
Reducing Participation Costs via
Incremental Verification for Ledger Systems

Weikeng Chen
weikengchen@berkeley.edu

UC Berkeley

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Emma Dauterman
edauterman@berkeley.edu

UC Berkeley

Nicholas P. Ward
npward@berkeley.edu

UC Berkeley

February 24, 2021

Abstract

Ledger systems are applications run on peer-to-peer networks that provide strong integrity guarantees.
However, these systems often have high participation costs. For a server to join this network, the bandwidth
and computation costs grow linearly with the number of state transitions processed; for a client to interact
with a ledger system, it must either maintain the entire ledger system state like a server or trust a server to
correctly provide such information. In practice, these substantial costs centralize trust in the hands of the
relatively few parties with the resources to maintain the entire ledger system state.

The notion of incrementally verifiable computation, introduced by Valiant (TCC ’08), has the potential
to significantly reduce such participation costs. While prior works have studied incremental verification
for basic payment systems, the study of incremental verification for a general class of ledger systems
remains in its infancy.

In this paper we initiate a systematic study of incremental verification for ledger systems, including its
foundations, implementation, and empirical evaluation. We formulate a cryptographic primitive providing
the functionality and security for this setting, and then demonstrate how it captures applications with
privacy and user-defined computations. We build a system that enables incremental verification, for
applications such as privacy-preserving payments, with universal (application-independent) setup. Finally,
we show that incremental verification can reduce participation costs by orders of magnitude, for a bare-
bones version of Bitcoin.

Keywords: incrementally verifiable computation; succinct arguments; ledger systems

1

Contents
1 Introduction 3

1.1 Our theoretical contributions . 4
1.2 Our systems contributions . 5
1.3 Related work . 6

2 Participation costs in ledger systems 8

3 Definition of IVLS 10
3.1 Properties of MakeSF . 11
3.2 Properties of MakeC . 12
3.3 Properties of History . 13

4 System architecture 15

5 Applications 17

6 Construction and implementation 19

7 Evaluation 22
7.1 Constraints for SNARK verification . 22
7.2 Incremental verification . 23
7.3 Privacy-preserving payments . 24
7.4 Synchronization costs . 24
7.5 Limitation: producing proofs is expensive . 26

8 Other related work 27

A Formalizing applications 28
A.1 Account-based payments . 28
A.2 UTXO-based payments . 28
A.3 Privacy-preserving payments . 29
A.4 Privacy-preserving computation . 30
A.5 Key transparency . 30

B Further considerations 32
B.1 Integration with consensus protocols . 32
B.2 Privacy considerations . 33

C Construction of an IVLS compiler 34
C.1 Building blocks . 34
C.2 Auxiliary state . 35
C.3 Construction of Setup . 35
C.4 Construction of MakeSF . 36
C.5 Construction of MakeC . 37
C.6 Construction of History . 37

D Security 39
D.1 Security of vS . 39
D.2 Security of vF . 39
D.3 Security of vC . 41
D.4 Security of History . 42
D.5 Merkle tree properties . 43

Acknowledgments 45

References 45

2

1 Introduction

Ledger systems are applications running across many servers in peer-to-peer networks that offer strong
integrity guarantees. Cryptocurrencies, ranging from basic payments to rich smart contracts, are notable
examples. The strong integrity guarantees, however, come with high participation costs. In this paper we
study how to reduce participation costs in ledger systems.
Participation costs. Servers (“full nodes”) in a ledger system maintain the entire application state by
performing a new state transition with each new transaction (or batch of transactions in a block), according to
some consensus protocol. New servers that join the network must download every transaction and perform
each state transition executed since the start of the system. The bandwidth and computation costs increase
linearly in the number of transactions and soon become substantial. For example, the Bitcoin ledger is over
300GB; downloading and executing each transaction to reach the latest state can take days, depending on the
machine.

Moreover, clients wishing to interact with the application must either keep the entire application state like
a server or ask a server to answer queries about the current state (or even past transactions). The first option
requires clients to perform computations not relevant to them (e.g., process all payments in the system) and
also excludes clients running on weak devices (e.g., smartphones). The second option requires clients to trust
that servers answer queries correctly.1 Both options are undesirable.

Consequently, while in theory ledger systems enable peer-to-peer applications, in practice high participa-
tion costs centralize the trust in the hands of a few parties with the resources to maintain the entire application
state.
Avoiding re-execution via cryptographic proofs. Several works (reviewed in Section 8) have studied
systems that leverage cryptographic proofs to avoid re-executing transactions when checking state transitions.
Informally, cryptographic proofs enable anyone to produce a short string attesting to the correctness of
a computation, which can be verified exponentially faster than the proved computation itself. Using this
tool, for each state transition, one can generate a proof of the transition’s correctness by referring to two
short commitments that summarize the application state before and after the transition. Now, validating the
latest state only requires downloading all state commitments and transition proofs (much less data than all
transactions) and checking all transition proofs (much less work than re-executing all transactions).

Transition proofs reduce participation costs for both servers and clients, but servers and clients still have
to process every transition proof. The costs to catch up with the latest state still grow linearly with the number
of state transitions that have occurred since the last “synchronization” (or since the start of the system for a
new participant). In particular, this is expensive for clients who have spent long periods of time offline.2

The above idea naturally extends to considering an untrusted operator that produces transition proofs for
batches of transactions gathered by the operator. This is a popular “layer-2 scaling solution” that has been
used in practice with concrete efficiency benefits (see Section 8). But the basic idea, as well as the asymptotic
complexity, remains essentially the same because batches cannot be too large.

Can one reduce the participation costs further?
Incremental verification. Valiant [Val08] introduced incrementally verifiable computation (IVC) to capture
an everlasting computation whose every intermediate state is accompanied by an easy-to-verify proof attesting

1Simplified Payment Verification (SPV) [Nak08], FlyClient [BKLZ20], and other light client protocols make it possible for the
client to have some security guarantees without storing the entire application state, but the client still has to trust that the current
application state is a result of applying transactions correctly.

2Additionally using a light client protocol can reduce synchronization costs, but this is at the cost of qualitatively weaker security
guarantees, because the client would have to trust that all transition proofs have been verified.

3

to its correctness relative to the initial state (not the previous state). This capability is achievable via recursive
composition of cryptographic proofs, i.e., by producing proofs that (informally) certify both a state transition
and the correctness of the prior proof. The exponential speedup of verification relative to execution ensures
that the cost of producing each proof from the previous proof does not depend on the number of past state
transitions.

Incremental verification can dramatically reduce participation costs in ledger systems. Now, validating
the latest state requires downloading only the current state (or a short commitment to it) and a short proof
that attests to its correctness relative to the initial state.3

Towards fulfilling the potential. The blockchain community has recognized the potential of incremental
verification and has studied it for payment systems built on Nakamoto consensus [KB20] and on proof-of-stake
[MS18; BMRS20]; the latter has been deployed as a cryptocurrency [Mina].

However, incremental verification for ledger systems remains in its infancy. First, applications studied
so far include simple user-to-user money transfers but not richer applications (e.g., with privacy or smart
contracts). Second, advances in cryptographic proofs [CHMMVW20; GWC19; BGH19; COS20; BCMS20;
BCLMS20] imply that incremental verification can be based on proof systems that are better suited for deploy-
ment than those used in [KB20; BMRS20], namely, proof systems with a simple and universal setup. Both
directions are suggested as future work in [KB20; BMRS20] and are being explored by practitioners [Mec20].

Even more fundamentally, as we elaborate in Section 1.3, while definitions and constructions of IVC
have been studied in detail [CT10; BCCT13; BCTV14], prior work has only informally discussed the specific
needs beyond IVC that arise in ledger systems, and prior work also did not empirically evaluate the benefits
and drawbacks of incremental verification with respect to participation costs.
This paper. This paper aims to initiate a systematic study of incremental verification for ledger systems and
of its effectiveness in reducing participation costs. We now describe our theoretical contributions (Section 1.1)
and systems contributions (Section 1.2).

1.1 Our theoretical contributions

We introduce a cryptographic primitive that captures incremental verification for ledger systems and express
several applications within the formalism of this primitive. We elaborate on these two items below.
(i) Incrementally verifiable ledger systems. Valiant’s notion of IVC is useful but insufficient for the
setting of incremental verification for ledger systems. First, IVC refers to automata computations (arbitrary
transitions of a small application state), while applications on ledger systems involve transition functions
that, with each transaction, make few accesses to a large application state. Second, IVC is envisioned for
one powerful entity performing state transitions for a long time and then passing its responsibility to another
powerful entity (Valiant calls this a “multi-generational computation” [Val08]); in ledger systems, however,
many parties performing state transitions may go offline for periods of time and then, when back online, need
to efficiently “catch up” from when they left to the latest state. Third, ledger systems include clients who do
not wish to store the entire application state; rather, they wish to learn select information by querying servers
that store the entire state, with integrity guarantees.

Moreover, definitions proposed by prior work on incremental verification for ledger systems [BMRS20;
KB20] have several limitations, which we discuss in Section 3.

To fill these gaps, we introduce a cryptographic primitive for transforming a ledger system specified
in a certain formalism into a corresponding incrementally verifiable ledger system (IVLS); we call this

3Moreover, incremental verification can be viewed as orthogonal to the “layer-2 scaling solutions” based on batch proofs, and
could be used in a hybrid architecture that inherits benefits from both batch proofs and incremental verification.

4

an IVLS compiler and discuss it in Section 3. Then in Section 4 we explain how the specific interfaces
and security properties of our definition let us build peer-to-peer systems that, via incremental verification,
achieve low participation costs. An IVLS compiler can be obtained, in a straightforward way, from IVC and
collision-resistant hash functions.
(ii) Incrementally verifiable applications. We validate our modeling by showing how to make sev-
eral applications incrementally verifiable. By carefully designing the applications’ states, transactions, and
transition functions, we obtain IVLS for five applications: (i) UTXO-based payments (“bare-bones” Bit-
coin); (ii) account-based payments, the ledger application studied in prior works on incremental verification
[BMRS20; KB20]; (iii) privacy-preserving payments, á la Zerocash [Ben+14]; (iv) privacy-preserving decen-
tralized computation, á la Zexe [BCGMMW20]; and (v) key transparency [MBBFF15], a popular approach
to public-key infrastructure.4 In particular, our work shows how applications that involve privacy and rich
computations are compatible with incremental verification (see Section 5 and Appendix A). This provides
solid theoretical foundations that can be used to study the security of new architectures based on recursive
proofs that are being explored for Zcash [Hop19].

1.2 Our systems contributions

We build a system prototype in Rust that realizes our IVLS primitive, contributing the following: (1) incre-
mental verification with a universal (application-independent) setup, based on pairings; (2) an incrementally
verifiable analogue of Zerocash; and (3) an empirical evaluation that validates the reduction in participation
costs via measurements for a ten-year “bare-bones” Bitcoin.

Before elaborating on each of these contributions, we first describe our system at high level. In our
Rust library, the programmer specifies the desired application via a transition function represented as a
constraint system with read/write memory gates (which our implementation realizes for the application). Our
implementation then produces an incrementally verifiable version of that application, creating functionality
for producing proofs with each state transition from the prior state and proof, for validating proofs, and so on.
(1) Recursing a universal SNARK based on pairings. Incremental verification is obtained via a recursive
use of cryptographic proofs called succinct non-interactive arguments of knowledge (SNARKs) [Val08;
CT10; BCCT13]. The predominant approach to achieve good efficiency in this setting is based on SNARKs
that support “preprocessing” [BCTV14; COS20]. Informally, this means that the SNARK verifier can check
the satisfiability of a given circuit in time that is exponentially fast by using a short verifying key that was
produced in an offline (preprocessing) phase. Prior work on incremental verification [BMRS20; KB20] uses
SNARKs whose preprocessing is part of the SNARK’s setup: the circuit to be proved/verified must be fixed
once and for all when the public parameters for the SNARK are sampled via a cryptographic ceremony
[BCGTV15; BGG17; BGM17]. This circuit-specific setup is ill-suited for many applications where the
circuits to be proved/verified are determined later on by users once the ledger system is already running (e.g.,
as in Zexe [BCGMMW20]), or where circuits need to be updated.

We provide the first demonstration of efficient recursive proofs based on a pairing-based preprocessing
SNARK with universal setup. Here “universal setup” denotes the desirable property that the SNARK’s public
parameters do not depend on circuits to be proved/verified (but only on an upper bound on their size). As we
discuss shortly, this is helpful, or even necessary, for many applications.

Our contribution is to implement and evaluate a (rank-1) constraint system for the verifier of Marlin
[CHMMVW20], a state-of-the-art preprocessing SNARK with universal setup and a simple setup ceremony.

4The key transparency architecture has a central server and multiple clients, meaning that we only consider participation costs for
clients, as the single server always remains online.

5

Our constraint system is less than ten times larger than a constraint system for the state of the art with
circuit-specific setup [Gro16], which suffices for building incrementally verifiable ledger systems. We discuss
our implementation of the Marlin verifier’s constraint system in Section 6 and its evaluation in Section 7.1.

Other recent works study recursion of preprocessing SNARKs with a universal setup based on other
cryptographic tools (cyclic groups [BGH19] or hash functions [COS20]), but their proof sizes are markedly
larger.
(2) Incremental verification for private payments. We provide the first realization of private payments
(á la Zerocash [Ben+14]) with incremental verification, and evaluate its concrete efficiency. Prior works on
incremental verification only considered basic public payments, while we show that incremental verification
for more complex applications is not only possible but also practical. Our system prototype makes realizing
private payments particularly simple: we only need to program the compliance predicate outlined in Section 5
and Appendix A. We describe our implementation in Section 6 and evaluation in Section 7.3.
(3) Incremental verification reduces participation costs. We provide an evaluation that quantifies how
incremental verification reduces participation costs. Prior work on incremental verification [BMRS20; KB20]
provided only microbenchmarks or network data about the Mina (formerly, Coda) blockchain, without
studying how recursive proofs reduce network and computation costs for participants.

We evaluate the effect of IVLS on the participation costs of a ten-year simplified version of Bitcoin (e.g.,
no scripts): recursive proofs reduce synchronization costs by orders of magnitude when compared with not
using proofs (that is, naive synchronization) or using per-block transition proofs. Since our code facilitates
swapping in different SNARKs over different curves, we evaluate multiple configurations: (a) SNARKs with
circuit-specific setup and with universal setup; and (b) different MNT cycles (low-security and high-security
levels).

1.3 Related work

We summarize prior work on incremental verification for ledger systems; its focus is complementary to ours.
Bonneau et al. [BMRS20] (expanding on a prior whitepaper [MS18]) design an incrementally verifiable

payment system based on a proof-of-stake consensus protocol. They show how to modify the Ouroboros
Genesis protocol [BGKRZ18] so that its chain selection rule can be realized via a small-space algorithm,
thereby obtaining a consensus protocol amenable to incremental state updates.

Kattis and Bonneau [KB20] design an incrementally verifiable payment system whose consensus protocol
requires miners to solve a cryptographic puzzle that updates the prior state’s proof to the next state’s proof;
they call this paradigm a Proof of Necessary Work. They show how to modify the Nakamoto consensus
protocol to incorporate the proof-computation process to ensure that solving puzzles is “amortization resistant”
across solution attempts (a desirable fairness property for mining).

These works focus on basic payments (and no privacy guarantees) and on tackling challenges that arise
in making consensus protocols compatible with incremental updates. In contrast, our focus is to formulate
and realize a cryptographic primitive with concrete capabilities and security properties and show how it can
express a range of applications (including with privacy goals). We believe that this will facilitate further work
in incremental verification, which can make black-box use of our primitive. We discuss other limitations of the
definitions in [BMRS20; KB20] in Section 3. Further, our implementation achieves incremental verifiability
based on recent advances in SNARKs with a simple and universal setup, which are better suited to real-world
deployment and were not studied previously. We also empirically validate how incremental verification
reduces participation costs.

Both [BMRS20] and [KB20] suggest for future work: (1) to explore richer applications (including those

6

that protect privacy); and (2) SNARKs with universal setup. We address both.
We discuss other, less relevant prior work in Section 8.

7

2 Participation costs in ledger systems

In this section we elucidate what we mean by “participation costs” in a ledger system and discuss how they
are qualitatively affected with no proofs, with transition proofs, and with recursive proofs. This discussion
will motivate the cryptographic primitive in Section 3 and its usage in Section 4.

A ledger system involves heavyweight servers responsible for maintaining the application state and
lightweight clients that perform queries to the current state (or to consult past transactions). Within this paper,
participation costs consist of the following two types of costs.

• Synchronization costs: Both servers and clients may go offline and later “catch up” to the current state of
the system. (When servers or clients join, they start from the initial state.) Servers and clients verify the
current state’s integrity by checking that it is the correct result of a sequence of transactions.

• Query costs: Clients only store a short state commitment and want to ensure that servers answer their
queries correctly relative to the corresponding state. Clients may also make queries to prior application
states, as the application may “forget” information that the client still cares about (e.g., a transaction that is
already spent in a UTXO-based payment system). If the client only holds a commitment to the current state,
it needs assurance that the prior state used to answer that query is in the history of the current application
state.

