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Abstract. Double-block Hash-then-Sum (DbHtS) MACs are a class of
MACs that aim for achieving beyond-birthday-bound security, including
SUM-ECBC, PMAC_Plus, 3kf9 and LightMAC_Plus. Recently Datta et
al. (FSE’19), and then Kim et al. (Eurocrypt’20) proved that DbHtS
constructions are secure beyond birthday bound in single-user setting.
However, by a generic reduction, their results degrade to (or even worse
than) the birthday bound in multi-user setting.
In this work, we revisit the security of DbHtS MACs in multi-user set-
ting. We propose a generic framework to prove beyond-birthday-bound
security for DbHtS constructions. We demonstrate the usability of this
framework with applications to key-reduced variants of DbHtS MACs,
including 2k-SUM-ECBC, 2k-PMAC_Plus and 2k-LightMAC_Plus. Our re-
sults show that the security of these constructions will not degrade as
the number of users grows. On the other hand, our results also indi-
cate that these constructions are beyond-birthday-bound secure in both
single-user and multi-user setting without additional domain separation,
which are used in prior works to simplify the analysis.
Moreover, we find a severe flaw in 2kf9, which is proved to be secure
beyond birthday bound by Dattal et al. (FSE’19). We can successfully
forge a tag with probability 1 without making any queries. We go further
to show attacks with birthday-bound complexity on several variants of
2kf9.

1 Introduction

Message Authentication Code (MAC) is a fundamental symmetric-key primitive
to ensure the authenticity of data. A MAC is typically built from a blockcipher
(e.g., CBC-MAC [6], OMAC [22], PMAC [11], LightMAC [27]), or from a hash
function (e.g., HMAC [5], NMAC [5], NI-MAC [1]). At a high level, many of
these constructions generically follow the Hash-then-PRF paradigm. Firstly, a
message is mapped by a universal hash function into an 𝑛-bit string. Then, the
string is processed by a fixed-input-length Pseudo-Random Function (PRF) to
produce the tag. This paradigm is simple and easy to analyze because (i) it
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does not requires nonce or extra random coins, and hence is is deterministic and
stateless; (ii)the produced tag is a random string as long as the input to PRF
is fresh. The security of this method is usually capped at the so-called birthday
bound 2𝑛/2, since a collision at the output of the universal hash function will lead
to a forgery for the construction. However, the birthday-bound security margin
might not be enough in practice, especially when a MAC is instantiated with a
lightweight blockcipher such as PRESENT [12], PRINCE [13], and GIFT [2] whose
block size is small. In such case, the birthday bound becomes 232 as 𝑛 = 64
and is vulnerable in certain practical applications. For example, Bhargavan and
Leurent [9] have demonstrated two practical attacks that exploit collision on
short blockciphers.

Double-block Hash-then-Sum Construction. To go beyond birthday-bound
security, a series of blockcipher-based MACs have been proposed, including SUM-
ECBC [32], PMAC_Plus [33], 3kf9 [34] and LightMAC_Plus [27]. Interestingly,
all of these MACs use a similar paradigm called Double-block Hash-then Sum
(shorthand for DbHtS), where a message is first mapped into a 2𝑛-bit string by a
double-block hash function and then the two encrypted values of each 𝑛-bit half is
xor-summed to generate the tag. Datta et al. [17] abstract out this paradigm and
divide it into two classes: (i) three-key DbHtS constructions, where apart from
the hash key, two blockcipher keys are used in the finalization phase (including
SUM-ECBC, PMAC_Plus, 3kf9 and LightMAC_Plus); (ii) two-key DbHtS,where
apart from the hash key, only a single blockcipher key is used in the finalization
phase (including all the two-key variants, i.e., 2k-SUM-ECBC, 2k-PMAC_Plus,
2k-LightMAC_Plus and 2kf9). Under a generic framework, they prove that both
three-key and two-key DbHtS constructions can achieve beyond-birthday-bound
security with a bound 𝑞3/22𝑛 where 𝑞 is the number of queries. Leurent et al. [25]
show attacks on all three-key DbHtS constructions with a query complexity 23𝑛/4.
Very recently, Kim et al. [24] give a tight provable bound 𝑞4/3/2𝑛 for three-key
DbHtS constructions.

Multi-user security. All the above beyond-birthday-bound results only con-
sider a single user. Yet, as one of the most commonly used cryptographic prim-
itives in practice, MACs are typically deployed in contexts with a great number
of users. For instance, they are a core element of real-world security protocols
such as TLS, SSH, and IPSec, which are used by major websites with billions
of daily active users. A natural question is to what extent the number of users
will affect the security bound of DbHtS constructions, or more specifically, can
DbHtS constructions still achieve beyond-birthday-bound security in multi-user
setting?

The notion of multi-user (mu) security is introduced by Biham [10] in sym-
metric cryptanalysis and by Bellare, Boldyreva, and Micali [4] in the context
of public-key encryption. Attackers can adaptively distribute its queries across
multiple users with independent key. It considers attackers who succeed as long
as they can compromise at least one user among many. As evident in a series of
works [3,8,14,19–21,26,29,31] evaluating how security degrades as the number of
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users grows is a challenging technical problem even when the security is known
in the single-user setting. Unfortunately, until now research on provable mu se-
curity for MACs has been somewhat missing. The notable exceptions are the
work of Chatterjee et al. [15] and very recently Andrew et al. [28], and Bellare et
al. [3]. The first two consider a generic reduction for MACs and by using which
the mu security of DbHtS constructions will be capped (or even worse than)
the birthday bound, which will be discussed below, The last considers a hash-
function based MAC which is quite different from our focus on blockcipher-based
MACs.

Suppose the number of users is 𝑢. By using the generic reduction [15,28] from
singsle-user (su) security to mu security, the above beyond-birthday bound for
two-key DbHtS constructions becomes

𝑢𝑞3

22𝑛

in the mu setting. Suppose the adversary only issue one query per user and then
the security bound becomes

𝑢𝑞3

22𝑛
≤ 𝑞4

22𝑛
,

which is still capped at the worrisome birthday bound. Even for three-key DbHtS
constructions with a better bound 𝑞4/3/2𝑛 1 in su setting, the mu security via
generic reduction becomes

𝑢𝑞4/3

2𝑛
≤ 𝑞

7
3

2𝑛
,

which is worse than the birthday bound 2𝑛/2. Thus it is worth to directly an-
alyze the mu security of DbHtS constructions instead of relying on the generic
reduction.

Our contributions. We revisit the security of DbHtS constructions in the
mu setting, with a focus on two-key DbHtS constructions. Two-key DbHtS con-
structions such as 2k-PMAC_Plus, 2k-LightMAC_Plus and 2kf9, only uses two
blocckpher keys in total. Assume the length of each key is 𝑘 = 𝑛, then to resist a
similar attack like’s Biham’s key-collision attack on DES, two keys is the minimal
number of keys to potentially achieve beyond-birthday-bound security. On the
other hand, the mu security results of two-key DbHtS constructions implicitly
implies the same security of three-key ones with a slight modification.

We give a generic framework to prove beyond-birthday-bound security for
two-key DbHtS constructions in mu setting. Our framework is easy to use, yet
can achieve much better security bound comparing with prior generic reduction
method. Under this framework, one only needs to show that the abstracted
double-block hash function satisfy two properties, namely 𝜖1-regular and 𝜖2-
almost universal. The first property implies that for a message, the probability
1 This term is mainly due to the usage of Markov inequality and appears in all security

bounds of three-key DbHtS constructions [24].
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that the hashed value equals to any pre-fixed string is small for a key uniformally
chosen from the key space. The second one implies that for any two distinct
messages, the probability that the two hashed values collide is small for for a
key uniformally chosen from the key space. These two properties are typically
inherent in the hash part of DbHtS constructions.

We demonstrate the usability of this framework with applications to two-key
DbHtS. More specifically, we prove that all of 2k-SUM-ECBC, 2k-PMAC_Plus
and 2k-LightMAC_Plus are still beyond-birthday-bound secure in mu setting.
Our bounds are independent of the number of users, and imply that the security
of two-key DbHtS constructions will not degrade as the number of users grows.
On the other hand, during the proof of these three constructions, we do not
rely on domain separating functions, which are used by Datta et al. [17] in
these constructions to simplify the su analysis while at the meantime complicate
the construction. Thus our results also indicate these three constructions are
beyond-birthday-bound secure in both su and mu setting without additional
domain separating functions.

Moreover, we find a severe flaw in 2kf9 in su setting, not to mention in mu
setting. Datta et al. [17] prove that 2kf9 without domain separating functions
are beyond-birthday-bound secure, and then based on it they claim that the
other three two-key DbHtS constructions can also achieve the same security
level without domain separation. However, we can successfully forge a tag with
probability 1 without making any queries. The flaw is that for any single-block
message, the output of 2kf9 without domain separation is always zero. One may
think that if we resume domain separation in 2kf9, then it can achieve beyond-
birthday security. However, our attack shows that even with domain separation,
2kf9 cannot be secure beyond birthday bound. We go further to investigate
whether the common tricks help 2kf9 to tweak a blockcipher-base MAC to go
beyond-birthday-bound security. Unfortunately, a similar attack with birthday-
bound complexity always exists for these variants of 2kf9.

Ideal cipher model. The proofs of this paper are done in the ideal cipher
model, which is common in most analyzes for mu security. In mu setting, we
are particularly concerned about how local computation (that is captured by
the number of ideal cipher queries) affects security, and the classical assumption
that regarding a blockciphers as a PRP is not helpful in this estimation.

2 Preliminaries

Notation. Let 𝜀 denote the empty string. For an integer 𝑖, we let ⟨𝑖⟩𝑚 denote
a 𝑚-bit representation of 𝑖. For a finite set 𝑆, we let 𝑥←$ 𝑆 denote the uniform
sampling from 𝑆 and assigning the value to 𝑥. Let |𝑥| denote the length of
the string 𝑥. Let |𝑆| denote the size of the set 𝑆. If 𝐴 is an algorithm, we let
𝑦 ← 𝐴(𝑥1, . . . ; 𝑟) denote running 𝐴 with randomness 𝑟 on inputs 𝑥1, . . . and
assigning the output to 𝑦. We let 𝑦←$ 𝐴(𝑥1, . . .) be the result of picking 𝑟 at
random and letting 𝑦 ← 𝐴(𝑥1, . . . ; 𝑟). For a domain Dom and a range Rng,
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procedure Initialize
𝐾1, 𝐾2, . . . , ←$𝒦; 𝑏←$ {0, 1}
𝑓1, 𝑓2, . . . , ←$ Func(ℳ, {0, 1}𝑛)

procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

procedure Eval(𝑖, 𝑀)
𝑌1 ← 𝐹 (𝐾𝑖, 𝑀); 𝑌0 ← 𝑓𝑖(𝑀)
return 𝑌𝑏

Fig. 1: Game Gprf
𝐹 defining multi-user PRF security of a function 𝐹 .

let Func(Dom, Rng) denote the set of functions 𝑓 : Dom → Rng. For integers
1 ≤ 𝑎 ≤ 𝑁 , let (𝑁)𝑎 denote 𝑁(𝑁 − 1) . . . (𝑁 − 𝑎 + 1).

