=0 1̂`i(α).

4 A result for random MDS code over a large fields

Next, we prove that for sufficiently large prime-order fields, ‘almost all’ Massey
(n, t)-secret sharing schemes over Fp(n) for sufficiently large p(n), are leakage-
resilient for smaller values of t - all the way down to t ≥ (0.5 + δ)n, for every
constant δ > 0.

We will need a few technical linear-algebraic claims. The first one is a cer-
tain generalization of the rank method used in the communication complexity
literature, stating that boolean matrices with a distinct rows have rank at least
log a over the reals. We show that over any field, a matrix with a distinct rows
where the entries in every column belong to a set of constant size, has rank at
least O(log a).

Claim. Let M ∈ Fa×bp denote a matrix with distinct rows, where a = 2cb for
some constants c > 0 and γ ≥ 2. Assume further, that for every y ∈ [b], there
exists a set Vy ⊆ Fp of size γ such that for all x ∈ [a] and y ∈ [b] it holds that
M [x, y] ∈ Vy. Then rank(M) ≥ c

log(γ)b.

Proof. Let r be the rank of M . Let M ′ = (v1; . . . ; vr) be a submatrix of M ,
whose rows form a basis for the row space of M . Let I denote the (index) set of
r independent columns of M ′. w.l.o.g. assume that I = [r]. Let M ′′ = M ′[∗, I].
Then, every vector u ∈ V1 × . . .× Vb ∩ rowspan(M) equals some h ·M ′, where
h ·M ′′ ∈ V1 × . . . × Vr. As M ′′ is invertible, h is of the form h = u[I]M ′′

−1 -
that is, u[I] uniquely determines h. As there are at most γr such u[I]-values,

|V1 × . . .× Vb ∩ rowspan(M)| ≤ γr (9)

So, to generate all (distinct) a rows of M , we would need r ≥ c
log(γ)b.

7 The ‘max’ is enforced by the expression resulting from the Cauchy-Schwartz based
expression in the sequel.

11

Let C⊥ denote a linear [n, k⊥,Fp]-MDS code generated by the matrix H =

(h1; . . . ;hn). For a number γ and a vector V = (V1, . . . , Vn) ∈
(Fp
γ

)n
(each Vi is

a set of γ field elements), let us denote

BadI,V(C⊥) =
{
β ∈ Fk

⊥

p |∀i ∈ I and 〈β, hi〉 ∈ Vi
}
,

and
BadV,δ(C⊥) =

⋃
I⊆[n] of size (1−δ)n

BadI,V(C⊥).

For a constant c we also denote

Badδ,c =
⋃

V∈(Fpγ)
n

{
C⊥ :

∣∣BadV,δ(C⊥)∣∣ ≥ cn} .
For a vector v ∈ Fnp we write v ∈ V to mean that vi ∈ Vi for all i ∈ [n].

The following lemma is a key lemma in our analysis. Roughly, it states that
for a small γ, ‘most’ MDS codes with certain parameters do not have ‘many’
‘bad’ codeword, such that ‘many’ coordinates out of each bad codeword fall in
a set of size γ (sets may differ for different coordinates).

Lemma 2. Let p(n) ≥ 2n be a function returning primes, and let c > 1, γ ≥
2, 0 < δ < 1/2 be constants. We further require that log c > I(δ). Consider the
set C⊥ of linear [n, k⊥,Fp]-MDS codes C⊥, where Ω(n) = k⊥ ≤ (1 − 2δ)n, and
the uniform probability distribution over C⊥. Then,

PrC⊥←C⊥
[
C⊥ ∈ Badδ,c

]
= neg(n)

Proof. Fix a sufficiently large n and p(n), c, γ, δ, k⊥ as in the lemma. Consider
some linear MDS code C⊥ ∈ Badδ,c. So, by definition Badδ,c, there exists someV
such that BadV,δ(C⊥) ≥ cn. By the assumption that c > I(δ), there exists a set
of coordinates I of size (1− δ)n, so that BadI,V(C⊥) is of size Ω̃(2(log(c)−I(δ))n).
This follows by a simple averaging argument, and approximating the number of
I’s of size (1− δ)n using estimation 1 (note that I(1− δ) = I(δ)). Let c′ be such
that log(c′) = 0.99(log(c) − I(δ)), which is by assumption a positive constant.
For each I as above, denote the first k⊥ coordinates in I by I ′.

Note that for a vector u = HβT for β ∈ BadI,V(C⊥), u[I ′] uniquely de-
termines a β. This holds since C⊥ is an MDS code, so H[I ′] is invertible, and
determines β. Consequently, to determine an element in BadI,V(C⊥), it suffices
to specify it as a sequence of indices into the set V[I ′], where the set V[I ′] is
ordered according to some fixed ordering (say, lexicographically).

We thus sometimes denote elements of BadI,V(C⊥) as indices b ∈ [γ]k
⊥
, and

sometimes explicitly as vectors β ∈ Fk⊥p determined by them (for a fixed V, I).
For an index b, we denote the (unique) corresponding β by βb, and the vector
u ∈ V such that u = HβTb by VI,b. From now on, by V we implicitly refer to
V ∈

(Fp
γ

)n
and by I we implicitly denote elements of

(
n

(1−δ)n
)
(with I ′ defined

based on I as above).
Our plan consists of two steps:

12

1. Fix some V and I and Bad′ ⊆ [γ]k
⊥
of size c′n for some c′. Prove the fraction

of codes for which Bad′ ⊆ BadI,V(C⊥) is very small. We refer to such codes
C⊥ as bad for (V, I, Bad′).

2. Then, take a union bound over all possible V, I and possible choices of Bad′
as above.

The above plan would already work as is, but would require an even larger,
double exponential, p(n). Instead, we observe that each C⊥ that is bad for some
(V, I, Bad′), is also ‘bad’ for (V, I, B) for some B ⊆ Bad′ (which is always the
case), where B is much smaller than Bad′, and has a certain special property.
Instead, we bound in step 1 the fraction of the set of C⊥ bad for (V, I, B), for
B’s as above, and take a union bound over these in step 2. Here, we gain in step
2, since the number of triples is much smaller than before. As before, the bound
for (V, I, B) we get in step 1 decreases with p, but now we can afford making
p(n) only single exponential, due to the smaller number of summands in 2.

We proceed to show how B is derived from Bad′.

Observation 2 Let (V, I, Bad′) where Bad′ ∈
(
[γ]k
⊥

c′n

)
and C⊥ bad for it. Then,

there exists B ⊆ Bad′ of size r = θ(n), such that {VI,d|d ∈ B} consists of
linearly independent vectors. In particular, C⊥ is bad for (V, I, B) (by definition
of bad for (V, I,D) for some D ⊆ [γ]k

⊥
).

Proof. We observe that
{
VI,b[I]

}
b∈Bad′ has rank at least r = log(c′)

log(γ) n. The ob-
servation follows immediately from applying Claim 4 toM = (HβT1 [I

′]; . . . ;HβTc′n [I
′])

where Bad′ = {βT1 , . . . , βTc′n} (indeed, note that |rows(M)| = 2|cols(M)|c̃ for some
constant c̃, since cols(M) = k⊥ = Θ(n), so the precondition of the claim holds).
We set B to be a basis of M ’s rows.