Below we discuss participation costs in ledger systems with: no proofs, transition proofs, and recursive
proofs (which underlie incremental verification). Figure 1 summarizes how these different options affect the
computations required to synchronize; our experiments in Section 7.4 confirm this qualitative behavior in
practice.

Verifier for F
Verifier for history proof

No Proofs

P2P
network txi+ 1, …, txt

Si+ 1 ← F(txi+ 1, Si)

St ← F(txt, St−1)

client /server sync from Si to St

Si+ 2 ← F(txi+ 2, Si+ 1)⋮

i

P2P
network πi+ 1, …, πt

cmi+ 1, …, cmt VF(cmi, cmi+ 1, πi+ 1) = 1
VF(cmi+ 1, cmi+ 2, πi+ 2) = 1

VF(cmt−1, cmt, πt) = 1

client sync from cmi to cmt

server sync from (cmi, Si) to (cmt, St)

cmi = ℋ(Si)

cmt = ℋ(St)
⋮

i
Proof
Maker

cmt−1, St−1, txt

cmt, St, πt

P2P
network

Proof
Maker

cmt−1, St−1, πt−1, txt

cmt, St, πt

Transition Proofs

Recursive Proofs

VF(cmt, πt) = 1
VH(cmt, cmi, πi→t) = 1

client sync from cmi to cmt

server sync from (cmi, Si) to (cmt, St)

cmi = ℋ(Si)cmt = ℋ(St)

i

cmt, πt, πi→t

cmiSi
txi

πi

VH

VF
πi→tℋ

FState i
Transaction i
Hash function

Transition function Commitment to state i
Proof for state i
History proof that extends t i

Figure 1: Synchronization costs in ledger systems with different proof types (see Section 4 for discussion of the
proof maker). Proving that one state extends another (πi→t) can be made lightweight enough that it can be done by
peer-to-peer networks without the proof maker. The server synchronization includes the client synchronization.

8

No proofs. Without proofs, servers or clients who want to be confident in an application state have no
choice but to derive the application state themselves by downloading and executing each transaction since
they were last online, leading to high synchronization costs. This essentially removes the distinction between
clients and servers, as clients must hold a copy of the current application state to check its validity. The query
cost is thus the cost for the client to execute its query over this local copy.
Transition proofs. Instead of executing every state transition, servers or clients can download, for each
state transition, a proof and a commitment to the next state. Servers also download the current application
state and check that the final commitment commits to the current state. As clients no longer have the entire
application state, query costs become different: clients now only use a commitment to the state to verify query
responses. Transition proofs are a significant improvement over no proofs (Section 7.4), and batching can
reduce costs even further [OWWB20; LNS20]. However, synchronization costs remain linear in the number
of state transitions and remain substantial for servers and clients that were offline for a long time.
Recursive proofs. Recursive proofs further reduce synchronization costs for servers and clients by removing
any costs that are linear in the number of state transitions. Servers and clients only have to verify one proof
that the current state is correct and possibly another lightweight proof that the current state extends the prior
state held by them. The prover can recursively compose prior proofs to reduce the proving cost.5 Query costs
with recursive proofs match those of transition proofs, as clients still need to check that their queries were
correctly executed using a commitment to the state.

This informal paradigm is the starting point of our work. In Section 3 we formulate a cryptographic
primitive that captures these capabilities, and in Section 4 we explain how to use the primitive in a system.

5We could also imagine generating these proofs non-recursively and proving the correctness of the current state from the initial
state after every state transition. This is prohibitively expensive for the prover because the proving cost grows linearly with the
number of total transactions.

9

3 Definition of IVLS

We capture the capabilities of recursive proofs with a cryptographic primitive called an incrementally verifiable
ledger system (IVLS). An IVLS compiler transforms any ledger system into a corresponding IVLS.

We first discuss limitations of prior definitions related to incremental verification for ledgers and then
present our set of definitions.
Limitations of prior definitions. Bonneau et al. [BMRS20] define the notion of a succinct blockchain to
capture incremental verification of a blockchain application over a compatible consensus algorithm.6 While
[BMRS20] takes a first step in formulating definitions about IVC for ledgers, we revisit these definitions for
two reasons.

First, the definitions in [BMRS20] do not differentiate between participants that maintain the entire state
(full nodes) and participants that maintain only a short commitment to it (light clients). Light clients need
to query full nodes for information about the state (as they only have a summary), and may also go offline
for a period of time and need to synchronize their old summary with a summary of the current state. Our
definitions distinguish between these, ensuring that clients can interact with the system in a meaningful way
while holding only a summary of the state.

Second, the definitions in [BMRS20] separate the application and the consensus protocol, which compli-
cates interfaces and introduces properties that only relate to consensus (e.g., chain growth). More importantly,
this is unnecessary: any consensus protocol compatible with incremental verification can be “folded” without
loss of generality into the application itself. Designing consensus protocols compatible with incremental
verification is, of course, important but seems better left to the details of the application. For example, our
definitions can capture incremental verification not only for traditional blockchain applications (e.g., simple
payments and privacy-preserving payments) but also for applications like key transparency that maintain state
via a different centralized consensus (see Section 5).

Kattis and Bonneau [KB20] also describe a distributed payment system with incremental verification.
They discuss the benefits of incremental verification at a high level, but do not provide interfaces and associated
security properties that the system would be required to fulfill.
Our definitions. We present our definitions for IVLS; later in Section 4 we explain how these abstract
definitions apply to real systems and how our properties provide meaningful guarantees to participants, and
in Section 5 we exercise our definitions to show how to capture several applications of interest, including
privacy-preserving payments, privacy-preserving computation, and key transparency (a direction left as future
work by [BMRS20; KB20]).

A ledger system is a pair LS = (F,C) where F is a read-write program called the transition function and
C is a read-only program called the client function.

⊥ F S1 F S2 F S3
...

tx1 tx2 tx3

y1 y2 y3

y = C(x)

6We use the term incrementally verifiable ledger system because: (1) it highlights the main feature (incremental verification)
while being consistent with a closely related primitive (incrementally verifiable computation); and (2) “succinct blockchain” is, in our
opinion, a misnomer (the blockchain and the application state are not succinct themselves). Also, we prefer the term ledger system
over state machine because the latter equally apply to Valiant’s IVC (e.g., it does not suggest a setting with clients and servers).

10

The transition function F specifies how transactions modify the state. That is, given as input a transaction
tx and query access to the current state S, F produces an output y and a state update ∆ (denoted by (y,
∆) := FS(tx)); the new state S′ is obtained by applying the update ∆ to the old state S (denoted by
S′ := S + ∆).

The client function C specifies the supported types of client queries over a state: given an input query x
and query access to a state S, C produces a query answer y (denoted by y := CS(x)).

For example, in a simple UTXO-based payment system, the application state contains the pool of all
unspent transactions, an incoming transaction consumes the outputs of prior transactions to generate new
outputs, and the state transition function accepts a new transaction if it consumes unspent outputs. The
client function searches for unspent transactions that can be spent by a public key. (See Section 5 for more
examples.)

We wish to transform any ledger system into a ledger system that has the same functionality and is
incrementally verifiable. For this, we define an IVLS compiler: a tuple (Setup,MakeSF,MakeC,History)
that we require to fulfill certain syntax and properties. First, Setup is used to sample public parameters pp;
this is a one-time setup that can be used to transform any number of ledger systems. Next, we separately
discuss each of MakeSF,MakeC,History in the next three subsections.

Remark 3.1 (extensions). Our definition of a ledger system assumes for simplicity that the initial state is
empty and that the transition function applies one transaction at a time. All discussions in this paper extend,
in a straightforward way, to the case of non-empty initial states and to the case of transition functions that
apply blocks of transactions. Moreover, we do not consider an algorithm for validating transactions before
they are processed by the transition function since the transition function can check validity itself (and if not,
return an error in its output and an empty state update). In a real system, validating transactions separately is
likely to be more convenient.

Remark 3.2 (deterministic vs. probabilistic). In the definitions of this section we assume that MakeSF and
MakeC are deterministic algorithms. This is the case in our construction (in Appendix C) and also simplifies
many definitions because an adversary can compute (vS, vF) and vC from F and C, respectively, by itself.
All of our definitions naturally extend to the case where MakeSF and MakeC can toss coins: the adversary
needs to be given (vS, vF) and vC as an input at the right place in the definitions.

3.1 Properties of MakeSF

Given public parameters pp and a transition function F ,MakeSF outputs (vS, vF) where vF is an incrementally
verifiable version of F and vS are functions that manages vF’s state. We describe each below.
vS. The tuple vS = (Info,VerifyCM,VerifyAll) consists of efficient deterministic algorithms working as
follows:

• vS.InfoS,A()→ (t, cm, πF). Given oracle access to a state S and auxiliary state A, Info outputs the state’s
current index t, commitment cm, and proof πF.

• vS.VerifyCM(S, cm)→ b. On input a state S and commitment cm, VerifyCM determines if cm is a valid
commitment to S. We use the convention vS.VerifyCM(⊥,⊥) = 1 (i.e., the empty commitment is a valid
commitment for the empty state).

• vS.VerifyAll(S,A)→ b. On input a state S and auxiliary state A, VerifyAll checks if the states are valid.
We use the convention vS.VerifyAll(⊥,⊥) = 1.

11

For now, the only property that we explicitly require is that it is infeasible to find distinct states with the same
valid commitment (Definition 3.3). Definitions later in this section imply other properties of vS.

Definition 3.3 (binding of vS). For every polynomial-size adversary A and sufficiently large security param-
eter λ,

Pr

vS.VerifyCM(S1, cm) = 1
vS.VerifyCM(S2, cm) = 1

↓
S1 = S2

pp← Setup(1λ)
(F, S1, S2, cm)← A(pp)

(vS, vF)← MakeSF(pp, F)

 ≥ 1− negl(λ) .

vF. The tuple vF = (Run,Verify) consists of efficient algorithms working as follows:

• vF.RunS,A(tx)→ (y,∆). Given oracle access to a state S and auxiliary state A, and given as input a
transaction tx, Run outputs a result y and a state update ∆ = (∆S ,∆A) to modify S and A. The result y
and state update ∆S equal the output of the original transition function F (on input tx and state S).

• vF.Verify(t, cm, πF)→ b. On input a state’s index t, commitment cm, and proof πF, Verify decides if the
commitment is consistent with a state resulting from applying the transition function F on t transactions.
We will assume vF.Verify(0,⊥,⊥) = 1.

We require two properties. Completeness (Definition 3.4) states that using vF.Run to apply a transaction to a
valid state yields a new valid state that is consistent with the original transition function F and a new auxiliary
state that contains information passing all the relevant checks. Knowledge soundness (Definition 3.5) states
that if an efficient adversary outputs a state commitment and proof that are valid according to vF.Verify, then
an efficient extractor can output a sequence of transactions that, via transition function F , lead to a state with
the claimed commitment.

Definition 3.4 (completeness of vF). For every polynomial-size adversary A and security parameter λ,

Pr

vS.VerifyAll(S,A) = 1
↓

vF.Verify(t, cm, πF) = 1
(y,∆S) = FS(tx)

t′ = t+ 1
vS.VerifyAll(S′, A′) = 1

pp← Setup(1λ)
(F, S,A, tx)← A(pp)

(vS, vF)← MakeSF(pp, F)

(t, cm, πF)← vS.InfoS,A()

(y, (∆S ,∆A))← vF.RunS,A(tx)
S′ := S + ∆S , A

′ := A+ ∆A

(t′, cm′, π′F)← vS.InfoS
′,A′

()

= 1 .

Definition 3.5 (knowledge soundness of vF). For every polynomial-size adversaryA there exists a polynomial-
size extractor E such that for every sufficiently large security parameter λ,

Pr

vF.Verify(t, cm, πF) = 1

↓
S = F (tx1, . . . , txt)

vS.VerifyCM(S, cm) = 1

pp← Setup(1λ)
(F, t, cm, πF)← A(pp)
(tx1, . . . , txt)← E(pp)

(vS, vF)← MakeSF(pp, F)

 ≥ 1− negl(λ) .

3.2 Properties of MakeC

Given public parameters pp and a client function C, MakeC outputs a tuple vC = (Run,Verify), the verifiable
version of C, that enables proving/verifying that, given a commitment to the current state, the client function
was executed correctly. In more detail, these work as follows:

12

• vC.RunS,A(x)→ (y, πC). Given oracle access to a state S and auxiliary state A and input x, Run produces
an output y and a proof πC attesting that y = CS(x).

• vC.Verify(cm, x, y, πC)→ b. On input a state’s commitment cm, input x, claimed output y, and proof πC,
Verify determines if cm is consistent with a state S such that y = CS(x).

We require two properties. Completeness (Definition 3.6) states that outputs of vC.Run are accepted by
vC.Verify and are consistent with executions of the given client function C. Soundness (Definition 3.7) states
that if an efficient adversary outputs (a valid state and auxiliary state and) a proof that is accepted by vC.Verify
for a given input and claimed output, then the claimed output equals C’s output.

Definition 3.6 (completeness of vC). For every polynomial-size adversary A and security parameter λ,

Pr

vS.VerifyAll(S,A) = 1

↓
y = CS(x)

vC.Verify(cm, x, y, πC) = 1

pp← Setup(1λ)
(F,C, S,A, x)← A(pp)

(vS, vF)← MakeSF(pp, F)
vC← MakeC(pp, C)

(y, πC)← vC.RunS,A(x)

(·, cm, ·)← vS.InfoS,A()

 = 1 .

Definition 3.7 (soundness of vC). For every polynomial-size adversary A and sufficiently large security
parameter λ,

Pr

vS.VerifyAll(S,A) = 1

vC.Verify(cm, x, y, πC) = 1
↓

y = CS(x)

pp← Setup(1λ)
(F,C, S,A, x, y, πC)← A(pp)

(vS, vF)← MakeSF(pp, F)
vC← MakeC(pp, C)

(·, cm, ·)← vS.InfoS,A()

 ≥ 1− negl(λ) .

3.3 Properties of History

History = (Prove,Verify) enables proving/verifying that a prior state commitment is on the same timeline as
another (later) state commitment. History.Prove produces a proof that the current (committed) state can be
reached from an earlier (committed) state. History.Verify checks the proof. In more detail, the algorithms
work as follows:

• History.ProveS,A(pp, t)→ πH. Given oracle access to a state S and auxiliary state A, and given as input
public parameters pp and a previous state’s index t, Prove outputs a proof πH attesting to the relationship
between the t-th state commitment in the history and the current state commitment. (If the current state has
an index less than or equal to t, Prove outputs ⊥.)

• History.Verify(pp, cm, t, cmt, πH)→ b. On input public parameters pp, the current state’s commitment
cm, previous state’s index t and commitment cmt, and a proof πH, Verify determines if cmt was the valid
t-th state commitment in the history leading to cm.

We require two properties. Completeness (Definition 3.8) states that valid proofs can be generated for any
past prior state commitment, relative to the state’s index. Binding (Definition 3.9) states that it is infeasible to
find, for the same state commitment cm, two distinct commitments that are valid for the same prior index t.

13

Definition 3.8 (completeness of History). For every polynomial-size adversary A and security parameter λ,

Pr

vS.VerifyAll(S,A) = 1

↓
t′ = t+ n

History.Verify(pp, cm′, t, cm, πH) = 1

pp← Setup(1λ)
(F, S,A, (tx1, . . . , txn))← A(pp)

(vS, vF)← MakeSF(pp, F)

(t, cm, ·)← vS.InfoS,A()

(S′, A′)
vF.Run(tx1,...,txn)←−−−−−−−−−−− (S,A)

(t′, cm′, ·)← vS.InfoS
′,A′

()

πH ← History.ProveS
′,A′

(pp, t)

= 1 .

Above we use a shorthand for going from state (S,A) to state (S′, A′) via the transactions (tx1, . . . , txn).

Definition 3.9 (binding of History). For every polynomial-size adversary A and sufficiently large security
parameter λ,

Pr

History.Verify(pp, cm, t, cmt, πH) = 1
History.Verify(pp, cm, t, cm′t, π

′
H) = 1

↓
cmt = cm′t

pp← Setup(1λ)(
cm, t,

cmt, πH
cm′t, π

′
H

)
← A(pp)

 ≥ 1− negl(λ) .

14

4 System architecture

We described how an IVLS compiler transforms a given ledger system LS = (F,C) into a new ledger
system IVLS = (vF, vC) that (a) has the same functionality and similar efficiency and (b) is incrementally
verifiable in a precise sense. Next we describe how IVLS gives rise to a peer-to-peer architecture with (much)
smaller participation costs. In Appendix B.1 we explain how consensus protocols integrate with this system
architecture, and in Appendix B.2 we discuss how privacy fits into this system architecture. Recall from
Section 2 that synchronization costs are incurred by servers and clients who want to verify that the current
state is derived from a past state correctly, and query costs are incurred by clients who want to verify query
responses.
The new system. Informally, servers use the new transition function vF instead of the original F , and clients
use the new client function vC instead of the original C. We now discuss the different operations.

State updates. Besides the application state S, each server maintains an auxiliary state A that stores crypto-
graphic information. A server processes a new transaction tx by computing (y,∆) := vF.RunS,A(tx) and
applying the state update ∆ to the augmented state (S,A). (For comparison, in the original application, each
server would compute (y,∆S) = FS(tx) and apply the state update ∆S to S.) Any server can run vS.InfoS,A

to obtain the number t of transactions that have been applied since the start of the system, a commitment cm
to the current application state, and a proof πF of correctness.

