
Zero-Knowledge Succinct Arguments with a Linear-Time Prover

Jonathan Bootle
jbt@zurich.ibm.com

IBM Research – Zurich

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Siqi Liu
sliu18@berkeley.edu

UC Berkeley

February 24, 2021

Abstract

We construct a zero knowledge argument system with polylogarithmic communication complexity
where the prover runs in linear time and the verifier runs in polylogarithmic time. This achieves a central
goal in the area of efficient zero knowledge. Additionally, our construction is plausibly post-quantum and
only makes a black-box use of lightweight cryptography (collision-resistant hash functions).

Our result is a direct consequence of fundamental progress in probabilistic proofs: a new interactive
oracle proof (IOP) that simultaneously achieves zero knowledge, linear-time proving, and polylogarithmic
verification. Specifically, we construct a zero-knowledge IOP where, for the satisfiability of an N -gate
arithmetic circuit over any field of size Ω(N), the prover uses O(N) field operations and the verifier uses
polylog(N) field operations (with proof lengthO(N) and query complexity polylog(N)). Polylogarithmic
verification is achieved in the holographic setting for every circuit (the verifier has oracle access to a
linear-time-computable encoding of the circuit whose satisfiability is being proved).

Keywords: succinct arguments; zero knowledge; interactive oracle proofs

1

Contents
1 Introduction 3

1.1 Our results . 3
1.2 Related work on probabilistic proofs . 5
1.3 Related work on succinct arguments . 6

2 Techniques 8
2.1 Linear-time succinct arguments from linear-time probabilistic proofs 8
2.2 Proof overview for Theorem 2 . 9
2.3 From tensor-queries to point-queries in zero-knowledge . 11
2.4 Tensor IOP for R1CS with semi-honest verifier zero knowledge . 14
2.5 Hiding properties of linear codes . 16
2.6 Interactive proof composition . 17
2.7 Completing the proof of Theorem 2 . 18
2.8 On bounded-query zero knowledge . 19

3 Preliminaries 24
3.1 Interactive oracle proofs with special queries . 24
3.2 Point queries and tensor queries . 25
3.3 Robust proofs . 25
3.4 Proximity proofs . 26
3.5 Zero knowledge . 26
3.6 Error-correcting codes . 28
3.7 Zero knowledge codes . 30

4 Tensor IOP for R1CS with (semi)honest-verifier zero knowledge 32
4.1 Preliminaries . 32
4.2 Our construction . 34

5 Algebraic reformulation of zero knowledge codes 39
5.1 Proof of Lemma 5.2 . 39
5.2 Proof of Lemma 5.1 . 40
5.3 Examples . 40

6 Tensor products of zero-knowledge codes 42

7 Zero-knowledge codes with linear-time encoding 45
7.1 Preliminaries . 45
7.2 Proof of Theorem 7.3 . 46
7.3 Setting parameters . 47

8 From tensor queries to point queries with zero knowledge 48
8.1 Construction . 49
8.2 Proof of Lemma 8.2 . 50

9 Main theorem 54
9.1 Step 1: robustification . 55
9.2 Step 2: composition . 56
9.3 Step 3: tensor queries to point queries . 57

A Robustification 58

B Proof composition 62

C Equivalence of zero-knowledge code definitions 66

Acknowledgments 67

References 67

2

1 Introduction

Zero knowledge proofs enable a prover to convince a verifier that a statement is true without revealing any
further information about the statement [GMR89]. The main efficiency measures in a zero knowledge proof
are the running time of the prover, the running time of the verifier, and the number of bits exchanged between
them. A central goal in the study of zero knowledge proofs is to minimize the complexity of these measures.

Motivated by real-world applications, researchers across multiple communities have invested significant
effort, and made much progress, in designing efficient zero knowledge protocols.

Several works (e.g., [IKOS07; GMO16; Cha+17; KKW18; HK20; WYKW20]) focus on prover time.
They construct zero-knowledge proofs for circuit satisfiability where the prover’s time complexity is linear in
circuit size, which is asymptotically optimal.1 The drawback of these constructions is that communication
complexity and verifier time also grow linearly with circuit size, which is undesirable for many applications.