Next, following our plan outlined above, we bound the fraction of C⊥’s bad
for a given (V, I, B), where B is as guaranteed by Claim 2 for (V, I, Bad′) where

Bad′ ∈
(
[γ]k
⊥

c′n

)
.

Claim. Let V, I, B where B ∈
(
[γ]k
⊥

c′n

)
and D = {VI,d|d ∈ B} consists of linearly

independent vectors. Then,

PrC⊥←linear [n,k⊥,Fp]-MDS codes

[
C⊥ is bad for (V, I, B)

]
= p−Ω(n2 log p) (10)

Proof. We sample a uniformly C⊥ by sampling its generating matrix H. As the
code should be MDS, every set of k⊥ rows of H form a basis for rows(H). In
particular, given I, H[I ′] is a basis of its row set. For simplicity of notation, we
assume w.l.o.g. that I ′ = [1, . . . , k⊥]. Then to determine the rest of H[I] (which
is the part we will be interested in), we should set the variables αi,j in

hi =
∑
j∈[I′]

αi,jhj

13

for each i ∈ I \ I ′.
In fact, we do not directly sample the matrix H[I] to be consistent with and
MDS code, but rather sample it according to the following distribution DH ,

1. First sample h1, . . . , hk⊥ as random linearly independent vectors.
2. Sample the αi,js as random independent element of Fp.

We require that H satisfies the following constraints

1. Every k⊥ rows in the resulting H[I] are linearly independent (to actually
obtain H[I] consistent with an MDS code). Let us denote this event by E1.

2. Every resulting row hi is consistent with each VI,d for each d ∈ B. Let us
denote this event by E2.

Let us explicitly state condition 2. For each d ∈ B, and i ∈ I \ I ′ we have∑
j∈[I′]

αi,jVI,d[j] = VI,d[i]. (11)

That is, having fixed H[I ′], H[I \ I ′] satisfies a linear equation system of the
form

MBα
T
i = vi (12)

whereMB ∈ Fr×k⊥ is a full-rank matrix, whose rows are elements in
{
VI,b[I

′]
}
b∈Bad′ .

We are now ready to prove our theorem - in particular, note that MB depends
only on V, I, B, rather than on the code itself. This follows as

VI,d[i] = HβTd [i] = H[i]βTd

Making the same observation on the left side, together with hi =
∑
j∈[I′] αi,jhj

implies Equation 11. We can restate Equation 11, as requiring that every αi
satisfies a linear equation systemMBα

T
i = ũi, whereMB is invertible (note that

MB is the same for all i).
Now we prove that the probability (over a uniform choice of all αi,j ∈

Fp and H[I ′]) that constraint 2 holds conditioned on constraint 1 holding, is

p
−Ω

(
(k⊥)

2
log(p)

)
. That is, we prove

PrH←DH [C
⊥ ∈ E2|C⊥E1] ≤

PrH←DH [C
⊥ ∈ E2]

PrH←DH [C
⊥ ∈ E1]

= p−Ω(n2 log p) (13)

To prove Equation 13, we bound the denominator and the numerator of the
expression in 13 separately.

Claim. PrH←DH [C⊥ ∈ E2] = p−Ω(n2 log p)

14

Proof. Consider having chosen the first h1, . . . , hk⊥ in H (which are linearly
independent). Next we move to picking the rows in I \ I ′, represented in basis
h1, . . . , hk⊥ for convenience (by choosing the αi,j ’s). Consider the next i ∈ I \ I ′
for which we pick hi. By properties of linear transformations, and Equation 12,
every such coefficient vector αi, belongs to a coset K + xi of the right kernel
K of MB , for some xi ∈ Frp. Therefore, a randomly chosen such vector αi only
satisfies the above condition with probability q = p−r, since |K| = Fk⊥−r by the
rank-nullity theorem. Note that this holds independently of the concrete choice
of H[I ′]. Now, q equals p−Θ(n), since indeed r = Θ(n) by Observation 2, and
k⊥ = Θ(n) by the choice of δ. As the choice of each hi is independent of the
choice of hj for every i, j ∈ I \ I ′, the overall probability of the event E2 is∏

i∈I\I′
p−r = p−r((1−δ)n−k

⊥) = p−Θ(n2) (14)

Claim. PrH←DH [C⊥ ∈ E1] > 1/2 assuming p(n) ≥ 2n.

Proof. Consider the process of randomly choosing the rows in H[I \ I ′], after
picking H[I ′] according to DH . We pick the rows hi (i ∈ I \ I ′) one by one. For
each row hi being picked, let us denote the set Ĩ of rows picked so far (including
H[I ′] and excluding hi). We require that the invariant, that every k⊥ × k⊥

submatrix of H[Ĩ ∪ {i}] remains invertible, is not broken upon choosing hi. To
keep the invariant, we need that every submatrix H̃ of H[Ĩ] with k⊥ − 1 rows,
remains invertible when appending hi to it. In the worst case - when choosing
the last row, we have at least a fraction

1−
(
n

k⊥

)
/p > 1/2 (15)

of vectors in Fk⊥p to choose from. This follows by taking a union bound over all
submatrices H̃ as above. Indeed, complementing each H̃ succeeds with proba-
bility 1− 1/p. Picking p(n) large enough - p(n) ≥ 2n suffices, keeps Equation 15
true.

Now, Equation 13, follows immediately from Claim 4 and Claim 4, which com-
pletes the proof of Claim 4.

Back to the proof of Lemma 2 (following step 2 of the plan), we take a

union bound over all possible V ∈
(Fp
γ

)n
, I ∈

(
[n]

(1−δ)n
)
, B ∈

(
[γ]k
⊥

r

)
. By a crude

estimation, there exist at most(
p

γ

)n
(2n)(T k

⊥n) = 2O((log p+k⊥)n)

such triples. Thus, from Claim 4, the probability of C⊥ being bad for (n, δ, c, γ)
is upper bounded by

2log p(O(n)−Ω(n2))+O(n2)) = 2n
2(Ω(log p)+O(1)) = 2Ω(−n3) = neg(n),

15

where the last equality is implied by log p = Ω(n). This concludes the proof of
Lemma 2.

Theorem 2. Let 0 < δ < 1 and m ∈ N+ be constants, where δ is sufficiently
small8. Then for every field size function p(n) ≥ 2n outputting primes, every
sufficiently large n, and every k ≥ (0.5+δ/2)n, the Massey secret sharing scheme
(ShC , RecC) corresponding to a random linear [n, k,Fp]-MDS code C, allows for
a local leakage ofm bits from each party’s secret share and leakage error ≤ 2−Ω(n)

with overwhelming probability 1− neg(n).

