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Abstract. Σ-Protocols provide a well-understood basis for secure algorithmics. Recently, Bulletproofs
(Bootle et al., EUROCRYPT 2016, and Bünz et al., S&P 2018) have been proposed as a drop-in re-
placement in case of zero-knowledge (ZK) for arithmetic circuits, achieving logarithmic communication
instead of linear. Its pivot is an ingenious, logarithmic-size proof of knowledge BP for certain quadratic
relations. However, reducing ZK for general relations to it forces a somewhat cumbersome “reinvention”
of cryptographic protocol theory.
We take a rather different viewpoint and reconcile Bulletproofs with Σ-Protocol Theory such that
(a) simpler circuit ZK is developed within established theory, while (b) achieving exactly the same
logarithmic communication.
The natural key here is linearization. First, we repurpose BPs as a blackbox compression mechanism for
standard Σ-Protocols handling ZK proofs of general linear relations (on compactly committed secret
vectors); our pivot. Second, we reduce the case of general nonlinear relations to blackbox applications of
our pivot via a novel variation on arithmetic secret sharing based techniques for Σ-Protocols (Cramer et
al., ICITS 2012). Orthogonally, we enhance versatility by enabling scenarios not previously addressed,
e.g., when a secret input is dispersed across several commitments. Standard implementation platforms
leading to logarithmic communication follow from a Discrete-Log assumption or a generalized Strong-
RSA assumption. Also, under a Knowledge-of-Exponent Assumption (KEA) communication drops to
constant, as in ZK-SNARKS.
All in all, our theory should more generally be useful for modular (“plug & play”) design of practical
cryptographic protocols; this is further evidenced by our separate work (2020) on proofs of partial
knowledge.

Keywords: Σ-protocols, Bulletproofs, Zero-Knowledge, Plug-and-Play, Secure Algorithmics, ZK-SNARKS,
Verifiable Computation.

1 Introduction

The theory of Σ-Protocols provides a well-understood basis for plug-and-play secure algorithmics.5 Recently,
Bulletproofs [BCC+16, BBB+18] have been introduced as a “drop-in replacement” for Σ-Protocols in several
important applications. Notably, this includes ZK for arithmetic circuits with communication O(log |C| · κ)
bits where |C| is the circuit size6 and κ is the security parameter, down from O(|C| ·κ) bits. A similar result
holds for range proofs.

At the heart of Bulletproofs is an interactive proof of knowledge between a Prover and Verifier showing
that a Pedersen commitment to a vector of large length n satisfies a multi-variate polynomial equation of
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degree 2, defined with an inner product. We refer to this PoK by BP. Concretely, suppose G is a cyclic group of
prime order q (denoted multiplicatively) supporting discrete-log-based cryptography. Suppose, furthermore,
that g = (g1, . . . , gn) ∈ Gn and h ∈ G (each gi as well as h generators of G) have been set up once-and-for-all
such that, for parties that may subsequently act as provers, finding nontrivial linear relations between them
is computationally as hard as computing discrete logarithms in G. For each x ∈ Znq , define gx =

∏n
i=1 g

xi
i .

A Pedersen-commitment P to a vector x ∈ Znq is then computed as P = gx · hρ where ρ ∈ Zq is selected
uniformly at random. This commitment is information-theoretically hiding and, on account of the set-up,
computationally binding. Note that it is compact in the sense that, independently of n, a commitment is a
single G-element. Suppose that n is even and write n = 2m. Setting x = (x0,x1) ∈ Zmq × Zmq , a Bulletproof
allows the prover to prove that it can open P such that the inner-product 〈x0,x1〉 equals some value claimed
by the prover.7

BPs stand out in that they ingeniously reduce communication to O(log n) elements from O(n) via tra-
ditional methods. Although this is at the expense of introducing logarithmic number of moves (instead of
constant), its public-coin nature ensures that it can be rendered non-interactive using the Fiat-Shamir heuris-
tic [FS86]. However, design of BP applications meet with a number of technical difficulties. First, BPs are
not zero-knowledge, and second, cryptographic protocol theory has to be “reinvented” with the quadratic
constraint proved as its “pivot”. This leads to practical yet rather opaque, complex protocols where applying
natural plug-and-play intuition appears hard.

1.1 Summary of Our Contributions

In this work we take a different approach. We reconcile Bulletproofs with theory of Σ-Protocols such that
(a) applications can follow (established) cryptographic protocol theory, thereby dispensing with the need
for “reinventing” it, while (b) enjoying exactly the same communication reduction. We do this by giving a
precise perspective on BPs as a significant strengthening of the power of Σ-protocols. We believe this novel
perspective is rather useful for intuitive, plug-and-play or modular design of practical secure algorithmics.
Perhaps surprisingly our approach yields the same communication complexity; up to and including the
constants.

We combine two essential components. First, we isolate a natural, alternative pivot: compact commitment
with “arbitrary linear form openings”. Given a Pedersen commitment to a long vector x, consider a ZKPoK
that the prover knows x, while also revealing, for an arbitrary, public, linear form L, the scalar L(x) correctly
and nothing else. This has a simple Σ-Protocol. We then compress it by replacing the final (long) prover-
message with an appropriate BP that the prover knows it. Indeed, the relation that this message is required
to satisfy turns out amenable to deployment of a suitable BP. As a result, PoK and honest-verifier ZK are
preserved, but overall communication drops from linear to logarithmic. In the process, we simplify known
run-time analyses of knowledge extractors involved and give concrete estimates. On top of this, we introduce
further necessary utility enhancements. First, without increasing overall complexity, we show, using the pivot
as black-box, how to open several linear form evaluations instead of just one. Second, using this and by plug
& play with our basic theory, we show how to handle the application scenario where the secret, long vector is
initially “dispersed” across several commitments, by compactifying these into a single compact commitment
first. This is useful in important applications. From this point on, the only fact about the pivot that we
will need is that we have access to a compact commitment scheme that allows a ZKPoK with low overall
communication, showing that the prover knows the long secret committed vector and showing the correct
openings of several linear evaluations on that committed vector; the technical details do not matter anymore.

Second, the pivot’s significance now surfaces when integrated with a novel variation on – hitherto largely
overlooked – arithmetic secret sharing based techniques for Σ-Protocols [CDP12], inspired by MPC. These
techniques allow for linearization of “nonlinear relations”. Mathematically, solving the linear instances first
and then “linearizing” the non-linear ones is perhaps among the most natural problem solving strategies; here,
this fits seamlessly with Sigma-protocol theory and our adaptation of [CDP12]. It is in these adaptations that
free choice of linear forms in the pivot is fully exploited; the maps arising from our adaptation of [CDP12]

7 Alternatively, this inner-product value may be taken as part of the committed vector.

2



do not form a well-structured subclass of maps. All in all, this yields simple logarithmic communication
solutions for circuit ZK. Similarly for range proofs, which are now trivial to design. We also offer trade-offs,
i.e., “square-root” complexity in constant rounds. Our results are based on either of three assumptions, the
Discrete Logarithm assumption, an assumption derived from the Strong-RSA assumption, or a Knowledge-
of-Exponent derived assumption.

We proceed as follows. We start by outlining our program, in nearly exclusively conceptual fashion. We
believe that the fact that it is possible to do so further underscores our main points. Later on we detail how
this program deviates exactly from the paths taken in the recent literature.

1.2 A More Detailed View of Our Program

A. Our Pivotal Σ-Protocol
We isolate a basic Σ-protocol Π0 that, given a compact commitment to a secret vector x of large length n,
allows to partially open it. Concretely, given an arbitrary, public, linear form L, only the value L(x) is released
and nothing else. Briefly, the prover has a compact commitment P to a long secret vector x. By a simple twist
on basic Σ-protocol theory, the prover then selects a compact commitment A to a secret random vector r. The
prover sends, as first move, this commitment A and the values y = L(x) and y′ = L(r). In the second move,
the verifier sends a random challenge c ∈ Zq. In the third, final move, the prover then opens the commitment
AP c to a vector z (i.e., z is its committed vector; we leave the randomness underlying the commitment
implicit here). Finally, the verifier checks the opening of the commitment and checks that L(z) = cy + y′.
The communication in this Σ-protocol is dominated by the opening of AP c. The latter amounts to O(nκ)
bits (where κ is the security parameter), whereas the remainder of the protocol has O(κ) bits in total. That
said, it is an honest-verifier zero-knowledge proof of knowledge (with unconditional soundness). In addition,
we describe an amortized version of this basic Σ-protocol, i.e., a Σ-protocol ΠAm

0 that, given s compact
commitments to secret vectors x1, . . . ,xs and a linear form L, allows to open L(x1), . . . , L(xs) and nothing
else. The communication costs of this amortized Σ-protocol are exactly s−1 elements more than that of the
basic Σ-protocol (i.e., the evaluations at the s− 1 additional input vectors).

Using the pivotal Σ-protocol as a black-box, its utility can be enhanced, which will be important later
on. More concretely, many linear forms can be opened for essentially the price of a single one. First, by
deploying a “polynomial amortization trick” (known, e.g., from MPC) we can do any number of nullity
checks without any substantial increase in complexity. Second, building on this trick, we can extend the
utility to the opening of several arbitrary linear forms L1, . . . , Ls instead of a single one, at the cost of
increasing the communication by exactly s− 1 values in Zq (i.e., the evaluations of s− 1 additional forms).
Finally, we note the entire discussion on these enhancements holds verbatim when we replace linear forms
by affine forms.8

Note that we have identified two distinct intractability assumptions, each of which supports this pivot:
the Discrete Logarithm assumption (as used in prior work involving Bulletproofs [BCC+16, BBB+18]) but
also one derived from the Strong-RSA assumption (as nailed down in a recent work [BFS20] on Bulletproofs
and their improved applications). The introduction focuses on the DL assumption, but the Σ-protocol for
the solution derived from the Strong-RSA assumption follows similarly. Our program can be based on either
platform. In addition, we show how to base the program on a specific knowledge of exponent assumption.
However, such assumptions are known to be unfalsifiable and, therefore, not without controversy. The details
of our pivotal Σ-protocol can be found in Section 3, and the utility enhancements are described in Section 5.

B. Compressing the Pivot
We argue that protocol Π0 can be compressed using the ideas underlying Bulletproofs, yielding a protocol
Πc that has the same functionality and is still an honest-verifier zero-knowledge proof of knowledge for the
relation in question, but that has communication O(κ log n) bits instead, and O(log n) moves. Technically
the compression degrades the soundness from unconditional to computational, and protocols with computa-
tional soundness are called arguments of knowledge. However, we will use the terms proof and argument of

8 I.e., a linear form plus a constant.
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knowledge interchangeably. The compression techniques directly carry over to amortized Σ-protocol ΠAm
0 .

See below for variations achieving unconditional soundness.

Main compression idea. The idea is simply as follows, starting from Π0. Suppose that P is the commitment
in question. The linear forms are constants as they are part of the relation proved, so they will not be
made explicit for now. Furthermore suppose that the prover has sent the message a as first move of Π0,
and that the verifier has subsequently sent challenge c as the second move. Thus, in the third –and final–
move, the prover would be required to send the reply z. The verifier would, finally, apply the verification
function φ attached to Π0 to check that φ(P ; a, c, z) = 1, and accept only if this is the case. To define the
compressed protocol Πc, instead of requiring the prover to send the long vector z, a suitable adaptation of
Bulletproof’s PoK (BP) will be deployed to let the prover convince the verifier that it knows some z such
that φ(P ; a, c, z) = 1, which is much more efficient. Note that it is immaterial that the Bulletproof part is
not zero knowledge as, in Π0, the prover would have revealed z anyway.

This will ensure the claimed communication reduction, i.e., O(κ log n) bits in O(log n) moves. We show
that, as a trade-off, we may opt for constant number of rounds (instead of logarithmic) and O(κ

√
n) commu-

nication (instead of logarithmic). But of course, in non-interactive Fiat-Shamir mode (which clearly applies
here), the logarithmic variant may be preferable.

Note that this compression idea equally applies to the enhancements of the basic utility as discussed
above. It gives essentially the same complexities. Of course, this assumes that the number of openings of
linear forms is not too large; it is not sensitive to the number of nullity checks though. The details of the
compression idea can be found in Section 4.

Refined Analysis of Knowledge Extractors. In the theory of Σ-protocols [Cra96], it is well known that special
soundness implies knowledge soundness with knowledge error 1/q, where q is the size of the challenge set. This
result can be shown [Cra96] by an application of Jensen’s inequality to the convex function f(X) = X(X −
1/q). Recently, and particularly for the above mentioned compressing techniques, natural generalizations
of special soundness have become relevant. These more general notions of special soundness can again be
shown to imply knowledge soundness. However, the proof technique using Jensen’s inequality is no longer
directly applicable. For this reason prior works [BCC+16, BBB+18] resort to heavy row type arguments
without computing the exact knowledge error. Here, we show that an adaptation of the proof using Jensen’s
inequality does apply. This results in a simple proof and a refined analysis of the protocols in this paper.9

The details of the extractor analysis can be found in Appendix A.

Compressed Pivot with Unconditional Soundness. In addition, we show two approaches for realizing our
compressed pivot with unconditional knowledge soundness, rather than computational. In our first approach
we simply omit the step of the BP compression in which the linear-form evaluation is incorporated into
the commitment, and execute that part “in the open”. This works for us here since we only consider linear
constraints in the compressed pivot and no quadratic ones. As a result, unconditional soundness is achieved.
This approach increases the communication costs by a factor 2.

Our second approach is based on the observation that an unconditionally sound ZKPoK for opening linear
forms can be based on black-box access to an unconditionally sound ZKPoK for just proving knowledge of an
opening of a Pedersen vector commitment. The reduction uses structural information of a given linear form
(i.e., it depends on the null-space and selection of a basis for it). By removing the provisions for linear forms
from the compressed pivot Πc the required black-box is realized. The details can be found in Appendix C.

C. Compactifying a Vector of Commitments
Our compressed pivot may be summarized as compact commitments to long secret vectors that allow for
very efficient partial openings, i.e., arbitrary linear forms applied to the secret committed vector. As we show
later on, this is sufficient for proving any (nonlinear) relation. To make this work, all relevant prover data
(secret data vector plus secret auxiliary data, such a random coins) is required to be committed to in a single
compact commitment.

9 These results hold for one of several possible definitions for knowledge soundness. Alternative definitions require
additional effort for these techniques to work. For more details see Appendix A.
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However, in many relevant practical scenarios, we must assume that the commitment to the prover’s
secret data vector, about which something is to be proved in zero knowledge, has already been produced
before the zero knowledge protocol is run. In order to handle this, we require the prover to compactify these
commitments together with the secret auxiliary data in a single commitment.

We consider two extreme scenarios: (1) the prover has a single compact commitment to the secret data
vector about which some zero knowledge proof is to be conducted and (2) same, except that the prover has
individual commitments to the coordinates of that secret data vector. For each scenario we give a conceptually
clean realization by plug & play with our basic theory. We note that scenario 1 has not been addressed by
previous work.

