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Abstract

Recent analyses reported independently by Bonnetain-Schrottenloher
and Peikert in Eurocrypt 2020, significantly reduce the estimated quan-
tum security provided by the isogeny-based commutative group action
protocol CSIDH. In this paper the CSIDH quantum security is revisited
through a comprehensive analysis of the computational cost associated
to the quantum collimation sieve attack. Furthermore, we propose a set
of primes that can be applied to obtain large instantiations of CSIDH
achieving the NIST security levels 1, 2, and 3. Finally, we provide a C-
code constant-time implementation of those CSIDH large instantiations
supported by the new Vélu formulae

1 Introduction
Based on supersingular elliptic curve isogenies defined over a prime field Fp,
the commutative isogeny-based key exchange protocol CSIDH is a promising
isogeny-based protocol that has received considerable attention since its pro-
posal in Asiacrypt 2018 by Castryck, Lange, Martindale, Panny and Renes [11].

CSIDH can be used analogously to the Diffie-Hellman protocol to produce
a non-interactive key exchange scheme between two parties. Moreover, CSIDH
can be adapted as the underlying cryptographic primitive for more elaborate
applications such as key encapsulation mechanisms, signatures and other prim-
itives. It has smaller public keys than any of the round 3 finalists of the NIST
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post-quantum standardization process [33], and allows a remarkably efficient
key validation procedure. This latter feature makes CSIDH better suited than
most (if not all) post-quantum schemes for resisting Chosen Ciphertext Attacks
(CCA) and for supporting static-dynamic and static-static key exchange set-
tings. On the downside, CSIDH has a significantly higher latency than other
isogeny-based protocols such as SIDH and SIKE [3, 28]. Furthermore, as this pa-
per will discuss in detail, several recent analyses revised CSIDH’s true quantum
security downwards (see for example [10, 35]).

One very appealing feature of the CSIDH group action is its commutative
property. This allows one to apply the group action directly to the key exchange
between two parties by mimicking the Diffie-Hellman protocol. Starting from
a base elliptic curve EA, Alice and Bob first need to choose a secret key a
and b, respectively. Then they can produce their corresponding public keys by
computing the group actions EA′ = a ∗EA and EB = b ∗EA. After exchanging
these public keys and taking advantage of the commutative property of the
group action, Alice and Bob can obtain a common secret by calculating a∗EB =
(a · b) ∗ EA = (b · a) ∗ EA = b ∗ EA′ .

The CSIDH protocol introduced in [11] operates on supersingular elliptic
curves EA/Fp expressed in the Montgomery model as

EA/Fp : y2 = x3 +Ax2 + x. (1)

Since EA/Fp is supersingular, one has full control of its order, which is #EA(Fp) =
(p+1). For efficient key exchange, we choose p such that p+1 = 4

∏n
i=1 `i, where

`1, . . . , `n−1 are small odd primes. The most demanding computational task of
CSIDH is the evaluation of its class group action, which takes as input the el-
liptic curve of Equation 1, represented by its A-coefficient, and an ideal class
a =

∏n
i=1 l

ei
i , represented by its list of exponents (ei, . . . , en) ∈ J−m . . mKn.

This list of exponents is the CSIDH secret key. The output of the class group
action is the A-coefficient of the elliptic curve EA′ defined as,

EA′ = a ∗ EA = le11 ∗ · · · ∗ lenn ∗ EA. (2)

The action of each ideal `eii in Equation 2 can be computed by performing ei
degree-`i isogeny construction operations, for i = 1, . . . , n. For practical imple-
mentations of CSIDH, constructing and evaluating n degree-`i isogenies, plus
up to n(n+1)

2 scalar multiplications by the prime factors `i, dominate the com-
putational cost [13].

Previous works regularly evaluated and constructed degree-`i isogenies using
Vélu’s formulae (cf. [25, §2.4] and [39, Theorem 12.16]), which costs ≈ 6`
field multiplications. Recently, Bernstein, de Feo, Leroux and Smith presented
in [5] a new approach for constructing and evaluating degree-` isogenies at a
combined cost of just Õ(

√
`) field multiplications. Later, it was reported in [2]

that constant-time CSIDH implementations using 511- and 1023-bit primes were
moderately favored by the new Vélu’s formulae of [5].

CSIDH’s Security The security of CSIDH rests on an analogue of the dis-
crete logarithm problem: given the base elliptic curve EA and the public-key-like
elliptic curve EA′ (or EB), deduce the ideal class a (or b) (see Equation 2).

From a classical perspective, the security of CSIDH is related to the problem
of finding an isogeny path from the isogenous supersingular elliptic curves EA
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and EA′ . The most efficient way to solve this computation is a meet-in-the-
middle approach (see [1]), which has at best a computational complexity of
O(
√
N), where N is the size of the private key space. Thus, in order to provide

a security level of 128 classical bits, the aforementioned CSIDH parameter m
should be chosen in such a way that the private key space is composed of about
2256 different secret keys.

From a quantum perspective, Childs, Jao, and Soukharev tackled in [14]
the problem of recovering the secret a from the relation EA′ = a ∗ EA. They
managed to reduce this computational task to the abelian hidden-shift problem
on the class group, where the hidden shift corresponds to the secret a that
one wants to find. Previously in 2003 and 2004, Kuperberg and Regev had
independently presented two sieving algorithms that could solve this problem in
subexponential time when they are executed in a quantum setting [27, 36]. In
particular, Kuperberg’s procedure has a quantum time and space complexity of
just exp

(
O(
√

log p)
)
. Later, in 2011, Kuperberg refined his algorithm by adding

a collimation sieving phase [26]. The time complexity of this new variant was
still exp

(
O(
√

log p)
)
, but the quantum space complexity was just O(log p).

In a nutshell, a Kuperberg-like approach for solving the hidden-shift problem
consists of two main components:

1. A quantum oracle that evaluates the group action on a uniform superpo-
sition and produces random phase vectors

2. A sieving procedure that destructively combines low-quality phase vectors
into high-quality phase vectors

The sieving procedure gradually improves the quality of the phase vectors
until they can be measured and reveal some bits of the hidden shift, and thus
the CSIDH secret key.

Recent analyses of this algorithm in Eurocrypt 2020 [10, 35], significantly
reduce the quantum security provided by CSIDH. Concretely, in order to achieve
a NIST security level 1, the authors of [10] recommended that the size of the
CSIDH prime p should be upgraded to at least 2260 and 5280 bits, according
to what the authors named as aggressive and conservative modes, respectively.
This is in stark difference with the original CSIDH-512 instantiation, which
deemed a 511-bit prime to achieve the NIST security level 1 in [11].

Both [10] and [35] focus on breaking the originally proposed instantiations
of CSIDH, rather than an exhaustive analysis of the quantum attack. [10] fo-
cuses mainly on Kupberberg’s first attack and Regev’s attack and providing a
thorough accounting of a quantum group action circuit. [35] gives a thorough
practical and theoretical analysis of Kuperberg’s second algorithm and provides
many optimizations. While [35] simulates the full algorithm to give very precise
estimates, this method will not extend to the larger primes we consider because,
by design, even the classical aspects of the attack should be infeasible to com-
pute. We use the results of the theoretical analysis in [35] to count resource
use without a full simulation. This allows us to evaluate very large primes and
to explore depth-width tradeoffs and thus to compare to NIST’s security levels.
We argue that for the primes we consider, CSIDH’s quantum security depends
mainly on the cost of the collimation sieve, not the current isogeny evaluation
costs.We investigate the influence of the quantum oracle cost for our recommend
prime sizes in Appendix B.
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NIST CSIDH quantum CSIDH prime Performance
Security level security in bits size in bits (gigacycles)

Level 1 124 4,096 23.2
Level 1 135 5,120 42.2
Level 2 148 6,144 74.8
Level 3 >160 8,192 199.1
Level 3 >171 9,216 292.4

Table 1: Summary of results. Quantum security is depth×width, including a
hardware limit of 280 for Level 1, 2100 for Level 2, and 2119 for Level 3, as
well as a 210 overhead for error correction, and assuming a quantum oracle
free of cost (for an analysis of the influence of the quantum oracle cost in our
estimates see Appendix B). Performance based on the CSIDH variant OAYT-
style (cf. subsection 2.2).

The SQALE of CSIDH We use the acronym SQALE for “Square-root Vélu
Quantum-resistant isogeny Action with Low Exponents”. The SQALE of CSIDH
is a CSIDH instance such that p = 2e ·∏n

i=1 `i−1 is a prime number with small
odd primes `1, . . . , `n, and the key space size N � √p is determined by us-
ing only the k ≤ n smallest `i’s, where the exponents ei of the ideal class
a =

∏n
i=1 l

ei
i , are drawn from a small range, possibly {−1, 0, 1}. The parameter

e ≥ 2, can be selectively chosen to obtain a more effective finite field arithmetic
via a Montgomery-friendly reduction approach.

The original CSIDH protocol chose exponents large enough that the key
space is approximately equal to the class group. We show in section 2 that
a SQALE’d CSIDH preserves classical security. We also argue in section 4
that quantum attackers need to attack the entire class group, regardless of the
subset that keys are drawn from, so we can choose low exponents and preserve
quantum security as well. With this change, we improve the trade-off between
the performance of the key exchange and its quantum security. To further
improve performance of the large CSIDH instances considered in this paper, we
incorporate the Vélu’s improved O(

√
`) formulae for isogeny computations.

Outline In this work we present a detailed classical and quantum cryptanal-
ysis of CSIDH and its constant-time C implementation using our revised prime
sizes, which, according to our analysis, are required to achieve the NIST security
levels 1, 2 and 3.