Multi-user PRF. Let 𝐹 : 𝒦×ℳ→ {0, 1}𝑛 be a function. For an adversary 𝐴,
let

Advprf
𝐹 (𝐴) = 2 Pr[Gprf

𝐹 (𝐴)]− 1 ,

be the advantage of the adversary against the multi-user PRF security of 𝐹 ,
where game Gprf

𝐹 is defined in Fig. 1. Note that for any function 𝐹 of key length
𝑘, the PRF advantage is at least 𝑝𝑞/2𝑘+2 by adapting Biham’s key-collision
attack on DES [10], where 𝑞 is the number of queries and 𝑝 is the number of
calls to 𝐹 .

The H-coefficient Technique. Following the notation from Hoang and Tes-
saro [19], it is useful to consider interactions between an adversary 𝐴 with an
abstract system S which answers 𝐴’s queries. The resulting interaction can then
be recorded with a transcript 𝜏 = ((𝑋1, 𝑌1), . . . , (𝑋𝑞, 𝑌𝑞)). Let pS(𝜏) denote the
probability that S produces 𝜏 . It is known that pS(𝜏) is the description of S and
independent of the adversary 𝐴. We say that a transcript is attainable for the
system S if pS(𝜏) > 0.

We now describe the H-coefficient technique of Patarin [16, 30]. Generically,
it considers an adversary that aims at distinguishing a "real" system S1 from an
"ideal" system S0. The interactions of the adversary with those systems induce
two transcript distributions 𝑋1 and 𝑋0 respectively. It is well known that the
statistical distance SD(𝑋1, 𝑋0) is an upper bound on the distinguishing advan-
tage of 𝐴.

Lemma 1. [16, 30] Suppose that the set of attainable transcripts for the ideal
system can be partitioned into good and bad ones. If there exists 𝜖 ≥ 0 such that
pS1 (𝜏)
pS0(𝜏)

≥ 1− 𝜖 for any good transcript 𝜏 . Then

SD(𝑋1, 𝑋0) ≤ 𝜖 + Pr[𝑋0 is bad] .

Regular and AU hash function. Let 𝐻 : 𝒦ℎ × 𝒳 → 𝒴 be a hash function
where 𝒦ℎ is the key space, 𝒳 is the domain space and 𝒴 is the range space. Hash
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function 𝐻 is said to be 𝜖1-regular if for any 𝑋 ∈ 𝒳 and 𝑌 ∈ 𝒴,

Pr [ 𝐾ℎ←$𝒦ℎ : 𝐻𝐾ℎ
(𝑋) = 𝑌 ] ≤ 𝜖1

and it is said to be 𝜖2-almost universal if for any distinct 𝑋, 𝑋 ′ ∈ 𝒳 ,

Pr [ 𝐾ℎ←$𝒦ℎ : 𝐻𝐾ℎ
(𝑋) = 𝐻𝐾ℎ

(𝑋 ′) ] ≤ 𝜖2 .

Conditional Sum Permutation. We will use the following result in some
proofs.

Lemma 2. [18, Theorem 2] For any set 𝒳 of size 𝑟 and any tuple (𝑇1, . . . , 𝑇𝑞)
such that each 𝑇𝑖 ̸= 0𝑛, let 𝑈1, . . . , 𝑈𝑞, 𝑉1, . . . , 𝑉𝑞 be 2𝑞 random variables sampled
without replacement from {0, 1}𝑛 ∖ 𝒳 and satisfy 𝑈𝑖 ⊕ 𝑉𝑖 = 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑞.
Denote by 𝑆 the set of tuples of these 2𝑞 variables. Then

|𝑆| ≥ (2𝑛 − 𝑟)2𝑞

2𝑛𝑞
(1− 𝜇) .

where 𝜇 = 𝑞𝑟2+2𝑞2𝑟+2𝑞3

(2𝑛−𝑟−2𝑞)2 .

3 Attack on 2kf9 Construction

In this section, we will show attacks on several variants of 2kf9 construction,
which is proposed by Datta et al. [17] to achieve beyond-birthday-bound security.

The 2kf9 construction. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher.
The 2kf9 construction is based on a blockcipher 𝐸 and two keys 𝐿 and 𝐾. Let fix0
and fix1 be two separating functions that fix the least significant bit of an 𝑛-bit
string to 0 and 1 respectively. The specification of 2kf9 with domain separating
function is illustrated in Fig. 2.

3.1 Attack on 2kf9 without Domain Separation

Datta et al. [17] prove that 2kf9 without domain separating function can achieve
beyond-birthday-bound security. In the proof, they claim that the collision prob-
ability between 𝛴 and 𝛬 (without fix0 and fix1) is small for any message 𝑀 ,
namely 2/2𝑛. However, this claim is essentially incorrect. For any singe-block
message 𝑀 , the probability of 𝛴 colliding with 𝛬 is exactly 1, since they are
both the output of blockcipher 𝐸𝐿 with input 𝑀 . Hence, for any single-block
message 𝑀 , (𝑀, 0𝑛) is always a valid forgery for this construction.
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procedure 2kf9[𝐸](𝐿, 𝐾, 𝑀)
𝑀 [1] ‖ . . . ‖𝑀 [ℓ]←𝑀 ; 𝑌0 ← 0𝑛

for 𝑖← 1 to ℓ do
𝑌𝑖 ← 𝐸𝐿(𝑌𝑖−1 ⊕𝑀 [𝑖])

𝛴 = 𝑌ℓ; 𝛬 = 𝑌1 ⊕ 𝑌2 ⊕ · · · ⊕ 𝑌ℓ

(𝛴, 𝛬)← (fix0(𝛴), fix1(𝛬)); (𝑈, 𝑉 )← (𝐸𝐾(𝛴), 𝐸𝐾(𝛬))
𝑇 ← 𝑈 ⊕ 𝑉 ; return 𝑇

EL

M[1]

fix
0

fix
1

E E

E
K

EK

LL

M[3]M[2]

T

Fig. 2: The 2kf9[𝐸] construction, built on top of a blockcipher 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 →
{0, 1}𝑛. Here fix0 and fix1 are two domain separating functions that fix the least sig-
nificant bit of an 𝑛-bit string to 0 and 1 respectively.

3.2 Attack on 2kf9 with Domain Separation
One may think if we resume domain separation in 2kf9 (Fig. 2), then it can
recover beyond-birthday-bound security. However, our attack shows that even
with domain separation, 2kf9 cannot be secure beyond birthday bound.

For any two-block messages 𝑀1 = 𝑥 ‖ 𝑧 and 𝑀2 = 𝑦 ‖ 𝑧 ⊕ 0𝑛−11 where
𝑥, 𝑦 ∈ {0, 1}𝑛, if 𝐸𝐿(𝑥)⊕𝐸𝐿(𝑦) = 0𝑛−11, then 𝑇1 = 𝑇2 for any 𝑧 ∈ {0, 1}𝑛. The
reason is as follows. For 𝑀1 = 𝑥 ‖ 𝑧, we have

𝛴1 = fix0(𝐸𝐿(𝑧 ⊕ 𝐸𝐿(𝑥)))
𝛬1 = fix1(𝐸𝐿(𝑥)⊕ 𝐸𝐿(𝑧 ⊕ 𝐸𝐿(𝑥))) .

Similarly, for 𝑀2 = 𝑦 ‖ 𝑍 ⊕ 0𝑛−11, we have

𝛴2 = fix0(𝐸𝐿(𝑧 ⊕ 0𝑛−11⊕ 𝐸𝐿(𝑦)))
𝛬2 = fix1(𝐸𝐿(𝑦)⊕ 𝐸𝐿(𝑧 ⊕ 0𝑛−11⊕ 𝐸𝐿(𝑦))) .

If 𝐸𝐿(𝑥)⊕ 𝐸𝐿(𝑦) = 0𝑛−11, then

𝐸𝐿(𝑧 ⊕ 𝐸𝐿(𝑥)) = 𝐸𝐿(𝑧 ⊕ 0𝑛−11⊕ 𝐸𝐿(𝑦))
𝐸𝐿(𝑥)⊕ 𝐸𝐿(𝑧 ⊕ 𝐸𝐿(𝑥)) = 𝐸𝐿(𝑦)⊕ 𝐸𝐿(𝑧 ⊕ 0𝑛−11⊕ 𝐸𝐿(𝑦))⊕ 0𝑛−11 .

Obviously it holds that 𝛴1 = 𝛴2. On the other hand, due to one-bit fixing
function fix1, it also holds that 𝛬1 = 𝛬2. Hence 𝐸𝐿(𝛴1)⊕ 𝐸𝐿(𝛬1) = 𝐸𝐿(𝛴2)⊕
𝐸𝐿(𝛬2), namely 𝑇1 = 𝑇2.
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The attack procedure is as follows. The adversary first chooses 2𝑛/2+1 distinct
𝑛-bit strings 𝑥1, . . . , 𝑥2𝑛/2 , 𝑦1, . . . , 𝑦2𝑛/2 from the set {0, 1}𝑛. Fixing 𝑧1 ∈ {0, 1}𝑛,
it then makes queries 𝑥𝑖 ‖ 𝑧1 and 𝑦𝑖 ‖ 𝑧1 ⊕ 0𝑛−11 to construction 2kf9, and
receives the corresponding answers 𝑇 1

𝑖 and 𝑇 2
𝑖 for 1 ≤ 𝑖 ≤ 2𝑛/2. One can expect

on average that there exists a pair of (𝑥𝑖, 𝑦𝑗), such that 𝐸𝐿(𝑥𝑖)⊕𝐸𝐿(𝑦𝑗) = 0𝑛−11
for 1 ≤ 𝑖, 𝑗 ≤ 2𝑛/2. The adversary can check it by seeing whether 𝑇 1

𝑖 = 𝑇 2
𝑗 . To

remove the case that 𝑇 1
𝑖 = 𝑇 2

𝑗 is not caused by 𝐸𝐿(𝑥𝑖)⊕𝐸𝐿(𝑦𝑗) = 0𝑛−11, when
𝑇 1

𝑖 = 𝑇 2
𝑗 is found, the adversary can make two additional queries 𝑥𝑖 ‖ 𝑧2 and

𝑦𝑗 ‖ 𝑧2 ⊕ 0𝑛−11 to see whether the corresponding answers are identical. Finally,
as soon as a desirable pair (𝑥𝑖, 𝑦𝑗) is obtained, the adversary makes query 𝑥𝑖 ‖ 𝑧3
to receive 𝑇 . Then (𝑀, 𝑇 ) where 𝑀 = 𝑦𝑗 ‖ 𝑧3 ⊕ 0𝑛−11 is a valid forgery. The
complexity of this attack is 2𝑛/2.