For the first scenario the prover uses new generators to commit to the auxiliary information. Using the
compressed Σ-protocol, the prover shows that this is indeed a commitment that exclusively involves the
new generators. Prover and verifier multiply the two compact commitments to obtain a single compact
commitment to all relevant data.

For the second scenario, a basic (amortized) Σ-protocol shows that the prover knows openings to all
individual commitments. From this basic protocol, we define a new Σ-protocol as follows. The prover appends
the first message a of the basic protocol with a compact commitment containing all relevant data and the
randomness sampled in the first move of the basic Σ-protocol. After receiving the challenge the prover’s
response can now be computed as a public linear form (parameterized by the challenge c) evaluated at the
vector to which the prover committed. Instead of sending this message directly, the prover and verifier run
the interactive protocol to open the associated linear form on the compact vector commitment. The verifier
checks that the opening of the vector commitment is also an opening of the commitment in the Σ-protocol.
As a result the prover has shown that it knows openings to all the individual commitments and that these
openings are contained in the compact commitment together with the auxiliary data. The details on the
compactification of vector commitments can be found in Section 5.3.

D. Plug-and-Play Secure Algorithmics from Compressed Pivot
We will now explain the power of our compressed pivot. It will turn out that we only need black-box access.
Our key point is to show how to combine this with a hitherto largely overlooked part of Σ-protocol theory,
namely the work of [CDP12] that shows how to prove arbitrary constraints on committed vectors by exploit-
ing techniques from secure multi-party computation based on arithmetic secret sharing, more concretely,
the ideas underlying the Commitment Multiplication Protocol from [CDM00]. For more information, see
Section 12.5.3 in [CDN15] for a general description of efficient zero-knowledge verification of secret mul-
tiplications in terms of arbitrary (strongly-multiplicative) arithmetic secret sharing. It is this combination
of “compact commitments with linear openings” and arithmetic secret sharing that allows for “linearizing
nonlinear relations”. So this explains also why our compressed pivot does not need any “direct” provision to
handle nonlinearity.

We need to make some appropriate adaptations to make this work for us here. We first outline the
technique from [CDP12] and then we discuss adaptations. The work of [CDP12] considers homomorphic
commitment schemes where the secret committed to is not a vector of large length, but a single element of
Zq instead. The primary result is a Σ-protocol showing the correctness of commitments to m multiplication
triples (αi, βi, γi := αiβi), with low amortized complexity for large m. In other words, the protocol verifies
the multiplicative relations, and the costs per triple are relatively small.

Each of the αi’s (resp., the βi’s and γi’s) is individually committed to. Their solution employs strongly-
multiplicative packed-secret sharing. For instance, consider Shamir’s scheme over Zq, with privacy parameter
t = 1, but with secret-space dimension m. This uses random polynomials of degree ≤ m, subject to the
evaluations on the points 1, . . . ,m comprising the desired secret vector. Note that, for each sharing, a single
random Zq-element is required (which can be taken as the evaluation at 0).

It is important to note that, given secret vector and random element, it holds by Lagrange Interpolation
that, for each c ∈ Zq, the evaluation f(c) of such polynomial f(X) is some public Zq-linear combination over
the coordinates of the secret vector and the random element. Namely, consider the map that takes m + 1
arbitrary evaluations on the points 0, . . . ,m and that outputs the unique polynomial f(X) of degree ≤ m
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interpolating them to the evaluations of f(X) in all other points. A transformation matrix describing this
map does not correspond to a Vandermonde-matrix, but it can be determined from it.

Now, assume that 2m < q (for strong-multiplicativity). The protocol goes as follows.

– The vectors of commitments to the multiplication triples are assumed to be part of the common input.
– The prover selects a random polynomial f(X) that defines a packed secret sharing of the vector

(α1, . . . , αm). The prover also selects a random polynomial g(X) that defines a packed secret shar-
ing of the vector (β1, . . . , βm). Finally, the prover computes the product polynomial h(X) := f(X)g(X)
of degree ≤ 2m < q.

– The prover commits to the random Zq-element for the sharing based on f(X), i.e., f(0), and commits to
the random Zq-element for the sharing based on g(X), i.e., g(0). The prover also commits the evaluations
of h(X) on the points 0,m + 1, . . . , 2m.10 Note that the “absent” evaluations at 1, . . . ,m comprise the
γi’s and their commitments are already assumed to be part of the common input.

– The prover sends these commitments to the verifier.
– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and sends it to the prover.
– By public linear combinations, both prover and verifier can compute three commitments: one to u := f(c),

one to v := g(c) and one to w := h(c). The prover opens each of these (assuming, of course, that c is in the
right range). The verifier checks each of these three openings and checks whether w = uv. If the committed
polynomials do not satisfy f(X)g(X) = h(X), and under the assumption that the commitment scheme
is binding, there are at most 2m values of c out of the q −m possibilities such that the final check goes
through. So a lying prover is caught with probability greater than 1− 2m/(q −m). With q exponential
in the security parameter and m, say, polynomial in it, this is exponentially close to 1. Honest-verifier
zero-knowledge essentially follows from 1-privacy of the secret sharing scheme.

Our first observation here is as follows. In the above protocol, the prover may as well use our compressed
pivot as a black-box. Indeed, the entire vector

y = (α1, . . . , αm, β1, . . . , βm, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z4m+3
q

of data that the prover commits to in the protocol above can be committed to in a single compact commit-
ment. Note that, by definition, γi = h(i) for all 1 ≤ i ≤ m. Furthermore, all of the data opened to the verifier
is some fixed linear form on the (long) secret committed vector y. Indeed:

1. Each of the values u, v correspond to an opening of a public linear form applied to y. The linear form is
determined by some row in a transformation matrix as addressed above, under the convention that the
form takes zeros on the portion of the coordinates of y not relevant to the computation.

2. Similarly for the value w, except that this simply corresponds to an “evaluation of a polynomial whose
coefficients are defined by a part of y”. So evaluation is a public linear form as well.

Overall, we get an honest-verifier proof of knowledge for showing correctness of m secret multiplication-
triples with O(k logm) bits communication in O(logm) moves (or in constant rounds but with O(k

√
m) bits

communication).
Our second observation here is as follows. Suppose we have an arithmetic circuit11 C over Zq with n

inputs, s outputs and m multiplication gates.12 We can easily turn the observation above into a solution for
“circuit zero-knowledge”, i.e., the prover convinces the verifier that the committed vector x ∈ Znq satisfies
some constraint captured by a given circuit C which (w.l.o.g.) returns 0. We note that [CDP12] also gives a
solution for circuit zero-knowledge. But that one does not work for us here as it gives too large complexity.
So we make some changes.

10 By Lagrange interpolation these points, together with the γi’s, determine h(X).
11 Each gate of the circuit has fan-in two, but unbounded fan-out.
12 We only count multiplication gates with variable inputs. Additions and multiplications by constants are implicitly

handled and immaterial to the communication.
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By the aforementioned compactification techniques it is sufficient to consider the ZK scenario where the
prover wants to demonstrate that C is satisfiable; this means that we may assume that the prover commits
to all relevant data (inputs and all auxiliary data) in a single compact commitment. Other ZK scenarios,
in which the prover has already committed to input data, are dealt with by first compactifying existing
commitments and auxiliary information into a single compact commitment.

The protocol goes as follows. The prover first determines the computation graph implied by instantiating
the circuit C with its input vector x ∈ Znq . The m multiplication gates in C will be handled as above, i.e.,
via polynomials f(X), g(X) and h(X) defining packed-secret sharings of the left inputs, the right inputs and
outputs of the multiplication gates. The prover commits to each of the coordinates of x and to the auxiliary
data aux = (f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z2m+3

q in one single compact commitment. The length γ of
the committed vector y thus equals n+ 2m+ 3.

A simple fact about arithmetic circuits shows that all wire values are accessible as affine combinations
of the coefficients committed to. These affine combinations are uniquely defined by the addition and scalar
multiplication gates of the circuit. This explains why, in contrast to the discussion above, it is no longer
necessary to commit explicitly to the αi’s and the βi’s as these are now implicitly committed to via said
affine functions of y. Therefore, since the values f(0), g(0) are still included in y, the polynomials f(X),
g(X) and h(X) are well-defined by y, and their evaluations are, by composition of the appropriate maps,
also affine evaluations on y.

With the above observations in hand, the protocol is reduced to opening the affine map Φ that, on input
y, outputs (C(x), f(c), g(c), h(c)) for a challenge c ∈ Zq \ {1, . . . ,m} sampled uniformly at random by the
verifier. First, the verifier checks that h(c) = f(c)g(c) which, as above, shows that the required multiplicative
relations hold with high probability. Second, the verifier checks that C(x) = 0, which shows that the circuit
is satisfiable and that the prover knows a witness x. By the amortized nullity checks (A) the costs of these
openings can be amortized. As a result, circuit zero knowledge can be done O(k log γ) bits in O(log γ) moves.
In particular, the communication costs are independent of the number of output vertices s. Trade-off between
communication and moves applies as above. More details on circuit ZK can be found in Section 6.

E. Range Proofs
In a basic range proof a prover wishes to commit to a secret integer v and show that this integer is in a
public range, say [0, 2n−1]. From the above circuit ZK protocols, range proofs immediately follow. A prover
simply considers the bit decomposition b ∈ Zn of the integer v, the length of this decomposition determines
the range. Note that v can be accessed as a linear form evaluated at b and thereby a commitment to b is
an implicit commitment to v. Prover and verifier run the above circuit satisfiability protocol to commit to
b and prove that C(b) = 0 for C : Znq → Znq , x 7→ x ∗ (1 − x), where ∗ represents the component-wise
product. The nullity check for C shows that the committed coefficients are indeed bits. The communication
complexity of this range proof is O(κ log n) bits.

Using the techniques described in Section 5.3, this functionality can be extended to scenario where a
prover has to prove that a Pedersen commitment to v ∈ Zq is in a certain range. The details can be found
in Section 7.

F. Our Program from the Strong-RSA Assumption
Thus far, we have implemented our program in the discrete log setting, starting from Pedersen commitments
and their basic Σ-protocols. Besides some minor details in the compressed pivot, we show that the above
discussion holds verbatim for a commitment scheme based on an assumption derived from the Strong-RSA
assumption. More precisely, we show how the polynomial commitment scheme from a recent work [BFS20] can
be adapted to open arbitrary linear forms. Our adaptations of the linearization techniques from [CDP12] are
directly applicable to the Strong-RSA derived pivot. The details can be found in Section 7 and Appendix G.

G. Our Program from the Knowledge-of-Exponent Assumption
In addition to the discrete log and strong-RSA derived assumptions, our program can also be based on an
assumption derived from the Knowledge-of-Exponent Assumption (KEA). Note that KEA is unfalsifiable and
its application is not completely without controversy [Nao03, BCPR14]. Moreover, this approach introduces
a trusted set-up phase, which might be undesirable. The main benefit of the KEA based approach is that it
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reduces the communication complexity from logarithmic to constant, i.e., independent of the dimension of
the committed vector. In Section 9 we describe the main techniques and for more details we refer to [Gro10].

H. Proofs of Partial Knowledge from Compressed Σ-Protocol Theory
In a ZK proof of (k, n)-partial knowledge, a prover knowing witnesses for some k-subset of n given public
statements can convince the verifier of this fact without revealing which k-subset. In separate work [ACF20],
we construct logarithmic size proofs of partial knowledge for all k, n, by adapting our compressed Σ-protocols
and repurposing ideas from [CDS94]. So far, a linear size solution is known for all k, n [CDS94]; logarithmic
size only for k = 1, i.e., 1-out-of-n proofs [GK15, BCC+15, JM20]. We note that, for k = 1, we nearly halve
the best known communication costs.

I. Our program from Lattice Assumptions
From the work of [BLNS20] we can extract an instantiation of our compressed pivot based on lattice as-
sumptions. Based on this, our framework can therefore be instantiated from lattice assumptions. However,
lattice based proofs of knowledge in general are typically subject to a so called soundness slack that is further
increased by the compression in [BLNS20]. Therefore, whether or not one follows our framework, selection
of larger implementation parameters is warranted. Further research is required to determine if and how the
implementation parameters can be improved.

1.3 Comparison with Earlier Work

Traditional solutions for circuit ZK in the discrete logarithm setting have a communication complexity
that is linear in the circuit size. Building on the work of Groth [Gro09], an ingenious recursive approach
achieved logarithmic communication complexity [BCC+16]. At its heart lies an earlier version of the BP
protocol discussed earlier. Further improvements were introduced in [BBB+18] and later revisited in [HKR19].
Recently, Bünz, Fisch and Szepieniec [BFS20] show that similar results can be derived from the Strong-RSA
assumption. The main merit of the Strong-RSA derived solutions is a reduction in the number of public
parameters. In addition, [BFS20] deploys proofs of exponentiation [Wes19] to reduce the computational
complexity.

A common denominator in the aforementioned works is the use of a quadratic constraint as a main pivot.
In [Gro09], a specific inner-product relation is introduced, and it is shown how basic Σ-protocols for this
relation can be enhanced to achieve sub-linear communication complexity. A similar inner-product relation
lies at the foundation of the logarithmic size protocols of [BCC+16], except that it also uses an earlier version
of the BP idea. In [BBB+18], it is subsequently shown that a modification of the quadratic relation leads
to better constants. In [HKR19], more general quadratic constraints were considered with a view towards
reducing computational complexity in specific ZK scenarios. Also they strive for a more modular approach.
However, this induces (minor) communication overhead in comparison to Bulletproofs [BBB+18].

Furthermore, it is worth mentioning that in [BCC+16], as an intermediate stepping stone, a polynomial
commitment scheme is constructed. A polynomial commitment is a commitment to the coefficient vector
of a polynomial together with the functionality of opening the evaluation at any given point. The solution
derived from the Strong-RSA assumption [BFS20] bases itself entirely on this polynomial functionality. For
general relations it uses recent, but complicated, reductions [GWC19, MBKM19, XZZ+19]. Constructing
protocols from quadratic constraints, either directly or via a polynomial commitment scheme, leads to a
complex theory in which plug-and-play secure algorithmics appears hard. Significant effort is required to
realize higher level applications such as circuit ZK or range proofs.

As for zero-knowledge, the work of [BBB+18] and [HKR19] establishes this property at a higher level, and
not, as do the other works, at the level of their main pivot, which leads to additional difficulties in designing
ZK protocols. In fact, in [HKR19], zero-knowledge, reduced communication and reduced computation is
achieved in an integrated manner.