Section 2 gives background on CSIDH, efficient methods for computing its
group action, and the quantum cost models we use. In section 3 we describe
the quantum collimation sieve attack and explain how to estimate its cost. We
account for larger primes, depth limits, improved memory circuits, and find
several small optimizations. The sieve only seems able to attack the full class
group, and not any smaller generating subset. We give several arguments for
this in section 4, ultimately concluding that for a quantum attacker, only the
size of the class group affects the total quantum attack cost. These conclusions
suggests that an ideal scheme will operate on isogenies of a number of degrees,
but with small exponents for each. Section 5 summarizes the quantum and
classical security and the effects of hardware limits.

We then give a concrete cost analysis of the CSIDH group action for a key
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exchange with different sizes of primes p in section 6. We account for different
options of the exponent interval m, from the minimal setting J−1 . . 1K (with
or without zero) up to the original proposal of J−5 . . 5K. For each interval,
we apply the framework reported in [13] to select optimal bounds (different
mi for each prime) and their corresponding optimal strategies. Starting from
the Python-3 CSIDH library reported in [2], we present the first constant-time
implementation of large CSIDH instantiations supporting the O(

√
`) formulae

from [5]. Our C library also includes a companion script that estimates quantum
attack costs. Our software is freely available from,

https://github.com/JJChiDguez/sqale-csidh-velusqrt .

2 Background
This section presents some of the main concepts required for performing classical
and quantum attacks on CSIDH.

2.1 Construction and evaluation of odd degree isogenies
using Vélu Square root Formulae

Let ` be an odd prime number, Fp a finite field of large characteristic, and A a
Montgomery coefficient of an elliptic curve EA/Fp : y2 = x3 + Ax2 + x. Given
an order-` point P ∈ EA(Fp), the construction of an isogeny φ : EA 7→ EA′ of
kernel 〈P 〉 and its evaluation at a point Q = (α, β) ∈ EA(Fp) \ 〈P 〉, consist of
the computation of the Montgomery coefficient A′ ∈ Fp of the codomain curve
EA′/Fp : y2 = x3 +A′x2 + x and the x-coordinate φx(α) of φ(Q).

Recently, Bernstein, de Feo, Leroux and Smith presented in [5] a new ap-
proach for constructing and evaluating degree-` isogenies at a combined cost of
just Õ(

√
`) field operations. As mentioned in [5] (see also [15], [30], [31] and

[2]), the following formulae accomplish this task,

A′ = 2
1 + d

1− d and φx(α) = X` hS(1/α)2

hS(α)2
,

where d =

(
A− 2

A+ 2

)`(
hS(1)

hS(−1)

)8

,

S = {1, 3, . . . , `− 2}, and

hS(X) =
∏
s∈S

(X − x([s]P )).

From this, one can see that the efficiency of computing A′ and φx(α) lies on
the cost of computing hS(X). Given EA/Fp an order-` point P ∈ EA(Fp), and
some value α ∈ Fp we want to efficiently evaluate the polynomial,

hS(α) =

`−1∏
i

(α− x([i]P )).

From Lemma 4.3 of [5],
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(X − x(P +Q))(X − x(P −Q)) = X2 +
F1(x(P ), x(Q))

F0(x(P ), x(Q))
X +

F2(x(P ), x(Q))

F0(x(P ), x(Q))

where,

F0(Z,X) = Z2 − 2XZ +X2;

F1(Z,X) = −2(XZ2 + (X2 + 2AX + 1)Z +X);

F2(Z,X) = X2Z2 − 2XZ + 1.

This suggests a rearrangement à la Baby-step Giant-step as,

h(α) =
∏
i∈I

∏
j∈J

(α− x([i+ s · j]P ))(α− x([i− s · j]P ))

Now h(α) can be efficiently computed by calculating the resultants of two
polynomials in Fp[Z], of the form

hI ←
∏
xi∈I

(Z − xi))

EJ(α)←
∏
xj∈J

(
F0(Z, xj)α

2 + F1(Z, xj)α+ F2(Z, xj)
)

The most demanding operations of
√
élu require computing four different

resultants of the form ResZ(f(Z), g(Z)) of two polynomials f, g ∈ Fp[Z]. Those
four resultants are computed using a remainder tree approach supported by
carefully tailored Karatsuba polynomial multiplications. In practice, the com-
putational cost of computing degree-` isogenies using

√
élu is close toK(

√
`)log2 3

field operations for a constant K. For more details about these computations
see [5, 2].

2.2 Summary of CSIDH.
Here, we give a general description of CSIDH. A more detailed description of
the CSIDH group action computation can be found in [11, 12, 29, 34].

The most demanding computational task of CSIDH is evaluating its class
group action, whose cost is dominated by performing a number of degree-`i
isogeny constructions. Roughly speaking, three major variants for computing
the CSIDH group action have been proposed, which we briefly outline next.

Let π : (x, y) 7→ (xp, yp) be the Frobenius map and N ∈ Z be a positive inte-
ger. Let E[N ] denote the N -torsion subgroup of E/Fp defined as, E[N ] = {P ∈
E(Fp) : [N ]P = O}. Let also E[π − 1] = {P ∈ E(Fp) : (π − 1)P = O} and
E[π + 1] = {P ∈ E(Fp2) : (π + 1)P = O} be the subgroups of Fp-rational and
zero-trace points, respectively. Let us recall that any point P ∈ E[π + 1] is of
the form (x, iy) where x, y ∈ Fp and i =

√
−1 so that ip = −i.

The MCR-style [29] of evaluating the CSIDH group action takes as input a
secret integer vector e = (e1, . . . , en) such that ei ∈ J0 . . mK. From this input,
isogenies with kernel generated by P ∈ EA[`i] ∩ EA[π − 1] are constructed
for exactly ei iterations. In the case of the OAYT-style [34], the exponents
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are drawn from ei ∈ J−m . . mK, and P lies either on EA[`i] ∩ EA[π − 1] or
EA[`i]∩EA[π+ 1] (the sign of ei determines which one will be used). We stress
that for constant-time implementation of CSIDH adopting the MCR and OAYT
styles, the group action evaluation starts by constructing isogenies with kernel
generated by P ∈ EA[`i]∩EA[π−sign (ei)] for ei iterations, followed by dummy
isogeny constructions that are performed for the remaining (m− ei) iterations.

On the other hand, the dummy-free constant-time CSIDH group action eval-
uation, proposed in [12], takes as secret integer vector e = (e1, . . . , en) such that
ei ∈ J−m . . mK has the same parity asm. Then, one starts constructing isogenies
with kernel generated by P ∈ EA[`i] ∩E[π − sign (ei)] for exactly ei iterations.
Thereafter, one alternatingly computes EA[`i]∩EA[π−1] and EA[`i]∩EA[π+1]
isogenies for the remaining mi − ei iterations (for more details see [12]).

2.3 Quantum computing
We refer to [32] for the basics and notation of quantum computing. Follow-
ing [22], we treat a quantum computer as a memory peripheral of a classical
computer, which can modify the quantum state with certain operations called
“gates”. We give the cost of a quantum algorithm in terms of these opera-
tions (specifically Clifford + T gates), which we treat as a classical computation
cost. With this we can directly add and compare quantum and classical costs,
since we measure quantum computation costs in classical operations. We use
the “DW ”-cost, which assumes that the controller must actively correct all the
qubits at every time step to prevent decoherence. This means the total cost is
proportional to the total number of qubits (the “width”), times the total circuit
depth.

We depart from [22] by giving an overhead of 210 classical operations for
each unit of DW -cost, to represent the overhead of quantum error correction.
With surface code error correction, every logical qubit is formed of many phys-
ical qubits, which continuosly run through measurement cycles. We assume
each cycle of each physical qubit is equivalent to a classical operation. By this
metric, Shor’s algorithm has an overhead of 217 for each logical gate [19]. The
algorithm we analyze will need much more error correction, but we assume con-
tinuing advances in quantum error correction will reduce this overhead. Since a
surface code needs to maintain a distance between logical qubits in two physical
dimensions and one dimension of time [17], we assume the 210 overhead is the
cube of the code distance, and thus every logical qubit is composed of 210·

2
3

physical qubits.

3 Quantum Attack
We follow Peikert [35] and analyze only Kuperberg’s second algorithm [26].
Because of this, and our assumption that classical operations are only 210 times
cheaper than quantum, the tradeoffs of [8, 9] do not help for our analysis.

3.1 Overview of Kuperberg’s Algorithm
We start with an abelian group G (the class group) of order N and two injective
functions f : G→ X and h : G→ X such that h(x) = f(x− S) for some secret
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S = sg. For CSIDH, the function f will identify an element of the class group
with an isogeny from EA to some other curve E, and output the j-invariant of
that curve. The function h is the same, but starts with a public key curve EA′ .