Remark 1. If 𝛬 is further multiplied by 2 before applying fix1 function as is
done in 2k-LightMAC_Plus and 2k-PMAC_Plus, then a similar birthday-bound
attack as above also works. Instead of searching a pair of (𝑥, 𝑦) such that 𝐸𝐿(𝑥)⊕
𝐸𝐿(𝑦) = 0𝑛−11 for two-block messages 𝑀1 = 𝑥 ‖ 𝑧 and 𝑀2 = 𝑥 ‖ 𝑧 ⊕ 0𝑛−11,
here we need to find a pair of (𝑥, 𝑦) such that 𝐸𝐿(𝑥)⊕𝐸𝐿(𝑦) = 𝑑 for two-block
messages 𝑀1 = 𝑥 ‖ 𝑧 and 𝑀2 = 𝑥 ‖ 𝑧⊕ 𝑑, where 𝑑 is the inverse of 2 in the finite
field.

Remark 2. Even if using more complicated multiplication in 𝛬, i.e. 𝛬 = 2ℓ ·
𝑌1 ⊕ · · · 2 · 𝑌ℓ as used in 2k-LightMAC_Plus (or 𝛬 = 2 · 𝑌1 ⊕ · · · 2ℓ · 𝑌ℓ as used in
2k-PMAC_Plus), then we can also propose a similar attack as above. The core
idea of the attack is to find a pair of (𝑥, 𝑦) such that 𝐸𝐿(𝑥) ⊕ 𝐸𝐿(𝑦) = 𝑢 for
two-block messages 𝑀1 = 𝑥 ‖ 𝑧 and 𝑀2 = 𝑦 ‖ 𝑧 ⊕ 𝑢, where 𝑢 is the inverse of 4
in the finite field. The difference between 2kf9 and other three two-key DbHtS
constructions (2k-SUM-ECBC, 2k-LightMAC_Plus, 2k-PMAC_Plus) is that for
2kf9, each 𝑌𝑖 depends on previous values 𝑌1, . . . , 𝑌𝑖−1, and we can always find
some relation between variables 𝛴 and 𝛬 despite the usage of field multiplication.
While for 2k-LightMAC_Plus and 2k-PMAC_Plus, each 𝑌𝑖 is generated from the
corresponding message block 𝑀 [𝑖], and we can prove that 𝛴 and 𝛬 are somewhat
independent due to the usage of field multiplication. And for SUM-ECBC, the
two variables 𝛴 and 𝛬 are generated by using two independent keys, and thus
being independent of each other.

4 Multi-User Security Proof Framework for DbHtS
MACs

In this section, we consider a generic proof framework for DbHtS MACs. We begin
with the description of DbHtS constructions. Here we focus on two-key DbHtS
constructions, including 2k-SUM-ECBC, 2k-LightMAC_Plus and 2k-PMAC_Plus.

The DbHtS construction. Let 𝐻 : 𝒦ℎ ×ℳ → {0, 1}𝑛 × {0, 1}𝑛 be a 2𝑛-
bit hash function with key space 𝒦ℎ and message space ℳ. We will always

8
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Fig. 3: The DbHtS construction. Here 𝐻 is a 2𝑛-bit hash function from 𝒦ℎ ×ℳ to
{0, 1}𝑛 × {0, 1}𝑛, and 𝐸 is a 𝑛-bit blockcipher from 𝒦 × {0, 1}𝑛 to {0, 1}𝑛.

decompose 𝐻 into two 𝑛-bit hash function 𝐻1 and 𝐻2 for convenience, and
thus have 𝐻𝐾ℎ

(𝑀) = (𝐻1
𝐾ℎ,1

(𝑀), 𝐻2
𝐾ℎ,2

(𝑀)) where 𝐾ℎ = (𝐾ℎ,1, 𝐾ℎ,2). Given
a blockcipher 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 and hash function 𝐻 as defined above,
one can define the DbHtS construction as follows

DbHtS[𝐻, 𝐸](𝐾ℎ, 𝐾, 𝑀) = 𝐸𝐾(𝐻1
𝐾ℎ,1

(𝑀))⊕ 𝐸𝐾(𝐻2
𝐾ℎ,2

(𝑀)) .

In blockcipher-based MACs, the hash function 𝐻 is also built from an 𝑛-bit
blockcipher 𝐸. The message 𝑀 (after padding) is always split into 𝑛-bit blocks
without being more specific, namely 𝑀 = 𝑀 [1]‖𝑀 [2]‖ . . . ‖𝑀 [ℓ] where |𝑀 [𝑖]| =
𝑛. For message 𝑀 , we denote by 𝑋[𝑖] the 𝑖-th input to underlying blockcipher
𝐸 of 𝐻.

Security analysis of DbHtS construction. Given that 𝐻 is a good 2𝑛-bit
hash function and the underlying blockcipher 𝐸 is ideal, we have the following
result.

Theorem 1. Let 𝐸 : {0, 1}𝑘 ×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we model
as an ideal blockcipher. Suppose that the hash function 𝐻 is 𝜖1-regular and 𝜖2-
almost universal. Then for any adversary 𝐴 that makes at most 𝑝 ideal-cipher
queries and 𝑞 evaluation queries,

Advprf
DbHtS(𝐴) ≤ 2𝑞

2𝑘
+ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)

22𝑘
+ 2𝑞𝑝ℓ

2𝑘+𝑛
+ 2𝑞𝑝𝜖1

2𝑘
+ 4𝑞𝑝

2𝑛+𝑘

+2𝑞2(𝜖1 + 𝜖2)
2𝑘

+ 2𝑞2ℓ𝜖1

2𝑘
+ 2𝑞3(𝜖1 + 𝜖2)2 + 8𝑞3(𝜖1 + 𝜖2)

2𝑛

+2𝑞𝑝2 + 4𝑞𝑝ℓ + 2𝑞ℓ2 + 4𝑞2𝑝 + 4𝑞2ℓ + 28𝑞3

22𝑛
.
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procedure Initialize
(𝐾1

ℎ, 𝐾1), (𝐾2
ℎ, 𝐾2), · · · , ←$𝒦ℎ ×𝒦

𝑓1, 𝑓2, · · · , ←$ Func(ℳ, {0, 1}𝑛)
𝑏←$ {0, 1}

procedure Prim(𝐽, 𝑋)
if 𝑋 = (+, 𝑥) then return 𝐸𝐽 (𝑥)
if 𝑋 = (−, 𝑦) then return 𝐸−1

𝐽 (𝑦)

procedure Eval(𝑖, 𝑀)
𝑇1 ← DbHtS[𝐻, 𝐸](𝐾𝑖

ℎ, 𝐾𝑖, 𝑀)
𝑇0 ← 𝑓𝑖(𝑀)
return 𝑇𝑏

procedure Finalize(𝑏′)
return (𝑏′ = 𝑏)

Fig. 4: Game Gprf
DbHtS defining multi-user prf security of the construction DbHtS.

Proof. Our proof is based on the H-coefficient technique. We will consider a com-
putationally unbounded adversary, and without loss of generality assume that
the adversary is deterministic and never repeats a prior query. Assume further
that the adversary never makes a redundant query: if it queries 𝑦 ← 𝐸(𝐽, 𝑥)
then it won’t query 𝐸−1(𝐽, 𝑦) and vice versa. The security game is detailed in
Fig. 4. The real system corresponds to game Gprf

DbHtS with challenge bit 𝑏 = 1,
and the ideal system corresponds to game Gprf

DbHtS with challenge bit 𝑏 = 0.

Setup. In both of the two worlds, after the adversary finishes querying, it obtains
the following information:

– Ideal-cipher queries: For each query Prim(𝐽, (𝑥, +)) with answer 𝑦, we as-
sociate it with an entry (prim, 𝐽, 𝑥, 𝑦, +). Similarly, for each query Prim(𝐽, (𝑦,−))
with answer 𝑥, we associate it with an entry (prim, 𝐽, 𝑥, 𝑦,−).

– Evaluation queries: For each query 𝑇 ← Eval(𝑖, 𝑀), we associate it with
an entry (eval, 𝑖, 𝑀, 𝑇 ).

We denote by (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) the entry obtained when the adversary makes the
𝑎-th query to user 𝑖. Denote by ℓ𝑖

𝑎 the block length of 𝑀 𝑖
𝑎 and denote by ℓ the

maximal block length among these 𝑞 evaluation queries. During the computation
of entry (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎), we denote by 𝛴𝑖

𝑎 and 𝛬𝑖
𝑎 the internal output of hash

function 𝐻, namely 𝛴𝑖
𝑎 = 𝐻1

𝐾ℎ,1
(𝑀 𝑖

𝑎) and 𝛬𝑖
𝑎 = 𝐻2

𝐾ℎ,2
(𝑀 𝑖

𝑎) respectively, and
denote by 𝑈 𝑖

𝑎 and 𝑉 𝑖
𝑎 the outputs of blockcipher 𝐸 with inputs 𝛴𝑖

𝑎 and 𝛬𝑖
𝑎

respectively, namely 𝑈 𝑖
𝑎 = 𝐸(𝐾𝑖, 𝛴𝑖

𝑎) and 𝑉 𝑖
𝑎 = 𝐸(𝐾𝑖, 𝛬𝑖

𝑎) respectively. For a
key 𝐽 ∈ {0, 1}𝑘, let 𝑃 (𝐽) be the set of entries (prim, 𝐽, 𝑥, 𝑦, *), and let 𝑄(𝐽) be
the set of entries (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) such that 𝐾𝑖 = 𝐽 . In the real world, after the

adversary finishes all its queries, we will further give it: (i) the keys (𝐾𝑖
ℎ, 𝐾𝑖)

where 𝐾𝑖
ℎ = (𝐾𝑖

ℎ,1, 𝐾𝑖
ℎ,2) and (ii) the internal values 𝑈 𝑖

𝑎 and 𝑉 𝑖
𝑎 . In the ideal

world, we instead give the adversary truly random strings (𝐾𝑖
ℎ, 𝐾𝑖)←$𝒦ℎ ×𝒦,

independent of the queries. Moreover, we give the adversary dummy values 𝑈 𝑖
𝑎

and 𝑉 𝑖
𝑎 computed as follows: for each set 𝑄(𝐽), the simulation oracle sim(𝑄(𝐽))

(depicted in Fig. 5) will be invoked and returns corresponding values 𝑈 𝑖
𝑎 and

𝑉 𝑖
𝑎 to the adversary. On the other hand, the internal values 𝛴𝑖

𝑎 and 𝛬𝑖
𝑎 during

the computation of sim are uniquely determined by the message 𝑀 and key
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(𝐾𝑖
ℎ, 𝐾𝑖). These additional information can only help the adversary. Thus a

transcript consists of the revealed keys (𝐾𝑖
ℎ, 𝐾𝑖), the internal values 𝑈 𝑖

𝑎 and 𝑉 𝑖
𝑎 ,

and the ideal-cipher queries and evaluation queries.

Defining bad transcripts. We say a transcript is bad if one of the following
happens:

1. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝐾𝑖 = 𝐾𝑖
ℎ,𝑑 for 𝑑 ∈ {1, 2}.

2. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that both 𝐾𝑖 and 𝐾𝑖
ℎ,𝑑 for 𝑑 ∈ {1, 2}

have been used in other entries, namely either in entries (eval, 𝑗, 𝑀 𝑗
𝑏 , 𝑇 𝑗

𝑏 ) or
entries (prim, 𝐽, 𝑥, 𝑦, *).

3. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝐾𝑖
ℎ,𝑑 = 𝐽 for 𝑑 ∈ {1, 2} and

𝑥 = 𝑋𝑖
𝑎[𝑗] for some entry (prim, 𝐽, 𝑥, 𝑦,−) and some 1 ≤ 𝑗 ≤ ℓ𝑖

𝑎.
4. There is an entry (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) such that 𝐾𝑖 = 𝐽 , and either 𝛴𝑖

𝑎 = 𝑥 or
𝛬𝑖

𝑎 = 𝑥 for some entry (prim, 𝐽, 𝑥, 𝑦, *).
5. There is an entry (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) such that 𝐾𝑖 = 𝐽 , and either 𝑈 𝑖

𝑎 = 𝑦 or
𝑉 𝑖

𝑎 = 𝑦 for some entry (prim, 𝐽, 𝑥, 𝑦, *).
6. There is an entry (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) such that 𝐾𝑖 = 𝐾𝑗 , and either 𝛴𝑖

𝑎 = 𝛴𝑗
𝑏

or 𝛴𝑖
𝑎 = 𝛬𝑗

𝑏 for some entry (eval, 𝑗, 𝑀 𝑗
𝑏 , 𝑇 𝑗

𝑏 ).
7. There is an entry (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) such that 𝐾𝑖 = 𝐾𝑗 , and either 𝛬𝑖

𝑎 = 𝛬𝑗
𝑏 or

𝛬𝑖
𝑎 = 𝛴𝑗

𝑏 for some entry (eval, 𝑗, 𝑀 𝑗
𝑏 , 𝑇 𝑗

𝑏 ).
8. There is an entry (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) such that 𝐾𝑖 = 𝐾𝑗

ℎ,1 and 𝛴𝑖
𝑎 = 𝑋𝑗

𝑏 [𝑘], or
𝐾𝑖 = 𝐾𝑗

ℎ,2 and 𝛬𝑖
𝑎 = 𝑋𝑗

𝑏 [𝑘] for some entry (eval, 𝑗, 𝑀 𝑗
𝑏 , 𝑇 𝑗

𝑏 ) and 1 ≤ 𝑘 ≤ ℓ𝑗
𝑏.

9. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝛴𝑖
𝑎 = 𝛴𝑖

𝑏 or 𝛴𝑖
𝑎 = 𝛬𝑖

𝑏, and either
𝛬𝑖

𝑎 = 𝛬𝑖
𝑏 or 𝛬𝑖

𝑎 = 𝛴𝑖
𝑏 for some entry (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ).

10. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝛴𝑖
𝑎 = 𝛴𝑖

𝑏 or 𝛴𝑖
𝑎 = 𝛬𝑖

𝑏, and either
𝑉 𝑖

𝑎 = 𝑉 𝑖
𝑏 or 𝑉 𝑖

𝑎 = 𝑈 𝑖
𝑏 for some entry (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ).

11. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝛬𝑖
𝑎 = 𝛬𝑖

𝑏 or 𝛬𝑖
𝑎 = 𝛴𝑖

𝑏, and either
𝑈 𝑖

𝑎 = 𝑈 𝑖
𝑏 or 𝑈 𝑖

𝑎 = 𝑉 𝑖
𝑏 for some entry (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ).

12. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝛴𝑖
𝑎 = 𝛴𝑖

𝑏 or 𝛴𝑖
𝑎 = 𝛬𝑖

𝑏, and either
𝛬𝑖

𝑎 = 𝛬𝑖
𝑐 or 𝛬𝑖

𝑎 = 𝛴𝑖
𝑐 for some entries (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ) and (eval, 𝑖, 𝑀 𝑖

𝑐 , 𝑇 𝑖
𝑐).

13. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝛴𝑖
𝑎 = 𝛴𝑖

𝑏 or 𝛴𝑖
𝑎 = 𝛬𝑖

𝑏, and either
𝑉 𝑖

𝑎 = 𝑉 𝑖
𝑐 or 𝑉 𝑖

𝑎 = 𝑈 𝑖
𝑐 for some entries (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ) and (eval, 𝑖, 𝑀 𝑖

𝑐 , 𝑇 𝑖
𝑐).

14. There is an entry (eval, 𝑖, 𝑀 𝑖
𝑎, 𝑇 𝑖

𝑎) such that 𝛬𝑖
𝑎 = 𝛬𝑖

𝑏 or 𝛬𝑖
𝑎 = 𝛴𝑖

𝑏, and either
𝑈 𝑖

𝑎 = 𝑈 𝑖
𝑐 or 𝑈 𝑖

𝑎 = 𝑉 𝑖
𝑐 for some entries (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ) and (eval, 𝑖, 𝑀 𝑖

𝑐 , 𝑇 𝑖
𝑐).

If a transcript is not bad then we say it’s good. Note that the goal of these condi-
tions is to ensure that (i) for queries to the same user, at least one of two inputs
to blockcipher 𝐸 is fresh; (ii) for queries to different users, if the key of block-
cipher 𝐸 collides, then the input to 𝐸 should be different. We briefly comments
on these conditions. Condition (1) and (2) are to guarantee that at least one of
two keys of any user 𝑖 is fresh. Note in blockcipher-based MACs, hash function is
usually based on blockcipher 𝐸. Condition (3) is to prevent that the adversary
can somehow control the (partial) output of 𝐻𝐾ℎ

(𝑀) by using its backward
ideal-cipher queries for some 1 ≤ 𝑗 ≤ ℓ𝑖

𝑎 where 𝑀 𝑖
𝑎 = 𝑀 𝑖

𝑎[1] ‖ . . . ‖𝑀 𝑖
𝑎[ℓ𝑖

𝑎] and
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𝑋𝑖
𝑎[𝑘] is the 𝑘-th corresponding input to underlying blockcipher of 𝐻. Condition

(4) and (5) are to remove the case that either the inputs or outputs of 𝐸𝐾𝑖
collide

with those in the ideal cipher queries. Condition (6) and (7) are to guarantee
that when the key 𝐾𝑖 and 𝐾𝑗 of user 𝑖 and 𝑗 collides, then all the inputs of 𝐸𝐾𝑖

are distinct, and all the outputs of 𝐸𝐾𝑖
are also distinct. Condition (8) is to guar-

antee that when there is a collision between 𝐾𝑖 and 𝐾𝑖
ℎ,𝑑 for 𝑑 ∈ {1, 2}, then the

input to 𝐸𝐾𝑖
do not collide with the input in the hash part with key 𝐾𝑖

ℎ,𝑑, and
thus keep the freshness of the final output. Condition (9) is to guarantee that for
any pair of entries (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) and (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 ), at least one of 𝛴𝑖

𝑎 and
𝛬𝑖

𝑎 is fresh. Condition (10) and (11) are to guarantee that the outputs of 𝛷𝐾𝑖

are compatible with the permutation in the ideal world, namely when the inputs
are distinct, then the corresponding outputs should also be distinct. Condition
(12) is to guarantee that for any triple of entries (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎), (eval, 𝑖, 𝑀 𝑖

𝑏 , 𝑇 𝑖
𝑏 )

and (eval, 𝑖, 𝑀 𝑖
𝑐 , 𝑇 𝑖

𝑐), at least one of 𝛴𝑖
𝑎 and 𝛬𝑖

𝑎 is fresh. Condition (11) and (12)
are to guarantee that the outputs of 𝛷𝐾𝑖

are compatible with the permutation
in the ideal world, namely when the inputs are distinct, then the corresponding
outputs should also be distinct. Let 𝑋1 and 𝑋0 be the random variables for the
transcripts in the real and ideal system respectively.

Probability of bad transcripts. We now bound the chance that 𝑋0 is bad.
Let Bad𝑖 be the event that 𝑋0 violates the 𝑖-th condition. By the union bound,

Pr[𝑋0 is bad] = Pr[Bad1 ∨ · · · ∨ Bad11]

≤
3∑︁

𝑖=1
Pr[Bad𝑖] +

8∑︁
𝑖=4

Pr[Bad𝑖 | Bad3] +
14∑︁

𝑖=9
Pr[Bad𝑖] .

We first bound the probability Pr[Bad1]. Recall that in the ideal world, 𝐾𝑖 and
𝐾𝑖

ℎ,𝑑 are uniformly random, independent of each other and those entries. Thus
the chance that 𝐾𝑖 = 𝐾𝑖

ℎ,𝑑 is at most 1/2𝑘. Summing over at most 𝑞 evaluation
queries and 𝑑 ∈ {1, 2},

Pr[Bad1] ≤ 2𝑞

2𝑘
.

Next, we bound the probability Pr[Bad2]. Recall that in the ideal world, 𝐾𝑖 and
𝐾𝑖

ℎ,𝑑 are uniformly random, independent of each other and those entries. Thus
the probability that 𝐾𝑖 = 𝐾𝑗 or 𝐾𝑖 = 𝐾𝑗

ℎ,𝑑′ for at most 𝑞 − 1 other users or
𝐾𝑖 = 𝐽 for at most 𝑝 ideal-cipher queries is at most (3𝑞 +𝑝)/2𝑘. The probability
that 𝐾𝑖

ℎ,𝑑 = 𝐾𝑗 or 𝐾𝑖
ℎ,𝑑 = 𝐾𝑗

ℎ,𝑑′ for at most 𝑞− 1 other users or 𝐾𝑖
ℎ,𝑑 = 𝐽 for at

most 𝑝 ideal-cipher queries is also at most (6𝑞 + 𝑝)/2𝑘. Since 𝐾𝑖 and 𝐾𝑖
ℎ,𝑑 are

independent of each other, and summing over at most 𝑞 evaluation queries,

Pr[Bad2] ≤ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)
22𝑘

.

Next, we bound the probability Pr[Bad3]. Recall that in the ideal world, 𝐾𝑖 is
uniformly random, independent of those entries. Thus the chance that 𝐾𝑖 = 𝐽
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for at most 𝑝 ideal-cipher queries is at most 𝑝/2𝑘. On the other hand, for each
ideal-cipher entry (prim, 𝐽, 𝑥, 𝑦,−), the probability that 𝑥 = 𝑋𝑖

𝑎[𝑗] is at most
1/(2𝑛− 𝑝− 𝑞ℓ) ≤ 2/2𝑛. Summing over at most 𝑞 evaluation queries and 1 ≤ 𝑗 ≤
ℓ𝑖

𝑎 ≤ ℓ,

Pr[Bad3] ≤ 2𝑞𝑝ℓ

2𝑘+𝑛
.

Next, we bound the probability Pr[Bad4 | Bad2]. Recall that in the ideal world,
𝐾𝑖 is uniformly random, independent of those entries. Thus for each entry
(prim, 𝐽, 𝑥, 𝑦, *), the chance that 𝐾𝑖 = 𝐽 is 1/2𝑘. On the other hand, condi-
tioned on Bad2, the key 𝐾𝑖

ℎ,𝑑 is fresh for 𝑑 ∈ {1, 2}. The event that 𝛴𝑖
𝑎 = 𝑥 or

𝛬𝑖
𝑎 = 𝑥 is the same as

𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑎) = 𝑥 ∨ 𝐻2
𝐾𝑖

ℎ,2
(𝑀 𝑖

𝑎) = 𝑥 ,

which holds with probability at most 2𝜖1. Summing over at most 𝑞 evaluation
queries and 𝑝 ideal-cipher queries,

Pr[Bad4 | Bad2] ≤ 2𝑞𝑝𝜖1

2𝑘
.