Proof. Proof overview. We consider the hardest case of k = (0.5+δ/2)n. Note
that since the dual of a linear [n, k,Fp]-MDS code C is a linear [n, k⊥ = n−k =
(0.5−δ/2)n,Fp]-MDS code C⊥, a random C as above (as considered in the theo-
rem), can be uniformly sampled by uniformly sampling a linear [n, k⊥,Fp]-MDS code
(and taking the dual C = (C⊥)⊥). Indeed, it will be more convenient to consider
sampling of C⊥ throughout the proof. We use the probabilistic method to prove
that the C⊥ based expression for SD

(
L(C),L(Fnp)

)
from Claim 2.3 is small for

‘almost all’ codes C⊥. This will correspondingly imply the Theorem for almost
all codes C as required.

Our proof proceeds by applying Lemma 2 to V, where each Vi represents
a set of values αi ∈ Fp corresponding to Fourier coefficients with ‘large’ (say
≥ 0.01) absolute value, of any of the local leakage functions 1̂`i .

On a high level, we prove that with overwhelming probability, for a random
linear [n, k⊥,Fp]-MDS code C⊥, not only that every non-0 codeword has less
than k⊥ 0-coordinates (which holds for every MDS code), but also, for every
vector of boolean functions (1`1 , . . . ,1`n), very few codewords (α1, . . . , αn) have
a ‘large’ number of ‘large’ coefficients (say, coefficients larger than 0.01). That
is, 0-coefficients |1̂`i(αi = 0)| are large in absolute value, and contribute a lot
to the bound in Claim 2.3 if a lot of them ‘come together’ in a single codeword.
Indeed the 0-coefficient is the largest in absolute value for all boolean functions
f .

However, if possibly smaller but still large coefficients (including the 0-coefficient,
and a few other that are function-specific) tend to ‘come together’ sufficiently
often in a single codeword, this also pushes the bound up, albeit a bit slower.
We can afford more such ‘somewhat heavy’ codewords, but not much more. In
our previous analysis for Shamir, we gained a little by pinpointing the locations
of the 0-coefficients exactly, instead of assuming the worst possible (k⊥) number
of 0’s in every codeword, as done in [5].

Here we go a step forward, and prove that for almost all C⊥’s as above,
for every leakage functions vector L ∈ Lm,n,p, only few sufficiently ‘heavy’ code-
words H ·β (where ‘too many’ of the coefficients (1̂`1(α1), . . . , 1̂`n(αn)) are large)
exist. Details follow.

8 The strange situation where we handle small δ > 0 but not larger δ is an artifact
of the proof of Lemma 2. A slightly more complicated proof would remove this
restriction. See the full version for details.

16

A key technical observation our proof relies on, is that for any function f :
Fp → {0, 1}, there are very few large Fourier coefficients. More precisely, for
constant (independent of p) ε let us define Bigf,ε = {α ∈ Fp|f̂(α) ≥ ε}. Then we
have,

Claim. Let p be a prime, and let f : Fp → {0, 1} be a boolean function. Then,
for any ε ∈ (0, 1], |Bigf,ε| ≤ ε−2.

The above simple fact follows immediately from Parseval’s identity,∑
α∈Fp

f̂2(α) = |f−1(1)|/p ≤ 1

By Claim 2.3, we have:

SD
(
L(C),L(Fnp)

)
=
∑
`

∣∣∣∣∣∣
∑

β∈Fkp\{0}

n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣∣ . (16)

Rearranging, we obtain an upper bound

SD
(
L(C),L(Fnp)

)
≤

∑
β∈Fkp\{0}

∑
`

∣∣∣∣∣
n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣ (17)

We now consider parameters c, δ, ε, γ = d2mε−2e for c, ε, δ to be determined
later in a way satisfying the conditions of Lemma 2. Then, a random linear [n, k⊥,Fp]-MDS code
C⊥ satisfies the condition of Lemma 2 with overwhelming probability. Fix any
such code C⊥ and let H be its generating matrix.

Consider the sequenceV = (V1, . . . , Vn) ⊆
(Fp
γ

)n
where Vi =

⋃
`i∈{0,1}m Big1`i ,ε

9 is the set of all values of codeword coordinate αi corresponding to a large co-
efficient for some function 1`i . 10

Let BadNon0V,δ = BadV,δ(C⊥)\{0}, GoodNon0V,δ = Fk⊥p \ (BadNon0V,δ ∪
{0}). For a set I ⊆ [n], we denote

GoodNon0δ,I = {β ∈ GoodNon0V,δ|∀i ∈ I (HβT [i] /∈ Vi)}

Next, we split the sum in Equation 17 applied to C = (C⊥)⊥ as follows,

SD
(
L(C),L(Fnp)

)
≤∑

β∈GoodNon0V,δ

∑
`

∣∣∣∣∣
n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣+ ∑
β∈BadNon0V,δ

∑
`

∣∣∣∣∣
n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣ (18)

9 Padding Vi to size γ arbitrarily
10 In particular, the Vi’s will always include 0. We could further limit the structure of
V in Lemma 2, for instance, that Vi consists of pairs of values of the form α,−α,
but as it seemingly does not help improve our bounds, we do not.

17

Let us bound each of the two summands separately. For a given I ⊆ [n],
let us denote by I1, I2 a partition of [n] \ I into two subsets of equal size, in
some predetermined way (depending only on I). We bound the contribution of
GoodNon0V,δ first,

∑
β∈GoodNon0V,δ

∑
`

∣∣∣∣∣
n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣ ≤
∑

I∈([n]
δn)[n]

∑
β∈GoodNon0δ,I

∑
`

∣∣∣∣∣
n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣ ≤ (19)

Õ(2I(δ)n) ·max
I

(√ ∑
β∈GoodNon0V,δ

∏
i∈I1

(∑
`i

|1̂`i(〈β, hi〉)|2
)
·
√ ∑
β∈GoodNon0V,δ

∏
i∈I2

(∑
`i

|1̂`i(〈β, hi〉)|2
)
·

max
β∈GoodNon0V,δ

∏
i∈I

(∑
`i

|1̂`i(〈β, hi〉)|
))
≤ (20)

Õ(2I(δ)n) ·max
I

(√√√√ ∑
β∈Fk⊥p

∏
i∈I1

(∑
`i

|1̂`i(〈β, hi〉)|2
)
·
√√√√ ∑
β∈Fk⊥p

∏
i∈I2

(∑
`i

|1̂`i(〈β, hi〉)|2
)
·

max
β∈GoodNon0V,δ

∏
i∈I

(∑
`i

|1̂`i(〈β, hi〉)|
))
≤ (21)

Õ(2I(δ)n) ·max
I

(√∏
i∈I1

(∑
`i

∑
α∈Fp

|1̂`i(α)|2
)
·
√∏
i∈I2

(∑
`i

∑
α∈Fp

|1̂`i(α)|2
)
·

max
β∈GoodNon0V,δ

∏
i∈I

(∑
`i

|1̂`i(〈β, hi〉)|
))
≤ (22)

Õ(2I(δ)n) · (22mε)δn = Õ(2(I(δ)+δ(2m+log ε))n) ≤ 2−ε
′n (23)

for ε′ > 0 constant, for a proper choice of ε.