To begin, we generate a superposition over G (ignoring normalization),∑
g∈G |g〉. Then we initialize a single qubit in the state |+〉 = |0〉+ |1〉, and use

it to control applying either f or h:∑
g∈G
|0〉 |g〉 |f(g)〉+ |1〉 |g〉 |h(g)〉 (3)

Then we measure the final register, finding f(g) = h(g+S) for some g. Because
f and h are injective, this leaves only two states in superposition:

|0〉 |g〉+ |1〉 |g + S〉 . (4)

This is the ideal state. Naive representations of the group will not produce
precisely this state. Section 4.1 explains why our best option is to fix a generator
g, and produce superpositions

∑N−1
x=0 |x〉 |xg〉, which leads to a final state

|0〉 |x〉+ |1〉 |x+ s〉 (5)

where S = sg. At this point, we apply a quantum Fourier transform (QFT),
modulo the group order N , to produce

|0〉
N−1∑
k=0

e2πi
xk
N |k〉+ |1〉

N−1∑
j=0

e2πi
(x+s)j

N |j〉 . (6)

Then we measure the final register and find some value b, leaving us with the
state

|0〉 e2πi xb
N + |1〉 e2πi (x+s)b

N ≡ |0〉+ e2πi
sb
N |1〉 . (7)

From this point, we define ζbs = e2πi
bs
N . We emphasize that it is critical that the

QFT acts as a homomorphism between the elements of the group and phases
modulo N , even an approximate homomorphism as in [10].

Only these initial states require the quantum computer, and they can be
simulated easily with knowledege of s. Peikert thus simulated the remaining
steps of the algorithm for a precise security estimate [35]. We hope to choose
parameters such that the remaining steps are infeasible, so we cannot classically
simulate them. Instead we extrapolate Peikert’s results to estimate the full cost,
with some small algorithmic improvements we now describe.

Phase vectors with data Kuperberg works with states of the form in Equa-
tion 7 to save quantum memory; however, we will maintain the factor b in
quantum memory.

We define a phase vector with data to have a length L, a height S, an altitude
A, and a phase function B : [L] → [S]A (defining [N ] := {0, . . . , N − 1} and
[N ]M := {0,M, 2M, . . . ,M(N − 1)}), as follows:

L−1∑
j=0

ζB(j)
s |j〉 |B(j)〉 . (8)
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The phase function B is known classically.
The vector in Equation 7 almost has this form, with L = 2, B(0) = 0 and

B(1) = b (in fact B(0) = 0 for all phase vectors), and S = b. To add the data to
it, we simply use the qubit to control a write of the value of b to a new register.

Starting from an initial phase vector with data, we can double its length –
so long as the length is a power of 2 – with a new initial phase vector by first
concatenating, and treating the new qubit as part of the index:

(
|0〉+ ζb

′
s |1〉

)
⊗

L−1∑
j=0

ζB(j)
s |j〉 |B(j)〉

 (9)

=

L−1∑
j=0

ζB(j)
s |0j〉 |B(j)〉+

2L−1∑
j=L

ζB(j−L)+b′
s |j〉 |B(j − L)〉 .

We then redefine the phase function to be B′ : 2L→ [S+b′], where B′(j) = B(j)
if j < L and B′(j) = B(j − L) + b′ if j ≥ L. To update the phase register,
we perform an addition of b′, controlled on the first qubit (which is now the
leading bit of the index j). The state is now twice as long, at the cost of just
one quantum addition, and classical processing of the table.

We can produce initial phase vectors with data of length L = 2` by starting
with an initial phase vector, adding its phase function to a quantum register,
then repeating this doubling process ` − 1 times. The height of such a vector
will be the maximum of ` uniformly random values from 0 to 2n; we assume this
is simply 2n. The altitude will be the least common multiple of these vectors
and we assume this is 1.

The next part of the algorithm is to collimate phase vectors until their height
equals approximately their length. A collimation takes r phase vectors of some
length L, height S, and altitude A, and destructively produces a new phase
vector of length L′, height S′, and altitude A′, where S′ < S and A′ ≥ A. For
efficiency, we try to keep L′ = L.

Once the height equals the length, say S0, we perform a QFT and hopefully
recover lgS0 bits of the secret s, starting from the bit at lg(A). To recover all
of the secret bits, we run the same process but target different bits each time,
sequentially or in parallel. Classical simulations show that each run recovers
only lgS0 − 2 bits on average [35].

Adaptive Strategy The length of the register in Equation 5, which undergoes
to the QFT, governs the cost of the sieve. Ideally, after finishing one sieve,
we would use the known bits of the secret to reduce the size of the problem.
For example, if the group order is N = 2n for some n, then if the secret is
s = s12k + s0 and we know s0, we start with a state |0〉 |x〉+ |1〉 |x+ s mod 2n〉
for some random, unknown x. We can subtract s0 from the second register,
controlled by the first qubit, to obtain

|0〉 |x〉+ |1〉
∣∣x+ s12k mod 2n

〉
(10)

The least significant k bits of the second register are the same in both states, so
we can remove or measure these states, and only apply the QFT to the remaining
bits. Then our initial phase vectors start with a height of 2n−k, rather than 2n.
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This is Kuperberg’s original technique. Peikert analyzed a non-adapative
attack, using a high-bit collimation in case of non-smooth group orders. We
remain uncertain whether an attack can be adaptive with a prime-order group.
With prime orders, there is little correlation between the bits of x and x + s
mod N , even if we know most of the bits of s.

Alternatively, we could represent group elements by exponent vectors. In
that case, we end up with the state

|0〉 |~x〉+ |1〉 |~x+ ~s mod L〉 (11)

where L is the lattice representing the kernel of the map from exponent vectors
to class group elements. However, vectors modulo a lattice are not homomorphic
to phases.

We could try to represent integer exponent vectors ~x by vectors ~v such that
BL~v = ~x, where BL is a matrix of the basis vectors of the lattice. We would
find all bits of a single component, then clear that component for future sieves.
Since ~v = B−1L ~x, and B−1L = 1

det(BL)adj(BL), and the adjugate of an integer
matrix is an integer matrix, the smallest non-zero entry of B−1L in absolute
value is at least 1/det(BL). This means one needs lg det(BL) bits of precision
for each component ~v. However, det(BL) = det(L) = N , the size of the class
group, so each component is as hard to solve as the entire problem under a
generator-based representation, and we still cannot adaptively sieve within each
component.

It is possible that adaptive sieving on a prime-order group is inherently
difficult. There is a large gap between the difficult of discrete log in a prime-
order group compared to a smooth-order group, so a similar gap may exist in
the highly similar abelian hidden shift problem. In summary:

Assumption 3.1. Partial knowledge of the bits of a secret s in an abelian
hidden shift problem gives no advantage in finding unknown bits for groups of
prime order.

Each run of the sieve recovers about lgS0 − 2 bits on average, so the total
number of sieves is lgN

lgS0−2 . If this assumption is wrong, then in the worst case,
the total sieving cost will be dominated by the first run of the sieve, leading to
a reduction of ≈ 7 bits of security.

3.2 Collimation
From vectors of length L and height S, we repeatedly collimate to a height S′ as
follows: First we concatenate the vectors and add together their phase functions,
which will match the new phase. Addition is done in-place on one of the phase
registers. Let ~j = (j1, j2) so that |j1〉 |j2〉 = ~|j〉, and let B(~j) := B1(j1)+B2(j2).
The resulting state will be:

L−1∑
j1=0

ζB1(j1)
s |j1〉 |B1(j1)〉

L−1∑
j2=0

ζB2(j2)
s |j2〉 |B1(j1) +B2(j2)〉

=

L−1∑
j1,j2=0

ζB(~j)
s

∣∣∣~j〉 |B1(j1)〉
∣∣∣B(~j)

〉
. (12)
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Then we divide B(~j) by S′ and compute the remainder and modulus:

L−1∑
j1,j2=0

ζB(~j)
s

∣∣∣~j〉 |B1(j1)〉
∣∣∣⌊B(~j)

S′

⌋〉 ∣∣∣B(~j) mod S′
〉
. (13)

We then measure the value of
⌊
B(~j)
S′

⌋
, which gives some value K. Let J ⊆

L × L be the set of indices j1 and j2 such that
⌊
B1(j1)+B2(j2)

S′

⌋
= K. Since

we know K, B1, and B2 classically, we can find find the set J and use it to
construct a permutation π : J → [L′], where L′ = |J |. Defining a new phase
function B′ : [L′] → [S/S′] where B′(j) = B(π−1(j)) mod S′, we find that
B(~j) = K+B′(π(~j)) for all ~j ∈ J . Equation 14 shows that the factor of K only
introduces a global phase and thus we can ignore it.

We now fix the phase vector that was left after measurement. First, we must
erase B1(j1). We use a quantum random access classical memory (QRACM)
look-up uncomputation, which only needs to look up values of j1 which are part
of a pair in J . We expect L′ such values.

Then we compute π(~j) in another register. This is a QRACM look-up from
a table of L′ indices with words of size lgL′. Letting j′ = π(~j), this leaves the
state ∑

~j∈J

ζB(~j)
s

∣∣∣~j〉 ∣∣∣π(~j)
〉 ∣∣∣B(~j) mod S′

〉

=

L′−1∑
j′=0

ζK+B′(j′)
s

∣∣π−1(j′)
〉
|j′〉 |B′(j′)〉 (14)

We now do a QRACM look-up uncomputation in a table of L′ indices to erase
π−1(j).

This technique is analogous with r > 2. We uncompute B1(j1), B2(j2),
. . . , Br−1(jr−1) with a single look-up. We can do this because each value of
ji that appears in a tuple in J likely appears in a unique tuple, since there
are only L possible values of ji and it appears in Li tuples. Since this is an
uncomputation, the extra word size is irrelevant [4]. The greatest cost here
seems to be computing the permutation π.

Appendix A.1 describes different look-up techniques. We estimate the cost
of each one and choose the least expensive technique that fits the depth limit.
Following Peikert we assume that if our target length is L, the actual look-
ups will need to access Lmax = 8L words. For both the look-ups and the
permutation computation, we add a depth of (100W )1/2, where W is the total
hardware (classical and quantum) needed, to account for latency. This is likely
an overestimate, though it actually has no effect on our final costs except under
extreme conditions of more than about 2130 classical processors.