Bounding the probability Pr[Bad5 | Bad2] is similar to handling Pr[Bad4 | Bad2],
but now the event 𝑈 𝑖

𝑎 = 𝑦 or 𝑉 𝑖
𝑎 = 𝑦 is the same as 𝛷𝐾𝑖

(𝛴𝑖
𝑎) = 𝑦 or 𝛷𝐾𝑖

(𝛬𝑖
𝑎) = 𝑦.

If 𝛴𝑖
𝑎 ∈ Dom(𝛷𝐾𝑖

), then the probability that 𝛷𝐾𝑖
(𝛴𝑖

𝑎) = 𝑦 is at most 1/(2𝑛 −
ℓ − 𝑝) ≤ 2/2𝑛; If 𝛴𝑖

𝑎 /∈ Dom(𝛷𝐾𝑖
), then the probability that 𝑇 𝑖

𝑎 ⊕ 𝑉 𝑖
𝑎 = 𝑦 is at

most 1/2𝑛 since 𝑇 𝑖
𝑎 is a random string. Hence the probability that 𝛷𝐾𝑖(𝛴𝑖

𝑎) = 𝑦
is at most 2/2𝑛. Similarly, the probability that 𝛷𝐾𝑖(𝛬𝑖

𝑎) = 𝑦 is at most 2/2𝑛.
Thus,

Pr[Bad5 | Bad2] ≤ 4𝑞𝑝

2𝑛+𝑘
.

We now bound the probability Pr[Bad6 | Bad2]. Recall that in the ideal world,
𝐾𝑖 is uniformly random, independent of those entries. Thus the chance that
𝐾𝑖 = 𝐾𝑗 is 1/2𝑘 for 𝑖 ̸= 𝑗. On the other hand, conditioned on Bad2, the key
𝐾𝑖

ℎ,1 is fresh. The event that 𝛴𝑖
𝑎 = 𝛴𝑗

𝑏 is the same as

𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑎) = 𝐻1
𝐾𝑗

ℎ,1
(𝑀 𝑗

𝑏 )

which holds with probability at most 𝜖2. Similarly, the event that 𝛴𝑖
𝑎 = 𝛬𝑗

𝑏 holds
with probability at most 𝜖1. Summing over at most 𝑞2 pairs of 𝑖 and 𝑗,

Pr[Bad6 | Bad2] ≤ 𝑞2(𝜖1 + 𝜖2)
2𝑘

.

Bounding Pr[Bad7 | Bad2] is similar to handling Pr[Bad6 | Bad2], and thus

Pr[Bad7 | Bad2] ≤ 𝑞2(𝜖1 + 𝜖2)
2𝑘

.
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Next, we bound the probability Pr[Bad8]. Recall that in the ideal world, 𝐾𝑖 is
uniformly random, independent of those entries. Thus the chance that 𝐾𝑖 =
𝐾𝑗

ℎ,1 for some other 𝑗 is at most 1/2𝑘. On the other hand, for each other entry
(eval, 𝑗, 𝑀 𝑗

𝑏 , 𝑇 𝑗
𝑏 ), the probability that 𝛴𝑖

𝑎 = 𝑋𝑗
𝑏 [𝑘] is at most 𝜖1. Hence the chance

that 𝐾𝑖 = 𝐾𝑗
ℎ,1 and 𝛴𝑖

𝑎 = 𝑋𝑗
𝑏 [𝑘] is at most 𝜖1/2𝑘. Similarly, the probability that

𝐾𝑖 = 𝐾𝑗
ℎ,2 and 𝛬𝑖

𝑎 = 𝑋𝑗
𝑏 [𝑘] is also at most 𝜖1/2𝑘. Summing over at most 𝑞2 pairs

of evaluation queries and 1 ≤ 𝑘 ≤ ℓ,

Pr[Bad8] ≤ 2𝑞2ℓ𝜖1

2𝑘
.

Next, we bound the probability Pr[Bad9]. The event 𝛴𝑖
𝑎 = 𝛴𝑖

𝑏 or 𝛴𝑖
𝑎 = 𝛬𝑖

𝑏 is the
same as

𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑎) = 𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑏) ∨𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑎) = 𝐻2
𝐾𝑖

ℎ,2
(𝑀 𝑖

𝑏) ,

which holds with probability at most 𝜖1 + 𝜖2. Similarly, the probability of the
event 𝛬𝑖

𝑎 = 𝛴𝑖
𝑏 or 𝛬𝑖

𝑎 = 𝜆𝑖
𝑏 is at most 𝜖1 + 𝜖2. Note that for each user 𝑖, there

are at most 𝑞2
𝑖 pairs of (𝑎, 𝑏). By the assumption that 𝐾𝑖

ℎ,1 and 𝐾2
ℎ,2 are two

independent keys, and summing among 𝑢 users,

Pr [ Bad9 ] ≤
𝑢∑︁

𝑖=1
𝑞2

𝑖 (𝜖1 + 𝜖2)2 ≤ 𝑞2(𝜖1 + 𝜖2)2 .

Next, we bound the probability Pr[Bad10]. The event 𝛴𝑖
𝑎 = 𝛴𝑖

𝑏 or 𝛴𝑖
𝑎 = 𝛬𝑖

𝑏 is
the same as

𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑎) = 𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑏) ∨𝐻1
𝐾𝑖

ℎ,1
(𝑀 𝑖

𝑎) = 𝐻2
𝐾𝑖

ℎ,2
(𝑀 𝑖

𝑏) ,

which holds with probability at most 𝜖1 + 𝜖2. On the other hand, the event
𝑉 𝑖

𝑎 = 𝑉 𝑖
𝑏 or 𝑉 𝑖

𝑎 = 𝑈 𝑖
𝑏 is the same as

𝑇 𝑖
𝑎 ⊕ 𝑈 𝑖

𝑎 = 𝑉 𝑖
𝑏 ∨ 𝑇 𝑖

𝑎 ⊕ 𝑈 𝑖
𝑎 = 𝑈 𝑖

𝑏 ,

which holds with probability at most 2/2𝑛 since 𝑇 𝑖
𝑎 is a random string and

independent of these entries. Summing among 𝑢 users,

Pr [ Bad10 ] ≤
𝑢∑︁

𝑖=1

2𝑞2
𝑖 (𝜖1 + 𝜖2)

2𝑛
≤ 2𝑞2(𝜖1 + 𝜖2)

2𝑛
.

Bounding the probability Pr[Bad11] is similar to handling Pr[Bad10], and thus

Pr [ Bad11 ] ≤ 2𝑞2(𝜖1 + 𝜖2)
2𝑛

.

Bounding the probability Pr[Bad12] is similar to handling Pr[Bad9], except that
now for each user 𝑖, there are at most 𝑞3

𝑖 tuples of (𝑎, 𝑏, 𝑐). Hence summing among
these 𝑢 users,

Pr [ Bad12 ] ≤
𝑢∑︁

𝑖=1
𝑞3

𝑖 (𝜖1 + 𝜖2)2 ≤ 𝑞3(𝜖1 + 𝜖2)2 .
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Bounding the probability Pr[Bad13] is similar to handling Pr[Bad10], except that
now for each user 𝑖, there are at most 𝑞3

𝑖 tuples of (𝑎, 𝑏, 𝑐). Hence summing among
these 𝑢 users,

Pr [ Bad13 ] ≤
𝑢∑︁

𝑖=1

2𝑞3
𝑖 (𝜖1 + 𝜖2)

2𝑛
≤ 2𝑞3(𝜖1 + 𝜖2)

2𝑛
.

Bounding the probability Pr[Bad14] is similar to handling Pr[Bad13], and thus

Pr[Bad14] ≤ 2𝑞3(𝜖1 + 𝜖2)
2𝑛

.

Summing up,

Pr[𝑋0 is bad] ≤ 2𝑞

2𝑘
+ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)

22𝑘
+ 2𝑞𝑝ℓ

2𝑘+𝑛
+ 2𝑞𝑝𝜖1

2𝑘
+ 4𝑞𝑝

2𝑛+𝑘

+2𝑞2(𝜖1 + 𝜖2)
2𝑘

+ 2𝑞2ℓ𝜖1

2𝑘
+ 2𝑞3(𝜖1 + 𝜖2)2 + 8𝑞3(𝜖1 + 𝜖2)

2𝑛
. (1)

Transcript ratio. Let 𝜏 be a good transcript. Denote by 𝑝𝐽 and 𝑞𝐽 the size of
set 𝑃 (𝐽) and 𝑄(𝐽) respectively. Denote by 𝑓𝐽 the size of 𝐹 (𝐽)and denote by 𝑠𝐽

the size of set 𝑆(𝐽). Denote by ℓ𝐽 the number of underlying blockcipher queries
appear in the hash part when the value of secret key is 𝐽 . Note that among the
set 𝐻(𝐽), there are exactly 𝑞𝐽 + 𝑓𝐽 fresh values, and 𝑞𝐽 − 𝑓𝐽 non-fresh values.
For the entries in 𝐺(𝐽), suppose that there are 𝑔𝐽 classes among the values 𝛴𝑖

𝑎

and 𝛬𝑖
𝑎: the elements in the same class either connected by a value 𝑇 𝑖

𝑎 such that
𝛴𝑖

𝑎 ⊕ 𝛬𝑖
𝑎 = 𝑇 𝑖

𝑎, or connected by the equation such that 𝛴𝑖
𝑎 = 𝛴𝑗

𝑏 or 𝛬𝑖
𝑎 = 𝛬𝑗

𝑏.
Note that each class contains at least three elements, and only has one sample
value in sim Fig. 5. Since 𝜏 is good, the corresponding samples 𝑈 𝑖

𝑎 and 𝑉 𝑖
𝑎 of

these 𝑔𝐽 distinct classes are compatible with the permutation, namely these 𝑔𝐽

outputs are sampled in a manner such that they are distinct and do not collide
with the corresponding values during the computation of the set 𝐹 (𝐽).
Suppose that this transcript contains exactly 𝑢 users. Then in the ideal world,
since 𝜏 is good,

Pr[𝑋0 = 𝜏 ]

= 2−2𝑢𝑘 · 2−𝑞𝑛
∏︁

𝐽∈{0,1}𝑘

𝑝𝐽 −1∏︁
𝑖=0

1
2𝑛 − 𝑖

· 1
𝑠𝐽
· 1

(2𝑛 − 2𝑓𝐽 − 𝑝𝐽 − ℓ𝐽)𝑔𝐽

.