The most significant difference between our approach and that of the aforementioned works is our simple
and direct construction of a compressed pivot to open arbitrary linear forms and to combine this with the
simple (MPC inspired) linearization techniques from [CDP12]. The compression is achieved by a suitable
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adaptation of the BP ideas [BBB+18], and the linearization techniques discard the need for a direct pro-
vision to handle nonlinearity. Moreover, plug and play design of applications according to this compressed
Σ-protocol theory is just as easy as with the standard Σ-protocol theory. Despite the conceptual simplic-
ity, the communication complexities of our approach are, even including the constants, equal to that of
Bulletproofs [BBB+18].

Note that polynomial evaluation, as used in some of the other works, of course also comes down to
the evaluation of a linear form, albeit a specific one. Therefore these approaches are not amenable to the
linearization techniques we use. Opening arbitrary linear forms therefore seems to be a sweet spot in that it
achieves conceptual simplicity, both in designing ZK protocols and in implementing the pivot.

2 Notation and Conventions

In this section we introduce the basic notation used in the remainder of the paper. To this end, let us consider
dummy Protocol 1 for relation Rd, denoted by Πd.

Let (x;w) ∈ Rd, then x is called a statement and w is called a witness for x. An interactive protocol
Πd for relation Rd is a protocol that allows a prover to convince a verifier that it knows a witness w for
statement x.

The protocol’s public parameters are typically a set of generators g1, . . . , gn, h of a group G of prime order
q. We assume that, in the setup phase, these generators are sampled uniformly at random such that the prover
does not know a non-trivial discrete log relation between them. We say that the protocol is computationally
knowledge sound, under the discrete logarithm assumption, if there exists an efficient extractor that either
extracts a witness or finds a non-trivial discrete log relation between the public parameters g1, . . . , gn, h.

Furthermore the protocol Πd takes as public input x and as prover’s private input w, which we write
as either Πd(x;w) or, in the graphical protocol description, as Input(x;w). The verifier always implicitly
outputs reject or accept. Optionally, the protocol can output a public string y to both verifier and prover,
and a private string w′ only to the prover. In this case we write Output(y;w′). In addition to the input
and output of the protocol, the prover’s claim (i.e, (x;w) ∈ Rd) is made explicit in the graphical protocol
description.

Finally, we write L
(
Znq
)

:= {(L : Znq → Zq) : L linear} for the set of linear forms on Znq .

Protocol 1 Dummy Protocol Πd for Relation Rd

Public Parameters : . . .

Input(x;w)
Output(y;w′)

(x;w) ∈ Rd
Prover Verifier
. . . −−−−−−→

←−−−−−− . . .
...

. . . −−−−−−→ . . .

3 The Basic Pivot

This section formally describes the Pedersen vector commitment scheme and our pivotal Σ-protocol, as
discussed in Section 1.2 (A). In addition, we describe a standard amortized Σ-protocol for opening a linear
form on many commitments. Compression is described in Section 4.
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3.1 The Basic Σ-protocol

The primary commitment scheme under consideration in this paper is the Pedersen vector commitment
scheme.

Definition 1 (Pedersen Vector Commitment [Ped91]). Let G be an Abelian group of prime order q.
Pedersen vector commitments are defined by the following setup and commitment phase:

– Setup: g = (g1, . . . , gn)←R Gn, h←R G.
– Commit: Com : Znq × Zq → G, (x, γ) 7→ hγgx := hγ

∏n
i=1 g

xi
i .

We define gx :=
∏n
i=1 g

xi
i and gc := (gc1, g

c
2, . . . , g

c
n) for any g ∈ Gn, x ∈ Znq and c ∈ Zq. Moreover, the

component-wise product between two vectors g,h ∈ Gn is written as g ∗ h = (g1h1, g2h2, . . . , gnhn).
Pedersen vector commitments are perfectly hiding and computationally binding under the assumption

that the prover does not know a non-trivial discrete log relation between the generators g1, . . . , gn, h.
To open a commitment to a linear form L : Znq → Zq means that the prover wishes to reveal L(x) together

with a proof of validity without revealing any additional information on x. Achieving this functionality
amounts for the prover to send the value L(x) along with a ZKPoK for the relation

R =
{(
P ∈ G, L ∈ L

(
Znq
)
, y ∈ Zq; x ∈ Znq , γ ∈ Zq

)
: P = gxhγ , y = L(x)} . (1)

Protocol 2, denoted by Π0, shows a basic Σ-protocol for relation R. Π0 was informally described in
Section 1.2 (A). Theorem 1 shows that Π0 is indeed a special honest-verifier zero-knowledge (SHVZK) Proof
of Knowledge (PoK). Both the communication costs from the prover P to the verifier V and vice versa are
given. Note that in the non-interactive Fiat-Shamir [FS86] mode the communication costs from verifier to
prover might be irrelevant.

Theorem 1 (Basic Pivot). Π0 is a 3-move protocol for relation R. It is perfectly complete, special honest-
verifier zero-knowledge and unconditionally knowledge sound with knowledge error 1/q. Moreover, the com-
munication costs are:

– P → V: 1 element of G and n+ 2 elements of Zq.
– V → P: 1 element of Zq.

3.2 Amortization over Many Commitments

A standard amortization technique for Σ-protocols allows a prover to show correctness of s evaluations of
the linear form L on s committed vectors for essentially the costs of one evaluation. For details we refer to
Appendix B.

4 Compressing the Pivot

This section shows how Bulletproof techniques can be applied to compress our pivotal Σ-protocol Π0, as
mentioned in Section 1.2 (B). The key observation is that sending the final message ẑ := (z, φ) ∈ Zn+1

q is
actually a (trivial) proof of knowledge for the relation

R1 =
{(
P̂ , L̂, ŷ; ẑ

)
: ĝẑ = P̂ ∧ ŷ = L̂(ẑ)

}
, (2)

where, with respect to relation R, ĝ := (g1, . . . , gn, h) ∈ Gn+1, P̂ := AP c, ŷ := cy+ t and L̂(z, φ) := L(z) for
all (z, φ). Another PoK would also suffice, in particular a PoK with a smaller communication complexity.
Moreover, it is immaterial that the PoK is zero-knowledge as the original PoK clearly is not. In [BCC+16]

10



Protocol 2 Σ-protocol Π0 for relation R
Σ-protocol to prove correctness of a linear form evaluation.

Public Parameters : g ∈ Gn, h ∈ G
Input(P,L, y;x, γ)

P = gxhγ ∈ G
y = L(x) ∈ Zq

Prover Verifier

r←R Znq , ρ←R Zq
t = L(r)

A = grhρ
t,A−−−−−−→

c←R Zq
c←−−−−−−

z = cx + r
φ = cγ + ρ

z,φ−−−−−−→
gzhφ

?
= AP c

L(z)
?
= cy + t

this observation was applied to Groth’s Σ-protocol [Gro09]. The main difference is that we start with linear
form relation R, whereas Groth’s Σ-protocol is for a specific quadratic relation.

Let Π be a PoK for relation R1. We call the new protocol obtained by replacing the final move of protocol
Π0 by protocol Π the composition and write Π � Π0. Since Π0 is SHVZK it immediately follows that the
composition is also SHVZK.

The essence of Bulletproofs is a PoK, denoted by BP, with logarithmic communication complexity for
the following inner product relation,

Rbullet =
{(
P ∈ G, u ∈ Zq; a,b ∈ Znq

)
: P = gahb ∧ u = 〈a,b〉

}
, (3)

where g,h ∈ Gn are the public parameters. The quadratic relation Rbullet is quite similar to the relation
R1 and it turns out that minor adaptations of BP give a logarithmic size PoK for relation R1. We will now
describe the components of the BP protocol, while simultaneously adapting these to our relation R1.

4.1 Reduction from Relation R1 to Relation R2

The first step of the BP PoK is to incorporate the linear form into the Pedersen vector commitment. For
this step an additional generator k ∈ G is required such that the prover does not know a discrete log relation
between the generators g1, . . . , gn, h, k. More precisely, the problem of finding a proof for relation R1 is
reduced to the problem of finding a proof for relation

R2 =
{(
Q ∈ G, L̃ ∈ L

(
Zn+1
q

)
; ẑ ∈ Zn+1

q

)
: Q = ĝẑkL̃(ẑ)

}
. (4)

where, Q := P̂ kŷ and L̃ := cL̂ for a random challenge c ∈ Zq sampled by the verifier. The reduction is
described in Protocol 3 and denoted by Π1. Lemma 1 shows that Π1 is an argument of knowledge for
relation R1.

Lemma 1. Π1 is a 2-move protocol for relation R1. It is perfectly complete and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error 1/q. Moreover, the communication
costs are:
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– P → V: n+ 1 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.

Knowledge soundness: We show that there exists an efficient algorithm χ that, on input two accepting
transcripts, either extracts a witness for R1, or finds a non-trivial discrete log relation. So let (c1, ẑ1) and

(c2, ẑ2) be two accepting transcripts with c1 6= c2, then ĝẑ1−ẑ2kc1L̂(ẑ1)−c2L̂(ẑ2) = k(c1−c2)ŷ. Hence, either we

have found a non-trivial discrete log relation, or ẑ1 = ẑ2 and c1L̂(ẑ1) − c2L̂(ẑ2) = (c1 − c2)ŷ. In the latter

case, it follows that L̂(ẑ1) = L̂(ẑ2) = ŷ. Moreover, from this it follows that ĝẑ1kc1L̂(ẑ1) = P̂ kc1ŷ which implies

ĝẑ1 = P̂ .

Hence, ẑ1 is a witness for relation R1. From basic Σ-protocol theory the existence of an efficient extractor
now follows, which proves the theorem.

Protocol 3 Argument of Knowledge Π1 for R1

Reduction from relation R1 to relation R2.

Public Parameters : ĝ ∈ Gn+1, k ∈ G
Input(P̂ , L̂, ŷ; ẑ)

P̂ = ĝẑ ∈ G
ŷ = L̂(ẑ) ∈ Zq

Prover Verifier
c←−−−−− c←R Zq
ẑ−−−−−→

ĝẑkcL̂(ẑ) ?
= P̂ kcŷ

4.2 Logarithmic Size PoK for Linear Relation R2

Next we deploy the main technique of the Bulletproof protocol to construct an efficient PoK for relation R2.
For simplicity let us assume that n + 1 is a power of 2. If this is not the case the vector can be appended
with zeros. The protocol is recursive and in each iteration the dimension of the witness is halved until its
dimension equals 2. We could add one additional step to the recursion and only send the response when the
dimension equals 1. This would reduce the communication costs by one field element, but it would increase
the number of group elements sent by the prover by 2.

For any even dimension m and vector g ∈ Gm, we define gL = (g1, . . . , gm/2) as its left half and
gR = (gm/2+1, . . . , gm) as its right half. The same notation is used for vectors in Zmq . For a linear form
L : Zmq → Zq, we define

LL : Zm/2q → Zq, x 7→ L(x, 0), LR : Zm/2q → Zq, x 7→ L(0,x), (5)

where (x, 0), (0,x) ∈ Zmq are the vectors x appended with m/2 zeros on the right and left, respectively. Recall
that the component-wise product between two vectors is denoted by ∗.

The compression is described in Protocol 4 and denoted by Π2. Theorem 2 shows that protocol Π2 is
a proof of knowledge for relation R2. Note that, in contrast to the compression mechanism of [BBB+18],
protocol Π2 is unconditionally knowledge sound. Theorem 2 and especially the soundness error are derived
from our refined extractor analysis for which we refer to Appendix A.
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Theorem 2 (Compression Mechanism). Π2 is a (2µ + 1)-move protocol for relation R2, where µ =
dlog2(n+ 1)e − 1. It is perfectly complete and unconditionally knowledge sound with knowledge error

κ =

∑µ
i=1 2qµ−i(q − 2)i−1

qµ
≤ 2µ

q
. (6)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 1)e − 2 elements of G and 2 elements of Zq.
– V → P: dlog2(n+ 1)e − 1 elements of Zq.

Proof. Completeness follows directly.
Knowledge soundness follows in a similar manner as it does for the amortized Σ-protocol of Theorem 8

(Appendix B). Namely, by the same “polynomial amortization trick” the commitments A, Q, B are combined

in a single commitment Q′ := AQcBc
2

where c is a random challenge. Informally, if a prover can open
commitment Q′, it follows, with high probability, that a prover can open all three commitments A, Q and
B. For completeness we include the detailed proof.

We show that Π2 is (3, . . . , 3)-special sound (Appendix A.2), i.e., that there exists an efficient algorithm
χ that, on input a depth µ (3, . . . , 3)-tree of accepting transcripts finds a witness for relation R2. Knowledge
soundness then follows from Lemma 3.

For simplicity we assume that we only run one of the recursive steps, i.e., we consider the 3-move variant
of protocol Π2, where the prover sends the response z′ regardless of its dimension, and we show that this
protocol is 3-special sound. From there (3, . . . , 3)-special soundness follows by an inductive argument of
which we omit the details.

So let us show that there exists an efficient algorithm χ that, on input 3 accepting transcripts (A,B, c1, z1),
(A,B, c2, z2), (A,B, c3, z3), with ci 6= cj for all i, j, outputs a witness for relation R2. Given these transcripts
let us define Vandermonde matrix

V =

 1 1 1
c1 c2 c3
c21 c

2
2 c

2
3

 , (7)

with det(V ) = (c3 − c1)(c3 − c1)(c3 − c2). Since ci 6= cj for all i, j, it follows that V is invertible and that we
can define (

a1 a2 a3

)T
:= V −1

(
0 1 0

)T
. (8)

Now it is easily seen that, for z̄ :=
(∑3

i=1 aizi,
∑3
i=1 aicizi

)
, it holds that gz̄kL̃(z̄) = Q. Hence, z is a witness

for relation R2, which proves the claim.

4.3 Composing the Building Blocks

The compressed Σ-protocol Πc for relation R is the composition of the previously mentioned protocols, i.e.,
Πc := Π2 �Π1 �Π0. For a graphical protocol description of Πc we refer to Protocol 5. Theorem 3 shows that
Πc is indeed a SHVZK argument of knowledge for relation R with a logarithmic communication complexity.

Theorem 3 (Compressed Pivot). Πc is a (2µ+3)-move protocol for relation R, where µ = dlog2(n+ 1)e−
1. It is perfectly complete, special honest-verifier zero-knowledge and computationally knowledge sound, under
the discrete logarithm assumption, with knowledge error

κ =
(2q − 1)qµ + (q − 1)2

∑µ
i=1 2qµ−i(q − 2)i−1

qµ+2
≤ 2µ+ 2

q
. (9)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 1)e − 1 elements of G and 3 elements of Zq.
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Protocol 4 Compressed Proof of Knowledge Π2 for R2

Public Parameters : ĝ, k

Input(Q, L̃; ẑ)

Q = ĝẑkL̃(ẑ)

Prover Verifier

A = ĝẑL
R kL̃R(ẑL)

B = ĝẑR
L kL̃L(ẑR) A,B−−−−−−−−−−−−−−→

c←R Zq
c←−−−−−−−−−−−−−−

g′ := ĝcL ∗ ĝR ∈ G(n+1)/2

Q′ := AQcBc
2

L′ := cL̃L + L̃R
z′ = ẑL + cẑR

if
(
z′ ∈ Z2

q

)
:

z′−−−−−−−−−−−−−−→ (g′)
z′
kL
′(z′) ?