Inequality 19 follows by Cauchy–Schwarz. Let I be the set selected by the
maxI . Inequality 20 holds since each β ∈ Fk⊥p contributes a non-negative sum-
mand

∏
i∈I1(. . .) (similarly I2), and all values in the product are non-negative.

Thus, adding β’s beyond GoodNon0V,δ can only increase the expression’s value.
Inequality 21 holds since |I1|, |I2| = (1−δ)n/2 = (0.5−δ/2)n and this equals ex-
actly k⊥. As our code is an MDS code, indeed going over all β ∈ Fk⊥p , contributes
exactly ∏

i∈I1

(∑
α∈Fp

|1̂`i(α)|2
)
,

18

for each fixed vector of (`i)i∈I1 . 11 A similar analysis holds for the other √. . .
and I2.

The inequality 22 follows by observing that for every fixed `i,
∑
α∈Fp |1̂`i(α)|

2 =

|1−1
`i

(1)|
p by Parseval’s identity, which is upper bounded by 1. So, summing over

all 2m of the `i values results in 2m. This implies a 2mδn bound on the product
of the two squares. Now, each i ∈ I satisfies

∑
`i
|1̂`i(〈β, hi〉)| ≤ 2mε. This is

guaranteed to hold for every β ∈ GoodNon0V,δ, by the choice of C⊥. Thus, the
product of the two contributions is bounded by 2mδn(2mε)δn = (22mε)δn.

The inequality 23 follows by choosing

ε < 2−(I(δ)/δ+2m), (24)

so ε′ > 0 is indeed constant, which concludes the analysis of the bound on
GoodNon0V,δ’s contribution.

The contribution of Bad\{0},(1−δ) requires somewhat more care. In particular,
we need to show that every fixed β makes a contribution which is (much) smaller
than 1. We have

∑
β∈BadNon0V,δ

∑
`

∣∣∣∣∣
n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣ ≤
∑

β∈BadNon0V,δ

n∏
i=1

(∑
`i

∣∣∣1̂`i(〈β, hi〉)∣∣∣) ≤ (25)

cn · c(0.5+δ/2)nm = 2n(log c+(0.5+δ/2) log cm) ≤ 2−ε
′n (26)

for ε′ > 0 constant, for a proper choice of c and δ.
Inequality 25 holds since by Lemma 2, we have |Bad\{0},(1−δ)| ≤ cn. The

second term in the expression cn · c(0.5+δ/2)nm follows from Lemma 1, applied to
each i ∈ [n], for each fixed β ∈ BadNon0V,δ. In our case, at most (0.5 − δ/2)n
(note that k⊥ − 1 < (0.5 − δ/2)n) coordinates 〈β, hi〉 of the codeword α =
HβT equal 0, since BadNon0V,δ does not contain β = 0 and our code C⊥ is
MDS. Therefore, the contribution of the non-0 coordinates (at least (0.5+ δ/2)n
coordinates) to the product accounts to at most c(0.5+δ/2)nm .

The inequality 26 and everything so far that relies on Lemma 2 follows by
choosing

c ≤ c−0.5m and (27)

c ≥ 2I(δ). (28)

11 We should indeed make sure that the rounding works out and (0.5 − δ/2)n
is integral and even, because otherwise, if I1 is smaller by 1 than k⊥, every∏
i∈I1

(∑
α∈Fp |1̂`i(α)|

2
)
would appear p times, causing the whole

√∏
i∈I1(. . .) ex-

pressing be multiplied by √p.

19

The requirement 27 suffices to ensure ε′ > 0, since δ > 0. In particular, c
satisfying requirement 27 can be chosen to be a constant strictly larger than 1,
since cm is a constant that falls in (0, 1). The requirement 28 is to satisfy the
precondition log(c) > I(δ) of Lemma 2. To satisfy requirement 28, we would need
to set δ > 0 to be a very small constant, and ε about 2−Θm(δ) by requirement 24.
This is inconsequential to the scheme’s parameters in the current setting. 12

5 Lower bounds

5.1 A Lower bound on t(n)

First, we extend the lower bound of Nielsen et al. [19] to the (hardest) setting
of m = 1 bits of leakage and arbitrarily large p for the case of linear secret shar-
ing schemes (which have the most applications, as for efficient leakage-resilient
MPC). Recall their bound relies on p being relatively small - polynomial in n,
as originally considered in [5]) - on the other hand, their bound is more general
in the sense that it is not limited to linear schemes. More precisely, we have:

Theorem 3. Let C+ be an arbitrary [n + 1, k,Fp] code, where 2k < p, k ≤ n.
Let ShC be a Massey secret-sharing scheme corresponding to the linear error-
correcting code C+, as described in Section 2. Suppose the secret-sharing scheme
ShC is ε-local leakage resilient against Lm=1,n,p. Then ε ≥ (1k)

ck, where c is a
universal positive constant.

The statement in Theorem 3 holds for arbitrary n, p, and is not asymptotic
in nature. One simple corollary (as n goes to infinity), restating as a bound on
k.

Corollary 1. Let C+ be an arbitrary [n + 1, k,Fp] code, where 2k < p, k ≤ n.
Let ShC be a Massey secret-sharing scheme corresponding to the linear error-
correcting code C+. Let Lm,n,p be the set of all functions Fnp → ({0, 1}m)

n

representing m-bit local leakage on each share of the n parties. Suppose the
secret-sharing scheme ShC is 2−Ω(n)-local leakage resilient against Lm=1,n,p.
Then k = Ω(n

log(n)).

The proof of Theorem 3 is based on an argument similar to the one made in [5],
when proving that n can not be too small, lower bounding the distinguishing
advantage attainable for a constant n and additive scheme, by choosing a care-
fully designed L. The extension of the statement and argument are indeed quite
simple, and is brought here mostly for completeness.

Proof. We let G to be the generating matrix of C+. Consider the shares given
to minimal qualified parties sh[I]. It is a well known fact about linear secret
sharing schemes as above, that a set of parties can recover the secret iff the rows
12 It only increases γ in Lemma 2, which only possibly affects the smallest n for which

a code C⊥ is guaranteed to exist.

20

set of G[I] spans G[n+ 1]. As C+ is of dimension k, we must have |I| = k′ ≤ k
- assume w.l.o.g. that I = [k′]. Denote G′ = G[I, ·] and G′′ = G[n+ 1, ·] (which
is a vector). Let K = Kernel

(
span({G′′})

)
. Let β ∈ Fk′p be a vector such that

β ·G′ = G′′. Then, from simple linear algebra, for a random sharing sh0 of secret
s = 0, sh0[I] is uniform over C ′ = {G′ · kT |k ∈ K} ⊆ Fk′p . In particular, every
sh0[I] satisfies

〈β, sh0[I]〉 = βT ·G′k = G′′k = 0 (29)

Where k is some element ofK. Let i ∈ [k′] where βi 6= 0 (it exists, as G′′ 6= 0).
Rewriting Equation 29, we get

sh0[i] = −
∑

j∈[k′]\{i}

βj
βi

sh0[j] (30)

Let h0 = bp/(2k′)c. For each j ∈ [k′] \ {i}, if βj 6= 0, set Aj = {−βiβj
a|a ∈

{0, . . . , h0 − 1}}. Otherwise, set Aj = {0, . . . , h0 − 1} (in fact, the latter can
be an arbitrary sufficiently large set). For i let Ai = {0, . . . , (p − 1)/2}. Let
L = (L1, . . . , Ln) where Ln(sh0[i]) = 1 if shi ∈ Ai, and Ln(sh0[i]) = 0 otherwise.
Now, we observe

Claim. Pr[sh0[I] ∈ A1 × . . .×Ak′] = Πj∈[k′]\{i}|Aj |/p

Proof. To see this, we observe that for a random x ∈ C ′, x[I \ i] is uniform over
Fk′−1p . Then, by definition of the Aj ’s, the probability of

Pr [sh0[I \ {i}] ∈ A1 × . . .×Ai−1 ×Ai+1 . . . Ak′] = Πj∈[k′]\{i}|Aj |/p.