State validity. A server joining the system can simply download and verify the state and auxiliary information
(S,A) by checking the state proof πF and checking the consistency between S and A using vS.VerifyAll(S,
A). The new server does not need to itself apply the transition function vF.Run for each prior transaction.

Client queries. vC enables a server to convince a client that it answered the client’s query correctly. The client
sends a query x to a server, the server computes and returns the answer and proof (y, πC)← vC.RunS,A(x),
and the client checks the answer by running vC.Verify(cm, x, y, πC), where cm is the commitment to S.

Relation between states. A server or client may be offline for a period of time and need a way to establish
that an old state commitment cmold and a new state commitment cmnew are not just individually valid (as
established via vF.Verify) but also belong to the same “timeline”. Moreover, a client that has a current state
commitment and wants to make a query about an old state needs to be able to check that the current state
was derived from the old state. Both tasks can be accomplished via functionality offered by History, which
enables skipping along this “timeline” of states using only commitments. The server can prove that the
state committed to by cmnew is reachable from a state committed to by cmold by computing a history proof
πH := History.ProveS,A(pp, told) where told is the old state’s index. The client checks this proof by running
History.Verify(pp, cmnew, told, cmold, πH).
Motivation for security properties. We discuss how the security properties presented in Section 3 translate
to the informal security desiderata we have discussed for synchronizing state and executing queries.

Synchronization. vF’s knowledge soundness (Definition 3.5) states that every state commitment accepted
by vF.Verify implies a sequence of transactions that, via the transition function F , lead to the committed
state. The binding property of History (Definition 3.9) states that one cannot find prior state commitments
that contradict each other but are both accepted by History.Verify for the current state commitment. Together
these imply that the state committed to by prior state commitments is valid.

Query execution. vC’s soundness (Definition 3.7) ensures that every query result over a valid state accepted
by vC.Verify implies that the result y is the output of running the client function C over the state with the
input x.
Reducing participation costs. The new system reduces synchronization costs and query costs.

15

Synchronization now only requires servers and clients to verify the latest state proof πF produced by
vF.Run along with, if they have a past commitment, a history proof πH produced by History.Prove. To verify
the consistency between the state and the auxiliary state, the server additionally runs vS.VerifyAll. These are
efficient checks, and our evaluation of synchronization costs shows their practical benefits (see Section 7.4).

Query costs are simply the time for the client to verify the query proof πC produced by vC.Run, which is
much faster than executing the query itself on the state.
Integration with consensus protocols. For consensus-based ledger systems, the application’s transition
function F should be tasked with maintaining consensus information; in particular, the consensus protocol
should be compatible with incremental verification. (Otherwise, the overall system would not be incrementally
verifiable.) Prior works [KB20; BMRS20] have designed consensus protocols for incremental verification,
which can be used here.
Who produces the proofs? Introducing cryptographic proofs into a real-world system raises the question of
who is responsible for producing these proofs. We briefly summarize two approaches described in prior work,
which can be used in IVLS. Mina [BMRS20] introduces a new party that makes proofs (a “snarker”) and
is monetarily incentivized to produce proofs: block producers ask snarkers to produce proofs for generated
blocks, and the two parties agree on a fee in what is essentially a lowest-price auction. Another approach is to
directly embed producing proofs into the cryptographic PoW puzzle, known as Proof of Necessary Work
[KB20], which requires the proof-computing process to satisfy amortization resistance (a property plausibly
satisfied by known pairing-based SNARKs on NP statements, incorporating nonces). We discuss and evaluate
proving costs in Section 7.5.

16

5 Applications

We describe how the formalism of ledger systems (see Section 3) can capture several applications of interest.7

By applying an IVLS compiler to these applications, one can make the application incrementally verifiable,
and hence significantly reduce participation costs for it. Overall, we show that IVLS supports not only basic
payment systems (the only ones studied in prior works on incremental verifiability) but also systems with
strong privacy or rich user-defined applications (e.g., smart contracts).

We outline how to “program” ledger systems to express each application, with a focus on transition
functions; for completeness, we provide formal details (and a discussion of client functions) in Appendix A.
We adopt two design principles for efficiency: (a) each transaction results in a small number of reads/writes
to the application state; (b) the application state contains the minimum information necessary for ensuring the
application’s integrity. (Users are responsible for storing any information specific to them.)
Basic payments. As a warmup, we first discuss basic payments (user-to-user transfers without privacy
guarantees), in the account-based and UTXO-based models.

In the account-based model (studied in [BMRS20; KB20]), the application state is a map from public
keys to balances. The transition function takes as input a signed message, under the sender’s public key,
specifying the amount to be paid and the receiver’s public key. To prevent replaying a prior transaction, the
application state maintains a counter for each public key, which increases with each payment; the signed
message includes this counter. The application state’s size is linear in the number of public keys.

In the UTXO-based model (think bare-bones Bitcoin with no scripts), the state maps public keys to
identifier-value pairs each representing a coin. The transition function takes as input a sender public key; a
list of existing coin identifiers all owned by the sender; and information for receivers in the form of their
public keys, new coin identifiers, and their values (whose total equals that of the sender’s coins). All of this is
signed under the sender’s public key. The identifiers of the spent coins are removed from the application state.
Privacy-preserving payments. We discuss how to express payments with user privacy, as in Zero-
cash [Ben+14]: user-to-user payments that reveal no information about the sender, receiver, or transferred
amount. While superficially such a system looks very different from other payment systems, modeling it as a
ledger system is not difficult, as explained below. Recall that each Zerocash transaction contains the serial
numbers of old (spent) coins and the commitments to new (created) coins along with a zero-knowledge proof
attesting that the old coins were created at some point in the past and now have been spent by someone who
knows their private keys, and that the new coins were committed correctly and preserve the monetary value
of the old coins.

The application state includes a list of all serial numbers and a list of all coin commitments. (More
precisely, the serial numbers are stored in a search tree and the coin commitments in a Merkle tree.) The
transition function validates a transaction by checking its zero-knowledge proof and checking that its serial
numbers do not already appear in the list of all serial numbers. If so, the transition function adds the
transaction’s serial numbers and coin commitments to the application state. Crucially, the transition function
here only makes a few accesses to the application state.

Clients must identify transactions where they are recipients. Naively, this requires a linear scan over all
transactions. This linear cost can be avoided via viewing keys, which allow the server to identify transactions
relevant to the client without the server being able to spend the client’s funds. Viewing keys protect the clients’

7As we discuss in Section 3, the application must take consensus into account, where the consensus must be incrementally
verifiable. Since a consensus protocol can be viewed as an algorithm that can be folded into the application, by suitably augmenting
the application state and transition function, we do not discuss the details of consensus in this section. We discuss integration with
consensus protocols in more detail in Appendix B.1.

17

funds but not privacy. To achieve privacy from the server, light clients can leverage prior work using secure
hardware [WMSMKČ19; MWSKKC19; LHAMLK20] and/or private information retrieval (PIR) [QHGR19],
which can be directly applied to our setting.

We discuss the implementation and evaluation of incrementally verifiable privacy-preserving payments in
Section 6 and Section 7.3 respectively.
Privacy-preserving computation. Zexe [BCGMMW20] extends Zerocash to support privacy-preserving
general computation, as captured via a computation model that involves data units called records, which
contain scripts for how they can be created or consumed. Analogously, we extend the previous design to
privacy-preserving computation, by setting the application state to be a list of all serial numbers and a list
of all record commitments. Each transaction contains the serial numbers of old (consumed) records and the
commitments to new (created) records along with a zero-knowledge proof attesting that scripts contained in
all the records were correctly executed. The transition function validates a transaction by checking its proof
and by checking that its serial numbers do not already appear in the list of all serial numbers; if so, it adds the
serial numbers and record commitments in the transaction to the application state.
Key transparency. We conclude with an application beyond cryptocurrencies: key transparency [MBBFF15;
TBPPTD19], a public directory mapping usernames to public keys. Unlike previous applications, in key
transparency, a central server maintains the application state, and other parties verify that it does so correctly.
Users can publish their own public keys to a directory maintained by the central server, query other users’
public keys, and check that the directory maintains this mapping correctly.

The application state is pairs of usernames and public keys. The transition function processes two types
of transactions: in the first type, a user can register a key by sending a new username and public key; in the
second type, a user can update an existing public key with a signature of the new public key and the username
under the old public key. While server participation costs are not a concern (application state is maintained by
a single central server), incremental verifiability does reduce client participation costs. In the original design,
a user must regularly query the central server to check that it continuously maintains the mapping between
their username and public key. In our incrementally verifiable design, users only need to check a single proof
that the entire application state has been maintained correctly.

18

6 Construction and implementation

We implement the IVLS compiler in Rust. The main components are summarized below and are illustrated in
Figure 2. Several components are of independent interest, as they simplify the use of recursive SNARKs in
many settings. For example, we provide a generic implementation of proof-carrying data and a constraint
system encoding the correct execution of the verifier of a state-of-the-art pairing-based SNARK with universal
setup. We used, and contributed to, the constraint-writing framework of the Rust library arkworks [arkworks]
(formerly libzexe) and its algebra libraries for finite fields and elliptic curves.

Our implementation is open-sourced under the Apache v2 license or the MIT license, and is available
online.8 Our code base has been extended in subsequent work to support new types of recursion that have
been recently introduced [BGH19; BCMS20; BCLMS20].

Incrementally Verifiable Ledger System (IVLS) Compiler

Proof-Carrying Data (PCD), and in particular
Incrementally Verifiable Computation (IVC)

Sparse Merkle Tree
(& constraints for it)

Collision-Resistant Hash &
constraints for it (Pedersen)SNARK for R1CS (& constraints for its verifier)

Twisted Edwards Curve
for MNT Cycle

option #1:
specific setup

[Groth 16] or [GM 17]

option #2:
universal setup

"Marlin" Verifier [CHMMVW 20]

Cryptographic Hash
(Poseidon)

Algebraic
Holographic Proof

Polynomial
Commitment

Non-Native Field ArithmeticElliptic Curve Arithmetic + Pairing

MNT Cycle

Type Adapters for Hash

Figure 2: Diagram illustrating the relation between different components of our system. The gray boxes denote
components that exist in prior libraries, while the white boxes denote components contributed in this work.

IVLS. The top-level interface is a collection of traits that closely follow the interface of an IVLS compiler in
Section 3. Its construction combines IVC and a Merkle tree via ideas that require some care but are primarily
standard; for reference, we provide the construction in Appendix C and its security proof in Appendix D. The
user specifies the transition function for the ledger system by providing code for the native execution and also
a (rank-1) constraint system for it. The latter representation, known as R1CS, is a standard representation for
NP statements that can be viewed as a generalization of arithmetic circuits. We discuss the IVC scheme below.
As for the Merkle tree, like prior works in the SNARK literature [HBHW18; BCGMMW20], we base it on a
Pedersen hash function over a suitable elliptic curve (a twisted Edwards curve), whose base field matches the
field over which the IVC scheme’s constraint system is defined, or on the more recent Poseidon hash function

8We contributed our code to the arkworks library.
– IVLS: https://github.com/arkworks-rs/ivls
– PCD: https://github.com/arkworks-rs/pcd
– Non-native field arithmetic: https://github.com/arkworks-rs/nonnative
– Constraints of Marlin: https://github.com/arkworks-rs/marlin
– Constraints of Marlin’s polynomial commitments: https://github.com/arkworks-rs/poly-commit

19

https://github.com/arkworks-rs/ivls
https://github.com/arkworks-rs/pcd
https://github.com/arkworks-rs/nonnative
https://github.com/arkworks-rs/marlin
https://github.com/arkworks-rs/poly-commit

[GKRRS21]. This is for efficiency, as traditional hash functions such as SHA-256 are expensive in constraint
systems.
PCD. We provide a generic trait for a PCD scheme, which enables the user to specify transitions whose
incremental verification is desired, by giving an R1CS constraint system that checks their validity. We
provide a generic implementation of this trait from any pairing-based SNARK for R1CS that comes equipped
with a constraint system for its own verifier, by using the technique of MNT cycles in [BCTV14].9 Our
implementation works with both of the MNT cycles in arkworks (the lower-security 298-bit cycle and the
higher-security 753-bit cycle). In particular, we can base the PCD scheme on pairing-based SNARKs for
R1CS with a circuit-specific setup, already part of arkworks (such as [Gro16]), or with a universal setup that
we contribute in this work ([CHMMVW20], as described below). Though not part of this work, we anticipate it
to be rather straightforward to also implement the PCD scheme trait via hash-based (post-quantum) SNARKs
for R1CS such as [COS20]. Lastly, to support the Pedersen-based Merkle tree, we contribute twisted Edwards
curves suitable for the MNT cycles in arkworks that underlie PCD.

The IVC scheme that we use for IVLS is a special case of the PCD scheme above. We built PCD because
PCD can used to distribute proving work via proof trees (e.g., see “parallel scan states” in [BMRS20]), and
PCD is useful in security applications beyond IVLS [NT16; CTV15; CTV13; BCG20].
Recursing a universal SNARK. We provide the first implementation of a constraint system for a pairing-
based SNARK for R1CS with universal setup [CHMMVW20]. Recall that this means that the trusted
generation of system parameters for the SNARK does not depend on the R1CS instance whose satisfiability
is proved (but only on some upper bound to it). This enables realizing PCD/IVC based on the SNARK
in [CHMMVW20] (and implemented in marlin [mar19]), so that the trusted generation of the system
parameters for the PCD/IVC scheme does not depend on the user’s choice of automaton. Our constraint
system is a useful addition to existing constraint systems for other types of SNARKs, such as pairing-based
SNARKs with circuit-specific setup (starting with [BCTV14]) and post-quantum SNARKs [COS20].

The universal SNARK in [CHMMVW20] is constructed via a general paradigm combining three in-
gredients: a polynomial commitment scheme (PC scheme), an algebraic holographic proof (AHP), and a
cryptographic hash function for the Fiat–Shamir heuristic [FS86]. The SNARK verifier is assembled from
these ingredients, and we design our SNARK verifier constraint system to reflect this structure, which should
facilitate the implementation of similar universal SNARKs in the future.
• PC scheme. We write a constraint system for the checks in the polynomial commitment scheme of Kate et al.

[KZG10], which ensures that a sender has correctly opened the value of a committed polynomial at a desired
point. Our constraint system supports degree enforcement and batching as described in [CHMMVW20]
and is implemented in poly-commit [pc19]. This is the part of the verifier that checks a pairing-product
equation on a pairing-friendly curve.
Our implementation includes optimizations to reduce the number of constraints. For example, to batch mul-
tiple polynomial commitments and pairing checks into one, we replace the linear combination r, r2, r3, . . .
used in [CHMMVW20] with the linear combination r1, r2, r3, . . . as it is cheaper to derive multiple chal-
lenges from the Poseidon sponge (for the Fiat–Shamir transformation) instead of computing one challenge’s
powers via non-native arithmetic.

• AHP. We write a constraint system for the AHP verifier described in [CHMMVW20]. This involves
checking polynomial equations, using values in the proof and values derived from the Poseidon sponge.
These operations are over the field exposed by the PC scheme above. As the latter is necessarily different
from the field of the constraint system (due to properties of pairing-friendly curves), we use constraints for

9Informally, there are two pairing-friendly curves with matching parameters, and two pairing-based SNARKs instantiated over
these two curves. One SNARK verifies the other SNARK, and vice versa.

20

non-native field arithmetic (see below).
In [CHMMVW20], the verifier evaluates a few vanishing polynomials, which is expensive due to non-native
field arithmetic. To reduce the cost, we modify Marlin to have the prover convince the verifier of the correct
evaluation of the vanishing polynomials. This change also has the benefit that it reduces the number of
constraints of the verifier from O(logN) to O(1), where N is the number of constraints of the circuit being
verified in the constraint system.

• Hashing. For the cryptographic hash function we use an algebraic sponge (implemented in [COS20] based
on the Poseidon hash function). We set the field of the algebraic sponge to equal the field of the constraint
system. For our setting we wrote “adapters” to absorb into and squeeze out of the algebraic sponge different
types of inputs that arise in our SNARK verifier (commitments from the PC scheme and non-native field
elements).