= Q′

else : Run Π2(Q′, L′; z′) with
Public Parameters : g′, k

– V → P: dlog2(n+ 1)e+ 1 elements of Zq.

Proof. Completeness follows directly from the completeness of Π0, Π1 and Π2.
SHVZK follows since Π0 is SHVZK. The simulator for Πc namely runs the simulator for Π0 and

continues with honest executions of Π1 and Π2.
Knowledge soundness follows from Lemma 3 (Appendix A.2).

In a completely analogous manner, the amortized Σ-protocol ΠAm
0 of Section 3.2 can be compressed. For

the properties of the amortized and compressed Σ-protocol we refer to Appendix B.

4.4 Compressed Pivot with Unconditional Soundness

Note that since protocol Π1 has computational soundness so does the compressed pivot Πc. In Appendix C
we show two approaches for deriving an unconditionally sound compressed pivot.

4.5 A Remark on Sublinear Communication Complexity

A straightforward adaptation of the compression techniques from Section 4 allows the round complexity of
the compressed pivot to be reduced from logarithmic to constant. However, this reduction comes at the cost
of increasing the communication complexity from O(log(n)) to O(

√
n) elements. For more details on this

trade-off we refer to Appendix D.

5 The Compressed Pivot as a Black-Box

From this point on, the only facts about the pivot that we need is that we have access to a compact vector
commitment scheme that allows a prover to open arbitrary linear forms on multiple commitments. Hence, we
assume black-box access to such a pivot. First, we treat the utility enhancements mentioned in Section 1.2
(A). Second, we describe the compactification techniques as discussed in Section 1.2 (C).

We use the following notation. We write [x] for a compact commitment to a vector x ∈ Znq , and for a
(public) linear form L we write ΠOpen ([x], L; x) for the interactive protocol that reveals L(x) and nothing
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Protocol 5 Compressed Σ-protocol Πc for relation R
Compressed Σ-protocol to prove correctness of a linear form evaluation.

Public Parameters : g, h, k
Input(P,L, y;x, γ)

P = gxhγ ∈ G
y = L(x) ∈ Zq

Prover Verifier

r←R Znq , ρ←R Zq
t = L(r)

Â = grhρ

t,Â−−−−−−−−−−−−−−→
c0, c1 ←R Zq

c0,c1←−−−−−−−−−−−−−−
z = c0x + r
φ = c0γ + ρ
ẑ := (z, φ)

ĝ := (g, h)

Q := ÂP c0kc1(c0y+t)

L̃(z, φ) := c1L(z)

A = ĝẑL
R kL̃R(ẑL)

B = ĝẑR
L kL̃L(ẑR)

A,B−−−−−−−−−−−−−−→
c←R Zq

c←−−−−−−−−−−−−−−
g′ := ĝcL ∗ ĝR ∈ G(n+1)/2

Q′ := AQcBc
2

L′ := cL̃L + L̃R
z′ = ẑL + cẑR

if
(
z′ ∈ Z2

q

)
:

z′−−−−−−−−−−−−−−→ (g′)
z′
kL
′(z′) ?

= Q′

else : Run Π2(Q′, L′; z′) with
Public Parameters : g′, k

else to the verifier. For completeness the diagram of ΠOpen is depicted in Protocol 6. Recall that our notation
ΠOpen ([x], L; x) means that interactive protocol ΠOpen takes as public input [x] and L and as prover’s private
input x. The communication costs of ΠOpen are equal to the cost of the underlying interactive protocol (Πc)
plus 1 field element from P to V (the output of L), unless of course the output is known in advance. Similarly,
we write ΠOpen ([x1], . . . , [xs], L; x1, . . . ,xs) for the (amortized) interactive protocol that exclusively reveals
L(xi) for 1 ≤ i ≤ s to the verifier.

At this point, the implementation details of the compact commitment scheme do not matter anymore.
However, when we give concrete knowledge errors and communication costs it is implicitly assumed that [·]
is instantiated with Pedersen vector commitments and compressed Σ-protocol Πc.

5.1 Many Nullity Checks for the Price of One

A “polynomial amortization trick” (known, e.g., from MPC) allows us to do many nullity checks on the
committed vector x without a substantial increase in complexity. Consider linear forms L1, . . . , Ls and
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Protocol 6 Protocol ΠOpen for Opening a Linear Form Evaluated in a Committed Vector
The randomness and generators of the underlying commitment scheme [·] are left implicit.

Input([x], L;x)
Output(L(x))

Prover Verifier

y = L(x)
y−−−−−−−−−−−→

Run Πc([x], L, y;x)

suppose the prover claims that Li(x) = 0 for i = 1 . . . , s. The verifier then samples ρ ∈ Zq uniformly at
random and asks the prover to open the linear form L(x) :=

∑s
i=1 Li(x)ρi−1, i.e., prover and verifier run

ΠOpen ([x], L; x). The opening of L(x) equals the evaluation of some polynomial of degree at most s− 1. If
this polynomial is non-zero, it has at most s− 1 zero’s. Hence, L(x) = 0 implies that Li(x) = 0 for all i with
probability at least 1− (s− 1)/q. When q is exponential and s is polynomial in the security parameter this
probability is exponentially close to 1. We write ΠNullity([x], L1, . . . , Ls; ,x) for this protocol. Its diagram
is presented in Protocol 7. The communication costs are equal to the costs of a single nullity-check (s = 1)
plus one additional Zq element from V to P (the challenge ρ).

The above discussion holds verbatim when we replace the linear forms by affine forms Φ1, . . . , Φs, for which
we also write ΠNullity([x], Φ1, . . . , Φs; x). Moreover, by the amortized and compressed Σ-protocol ΠAm

c these
techniques directly carry over to the scenario where the prover makes the same nullity claims over many
different commitments.

Protocol 7 Amortized Protocol ΠNullity for Many Nullity Checks at Once
The randomness and generators of the underlying commitment scheme [·] are left implicit.

Input([x], L1, . . . , Ls;x)
Prover Verifier

ρ←−−−−−−−−−−− ρ←R Zq

L :=
∑s
i=1 Liρ

i−1

Run Πc([x], L, 0;x)

5.2 Opening Affine Maps

Many ZK scenarios can be reduced to nullity-checks and, as such, the above utility enhancement is extremely
powerful. As an often encountered example, we specifically mention the functionality of opening arbitrary
affine maps Φ : Znq → Zsq, x 7→ Ax + b, at the cost of increasing the communication by exactly s− 1 values
in Zq in comparison to opening one linear form (i.e., the evaluations of s−1 additional outputs). Note that Φ
is the combination of s affine forms. The protocol goes as follows. The prover reveals the evaluation y = Φ(x)
followed by an amortized nullity-check on the affine forms Φ1(x) − y1, . . . , Φs(x) − ys. For the interactive
protocol that opens an affine map Φ we write ΠOpen ([x], Φ; x).

As before, this protocol directly caries over the scenario where a prover opens the evaluations of Φ on
many committed vectors. The communications costs are only increased by the additional evaluations, i.e.,
the communication costs of the underlying compressed Σ-protocol remain the same. Note that in this case
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amortization is applied twice. First, at the Σ-protocol level, allowing many commitments to be consid-
ered. Second, only requiring black-box access to the pivotal Σ-protocols, allowing many affine forms to be
considered.

5.3 Compactifying a Vector of Commitments

So far, we have shown how to open many linear forms L applied to a compactly committed secret vector
x with low complexity. Dealing with nonlinear functions of a secret-vector-of-interest x will, as shown in
Section 6, require that the prover, at the starting point, is also committed to a vector aux consisting of
correlated secret randomness. As the method will consist of opening appropriate linear forms on the entire
vector given by the pair (x, aux), it will be assumed that the prover is committed to this pair via a single
compact commitment.

Now, from a practical application perspective, it is likely that the prover is already committed to x before
the start of a ZK proof. Consider, for example, the following two extreme cases:

– Case 1: The prover is committed to x in a single compact commitment. This scenario may be said to
correspond to a “textbook” ZK setting.

– Case 2: The prover is committed to the coordinates of x individually. This scenario is relevant in practical
situations with a natural dynamic where provers deliver committed data in subsequent transactions and
only periodically prove in ZK some property on the compound information.

In order to deal with each of these scenarios, we need some further utility enhancements of the compressed
pivot in order to bring about the desired starting point for the methods from Section 6, without too much
loss in communication. It turns out that this is just a matter of “technology”, i.e., plug and play with our
compressed pivot and its basic theory suffices.

Besides these extreme cases one can consider hybrid scenarios in which the secret-vector-of-interest x
is dispersed over various compact commitments. The methods described below both carry over to hybrid
scenarios. The optimal approach depends on specific properties of the scenario. Namely, the communication
complexity of the “Case 1 enhancement” is linear in the number of commitments, whereas the communication
complexity of the “Case 2 enhancement” is linear in the (maximum) dimension of the committed vectors.

Case 1. We describe a straightforward approach. We use the homomorphic property of Pedersen commit-
ments. The prover has a compact commitment P to x. Taking from the public set-up information a new
set of generators disjoint from the initial set that, supposedly, underlies P , the prover creates a compact
commitment Q to aux. Eventually, the prover will set P ′ := P ·Q as the compact commitment to the secret
pair (x, aux), a join. But, first, the prover must show that x and aux “live on disjoint sets of generators”.
This is just a nullity check, basically. The prover shows that, in P , there is a window of zeros w.r.t. the new
generators, i.e., each occurs to the power 0. Similarly for Q but with a window of zeros w.r.t. the initial set
of generators. By the methods for amortized nullity checks described earlier, this is handled with logarithmic
communication. In fact, for the methods of Section 6 to work, it is easy to see that it suffices to perform
the check on Q only. However, since the methods of Section 6 would be applied serially, i.e., after the join
above, this would incur a constant multiplicative factor 2 loss in communication efficiency. We show how it
can be done in parallel, thereby avoiding any such loss.

The amortized pivot allows a prover to open one linear form on many compact commitments efficiently.
By the amortized nullity checks a prover can open many linear forms on one compact commitments efficiently.
Together these amortization techniques almost suffice, except that they force a prover to open linear forms
“intended” for one particular commitment on other commitments as well; they reveal the cross-terms. Thus,
to prevent a privacy breach, we need to mask these cross-terms appropriately and we do this by constructing
a small shell around commitments containing sufficient randomness. Masking the appropriate cross-terms
returns us to the “standard” amortization scenario where the prover wishes to open one affine map on
multiple compact commitments. The shells cause unintended evaluations to return random values, whereas
intended evaluations are left unaltered. For the details we refer to Appendix E.1.
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Case 2. In this case we describe a simple, single protocol that integrates the compactification of a vector of
commitments to individual coordinates of x together with a compact commitment to aux. See Appendix E.2.
for the details. Performing this integration in parallel with the methods of Section 6 is a straightforward
application of the amortized nullity checks.

6 Proving Nonlinear Relations via Arithmetic Circuits

Using our compressed pivot as a black-box, this section describes how to obtain efficient zero-knowledge
arguments for arbitrary arithmetic circuits. We consider arithmetic circuits C over Zq with n inputs, s
outputs and m multiplication gates. Addition and multiplication gates have fan-in 2 and unbounded fan-out.
The number of addition gates is immaterial, as is the number of gates for scalar multiplication. For this
reason m only refers to the multiplication gates that take two variable inputs. We fix an ordering 1, . . . , n of
the inputs and an ordering 1, . . . ,m of the multiplication gates.

The approach is to combine the compressed pivot with an adaptation of the work of [CDP12] that shows
how to prove arbitrary constraints on vectors of committed elements by exploiting techniques from secure
multi-party computation. Concretely, we use the ideas underlying the Commitment Multiplication Protocol
from [CDM00].13 A detailed overview of the approach has been given in Section 1.2 (D). Here, we summarize
the key points and formalize the main properties of the resulting protocols.

6.1 Basic Circuit Satisfiability

First, we consider the basic circuit satisfiability scenario in which a prover shows that it knows an input
x ∈ Znq for which the arithmetic circuit C evaluates to 0. More precisely, we construct a ZK protocol for the
following circuit satisfiability relation:

Rcs = {(C; x) : C(x) = 0}. (10)

Our approach follows the commit and prove paradigm, i.e., the prover commits to the witness x and
subsequently proves that it satisfies the required relation. The terminology circuit satisfiability seems to
suggest that we are only considering circuits for which it is hard to compute a satisfying witness x. However,
many practical scenarios consider circuits C for which it is easy to compute an x such that C(x) = 0. In
these scenarios the arithmetic circuit allows the prover to show that a committed vector satisfies certain
properties.

If C is an affine map, i.e., without multiplication gates, the protocol follows directly from the (enhanced)
functionality of our pivot. Namely, the prover commits to x and runs ΠNullity([x], C; x). Hence, addition
gates and scalar multiplications, are implicitly handled since our pivot allows the opening of arbitrary linear
forms.

Multiplication gates are handled by an appropriate adaptation of the techniques from [CDP12]. Their
primary result is a Σ-protocol showing correctness of m multiplication triples (αi, βi, γi). First, we recall the
adaptation of their approach that uses our compressed pivot as a black-box. See also the first observation
made in Section 1.2 (D). The protocol goes as follows.

– The prover selects a random polynomial f(X) ∈ Zq[X]≤m that defines a packed secret sharing of the
vector (α1, . . . , αm). The prover also selects a random polynomial g(X) ∈ Zq[X]≤m that defines a packed
secret sharing of the vector (β1, . . . , βm). Finally, the prover computes the product polynomial h(X) :=
f(X)g(X) of degree ≤ 2m < q.

– The prover commits to the vector

y = (α1, . . . , αm, β1, . . . , βm, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z4m+3
q

in a single compact commitment and sends the commitment to the verifier. Note that, by Lagrange
interpolation, the polynomials f(X), g(X) and h(X) are uniquely defined by the vector y.

13 For a general description of efficient ZK verification of secret multiplications, in terms of (strongly-multiplicative)
arithmetic secret sharing, see Section 12.5.3 [CDN15].
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– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and sends it to the prover.

– Public linear combinations of the coefficients of y define three values: u := f(c), v := g(c) and w := h(c).
These values are opened and the verifier checks whether w = uv. A cheating prover is caught with
probability greater than 1 − 2m/(q − m) and honest-verifier zero-knowledge essentially follows from
1-privacy of the secret sharing scheme.