Now, conditioned on the event - sh0[I \{i}] ∈ A1× . . .×Ai−1×Ai+1 . . . Ak′ ,
sh0[i] ∈ Ai by Equation 30, and the choice of the other Ajs. Namely - with
probability 1, sh0[i] is the sum of at most k′ ≤ k elements, each in {0, . . . , h0−1},
and the result follows.

To prove that x[I \ i] is uniform over Fk′−1p , it suffices to prove C ′[I \ i] is
indeed of dimension k′−1. As PI is a minterm of ShC , all rows in G′ are linearly
independent. Furthermore, as K is the right kernel of span(G′′), span(G′′) is the
entire left kernel of K. Assuming for contradiction that rowspan(G[I\{i}, ·]) has
dimension < k′ − 1, this implies the existence of a vector β′ with β′[i] = 0, such
that β′ · G′′ is in the left kernel of K, and thus a multiple of G′′, contradicting
the fact that PI is a minterm.

Substituting the sizes of the |Aj |’s in Claim 5.1, we have

Pr
[
sh0[I] ∈ A1 × . . .×Ak′

]
≥
(
bp/(2k′)c/p

)k−1
(31)

≥
(
1/(2k)− (1− 1/2k)/p

)k−1
≥
(
1/k(2k + 1)

)k
≥ 1/(3k)2k

21

Here the second transition is due to rounding issues, and the one before last
transition uses the fact that p ≥ 2k + 1.13

On the other hand, for a random sharing of a random secret s ∈ Fp, the
distribution of sh[I] is uniform over Fk′p (as now the randomness vector used by
the sharing scheme is picked at random from Fkp), and G′ is of full rank. Thus,

Pr
[
sh[I] ∈ A1 × . . .×Ak′

]
= Pr

[
sh0[I] ∈ A1 × . . .×Ak′

]
|Ai|/p

≤ 0.5Pr
[
sh0[I] ∈ A1 × . . .×Ak′

]
Thus, from Equation 31 we have Pr

[
L(sh0)[I] = 1

]
− Pr

[
L(sh)[I] = 1

]
≥

0.5/(3k)2k. Therefor, by an averaging argument, there exists a secret s1, such
that SD (shs1 [I], sh0[I]) ≥ 0.5/(3k)2k. Therefore,

SD (L(shs1)[I],L(sh0)[I]) ≥ 0.5
(
Pr
[
L(sh0)[I] = 1

]
− Pr

[
L(shs1)[I] = 1

])
≥ 0.25/(3k)2k

Remark 2. In fact, it follows from the proof that the lower bound is slightly
stronger than stated, if a minterm of size k′ ≤ k exists. This is possible only in
non-MDS codes.

5.2 Limitations of current techniques

In our proofs of Local Leakage Resilience so far, both for all MDS codes, and
random MDS codes, we relied on bounding the magnitudes of the Fourier coeffi-
cient products in the expression for the bound in Equation 7. The bounds were
based on combining Parseval’s identity to classify the set of possible Fourier dis-
tributions of the boolean leakage functions with Cauchy-Shwartz, to obtain our
bound on the leakage advantage of any function in Lm,n,p. Here we prove that
this approach is inherently limited to t = (0.5 +Ω(1))n, and the main culprit is
not in bounding the coefficients, but rather in replacing them with their asolute
values, preventing vital cancellations. We achieve this by demonstrating an ex-
plicit subset A ⊆ Fp of density Ω(1), so that its characteristic function 1A has
such coefficients, that replacing coefficients by their absolute values results in a
bound of ω(1) on the Leakage error for t = (0.5 − Ω(1))n (that is, we use the
precise coefficients, without using any bounds on them).

Let p be a prime, and let QRp denote the set of quadratic residues modulo
p, and NQRp the set of quadratic non-residues (0 not included in either). Set
L = (L1, . . . , Ln) be such that Li(x) = 1 if x is in QR+

p = QRp ∪ {0} =
{x ∈ Fp|∃y ∈ Fp such that x = y2}, and 0 otherwise. For a ∈ Fp, the quadratic
Gaussian sum g(a, p) is defined as g(a, p) =

∑p−1
j=0 χa(j

2). It is known that g(1, p)
satisfies:
13 Taking the bound on p to be slightly larger, say p ≥ 3k would make the bound on

the error about (1/Ω(k))k, but this is not very significant.

22

Fact 1

g(1, p) =

{√
p, if p ≡ 1 mod 4

ı
√
p, if p ≡ 3 mod 4

(32)

We limit ourselves to p ≡ 1 mod 4 to simplify the proof of the following
corollary on the Fourier coefficients of 1`i . The (technical) reason for it is that
−1 is a quadratic residue mod p in this case. It’s not hard to prove that a similar
result holds for p ≡ 3 mode 4.

Corollary 2. Let p ≡ 1 mod 4. Then, for L above, for each i ∈ [n], `i ∈ {0, 1}
and a ∈ Fp, we have:

|1̂`i(a)| =

{
0.5p−0.5 ±O(1)/p, if a 6= 0

0.5±O(1)/p, if a = 0
(33)

Proof. The corollary follows by:
(1) Calculating 1̂QR+

p
(1) by observing it equals (g(1, p) + 1)/2p, which in any

case has absolute value in the range 0.5p−0.5± 1/(2p). Here we use the fact that
−1 is in QRp, so 1̂QR+

p
(1) = 1̂QR+

p
(−1) (we need the fact that −1 ∈ QRp, as

1̂QR+
p
(a) = 〈1QR+

p
, χ−a〉/p, rather than 1̂QR+

p
(a) = 〈1QR+

p
, χa〉/p, as it appears

in g(a, p)).
(2) Observing that for each a ∈ QRp, it holds that 1̂QR+

p
(a) = 1̂QR+

p
(1) (as QRp

is a subgroup of Z∗p), and for a ∈ NQRp, it holds that 1̂QR+
p
(a) = −1̂QR+

p
(1) +

1/p. Here we use the fact that for a 6= 0, it holds that

1̂A(a) = −1̂Fp\A(a) (34)

and the observation that a ·QRp = NQRp if a ∈ NQRp.
(3) The corollary for 1NQRp = 1FP \QR+

p
(`i = 0) follows directly from 34.