Our modular design facilitates obtaining constraint systems for other SNARKs that are built using the same
paradigm in [CHMMVW20]. For example, by modifying the equations checked by the AHP, it would be
relatively straightforward to obtain a constraint system for the SNARK for arithmetic circuits in [GWC19].
Non-native field arithmetic. The constraint system of the verifier requires checking arithmetic over a
field Fq that is different from the field Fr of the constraint system. We provide a generic implementation in
arkworks that hides the differences between native and non-native from the developers: one can program a
constraint system with non-native field arithmetic as easily as if it were native. Our implementation is based
on [DFKP16; KPS18; OWWB20], but we optimize it for lower constraint weight (see below), which requires
different parameter selection and multiplication checks.
Optimizing constraint weight. While the main efficiency metric of a constraint system is the number of
constraints, a secondary efficiency metric is its weight, i.e., the number of non-zero entries in the coefficient
matrices. While for SNARKs with circuit-specific setup (such as [Gro16]) weight does not matter much, for
all known SNARKs with universal setup (including [CHMMVW20]) efficiency also depends on weight. To
address this additional consideration, we extended the constraint-writing framework of arkworks [arkworks]
to enable optimizations that reduce weight. For example, we implement an automatic procedure that builds
a dependency graph over all the linear combinations of variables in the constraint system and rewrites the
constraint system to avoid re-using the same the linear combinations too many times (which greatly penalizes
weight while saving only a few constraints). More generally, throughout all of our constraint writing, we
balance the two (sometimes competing) goals of reducing number of constraints and reducing weight.
Privacy-preserving payments. Using the IVLS interface in our system, implementing privacy-preserving
payments is straightforward. We simply assembled the compliance predicate described in Section 5, and our
library produced an incrementally verifiable version for this application. To optimize application memory for
better performance, we chose a Merkle tree layout that is suitable for coin commitments and serial numbers.
We evaluate our implementation in Section 7.3.

21

7 Evaluation

We measure the size of our constraint system for the verifier of Marlin [CHMMVW20], the costs of IVC with
universal setup vs. circuit-specific setup, and how incremental verification reduces participation costs. We
establish that incremental verification based on preprocessing SNARKs with a universal setup incurs modest
overheads compared with the case of circuit-specific setup. Moreover, incremental verification significantly
reduces participation costs compared with systems with no proofs or with transition proofs. While servers
and clients greatly benefit from incremental verification, proof makers pay a high cost to produce proofs; we
discuss these costs as well as techniques for reducing them in Section 7.5.

Our measurements are taken on a machine with an Intel Xeon 6136 CPU with a base frequency of
3.00 GHz and 252 GB of memory, using a single thread. All reported proving times can be significantly
reduced by using multiple threads (a capability that is already part of the codebase).

Below, we frequently refer to two state-of-the-art proof systems: (a) Groth16 [Gro16], a preprocessing
SNARK with a circuit-specific setup; (b) Marlin [CHMMVW20], a preprocessing SNARK with a universal
setup (the SNARK whose verifier we expressed as a constraint system).

7.1 Constraints for SNARK verification

We measure the size of our constraint system for the verifier of Marlin [CHMMVW20]. We discuss the
MNT-298 cycle with the SNARK verifier built on the MNT6-298 curve, which verifies a proof over the
MNT4-298 curve. (Costs when the curves are swapped are similar.)

The Marlin verifier that checks an R1CS instance with K-element public input has roughly 328825 +
4794K constraints, compared with 43186 + 7754K in the case of Groth16. This larger cost is to be expected
because the (desirable) property of having a universal setup is harder to achieve and often leads to more
expensive verifiers.

The size of our constraint system remains modest and is within a factor of ten of the size for a circuit-
specific setup. Our constraint system for the Marlin verifier establishes the feasibility of recursive proofs via
pairing-based SNARKs with universal setup.

We show a breakdown of the constraint system of the Marlin verifier in Table 1, from which we can see
the polynomial commitment (PC) check, particularly group exponentiation, is responsible for much of the
cost. In the future, this cost could be reduced via incomplete group arithmetic [Zca].

Marlin Verifier Component Constraints Weight

Prepare verification key 61, 506 294, 603
AHP 62, 807 339, 043
- Non-native arithmetic 33, 143 216, 106
PC check 186, 493 994, 080
- Group exponentiations 161, 862 821, 769
- Pairing 9, 376 65, 804
Fiat–Shamir 29, 664 122, 937
Other 2, 036 96, 078

Total 332,828 1,723,804

Table 1: Cost of the Marlin verifier and its main sub-components, including both the number and weight of constraints
with K = 10 elements for public input.

22

Curve bit Proving time Verification time Proof size
security (µs/constraint) (ms) (byte)

Groth16 Marlin Groth16 Marlin Groth16 Marlin
BLS12-381 ∼ 128 46 485 4.69 8.31 192 1024

MNT4-298 ∼ 80 44 456 4.97 7.64 152 950
MNT6-298 ∼ 80 46 479 9.41 8.67 190 950

MNT4-753 ∼ 128 395 4426 51.25 72.18 380 2375
MNT6-753 ∼ 128 266 5540 92.98 81.26 475 2375

Table 2: Proving time per constraint, verification time, and proof size across preprocessing SNARKs and curves.

7.2 Incremental verification

We compare the overhead of recursive proofs with that of transition proofs, for the case of pairing-based
SNARKs. The overhead originates from two sources: (1) the additional constraints used to verify the prior
proof (beyond the constraints to prove the desired statement); and (2) the use of an MNT cycle to realize
recursion, instead of using more efficient pairing-friendly curves, e.g., BLS12-381. Our measurements
(Table 2) show that the recursion overhead is modest with Groth16 and Marlin.
(1) Additional constraints. Suppose that one wishes to recursively prove the correct execution of a
transition function whose constraint system has M constraints. (I.e., the compliance predicate in IVC has
size M .) Following the MNT-cycle paradigm of [BCTV14], we need to: (a) prove, over the MNT4 curve, the
satisfiability of a constraint system of size M + |VMNT6|, where VMNT6 denotes (a constraint system for) the
MNT6 verifier; and (b) prove, over the MNT6 curve, the satisfiability of a constraint system of size |VMNT4|,
where VMNT4 denotes (a constraint system for) the MNT4 verifier. Proving times over the two curves are
essentially the same, so each recursion amounts to proving M + |VMNT6|+ |VMNT4| constraints (rather than
M without recursion). For MNT-298: (1) in Groth16, |VMNT4| + |VMNT6| is 1.3 × 105 constraints; (2) in
Marlin, |VMNT4|+ |VMNT6| is 5.9× 105 constraints.

In other words, the number of constraints to prove for recursion is M plus a term that grows much slower
than M—as M grows, the number of additional constraints is a smaller and smaller fraction of the number of
proved constraints. For example, if M is two million constraints, recursion requires proving less than 2.6
million constraints.
(2) MNT cycles vs. BLS. We measured the main costs of a preprocessing SNARK (proving time, verification
time, and proof size) on the BLS12-381 curve, the MNT-298 cycle, and the MNT-753 cycle, for both Groth16
and Marlin, shown in Table 2. MNT-298 has similar efficiency to BLS12-381 but only 80-bit security;
MNT-753 has greater security at an increased cost.

– Proving time. The proving times in both proof systems are quasilinear in the number of constraints. But, for
a large range of parameters, the proving times approximately grow linearly, as prior works show. Therefore
we find it most informative to report the proving time per constraint. Compared with Groth16, Marlin
is 10× slower. Compared with BLS12-381, MNT-298 has a similar proving time, but MNT-753 is 10×
slower.

– Verification time. Pairing-based preprocessing SNARKs typically have short verification times. We mea-
sured the verification times for a constraint system with N = 216 constraints and K = 10 public inputs.
All measurements are less than 100 ms. Compared with Groth16, Marlin is 2× slower. Compared with
BLS12-381, MNT-298 is 2× slower or less, and MNT-753 is 10× to 20× slower.

– Proof size. All proof sizes are less than three kilobytes. Compared with Groth16’s, Marlin’s proof is about
5× larger. Proof sizes over BLS12-381 and MNT-298 are similar, while proof sizes over MNT-753 are

23

2.5× larger.

7.3 Privacy-preserving payments

We measure the cost of incremental verification for privacy-preserving payments as described in Section 5 in
Table 3. The compliance predicate requires checking four Merkle proofs (two for the set of coin commitments
and the other two for the set of serial numbers) and verifying a zero-knowledge proof attesting the validity
of the transaction. (The compliance predicate that we evaluate does not incorporate a consensus protocol,
which would be necessary in practice.) Therefore, the cost of incremental verification largely depends on
the choice of hash function and the choice of proof system, as shown in Table 3. As expected, a universal
SNARK incurs some overhead compared with a circuit-specific one. The choice of hash function also makes
a significant difference: the constraint-optimized Poseidon hash function, compared with Pedersen, is 5×
faster in Groth16, and 3.5× faster in Marlin.

Hash function Proof system
Groth16 Marlin

Pedersen 1, 230, 478 1, 377, 884
Poseidon 218, 088 365, 494

Table 3: Number of constraints for incrementally verifiable privacy-preserving payments using different hash
functions and different proof systems on the MNT-298 cycle.

7.4 Synchronization costs

We now consider the synchronization costs, which dominate the participation costs for servers and clients.
To demonstrate the benefits of IVLS (recursive proofs), we consider a simplified version of Bitcoin with no
scripts. We base the system parameters in Table 4 on statistics from Bitcoin over the last ten years.

In Table 4, we show how no proofs, transition proofs, and recursive proofs affect synchronization costs.
As expected, the system with no proofs imposes the highest synchronization costs, as it requires both servers
and clients to download and re-execute every transaction. Transition proofs reduce the overhead of both
clients and servers by orders of magnitude, and recursive proofs decrease the overhead for clients by orders
of magnitude again, reducing the sync time to milliseconds and network cost to kilobytes for the clients. The
server sync time and network cost are not as affected by the switch from transition proofs to recursive proofs
because for both the network cost is dominated by the state size and the sync time is dominated by the time
to hash the state. We show recursive proofs for both the MNT-298 curves (about 80-bit security) and the
MNT-753 curves (about 128-bit security), as the BLS12-381 curve offers about 128-bit security.11

In terms of network cost, the most expensive recursive proofs (Marlin over MNT-753) are still 46, 000, 000×
lighter than no proofs and 57, 000× lighter than transition proofs. In terms of synchronization time, the
foregoing recursive proofs are 382, 000× faster than no proofs and 3, 000× faster than transition proofs.
Comparison with other light client systems. Recursive proofs (from IVLS) make it possible to construct
a client that is extremely light, both in network cost and in synchronization time. In Section 1.3 we mention

10Transition proofs could be generated less frequently to reduce network cost and verifier computation; this would result in longer
periods where proofs have not been generated for the system state.

11While these curves nominally target the 80-bit or 128-bit security levels, all pairing-based SNARKs lose a few bits of security
relative to the underlying curve due to the fact that public parameters contains certain powers of generators [Che06]. Similar security
losses also happen for SNARKs based on generic groups due to the security reduction [JT20], and are typically ignored in practice.

24

Network Sync time
Server Client Server Client

No proofs 172.3 GB 172.3 GB 16.9 hrs 16.9 hrs
Transition proofs
Groth16 (BLS12-381) 2.3 GB 53.4 MB 1.6 hrs 19 min
Marlin (BLS12-381) 2.4 GB 217.4 MB 1.9 hrs 35 min
Recursive proofs
Groth16 (MNT-298) 2.2 GB 0.2 KB 1.3 hrs 4.8 ms
Marlin (MNT-298) 2.2 GB 1.6 KB 1.3 hrs 16.3 ms
Groth16 (MNT-753) 2.2 GB 0.4 KB 1.3 hrs 50.8 ms
Marlin (MNT-753) 2.2 GB 3.9 KB 1.3 hrs 159.0 ms

Total blocks: 25K 50K 100K 250K

Bitcoin SPV 1.9 MB 3.8 MB 7.6 MB 19 MB
FlyClient 109 KB 135 KB 163 KB 204 KB
Plumo
Groth16 6.1 KB 7.4 KB 10 KB 18 KB
Marlin 9.7 KB 15 KB 25 KB 54 KB
Recursive proofs
Groth16 (MNT-298) 0.2 KB
Marlin (MNT-298) 1.6 KB
Groth16 (MNT-753) 0.4 KB
Marlin (MNT-753) 3.9 KB

Transaction size: 370 B Transactions per block: 2, 000 Total transactions: 500M
Transaction verification time: 122 µs State size: 2.2 GB Hash time for 1 MB: 2.059 s

Table 4: On the left are estimated synchronization costs and on the right are network cost for different light client
schemes, for a ledger system modeled after a 10-year “bare-bones” Bitcoin (no scripts). Sync time does not include
the time to download data. We use the time to verify two ECDSA signatures over the secp256k1 curve as a lower
bound for the time to verify a transaction. We assume that transition proofs and recursive proofs use a Pedersen hash
function to summarize the current state, and transition proofs are generated for each block. Plumo uses the CP6
curve from Zexe [BCGMMW20].10

several existing light client schemes for users who want efficiency improvements over running a server. Here,
we compare recursive proofs with: (1) Bitcoin’s simplified payment verification (SPV), (2) FlyClient’s proof
of consensus [BKLZ20], and (3) Plumo’s proof of consensus [Gab+20]. We show the differences in network
cost and synchronization time in Table 4 and discuss differences in security guarantees, as some of these
primitives check only the consensus but not the state transition.

Compared with these prior schemes for light clients, recursive proofs (via IVLS) reduce client network
cost and synchronization time, at the cost of relying on sufficiently powerful proof makers, as we discuss in
Section 7.5. Moreover, recursive proofs provide a stronger security guarantee by verifying the correctness of
the application transitions as well as consensus transitions (as described in Appendix B.1).

Bitcoin’s simple payment verification (SPV), estimated with the parameters in Table 4, would require
downloading all the block headers of the blockchain—about 20 MB—which is at least 5, 000× larger than
recursive proofs. Synchronization time is small since it mainly involves checking the proof of work for every
block. However, SPV provides only limited security and functionality: (1) Though SPV enables the client to
check the consensus (proof of work), the client does not check the correctness of the transitions. (2) With
SPV, the client can check if a transaction is present, but the client cannot check if the transaction is unspent;
light clients of the same account need to synchronize with one another.

FlyClient enables a client to efficiently check the consensus in proof-of-work protocols; rather than
downloading every block header as in SPV, FlyClient downloads a logarithmic number of headers. Estimated
with a flat proof-of-work difficulty and parameters in Table 4, a client needs to download proofs of 204 KB,
using the simulator in [Wei20]. (We report a smaller proof size than the FlyClient paper because we are
measuring over our bare-bones Bitcoin rather than Ethereum, which has larger block headers.) While both
network cost and synchronization time are much better than SPV, the network cost is still 50× larger than
that of recursive proofs. Moreover, FlyClient does not check the correctness of the transitions and cannot
check if a transaction is unspent (as in SPV).

Plumo provides efficient checking for changes in the consensus committee. If a proof is generated every
six months (as suggested in [Gab+20]), the client needs to download at least 18 KB with Groth16 or 54 KB
with Marlin. In Table 4, we show that the network cost grows linearly with the number of blocks, assuming

25

a constant block rate. Synchronization time remains small due to efficient verification. Similar to SPV and
FlyClient, Plumo does not check the transitions. Moreover, Plumo does not fully verify the consensus, such
as whether committee members are indeed winners of the proof of stake. Plumo is also inefficient when a
proof for recent transactions is unavailable (a common case, as proofs are generated infrequently); in this
case, the client needs to download and verify these transactions. Making proof generation more frequent, or
for a larger period of time, would increase the cost for either proving or verification.

7.5 Limitation: producing proofs is expensive

Relying on recursive proofs (or even transition proofs) is generally advantageous for servers and clients
compared with no proofs. The main limitation of this approach, which needs to be balanced against the
advantages, is the cost incurred by proof makers to produce proofs. While asymptotically producing proofs
is not much more expensive than simply executing transactions, concrete costs make proving orders of
magnitude slower than execution. For example, generating a proof for the correct execution of 20 two-input
two-output transactions in our privacy-preserving payments systems takes ∼ 33 s using 8 threads with
Groth16 over the MNT-298 cycle with the Poseidon hash. This latency imposes limitations on a system’s
throughput.

That said, proving times for proof makers can be significantly reduced via existing techniques such as
proof trees (or “parallel scan state” [BMRS20]), parallelism across many machines [WZCPS18], or specialized
proving hardware [Glu20]. These techniques can increase the system’s transaction throughput. For example,
using proof trees, 100 machines (with the same setup above) can work together to produce proofs for one
million privacy-preserving transactions in nine hours. (The Mina cryptocurrency [Mina] uses proof trees for
this reason.) We leave a detailed study of these ideas to future work (and real-world deployments), and here
only mention that proof trees should be straightforward to build given the PCD module in our codebase.

We conclude by noting that, recursive proofs are not much harder to produce than transition proofs, as
proving the state transition, not recursive verification, dominates the costs. This suggests that moving from
transition proofs to recursive proofs might be generally a good choice.

26

8 Other related work

Less related to our goals, several works have studied how to reduce participation costs via methods other than
incremental verification, for either servers or clients.
Servers. Transition proofs, which avoid having every server re-execute every transaction, have been studied
by researchers, open-source developers, and industry. Transition proofs for batches of transactions have been
studied as a “layer-2 scaling solution” on Ethereum for concrete applications like payments or self-custodial
trading, such as StarkDEX [sdex], StarkPay [spay], and “rollups” [Whi18; zkr]. Ozdemir et al. [OWWB20]
study more efficient transition proofs for large batches of transactions using RSA accumulators for local
updates to the application’s state. Lee et al. [LNS20] study liveness for applications that use transition proofs
and show efficiency gains for modest-size batches of ERC-20 transactions compared with naive re-execution.
Gabizon et al. [Gab+20] propose Plumo, which uses transition proofs to prove correct evolution of consensus
over large periods of time (several months), leading to fewer proofs required for client synchronization;
focusing on the consensus rather than application updates allows proving many transitions at once. All of
these approaches based on transition proofs incur participation costs that grow linearly in the number of state
transitions, while incremental verification (our focus) avoids such costs.