3.3 Permutation
To compute the permutation π, we start with r sorted lists of L elements in
the range [S]. We want to find all tuples that add up to a specified value K in
[rS]. For our estimation, we checked the cost of three different approaches and
different r and chose the cheapest, which was often r = 2.
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Problem 3.1 (Collimation permutation). Let L, S1, and S2 be integers such
that S1 � S2 � L. On an input of r sorted lists B1, . . . , Br of L random
numbers from 0 to S1 and an integer K, list all r-tuples from B1×· · ·×Br such
that their sum is in {KS2,KS2 + 1, . . . ,KS2 + S2 − 1}.

One approach is to iterate through all (r − 1)-tuples of elements from B1

to Br−1, compute the sum for each tuple, then search through Br to find all
elements that produce a sum in the correct range. This has a cost of approx-
imately Lr−1 lgL, since we expect to to check only 1/Lr−1 elements in Br for
each (r − 1)-tuple. With appropriate read-write controls, this parallelizes per-
fectly.

The structure of the sieve guarantees S2 ≥ Lr for all but the final collimation.
This means we cannot guess a value for the sum of the first r/2 lists, then search
for a matching sum in the remaining lists, because we would need to guess r

2S2

values, raising the cost over Lr. This prevents divide-and-conquer strategies like
with a subset-sum, as in [9].

A lower-cost but memory intensive algorithm first merges s of the lists into
a single sorted list of Ls s-tuples and their sums, at cost Ls(s lgL). Then it
exhaustively searches the remaining Lr−s tuples, and searches for matches in the
merged, sorted list. The total cost is O(Ls +Lr−ss lgL). We choose s = br/2c.

We assume both classical approaches parallelize perfectly, but we track the
total numbers of classical processors required to fit in any depth limit.

Grover’s algorithm A simple quantum approach is Grover’s algorithm, search-
ing through the set of Lr r-tuples for those whose sum is in the correct range.
This requires O(Lr/2) iterations, but each iteration requires r look-ups, which
each cost O(L). Each Grover search returns 1 possible tuple, creating a coupon-
collector problem, so we repeat the Grover search L lgL times. The cost thus
grows as L

r+3
2 lgL, which improves on the classical approach for r ≥ 5.

The cost of Grover’s algorithm gets much worse under a depth limit. Grover
oracles should minimize their depth as much as possible, and since the look-
up circuits parallelize almost perfectly, we analyze only the wide look-up as a
Grover oracle subroutine. We assume the L lgL search repetitions are parallel
as well.

3.4 Sieving
To find the cost of each sieve repetition, we first find the depth of the tree
of sieves. We try to maintain the same length after each collimation. Peikert
shows that each collimation reduces the height by a multiplicative factor of
Lr−1cr, where cr is a constant that reflects the bias towards the expected value
of phase vectors. For r = 2, cr = 2/3, and for r > 2 we find cr =

√
3
rπ (see

Appendix A.2).
We start with a height of N =

√
p and we want to reach a height of S0, so

the height of the tree must be

h =

⌈
lg(N/S0)

lg(Lr−1/cr)

⌉
. (15)
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Because of the rounding, we might need vectors of length less than L in the initial
layer. Thus, we recalculate: The height of the phase vectors in the second layer
(after the first collimation) must be Sh−1 = S0(Lr−1/cr)h−1.

The top layer has height Sh = N , the height of random new phase vectors.
Since Sh−1/Sh is larger than any other layer, the phase vectors in the initial
layer only need a length L0 which is less than L. Following Section 3.3.1 of
Peikert and Appendix A.2, the sieve requires L0 = (L N

Sh−1
)1/r. For this last

layer we do not have the adjusting factor of cr because the sum of r uniformly
random values up to N , modulo N , will still be uniformly random.

This tells us how many oracle calls must be performed: There will be rh leaf
nodes in the tree, and each one must have length L0. We adjust this slightly:
Since each layer has some probability of failing, we divide this total by (1− δ)h
for δ = 0.02, which is an empirical value from Peikert. We also add a 20.3 “fudge
factor” from Peikert. The above analysis gives Q, the number of oracle calls.

3.5 Fitting the sieve in a depth limit
We focus on NIST’s security levels, which have a fixed limit MAXDEPTH on circuit
depth, forcing the sieve the parallelize. The full algorithm consists of recursive
sieving steps, producing a tree, where we collimate nodes together at one level
to produce a node at the the next level. This parallelizes extremely well, though
a tree of height h must do at least h sequential collimations.

From this, we use MAXDEPTH/h as the depth limit for each collimation. The
cost of collimation is mainly QRACM look-ups, which parallelize almost per-
fectly (see Appendix A.1).

If each collimation has depth dc and the tree has height h, then MAXDEPTH−
hdc is the maximum depth available for oracle calls. We divide this by the
depth for each oracle call, do, and then by the number of total oracle calls. This
determines the number of oracle calls one must make simultaneously.

We also check whether collimation must be parallelized. We compute the
total number of collimations in the tree, then multiply this by the depth of each
collimation. Since one can start collimating as soon as the first oracle calls are
done, the depth available for collimating is MAXDEPTH − do. This tells us how
many parallel oracle calls the sieve must make, Po, and the number of parallel
collimations, Pc.

If Po > lg(L0)Pc, then we will need to store extra phase vectors. We compute
the depth to finish all the oracle calls, then subtract the number of phase vectors
that are collimated in that time, to find the number that must be stored.

If Po ≤ lg(L0)Pc, the algorithm cannot parallelize the collimation as much
as required, because the input rate of phase vectors is too low. Hence, we must
increase Po to lg(L0)Pc. This slightly overestimates the oracle’s parallelization,
since we can occupy the collimation circuits by collimating at higher levels in
the tree, but since the number of vectors in successive levels of the tree decreases
exponentially, we expect negligible impact.

4 Security of Low Exponents
One of our main contributions is low exponents as secret keys. Our key space
is thus a small subset of the class group. We believe that this extra information
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does not help a quantum adversary, for the following reasons:

1. The representation of group elements as a bitstring must be homomorphic
to bitstrings representing integers;

2. Creating an incomplete superposition of states will not produce properly
formed phase vectors; and

3. Incorrect phase vectors as input are likely undetectable, uncorrectable,
and quickly render the sieve useless.

We will explain each point in detail. These support our main assumptions:

• Quantum adversaries will still need to search the entire class group;

• The oracle for a quantum adversary will need to evaluate arbitrary group
actions, not just small exponents.

Both points mean that the quantum security depends only on the size of the
class group, not the size of the subset we draw keys from. Importantly, these
assumptions fail if we restrict the keys to a small subgroup of the class group.
It is critical that the subset of keys generates the entire class group.

4.1 Group Representations
As Section 3 discussed for adaptive attacks, the QFT must be a homomorphism
from our representation of the group to phases. This seems to restrict us to
representing elements of the class group as multiples of a generator. We might
be able to reduce the cost of the search if we only used small multiples of this
generator; however, low exponents do not correspond to small multiples. Hence,
the exponent vectors will likely be indistinguishable from random multiples of
the generator.

The state before the QFT has the form |0〉 |x〉 + |1〉 |x+ s〉, where x is the
coefficient of the generator for the group element that we measured. Hence, if x
is randomly distributed, we will still need lg |G| qubits to represent it, and the
QFT will produce random phase vectors of height up to lg |G|. Since the cost
of the sieve is governed by the height of the input phase vectors, the cost of the
sieve will be the same.

In short, to exploit the fact that secrets are restricted, we require a repre-
sentation of group elements that can be homomorphically compressed to fewer
than lg |G| qubits. We see no method to do this.

4.2 Incomplete Superpositions
The first step of producing phase vectors involves a superposition over all of G.
If we know that the secret s is in a smaller subset H, we could instead sample
from a subset H ⊆ G. This produces a superposition∑

g∈H
|0〉 |g〉 |f(g)〉+ |1〉 |g〉 |h(g)〉 . (16)

Measuring the final register returns a particular value z = f(g) or z = h(g) =
f(g−S) for some g ∈ H. Let Z = f(H)∪h(H), and partition it into 3 subsets:
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Z0 = f(H) \ h(H), Z+ = f(H) ∩ h(H), and Z1 = h(H) \ f(H). If we measure
z ∈ Z0, then the state after the QFT is just |0〉, since there was no value g ∈ H
such that h(g) = z. Similarly, measuring z ∈ Z1 leaves the state |1〉. Only if we
measure z ∈ Z+ will we have a good phase vector.

The size of Z+ is |H ∩ (S + H)| = |H| − s. Even if we know that s is
below some bound, one would need H to be be much larger than this bound to
produce high-fidelity inputs. Suppose we let H be all elements of the class group
representable as an exponent vector with only terms from {−m, · · · ,+m}.

Theorem 4.1. If we generate a uniform superposition of exponent vectors with
elements in {−m, . . . ,+m}, then for a key in {−1, 1}n, the probability of a
successful phase vector is (

2m

2m+ 1

)n
. (17)

Proof. There are 2(2m+1)n states in superposition when we measure: (2m+1)n

exponent vectors in superposition for each value |0〉 or |1〉 of the leading qubit.
Each state has equal probability. We measure curves, meaning that a curve
reached by both E0 and E1 is twice as likely as a curve reached by only one or
the other.