Replacing all coefficients with their absolute values (and neglecting the 1/p
additive terms) and substituting into Equation 7, we would get a bound of

SD
(
L(C),L(Fnp)

)
=
∑
`

∣∣∣∣∣∣
∑

α∈C⊥\{0}

n∏
i=1

1̂`i(αi)

∣∣∣∣∣∣
≤ 2m ·

∣∣∣∣∣∣
∑

α∈C⊥\{0}

n∏
i=1

1̂`i=0(αi)

∣∣∣∣∣∣ (35)

≈ 2m ·
∏

i∈[n−k]

(∑
αi∈Fp

|1̂`i=0(αi)|
)(1

2
√
p

)k
(36)

= 2m ·
(1

2
√
p
· p+O(1)

)n−k(1

2
√
p

)k
(37)

≈ 2m ·
(1
2

)n√
p
n−2k

23

Here x ≈ y means that y = x± o(1). The expression in line 35 is the bound
actually used by the analysis. Approximation 36 holds as instead of removing
the contribution of the zero-codeword, we treat it as if the 0-Fourier coefficients
have the same magnitude as other coefficients for the last k functions, which
increases the bound only by a negligible fraction.

Equality 37 follows since adding the O(1) to each of the first n− k multipli-
cands, accounts for the 0-Fourier coefficient of each 1`i that equals 0.5.

Note that indeed, for large enough p (p� 2n), the above bound can be made
an arbitrarily large integer for for k = (0.5+Ω(1))n, . This is clearly not tight, as
all leakage vectors’ contributions together sum up to 1, as these are expressions
for a statistical distance between a certain pair of probability distributions.

Remark 3. A simple calculation reveals that taking absolute values of Fourier
coefficients as above, yields similar lower bounds for the true statistical distance
between the leakage from sharings of any pair of secrets s1, s2 (rather than upper
bounding it by a statistical distance between leakage from a sharing of s = 0
and leakage from a uniform distribution over Fnp , as we currently do).

We conclude that to get a true estimation of the leakage, additional ideas will
be needed to get a more precise Fourier Analysis (or use a different approach
altogether).

24

References

1. Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciej Obremski, Er-
ick Purwanto, João Ribeiro, and Mark Simkin. Stronger leakage-resilient
and non-malleable secret sharing schemes for general access structures. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science,
pages 510–539, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidel-
berg, Germany. 5

2. Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable
secret sharing. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Sci-
ence, pages 593–622, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany. 5

3. Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo
Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping
Xing, editors, Coding and Cryptology - Third International Workshop, IWCC 2011,
Qingdao, China, May 30-June 3, 2011. Proceedings, volume 6639 of Lecture Notes
in Computer Science, pages 11–46. Springer, 2011. 8

4. Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I, volume
10991 of Lecture Notes in Computer Science, pages 531–561, Santa Barbara, CA,
USA, August 19–23, 2018. Springer, Heidelberg, Germany. 2, 3, 4, 5

5. Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. Cryptology ePrint Archive,
Report 2019/653, 2019. https://eprint.iacr.org/2019/653. 3, 7, 8, 9, 10, 16, 20, 27,
28, 29

6. Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Bart Preneel, editor, Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on the The-
ory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages 316–
334. Springer, 2000. 4

7. Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with
auxiliary input. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium
on Theory of Computing, pages 621–630, Bethesda, MD, USA, May 31 – June 2,
2009. ACM Press. 5

8. Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Shai
Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference,
volume 3876 of Lecture Notes in Computer Science, pages 207–224, New York, NY,
USA, March 4–7, 2006. Springer, Heidelberg, Germany. 5

9. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, 1996. 5

10. Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Ilias Di-
akonikolas, David Kempe, and Monika Henzinger, editors, 50th Annual ACM Sym-
posium on Theory of Computing, pages 685–698, Los Angeles, CA, USA, June 25–
29, 2018. ACM Press. 5

11. Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes. In
Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Symposium on

25

https://eprint.iacr.org/2019/653

Theory of Computing, pages 216–226, Cambridge, MA, USA, June 18–21, 2016.
ACM Press. 5

12. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. In Proceedings
of the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, pages 45–60, 2008. 2

13. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 463–
481, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.
5

14. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113, Santa Barbara,
CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany. 5

15. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany. 5

16. Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing
against colluding parties. In David Zuckerman, editor, 60th Annual Symposium on
Foundations of Computer Science, pages 636–660, Baltimore, MD, USA, Novem-
ber 9–12, 2019. IEEE Computer Society Press. 5

17. James L Massey. Some applications of code duality in cryptography. Mat. Contemp,
21(187-209):16th, 2001. 3, 8

18. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 278–296, Cambridge,
MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany. 5

19. Jesper Buus Nielsen and Mark Simkin. Lower bounds for leakage-resilient secret
sharing. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages 556–
577. Springer, 2020. 5, 20

20. Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret
sharing and applications. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture Notes
in Computer Science, pages 480–509, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany. 5

26

A Proof of Theorem 1

Let C be a linear [n+1, k,Fp]-MDS code. The scheme induces a (n, t = k) linear
secret sharing scheme ShC as explained in Section 2. As mentioned in Section 2,
the leakage advantage of the scheme is upper bounded by SD

(
L(C),L(Fnp)

)
,

which we bound next.
We start as in [5], in the proof of their Lemma 4.18. These (identical) cal-

culations appear in the first three lines of the derivation below. Here I1, I2 are
disjoint sets of coordinates of size n − t + 1 each, and I3 = [n] \ (I1 ∪ I2). For
β ∈ Fn−t+1

p \ {0} we define Kj = {k′ ∈ Ij |〈β, hk′〉 = 0}.

SD
(
L(C),L(Fnp)

)
=
∑
`

∣∣∣∣∣∣
∑

α∈C⊥\{0}

n∏
i=1

1̂`i(αi)

∣∣∣∣∣∣ (38)

=
∑
`

∣∣∣∣∣∣
∑

β∈Fn−t+1
p \{0}

n∏
i=1

1̂`i(〈β, hi〉)

∣∣∣∣∣∣ (39)

=
∑
`

∣∣∣∣∣∣
∑

β∈Fn−t+1
p \{0}

(∏
i∈I1

1̂`i(〈β, hi〉)

)
·

(∏
i∈I2

1̂`i(〈β, hi〉)

)
·

(∏
i∈I3

1̂`i(〈β, hi〉)

)∣∣∣∣∣∣
(40)

≤
∑
`

∑
0≤i+j+l≤n−t+1

∑
β∈Fn−t+1

p \{0}
s.t. |K1|=i,
|K2|=j,
|K3|=l

∣∣∣∣∣
(∏
x∈I1

1̂`x(〈β, hx〉)

)
· (41)

∏
y∈I2

1̂`y (〈β, hy〉)

 ·(∏
z∈I3

1̂`z (〈β, hz〉)