On the other hand, in the real world, the number of permutation outputs that
we need to consider for each 𝐽 ∈ {0, 1}𝑘 is exactly 𝑞𝐽 + 𝑓𝐽 + 𝑔𝐽 . The reason is
that, we have 𝑞𝐽 + 𝑓𝐽 fresh input-output tuples in total, and for each class in
𝐺(𝐽), we have one additional input-output tuple. Thus,

Pr[𝑋1 = 𝜏 ] = 2−2𝑢𝑘
∏︁

𝐽∈{0,1}𝑘

𝑝𝐽 −1∏︁
𝑖=0

1
2𝑛 − 𝑖

· 1
(2𝑛 − 𝑝𝐽 − ℓ𝐽)𝑞𝐽 +𝑓𝐽 +𝑔𝐽

.
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Hence,

Pr[𝑋1 = 𝜏 ]
Pr[𝑋0 = 𝜏 ] = 2𝑞𝑛

∏︁
𝐽∈{0,1}𝑘

𝑠𝐽 · (2𝑛 − 2𝑓𝐽 − 𝑝𝐽 − ℓ𝐽)𝑔𝐽

(2𝑛 − 𝑝𝐽 − ℓ𝐽)𝑞𝐽 +𝑓𝐽 +𝑔𝐽

≥
∏︁

𝐽∈{0,1}𝑘

2𝑞𝐽 𝑛(2𝑛 − 2𝑓𝐽 − 𝑝𝐽 − ℓ𝐽)𝑔𝐽
(2𝑛 − 𝑝𝐽 − ℓ𝐽)2𝑓𝐽

(2𝑛 − 𝑝𝐽 − ℓ𝐽)𝑞𝐽 +𝑓𝐽 +𝑔𝐽
· 2𝑓𝐽 𝑛

·(1− 𝑞𝐽(𝑝𝐽 + ℓ𝐽)2 + 2𝑞2
𝐽(𝑝𝐽 + ℓ𝐽) + 2𝑞3

𝐽

(2𝑛 − 𝑝𝐽 − 2𝑞𝐽 − ℓ𝐽)2 )

≥
∏︁

𝐽∈{0,1}𝑘

2𝑛(𝑞𝐽 −𝑓𝐽 )

(2𝑛 − 𝑝𝐽 − 2𝑓𝐽 − 𝑔𝐽 − ℓ𝐽)𝑞𝐽 −𝑓𝐽

·(1− 2𝑞𝐽𝑝2 + 4𝑞𝐽𝑝ℓ + 2𝑞𝐽ℓ2 + 4𝑞𝐽𝑞𝑝 + 4𝑞𝐽𝑞ℓ + 4𝑞𝐽𝑞2

22𝑛
)

≥ 1− 2𝑞𝑝2 + 4𝑞𝑝ℓ + 2𝑞ℓ2 + 4𝑞2𝑝 + 4𝑞2ℓ + 4𝑞3

22𝑛
, (2)

where the first inequality comes from Lemma 2.
Wrapping up. From Lemma 1 and Equations (1) and (2), we conclude that

Advprf
DbHtS(𝐴) ≤ 2𝑞

2𝑘
+ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)

22𝑘
+ 2𝑞𝑝ℓ

2𝑘+𝑛
+ 2𝑞𝑝𝜖1

2𝑘
+ 4𝑞𝑝

2𝑛+𝑘

+2𝑞2(𝜖1 + 𝜖2)
2𝑘

+ 2𝑞2ℓ𝜖1

2𝑘
+ 2𝑞3(𝜖1 + 𝜖2)2 + 8𝑞3(𝜖1 + 𝜖2)

2𝑛

+2𝑞𝑝2 + 4𝑞𝑝ℓ + 2𝑞ℓ2 + 4𝑞2𝑝 + 4𝑞2ℓ + 28𝑞3

22𝑛
.

5 Multi-user Security of Three Constructions

In this section, we demonstrate the usability of mu proof framework with applica-
tions to key-reduced DbHtS MACs, and prove that 2k-SUM-ECBC, 2k-LightMAC_Plus
and 2k-PMAC_Plus are secure beyond-birthday-bound in mu setting.

5.1 Security of 2k-SUM-ECBC

The 2𝑛-bit hash function used in 2k-SUM-ECBC is simply the concatenation of
two CBC MACs with two independent keys 𝐾ℎ,1 and 𝐾ℎ,2. Let 𝐸 : {0, 1}𝑘 ×
{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher. For a message 𝑀 = 𝑀 [1] ‖𝑀 [2] ‖ . . . ‖𝑀 [ℓ]
where |𝑀 [𝑖]| = 𝑛, the CBC MAC algorithm CBC[𝐸](𝐾, 𝑀) is defined as 𝑌ℓ,
where

𝑌𝑖 = 𝐸𝐾(𝑀 [𝑖]⊕ 𝑌𝑖−1)
for 𝑖 = 1, . . . , ℓ and 𝑌0 = 0𝑛. Then 2k-SUM-ECBC is defined as DbHtS[𝐻, 𝐸],
where

𝐻𝐾ℎ
(𝑀) = (𝐻1

𝐾ℎ,1
(𝑀), 𝐻2

𝐾ℎ,2
(𝑀)) = (CBC[𝐸](𝐾ℎ,1, 𝑀), CBC[𝐸](𝐾ℎ,2, 𝑀)) ,
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procedure sim(𝑄(𝐽))
∀ (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) ∈ 𝑄(𝐽) : (𝛴𝑖

𝑎, 𝛬𝑖
𝑎)← 𝐻𝐾ℎ (𝑀 𝑖

𝑎)
𝐼(𝐽) = {(𝑖, 𝑎) : 1 ≤ 𝑖 ≤ 𝑢, 1 ≤ 𝑎 ≤ 𝑞𝑖, (eval, 𝑖, 𝑀 𝑖

𝑎, 𝑇 𝑖
𝑎) ∈ 𝑄(𝐽)}

𝐻(𝐽) = {(𝛴𝑖
𝑎, 𝛬𝑖

𝑎) : (𝑖, 𝑎) ∈ 𝐼(𝐽)}
𝐹 (𝐽) = {(𝑖, 𝑎) : both 𝛴𝑖

𝑎 and 𝛬𝑖
𝑎 are fresh in 𝐻(𝐽)}; 𝑓 = |𝐹 (𝐽)|

𝐺(𝐽) = {(𝑖, 𝑎) : only one of 𝛴𝑖
𝑎 and 𝛬𝑖

𝑎 is fresh in 𝐻(𝐽)}
𝑅(𝐽) = {(𝑖, 𝑎) : neither 𝛴𝑖

𝑎 nor 𝛬𝑖
𝑎 is fresh in 𝐻(𝐽)}

𝑂(𝐽): the set of tuples of 2𝑓 distinct values from {0, 1}𝑛∖Rng(𝛷𝐽 )
𝑆(𝐽) = {(𝑊 𝑖

𝑎, 𝑋𝑖
𝑎)(𝑖,𝑎)∈𝐹 (𝐽) ∈ 𝑂(𝐽) : 𝑊 𝑖

𝑎 ⊕𝑋𝑖
𝑎 = 𝑇 𝑖

𝑎}
(𝑈 𝑖

𝑎, 𝑉 𝑖
𝑎 )(𝑖,𝑎)∈𝐹 (𝐽)←$ 𝑆(𝐽)

∀ (𝑖, 𝑎) ∈ 𝐹 (𝐽) : (𝛷𝐽 (𝛴𝑖
𝑎), 𝛷𝐽 (𝛬𝑖

𝑎))← (𝑈 𝑖
𝑎, 𝑉 𝑖

𝑎 )
∀ (𝑖, 𝑎) ∈ 𝐺(𝐽) :

if 𝛴𝑖
𝑎 is not fresh in 𝐻 then

if 𝛴𝑖
𝑎 /∈ Dom(𝛷𝐽 )

then 𝑈 𝑖
𝑎←$ {0, 1}𝑛 ∖ Rng(𝛷𝐽 ); 𝛷𝐽 (𝛴𝑖

𝑎)← 𝑈 𝑖
𝑎

else 𝑈 𝑖
𝑎 ← 𝛷𝐽 (𝛴𝑖

𝑎)
𝑉 𝑖

𝑎 ← 𝑇 𝑖
𝑎 ⊕ 𝑈 𝑖

𝑎

else
if 𝛬𝑖

𝑎 /∈ Dom(𝛷𝐽 )
then 𝑉 𝑖

𝑎 ←$ {0, 1}𝑛 ∖ Rng(𝛷𝐽 ); 𝛷𝐽 (𝛬𝑖
𝑎)← 𝑉 𝑖

𝑎

else 𝑉 𝑖
𝑎 ← 𝛷𝐽 (𝛬𝑖

𝑎)
𝑈 𝑖

𝑎 ← 𝑇 𝑖
𝑎 ⊕ 𝑉 𝑖

𝑎

∀ (𝑎, 𝑖) ∈ 𝑅(𝐽) :
if 𝛴𝑖

𝑎 /∈ Dom(𝛷𝐽 )
then 𝑈 𝑖

𝑎←$ {0, 1}𝑛 ∖ Rng(𝛷𝐽 ); 𝛷𝐽 (𝛴𝑖
𝑎)← 𝑈 𝑖

𝑎

else 𝑈 𝑖
𝑎 ← 𝛷𝐽 (𝛴𝑖

𝑎); 𝑉 𝑖
𝑎 ← 𝑇 𝑖

𝑎 ⊕ 𝑈 𝑖
𝑎

return (𝑈 𝑖
𝑎, 𝑉 𝑖

𝑎 )(𝑎,𝑖)∈𝐼

Fig. 5: Offline oracle in the ideal world. For each 𝐽, 𝛷𝐽 is a partial function
that used to simulate a random permutation. The domain and range of 𝛷𝐽

are initialized to be the domain and range of 𝐸𝐽 respectively.

and 𝐾ℎ,1 and 𝐾ℎ,2 are two independent keys. The specification of 2k-SUM-ECBC
is illustrated in Fig. 6. For any two distinct messages 𝑀1 and 𝑀2 of at most
ℓ ≤ 2𝑛/4 blocks, Bellare et al. [7, 23] show that

Pr [ CBC[𝐸](𝐾, 𝑀1) = CBC[𝐸](𝐾, 𝑀2) ] ≤ 2
√

ℓ

2𝑛
+ 16ℓ4

22𝑛
.

This directly implies that CBC MAC is 𝜖2-almost universal where 𝜖2 = 2
√

ℓ
2𝑛 +

16ℓ4

22𝑛 .
Below we prove that CBC MAC is 𝜖1-regular, where 𝜖1 = 𝜖2 = 2

√
ℓ

2𝑛 + 16ℓ4

22𝑛 .

Lemma 3. For any 𝑋 ∈ {0, 1}ℓ𝑛 and 𝑌 ∈ {0, 1}𝑛, we have

Pr [ CBC[𝐸](𝐾, 𝑋) = 𝑌 ] ≤ 2
√

ℓ

2𝑛
+ 16ℓ4

22𝑛
.
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EL

2k-sum-ecbc

E E

EK

EK

LL

M[1] M[2] M[3]

EJ E E JJ

M[1] M[2] M[3] T

Fig. 6: 2k-SUM-ECBC MAC built from a blockcipher 𝐸.