Now we adapt this approach to the circuit satisfiability scenario, where we let C : Znq → Zsq be an ar-
bitrary arithmetic circuits with m multiplication gates. We use a simple fact about a circuit C. Consider
the computation graph induced by evaluation at input-vector x ∈ Znq . Write γ1, . . . , γm ∈ Zq for the re-
sulting outputs of the multiplication gates. For each i, write (αi, βi) ∈ Z2

q for the resulting inputs to the
i-th multiplication gate. Finally, write ω ∈ Zsq for the resulting output of the circuit. Then, for each i, there
are affine forms14 ui, vi : Zn+m

q → Zq, depending only on C, such that, for all x ∈ Znq , it holds that
αi = ui(x, γ1, . . . , γm) and βi = vi(x, γ1, . . . , γm). These forms are uniquely determined by the addition and
scalar multiplication gates. Similarly, there is an affine function w : Zn+m

q → Zsq such that, for all x ∈ Znq , it
holds that ω = w(x, γ1, . . . , γm). In other words, a given pair (x, γ1, . . . , γm) ∈ Znq × Zmq can be completed
to an accepting computation graph if and only if ui(x, γ1, . . . , γm) · vi(x, γ1, . . . , γm) = γi (for i = 1, . . . ,m)
and w(x, γ1, . . . , γm) = 0.

The vector y, from the above multiplication-triples approach, is now adapted as follows. The prover
includes the input vector x. However, the αi’s and the βi’s are omitted from y. Otherwise, the vector y is
unchanged. In particular,

y = (x, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Zn+2m+3
q

and (x, γ1, . . . , γm) := (x, h(1), . . . , h(m)) is a subvector of y. Subsequently, the prover compactly commits
to this adapted vector y. By the handle discussed above, the prover needs to convince the verifier that (1)
w(x, γ1, . . . , γm) = 0, and that (2) αi · βi = γi for all 1 ≤ i ≤ m. The αi’s and βi’s are now taken as the
evaluation at (x, γ1, . . . , γm) of the affine functions ui, vi introduced above. Note that we may capture all
these as affine functions evaluated at y.

As for (1), checking that w(x, γ1, . . . , γm) = 0 is just a nullity check as provided by the pivot. As for
(2), the polynomials f(X), g(X) are still well-defined by the prover’s compact commitment to y. Namely,
ρ := f(0), i.e., the randomness underlying its selection, is still included in y. As the αi’s thus defined are
affine functions of y, the prover is still (implicitly) committed to a polynomial f(X) of degree ≤ m such
that f(0) = ρ and f(i) = αi (i = 1, . . . ,m) and evaluation of f(X) in a point c is still, by composition of
appropriate maps, an affine evaluation at y, as enabled by the pivot. Since ρ′ := g(0) is also still included
in y, a similar conclusion is drawn about the βi’s, g(X), and evaluation of the latter. As no changes with
respect to h(X) were made in y, we conclude that the required check can be performed in the same way as
before.

The costs of the different openings are reduced by applying the amortized nullity checks of Section 5.1.
In fact, the communication costs are independent of the number of outputs s.

The protocol is formally described in Protocol 8 and denoted by Πcs. Protocol Πcs only requires black-box
access to the commitment scheme [·]. For notational convenience, we write

ΠNullity ([y], C(x), f(c)− y1, g(c)− y2, h(c)− y3; y) (11)

for the amortized nullity check on the affine forms associated to the s+3 coefficients of (C(x), f(c)−z1, g(c)−
z2, h(c)− z3).

Theorem 4 shows that, when [·] is instantiated with Pedersen vector commitments and compressed Σ-
protocol Πc, Πcs is a SHVZK argument of knowledge for relation Rcs. The theorem also shows that the
knowledge error depends on the number of multiplication gates in the circuit. If the circuit size is polynomial
in the security parameter and q is exponential, then the knowledge error is exponentially close to 0.

14 Zq-linear forms plus a constant.
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Theorem 4 (Basic Circuit ZK). Πcs is a (2µ+ 7)-move protocol for the circuit relation Rcs, where µ =
dlog2(n+ 2m+ 4)e − 1. It is perfectly complete, special honest-verifier zero-knowledge and computationally
knowledge sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 2m+ s+ 4

q −m
. (12)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 2m+ 4)e elements of G and 6 elements of Zq.
– V → P: dlog2(n+ 2m+ 4)e+ 3 elements of Zq.

Proof (Sketch). Completeness follows directly.
Knowledge soundness: By Lagrange interpolation there exists an efficient algorithm to reconstruct a

polynomial of degree t given t + 1 evaluations. Hence, the packed secret sharing and the amortized nullity-
checks are (2m+ 1)-special sound and 4-special sound, respectively. The soundness in these steps is compu-
tational, i.e., it is essential that the prover does not know a non-trivial discrete log relation. The proof now
follows from Lemma 4 (Appendix A.2).

SHVZK follows from 1-privacy of the secret sharing scheme and the fact that Πc is SHVZK.

Protocol 8 Circuit Satisfiability Argument Πcs for Relation Rcs
The polynomials f and g are sampled uniformly at random such that their evaluations in 1, . . . ,m coincide
with the left and, respectively, right inputs of the m multiplication gates of C evaluated at x.

Input(C;x)

C : Znq → Zsq
C(x) = 0

Prover Verifier

f, g ←R Zq[X]≤m
h(X) := f(X)g(X)

y = (x, f(0), g(0), h(0),

h(1), . . . , h(2m))

[y]−−−−−−−−−−−−−−→

c←R Zq \ {1, . . . ,m}
z1 = f(c)

c←−−−−−−−−−−−−−−
z2 = g(c)

z3 = h(c)
z1,z2,z3−−−−−−−−−−−−−−→

z3
?
= z1z2

ΠNullity

[y],

C(x)
f(c)− z1
g(c)− z2
h(c)− z3

; z



6.2 Circuit ZK from Compactification

Thus far, we have restricted ourselves to the basic circuit satisfiability scenario where the prover commits to
all input and auxiliary data at once. However, there is a great variety of other scenarios, where the circuit
takes as input committed values. As in Section 5.3 we consider two extreme cases for circuit ZK:
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– Case 1. Prove that C(x) = 0 for a vector commitment [x] with x ∈ Znq .
– Case 2. Prove that C(x1, . . . , xn) = 0 for commitments [xi] with xi ∈ Zq for all i.

These cases are dealt with by compactifying the commitments into a single compact commitment to all

relevant data. The resulting protocol for Case 1 is denoted by Π
(1)
cs with corresponding relation R

(1)
cs and its

properties are given by Theorem 5. Recall that we consider arithmetic circuits C over Zq with n input, s
output and m multiplication gates.

Theorem 5 (Circuit ZK Case 1). Π
(1)
cs is a (2µ+ 9)-move protocol for circuit relation R

(1)
cs , where µ =

dlog2(n+ 2m+ 6)e − 1. It is perfectly complete, special honest-verifier zero-knowledge and computationally
knowledge sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 2m+ 4 + max(n, s+ 3)

q −m
. (13)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 2m+ 6)e+ 4 elements of G and 12 elements of Zq.
– V → P: dlog2(n+ 2m+ 6)e+ 5 elements of Zq.

The protocol for Case 2 is denoted by Π
(2)
cs with corresponding relation R

(2)
cs and its properties are given

by Theorem 6. Note that in this case we can restrict ourselves to n ≤ 2m. For if n is larger than the
number of inputs to multiplication gates there must exist linear reductions that can be applied directly to
the Pedersen commitments [xi] using its homomorphic properties. Therefore, the communication costs from
prover to verifier are upper-bounded by 2 dlog2(4m+ 5)e+ 9 ≤ 2 dlog2(m+ 2)e+ 13 elements. Bulletproofs
achieve a communication cost of 2 dlog(m)e + 13 elements. Hence, perhaps surprisingly, our plug-and-play
approach almost never increases the communication costs.

Theorem 6 (Circuit ZK Case 2). Π
(2)
cs is a (2µ+ 7)-move protocol for circuit relation R

(2)
cs , where µ =

dlog2(n+ 2m+ 5)e − 1. It is perfectly complete, special honest-verifier zero-knowledge and computationally
knowledge sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 2m+ n+ s+ 5

q −m
. (14)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 2m+ 5)e+ 1 elements of G and 8 elements of Zq.
– V → P: dlog2(n+ 2m+ 5)e+ 4 elements of Zq.

7 Range Proofs

In a range proof a prover wishes to show that a secret committed integer v is in a public range, say [0, 2n−1].
For our range proofs, we invoke the circuit ZK protocols of Section 6 in a black-box manner and thereby
achieve a conceptual simplification of earlier solutions such as those in [BCC+16, BBB+18]. Note that this
black-box approach for range proofs can also be instantiated from the circuit ZK protocols of (e.g.) [BCC+16]
and [BBB+18]. For details we refer to Appendix F.

8 Our Program from the Strong-RSA Assumption

In this section we describe how our program can be based on Strong-RSA derived assumptions, as mentioned
in Section 1.2 (F). We treat the main differences and refer to Appendix G and [BFS20] for more details.
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A disadvantage of the Pedersen vector commitment scheme is the number of generators required. In
fact, to commit to an n-dimensional vector, n + 1 generators of the group G are required. Moreover, the
compressed Σ-protocol Πc has a verification time that is linear in the dimension n.

Alternatively, vector commitment schemes can be constructed via integer commitment schemes [FO97,
DF02]. A commitment to the vector x ∈ Znq is then a commitment to an integer representation x̂ ∈ Z of x.
The integer commitment schemes of [FO97, DF02] are constructed by using groups G of unknown order.

This is precisely the approach followed in a recent work of Bünz, Fisch and Szepieniec [BFS20]. They
construct a polynomial commitment scheme allowing a prover to commit to a polynomial f ∈ Zq[X] of
arbitrary degree, via a unique integer representation of its coefficient vector. A commitment to such a
representation only requires two group elements g, h ∈ G.

The work of [BFS20] shows how to open arbitrary evaluations f(a) ∈ Zq of a committed polynomial
without revealing any additional information about f . Their polynomial evaluation protocol uses recursive
techniques similar to those used in Bulletproofs. This approach results in a logarithmic communication
complexity. In addition, [BFS20] deploys Proofs of Exponentiation (PoE) [Wes19] to achieve logarithmic
verification time.

Their work refers to generic constructions that can be used to obtain more general ZK protocols from
polynomial commitment schemes. However, we argue that these constructions are overly complicated and
that a stronger functionality (vector commitment scheme with linear form openings) avoids many difficulties
in the design of ZK protocols. Moreover, it turns out that the protocols of [BFS20] only require minor adapta-
tions to accommodate this stronger functionality. From this, an instantiation of the black-box functionality of
Section 5 is derived, now based on the hardness assumptions related to the Strong-RSA assumption [BP97].
The techniques of Section 6 and Section 7 directly apply, and the higher level applications inherit the loga-
rithmic communication and computation complexity of the vector commitment scheme. The compactification
methods of Section 5.3 are tailored to Pedersen (vector) commitments. Minor modifications are required to
adapt these techniques to the Strong-RSA setting.

9 Our Program from the KEA

If one desires our program can also be instantiated from the the Knowledge-of-Exponent Assumption (KEA),
i.e., we construct a KEA based vector commitment scheme with compact linear form openings. The techniques
from Section 6 apply as before, resulting in ZK protocols for arbitrary arithmetic circuits. Basing our program
on KEA reduces communication complexity from logarithmic to constant. The protocols do require a trusted
setup that depends on the arithmetic circuit under consideration.

We stress that KEA is of a different nature than the discrete log or strong-RSA assumption. KEA is not
an intractability assumption and it is unfalsifiable [Nao03, BCPR14]. For these reasons, its application is
not completely without controversy.

We now, informally, describe the main components of the KEA based vector commitment scheme together
with its ZK protocol for opening linear forms. Our approach uses the techniques of [Gro10] and only minor
adaptations are required.

A compact commitment to a vector x ∈ Znq is, as before, a Pedersen vector commitment P = hγgx. A
ZKPoK for knowing an opening to P is another Pedersen commitment P ′ to x, under the same randomness
γ, using a different set of generators h′ := hα, g′1 := gα1 , . . . , g

′
n := gαn . The value α ∈ Zq is sampled uniformly

at random in the trusted setup phase and is only shared with a designated verifier. Both sets of generators
are public and part of the common reference string. The proof P ′ is verified by checking that P ′ = Pα.

The Knowledge-of-Exponent Assumption states that an adversary capable of computing pairs (P, P ′)
with P ′ = Pα, either knows α or an opening to P . From this assumption knowledge soundness follows.
Correctness and zero-knowledge are immediate. Note that the resulting ZKPoK is non-interactive and its
size is independent of the dimension n.

Given a bilinear pairing e : G×G→ GT the verification can be done without knowledge of α, eliminating
the restriction to a designated verifier. In this case verification amounts to checking that e(P, h′) = e(h, P ′).
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To prove that the committed vector x satisfies a linear form relation L(x) = u, the generators are taken of

a specific form. More precisely, the generators are sampled under the condition that gi = hβ
i

, for some secret
β ∈ Zq, for all 1 ≤ i ≤ n. The associated KEA derived assumption is the n-power Knowledge-of-Exponent
Assumption (n-PKEA).

Groth showed that, using this additional structure, together with the bilinear pairing, efficient circuit
ZK protocols exist [Gro10]. His protocols are easily adapted to our situation, where we simply wish to prove
correctness of a linear form evaluation. The adaptation relies on the following observation. Suppose that
a = (a1, . . . , an) ∈ Znq is such that L(z) = 〈a, z〉 for all z ∈ Znq , and let us define the following polynomials:

f(Y ) := γ +

n∑
i=1

xiY
i, g(Y ) :=

n−1∑
i=0

an−iY
i, h(Y ) := f(Y )g(Y ) =

2n−1∑
i=0

ciY
i.

The n-th coefficient of h(Y ) equals cn = 〈x,a〉 = L(x). This observation allows for a straightforward
adaptation of the product argument in [Gro10, Section 6] , resulting in a constant size ZKPoK for the
correctness of a linear form evaluation. We omit further details and refer the reader to [Gro10].

For circuit ZK protocols we apply the techniques from Section 6 to linearize the non-linearities in a
black-box manner. In contrast, other KEA based approaches use a protocol for proving quadratic rela-
tions as their main pivot and translate arithmetic circuit relations to so called quadratic span programs or
QSPs [GGPR13, Gro16]. This translation, also called arithmetization, is not required when applying our
linearization techniques. However, in contrast to other KEA based protocols, the linearization techniques
render our solution interactive (although in a setting where Fiat-Shamir applies). Additionally, we note that
this approach achieves constant verification complexity, in contrast to the linear complexity of the DL based
approach, i.e., our KEA based protocol is a ZK-SNARK.
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A Extractor Analysis

This appendix describes the refined extractor analysis for a generalized notion of special-soundness. In
particular we show that this generalization implies knowledge soundness.

An interactive protocol Π for relation R is said to be knowledge sound with knowledge error κ(·) if the
following holds. There exist a constant c and a polynomial time algorithm χ that, on input a statement
x and given rewindable oracle access to a (possibly dishonest) prover P∗, outputs a witness w for x with
probability at least (ε(x)− κ(x))

c
, where ε(x) > κ(x) is the probability that the verifier accepts a protocol

execution with P∗ on public input x.