)∣∣∣∣∣
=
∑
`

∑
0≤i+j+l≤n−t+1

∑
I′1⊆I1,|I

′
1|=i

I′2⊆I2,|I
′
2|=j

I′3⊆I3,|I
′
3|=l

∑
β∈Fn−t+1

p \{0}
s.t. K1=I

′
1

K2=I
′
2

K3=I
′
3

∣∣∣∣∣
(∏
x∈I1

1̂`x(〈β, hx〉)

)
· (42)

∏
y∈I2

1̂`y (〈β, hy〉)

 ·(∏
z∈I3

1̂`z (〈β, hz〉)

)∣∣∣∣∣

27

=
∑
`

∑
0≤i+j+l≤n−t+1

∑
I′1⊆I1,|I

′
1|=i

I′2⊆I2,|I
′
2|=j

I′3⊆I3,|I
′
3|=l

SI′1,I′2,I′3 (43)

Recall H is a matrix who’s columns span C⊥, and let hj denote the j’s row of
H. Similarly to [5], the next step is to bound the last expression in the chain using
the Cauchy-Schwarz inequality. The main innovation we introduce is splitting
the sum in the expression into several sums as in Equation 41, and applying the
bound separately to each sum. Note the implicit definition of SI′1,I′2,I′3 in the last
line.
Let us denote

Bi,j,l =
{
β ∈ Fn−t+1

p \ {0}
∣∣∣ |K1| = i, |K2| = j, |K3| = l

}
.

We further denote

BI′1,I′2,I′3 =
{
β ∈ Bi,j,l

∣∣∣I ′1 = K1, I
′
2 = K2, I

′
3 = K3

}
.

Rewriting the above inequality, we get

SD
(
L(C),L(Fnp)

)
≤
∑
`

∑
0≤i+j+l≤n−t+1

∑
β∈Bi,j,l

s.t. |K1|=i,
|K2|=j,
|K3|=l

∣∣∣∣∣∣
(∏
x∈I1

1̂`x(〈β, hx〉)

)
·

∏
y∈I2

1̂`y (〈β, hy〉)

∣∣∣∣∣∣ ·

(44)

max
β∈Bi,j,l

∣∣∣∣∣∏
z∈I3

1̂`z (〈β, hz〉)

∣∣∣∣∣
≤
∑
`

∑
0≤i+j+l≤n−t+1

∑
I′1⊆I1,|I

′
1|=i,

I′2⊆I2,|I
′
2|=j,

I′3⊆I3,|I
′
3|=l

√ ∑
β∈BI′1,I′2,I′3

∏
x∈I1

|1̂`x(〈β, hx〉)|2 · (45)

√ ∑
β∈BI′1,I′2,I′3

∏
y∈I2

|1̂`y (〈β, hy〉)|2 · max
β∈Bi,j,l

∣∣∣∣∣∏
z∈I3

1̂`z (〈β, hz〉)

∣∣∣∣∣
The inequality 44 is simply due to splitting the sum according to the exact

locations of 0 coordinates in HβT . The inequality 45 is by Cauchy-Schwartz,
where the maximum is taken over a larger set than needed, which clearly only
increases the bound.

To continue, we will use the following technical observation.

28

Observation 3 For sets A1, A2 with |A1|+|A2| = p, we have
∑
i∈[2]

√∑
α6=0

|1̂Ai(α)|2 ≤

1.

Proof. By Parseval’s identity, we have ||1̂Ai ||22 = ||1Ai ||22 = |Ai|
p . Let us denote

qi =
|Ai|
p . Thus ∑

α6=0

|1̂Ai(α)|2 = qi − q2i

as |1̂Ai(0)| = qi. Thus, we have

2∑
i=1

√∑
α6=0

|1̂Ai(α)|2 =
√
q1 − q21 +

√
q2 − q22 (46)

We denote g(x) =
√
x(1− x) and observe that the expression in Equation 46

equals g(q1) + g(1 − q1) = 2g(q1) (as q2 = (1 − q1) and g(q) = g(1 − q)). The
maximum of 2g(q1) in [0, 1] is easily seen to be obtained at q1 = 0.5, and equal
1. 14

Let us bound the contribution of the portion a single I ′1, I ′2, I ′3 contributed to
the expression in Equation 45 - we denote this contribution by S′I′1,I′2,I′3 .

S′I′1,I′2,I′3

=
∑
`

√ ∑
β∈BI′1,I′2,I′3

∏
x∈I1

|1̂`x(〈β, hx〉)|2 ·
√ ∑
β∈BI′1,I′2,I′3

∏
y∈I2

|1̂`y (〈β, hy〉)|2· (47)

max
β∈Bi,j,l

∣∣∣∣∣∏
z∈I3

1̂`z (〈β, hz〉)

∣∣∣∣∣

≤
∑
`

√√√√√∏
x∈I′1

(
|Ax|
p

)2 ·
∏

x∈free1

 ∑
α∈Fp\{0}

|1̂`x(α)|2

 · ∏
x∈I1\(free1∪I′1)

max
α∈Fp\{0}

|1̂`x(α)|2·

(48)√√√√√∏
y∈I′2

(
|Ay|
p

)2 ·
∏

y∈free2

 ∑
α∈Fp\{0}

|1̂`y (α)|2

 · ∏
y∈I2\(free2∪I′2)

max
α∈Fp\{0}

|1̂`y (α)|2·

14 Part of our gain comes from a more careful analysis for the case of two sets. Here
we compute the maximum exactly instead of using concavity arguments to bound
it, as is done in [5]. This is not surprising, because they did not attempt to optimize
bounds for the case of m = 1.

29

∏
z∈I′3

(
|Az|
p

) ·
∏

z∈I3\I′3

| max
α∈Fp\{0}

1̂`z (α)|

Therefore we have

SD
(
L(C),L(Fnp)

)
≤

∑
(I′1,I

′
2,I
′
3)

s.t. ∀j∈[3] I′j⊆Ij ,
|
⋃
j∈[3] I

′
j |≤n−t+1

S′I′1,I′2,I′3 (49)

We start by separately bounding each of the sums S′I′1,I′2,I′3 .
We define the notation free (·; ·, ·, ·) and explain the above sequence of inequalities
next.

For I ⊆ [n] satisfying |I| ≥ n− t+1 and I ′1, I ′2, I ′3 with | ∪j∈[3] I ′j | ≤ n− t+1,
we let free (I; I ′1, I ′2, I ′3) denote a subset of I \∪j∈[3]I ′j of size n− t+1−|∪j∈[3] I ′j |
(picked arbitrarily, say according to lexicographic order). When I ′1, I

′
2, I
′
3 are

clear from the context, we abbreviate freei = free (Ii; I
′
1, I
′
2, I
′
3).

Consider a superset B′I′1,I′2,I′3 of BI′1,I′2,I′3 consisting of all β ∈ Fn−t+1
p such

that HβT has 0’s at all coordinates
⋃
j∈[3] I

′
j , but may as well have 0’s elsewhere.