Proof. Let 𝑀1 = 𝑋 ‖𝑌 and 𝑀2 = 0𝑛. Then the event CBC[𝐸](𝐾, 𝑋) = 𝑌 is the
same as CBC[𝐸](𝐾, 𝑀1) = CBC[𝐸](𝐾, 𝑀2). Hence

Pr [ CBC[𝐸](𝐾, 𝑋) = 𝑌 ] = Pr [ CBC[𝐸](𝐾, 𝑀1) = CBC[𝐸](𝐾, 𝑀2) ] ≤ 2
√

ℓ

2𝑛
+16ℓ4

22𝑛
,

where the last inequality comes from the fact that CBC MAC is 𝜖2-almost uni-
versal.

By using Theorem 1, we obtain the following result.
Theorem 2. Let 𝐸 : {0, 1}𝑘 ×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we model
as an ideal blockcipher. Assume that ℓ ≤ 2𝑛/4. Then for any adversary 𝐴 that
makes at most 𝑝 ideal-cipher queries and 𝑞 evaluation queries,

Advprf
2k-SUM-ECBC(𝐴) ≤ 2𝑞

2𝑘
+ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)

22𝑘
+ 38𝑞𝑝ℓ

2𝑘+𝑛
+ 108𝑞2ℓ2

2𝑘+𝑛
+ 4𝑞𝑝

2𝑛+𝑘

+2880𝑞3ℓ

22𝑛
+ 2𝑞𝑝2 + 4𝑞𝑝ℓ + 2𝑞ℓ2 + 4𝑞2𝑝 + 4𝑞2ℓ + 28𝑞3

22𝑛
.

5.2 Security of 2k-LightMAC_Plus

The 2𝑛-bit hash function 𝐻 used in 2k-LightMAC_Plus is the concatenation of
two functions 𝐻1 and 𝐻2 where 𝐻1 and 𝐻2 are both based on a blockcipher 𝐸
with the same key, namely 𝐾ℎ,1 = 𝐾ℎ,2 = 𝐿. For a message 𝑀 = 𝑀 [1]‖ . . . ‖𝑀 [ℓ]
where 𝑀 [𝑖] is a (𝑛−𝑚)-bit block, 𝐻1

𝐿(𝑀) and 𝐻2
𝐿(𝑀) are defined as follows

𝐻1
𝐿(𝑀) = 𝐸𝐿(𝑌1)⊕ · · · ⊕ 𝐸𝐿(𝑌ℓ) ,

𝐻2
𝐿(𝑀) = 2ℓ · 𝐸𝐿(𝑌1)⊕ 𝐸𝐿(𝑌2)⊕ · · · ⊕ 2 · 𝐸𝐿(𝑌ℓ)
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where 𝑌𝑖 = ⟨𝑖⟩𝑚 ‖ 𝑀 [𝑖] and ⟨𝑖⟩𝑚 represents the 𝑚-bit encoding of integer 𝑖.
The description of hash function 𝐻 is illustrated in the top of Fig. 7. Then
2k-LightMAC_Plus is defined as DbHtS[𝐻, 𝐸] and is illustrated in the bottom of
Fig. 7. To prove that 𝐻1 and 𝐻2 are both 𝜖1-regular and 𝜖2-almost universal, we
will use the following algebraic result, the proof of which can be found in [17].

Lemma 4. [17] Let 𝑍 = (𝑍1, . . . , 𝑍ℓ) be 𝑞 random variables that sampled from
{0, 1}𝑛 without replacement. Let 𝐴 be a matrix of dimension 𝑠× ℓ defined over
GF(2𝑛). Then for any given column vector 𝑐 of dimension 𝑠× 1 over GF(2𝑛),

Pr[𝐴 · 𝑍𝑇 = 𝑐] ≤ 1
(2𝑛 − ℓ + 𝑟)𝑟

,

where 𝑟 is the rank of the matrix 𝐴.

We first show that 𝐻1 is 𝜖1-regular. Note that for any message 𝑀 and any 𝑛-bit
string 𝑌 ∈ {0, 1}𝑛, the rank of equation

𝐸𝐿(𝑌1)⊕ · · · ⊕ 𝐸𝐿(𝑌ℓ) = 𝑌

is 1 since 𝑌1, . . . , 𝑌ℓ are all distinct from each other. Hence by Lemma 4, the
equation 𝐻1

𝐿(𝑀) = 𝑌 holds with probability at most 1/(2𝑛 − ℓ + 1) ≤ 2/2𝑛,
namely 𝐻1 is 2/2𝑛-regular. Similarly, we can prove that 𝐻2 is 2/2𝑛-regular.

Next, we will show that 𝐻1 is 𝜖2-almost universal. Note that for any two
distinct messages 𝑀1 and 𝑀2, the equation 𝐻1

𝐿(𝑀1) = 𝐻2
𝐿(𝑀2) can be written

as
𝐸𝐿(𝑌 1

1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 1
ℓ1

) = 𝐸𝐿(𝑌 2
1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 2

ℓ2
) ,

where 𝑌 1
𝑖 = ⟨𝑖⟩𝑚 ‖𝑀1[𝑖] and 𝑌 2

𝑖 = ⟨𝑖⟩𝑚 ‖𝑀2[𝑖]. Without loss of generality, we
assume ℓ1 ≤ ℓ2. If ℓ1 = ℓ2, then there must exist some 𝑖 such that 𝑀1[𝑖] ̸= 𝑀2[𝑖].
If ℓ1 < ℓ2, then 𝑌 2

ℓ2
must be different from the values 𝑌 1

1 , . . . , 𝑌 1
ℓ1

. So in either
of these two cases, the rank of above equation is exactly 1. By Lemma 4, the
equation 𝐻1

𝐿(𝑀1) = 𝐻1
𝐿(𝑀2) holds with probability at most 1/(2𝑛−ℓ1−ℓ2+1) ≤

2/2𝑛. Hence 𝐻1 is 2/2𝑛-almost universal. Similarly, we can prove that 𝐻2 is
2/2𝑛-almost universal.

However, we cannot directly apply Theorem 1 at this stage since the two
function keys 𝐾ℎ,1 and 𝐾ℎ,2 are identical in 2k-LightMAC_Plus while it is as-
sumed that 𝐾ℎ,1 and 𝐾ℎ,2 are two independent keys in Theorem 1. The only
problematic term in Theorem 1 is (𝜖1 + 𝜖2)2 since only this term relies on the
independence of these two keys (i.e., condition 9 and condition 12 in the proof
of Theorem 1). To handle this issue, for condition 9, we should consider for any
two distinct messages 𝑀1 and 𝑀2, the probability of equations{︂

𝐸𝐿(𝑌 1
1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 1

ℓ1
) = 𝐸𝐿(𝑌 2

1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 2
ℓ2

)
2ℓ1 · 𝐸𝐿(𝑌 1

1 )⊕ · · · ⊕ 2 · 𝐸𝐿(𝑌 1
ℓ1

) = 2ℓ2 · 𝐸𝐿(𝑌 2
1 )⊕ · · · ⊕ 2 · 𝐸𝐿(𝑌 2

ℓ2
) .

Note that since 𝑀1 and 𝑀2 are two distinct messages, we can always find two
random variables 𝐸𝐿(𝑌 𝑎

𝑖 ) and 𝐸𝐿(𝑌 𝑏
𝑗 ) where 𝑎, 𝑏 ∈ {1, 2}, 1 ≤ 𝑖 ≤ ℓ𝑎, 1 ≤ 𝑗 ≤ ℓ𝑏

such that the rank of above two equations is 2. For other three cases in condition
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9, we can analyze them similarly. By Lemma 4, the above two equations hold
with probability at most 1/(2𝑛 − ℓ1 − ℓ2 + 2)2 ≤ 4/2𝑛. Hence condition 9 holds
with probability at most 16𝑞2/22𝑛. For condition 12, we should consider for three
distinct messages 𝑀1, 𝑀2 and 𝑀3 such that{︂

𝐸𝐿(𝑌 1
1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 1

ℓ1
) = 𝐸𝐿(𝑌 2

1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 2
ℓ2

)
2ℓ1 · 𝐸𝐿(𝑌 1

1 )⊕ · · · ⊕ 2 · 𝐸𝐿(𝑌 1
ℓ1

) = 2ℓ3 · 𝐸𝐿(𝑌 3
1 )⊕ · · · ⊕ 2 · 𝐸𝐿(𝑌 3

ℓ3
) .

Similarly, it holds with probability at most 16𝑞3/22𝑛.
Therefore, by using Theorem 1 and combined with above analysis, we can

obtain the multi-user security of 2k-LightMAC_Plus.

Theorem 3. Let 𝐸 : {0, 1}𝑘 ×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we model
as an ideal blockcipher. Then for any adversary 𝐴 that makes at most 𝑝 ideal-
cipher queries and 𝑞 evaluation queries,

Advprf
2k-LightMAC_Plus(𝐴) ≤ 2𝑞

2𝑘
+ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)

22𝑘
+ 2𝑞𝑝ℓ

2𝑘+𝑛
+ 4𝑞𝑝

2𝑘+𝑛
+ 4𝑞𝑝

2𝑛+𝑘

+ 8𝑞2

2𝑘+𝑛
+ 4𝑞2ℓ

2𝑘+𝑛
+ 64𝑞3

22𝑛

+2𝑞𝑝2 + 4𝑞𝑝ℓ + 2𝑞ℓ2 + 4𝑞2𝑝 + 4𝑞2ℓ + 28𝑞3

22𝑛
.

5.3 Security of 2k-PMAC_Plus

The 2𝑛-bit hash function 𝐻 used in 2k-PMAC_Plus is the concatenation of two
functions 𝐻1 and 𝐻2 where 𝐻1 and 𝐻2 are both based a blockcipher 𝐸 with
the same key, namely 𝐾ℎ,1 = 𝐾ℎ,2 = 𝐿. For a message 𝑀 = 𝑀 [1] ‖ . . . ‖𝑀 [ℓ]
where 𝑀 [𝑖] is a 𝑛-bit block, 𝐻1

𝐿(𝑀) and 𝐻2
𝐿(𝑀) are defined as follows

𝐻1
𝐿(𝑀) = 𝐸𝐿(𝑌1)⊕ · · · ⊕ 𝐸𝐿(𝑌ℓ) ,

𝐻2
𝐿(𝑀) = 2 · 𝐸𝐿(𝑌1)⊕ · · · ⊕ 2ℓ · 𝐸𝐿(𝑌ℓ)

where 𝑌𝑖 = 𝑀 [𝑖] ⊕ 2𝑖 · 𝛥0 ⊕ 22𝑖 · 𝛥1, and 𝛥0 = 𝐸𝐿(0) and 𝛥1 = 𝐸𝐿(1). The
detailed code description of hash function 𝐻 is illustrated in the top of Fig. 8.
Then 2k-PMAC_Plus is defined as DbHtS[𝐻, 𝐸] and is illustrated in the bottom
of Fig. 8.