This is one of several possible definitions for knowledge soundness, following (e.g.) [Cra96, HM98, Unr12].
A more common definition for knowledge soundness [BG92] requires the extractor to run in expected poly-
nomial time, instead of strict polynomial time, and to succeed with probability at least ε(x)− κ(x), instead
of (ε(x)− κ(x))

c
. Additional effort is required to apply our analyses to this other definition of knowledge

soundness.

A.1 k-Special Soundness

In the theory of Σ-protocols, an interactive protocol for relation R is called special sound if there exists
an efficient algorithm that extracts a witness w for statement x from a “collision,” i.e., two accepting
conversations (x, a, c, z) and (x, a, c′, z′) with c 6= c′. It is well known that special soundness implies knowledge
soundness with knowledge error 1/q, where q is the size of the challenge set. This result [Cra96] can be shown
to follow from an application of Jensen’s inequality to the convex function f(X) = X(X − 1/q). We note
that [BN06] considers extraction for a more general class of randomized algorithms, i.e., a class that is
not restricted to Σ-protocols. Their proof only requires a minor adaptation of the techniques from [Cra96].
However, this generalization is not sufficient for our purposes.

To show that a special sound protocol is knowledge sound, the following “collision-game” is defined
in [Cra96]. This is essentially the game played by the knowledge extractor and Lemma 2 gives a bound on
the success probability when playing this game. Both the game and the lemma are almost identical to the
ones found in [Cra96].

Consider a 0/1-matrix with n rows and q columns. The rows correspond to the prover’s randomness and
the columns to the verifier’s randomness. An entry of the matrix is 1 if the prover is able to supply an
accepting response for the associated first message and challenge and 0 otherwise. Let ε denote the number
of ones in H.

The game goes as follows. Select an entry of H uniformly at random. If this entry is a 1, select another
entry of the same row uniformly at random. If this entry is again a 1 the game outputs success.

To bound the success probability of the collision-game, Jensen’s inequality is used. Jensen’s inequality
states that if X is a real random variable and f is a continuous convex function defined on the support of
X, it holds that

f (E[X]) ≤ E[f(X)]. (15)

Lemma 2 (Lemma 2.1 of [Cra96]). Let H be a 0/1-matrix with n rows and q columns, and let ε denote
the fraction of 1-entries in H. Suppose ε > 1/q. Then the success probability of one iteration of the ”collision-
game” is greater than or equal to ε(ε− 1/q).
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Proof. Let ei denote the number of 1-entries in the i-th row, i = 1 . . . n. and let εi denote the fraction of
1-entries in the i-th row, i.e., εi = ei/q. Clearly, the success-probability is equal to15

1

n

n∑
i=1

εi

(
qεi − 1

q − 1

)
=

1

n

q

q − 1

n∑
i=1

εi

(
εi −

1

q

)
. (16)

Now observe that E[εi] = ε, put f(x) = x(x − 1/q) on the interval [0, 1] and apply Jensen’s inequality.
Together with the fact that q/(q − 1) > 1 the Lemma follows.

Instead of showing how knowledge soundness follows from this lemma, we immediately consider a
generalization that has recently become relevant, k-special soundness. A 3-move interactive protocol is
called k-special sound, if there exists an efficient algorithm that takes as input k accepting conversations
(x, a, c1, z1), . . . , (x, a, ck, zk) with ci 6= cj , ∀i 6= j, and outputs a witness w for x.

The proof technique using Jensen’s inequality is no longer directly applicable, since the associated function
is not convex. For this reason, prior works [BCC+16, BBB+18] resort to heavy row type arguments without
computing the exact knowledge error. Here, we show that an adaptation of the proof using Jensen’s inequality
does apply. To this end let us consider the following function.

f : R→ R : x 7→

{∏k−1
j=0

q
q−j

(
x− j

q

)
, if x ≥ k−1

q ,

0, otherwise.
(17)

Recall that q = |C|.
It is easily seen that f is twice-differentiable and f ′′(x) ≥ 0 for all x ∈ R\

{
k−1
q

}
. Moreover, for x0 = k−1

q

it holds that

lim
x↑x0

f(x)− f(x0)

x− x0
= 0 ≤ q

q − k + 1

k−2∏
j=0

k − 1− j
q − j

= lim
x↓x0

f(x)− f(x0)

x− x0
. (18)

Hence, f is a convex function.

Theorem 7. Let (P,V) be a k-special sound interactive protocol for relation R and let x be some statement,
where V samples the challenge uniformly at from a challenge set of size q. Let P∗ be a prover such that
(P∗,V) accepts with probability ε(x) > k−1

q . Then there exists a polynomial time extractor E with rewindable
black-box access to P∗ that on input x outputs a witness w for x with probability at least

k−1∏
j=0

(
ε(x)− j

q

)
≥
(
ε(x)− k − 1

q

)k
, (19)

in at most k calls to P∗.

Proof. E runs (P∗,V) on a random challenge c ∈ C. If V accepts, E rewinds to move 2 and samples a uniform
random challenge from C \ {c}. E continues until it aborts or has extracted k accepting transcripts. In the
latter case, k-special soundness implies the existence of an efficient algorithm to compute a witness w. So let
us now determine the success probability of E .

Let a be any first message of (P∗,V) on input (x;w) ∈ R. Let εa be the probability that P∗ succeeds
conditioned on the first message being equal to a. Then E[εa] = ε(x), where the expected value is taken over
all possible first messages a.

Moreover, the success probability of E , conditioned on the first message being equal to a can easily seen
to be equal to f(εa), where f is defined in Equation 17.

15 This is minor correction of the original proof, which incorrectly states that the success probability is equal to
1
n

∑n
i=1 εi

(
εi − 1

q

)
.
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Hence, the unconditional success probability of E equals

E[f(X)] ≥ f (E[X]) = f(ε(x)) ≥
k−1∏
j=0

(
ε(x)− j

q

)
, (20)

where the first inequality follows from Jensen’s inequality.

A.2 Forking Lemma

A (2µ + 1)-move protocol is called (k1, . . . , kµ)-special sound, if there exists an efficient algorithm that
computes a witness from any set of K :=

∏µ
i=1 ki accepting transcripts (x, a, c1,j , z1,j , . . . , cµ,j , zµ,j), 1 ≤ j ≤

K, that they are in a (k1, . . . , kµ)-tree structure. The root of a (k1, . . . , kµ)-tree is the first message a and
every node at depth i has precisely ki distinct children c1, . . . , cki ∈ C. This way we obtain precisely K paths
from the leaves to the root representing the accepting transcripts. Here, we show that a (k1, . . . , kµ)-special
sound protocol is knowledge sound.

The following lemma is a refinement of the forking lemma of [BCC+16]. We follow a different extractor
analysis and obtain an exact knowledge error. For notational convenience Lemma 3 assumes that all challenges
are sampled from Zq uniformly at random. Subsequently, Lemma 4 generalizes this to the case where the
verifier samples from different subsets of Zq in the different rounds of the protocol. In that lemma we only
give an upper bound on the soundness error.

Lemma 3. Let (P,V) be a (k1, . . . , kµ)-special sound (2µ+1)-move interactive protocol for relation R, where
V samples each challenge uniformly at random from a challenge set of size q. Let x be some statement. Let
P∗ be a prover such that (P∗,V) accepts with probability ε(x) > κ, where

κ =

∑µ
i=1(ki − 1)qµ−i

∏i−1
j=1(q − kj + 1)

qµ
≤
∑µ
i=1(ki − 1)

q
. (21)

Then there exists a polynomial time extractor E with rewindable black-box access to P∗ that on input x
outputs a witness w for x with probability at least (ε(x)− κ)

K
in at most K calls to P∗, where K =

∏µ
i=1 ki.

Proof. We construct a polynomial time algorithm that generates a (k1, . . . , kµ)-tree of accepting transcripts
with probability at least (ε(x) − κ)K in at most K calls. The lemma then follows from the definition of
(k1, . . . , kµ)-special soundness.

For 0 ≤ m ≤ µ−1 and ci ∈ C let Tree(x, a, c1, . . . , cm) be the algorithm that tries to find a (km+1, . . . , kµ)-
sub-tree after the first 2m + 1 rounds have been fixed by a, c1, . . . , cm. More precisely, for m = µ it simply
runs P∗ on challenges c1, . . . , cµ and for m < µ it runs Tree(x, a, c1, . . . , cm, y`) for 1 ≤ ` ≤ km+1 and y` ∈ C
sampled uniformly at random such that yi 6= yj for all i 6= j. We say Tree aborts if at any stage the verifier
V rejects and write Tree = ⊥ in this case.

For notational convenience we define c̄m := (x, a, c1, . . . , cm). For such a vector we define εc̄m
to be the

probability that P∗ succeeds conditioned on the first 2m + 1 rounds to coincide with c̄m. Moreover, let us
define

κm :=

∑µ
i=m+1(ki − 1)qµ−i

∏i−1
j=m+1(q − kj + 1)

qµ−m
. (22)

Finally, we let Km =
∏µ
i=m+1 ki. We will show by induction that the success probability Pm of

Tree(x, a, c1, . . . , cm) is at least max(εc̄m
− κm, 0)Km for all 0 ≤ m ≤ µ.

For m = µ the induction hypothesis immediately follows by the definition of εc̄m
. So let us assume that

the success probability of Tree(x, a, c1, . . . , cm) is at least max(εc̄m
− κm, 0)Km for all m > M . Then,
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PM := P (Tree(x, a, c1, . . . , cM ) 6= ⊥) ,

=

kM+1∏
`=1

P (Tree(x, a, c1, . . . , cM , y`) 6= ⊥) ,

≥
kM+1∏
`=1

max (εc̄M ,y` − κM+1, 0)
KM+1 ,

(1)

≥
kM+1∏
`=1

max

(
q

q − `+ 1

(
εc̄M
− `− 1

q

)
− κM+1, 0

)KM+1

,

=

kM+1∏
`=1

max

(
q

q − `+ 1

(
εc̄M
− `− 1 + κM+1(q − `+ 1)

q

)
, 0

)KM+1

,

(2)

≥
kM+1∏
`=1

(
εc̄M
− kM+1 − 1 + κM+1(q − kM+1 + 1)

q
, 0

)KM+1

,

= max

(
εc̄M
− kM+1 − 1 + κM+1(q − kM+1 + 1)

q
, 0

)KM

,

(3)
= max (εc̄M

− κM , 0)
KM .

(23)

For inequality (1) we use that y` is sampled uniformly at random from C \ {y1, . . . , y`−1}, hence

εc̄M ,y` =
q

q − `+ 1

εc̄M
− 1

q

`−1∑
j=1

εc̄M ,yj

 ,

≥ q

q − `+ 1

(
εc̄M
− `− 1

q

)
.

(24)

For inequality (2) we use that ` ≤ kM+1 and that 0 ≤ κm ≤ 1 for all m. For equality (3) we use that

kM+1 − 1 + κM+1(q − kM+1 + 1)

q
= κM . (25)

Hence, by induction the hypothesis is true for all 0 ≤ m ≤ µ. In particular, we find that P (Tree(x, a)) ≥
max(εa − κ, 0)K . Now define the convex function,

f : R→ R : x 7→

{
(x− κ)

K
, if x ≥ κ,

0, otherwise.
(26)

Then the success probability of the extractor is at least

E[f(εa)] ≥ f (E[εa]) = f(ε(x)) = (ε(x)− κ)K , (27)

where the first inequality follows by Jensen’s inequality. This proves the theorem.

Lemma 4. Let (P,V) be a (k1, . . . , kµ)-special sound (2µ+ 1)-move interactive protocol for relation R, such
that the verifier samples challenge ci in move 2i uniformly at random from challenge set Ci for 1 ≤ i ≤ µ.
Let x be some statement. Let ni := |Ci| and let P∗ be a prover such that (P∗,V) accepts with probability
ε(x) > κ, where

κ ≤
µ∑
i=1

ki − 1

ni
. (28)

Then there exists a polynomial time extractor E with rewindable black-box access to P∗ that on input x
outputs a witness w for x with probability at least (ε(x)− κ)

K
in at most K calls to P∗, where K =

∏µ
i=1 ki.
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B Amortization over Many Commitments

In this section we describe how, from a standard amortization technique, a prover can show correctness of s
evaluations of the linear form L on s different committed vectors for essentially the costs of evaluating one
standard Σ-protocol. Compression then follows as before by which logarithmic communication complexity is
achieved. We denote the corresponding relation by RAm, i.e., every element of RAm is composed of s elements
of R. More precisely,

RAm =
{(
P1, . . . , Ps ∈ G, L ∈ L

(
Znq
)
, y1, . . . , ys ∈ Zq;

x1, . . . ,xs ∈ Znq , γ1, . . . , γs ∈ Zq
)

: Pi = gxihγi , yi = L(xi) ∀i
}
.

(29)

Note that the same linear form L is evaluated on different commitments.
Now note that for a uniform random challenge c ∈ Zq, the group element P̃ = A

∏s
i=1 P

ci

i is a Pedersen
commitment to x̃ = r +

∑s
i=1 xic

i ∈ Znq , where A is a commitment to a (random) vector r. Moreover, it

holds that L(x̃) = L(r) +
∑s
i=1 yic

i.
Furthermore, if there is a commitment Pj for which the prover does not know an opening then the prover

knows an opening to P̃ with probability at most s/q. Informally, a cheating prover succeeds when c is the zero
of some polynomial of degree at most s. When s is polynomial and q exponential in the security parameter
this probability is exponentially close to 0.

The first two moves of the amortized Σ-protocol, denoted by ΠAm
0 , are identical to that of Π0. In the

third move, the prover sends an opening to P̃ , instead of an opening of AP c, and the verifier performs the
appropriate checks. Protocol ΠAm

0 is (s+ 1)-special sound and knowledge soundness follows from Theorem 7
(Appendix A.1). The discussion is summarized in the following theorem.

Theorem 8 (Basic Pivot Amortized). ΠAm
0 is a 3-move protocol for relation RAm. It is perfectly com-

plete, special honest-verifier zero-knowledge and unconditionally knowledge sound with knowledge error s/q.
Moreover, the communication costs are:

– P → V: 1 element of G and n+ 2 elements of Zq.
– V → P: 1 element of Zq.

The compressedΣ-protocolΠAm
c := Π2�Π1�ΠAm

0 for relationRAm achieves a logarithmic communication
complexity. Its properties are summarized in the following theorem.

Theorem 9 (Compressed Pivot Amortized). ΠAm
c is a (2µ+3)-move protocol for relation RAm, where

µ = dlog2(n+ 1)e − 1. It is perfectly complete, special honest-verifier zero-knowledge and computationally
knowledge sound, under the discrete logarithm assumption, with knowledge error

κ =
((s+ 1)q − s)qµ + (q − 1)(q − s)

∑µ
i=1 2qµ−i(q − 2)i−1

qµ+2

≤ 2µ+ s+ 1

q
.