For small m, the set of curves reached by E0 is close to a bijection with a
hypercube of exponent vectors of width (2m + 1) and centered at 0. The set
of curves reached by E1 is in bijection with a hypercube of exponent vectors
of the same width centered at s, the exponent vector of the secret key. The
intersection of these hypercubes has volume (2m)n, giving Equation 17.

4.3 Effects of Incomplete Superpositions
We define a defective phase vector with fidelity q of length L as a triple (B, J, |φ〉),
where B : {0, . . . , L} → [N ] is classically known, J ⊆ [L] is not classically known
and |J | = qL, and

|φ〉 =
∑
j∈J

ζB(j)
s |j〉 . (18)

If we measure a |0〉 or |1〉 state from an oracle that produces incomplete
superpositions, then q = 1

2 , B(1) = b, but B(1) = 0 and J = {0} or J = {1}.
In short, a phase vector with q < 1 is one where our classical beliefs about

the set of phases in superposition are wrong. We know the function b correctly,
but it only matches the real state on the unknown subset J . The issue is that
the oracle cannot tell us the fidelity of a new phase vector; our measurements
do not tell us whether we succeeded or not.

We call this fidelity because it represents fidelity with respect to the state
we believe we have, given the classical information of the function B. This
means that if k input phase vectors are defective, the fidelity of the entire input
state degrades to 2−k. Unitary circuits preserve fidelity, but measurements may
increase it, so we first argue that collimation does not appreciably increase the
fidelity.

Theorem 4.2. Starting with an initial phase vector of length L and fidelity
q < 1

2 , with height S, if we collimate to a new height S′, the resulting phase
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vector is a new defective phase vector with expected fidelity at most

q + 4

√
ln(L′)
L′

, (19)

for L′ := S
S′Lq ≥ 40.

Proof. The derivation in subsection A.2 shows that, since the probability of
measuring any phase is uniform in the first collimation, the length of the state
after measurement, X, has distribution 1+Bin(|J |−1, S′/S) = 1+Bin(qL−1, p)
for p = S′/S and qL = |J |. The length of phases that we incorrectly believe we
have will have distribution Y ∼ Bin(L− qL, p).

The fidelity of the measured state is X
X+Y . We use Chernoff bounds to

concentrate X and Y to be within a factor of (1±δ) of their means, except with
probability ε := 2 exp(−E[x]δ2/3) + 2 exp(−E[y]δ2/3). With δ =

√
3 ln(L′)/L′,

since q < 1
2 , this gives ε <

5
L′ .

We know X
X+Y ≤ 1 so we can bound E[ X

X+Y ] as

E
[

X

X + Y

]
≤ 1 + δ

1− δ
p(qL− 1) + 1

p(qL− 1) + 1 + p(L− qL)
+ ε. (20)

With careful rearranging we find

q +
q

L′
+ 2
√

3

√
ln(L′)
L′

+
5

L′
. (21)

For sufficiently large L′ this fits the required bound.

Theorem 4.2 shows that for small q, the fidelity increases only linearly with
each collimation. The factor of L′ is approximately equal to the actual number
of states in superposition in the collimated phase vector. Each phase vector is
only collimated once for each level of the tree and there are only ≈ 27 sequential
collimations, even at very large prime sizes. Hence the sieve can only tolerate
≈ 7 defective input phase vectors. Sieving over a 6144-bit prime needs 289 input
phase vectors, so we would need the probability of failure to be approximately
2−86. Given Theorem 4.1, this nearly rules out sampling low exponents.

Since sieving is ineffective, can we instead take many phase vectors, some of
which may be defective, and produce good vectors? We summarize this as the
following problem:

Problem 4.1 (Probabilistic Phase Vector Distillation (PPVD)). Let s be an
unknown secret value. As input, there are n input states |φk〉 with labels k, such
that with probability p, |φk〉 = |0〉+ eiks/N |1〉, with probability 1−p

2 , |φk〉 = |0〉,
and with probability 1−p

2 , |φk〉 = |1〉.
With some probability ε, either output 0 for failure or output 1 and t states

|φj1〉 , . . . , |φjt〉 and their associated phase multipliers ji, such that, for all i:

|φji〉 = |0〉+ eijis/N |1〉 . (22)

The PPVD problem is unsolvable with n = 1:

Lemma 4.1. There is no quantum channel (circuit plus measurement) that
distinguishes a single phase vector from |0〉 or |1〉 without calling the group
oracle or learning the secret s.
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Proof. Suppose such a quantum channel Φ exists. Since the states we want
to distinguish are constrained to a 2-dimensional subspace, any measurement
will produce a state in a 1-dimensional space, which is a single vector. Since
we want the output to be a phase vector, our measurement must produce a
valid phase vector |φ′〉. Suppose |φ′〉 has some associated phase j. The vector
|φ′〉 is the basis of our measurement, and thus cannot depend on the input
states nor the secret s, since we assume we do not learn s. Hence, for an input
|φ〉 = |0〉 + eiks/N |1〉, the secret is s, so we require |φ′〉 = |0〉 + eijs/N |1〉. But
if we instead had an input for a secret s′ 6= s, then |φ′〉 is not a correct phase
vector.

The argument of Lemma 4.1 does not readily extend to n > 1, but we assume
that similar arguments exist. The central issue is that our distillation process
must project inputs onto phase vectors that are correct for an unknown secret
phase multiplier s. We see no way to do this without learning s and without
being able to produce correct phase vectors from “blank” inputs of |0〉 and |1〉.
Either of these cases implies a more efficient solution to the dihedral hidden
subgroup problem. We make that last statement more precise and argue that
we cannot expect to “gain” phase vectors on average:

Lemma 4.2. If the collimation sieve gives the optimal query complexity for the
dihedral hidden subgroup problem, then no process can solve PPVD with tε > pn.

Proof. For a contradiction, let tε > pn. We run n initial queries, then take pn
of them and shuffle them together with |0〉 and |1〉 vectors. Then we run the
process that solves the PPVD. If it succeeds, it produces t new phase vectors,
which we add to a growing list; if it fails, we call the oracle another t times.
We repeat this process to create all the phase vectors that the collimation sieve
needs.

Each iteration produces a net increase of t− np phase vectors, and calls the
oracle t(1− ε) times on average. If the collimation sieve requires Q states, this
process only calls the oracle Q

t−np t(1− ε) times. If tε > pn, then

Q

t− npt(1− ε) <
Q

t− tε t(1− ε) = Q (23)

and thus we solve the dihedral hidden subgroup problem with fewer than Q
states.

5 Discussing secure CSIDH instatiations

5.1 Quantum-secure CSIDH instatiations
Table 3 presents estimated costs for quantum sieve attacks against different
prime sizes, based on the analysis in section 3. NIST defines post-quantum
security levels relative to the costs of key search against AES (we assume an
offline single-target attack) and collision search against SHA-3 [33], for which the
most efficient attacks, respectively, are Grover’s algorithm (which is quantum)
and van Oorschot & Wiener’s (vOW) algorithm (which is classical) [38].

To compare these three algorithms, which have distinct space-time tradeoffs,
we include fixed hardware limits and add a fault tolerance overhead. These
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assumptions are stronger than the assumptions used in the analyses of other
post-quantum schemes, particularly proposed NIST standards. Since CSIDH,
and our ‘SQALE’d version, are not being considered for standardization, we
use riskier assumptions in our cost model. This means the performance is not
directly comparable to other post-quantum schemes at the same security level.
Our recommended parameters are a 4096-bit prime for Level 1, 6144 bits for
level 2, and 8192 bits for level 3.

Quantum Oracle Costs The number of oracle calls decreases with the size of
the prime, relative to the total computational expense. To increase our estimate
of the attack cost against a 4096-bit prime, the isogeny oracle must cost at least
254 gates, and at least 279 gates to change the 8192-bit prime cost estimate.
These are high but may be realistic. Bonnetain and Schrottenloher [10] estimate
263 T-gates just for CSIDH-1792; however, their estimate is based on costs for
modular arithmetic that have subsequently been improved. Bernstein et al. [6]
gave a circuit with 240 non-linear bit operations, leaving the full quantum cost
to be determined. Both predate the

√
élu technique and neither exploit any

fully quantum techniques. Since basing security on current isogeny evaluation
costs seems precarious, we only account for the costs of the collimation sieve
itself.

Hardware Limits Grover-like quantum algorithms parallelize very badly, but
the collimation sieve parallelizes almost perfectly. Thus the threshold for secu-
rity increases as depth decreases, but CSIDH’s bits of security remain the same.
To an adversary with a high depth budget of 296, SQALE’d CSIDH-4096 costs
much more to break than AES-128, but costs much less to break if the adver-
sary must finish their attack in depth 240. Is SQALE’d CSIDH-4096 as secure
as AES-128?

We assert that it does not matter if an adversary with access to more than
280 qubits could attack AES-128 more cheaply than attacking CSIDH-4096,
since such an adversary is unrealistic. We constrain an adversary’s amount
of “hardware”, the total of classical processors, memory, and physical qubits
(see subsection 2.3). All three are given equal weight. Under limits of both
hardware and depth, certain attacks are impossible. The depths in Table 3
are the minimum depths for which the collimation sieve can finish under our
hardware constraint. Because Grover search becomes more expensive at lower
depths, this removes high-cost attacks on AES.

Our hardware limit for NIST level 1 is 280, based on [1]. For level 2 we
use 2100, the memory contained in a “New York City-sized memory made of
petabyte micro-SD cards” [37], and for level 3 we use 2119, the memory of a 15
mm shell of such cards around the Earth [37].