Leung et al. [LSGZ19] design bootstrapping techniques for the Algorand proof-of-stake protocol [GH-
MVZ17] that provide guarantees about the validity of past transactions, without relying on a long-standing
committee to store and certify state in order to protect against adaptive corruption. They do this by minimizing
the amount of state that needs to be tracked, sharding this state across servers, and generating checkpoints to
prevent new servers joining the system from having to check all transitions from the initial state.
Clients. A rich line of work has explored techniques for reducing the participation costs for clients, starting
with Nakamoto’s Simplified Payment Verification (SPV) [Nak08]. A recurring theme is to use lightweight
approaches while settling for weaker, yet meaningful, security. For example, SPV enables a server to convince
a client that a transaction belongs to some past block, though the client cannot check if the current state is the
result of applying transactions correctly. Analogous protocols, known as “light clients”, have been developed
for other cryptocurrencies, including ones with privacy guarantees [TG18; Lee19; WMSMKČ19]. Some light
clients hide the queries themselves, using trusted hardware [WMSMKČ19; MWSKKC19; LHAMLK20] or
private information retrieval [QHGR19].

Some works have further improved the efficiency of light clients. Bünz et al. [BKLZ20] propose FlyClient,
which builds on previous work on “non-interactive proofs of proof-of-work” (NIPoPoWs) [KLS16; KMZ17],
allowing light clients to validate the cumulative work put into a chain by looking at only a logarithmic number
of block headers.

By combining transition proofs with a light client protocol, it is possible to reduce synchronization costs
at both the server (via transition proofs) and the client (via the light client protocol). Although such a solution
may have comparable or even better concrete efficiency compared to IVLS, it does not provide the same
security guarantees for the client. In particular, the client does not verify each transition proof and so must
trust that the state at the server is the result of applying transactions correctly.

27

A Formalizing applications

We describe how to express several applications in the formalism of ledger systems (Section 3), so that,
by using our transformation, one can obtain incrementally verifiable versions of these applications. In
Appendix A.1 we discuss account-based payments, in Appendix A.2 UTXO-based payments, in Appendix A.3
privacy-preserving payments, in Appendix A.4 privacy-preserving computation, and in Appendix A.5 key
transparency. For each application, we discuss the main efficiency features of the incrementally verifiable
version of the application.

In this section we let SIG = (KeyGen, Sign,Verify) be a signature scheme. Public parameters required
by SIG (e.g., the description of a cyclic group) can be viewed as hardcoded in a ledger system’s programs.

A.1 Account-based payments

We describe a ledger system that captures the functionality of a simple account-based currency.
• State. The state S of the ledger system is a search tree that contains all accounts. Each account is a tuple
(pk, bal, ctr) where pk is a signature public key of SIG, bal is its corresponding balance, and ctr is a counter
of the number of transactions that this user initiates.
• Transition function. The transition function F processes three types of transactions tx:

– A create transaction of the form (create, pk). If the state S already contains a tuple of the form
(pk, bal, ctr), the transition function F outputs the result y := error and empty state update ∆S := ⊥.
Otherwise, F outputs the result y := ok and the state update ∆S that inserts the tuple (pk, 0, 0) into S.

– A deposit transaction of the form (deposit, pk, amt). If the state S does not contain a tuple of the
form (pk, bal, ctr), the transition function F outputs the result y := error and empty state update
∆S := ⊥. Otherwise, F outputs the result y := ok and the state update ∆S that replaces (pk, bal, ctr) with
(pk, bal + amt, ctr).

– A transfer transaction of the form (transfer, pkfrom, pkto, amt, sig). The transition function F checks
that the state S contains tuples of the form (pkfrom, balfrom, ctrfrom) and (pkto, balto, ctrto), that amt ≤
balfrom, and that SIG.Verify(pkfrom, (pkfrom, pkto, amt, ctrfrom), sig) = 1. If any of these checks fails, F
outputs the result y := error and empty state update ∆S := ⊥. Otherwise, F outputs the result y := ok

and the state update ∆S that replaces (pkfrom, balfrom, ctrfrom), (pkto, balto, ctrto) with (pkfrom, balfrom −
amt, ctrfrom +1), (pkto, balto +amt, ctrto). The counter is used to prevent replaying a previous transaction.

• Client function. The client function C processes two types of queries:

– A balance query of the form (balance, pk) that returns the output y := bal if the state S contains a tuple
of the form (pk, bal, ctr). Otherwise, C returns the output y := error.

– A counter query of the form (ctr, pk) that returns the output y := ctr if the state S contains a tuple of the
form (pk, bal, ctr). Otherwise, C returns the output y := error.

A.2 UTXO-based payments

We describe a ledger system that captures the functionality of a simple UTXO-based currency, modeling a
bare-bones version of Bitcoin.
• State. The state S is a search tree containing key-value pairs where each key is a signature public key pk
of SIG and the corresponding value is a search tree of pairs (cid, amt) where cid is a coin identifier and amt
is the corresponding amount of this coin; these pairs represent the coins owned by the public key pk.

28

• Transition function. The transition function F processes transactions of the form:

tx =
(
[cidini]m1 , [cid

out
j]n1 , [amtoutj]n1 , [pk

out
j]n1 , pk

in, sig
)

where [cidini]m1 are coin identifiers of the inputs to tx and [cidoutj]n1 are coin identifiers of the outputs of tx.
For each j ∈ [n], the value amtoutj is the amount being sent to pkoutj . The value sig is a signature over the
transaction with respect to the public key pkin.

The transition function F looks up pkin in S in order to find tuples of the form {(cidini , amtini)}i∈[m]

belonging to pkin. Then it checks that
∑m

i=1 amtini =
∑n

j=1 amtoutj and that S does not contain any tuple of
the form (cidoutj , ·) for pkoutj for any j ∈ [n]. Moreover, F verifies that the signature for this transaction is
valid by checking

SIG.Verify
(
pkin, ([cidini]m1 , [cid

out
j]n1 , [amtoutj]n1 , [pk

out
j]n1), sig

) ?
= 1 .

If any lookup or check fails,F outputs the result y := error and empty state update ∆S := ⊥. Otherwise,
F outputs the result y := ok and the state update ∆S that: (a) for every i ∈ [m] removes (cidini , amtini) from
the search tree of pkin; and (b) for every j ∈ [n] adds (cidoutj , amtoutj) to the search tree of pkoutj .
• Client function. The client function C processes two types of queries:

– A balance query of the form (balance, pk) that returns the total assets held by the public key pk. Namely,
C outputs y :=

∑k
i=1 amti for the k pairs (·, amti) associated with pk in S.

– A coin query of the form (coin, pk) that returns all the coin identifiers and amounts owned by the public
key pk. Namely, C outputs y containing all pairs of the form (cid, amt) for pk in S.

A.3 Privacy-preserving payments

We describe a ledger system that captures the functionality of a simple privacy-preserving currency, modeling
the basic functionality of Zerocash [Ben+14]. We assume basic familiarity with Zerocash and only discuss the
aspects relevant for the formalism of ledger systems. We denote by VerifyZKP the algorithm that validates
the zero-knowledge proof contained in a Zerocash transaction (after suitably parsing the transaction).
• State. The state S contains a Merkle tree of coin commitments, a Merkle tree of serial numbers, and a list
of encrypted coins of all the transactions so far.
• Transition function. The transition function F processes two types of transactions tx:

– A mint transaction of the form tx = (mint, cm, v, πM I N T), which creates a coin of value v with commitment
cm. If VerifyZKP(tx) = 1,F outputs the result y := ok and the state update ∆S that adds cm to the Merkle
tree of commitments. Otherwise, F outputs the result y := error and empty state update ∆S := ⊥.

– A pour transaction of the form tx = (pour, snin1 , sn
in
2 , cm

out
1 , cmout

2 , e1, e2, πP O U R). The values snin1 , sn
in
2

are the serial numbers of the old (spent) coins, while the values cmout
1 , cmout

2 are the commitments of the
new (created) coins. The values e1, e2 are encryptions of the new coins under public keys of the (unknown)
receivers. The value πP O U R is a proof used to attest to the validity of this transaction.
The transition function F checks that VerifyZKP(tx) = 1 and that the serial numbers snin1 and snin2 do not
appear in the list of serial numbers. If both checks pass, F outputs the result y := ok and the state update
∆S that adds cmout

1 and cmout
2 to the Merkle tree of commitments, adds snin1 and snin2 to the Merkle tree of

serial numbers, and appends encrypted coins e1 and e2 to the list of encrypted coins. Otherwise, F outputs
the result y := error and empty state update ∆S := ⊥.

29

• Client function. The client function C enables a user’s client to find payments sent to the user. The client
function C takes as input a viewing key skview and checks which of the encrypted coins in the state S belong
to this user. This check can be done by scanning through all encrypted coins and trying to decrypt each using
skview. We can, by careful designs, further constrain skview to only capable of testing whether the encrypted
coins belong to the user but incapable of seeing the underlying information.

A.4 Privacy-preserving computation

We can also express privacy-preserving computation in a ledger system, which models the basic functionality
in Zexe [BCGMMW20]. This is similar to the case of privacy-preserving payment, so we will focus on
the differences as follows. We assume basic familiarity with Zexe and only discuss the aspects relevant for
the formalism of ledger system. In Zexe, computation is expressed in terms of operations over records. A
computation step consumes some previous records (takes old data as input) and creates some new records
(outputs new data).
• State. The state S comprises a Merkle tree of all record commitments appearing in all transactions and a
Merkle tree of serial numbers so far.
• Transition function. The transition function processes a transaction tx of the form ([snini]N1 , [cm

out
i]M1 ,

π), which consumes records associated with serial numbers in [snini]N1 and generates records associated with
commitments in [cmout

i]M1 . The value π is a cryptographic proof that the computation is executed correctly.
The transition function F checks that VerifyZKP(tx) = 1 and that all the serial numbers [snini]N1 do not appear
in the list of serial numbers in S. If the checks pass, F outputs the result y := ok and the state update ∆
that adds [cmout

i]M1 to the Merkle tree of commitments and adds [snini]N1 to the search tree of serial numbers.
Otherwise, F outputs y := error and empty state update ∆ := ⊥.
• Client function. The client function C checks if a record has been committed and if a record has been
consumed in the state S. The client function C processes two types of queries:

– A commitment query of the form (commitment, cm) that returns 1 if cm is in the Merkle tree of commit-
ments in S and 0 otherwise.

– A consumption query of the form (consumption, sn) that returns 1 if sn is in the search tree of revealed
serial numbers in S and 0 otherwise.

A.5 Key transparency

An application of ledger systems outside of cryptocurrencies is key transparency [MBBFF15; TBPPTD19], a
public directory that maps usernames to public keys. Users can publish their own public keys on this directory,
query other users’ public keys, and monitor that the directory behaves correctly. We consider two variants of
key transparency, which differ in how they handle the case when a user wants to change their public key in
the directory (e.g., due to secret key loss or due to routine key update).
Variant 1: key update with authorization. A user, to update their own public key, must provide a signature
under their previous public key or under a trusted authority’s public key (to account for secret key loss).
• State. The state S consists of a Merkle tree that maps usernames to public keys. The state S also stores
the trusted authority’s public key, denoted by pkK.
• Transition function. The transition function F processes two types of transactions tx:

30

– A registration transaction of the form (new, u, pku). If the tree in S already has a node for the username
u, F outputs the result y := error and empty state update ∆S := ⊥. Otherwise, F outputs the result
y := ok and the state update ∆S that adds (u, pku) into the tree.

– An update transaction of the form (update, u, pknewu , sig). If the tree in S does not contain a node with
username u, F outputs the result y := error and empty state update ∆S := ⊥. Otherwise, letting (u,
pkoldu) be the node for for u, F checks that Verify(pkoldu , (u, pknewu), sig) = 1 or Verify(pkK, (u, pk

old
u ,

pknewu), sig) = 1. If so, F outputs the result y := ok and the state update ∆S that changes the node to (u,
pknewu); else if the signature is invalid, F outputs y := error and empty state update ∆S = ⊥.

• Client function. The client function C takes as input a username x := u and searches for its public key
in the tree in S. If C finds a public key, it outputs y := pku; otherwise, it outputs y := ⊥.
Variant 2: Append-only key transparency. A user monitors all changes to their public key, which requires
the history of all public keys to be stored in the state. When the directory server adds some unauthorized keys,
the identity owner can detect the discrepancy. Compared with Variant 1, this variant no longer requires a
signature for key updates, and each username is now associated with a chronologically ordered list of public
keys (current and the past) instead of only the current key.
• State. The state S consists of a Merkle tree that maps a username u to a list of public keys listu.
• Transition function. The transition function F processes two types of transactions tx:

– A registration transaction of the form (new, u, pku). If the tree in S already has a node for the username
u, F outputs the result y := error and empty state update ∆S := ⊥. Otherwise, F outputs the result
y := ok and the state update ∆S that adds (u, listu) into the tree where listu := (pku).

– An update transaction of the form (update, u, pknewu). If the tree in S does not contain a node with u, F
outputs the result y := error and empty state update ∆S := ⊥. Otherwise, letting (u, listoldu) be the node
for u, F outputs the result y := ok and the state update ∆S that changes the node to (u, listnewu) in which
listnewu is the result of appending pknewu to listoldu .

• Client function. The client function C takes as input a username x := u and searches for its list of public
keys in the tree in S. If C finds the list, it outputs y := listu; otherwise, it outputs y := ⊥.

31

B Further considerations

We discuss further considerations for applications that are beyond the scope of this paper, but may be useful
for real-world deployments.

B.1 Integration with consensus protocols

While in describing applications (in Section 5) we do not mention a consensus protocol, in the real world
one may need to take consensus into account because it must be incrementally verifiable if the system
as a whole is to be incrementally verifiable. We view a consensus protocol as an algorithm that can be
folded into the application, by suitably augmenting the application state and transition function, so that its
incremental evolution will then be proved together with the application. Consensus protocols need not be
compatible with incremental verification “off-the-shelf”, and prior work has studied how to make specific
consensus protocols incrementally verifiable [BMRS20; KB20]; a systematic treatment of this remains an
exciting research direction.

Here, we give a brief overview of how this can be achieved. Consider peer-to-peer systems with multiple
servers running an application. The servers must somehow agree on the next transaction (or block of
transactions) to process. This is typically achieved by way of a consensus protocol, which leverages paradigms
such as proof of work (PoW), proof of stake (PoS), or others.

We summarize how to integrate consensus protocols with IVLS. To make ledger systems incrementally
verifiable, one must augment the application’s transition function F to add an algorithm that maintains
consensus information. Otherwise, even if the application is incrementally verifiable, the consensus would
not be, and the overall system would not be incrementally verifiable. (Participation costs would remain high
due to the need to “catch up” on consensus information from the initial state of the system.) However, not all
consensus protocols are amenable to incremental verification: some protocols require servers to store large
amounts of consensus information (e.g., going back arbitrarily far in history).

Different consensus paradigms have been studied (see recent surveys [Ban+19; GK20]), and their suit-
ability for incremental verification varies. Prior work has focused on adapting specific consensus protocols
for incremental verification [KB20; BMRS20], so we explain how they fit within IVLS.
Nakamoto consensus. The canonical consensus protocol based on proof of work is the Nakamoto consensus
protocol [Nak08], which instructs servers to follow the “longest chain rule”, meaning that the correct chain
is the one with the highest amount of cumulative work. In more detail, each transaction contains a proof of
work with a specific difficulty, and the cumulative work of a chain is the sum of the difficulties across all
transactions in the chain. To maintain this information, the IVLS application state is augmented with a field
that stores the cumulative work; when processing a transaction, the transition function adds the difficulty
of the transaction’s proof of work to the cumulative work stored in the application state. Therefore, the
cumulative work is incrementally updated, and anyone can correctly choose between different application
states by selecting the one with the highest cumulative work.
Ouroboros. As noted in [BMRS20], many proof-of-stake protocols are not incrementally updatable “off
the shelf” because their chain selection rules require reasoning about information arbitrarily in the past to
protect against long-range fork attacks. Bonneau et al. [BMRS20] construct a proof-of-stake protocol called
Ouroboros Samasika (based on Ouroboros Genesis [BGKRZ18]) whose chain selection rule is incrementally
updatable. Because chain selection is incrementally updatable, the IVLS transition function can be augmented
to support it efficiently.
Consensus with incremental updates. Given the value of incremental verifiability, we believe that it would

32

be valuable to see more research into consensus protocols that are suitable for incremental verification. An
informative first step would be to conduct a systematic study of which known protocols based on proof of
work (e.g., Bitcoin-NG [EGSR16], GHOST [SZ13], Spectre [SLZ16], and others) can be implemented via
incremental updates to a small state; a similar study for proof-of-stake protocols would be valuable. Moreover,
future research in consensus protocols may want to consider incremental updates to be one of the “standard”
desiderata.

B.2 Privacy considerations

Some ledger systems provide privacy guarantees (e.g., [Ben+14; BCGMMW20] as discussed in Section 5).
Applying an IVLS compiler to such ledger systems does not affect those privacy guarantees.