(30)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 1)e − 1 elements of G and 3 elements of Zq.
– V → P: dlog2(n+ 1)e+ 1 elements of Zq.

C Compressed Pivot with Unconditional Soundness

In this section we describe two approaches to implement the compressed pivot with unconditional knowledge
soundness, rather than computational.
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First, observe that, in contrast to Bulletproofs [BBB+18], our compression mechanism by itself achieves
unconditional soundness. The reason is that our pivot only considers linear constraints and no quadratic ones.
The only building block that does not achieve unconditional soundness is the reduction of protocol Π1. To
achieve unconditional soundness, we simply omit this reduction. Only minor adaptations of the compression
mechanism are required. A negative consequence of this approach is that the communication costs, while
still logarithmic, are increased by a factor 2.

Second, we describe an approach that achieves unconditional soundness without incurring this factor 2
loss in communication efficiency. To this end, we show a conceptual simplification of Σ-protocol Π0 that
reduces the requirements for the compressed pivot to a minimum. Namely, to open linear forms, it turns out
to be sufficient to have access to an efficient ZKPoK for just opening Pedersen vector commitments. Thus, in
principle, a direct provision within the compressed pivot to show that a committed vector satisfies a linear
constraint is no longer required.

We begin by showing that a ZK protocol for opening linear forms can be derived from a ZK protocol for
only proving knowledge of an opening of a Pedersen vector commitment. More precisely, we show that a ZK
protocol for relation

R′ = {(P ∈ G; z ∈ Zn−1
q , γ ∈ Zq) : kzhγ = P}, (31)

with public parameters k ∈ Gn−1 and h ∈ G, implies a ZK protocol for relation R of Equation 1.
The main observation is that proving that a committed vector x ∈ Znq satisfies L(x) = y, for some linear

form L and scalar y, is equivalent to proving that x lies in the affine subspace AL,y = {z ∈ Znq : L(z) = y}.
We assume (w.l.o.g.) that y = 0 and that L 6= 0. Then VL := AL,0 ⊂ Znq is a linear subspace of dimension
n − 1. Both prover and verifier use the same deterministic algorithm to compute a basis v1, . . . ,vn−1 for
VL and a new set of generators k := (gv1 , . . . ,gvn−1) ∈ Gn−1. Note that, since v1, . . . ,vn−1 is a basis, a
non-trivial discrete log relation between k1, . . . , kn−1, h implies a non-trivial discrete log relation between
g1, . . . , gn, h.

By black-box application of the ZK protocol for relation R′ the prover shows that it knows an opening
of commitment P with respect to generators k1, . . . , kn−1, h. From this it follows that the prover knows an
opening (x, γ) of P with respect to generators g1, . . . , gn, h such that x ∈ VL and therefore L(x) = 0, i.e.,
(x, γ) is a witness for relation R which completes the reduction.

Subsequently, we note that the simplified compressed pivot is immediately obtained from protocols Π0

and Π2 by “stripping them of their linear forms”, i.e., all protocols steps involving the linear form L can be
omitted. The reduction of protocol Π1 is no longer required. As a result, the minimized compressed pivot
described here achieves unconditional soundness.

Although this view may be superior from a conceptual standpoint, it does increase the computational
costs for both the prover and the verifier. Both have to compute a basis for VL and a new set of generators of
G. Moreover, at the point of writing, it is not clear how smoothly this approach carries over to assumptions
other than the discrete log assumption. For these reasons, this paper is mainly based on the compressed
pivot of Section 4.3.

D A Remark on Sublinear Communication Complexity

For his protocols Groth [Gro09] made the observation that there is a trade-off between the communication
complexity and the number of rounds. A similar trade-off applies to our situation. Protocol Π2 achieves a
logarithmic communication complexity at the cost of a logarithmic number of rounds. The protocol recur-
sively divides the witness into two parts, left and right. This idea is easily generalized to the situation in
which the witness x ∈ Znq is divided into k parts.

For simplicity we assume n to be a power of k. A quick inspection of this generalization shows that
instead of the two group elements A and B in the first round of Π2, the prover has to sent 2k − 2 group
elements. Recursing the protocol logk(n)−1 times results in a total communication of (2k−2) logk(n)−2k+2
elements of G and k elements of Zq from prover to verifier. It is easily seen that these communication costs
are minimized for k = 2.
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In contrast, k =
√
n/2 results in a constant round protocol with sublinear communication costs of

√
2n−2

elements of G and
√

2n elements of Zq from P to V. Of course, in the non-interactive Fiat-Shamir mode the
logarithmic variant might be preferable.

E Compactifying a Vector of Commitments

This section describes two solutions for the two extreme ZK cases, where the prover wishes to show that
some relation holds for data that has already been committed to. Recall the two cases from Section 5.3:

– Case 1: The prover is committed to the input data x in a single compact commitment.
– Case 2: The prover is committed to the coordinates of the input data x individually.

Both solutions reduce the situation to that of a prover with a single compact commitment [(x, aux)] to all
relevant data (i.e., input data and auxiliary data). Applying the methods of Section 6 serially, i.e., after
these reductions, induces a factor 2 loss in the communication efficiency. Here, we show how these phases
can be executed in parallel, amortizing their costs and thereby avoiding the factor 2 loss.

E.1 Case 1

The straightforward serial approach for this case is described in Section 5.3. It requires the prover to open
one linear form on one compact commitment, and another linear form on another commitment. First, the
amortized nullity checks on Pedersen commitment Q to (0, aux) ∈ Zn+t

q and, second, an opening on Pedersen
commitment P ′ = PQ to (x, aux) ∈ Zn+t

q when applying the methods of Section 6. Recall that, here, P is a
Pedersen commitment to the input data x ∈ Znq . In this section we describe a Σ-protocol for precisely this
amortization scenario where the linear form that is to be opened depends on the commitment.

More precisely, let us consider the two linear forms L1, L2 : Znq → Zq and two compact commitments
[x1] and [x2] to x1,x2 ∈ Znq . The goal is to efficiently open L1(x1) and L2(x2) in ZK. In particular, the
cross-terms L1(x2) and L2(x1) are to remain secret.

The main idea is to build a shell around the compact commitments that allows the prover to mask linear
form evaluations that are not supposed to be revealed, i.e., the cross-terms. Thereby, the problem can be
reduced to a standard amortization scenario where the entire “matrix” of linear form evaluations(

L1(x1) L1(x2)
L2(x1) L2(x2)

)
is revealed. More precisely, intended evaluations, on the diagonal of this matrix, will return the correct value
and unintended evaluations will return a random, i.e., masked, value.

The solution presented here is constructed at the level of our basic Σ-protocol Π0 (Section 3). Black-box
access to [·] is insufficient and we therefore focus on the Pedersen vector commitment scheme. It suffices to
consider a solution with linear communication complexity. A compressed version of this Σ-protocol, with
logarithmic communication complexity, directly follows from the compression techniques of Section 4.

Let us now consider the details of our solution. Taking from the public set-up information a new pair
of generators k1, k2 disjoint from the initial set that, supposedly, underlie Pedersen commitments [x1] and
[x2]. These additional generators allow the prover to incorporate additional (random) coefficients u,w ∈ Zq
in the commitments. However, it is essential that generator k1 is only used to equip commitment [x1] with a
shell and generator k2 is only used to equip commitment [x2] with a shell. Shelled Pedersen commitments to
x1 and x2 are obtained by multiplying [x1] and [x2] with shells ku1 and kw2 , respectively, and take the form
[(x1, u, 0)] and [(x2, 0, w)].

Altogether we have reduced the problem to finding a ZK protocol for the following relation,

Rshell = { (P1, P2, L1, L2, y1, y2; x1,x2, u, w, γ1, γ2) :

P1 = gx1ku1h
γ1 , P2 = gx2kw2 h

γ2 ,

L1(x1) = y1, L2(x2) = y2},
(32)
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where g ∈ Gn and k1, k2, h ∈ G are public parameters, P1, P2 ∈ G, u,w, y1, y2, γ1, γ2 ∈ Zq, x1,x2 ∈ Znq and
L1, L2 : Znq → Zq are linear forms.

Next, we describe how this relation can be reduced to the standard amortization scenario where cross
terms are revealed. Simultaneously, we introduce amortized nullity checks on the appropriated coordinates of
(x1, u, 0) and (x2, 0, w). These nullity checks have to be incorporated at this stage of the protocol, otherwise
they will again introduce cross terms that are to remain secret. So let ρ ∈ Zq \ {−1} be a uniform random
challenge and let us consider the following linear forms:

L̂1 : Zn+2
q → Zq, (x, a, b) 7→ L1(x)− y1 + b(ρ+ 1),

L̂2 : Zn+2
q → Zq, (x, a, b) 7→ L2(x)− y2 + a(ρ+ 1).

(33)

Note that to mask the cross terms it is essential that ρ 6= −1.

From these derived linear forms the following relation, with public cross-terms, arises:

R̂shell = { (g, k1, k2, h, P1, P2, L1, L2, y1, y2, y11, y21; x1,x2, u, w, u
′, w′, γ1, γ2) :

P1 = gx1ku1k
w′

2 hγ1 , P2 = gx2ku
′

1 k
w
2 h

γ2 , L̂1(x1, u, w
′) = L̂2(x2, u

′, w) = 0,

L̂1(x2, u
′, w) = y12, L̂2(x1, u, w

′) = y21}.

(34)

Standard amortization techniques directly yield a Σ-protocol for R̂shell with the desired communication
complexity. However, a ZKPoK for relation R̂shell does not yield a ZKPoK for relation Rshell, since infor-
mation about the masks u and w is revealed. For this reason, the prover first re-randomizes the shells by
sending commitments R1, R2 to s1, s2 ∈ Zq chosen uniformly at random under generators (k1, h) and (k2, h),
respectively. The prover and verifier compute the re-randomized commitments R1P1 and R2P2 and by two
standard Σ-protocols the prover shows that commitments R1 and R2 exclusively involve the appropriate
generators. After re-randomization the prover and verifier run a standard amortized Σ-protocol for relation
R̂shell.

To summarize, the ZKPoK for relation Rshell contains three components:

1. Amortized nullity checks on shelled commitments P1 and P2.

2. Re-randomization of the shells, together with the basic Σ-protocols for R1 and R2.

3. Amortized Σ-protocol for relation R̂shell.

The protocol is formally described in Protocol 9 and denoted by Πshell. Theorem 10 summarizes its
main properties. To achieve logarithmic communication complexity, compression can be applied as before.
Moreover, we note that a straightforward generalization allows the compactification of any s > 1 compact
commitments.

Theorem 10. Πshell is a 4-move protocol for relation Rshell. It is perfectly complete, special honest ver-
ifier zero-knowledge and computationally knowledge sound, under the discrete logarithm assumption, with
knowledge error

κ =
3q − 4

q2 − q
<

3

q − 1
. (35)

Moreover, the communication costs are:

– P → V: 5 elements of G and n+ 11 elements of Zq.
– V → P: 2 elements of Zq.

Proof. Completeness directly follows.
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SHVZK: On input ρ, c ∈ Zq with ρ 6= −1, the simulator samplesR1, R2 ∈ G, y21, y12, z1, z2, φ1, φ2, φ ∈ Zq
and z ∈ Zn+2

q uniformly at random. From these values the simulator computes:

A = (g, k1, k2)zhφ(P1R1)−c(P2R2)−c
2

,

A1 = kz11 h
φ1R−c1 ,

A2 = kz22 h
φ2R−c2 ,

t1 = L̂1(z)− c2y12,

t2 = L̂2(z)− cy21.

(36)

The resulting transcript tr is now easily seen to be accepting. Moreover, using the fact that ρ 6= −1, it follows
that the probability distribution of tr is equal to that of an honest execution.

Soundness: We show that the protocol is (2, 3)-special sound which implies knowledge soundness by
Lemma 4. From a refined analysis following the approach outlined in the proof of Lemma 3 the knowledge
error can be derived. We omit the details of obtaining this knowledge error.

Let us now show that Πshell is (2, 3)-special sound. From three accepting transcripts with coinciding first
and second messages and different challenges, the extractor uses standard techniques to extract elements
z̄1, z̄2 ∈ Zn+2

q and φ̄1, φ̄2, z̄1, z̄2, φ̄11, φ̄21 ∈ Zq for which it holds that

(g, k1, k2)z̄1hφ̄1 = P1R1, L̂1(z̄1) = 0, kz̄11 h
φ̄11 = R1,

(g, k1, k2)z̄2hφ̄2 = P2R2, L̂2(z̄2) = 0, kz̄22 h
φ̄21 = R2.

(37)

Now let us define ẑ1 := z̄1 − (0, . . . , 0, z̄1, 0), ẑ1 := z̄2 − (0, . . . , 0, z̄2), φ̂1 := φ̄1 − φ̄11 and φ̂2 := φ̄2 − φ̄21.
Then it holds that

(g, k1, k2)ẑ1hφ̂1 = P1, L̂1(ẑ1) = 0,

(g, k1, k2)ẑ2hφ̂2 = P2, L̂2(ẑ2) = 0.
(38)

The remainder of the proof follows from an analysis of the polynomial amortization trick. Namely, rewind-
ing once more and running the same procedure for a different first move challenge ρ′ allows the extraction
of another set of elements z̃1, z̃2, φ̃1, φ̃2 and an affine form L̃ satisfying the relations of Equation 38. Hence,
either the extractor has found a non-trivial discrete log relation or z̃1 = ẑ1, z̃2 = ẑ2, φ̃1 = φ̂1 and φ̃2 = φ̂2.
In the latter case it follows that ẑ1 = (x̂1, a1, b1) and ẑ2 = (x̂2, a2, b2) satisfy b1 = a2 = 0 and

gx̂1ka11 hφ̂1 = P1, L1(x̂1) = 0,

gx̂2kb22 h
φ̂2 = P2, L2(x̂2) = 0.

(39)

Hence, Protocol Πshell is (2, 3)-special sound which proves the Theorem.

E.2 Case 2

Let us consider the case where the prover has s individual Pedersen commitments Pi to vi ∈ Zq. The goal is
to construct an interactive protocol that takes as public input P1, . . . , Ps, as prover’s private input v1, . . . , vs
and aux ∈ Ztq and outputs a compact commitment to [(v1, . . . , vs, aux)]. In fact, our solution outputs a
commitment [(v1, . . . , vs, r, aux)] where r ∈ Zq is sampled uniformly at random. This additional coefficient r
does not introduce any difficulties in applying the methods of Section 6. In contrast to Case 1, we will see
that parallelization with this compactification technique immediately follows. Moreover, black-box access to
our compressed pivot [·] suffices.