5.2 Classical Security
Assume we want to find a CSIDH key that connects two given supersingular
Montgomery curves E0 and E1 defined over Fp for a prime p = 4 ·∏n

i=1 `i − 1.
Let N denote the key space size.

The original CSIDH classical security was implicitly based on a Meet-In-
The-Middle (MITM) type of attack. To illustrate this approach, let us assume
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that for i := 1, . . . , n, we require the computation of isogenies of degree-`i, each
of which we repeat m ∈ Z+ times. The first step is to split the set {`1, . . . , `n}
into two disjoint subsets L0 and L1, both of size n

2 . Next, for i = 0, 1, let Si be
the table with elements (~e, g~e) where g~e corresponds to the output of the group
action evaluation with inputs Ei, and a CSIDH key ~e = (e1, . . . , en) such that
ej = 0 for each `j ∈ L1−i. The MITM procedure on CSIDH looks for a collision
between S0 and S1; that is, two pairs (~e, g~e) ∈ S0 and (~f, g~f ) ∈ S1 such that
g~e = g~f ; consequently, the concatenation of ~e and ~f, maps E0 to E1.

The tables S0 and S1 each have about N1/2 elements 1. The size of the class
group #cl(O) is p1/2, and the key space size N must be (approximately) equal
to 22λ to ensure λ ∈ {128, 192} bits of classical security. Consequently, for large
primes p� 21024, we have

#S0 ≈ #S1 ≈ 2λ � #cl(O)
1/2 ≈ p1/4. (24)

Then #S1,#S0 � #cl(O) and the birthday paradox implies an expected unique
collision between S0 and S1. The expected running-time of MITM is 1.5N1/2

and it requires N1/2 ≈ 2λ cells of memory. Here, the classical security of
CSIDH falls into the same case as SIDH, where van Oorschot & Wiener (vOW)
Golden Collision Search (GCS) is cheaper than MITM, and a small key space
still provides λ ∈ {128, 192} bits of classical security. In fact, the van Oorschot
& Wiener Golden Collision search procedure [1, 38] applied to CSIDH has an
expected running-time of

1

µ

(
7.1× N3/4

w1/2

)
(25)

when only µ processors and w cells of memory are allowed to be used. As a
consequence, the number k of small odd primes `i’s that allows λ-bits of classical
security is

k ≈ 4

3

(
λ+ 1

2 log2(w)− log2(7.1)

log2(δm+ 1)

)
, (26)

where N = (δm+ 1)
k and (δm+ 1) determine the size of either J−m . . mK

(δ = 2, OAYT-style [34]), J0 . . mK (δ = 1, MCR-style [29]) or S(m) = {e ∈
J−m . . mK | e ≡ m mod 2} (δ = 1, dummy-free style [12]).

Assuming a technological limit of w = 280 cells of classical memory, we
obtain k ≈ 220.23

log2(δm+1) and k ≈ 305.56
log2(δm+1) to attain 128 and 192 bits of classical

security, respectively.
Table 2 summarizes and compares the number k of small odd primes required

to achieve 128- and 192-bit classical security levels. For each collection k of small
odd prime numbers `i, we found the corresponding bounds mi for each degree-`i
isogeny construction using the approach reported in [13]. Note that any increase
in our classical memory budget w will imply a higher value of k, thus forcing us
to re-parameterize the collection of k isogenies that must be processed.

1In general, when mi degree-`i isogeny constructions are required for each i = 1, . . . , n,
where the cardinality of the sets L0 and L1 should be #S0,#S1 ≈ N1/2.
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Classical security
Bound m 128-bits 192-bits

OAYT MCR Dummy-free OAYT MCR Dummy-free
5 64 86 86 89 119 119
4 70 95 95 97 132 132
3 79 111 111 109 153 153
2 95 139 139 132 193 193
1 139 221 221 193 306 306

Table 2: Number of small odd primes `i’s required for ensuring 128 and 192 bits
of classical security (key spaces of 128 and 192 bits).

Quantum collision-finding. For quantum security we analyze only the col-
limation sieve, but a quantum attacker could attack the meet-in-the-middle
problem, just as a classical attacker. With the cost model we use, the best
attack is Multi-Grover with distinguished points [23]. SIKE-434 and SIKE-610
have larger search spaces than we consider, and likely have higher oracle costs.
Under the Multi-Grover attack, these SIKE parameters meet NIST security
levels 1 and 3, respectively, so we conclude that our parameters are also secure
against this attack.

6 Experimental results
In this section, we discuss larger and safer CSIDH instantiations. We report the
first constant-time C-coded implementation of the CSIDH group action eval-
uation that uses the new fast isogeny formulæ of [5], as reported in [2]. The
C-code implementation allows an easy application for any prime field, which
requires the shortest differential addition chains (SDACs), the list of small odd
primes (SOPs), and the optimal strategies presented in [13]; in particular, our
C-code implementation is a direct application of the formulæ and Python-code
presented in [2], and thus all the data framework required (for each different
prime field) can be obtained from its corresponding Python-code version.

Our experiments focus on instantiations of CSIDH with primes of the form
p = 4

∏n
i=1 `i − 1 of 1024, 1792, 2048, 3072, 4096, 5120, 6144, 8192, and 9216

bits. We compared the three variants of CSIDH, namely, i) MCR-style, ii)
OAYT-style, and ii) Dummy-free-style. All of our experiments were executed
on a Intel(R) Core(TM) i7-6700K CPU 4.00GHz machine with 16GB of RAM,
with Turbo boost disabled and using clang version 3.8. Our software library is
freely available from

https://github.com/JJChiDguez/sqale-csidh-velusqrt .

To illustrate the impact of using low exponents, Figure 2 shows experimen-
tal results for 1024- through 5120-bit instantiations of CSIDH using exponent
bounds ranging from m = 1 to m = 5. Each exponent bound is parameterized
to reach the same security, meaning fewer `i for larger m. In all cases we started
from the global bound and then optimized for the bounds per individual small
prime and evaluation strategies as in [13].
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Prime Depth Oracle Qubits Classical Cost Hardware Cost
Length (min.) Calls Hardware (DW ) (DW )

NIST Level 1 (hardware limit 280)
CSIDH AES-128

512 40 21 13 24 63 89 132
1024 40 23 22 64 72 89 132
1792 40 36 33 74 83 89 132
3072 40 55 59 77 110 89 132
4096 66 70 48 80 124 36 106
5120 81 77 44 80 135 18 97

NIST Level 2 (hardware limit 2100)
CSIDH SHA-256

5120 41 73 77 99 139 105 146
6144 74 89 72 100 156 72 146

NIST Level 3 (hardware limit 2119)
CSIDH AES-192

6144 40 74 96 115 146 151 195
8192 60 78 82 119 176 111 175
9216 92 102 79 118 181 47 143

CSIDH, lowest cost with no hardware constraints
3072 47 49 46 94 103
4096 45 56 59 108 117
5120 44 64 68 121 130
6144 52 70 73 132 142
8192 51 83 88 151 160
9216 54 87 91 161 171

Table 3: Quantum attack costs against CSIDH. Depth is the minimum possible
under the given hardware limit. The final two columns give the lowest cost of
attacking {AES,SHA} in depth at least as much as the minimum to break the
associated CSIDH instance, based on [16, 21, 33]. Italics highlights where such
a break exceeds the hardware limit.
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Figure 1: Costs of the quantum collimation sieve attack under various hardware
limits. Coloured solid lines are the costs of the collimation sieve at primes of bit
lengths from 512 to 9126; dotted lines are the cost of key search on AES, from
[21], with the same memory limits and overhead as our analysis. All figures are
logarithmic in base 2. Plots on the left are parameterized to minimize gate cost,
plots on the right to minimize DW -cost. Larger primes achieving lower depth
(e.g., 5120 vs. 4096) is due to increased memory limits.
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Figure 2: Group action evaluation cost (excluding key validation) for each
CSIDH instantiation from 1024 to 5120 bits. The CSIDH configurations are
according to Table 2.

Our results show particularly bad performance with them = 1 bound in both
the dummy-free and MCR-style versions, then for m = 2 onwards, higher m
steadily performs worse. For OAYT style, on the other hand, m = 1 was always
optimal. Because the performance bump at m = 1 appears to get ameliorated
at higher primes, we decided to use the m = 1 bound for all three styles in
our higher-bit instantiations due to its simplicity and security. The results
for these instantiations, which provide NIST security leves 1, 2, and 3, are
in Table 4. These results correspond with the measurement of 1024 random
instances. Explicit benchmarking is possible for higher values of m, which we
expect to be less efficient, but experiments are still pending as of the writing of
this article.
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Instantiation Style NIST
OAYT MCR Dummy-free security level

CSIDH-4096 23.21 28.50 39.35 Level 1
CSIDH-5120 42.23 49.59 68.19 Level 1
CSIDH-6144 74.88 87.09 117.57 Level 2
CSIDH-8192 199.15 236.13 322.57 Level 3
CSIDH-9216 292.41 346.46 475.64 Level 3

Table 4: Clock Cycles (in gigacycles) corresponding to CSIDH instantiations
with 4096, 5120, 6144, 8192, and 9216 bits. Each CSIDH instantiation uses
m = 1 (one isogeny construction per each `i). The measured clock cycles are
the average of 1024 random instances without key validation.

7 Conclusions
As the quantum security analysis of CSIDH has become more robust, it seems
clear now that its original parameters must be updated by considering larger
primes.

In this paper, we propose a set of primes large enough to make the protocol
quantum-secure. Taking as a basis the Python 3 library reported in [2], we
provide a freely available software library coded in C, which implements CSIDH
instantiations that were built using these large primes.