However, the queries that a client makes to the (public) application state may involve private information,
and so a client may wish to have some privacy guarantees against servers that answer its queries. We consider
this problem beyond the scope of this paper (our focus is on reducing participation costs). In particular, the
notion of an IVLS does not make any attempts to ensure that clients in (vF, vC) have any more privacy
guarantees against servers than in the original ledger system LS = (F,C).

It remains an interesting direction to investigate how to achieve private queries in practice, possibly while
also reducing participation costs (as achieved by incremental verifiability). Here we only briefly recall two
generic techniques that in principle could be used to protect the client’s query privacy against servers.
Secure multi-party computation. One approach is for the client and server to engage in a two-party
protocol to securely compute y ← CS(x). The client would provide the query x as input to the protocol, and
receive the answer y as output; the server would provide the application state S as input to the protocol, and
receive no output. The two-party protocol can leverage private information retrieval (PIR) [CGKS95] to hide
client function C’s access to the state. Alternatively, for efficiency reasons, the client could instead choose to
engage in a multi-party protocol [Yao86; GMW87; CCD88; BOGW88], enlisting the help of multiple servers
that are assumed to not collude (up to some threshold). In either case, privacy would require hiding access
patterns to the state, which may be expensive. (Alternatively one could aim to trade more efficiency for less
privacy by deliberately leaking specific information about x.)
Secure hardware. Another approach is for the client to communicate with a piece of secure hardware (e.g.,
using hardware enclaves [McK+13; HLPRPd13]) on the server’s machine, which will execute the client’s
query within certain secure boundaries. The privacy of the client would then depend upon the threat model
and security guarantees of the secure hardware used.

33

C Construction of an IVLS compiler

We construct an incrementally verifiable ledger compiler (Setup,MakeSF,MakeC,History). In Appendix C.1
we describe the building blocks that we use. In Appendix C.2 we describe the auxiliary state. In Appen-
dices C.3 to C.6 we describe each of the components. We discuss the security proof in Appendix D, where
we also specify in more detail the security properties that we assume hold for the building blocks.

C.1 Building blocks

Non-interactive argument of knowledge. A non-interactive argument of knowledge (ARK) is a tuple of
polynomial-time algorithms ARK = (Setup,KeyGen,Prove,Verify) with the following syntax:

• Setup(1λ)→ ppARK: on input a security parameter 1λ, Setup samples ARK public parameters ppARK.

• KeyGen(ppARK, R)→ (pkR, vkR): on input public parameters ppARK and a specification of an NP relation
R, KeyGen deterministically derives a proving key pkR and a verification key vkR for the NP relation R.

• Prove(pkR,x,w)→ π: on input a proving key pkR, instance x, and witness w, Prove outputs a proof π.

• Verify(vkR,x, π)→ b: on input a verification key vkR, instance x, and proof π, Verify determines if π is a
convincing proof (of knowledge) for the statement “there exists w such that (x,w) ∈ R”.

The completeness and knowledge soundness properties that we will assume for ARK are stated in Ap-
pendix D.3.
Incrementally verifiable computation. Incrementally verifiable computation (IVC) [Val08] is a crypto-
graphic primitive that augments multi-step automata computations with proofs attesting to the correctness of
the computation so far. There is an efficient procedure to move from a state of the automaton and its proof to
the new state of the automaton and a corresponding new proof. The formalism for IVC that we use is drawn
from the literature on proof-carrying data [CT10; BCCT13; BCTV14], which extends IVC to more general
settings of incrementally verifiable distributed computations. In particular, the automata computations that
we consider are non-deterministic: each transition takes an old state and an auxiliary input to a new state.

An IVC scheme is a tuple of polynomial-time algorithms IVC = (Setup,KeyGen,Prove,Verify) with
the following syntax.

• Setup(1λ)→ ppIVC: on input a security parameter 1λ, Setup samples IVC public parameters ppIVC.

• KeyGen(ppIVC,Π) → (pkΠ, vkΠ): on input IVC public parameters ppIVC and a specification of an IVC
compliance predicate Π, KeyGen outputs a proving key pkΠ and a verification key vkΠ for the predicate Π.
A compliance predicate Π determines which transitions are valid: it receives input a new message znew (a
new “state”), local data w (an “auxiliary input”), and old message zold (an old “state”), and outputs a bit
indicating whether the transition from zold to znew is valid.

• Prove(pkΠ, z
new, w, zold, πold)→ πnew: on input a proving key pkΠ, new message znew, local data w, and

previous message zold with proof πold, Prove outputs a proof πnew attesting that this message transition is
in compliance with the predicate Π. In the base case, one takes zold = πold = ⊥.

• Verify(vkΠ, z, π)→ b: on input a verification key vkΠ, message z, and proof π, Verify determines if π is a
valid proof attesting that z is the output of a Π-compliant transcript of computation.

34

The completeness and knowledge soundness properties that we will assume for IVC are stated in Ap-
pendix D.2.
Merkle tree. A Merkle tree (MT) is an authenticated data structure with efficient lookups and updates.
We view it as a tuple of algorithms MT = (Setup,New,Root,Validate, Lookup,VerifyLookup,Modify,
VerifyModify) with the syntax specified below.

• Setup(1λ)→ ppMT: on input a security parameter 1λ, Setup samples MT public parameters ppMT.

• New(ppMT)→ T : on input MT public parameters ppMT, New outputs an empty tree T .

• RootT (ppMT)→ rh: on input MT public parameters ppMT, with oracle access to the tree T , Root outputs
the root hash value of the tree rh.

• Validate(ppMT, T)→ b: on input MT public parameters ppMT and the tree T , Validate determines if the
Merkle tree is constructed correctly (e.g., the hashes of internal nodes correspond to their children).

• LookupT (ppMT, [addri]
n
1)→ πlookup: on input MT public parameters ppMT and locations [addri]

n
1 , with

oracle access to the tree T , Lookup outputs a proof πlookup certifying the values at those locations.

• VerifyLookup(ppMT, rh, [addri]
n
1 , [datai]

n
1 , πlookup)→ b: on input MT public parameters ppMT, the tree’s

root hash rh, the queried locations [addri]
n
1 , the data at those locations [datai]

n
1 , and the proof πlookup,

VerifyLookup determines if the lookup result is valid.

• ModifyT (ppMT, [addri]
n
1 , [datai]

n
1)→ (rh,∆T , πmodify): on input MT public parameters ppMT, the loca-

tions to be modified [addri]
n
1 , and the new data [datai]

n
1 , with oracle access to the tree T , Modify outputs

the new root hash rh, the update to the tree ∆T , and a proof πmodify.

• VerifyModify(ppMT, rh
old, rhnew, [addri]

n
1 , [datai]

n
1 , πmodify) → b: on input MT public parameters ppMT,

the old tree’s root hash rhold, the new tree’s root hash rhnew, the modified locations [addri]
n
1 , the new data

[datai]
n
1 , and the proof πmodify, VerifyModify determines if the modification is valid.

The completeness and security properties that we will assume for MT are stated in Appendix D.5.

C.2 Auxiliary state

In addition to the state S of the original transition function F , the incrementally verifiable transition function
vF will maintain an auxiliary state A of the following form

A = (t, cm, πF, Tstate, Thistory) ,

where: t records the current time (the number of transactions applied so far); Tstate is a Merkle tree over S;
Thistory is a Merkle tree over all state commitments so far, ordered chronologically; cm is the current state
commitment, and is defined as cm := (rhstate, rhhistory) where rhstate is the root hash of Tstate and rhhistory is
the root hash of Thistory; πF is a proof attesting that “cm commits to a state obtained with t transactions”.

C.3 Construction of Setup

Setup(1λ)→ pp. Run the setup algorithms of the building blocks: ppMT ← MT.Setup(1λ); ppIVC ←
IVC.Setup(1λ); ppARK ← ARK.Setup(1λ). Output the public parameters pp := (ppMT, ppIVC, ppARK).

35

C.4 Construction of MakeSF

MakeSF(pp, F)→ (vS, vF). Parse pp as (ppMT, ppIVC, ppARK). Create the IVC predicate Π as defined
below, which hardcodes (ppMT, F).

Π(znew, w, zold):
• Parse the new message znew as (tnew, cmnew). Parse the commitment cmnew as (rhnewstate, rh

new
history).

• Parse the local data w as (trans, [raddri]
N
1 , [rdatai]

N
1 , πread, tx, [waddri]

M
1 , [wdatai]

M
1 , πwrite, πinsert).

• Check that trans is a valid execution transcript of the transition function F on input tx, read queries [raddri]
N
1 ,

corresponding read answers [rdatai]
N
1 , and output state update ∆S = ([waddri]

M
1 , [wdatai]

M
1).

• For the base case (zold = ⊥), check the following:
– (index is initialized correctly) tnew = 1;
– (reads return no data because the initial state is empty) [rdatai]

N
1 = ⊥;

– (writes are performed) MT.VerifyModify(ppMT, rh
empty
state , rh

new
state, [waddri]

M
1 , [wdatai]

M
1 , πwrite) = 1, where

rhempty
state is the root hash of an empty Merkle tree (a tree created by MT.New(ppMT)).

• Otherwise (zold 6= ⊥), parsing the old message zold as (told, cmold) and parsing cmold as (rholdstate, rh
old
history),

check the following:
– (index grows correctly) tnew = told + 1.
– (reads are correct) MT.VerifyLookup(ppMT, rh

old
state, [raddri]

N
1 , [rdatai]

N
1 , πread) = 1.

– (writes are performed) MT.VerifyModify(ppMT, rh
old
state, rh

new
state, [waddri]

M
1 , [wdatai]

M
1 , πwrite) = 1.

– (commitment is added to history) MT.VerifyModify(ppMT, rh
old
history, rh

new
history, t

old, cmold, πinsert) = 1.

Derive the IVC key pair (pkΠ, vkΠ) ← IVC.KeyGen(ppIVC,Π). Construct and output the tuple vS =
(Info,VerifyCM,VerifyAll) as defined below. Note that VerifyCM hardcodes ppMT and VerifyAll hardcodes
(ppMT, vkΠ).

• vS.InfoS,A()→ (t, cm, πF). Retrieve (t, cm, πF) from the auxiliary state A, and output it.

• vS.VerifyCM(S, cm)→ b. If S = ⊥ and cm = ⊥, output 1. Otherwise, parse cm as (rhstate, rhhistory), and
check that rhstate is the root of a Merkle tree built on the state S.

• vS.VerifyAll(S,A)→ b. For the base case (A = ⊥), check that S = ⊥. Otherwise (A 6= ⊥), parse A as (t,
cm, πF, Tstate, Thistory) and cm as (rhstate, rhhistory). Check that:

– vS.VerifyCM(S, cm) = 1;
– IVC.Verify(vkΠ, (t, cm), πF) = 1;
– the state tree Tstate is well-formed (MT.Validate(ppMT, Tstate) = 1);
– the state tree Tstate has root rhstate (rhstate = MT.RootTstate(ppMT));
– the history tree Thistory is well-formed (MT.Validate(ppMT, Thistory) = 1);
– the history tree Thistory has root rhhistory (rhhistory = MT.RootThistory(ppMT)).

Construct and output the tuple vF = (Run,Verify) as defined below. Note that vF.Run hardcodes (pkΠ,
ppMT, F), and vF.Verify hardcodes vkΠ.

• vF.RunS,A(tx)→ (y,∆).

– Simulate (y,∆S) = FS(tx), obtaining read queries [raddri]
N
1 to S and the corresponding read answers

[rdatai]
N
1 ; let trans denote the execution transcript of F . Parse ∆S as ([waddri]

M
1 , [wdatai]

M
1).

– Initialize the update to the auxiliary state ∆A := ⊥.
– For the base case (A = ⊥):

* set told := 0, cmold := ⊥, zold := ⊥, πoldF := ⊥, πread := ⊥, and πinsert := ⊥;

* add to ∆A the creation of an empty state tree Tstate := MT.New(ppMT) ;

36

* add to ∆A the creation of an empty history tree Thistory := MT.New(ppMT), and set rhnewhistory :=

MT.RootThistory(ppMT).
– Otherwise (A 6=⊥):

* retrieve (told, cmold, πoldF) from the auxiliary state A;

* compute πread := MT.LookupTstate(ppMT, [raddri]
N
1);

* compute (rhnewhistory,∆
history
T , πinsert) := MT.ModifyThistory(ppMT, t

old, cmold), and add ∆history
T to ∆A;

* set zold := (told, cmold).
– Compute (rhnewstate,∆

state
T , πwrite) := MT.ModifyTstate(ppMT, [waddri]

M
1 , [wdatai]

M
1), and add ∆state

T to ∆A.
– Set the new state index tnew := told + 1 and new state commitment cmnew := (rhnewstate, rh

new
history).

– Set the new message znew := (tnew, cmnew).
– Set the local data w := (trans, [raddri]

N
1 , [rdatai]

N
1 , πread, tx, [waddri]

M
1 , [wdatai]

M
1 , πwrite, πinsert).

– Compute the IVC proof πnewF := IVC.Prove(pkΠ, z
new, w, zold, πoldF).

– Add to ∆A the change of the metadata to (tnew, cmnew, πnewF).
– Output (y,∆) where ∆ := (∆S ,∆A) is the state update to (S,A).

• vF.Verify(t, cm, πF)→ b. If t = 0, cm = ⊥, πF = ⊥, output 1. Else output IVC.Verify(vkΠ, (t, cm), πF).

C.5 Construction of MakeC

MakeC(pp, C)→ vC. Parse pp as (ppMT, ppIVC, ppARK). Create the NP relation R as defined below.

The NP relation R, which depends on (ppMT, C), considers instances of the form x = (cm, x, y) and
witnesses of the form w = (trans, [raddri]

N
1 , [rdatai]

N
1 , πread). A pair (x,w) is in the relation R if the

following conditions hold: (a) trans is a valid execution transcript of C with input x, read queries [raddri]
N
1 ,

read answers [rdatai]
N
1 , and output y; (b) if cm = ⊥, check that rdata = ⊥; (c) if cm 6= ⊥, parse cm as

(rhstate, rhhistory) and check that MT.VerifyLookup(ppMT, rhstate, [raddri]
N
1 , [rdatai]

N
1 , πread) = 1.

Derive the ARK key pair (pkR, vkR) ← ARK.KeyGen(ppARK, R). Construct and output the tuple vC =
(Run,Verify) as defined below. Note that vC.Run hardcodes (ppMT, C, pkR) and vC.Verify hardcodes vkR.

• vC.RunS,A(x)→ (y, πC).

– Simulate the client function as y = CS(x), obtaining the list of read queries [raddri]
N
1 to the state S and

the corresponding read answers [rdatai]
N
1 . Also, denote by trans the execution transcript of C.

– Retrieve the information (t, cm, πF) from the auxiliary state A, and parse cm as (rhstate, rhhistory).
– If t = 0, set πread := ⊥.

Otherwise, compute πread := MT.LookupTstate(ppMT, [raddri]
N
1) where Tstate is the state tree in A.

– Set the NP instance x := (cm, x, y) and the NP witness w := (trans, [raddri]
N
1 , [rdatai]

N
1 , πread).

– Output (y, πC) where the ARK proof is πC := ARK.Prove(pkR,x,w).

• vC.Verify(cm, x, y, πC):= ARK.Verify(vkR, (cm, x, y), πC).

C.6 Construction of History

History.ProveS,A(pp, t)→ πH. If t = 0, output πH := ⊥. Otherwise, parse pp as (ppMT, ppIVC, ppARK) and
retrieve the state commitment cm = (rhstate, rhhistory) from the auxiliary state A. Compute the proof for
location t as πH := MT.LookupThistory(ppMT, t) where Thistory is the history tree in A. Output πH.

37

History.Verify(pp, cm, t, cmt, πH)→ b. If t = 0, cmt = ⊥, πH = ⊥, return 1. Otherwise, parse pp as
(ppMT, ppIVC, ppARK), parse cm as (rhstate, rhhistory), and check that MT.VerifyLookup(ppMT, rhhistory, t,
cmt, πH) = 1.

38

D Security

Theorem D.1. Our construction of an IVLS scheme in Appendix C satisfies the correctness and security
properties described in Section 3 (assuming that the building blocks IVC, ARK, and MT that we use in our
construction meet standard notions of correctness and security).

This section is dedicated to proving the above theorem, and is organized to mirror the desired correctness
and security properties in Section 3. For convenience we include, in the relevant places, formal statements of
the properties of IVC and ARK that we use. We separately provide in Appendix D.5 the (tedious but precise)
list of properties of MT that we use.

D.1 Security of vS

Lemma D.2. The construction of VerifyCM in Appendix C.4 satisfies the binding property (Definition 3.3).

Proof. Suppose thatA is an adversary that, given as input pp = (ppMT, ppIVC, ppARK) ∈ Setup(1λ), outputs
a transition function F , state commitment cm, and two states S1 and S2 such that vS.VerifyCM(S1, cm) = 1
and vS.VerifyCM(S2, cm) = 1 where vS is produced by MakeSF(pp, F). We argue that S1 = S2 except
with negligible probability. We assume that cm 6= ⊥; otherwise we are done.