Restricting β to B′I′1,I′2,I′3 results in a linear code B′ = {HβT |β ∈ B′I′1,I′2,I′3}. From
now on, for a set B ⊆ Fn−t+1

p we abbreviate the multi-set {HβT |β ∈ B} byH ·B.
It is well known that C corresponding to (n, t)-Shamir secret sharing scheme
(which is a special case of a Massey code) is linear [n, k = t− 1,Fp]-MDS code.
Therefore, C⊥ is linear [n, k⊥ = n−t+1,Fp]-MDS code. Therefore (holds for all
linear MDS codes), every set of n−t+1 rows ofH are independent. Therefore, the
resulting linear code BI 15, projected onto any subset I ⊆ [n] with |I| ≥ n−t+1,
is the set of all vectors of the form (0,g, f⊥(g)) where:

– 0 is a vector of 0’s corresponding to the coordinate set I ∩ (I ′1 ∪ I ′2 ∪ I ′3).
– g is an arbitrary vector in F|free(I;I

′
1,I
′
2,I
′
3)|

p .
– f⊥(g) is the (vector) value at coordinates I \

(⋃
j∈[3] I

′
j ∪ free (I; I ′1, I

′
2, I
′
3)
)
.

This value is obtained by applying the linear function f⊥, determined by
C⊥, to (0,g) (that together determine the codeword), complementing the
required coordinates.

Now, the set H · BI′1,I′2,I′3 is a subset of H · B′I′1,I′2,I′3 , where additionally
the codeword at coordinates I1 \ Ii (similarly for the I2 part) must be non-
0. The transition from Equation 47 to Equation 48, bounds each of the first
two
√
· expressions by summing over β in BI′1,I′2,I′3 , by going over all g values

not containing a 0 coefficient, and assuming that the resulting f⊥(g) also has
no 0 coefficients (taking the maximal possible coefficient as a bound for each).
However, for some such g’s, additional 0 coefficients may turn up in f⊥(g), so
the contribution of that β shouldn’t have been accounted for (as β /∈ BI′1,I′2,I′3).
15 Jumping ahead, we will only consider BI for I ∈ {I1, I2}.

30

But, this may only increase the upper bound. This only potentially increasing
the expression, as all summands are non-negative (in particular, each g may
appear at most once, as in H · BI′1,I′2,I′3). A similar phenomena occurs in the
part for responding to I2, so the inequality follows. Another fact we use in this
transition, is that 1̂`i(0) =

|Ai,`i |
p for any boolean function 1`i we consider.

Further simplifying, we get:

S′I′1,I′2,I′3

=
∑
`

∏
i∈I′1∪I′2∪I′3

|Ai,`i |
p
·
∏

i∈free1∪
free2

√
|Ai,`i |
p

(
1− |Ai,`i |

p

)
· (50)

∏
i∈I1\(free1∪I′1)∪
I2\(free2∪I′2)∪

I3\I′3

max
α∈Fp\{0}

|1̂`i(α)|

=
∏

i∈I′1∪I′2∪I′3

∑
`i∈{0,1}

|Ai,`i |
p
·
∏

i∈free1∪
free2

 ∑
`i∈{0,1}

√
|Ai,`i |
p

(
1− |Ai,`i |

p

) ·
∏

i∈I1\(free1∪I′1)∪
I2\(free2∪I′1)∪

I3\I′3

 ∑
`i∈{0,1}

max
α∈Fp\{0}

|1̂`i(α)|



≤ cj+i+2l+n−2(n−t+1)−k
1 = O(c2t−n+i+j+l1) (51)

Here the equality 50 is simply using Parseval’s identity, and the observation
that 1̂`i(0) =

|Ai,`i |
p , and additionally simple arithmetic manipulation. The in-

equality 51 relies on Claim 3 for upper bounding each multiplicand in the second
product by 1. Each multiplicand in the first product sums to 1, and each multi-
plicand in the third product is upper bounded by c1, as follows from Lemma 1.

Let us denote by

S′i,j,l =
∑

I′1⊆I1,|I1|=i,
I′2⊆I2,|I2|=j,
I′3⊆I3,|I3|=l

S′I′1,I′2,I′3 .

The number of summands S′i,j,l in the bound 49, rewritten in terms of the S′i,j,ls,
is only poly(n) (O(n2), to be precise). Thus to bound SD

(
L(C),L(Fnp)

)
we may

as well bound t based on the maximum among the sums:

31

log SD
(
L(C),L(Fnp)

)
≤ log

 ∑
i+j+l≤n−t+1

S′i,j,l


≤ log

(
O
(
(n− t+ 1)3

)
max
i,j,l

S′i,j,l

)
≤ logmax

i,j,l
S′i,j,l +O(log n)

Unless stated otherwise, here and elsewhere log stands for log2. As the bound
on the maximum log(S′i,j,l) will be Ω(n) (for any t = c · n for constant c), we
may indeed search for t for which log

(
maxi,j S

′
i,j

)
= −Ω(n) (for arbitrarily small

non-0 hidden constants, so the O(log(n)) factor indeed has no effect).
Let us fix some n− t+ 1 = γn for some constant γ ∈ (0, 1). We want to find

the range of γ values for which max
i+j+l≤n−t+1

S′i,j,l is 2
−Ω(n). Let p and n both go

to infinity. The above requirement translates into the following,

log

(
max

i+j+l≤n−t+1
S′i,j,l

)

≤ max
i+j+l≤n−t+1

(
log

(∑
I′1⊆I1,|I1|=i,
I′2⊆I2,|I2|=j,
I′3⊆I3,|I3|=l

S′I′1,I′2,I′3

))

≤ max
i+j+l≤n−t+1

(
log

((
n− t+ 1

i

)
·
(
n− t+ 1

j

)
·
(
2t− 2− n

l

)
· max
I′1,I

′
2,I
′
3

S′I′1,I′2,I′3

))
(52)

≤ n ·
(
γ · I(a1) + γ · I(a2) + (1− 2γ) · I(a3 · b/(1− 2γ))−(
1 + γ · (a1 + a2 + a3 − 2)

)
log(c1)

)
+ poly log(n) (53)

Here a1, a2, a3 denote i
n−t+1 ,

j
n−t+1 ,

l
n−t+1 respectively. In the last step, we

use Stirling’s approximation, log(n!) = n log(n)−n log e+O(log(n)), neglecting
the O(log(n)) term. Also, we replace c1 with its limit limp→∞. In this case,
c1 tends (from above) to log(2/π). We conclude that the set of γ’s satisfying
Equation 54 below, result in (n, (1 − γ)n)-Shamir being Leakage resilient, as
required in Theorem 1:

max
a1,a2,a3

(
I(a1) + I(a2) + (1− 2γ) · I(a3 · γ/(1− 2γ))− (54)(

1 + γ · (a1 + a2 + a3 − 2)
)
log(2/π)

)
< 0

32

In particular, the left hand side is well defined for all 0 < γ < 0.5. Fix some γ,
using standard multi-variate analytic techniques (on the expressions as a function
of a1, a2, a3) over the domain {(a1, a2, a3)|a1 + a2 + a3 ≤ 1, a1, a2, a3 ≥ 0}, we
get that γ ≤ 0.133n leads to a negative value.
This concludes the proof of Theorem 1.

33

	On Leakage-resilient Secret Sharing