Since the introduction of CSIDH in 2018, it has been the norm to try to
approximate the key space to its maximum theoretical size of #cl(O) ≈ √p.
Nevertheless, as quantum security demands a larger prime, this key space has
become unnecessarily large. It is therefore important to prove that leaving a
portion of this space unused does not compromise the CSIDH security, which is
an important conjecture that our analysis supports.

To make larger prime field instantiations of CSIDH more viable, our im-
plementation combines techniques such as exponent strategy optimization, low
exponents, and the new Vélu formulas presented in [5]. Our results are the first
of their kind for these larger primes, hoping that these designs will pave the
path forward for future refinements of CSIDH.

From our analysis, the main computational cost of the quantum sieve comes
from the classical cost of merging lists to find permutations. Improvements to
this subroutine would lower the security of CSIDH. Given that CSIDH’s relative
security and it’s ‘SQALE’d performance depend on hardware limits, our analysis
highlights the need for consensus on the resources of far-future attackers.
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A Detailed Quantum Analysis

A.1 QRACM Look-ups
Collimations repeatedly perform look-ups in quantum random access classical
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28

https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1090/mcom/3036
https://dl.acm.org/doi/10.5555/1388394
https://dl.acm.org/doi/10.5555/1388394
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-45724-2_16
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
https://jmschanck.info/papers/20200703-phd-thesis.pdf
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/PL00003816
https://dl.acm.org/doi/10.5555/1388394


a large table of classical data T = [t0, . . . , tn−1] of w-bit words, we want a circuit
to perform the following:

|i〉 |0〉 7→ |i〉 |ti〉 . (27)

The simplest method is a sequential look-up from Babbush et al. [4], while
Berry et al. [7] provide a version that parallelizes nicely. Beyond the minimum
depth of that circuit, we use a wide circuit, Figure 4. Our cost estimation checks
the cost of each of these circuits and chooses whichever has the lowest cost under
each depth constraint; often this is Berry et al.’s circuit with k ≈ 8.

A.1.1 Basic look-up

The simplest method is from Babbush et al. [4]. They sequentially flip a con-
trol qubit that is used to control writing each word in T sequentially. Their
construction is controlled by a single qubit, while we do not need a controlled
version. Counting the gates in their construction, the indexing for an uncon-
trolled look-up will use n− 2 AND and AND† gates, plus n− 1 CNOT gates. It also
uses lg n ancilla. We denote the indexed part of this circuit by Ins, where the
s stands for “sequential”.

For each index, the word must be written out to the data register with CNOT
gates. We require 1 CNOT gate for each 1 bit in the word; we assume there
are w/2 such bits on average. We could use w/2 CNOT gates in depth w/2 by
applying them sequentially, but instead we assume we allocate an extra w/2
ancilla qubits, fan out the control, then apply the w/2 CNOT gates into the data
register simultaneously. This requires 3w2 CNOT gates and depth 2 dlgwe+ 1.

This leads to a total gate cost of

(n− 2)(gAND + gAND†) + (n− 1 + 3
2nw)gCNOT (28)

and depth of

(n− 2)(dAND + dAND†) + (n− 1 + 2 dlgwe+ 1)dCNOT (29)

where g∗ and d∗ are the gate cost and depth of an operation ∗.

A.1.2 Multi-look-up

Berry et al. provide a modified look-up [7]. Since a CNOT is cheaper than AND,
we can write out multiple words at once. That is, let Tk be a table of size n/k
where we concatenate k subsequent words:

Tk := [(t0‖t1‖ . . . ‖tk−1) , (tk‖ . . . ‖t2k−1) , . . . , (tn−k−1‖ . . . ‖tn−1)] . (30)

This reduces the size of the table, and increases the size of the words, by a
factor of k.

To use this for a look-up, we allocate k− 1 registers of w qubits to |0〉, then
perform a look-up on Tk using the top lg n − lg k bits of the index. With the
remaining lg k index bits, we control a shuffle of the k words. This can be done
with k − 1 controlled swaps of w-bit words, thus using (k − 1)w CSWAP gates.

This has correctly put our output into the first register, but we now have
k−1 registers with junk. We use a measurement-based uncomputation: First we
apply hadamard gates to all qubits, then measure. We will need to apply phase
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Figure 3: Sequential look-up circuit. The S gate is a controlled shuffle.

flips to approximately half of the indices in superposition (see [7] for details);
we can regard this as a new table P = [p0, . . . , pn−1] where each pi ∈ {0, 1}.
Classically, we process the measurements to construct P .

We then perform a similar table look-up in P . There are a few slight differ-
ences: We start with one qubit in the |−〉 state and the rest in |+〉; we shuffle
first based on the bottom lg k indices, then do the look-up and write from Pk′

onto this output. If pik′+j = 1, then if the bottom indices equal j it will shuffle
the |−〉 state to the jth position, and when we write Pk′ [i] onto the output bits,
it will flip the phase because we apply a CNOT to the |−〉 state.

Once this is done, we shuffle everything back. The qubits are now in a fixed
state (i.e., not entangled with the rest of the computation) and can be removed.
Figure 3 shows the full circuit.

The cost of the first Ins gate is the same as a basic look-up. The shuffle S
costs (k−1)w controlled swaps, except to reduce depth we fan out the controls.
The ith control bit must be fanned out to control 2i−1 swaps and then it is fanned
out to w qubits to control individual swaps. Then this is all uncomputed in the
same way. This leads to 2 · (2lg k − 1)w = 2(k − 1)w extra CNOT gates.

The total gate cost of this process is

(n
k
− 2
)

(gAND + gAND†) +
(n
k
− 1 + 3

2

n

k
wk
)
gCNOT︸ ︷︷ ︸

First Ins

(31)

+ 2kwgCNOT + (k − 1)wgCSWAP︸ ︷︷ ︸
First S

+ (k − 1)w(gH + gM )︸ ︷︷ ︸
Measurement

(32)

+ 2(k′ − 1)(gCSWAP + 2gCNOT)︸ ︷︷ ︸
Uncompute S

(33)

+
( n
k′
− 2
)

(gAND + gAND†) +
( n
k′
− 1 + 3

2

n

k′
k′
)
gCNOT︸ ︷︷ ︸

Uncompute Ins

(34)

We check all values of k as powers of 2 up to n, and choose the lowest total
cost within a depth limit.

Depth. The depth and cost of W is almost the same as a basic look-up.
The depth of the swapping circuit is somewhat complicated. The ith index

controls 2i−1 w-bit swaps, and hence we want to fan it out to 2i−1w ancilla
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Figure 4: A short, wide look-up circuit for a table T = [t0, t1, . . . ], where T0
and T1 are two halves of T .

qubits (this takes depth i+ lgw). Then we uncompute the fanout, which is the
same depth. Hence the total CNOT depth is 2 lg k(lg k+1)

2 + 2 lg k lgw + 1. The
CSWAP gates take lg k sequential steps. Hence the depth is(n

k
− 2
)

(dAND + dAND†) +

(
n

k
− 1 + 2

n

k
lg

(
wk

2

))
dCNOT︸ ︷︷ ︸

First Ins

(35)

+ lg k ((lg k + 1 + 2 lgw)dCNOT + dCSWAP)︸ ︷︷ ︸
First S

(36)

+ 2 lg k′ ((lg k′ + 1)dCNOT + dCSWAP)︸ ︷︷ ︸
Uncompute S

(37)

+
( n
k′
− 2
)

(dAND + dAND†) +

(
n

k′
− 1 + 2

n

k′
lg

(
k′

2

))
dCNOT︸ ︷︷ ︸

Uncompute Ins

(38)

Thus the depth decreases almost proportional to k and k′, so we can choose
these values to reduce total circuit depth. The depth×width increases logarith-
mically with k; thus, we use only the simple technique Ins when we have a large
depth limit and are minimizing depth×width.

Uncomputing look-ups The uncomputation circuit in Figure 3 can uncom-
pute any look-up. The cost includes w initial gates for uncomputation, but the
remaining cost is independent of w, since the “words” are just single bit flips.
We ignore the cost of the Hadamard gates and measurement, assuming that
they will be negligible relative to the costs of the look-up.

When depth is extremely limited, we want a QRACM access that is loga-
rithmic in n. We describe here a low-gate method for this. Figure 4 describes
the circuit recursively, with Figure 4b as the base case.

Considering the figure, if Cn is the cost of an n word look-up, if we fan out
the controls to the CSWAP then we have a recursive relationship

Cn = 4(gAND + gAND†) + 4wgCNOT + wgCSWAP + wgM + 2Cn/2 (39)

with base case

C2 = 4(gAND + gAND†) + 5wgCNOT + wgCSWAP + wgM . (40)
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The extra CNOT gates arise from the fanout, and then write, of the two words t0
and t1.

This gives a total cost of

Cn =
n

2
(4(gAND + gAND†) + 5wgCNOT + wgCSWAP + wgM ) (41)

+
n− 2

2
(4(gAND + gAND†) + 4wgCNOT + wgCSWAP + wgM ). (42)

By inspection, the depth is

lg n (2dAND + 2dAND† + (2 lgw + 1)dCNOT + dCSWAP) + 2 lgwdCNOT. (43)

and a similar recurrence relation gives the total number of ancilla as

n

(
3

2
w − 1

2
+ lg n

)
− w. (44)

A.1.3 Sparse Indices

The QRACM circuits are defined for a table T with contiguous indices from 0
to n − 1. We assume the cost is identical for a table of size n, but with non-
contiguous indices from a much larger set. Since in this case we know the index
set classically, we can choose to skip some indices. For example, in Figure 4, if
we knew that i0 = 1 for all indices, we would skip the look-up to T1, since this
table will be empty.