We use A to construct an adversary A′ that breaks the binding property of root hashes (Definition D.18).
On input ppMT ∈ MT.Setup(1λ), A′ works as follows:

– Sample ppIVC ← IVC.Setup(1λ) and ppARK ← ARK.Setup(1λ).
– Assemble pp := (ppMT, ppIVC, ppARK).
– Compute (F, S1, S2, cm) := A(pp).
– Construct Merkle trees T1 from S1 and T2 from S2.
– Compute rh← MT.RootT1(ppMT).
– Output (T1, T2, rh).

Note that if the two states S1 and S2 are distinct, then so are the corresponding (valid) Merkle trees T1 and
T2. Recall that cm is a pair of root hashes (rhstate, rhhistory). Note that vS.VerifyCM(S1, cm) = 1 implies that
the Merkle tree on S1 has root hash rhstate, and similarly the Merkle tree on S2 has the same root hash rhstate.
This means that whenever A outputs distinct states with the same commitment, A′ outputs distinct Merkle
trees with the same root hash, which can happen with at most negligible probability.

D.2 Security of vF

The construction of vF appears in Appendix C.4, and its two main subroutines are MT (a Merkle tree) and
IVC (incrementally verifiable computation). We state the properties of IVC that we use (omitting the tuple
prefix IVC), and then prove the security properties of vF. We remark that the formalization of IVC that we use
follows as a straightforward special case of definitions of proof-carrying data [CT10; BCCT13].

• An IVC predicate Π is an algorithm that takes as input the new step’s output znew, the new step’s auxiliary
input w, and the previous step’s output zold (⊥ if the new step is the first step) as input, and outputs 1 or 0.

• An IVC transcript is a tuple T = ([wi]
n
1 , [zi]

n
1) where wi is the auxiliary input to the i-th step and zi is

the output after the i-th step. The output of T, denoted by out(T), is zn. We say that T = ([wi]
n
1 , [zi]

n
1) is

Π-compliant, denoted by Π(T) = 1, if Π(zi, wi, zi−1) = 1 for every i ∈ [n] with z0 := ⊥.

39

Definition D.3 (completeness of IVC). For every polynomial-size adversary A and security parameter λ,

Pr

(zold = ⊥ ∨ Verify(vkΠ, z

old, πold) = 1)
Π(znew, w, zold) = 1

↓
Verify(vkΠ, z

new, πnew) = 1

ppIVC ← Setup(1λ)
(Π, znew, w, zold, πold)← A(ppIVC)

(pkΠ, vkΠ)← KeyGen(ppIVC,Π)
πnew ← Prove(pkΠ, z

new, w, zold, πold)

 = 1 .

Definition D.4 (knowledge soundness of IVC). For every polynomial-size adversary A, there exists a
polynomial-size extractor E such that for every sufficiently large security parameter λ and every auxil-
iary input aux ∈ {0, 1}poly(λ),

Pr

Verify(vkΠ, z, π) = 1

↓
out(T) = z
Π(T) = 1

ppIVC ← Setup(1λ)
(Π, z, π)← A(ppIVC, aux)

T← E(ppIVC, aux)
(pkΠ, vkΠ)← KeyGen(ppIVC,Π)

 ≥ 1− negl(λ) .

Lemma D.5. The construction of vF in Appendix C.4 satisfies the completeness property (Definition 3.4).

Proof. Our construction of vF.Run straightforwardly ensures that (y,∆S) = FS(tx) and t′ = t+ 1. We are
then only left to argue that vS.VerifyAll(S,A) = 1 implies vS.VerifyAll(S′, A′) = 1, where (S′, A′) are the
updated states. The discussion below assumes familiarity with our construction of vS.VerifyAll. It suffices
to argue the following points: (a) the IVC proof in A′ is valid; (b) the Merkle trees in A′ are well-formed;
(c) the commitment in A′ contains root hashes of the Merkle trees; (d) the state Merkle tree is over S′.
(a) IVC proof is valid. We argue that IVC.Verify(vkΠ, (t

new, cmnew), πnew) = 1 where (tnew, cmnew, πnew)
are in the new auxiliary state A′. Observe that the condition vS.VerifyAll(S,A) = 1 implies that S = A = ⊥
or IVC.Verify(vkΠ, (t

old, cmold), πold) = 1 where (told, cmold, πold) are in A. Therefore, by the completeness
property of IVC (Definition D.3), we are left to argue that Π((tnew, cmnew), w, zold) = 1 where zold = ⊥
if A = ⊥ or zold = (told, cmold) if A 6= ⊥, for the local data w = (trans, [raddri]

N
1 , [rdatai]

N
1 , πread, tx,

[waddri]
M
1 , [wdatai]

M
1 , πwrite, πinsert) supplied by vF.Run. We discuss these two cases separately.

• For the base case (zold = ⊥), Π is satisfied because vF.Run ensures the following conditions:

– (index is correct) tnew = 1.
– (execution is correct) trans is a valid transcript of F over an empty state.
– (reads are correct) [rdatai]

N
1 = ⊥.

– (writes are performed) πwrite proves that Tstate is updated according to trans.
– (commitment is correct) cmnew matches the new Merkle trees.

• Otherwise (zold 6= ⊥), Π is satisfied because vF.Run ensures the following conditions:

– (index is correct) tnew = told + 1.
– (execution is correct) trans is a valid transcript of F over ([raddri]

N
1 , [rdatai]

N
1).

– (reads are correct) πread proves that ([raddri]
N
1 , [rdatai]

N
1) matches the state committed by cmold.

– (writes are performed) πwrite proves that Tstate is updated according to trans.
– (commitment is added to history) πinsert proves that Thistory now has cmold at position told.
– (commitment is correct) cmnew matches the updated Merkle trees.

(b) Merkle trees are well-formed. Completeness properties of Merkle trees (Definitions D.13 and D.15)
ensure that changes from the old state S to the new state S′ have been applied correctly to the state tree in
Tstate in A, and also that the insertion of the commitment to the history tree Thistory has been applied correctly.

40

(c) State commitment contains correct root hashes. Our construction of vF.Run stores the new commit-
ment cmnew in the new auxiliary state A′, so this condition holds.
(d) New state Merkle tree is over new state. The changes to the state S, ([waddri]

M
1 , [wdatai]

M
1), are

converted into Merkle tree update ∆state
T applied to A, so the new state Merkle tree is over the new state.

Lemma D.6. The construction of vF in Appendix C.4 satisfies the knowledge soundness property (Defini-
tion 3.5).

Proof. Let A be an adversary against the knowledge soundness of vF (Definition 3.5). This means that on
input public parameters pp ∈ Setup(1λ), A outputs a tuple (F, t, cm, πF). We assume that t > 0; otherwise
there is nothing to prove.

We construct an adversaryA′ against the knowledge soundness of IVC (Definition D.4), using an auxiliary
input aux that is interpreted as (ppMT, ppARK), as follows:

A′ receives as input public parameters ppIVC ∈ IVC.Setup(1λ) and the auxiliary input aux, then it works
as follows: (1) parse aux as (ppMT, ppARK) and assemble pp = (ppMT, ppIVC, ppARK); (2) compute
(F, t, cm, πF) := A(pp); (3) use (ppMT, F) to create the IVC predicate Π as in Appendix C.4;
(4) create the IVC message z := (t, cm); (5) create the IVC proof π := πF; (6) output (Π, z, π).

Recall that, for t > 0, vF.Verify(t, cm, πF) = IVC.Verify(vkΠ, (t, cm), πF) where vkΠ is hardcoded in vF.
This means that A′ produces an accepting output whenever A does.

Let E ′ be the extractor for A′ guaranteed by the knowledge soundness property of IVC (Definition D.4).
We construct an extractor E for A:

E receives as input public parameters pp ∈ Setup(1λ) and then works as follows: (1) parse
pp = (ppMT, ppIVC, ppARK); (2) set the auxiliary input aux := (ppMT, ppARK); (3) compute the
IVC transcript T = ([wi]

n
1 , [zi]

n
1) := E ′(ppIVC, aux); (4) for each i, find in the local data wi a transac-

tion txi (in the execution transcript of F contained in wi); (5) output all transactions [txi]
n
1 .

We are left to argue that the extractor E works for A.
The knowledge soundness property of IVC tells us that the IVC transcript output by E ′ is Π-compliant

and ends in the message z, whenever the output (Π, z, π) of A′ is accepting. This, together with the binding
properties of Merkle trees, tells us that the state S := F (tx1, . . . , txn) is such that vS.VerifyCM(S, cm) = 1,
whenever the output (F, t, cm, πF) of A is accepting.

D.3 Security of vC

The construction of vC appears in Appendix C.5, and its two main subroutines are MT (a Merkle tree) and
ARK (a non-interactive argument of knowledge). We state the properties of ARK that we use (omitting the
tuple prefix ARK), and then prove the security properties of vC.

Definition D.7 (completeness of ARK). For every polynomial-size adversary A and security parameter λ,

Pr

 (x,w) ∈ R
↓

Verify(vkR,x, π) = 1

ppARK ← Setup(1λ)
(R,x,w)← A(ppARK)

(pkR, vkR)← KeyGen(ppARK, R)
π ← Prove(pkR,x,w)

 = 1 .

41

Definition D.8 (knowledge soundness of ARK). For every polynomial-size adversary A there exists a
polynomial-size extractor E such that for every sufficiently large security parameter λ,

Pr

 Verify(vkR,x, π) = 1
↓

(x,w) ∈ R

ppARK ← Setup(1λ)
(R,x, π)← A(ppARK)

w← E(ppARK)
(pkR, vkR)← KeyGen(ppARK, R)

 ≥ 1− negl(λ) .

Lemma D.9. The construction of vC in Appendix C.5 satisfies the completeness property (Definition 3.6).

Proof. First note that vC.Run produces the output y by running C on input x with state S, and so clearly the
condition y = CS(x) holds. Next we argue that, if the auxiliary state A is such that vS.VerifyAll(S,A) = 1,
then the proof πC produced by vC.Run will be accepted by vC.Verify. Since the proof πC is produced and
validated using the prover and verifier of ARK, by the completeness of ARK (Definition D.7), it suffices to
argue that the instance-witness pair constructed by vC.Run is in the NP relation R.

To see this, recall that R checks that the witness w for an instance x = (cm, x, y) contains a valid
execution transcript of a computation of C on input x leading to output y, with read queries and read answers
authenticated against the state root hash contained in the state commitment cm = (rhstate, rhhistory) (if any).
The condition vS.VerifyAll(S,A) = 1 in the completeness property ensures that Tstate in A is a Merkle tree
over the state S, and cm = (rhstate, rhhistory) inA is such that rhstate is the root of this Merkle tree. This means
that the read queries and read answers are consistent with the state S, and the Merkle tree lookup proof placed
in the witness w by vC.Run is valid (by the completeness of Merkle tree lookups, Definition D.14).

Lemma D.10. The construction of vC in Appendix C.5 satisfies the soundness property (Definition 3.7).

Proof. Suppose that an adversary outputs (S,A) such that vS.VerifyAll(S,A) = 1 and also (x, y, πC) such
that, for the state commitment cm in A, it holds that vC.Verify(cm, x, y, πC) = 1. By construction, we know
that the verifier of ARK accepts the instance x = (cm, x, y) for the NP relation R.

By the knowledge soundness of ARK (Definition D.8), there exists a corresponding extractor that outputs
a valid witness w for x, which contains a valid execution transcript of a computation of C on input x leading
to output y, with read queries and read answers authenticated against the state root hash contained in the state
commitment cm = (rhstate, rhhistory) (if any). But we know from VerifyAll(S,A) that rhstate is the root of a
Merkle tree over the state S and so, by the soundness of Merkle tree lookup proofs (Definition D.19), we
know that the read queries and read answers are consistent with S, and conclude that y = CS(x).

D.4 Security of History

Lemma D.11. The construction of History in Appendix C.6 satisfies the completeness property (Defini-
tion 3.8).

Proof. Suppose that an adversary outputs (S,A) such that vS.VerifyAll(S,A) = 1 and also transactions (tx1,
. . . , txn). Let t be the state index and cmt the state commitment contained in the auxiliary state A. The
condition vS.VerifyAll(S,A) = 1 implies that the history Merkle tree Thistory in A is well-formed, and its
root is stored in cmt.

When vF.Run is invoked to apply the first of these transactions, cmt will be placed at location t in the
history Merkle tree. When vF.Run is invoked to apply each of the other transactions, the t-th location in
the history Merkle tree continues to store cmt (while subsequent locations in the history Merkle tree are

42

allocated to store the subsequent commitments). This is due to the completeness of Merkle tree modifications
(Definitions D.16 and D.17).

This means that History.Verify will accept the history proof. Indeed, History.Prove produces a history
proof πH for a state index t by authenticating cmt as being at location t in the current history Merkle tree,
and History.Verify validates a history proof by checking this authentication against the history root hash in
the current state commitment. The completeness property of Merkle tree lookups (Definition D.14) implies
that History.Verify accepts.

Lemma D.12. The construction of History in Appendix C.6 satisfies the soundness property (Definition 3.9).

Proof. Suppose that an adversary outputs a state commitment cm, state index t, two state commitments
cmt and cm′t, and two history proofs πH and π′H such that History.Verify(pp, cm, t, cmt, πH) = 1 and
History.Verify(pp, cm, t, cm′t, π

′
H) = 1. We argue that, except with negligible probability, cmt = cm′t.

If t = 0, then we know by construction of History.Verify that it is always the case that cmt = cm′t = ⊥.
If t > 0, History.Verify parses cm as a tuple (rhstate, rhhistory) and checks that the history proof authenti-

cates the past state commitment as being at location t of a Merkle tree with root rhhistory. This means that the
adversary has output proofs πH and π′H that respectively authenticate cmt and cm′t for the same location t
of a Merkle tree with the same root rhhistory. By the binding property (Definition D.18) and soundness of
lookups (Definition D.19) of Merkle trees, we know that cmt = cm′t except with negligible probability.

D.5 Merkle tree properties

We formally state the properties of a Merkle tree that we use. We omit the tuple prefix MT in the text below.

Definition D.13 (completeness for an empty tree). For every security parameter λ,

Pr

[
Validate(ppMT, T) = 1

ppMT ← Setup(1λ)
T ← New(ppMT)

]
= 1 .

Definition D.14 (completeness for a lookup). For every polynomial-size adversaryA and security parameter
λ,

Pr

Validate(ppMT, T) = 1

(addri, datai) ∈ T for i ∈ [n]
↓

b = 1

ppMT ← Setup(1λ)
(T, [addri]

n
1 , [datai]

n
1)← A(ppMT)

π ← LookupT (ppMT, [addri]
n
1)

rh← RootT (ppMT)
b← VerifyLookup(ppMT, rh, [addri]

n
1 , [datai]

n
1 , π)

 = 1 .

Definition D.15 (completeness for a modification). For every polynomial-size adversary A and security
parameter λ,

Pr

Validate(ppMT, T

old) = 1
↓

Validate(ppMT, T
new) = 1

rhnew = RootT
new

(ppMT)
b = 1

ppMT ← Setup(1λ)
(T old, [addri]

n
1 , [datai]

n
1)← A(ppMT)

rhold ← RootT
old

(ppMT)

(rhnew,∆T , π)← ModifyT
old

(ppMT, [addri]
n
1 , [datai]

n
1)

T new := T old + ∆T

b← VerifyModify(ppMT, rh
old, rhnew, [addri]

n
1 , [datai]

n
1 , π)

= 1 .

43

Definition D.16 (completeness for a modification on the modified location). For every polynomial-size
adversary A and security parameter λ,

Pr

Validate(ppMT, T

old) = 1
addrq ∈ [addri]

n
1

↓
addrq is up-to-date in T new

ppMT ← Setup(1λ)
(T old, [addri]

n
1 , [datai]

n
1 , addrq)← A(ppMT)

(·,∆T , ·)← ModifyT
old

(ppMT, [addri]
n
1 , [datai]

n
1)

T new := T old + ∆T

 = 1 .

where “addrq is up-to-date” means that the highest index 1 ≤ j ≤ N such that addrj = addrq in [addri]
n
1

satisfies that dataj in [datai]
n
1 matches the value at addrq in T new.

Definition D.17 (completeness for a modification on an unmodified location). For every polynomial-size
adversary A and security parameter λ,

Pr

Validate(ppMT, T

old) = 1
addrq 6∈ [addri]

n
1

↓
T old and T new is the same at addrq

ppMT ← Setup(1λ)
(T old, [addri]

n
1 , [datai]

n
1 , addrq)← A(ppMT)

(·,∆T , ·)← ModifyT
old

(ppMT, [addri]
n
1 , [datai]

n
1)

T new := T old + ∆T

 = 1 .

Definition D.18 (binding of root hash). For every polynomial-size adversaryA and sufficiently large security
parameter λ,

Pr

Validate(ppMT, T1) = 1
Validate(ppMT, T2) = 1

RootT1(ppMT) = rh

RootT2(ppMT) = rh
↓

T1 = T2

ppMT ← Setup(1λ)
(T1, T2, rh)← A(ppMT)

 ≥ 1− negl(λ) .