We now show that both 𝐻1 and 𝐻2 are 𝜖1-regular and 𝜖2-almost universal.
For any message 𝑀 = 𝑀 [1] ‖ . . . ‖𝑀 [ℓ], we denote by E1 the event that 𝑌𝑖 = 𝑌𝑗

for 1 ≤ 𝑖, 𝑗 ≤ ℓ and 𝑖 ̸= 𝑗. Note that the rank of equation

𝑀 [𝑖]⊕𝑀 [𝑗]⊕ (2𝑖 ⊕ 2𝑗) ·𝛥0 ⊕ (22𝑖 ⊕ 22𝑗) ·𝛥1 = 0

is 1. Hence by Lemma 4,

Pr[E1] ≤
(︀

ℓ
2
)︀

2𝑛 − 2 + 1 ≤
2ℓ2

2𝑛
.
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procedure 𝐻(𝐿, 𝑀)
𝑀 [1] ‖ . . . ‖𝑀 [ℓ]←𝑀

for 𝑖← 1 to ℓ do
𝑌𝑖 ← ⟨𝑖⟩𝑚 ‖𝑀 [𝑖]; 𝑍𝑖 ← 𝐸𝐿(𝑌𝑖)

𝛴 = 𝑍1 ⊕ 𝑍2 ⊕ . . .⊕ 𝑍ℓ; 𝛬 = 2ℓ · 𝑍1 ⊕ 2ℓ−1 · 𝑍2 ⊕ · · · ⊕ 2 · 𝑍ℓ

return (𝛴, 𝛬)

EL E E

EK

EK

LL

1||M[1]

T

2||M[2] 3||M[3]

2 2 2

Fig. 7: Top. The 2𝑛-bit hash function used in 2k-LightMAC_Plus. Here the hash key
is 𝐾ℎ = (𝐾ℎ,1, 𝐾ℎ,2) where 𝐾ℎ,1 = 𝐾ℎ,2 = 𝐿. Bottom. The 2k-LightMAC_Plus
construction built from a blockcipher 𝐸.

For any 𝑛-bit string 𝑌 ∈ {0, 1}𝑛, the rank of equation

𝐸𝐿(𝑌1)⊕ · · · ⊕ 𝐸𝐿(𝑌ℓ) = 𝑌

is 1 when event E1 does not happen. Hence by Lemma 4, the equation 𝐻1
𝐿(𝑀) =

𝑌 holds with probability at most

Pr
[︀

𝐻1
𝐿(𝑀) = 𝑌

]︀
= Pr

[︀
𝐻1

𝐿(𝑀) = 𝑌 ∧ E1
]︀

+ Pr
[︀

𝐻1
𝐿(𝑀) = 𝑌 ∧ E1

]︀
≤ Pr

[︀
𝐻1

𝐿(𝑀) = 𝑌 | E1
]︀

+ Pr [ E1 ]

≤ 1
2𝑛 − ℓ + 1 + 2ℓ2

2𝑛
≤ 4ℓ2

2𝑛
.

Thus 𝐻1 is ℓ2/2𝑛-regular. Similarly, we can prove that 𝐻2 is ℓ2/2𝑛-regular.
Next, we will show that 𝐻1 is 𝜖2-almost universal. For any two distinct

messages 𝑀1 = 𝑀1[1] ‖ . . . ‖𝑀1[ℓ1] and 𝑀2 = 𝑀2[1] ‖ . . . ‖𝑀2[ℓ2], we denote
by E2 the event that 𝑌 𝑎

𝑖 = 𝑌 𝑏
𝑗 for 𝑎, 𝑏 ∈ {1, 2} and 1 ≤ 𝑖 ≤ ℓ𝑎, 1 ≤ 𝑗 ≤ ℓ𝑏, 𝑖 ̸= 𝑗.

Then similarly to the analysis of event E1, we have Pr [ E2 ] ≤ 8ℓ2/2𝑛. Hence the
rank of equation

𝐸𝐿(𝑌 1
1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 1

ℓ1
) = 𝐸𝐿(𝑌 2

1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 2
ℓ2

)

is 1 when event E2 does not happen. Hence by Lemma 4, the equation 𝐻1
𝐿(𝑀1) =

𝐻1
𝐿(𝑀2) holds with probability at most 1/(2𝑛−2ℓ+1)+8ℓ2/2𝑛 ≤ 10ℓ2/2𝑛. This

21



implies that 𝐻1 is 10ℓ2/2𝑛-almost universal. By using similar argument, we can
prove that 𝐻2 is also 10ℓ2/2𝑛-almost universal.

Since 𝐻1 and 𝐻2 use the same key, similarly to the case of 2k-LightMAC_Plus,
we should handle the problematic term (𝜖1+𝜖2)2 in Theorem 1 before applying it.
This term arises from condition 9 and condition 12. Denote by E3 the event that
among 𝑞 evaluation queries, there exits some message 𝑀 such that 𝐸𝐿(𝑌𝑖) = 0
for 1 ≤ 𝑖 ≤ ℓ. It is easy to see that Pr [ E3 ] ≤ 𝑞ℓ/2𝑛. We proceed to analyze
condition 9 and condition 12 when E3 does not occur. For condition 9, we should
consider for any two distinct messages 𝑀1 and 𝑀2, the probability of equations{︂

𝐸𝐿(𝑌 1
1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 1

ℓ1
) = 𝐸𝐿(𝑌 2

1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 2
ℓ2

)
2 · 𝐸𝐿(𝑌 1

1 )⊕ · · · ⊕ 2ℓ1 · 𝐸𝐿(𝑌 1
ℓ1

) = 2 · 𝐸𝐿(𝑌 2
1 )⊕ · · · ⊕ 2ℓ2 · 𝐸𝐿(𝑌 2

ℓ2
) .

Then since 𝑀1 and 𝑀2 are two distinct messages, by using the result in [18,
Appendix C], we can always find two random variables 𝐸𝐿(𝑌 𝑎

𝑖 ) and 𝐸𝐿(𝑌 𝑏
𝑗 )

where 𝑎, 𝑏 ∈ {1, 2} and 1 ≤ 𝑖 ≤ ℓ𝑎, 1 ≤ 𝑗 ≤ ℓ𝑏 such that the rank of above two
equations is 2 when E2 does not happen. On the other hand, if E2 happens, then
it is easy to see that the rank of above two equations is at least 1. By Lemma 4,
the above two equations hold with probability at most

1
(2𝑛 − 2ℓ + 2)2

+ 8ℓ2

2𝑛
· 1

2𝑛 − 2ℓ + 1 ≤
20ℓ2

22𝑛
.

For other three cases in condition 9, we can analyze them similarly. Hence con-
dition 9 holds with probability at most 80𝑞2ℓ2/22𝑛 + 𝑞ℓ/2𝑛. For condition 12, we
should consider for any there distinct messages 𝑀1, 𝑀2 and 𝑀3{︂

𝐸𝐿(𝑌 1
1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 1

ℓ1
) = 𝐸𝐿(𝑌 2

1 )⊕ · · · ⊕ 𝐸𝐿(𝑌 2
ℓ2

)
2 · 𝐸𝐿(𝑌 1

1 )⊕ · · · ⊕ 2ℓ1 · 𝐸𝐿(𝑌 1
ℓ1

) = 2 · 𝐸𝐿(𝑌 3
1 )⊕ · · · ⊕ 2ℓ3 · 𝐸𝐿(𝑌 3

ℓ3
) .

Denote by E4 the event that 𝑌 𝑎
𝑖 = 𝑌 𝑏

𝑗 for 𝑎, 𝑏 ∈ {1, 2, 3} and 1 ≤ 𝑖 ≤ ℓ𝑎, 1 ≤ 𝑗 ≤
ℓ𝑏, 𝑖 ̸= 𝑗. Then similarly to the analysis of E2, we have Pr [ E4 ] ≤ 18ℓ2/2𝑛. Hence,
by using the result in [18, Appendix C], we can always find two random variables
𝐸𝐿(𝑌 𝑎

𝑖 ) and 𝐸𝐿(𝑌 𝑏
𝑗 ) where 𝑎, 𝑏 ∈ {1, 2, 3} and 1 ≤ 𝑖 ≤ ℓ𝑎, 1 ≤ 𝑗 ≤ ℓ𝑏 such that

the rank of above two equations is 2 when E4 dose not occur. On the other hand,
if E4 happens, then it is easy to see that the rank of above two equations is at
least 1. By Lemma 4, we can obtain that the above two equations hold with
probability at most 38ℓ2/22𝑛. Thus, condition 12 holds with probability at most
152𝑞3ℓ2/22𝑛 + 𝑞ℓ/2𝑛.

Therefore, by using Theorem 1 and combined with above analysis, we can
obtain the multi-user security of 2k-PMAC_Plus.
Theorem 4. Let 𝐸 : {0, 1}𝑘 ×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we model
as an ideal blockcipher. Then for any adversary 𝐴 that makes at most 𝑝 ideal-
cipher queries and 𝑞 evaluation queries,

Advprf
2k-PMAC_Plus(𝐴) ≤ 2𝑞

2𝑘
+ 𝑞(3𝑞 + 𝑝)(6𝑞 + 𝑝)

22𝑘
+ 2𝑞𝑝ℓ

2𝑘+𝑛
+ 2𝑞𝑝ℓ2

2𝑘
+ 4𝑞𝑝

2𝑛+𝑘
+ 24𝑞2ℓ3

2𝑘+𝑛

+320𝑞3ℓ2

22𝑛
+ 2𝑞𝑝2 + 4𝑞𝑝ℓ + 2𝑞ℓ2 + 4𝑞2𝑝 + 4𝑞2ℓ + 28𝑞3

22𝑛
.
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procedure 𝐻(𝐿, 𝑀)
𝑀 [1] ‖ . . . ‖𝑀 [ℓ]←𝑀 ; 𝛥0 ← 𝐸𝐿(0); 𝛥1 ← 𝐸𝐿(1)
for 𝑖← 1 to ℓ do

𝑌𝑖 ←𝑀 [𝑖]⊕ 2𝑖 ·𝛥0 ⊕ 22𝑖 ·𝛥1; 𝑍𝑖 ← 𝐸𝐿(𝑌𝑖)
𝛴 = 𝑍1 ⊕ 𝑍2 ⊕ . . .⊕ 𝑍ℓ; 𝛬 = 2 · 𝑍1 ⊕ 22 · 𝑍2 ⊕ · · · ⊕ 2ℓ · 𝑍ℓ

return (𝛴, 𝛬)

EL

2k-pmac_plus

E E

EK

EK

LL

M[1]

T

M[2] M[3]
2 ⋅ Δ0

22 ⋅ Δ1

2 22 23

22 ⋅ Δ0
24 ⋅ Δ1

23 ⋅ Δ0
26 ⋅ Δ1

Fig. 8: Top. The 2𝑛-bit hash function used in 2k-PMAC_Plus. Here the hash key is
𝐾ℎ = (𝐾ℎ,1, 𝐾ℎ,2) where 𝐾ℎ,1 = 𝐾ℎ,2 = 𝐿. Bottom. The 2k-PMAC_Plus construction
built from a blockcipher 𝐸.
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