The main idea is to create a new compact commitment to (v1, . . . , vs, r, aux) ∈ Zs+t+1
q and use a standard

(amortized) Σ-protocol to prove correctness of this compact commitment. The amortized Σ-protocol was,
for the more general Pedersen vector commitments, described in Appendix B. More precisely, from the
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Protocol 9 Zero-Knowledge Proof of Knowledge Πshell for relation Rshell

Amortizing the costs of opening two different linear forms on two different Pedersen vector commitments.

Public Parameters : g, k1, k2, h
Input(P1, P2, L1, L2, y1, y2;x1,x2, u, w, γ1, γ2)

P1 = gx1ku1h
γ1 ∈ G

P2 = gx2kw2 h
γ2 ∈ G

y1 = L1(x1), y2 = L2(x2)
Prover Verifier

ρ←−−−−−−−−−−−−−−−−−−−−− ρ←R Zq \ {−1}

L̂1(x, a, b) := L1(x)− y1 + b(ρ+ 1)

L̂2(x, a, b) := L2(x)− y2 + a(ρ+ 1)
s1, s2, ψ1, ψ2 ←R Zq

R1 = ks11 h
ψ1 , R2 = ks22 h

ψ2

y21 = L̂2(x1, u+ s1, 0)

y12 = L̂1(x2, 0, w + s2)

r1, r2, η1, η2 ← Zq
A1 = kr11 h

η1 , A2 = kr22 h
η2

r←R Zn+2
q , ω ←R Zq

t1 = L̂1(r), t2 = L̂2(r)
A = (g, k1, k2)rhω

R1,R2,A,A1,A2,y21,y12,t1,t2−−−−−−−−−−−−−−−−−−−−−→
c←R Zq

c←−−−−−−−−−−−−−−−−−−−−−
z = (x1, u+ s1, 0)c+

(x2, 0, w + s2)c2 + r
φ = (γ1 + ψ1)c+ (γ2 + ψ2)c2 + ω

z̃1 = cs1 + r1
φ1 = cψ1 + +η1
z̃2 = cs2 + r2
φ2 = cψ2 + η2

z,φ,z̃1,φ1,z̃2,φ2−−−−−−−−−−−−−−−−−−−−−→ (g, k1, k2)zhφ
?
= A(P1R1)c(P2R2)c

2

L̂1(z)
?
= c2y12 + t1

L̂2(z)
?
= cy21 + t2

kz̃11 h
φ1 ?

= A1R
c
1

kz̃22 h
φ2 ?

= A2R
c
2

amortized Σ-protocol for proving knowledge of openings to P1, . . . , Ps, we construct a new protocol ΠP . The
first message of the basic Σ-protocol is appended with a compact commitment [y] = [(v1, . . . , vs, r, aux)],
where r is the random element to which the prover committed in the first round of the Σ-protocol. After
the final round of the Σ-protocol, the prover and verifier run the interactive nullity check on compact
commitment [y] and affine form Lc(x)− z = xs+1 +

∑s
i=1 c

ixi − z, where c is the verifier’s challenge and z
is the prover’s response. This nullity check shows that the commitment [y] is of the correct form.

Note that it is immaterial that P is a Pedersen commitment. Any other commitment scheme with a
Σ-protocol that satisfies some linearity constraints suffices. In particular, the thirds message should be
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computed as the evaluation of a public linear form parameterized by the challenge c. Moreover, because ΠP

only performs a nullity check on compact commitment [y], parallelization with the methods of Section 6
directly follows. Namely, these methods follow from partial openings of exactly the same vector [y].

The protocol is formally described in Protocol 10. It outputs a vector commitment [y] and is a ZK
protocol for the following relation

RP = {(P1, . . . , Ps, [y]; v1, γ1, . . . vs, γs,y) : Pj = gvjhγj , vj = yj 1 ≤ j ≤ s} . (40)

The properties of ΠP are summarized in Theorem 11.

Theorem 11. ΠP is a (2µ + 5)-move protocol for relation RP , where µ = dlog2(s+ t+ 2)e − 1. It is
perfectly complete, special honest-verifier zero-knowledge and computationally knowledge sound, under the
discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ s+ 2

q − 1
. (41)

Moreover, the communication costs are:

– P → V: 2 dlog2(s+ t+ 2)e+ 1 elements of G and 5 elements of Zq.
– V → P: dlog2(s+ t+ 2)e+ 2 elements of Zq.

Proof. Completeness and SHVZK follow from the associated properties of the Σ-protocol and ΠNullity.

Knowledge soundness: We first recall the proof that shows that the basic amortized Σ-protocol is
(s+ 1)-special sound. Let (A, cj , zj , φi) be accepting transcripts for 0 ≤ j ≤ s with ci 6= cj for all i 6= j. Let
V be the (s+ 1)× (s+ 1) Vandermonde matrix generated by c0, . . . , cs. Since the challenges are distinct, it
follows that V is invertible. Let V −1 = (ai,j)0≤i,j≤s and, for 1 ≤ ` ≤ s, let

z̄` :=

s∑
j=0

a`,jzj ,

γ̄` :=

s∑
j=0

a`,jφj .

(42)

Then, it holds that gz̄`hγ̄` = P` for all `, which proves that the basic amortized Σ-protocol is (s+ 1)-special
sound.

Soundness of the compound protocol now follows by the soundness of ΠNullity and the fact that for all `

s∑
j=0

a`,jLcj (x) = x`. (43)

The knowledge error follows from Lemma 4.

F Range Proof

In this section we show how two variations of range proofs can be derived as an immediate consequence of
the circuit ZK protocols of Section 6. First, we treat the basic scenario where a prover wishes to commit
to a secret integer v and show that this integer is in a public range, say [0, 2n−1]. Second, we consider the
scenario where the prover wishes to convince a verifier that many different integer commitments are all in
some fixed range.
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Protocol 10 Extended Σ-protocol ΠP for s Pedersen commitments

Input(P1, . . . , Ps; v1, γ1, . . . vs, γs, aux)
Output([v1, . . . , vs, r, aux])

Pj = gvjhγj

La(x) := xs+1 +
∑s
i=1 a

ixi
Prover Verifier

r ←R Zq, ρ←R Zq
A = grhρ

y = (v1, . . . , vs, r, aux)
A,[y]−−−−−−→

c←R Zq
c←−−−−−−

z = r +
∑s
i=1 c

ivi
φ = ρ+

∑s
i=1 c

iγi
z,φ−−−−−−→

gzhφ
?
= A

∏s
i=1 P

ci

ΠNullity ([y], Lc − z;y)

F.1 Basic Range Proofs

In the basic scenario the prover commits to the integer v ∈ {0, . . . , 2n−1} and the required auxiliary data aux
at once in a single compact commitment. In the following solution the prover does not commit to the integer
v explicitly, but only via its bit-decomposition b ∈ Znq . Namely, note that v can be computed as linear form
evaluated at b, hence a compact commitment to b is an implicit commitment to v. To show that v is in the
range [0, 2n−1], the prover now only has to convince the verifier that the committed vector b is comprised
of 0’s and 1’s, which can be done by a simple application of the circuit ZK protocol Πcs.

To this end, let C : Znq → Znq ,x 7→ x ∗ (1 − x). Prover and verifier run Πcs on input (C; b) to obtain a
ZK protocol for relation

Rr = {(C; b) : C(b) = 0} . (44)

Minor improvements to the protocol are obtained by observing that:

1. All multiplication gates have inputs of the form α and 1 − α. Hence, instead of sampling a random
polynomial g(X) for the right inputs of multiplication gates we take g(X) = 1− f(X).

2. All outputs of multiplications gates are 0, hence h(1) = h(2) = · · · = h(n) = 0 and these values do not
have to be included in the compact commitment.

The full protocol, denoted by Πr, is described in Protocol 11. Theorem 12 shows that Πr is a SHVZK
argument of knowledge for relation Rr.

Theorem 12 (Basic Range Proof). Πr is a (2µ + 7)-move protocol for relation Rr, where µ =
dlog2(2n+ 3)e−1. It is perfectly complete, special honest-verifier zero-knowledge and computationally knowl-
edge sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 3n+ 3

q − n
. (45)

Moreover, the communication costs are:

– P → V: 2 dlog2(2n+ 3)e elements of G and 5 elements of Zq.
– V → P: dlog2(2n+ 3)e+ 3 elements of Zq.
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Protocol 11 Range proof Πr

The polynomial f is sampled uniformly at random such that its evaluations at 1, . . . , n correspond to b.

Input(C;b)

C : Znq → Znq ,
x 7→ x ∗ (1− x)

C(b) = 0
Prover Verifier

f ←R Zq[X]≥n
h(X) = f(X)(1− f(X))

y = (b, f(0), h(0), h(n+ 1), . . . , h(2n))
[y]−−−−−−−−−−−−−−→

c←R Zq \ {1, . . . , n}
c←−−−−−−−−−−−−−−

z1 = f(c)
z2 = h(c)

z1,z2−−−−−−−−−−−−−−→
z2

?
= z1(1− z1)

ΠNullity

[y],
C(b)

f(c)− z1
h(c)− z2

;y



F.2 Compactifying Many Pedersen Commitments

Let us now consider the case of a prover that wishes to show that s Pedersen commitments to v1, . . . , vs ∈ Zq
are all in the range [0, 2n−1]. For the corresponding relation we write R

(s)
r . The protocol, denoted by Π

(s)
r , is

constructed by deploying the “Case 2” compactification techniques of Section 5.3 to obtain a single compact

commitment to all relevant data. The properties of Π
(s)
r are given by the following theorem.

Theorem 13 (Range Proof Case 2). Π
(s)
r is a (2µ + 7)-move protocol for relation R

(s)
r , where µ =

dlog2(2ns+ s+ 4)e − 1. It is perfectly complete, special honest-verifier zero-knowledge and computationally
knowledge sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 3ns+ 2s+ 3

q − ns
. (46)

Moreover, the communication costs are:

– P → V: 2 dlog2(2ns+ s+ 4)e+ 1 elements of G and 7 elements of Zq.
– V → P: dlog2(2ns+ s+ 4)e+ 4 elements of Zq.

G Strong-RSA Assumption

In this appendix we informally sketch the approach of [BFS20] along with our adaptations to allow for the
opening of arbitrary linear forms. This adaptations can be used to base our pivot on assumptions derived
from the Strong-RSA assumption.

G.1 Integer Commitment Scheme

We briefly recall the integer commitment scheme of [DF02]. The commitment space of this scheme is a group
G of unknown order, such as an RSA group or a class group. Although the exact order of G is unknown, we
do assume to know an upper bound B on the order, i.e., |G| ≤ B.
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The setup phase of the commitment scheme generates two random group elements g, h ∈ G such that they
both generate the same subgroup of G. In this case the distribution of hγ for γ chosen uniformly at random
from [0, B · 2κ), where κ is the security parameter, will be exponentially close to the uniform distribution on
〈g〉. Hence for an arbitrary integer x, the element [x] = gxhγ ∈ G statistically hides x.

Intuitively, the binding property follows from the assumption that the prover does not know the order of
G. Formally, the binding property can be shown to follow from the root assumption [DF02, BFS20].

G.2 Vector Encoding

The vector encoding scheme of [BFS20] first lifts vectors x ∈ Znq to their unique representatives in Z
(
q−1

2

)n
={

x ∈ Zn : ‖x‖∞ ≤ q−1
2

}
. Subsequently, for any b ∈ Z and Q > 2b the following encoding is applied:

Encode : Z (b)
n → Z, x 7→

n∑
i=1

xiQ
i−1. (47)

This encoding is injective since Q > 2b. For both x ∈ Znq and x ∈ Z (b)
n
, we will write x̂ ∈ Z for their integer

encodings. A commitment [x] to a vector x ∈ Znq or x ∈ Z (b)
n

is an integer commitment to x̂.

G.3 Σ-Protocol

The above thus generates a compact vector commitment scheme [·] : Znq → G. For a linear form L : Znq → Zq,
this commitment scheme has a basic Σ-protocol for the relation

RZq =
{(
P ∈ G, u ∈ Zq, Q ∈ Z, L; x ∈ Znq , γ ∈ Zq

)
: P = gx̂hγ , L(x) = u, Q > q

}
. (48)

The main differences between this Σ-protocol and protocol Π0 from Section 3 is that the protocol is statis-
tically hiding and all exponents are sampled from subsets of Z. For this reason, the verifier has to check that
the final response is of bounded norm. A similar Σ-protocol is described in [BFS20].

G.4 Compressed Σ-Protocol

The protocol can be compressed by observing that the response z is, in fact, a trivial PoK for the relation
RZ.

RZ = { (P ∈ G, u ∈ Zq, Q, b ∈ Z, L; x ∈ Zn) : ‖x‖∞ ≤ b < q, P = gx̂, L(x) = u mod p
}
. (49)

Following Bulletproof’s recursive techniques a more efficient PoK for relation RZ can be constructed. Proto-
col 13 shows one iteration of the recursion, repeating this recursion O(log n) times results in a logarithmic
complexity. It must be noted that the bound b grows in each iteration. For this reason the encoding parameter
Q has to be chosen large enough. The polynomial evaluation protocol of [BFS20] replaces the computationally

expensive exponentiation after the first move (i.e., computing A
n/2
R ) by a Proof of Exponentiation [Wes19],

thereby reducing the verification time. For details we refer to [BFS20].
Another difference between this approach and the compression in the discrete log setting is that here the

linear form evaluation L(x) is not included in the commitment. For this reason the cross terms AR and AL
are part of the first message.
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Protocol 12 Basic Σ-protocol for inner product relation RZq

Public Parameters : g, h
Input(P,Q,L;x, γ)

P = gx̂hγ ∈ G
u = L(x) ∈ Zmq

Prover Verifier

r←R Z
(
(q − 1)22κ−2

)n
ρ←R [0, B · 2κ)
t = L(r) mod q

A = gr̂hρ

t,A−−−−−−→
c←R

[
− q−1

2
, q−1

2

]
c←−−−−−−

z = cx + r ∈ Zn
φ = cγ + ρ ∈ Z

φ,z−−−−−−→
gzhφ

?
= P cA

‖z‖∞
?

≤ q22κ−1

L(z)
?
= cu+ t

Protocol 13 Compressed Argument of Knowledge for relation RZ

Public Parameters : g
Input(P, u,Q, b, L;x)

x ∈ Z(b)n

P = gx̂

L(x) = u mod q
Prover Verifier

AL ← gx̂L

AR ← gx̂R

uL = LR(xL)
uR = LL(xR)

AL,ARuL,uR−−−−−−−−−−−→
ALA

n/2
R

?
= P

c←R

{
− p−1

2
, . . . , p−1

2

}
c←−−−−−−−−−−−

z = cxL + xR

z−−−−−−−−−−−→ gẑ
?
= AcLAR

(LL + cLR)(z)
?
=

cu+ c2uL + uR

0
?

≤ b
?
< Q

2

‖z‖∞
?
< b q+1

2
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