A.2 Distribution of Phase Vectors
This derivation is from [20]. Let K = {K1, . . . ,Ks} be all possible measurement
results from collimation. We treat each of the Lr states in superposition as
i.i.d. random variables Xi with values in K, defining pi = P[X = Ki]. Since
the states are in uniform superposition, we imagine that measurement selects
one such state Xj . Let Wj be the number of other states in the superposition
with the same value as Xj ; it equals 1 +

∑
i 6=j 1(Xi = Xj). Conditioning on

Xj = Km gives us

Wj |(Xj = Km) = 1 +
∑
i6=j

1(Xi = Km) ∼ 1 + Bin(Lr − 1, pm).

This means

P[Wj = w] =

s∑
m=1

P[Wj = w|Xj = Km]P[Xj = Km] (45)

=

(
Lr − 1

w − 1

) s∑
m=1

pwm(1− pm)L
r−w. (46)
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The size of the collimated list is the expected value of Wj :

E[Wj ] =

Lr∑
w=0

w

(
Lr − 1

w − 1

) s∑
m=1

pwm(1− pm)L
r−w (47)

=

s∑
m=1

1

Lr

Lr∑
w=0

(
Lr

w

)
w2pwm(1− pm)L

r−w

︸ ︷︷ ︸
(Am)

(48)

In the first layer of collimation X is uniformly random so pm = S1

S0
and Wj is

binomial (which Theorem 4.2 uses), giving E[Wj ] = S1

S0
(Lr − 1) + 1.

(Am) is the expected value of the square of Bin(Lr, pm), implying E[Wj ]
equals

s∑
m=1

1

Lr
(
(L2r + Lr)p2m − Lrpm

)
= (Lr + 1)

s∑
m=1

p2m − 1.

To find pm for later collimations, we assume X is a sum of r i.i.d. uniformly
random variables with values in [0, . . . , s] where s = Si/Si+1. By the central
limit theorem this converges to a N(rµ, rσ2) random variable, where µ = s/2

and σ2 ≈ s2

12 .
We approximate

∑s
m=1 p

2
m as the integral of the square of the probability

density function for N(µ, σ2), which is 1
2
√
πσ

. This gives us

E[Wj ] ≈ (Lr + 1)

√
3√
rπs
− 1. (49)

This means the size of a new list is approximately Si+1

Si

√
3
rπL

r. We use

cr :=
√

3
rπ as an “adjustor”. Peikert takes this as 2

3 for r = 2. Using the central
limit theorem might be innacurate for small r, but in fact our adjustor gives
≈ 0.69 for r = 2, so we assume it is also accurate for r ≥ 3.

B Alternative Quantum Attack Assumptions
Unrestricted hardware. Figure 5 shows the costs of the quantum collima-
tion sieve attack with no hardware limit. These show that CSIDH instances
become easier to solve than AES at low depths, but they require absurd quan-
tities of hardware.

B.1 Oracle costs
In subsection 5.1 we argued that the cost of the oracle is the most likely factor
for future algorithmic improvements to reduce CSIDH quantum security. Any
improvement in basic quantum arithmetic will apply to computing the CSIDH
group action in superposition; thus, using estimates from current arithmetic
like [10] will almost certainly overestimate costs (indeed, the costs they reference
have since been reduced). The alternative approach of [6] was to produce a
classical constant-time implementation to give a lower bound on cost, since
latency, reversibility, and fault tolerance will add significant overheads.
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Figure 5: Costs of the quantum collimation sieve attack with no hardware limit.
Coloured solid lines are the costs of the collimation sieve at primes of bit lengths
from 512 to 9126; dotted lines are the cost of key search on AES, from [21], with
the same overhead as our analysis. All figures are logarithmic in base 2. Plots on
the left are parameterized to minimize gate cost, plots on the right to minimize
DW -cost.
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However, there is some possibility that quantum implementations may be
cheaper than reversible classical methods. A prominent example is the recent
idea of “ghost pebbles” [18], which shows that the lower bounds on the costs
of reversibly computing classical straight-line programs [24] do not hold for
quantum computers.

We give some rough estimates for the oracle cost here. We start with [6] and
assume the number of non-linear bit operations scales quadratically with the
size of the prime. The

√
élu memory costs 8b + 3b log2 b field elements, where

b ≈
√
`max ≈

√
log p

log log p is the largest isogeny computed. Each field element is
log2 p bits. We assume that this is enough to hold the “state” of the group action
evaluation, and thus we can apply straight-line ghost pebbling techniques. This
is likely not optimal but it is a first approximation. We assume that the depth
is equal to the number of operations, though with perfect parallelization up to
a factor of log2 p. We treat each non-linear bit operation as a quantum AND
gate, and do not include linear bit operation costs.

Pebbling. Reversible computers cannot delete memory, and “pebbling” is the
process of managing a limited amount of memory (“pebbles”) to compute a
program. We refer to [24] for details. Ghost pebbling [18] is a quantum technique
where we measure a state in the {|+〉 , |−〉}-basis, which releases the qubits but
may add an unwanted phase that must be cleaned up. For our purposes, a
pebble will be a state of many qubits, so with near certainty, a measurement-
based uncomputation will leave a phase that we need to remove.

Our strategy is as follows: Suppose we have enough qubits to hold s states
simultaneously and n steps remaining in the program. From one state we can
compute the next step, uncompute the previous state with measurements, and
then repeat this; this only requires 2 states at a time. As a base case for s = 3,
this gives the “Constant Space” strategy from [18], which requires n(n+1)

2 steps.
In fact we only need 2 states, since we either consider the final state separately
from this accounting, or we only need to clear the phase from the final state.

For a recursive strategy, we pick some k < n, and repeat the 2-states-at-a-
time method to reach step n− k. We then recurse with s− 1 states for the final
k steps, then uncompute the state at step n− k with a measurement. To clean
up the phase from this measurement, we repeat the 2-states-at-a-time to reach
step n− 2k, then recurse for the next k steps. We repeat this process until all
phases are removed.

If C(k, s− 1) is the cost for the recursive step, this has total cost

⌈n
k

⌉
C(k, s− 1) +

bn
k c∑
i=0

ik. (50)

Based on some simple optimization, we choose k = n
s−1
s . We find the total

costs numerically, and test initial values of s between 1
2 lg n and 5 lg n to find an

optimal value.
Table 6 gives the estimated cost of each oracle with no parallelization. Com-

paring the total sieve costs in Table 5 and Table 3, we see that an adversary can
parameterize the sieve to trade oracle calls for extra collimation if the oracle
becomes more expensive. Generally the oracle adds about 20 bits of cost, but
this is not enough to increase any parameter to a higher security level.
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Prime Depth Oracle Qubits Classical Cost Hardware Cost
Length (min.) Calls Hardware (DW ) (DW )

NIST Level 1 (hardware limit of 280)
CSIDH AES-128

512 40 13 37 49 87 88 132
1024 40 18 47 66 97 88 132
1792 40 26 57 76 107 88 132
3072 44 42 72 78 126 80 128
4096 69 64 70 79 149 30 103

NIST Level 2 (hardware limit of 2100)
CSIDH SHA-256

5120 46 61 91 100 147 100 146
6144 76 84 85 100 171 70 146

NIST Level 3 (hardware limit 2119)
CSIDH AES-192

6144 40 74 111 116 161 151 195
8192 61 77 96 119 176 109 174
9216 92 102 93 118 195 47 143

CSIDH, lowest cost with no hardware constraints
512 46 12 31 80 87
1024 46 18 40 67 96
1792 48 26 49 95 107
3072 53 35 57 110 120
4096 59 43 61 120 130
5120 54 52 75 107 139
6144 54 59 84 116 148
8192 63 72 90 132 163
9216 67 75 94 140 171

Table 5: Quantum attack costs against CSIDH, including oracle costs as given
in Table 6. Depth is the minimum possible under various hardware limits. The
final two columns give the lowest cost of attacking {AES,SHA} in depth at
least as much as the minimum to break the associated CSIDH instance, based
on [16, 21, 33]. Italics indicates where such an attack would exceed hardware
limits.

Prime Size Logical Operations Depth Hardware Cost (DW )
512 44.9 44.0 26.5 73.4
1024 46.9 46.0 28.0 77.4
1792 48.5 47.6 29.3 80.3
3072 50.1 49.2 30.6 83.1
4096 50.9 50.0 31.2 84.6
5120 51.6 50.6 31.8 85.7
6144 52.1 51.2 32.2 86.7
8192 52.9 52.0 32.8 88.2
9216 53.2 52.3 33.1 88.8

Table 6: Estimated CSIDH oracle group action oracle costs in log base 2, in-
cluding 210 overhead for total cost and 26.7 overhead for each logical qubit.
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Figure 6: Costs of the quantum collimation sieve attack under various hardware
limits, including oracle costs. Coloured solid lines are the costs of the collima-
tion sieve at primes of bit lengths from 512 to 9126; dotted lines are the cost
of key search on AES, from [21], with the same memory limits and overhead
as our analysis. All figures are logarithmic in base 2. Plots on the left are
parameterized to minimize gate cost, plots on the right to minimize DW -cost.
Though CSIDH-6144 seems to exceed AES-192, this is because of a memory
limit of 2100; under a larger memory limit it has a lower cost.
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