Definition D.19 (soundness of a lookup). For every polynomial-size adversary A and sufficiently large
security parameter λ,

Pr

Validate(ppMT, T) = 1

b = 1
↓

(addri, datai) ∈ T for i ∈ [n]

ppMT ← Setup(1λ)
(T, [addri]

n
1 , [datai]

n
1 , π)← A(ppMT)

rh← RootT (ppMT)
b← VerifyLookup(ppMT, rh, [addri]

n
1 , [datai]

n
1 , π)

 ≥ 1−negl(λ) .

Definition D.20 (soundness of a modification). For every polynomial-size adversary A and sufficiently large
security parameter λ,

Pr

Validate(ppMT, T

old) = 1
Validate(ppMT, T

new) = 1
b = 1
↓

T new := T old + ∆T

ppMT ← Setup(1λ)
(T old, T new, [addri]

n
1 , [datai]

n
1 , π)← A(ppMT)

(rhnew,∆T , ·)← ModifyT
old

(ppMT, [addri]
n
1 , [datai]

n
1)

rhold ← RootT
old

(ppMT)

b← VerifyModify(ppMT, rh
old, rhnew, [addri]

n
1 , [datai]

n
1 , πmodify)

≥ 1− negl(λ) .

44

Acknowledgments

This research was supported in part by a Google Faculty Research Award, the Ethereum Foundation, an NSF
Graduate Research Fellowship, the NSF CISE Expeditions Award CCF-1730628, and gifts from Amazon
Web Services, Ant Financial, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk, and VMware.

References
[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive composition and

bootstrapping for SNARKs and proof-carrying data”. In: Proceedings of the 45th ACM Symposium
on the Theory of Computing. STOC ’13. 2013, pp. 111–120.

[BCG20] Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the O(
√
n)-bits barrier: Balanced Byzantine

agreement with polylog bits per-party. Cryptology ePrint Archive, Report 2020/130. 2020.

[BCGMMW20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. “Zexe:
Enabling decentralized private computation”. In: Proceedings of the 41st Symposium on Security
and Privacy. S&P ’20. 2020.

[BCGTV15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. “Secure
sampling of public parameters for succinct zero knowledge proofs”. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy. S&P ’15. 2015, pp. 287–304.

[BCLMS20] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-
Carrying Data without Succinct Arguments. Cryptology ePrint Archive, Report 2020/1618. 2020.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. “Proof-Carrying Data
from Accumulation Schemes”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 1–18.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable zero knowledge via
cycles of elliptic curves”. In: Proceedings of the 34th Annual International Cryptology Conference.
CRYPTO ’14. 2014, pp. 276–294.

[BGG17] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the public
parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report 2017/602. 2017.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021. 2019.

[BGKRZ18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. “Ouroboros
Genesis: Composable proof-of-stake blockchains with dynamic availability”. In: Proceedings of the
25th Conference on Computer and Communications Security. CCS ’18. 2018, pp. 913–930.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK parame-
ters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050. 2017.

[BKLZ20] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. “FlyClient: Super-light clients for
cryptocurrencies”. In: Proceedings of the 41st IEEE Symposium on Security and Privacy. S&P ’20.
2020.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized cryptocur-
rency at scale. Cryptology ePrint Archive, Report 2020/352. 2020.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems for non-cryptographic
fault-tolerant distributed computation”. In: Proceedings of the 20th ACM Symposium on Theory of
Computing. STOC ’88. 1988, pp. 1–10.

45

[Ban+19] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meikle-
john, and George Danezis. “SoK: Consensus in the Age of Blockchains”. In: Proceedings of the 1st
Conference on Advances in Financial Technologies. AFT ’19. 2019, pp. 183–198.

[Ben+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. “Zerocash: Decentralized anonymous payments from Bitcoin”. In: Proceedings
of the 35th Symposium on Security and Privacy. S&P ’14. 2014, pp. 459–474.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. “Multiparty unconditionally secure protocols”.
In: Proceedings of the 20th ACM Symposium on Theory of Computing. STOC ’88. 1988, pp. 11–19.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. “Private information retrieval”.
In: Proceedings of the 36th Symposium on Foundations of Computer Science. FOCS ’95. 1995,
pp. 41–50.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward.
“Marlin: Preprocessing zkSNARKs with universal and updatable SRS”. In: Proceedings of the 39th
Annual International Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’20. 2020, pp. 738–768.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-quantum and transparent
recursive proofs from holography”. In: Proceedings of the 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying data and hearsay arguments from signature
cards”. In: Proceedings of the 1st Symposium on Innovations in Theoreticak Computer Science.
ITCS ’10. 2010, pp. 310–331.

[CTV13] Stephen Chong, Eran Tromer, and Jeffrey A. Vaughan. Enforcing language semantics using proof-
carrying data. Cryptology ePrint Archive, 2013/513. 2013.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster computing in zero knowledge”. In: Pro-
ceedings of the 34th Annual International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT ’15. 2015, pp. 371–403.

[Che06] Jung Hee Cheon. “Security analysis of the strong Diffie–Hellman problem”. In: Proceedings of
the 25th International Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’06. 2006, pp. 1–11.

[DFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. “Cinderella: Turn-
ing shabby X.509 certificates into elegant anonymous credentials with the magic of verifiable
computation”. In: Proceedings of the 37th IEEE Symposium on Security and Privacy. S&P ’16.
2016, pp. 235–254.

[EGSR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. “Bitcoin-NG: A Scalable
Blockchain Protocol”. In: Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation. NSDI ’16. 2016, pp. 45–59.

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186–194.

[GHMVZ17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. “Algorand:
Scaling Byzantine agreements for cryptocurrencies”. In: Proceedings of the 26th Symposium on
Operating Systems Principles. SOSP ’17. 2017, pp. 51–68.

[GK20] Juan A. Garay and Aggelos Kiayias. “SoK: A Consensus Taxonomy in the Blockchain Era”. In:
Proceedings of the Cryptographers’ Track at the 2020 RSA Conference. CT-RSA ’20. 2020, pp. 284–
318.

46

[GKRRS21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
“Poseidon: A new hash function for zero-knowledge proof systems”. In: Proceedings of the 30th
USENIX Security Symposium. Security ’21. 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental game: A completeness
theorem for protocols with honest majority”. In: Proceedings of the 19th ACM Symposium on Theory
of Computing. STOC ’87. 1987, pp. 218–229.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report
2019/953. 2019.

[Gab+20] Ariel Gabizon, Kobi Gurkan, Philipp Jovanovic, Georgios Konstantopoulos, Asa Oines, Marek
Olszewski, Michael Straka, and Eran Tromer. Plumo: Towards scalable interoperable blockchains
using ultra light validation systems. https://docs.zkproof.org/pages/standards/
accepted-workshop3/proposal-plumo_celolightclient.pdf. 2020.

[Glu20] Alex Gluchowski. World’s first practical hardware for zero-knowledge proofs acceleration. https:
//medium.com/matter- labs/worlds- first- practical- hardware- for-
zero-knowledge-proofs-acceleration-72bf974f8d6e. 2020.

[Gro16] Jens Groth. “On the size of pairing-based non-interactive arguments”. In: Proceedings of the
35th Annual International Conference on Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’16. 2016, pp. 305–326.

[HBHW18] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash Protocol Specification. 2018.
U R L: https://github.com/zcash/zips/blob/master/protocol/protocol.
pdf.

[HLPRPd13] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phegade, and Juan del
Cuvillo. “Using innovative instructions to create trustworthy software solutions”. In: Proceedings of
the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy.
HASP ’13. 2013.

[Hop19] Daira Hopwood. Scalable Privacy. https://www.youtube.com/watch?v=HNSf2Bw_
YmM. Zcon. 2019.

[JT20] Joseph Jaeger and Stefano Tessaro. “Expected-Time Cryptography: Generic Techniques and Appli-
cations to Concrete Soundness”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 414–443.

[KB20] Assimakis Kattis and Joseph Bonneau. Proof of necessary work: Succinct state verification with
fairness guarantees. Cryptology ePrint Archive, Report 2020/190. 2020.

[KLS16] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. “Proofs of proofs of work
with sublinear complexity”. In: Proceedings of the 20th International Conference on Financial
Cryptography and Data Security. FC ’16. 2016, pp. 61–78.

[KMZ17] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work.
Cryptology ePrint Archive, Report 2017/963. 2017.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. “xJsnark: A framework for efficient
verifiable computation”. In: Proceedings of the 39th Symposium on Security and Privacy. S&P ’18.
2018, pp. 944–961.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-size commitments to polynomials
and their applications”. In: Proceedings of the 16th International Conference on the Theory and
Application of Cryptology and Information Security. ASIACRYPT ’10. 2010, pp. 177–194.

47

https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://medium.com/matter-labs/worlds-first-practical-hardware-for-zero-knowledge-proofs-acceleration-72bf974f8d6e
https://medium.com/matter-labs/worlds-first-practical-hardware-for-zero-knowledge-proofs-acceleration-72bf974f8d6e
https://medium.com/matter-labs/worlds-first-practical-hardware-for-zero-knowledge-proofs-acceleration-72bf974f8d6e
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://www.youtube.com/watch?v=HNSf2Bw_YmM
https://www.youtube.com/watch?v=HNSf2Bw_YmM

[LHAMLK20] Duc V Le, Lizzy Tengana Hurtado, Adil Ahmad, Mohsen Minaei, Byoungyoung Lee, and Aniket
Kate. “A tale of two trees: one writes, and other reads: Optimized oblivious accesses to Bitcoin and
other UTXO-based blockchains”. In: Proceedings on Privacy Enhancing Technologies. PETS’20.
2020, pp. 519–536.

[LNS20] Jonathan Lee, Kirill Nikitin, and Srinath Setty. “Replicated state machines without replicated
execution”. In: Proceedings of the 41st IEEE Symposium on Security and Privacy. S&P ’20. 2020.

[LSGZ19] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. “Vault: Fast bootstrapping for the
Algorand cryptocurrency”. In: Proceedings of the 25th Network and Distributed System Security
Symposium. NDSS ’19. 2019.

[Lee19] Linda Naeun Lee. Zcash reference wallet light client protocol. https://www.electriccoin.
co/blog/zcash-reference-wallet-light-client-protocol/. 2019.

[MBBFF15] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J. Freedman.
“CONIKS: Bringing key transparency to end users”. In: Proceedings of the 24th USENIX Security
Symposium. Security ’15. 2015, pp. 383–398.

[MS18] Izaak Meckler and Evan Shapiro. Coda: Decentralized cryptocurrency at scale. https://cdn.
codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf. 2018.

[MWSKKC19] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, and Srdjan Capkun.
“BITE: Bitcoin lightweight client privacy using trusted execution”. In: Proceedings of the 28th
USENIX Security Symposium. Security ’19. 2019, pp. 783–800.

[McK+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday Savagaonkar. “Innovative instructions and software model for isolated execution”. In:
Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security
and Privacy. HASP ’13. 2013.

[Mec20] Izaak Meckler. Meet Pickles SNARK. https://medium.com/minaprotocol/meet-
pickles-snark-enabling-smart-contract-on-coda-protocol-7ede3b54c250.
2020.

[Mina] O(1) Labs. Mina Cryptocurrency. https://minaprotocol.com/.

[NT16] Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic image authentication for any set of
permissible transformations”. In: Proceedings of the 37th IEEE Symposium on Security and Privacy.
S&P ’16. 2016, pp. 255–271.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf. 2008.

[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. “Scaling verifiable computa-
tion using efficient set accumulators”. In: Proceedings of the 29th USENIX Security Symposium.
Security ’20. 2020.

[QHGR19] Kaihua Qin, Henryk Hadass, Arthur Gervais, and Joel Reardon. “Applying private information re-
trieval to lightweight Bitcoin clients”. In: Proceedings of the Crypto Valley Conference on Blockchain
Technology. CVCBT ’19. 2019, pp. 60–72.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A Fast and Scalable Cryp-
tocurrency Protocol. Cryptology ePrint Archive, Report 2016/1159. 2016.

[SZ13] Yonatan Sompolinsky and Aviv Zohar. Accelerating Bitcoin’s Transaction Processing: Fast Money
Grows on Trees, Not Chains. Cryptology ePrint Archive, Report 2013/881. 2013.

[TBPPTD19] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou, Nikos Trian-
dopoulos, and Srinivas Devadas. “Transparency logs via append-only authenticated dictionaries”. In:
Proceedings of the 26th Conference on Computer and Communications Security. CCS ’19. 2019,
pp. 1299–1316.

48

https://www.electriccoin.co/blog/zcash-reference-wallet-light-client-protocol/
https://www.electriccoin.co/blog/zcash-reference-wallet-light-client-protocol/
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://medium.com/minaprotocol/meet-pickles-snark-enabling-smart-contract-on-coda-protocol-7ede3b54c250
https://medium.com/minaprotocol/meet-pickles-snark-enabling-smart-contract-on-coda-protocol-7ede3b54c250
https://minaprotocol.com/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

[TG18] George Tankersley and Jack Grigg. Light client protocol for payment detection. https://
github.com/gtank/zips/blob/light_payment_detection/zip-XXX-light-
payment-detection.rst. 2018.

[Val08] Paul Valiant. “Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–
18.

[WMSMKČ19] Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and Srdjan Čapkun. “ZLiTE:
Lightweight clients for shielded Zcash transactions using trusted execution”. In: Proceedings of
the 23rd International Conference on Financial Cryptography and Data Security. FC ’19. 2019,
pp. 179–198.

[WZCPS18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. “DIZK: A
distributed zero knowledge proof system”. In: Proceedings of the 27th USENIX Security Symposium.
Security ’18. 2018, pp. 675–692.

[Wei20] Patrick Weißkirchner. Evaluation and improvement of Ethereum light clients. Technische Universität
Wien, Diplomarbeit. http://repositum.tuwien.ac.at/obvutwhs/content/
titleinfo/4671631. 2020.

[Whi18] Barry Whitehat. Roll up: Scale Ethereum with SNARKs. https://github.com/barryWhiteHat/
roll_up. 2018.

[Yao86] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: Proceedings of the 27th
Symposium on Foundations of Computer Science. FOCS’86. 1986, pp. 162–167.

[Zca] Faster variable-base scalar multiplication in zk-SNARK circuits. https://github.com/
zcash/zcash/issues/3924.

[arkworks] arkworks. A Rust ecosystem for developing and programming with zkSNARKs. 2020. U R L: https:
//arkworks.rs.

[mar19] marlin. A Rust library for the Marlin preprocessing zkSNARK. 2019. U R L: https://github.
com/arkworks-rs/marlin.

[pc19] poly-commit. A Rust library for Polynomial Commitments. 2019. U R L: https://github.com/
arkworks-rs/poly-commit.

[sdex] StarkWare. Brining STARKs to Ethereum. https://www.starkdex.io/.

[spay] StarkWare. When Lightning STARKs. https://medium.com/starkware/when-lightning-
starks-a90819be37ba.

[zkr] Ethereum. ZK-Rollups. https://docs.ethhub.io/ethereum-roadmap/layer-2-
scaling/zk-rollups/.

49

https://github.com/gtank/zips/blob/light_payment_detection/zip-XXX-light-payment-detection.rst
https://github.com/gtank/zips/blob/light_payment_detection/zip-XXX-light-payment-detection.rst
https://github.com/gtank/zips/blob/light_payment_detection/zip-XXX-light-payment-detection.rst
http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/4671631
http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/4671631
https://github.com/barryWhiteHat/roll_up
https://github.com/barryWhiteHat/roll_up
https://github.com/zcash/zcash/issues/3924
https://github.com/zcash/zcash/issues/3924
https://arkworks.rs
https://arkworks.rs
https://github.com/arkworks-rs/marlin
https://github.com/arkworks-rs/marlin
https://github.com/arkworks-rs/poly-commit
https://github.com/arkworks-rs/poly-commit
https://www.starkdex.io/
https://medium.com/starkware/when-lightning-starks-a90819be37ba
https://medium.com/starkware/when-lightning-starks-a90819be37ba
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/

	Abstract
	Contents
	1 Introduction
	1.1 Our theoretical contributions
	1.2 Our systems contributions
	1.3 Related work

	2 Participation costs in ledger systems
	3 Definition of IVLS
	3.1 Properties of MakeSF
	3.2 Properties of MakeC
	3.3 Properties of History

	4 System architecture
	5 Applications
	6 Construction and implementation
	7 Evaluation
	7.1 Constraints for SNARK verification
	7.2 Incremental verification
	7.3 Privacy-preserving payments
	7.4 Synchronization costs
	7.5 Limitation: producing proofs is expensive

	8 Other related work
	A Formalizing applications
	A.1 Account-based payments
	A.2 UTXO-based payments
	A.3 Privacy-preserving payments
	A.4 Privacy-preserving computation
	A.5 Key transparency

	B Further considerations
	B.1 Integration with consensus protocols
	B.2 Privacy considerations

	C Construction of an IVLS compiler
	C.1 Building blocks
	C.2 Auxiliary state
	C.3 Construction of Setup
	C.4 Construction of MakeSF
	C.5 Construction of MakeC
	C.6 Construction of History

	D Security
	D.1 Security of vS
	D.2 Security of vF
	D.3 Security of vC
	D.4 Security of History
	D.5 Merkle tree properties

	Acknowledgments
	References