This drawback is inevitable because, even without zero knowledge, interactive proofs for hard languages
with sublinear communication are unlikely [GH98; GVW02]. Nevertheless, if instead of considering proofs
we consider arguments [BCC88], wherein soundness is required to hold only against efficient adversaries
rather than all adversaries, then we can hope to avoid the drawback. For this, rather than studying proofs where
zero knowledge holds computationally, one studies arguments where zero knowledge holds statistically.2

In a seminal work, Kilian [Kil92] constructed zero knowledge arguments that are succinct: communication
complexity is polylogarithmic in computation size. While this is essentially optimal, the prover in Kilian’s
construction is a polynomial-time algorithm that fails to achieve the asymptotically-optimal linear time that
can be achieved via (non-succinct) zero knowledge proofs.

The time complexity of the prover in succinct arguments has been the subject of intense study, which has
led to zero-knowledge succinct arguments with a quasilinear-time prover (see Section 1.3) and also numerous
instantiations that are useful in practice. However, the basic question of whether zero-knowledge succinct
arguments can have linear-time provers has remained open.

Do there exist zero-knowledge succinct arguments with a linear-time prover?

In this paper we give a positive answer to this question. Prior to this work, the question was open even when
dropping the requirement of zero knowledge. Jumping ahead, our solution has notable additional features:
we only make a black-box use of lightweight cryptography (linear-time collision-resistant hash functions) for
which there are plausibly post-quantum candidates. Subsequent to our work, Lee et al. [LSTW21] propose
a construction that is more efficient but makes a non-black-box use of cryptography (it uses a succinct
non-interactive argument to prove computations that involve heuristically-instantiated random oracles).

1.1 Our results

We construct a zero-knowledge succinct argument with a linear-time prover, under standard complexity
assumptions. Our protocol is for a standard generalization of arithmetic circuit satisfiability, known as
rank-1 constraint satisfiability (R1CS), where the “circuit description” is given by coefficient matrices. This
NP-complete problem is widely used in the succinct argument literature because it efficiently expresses
arithmetic circuits3 and is convenient to use when designing a succinct argument.

1Several of these works additionally achieve excellent concrete efficiency, via experiments that demonstrate the ability to prove
the satisfiability of circuits with billions of gates.

2As soundness is computational then we can hope for zero knowledge to be statistical.
3Satisfiability of an n-gate arithmetic circuit over the field F is reducible, in linear time, to an R1CS instance also over F where

the coefficient matrices are n× n and have m = O(n) non-zero entries. (In particular, the coefficient matrices are sparse.)

3

Definition 1 (informal). The R1CS problem asks: given a finite field F, coefficient matrices A,B,C ∈ Fn×n
each containing at most m = Ω(n) non-zero entries,4 and an instance vector x ∈ F∗, is there a witness
vector w ∈ F∗ such that z := (x,w) ∈ Fn and Az ◦Bz = Cz? (Here “◦” denotes the entry-wise product.)

Merely checking the validity of a witness by directly checking the R1CS condition costs O(m) field
operations, so “linear time” for R1CS means computations that cost no more than O(m) field operations.

The theorem below relies on any linear-time collision-resistant hash function (given as a black box). Such
hash functions are known to exist, e.g., under certain assumptions about finding short codewords in linear
codes [AHIKV17]; moreover, these candidate hash functions are not known to be insecure against quantum
adversaries, and so our succinct argument is plausibly post-quantum secure.

Theorem 1 (informal). Using any linear-time collision-resistant hash function with security parameter λ as
a black box, one can obtain an interactive argument for R1CS, over any field of size Ω(m), where:
• time complexity of the prover is bounded by the cost of O(λ+m) field operations;
• time complexity of the verifier is bounded by the cost of poly(λ, |x|, logm) field operations;
• round complexity is O(logm);
• communication complexity is poly(λ, logm) field elements;
• soundness error is O(1).
Moreover, the argument is malicious-verifier zero-knowledge with private coins.5

This gives the first cryptographic zero-knowledge argument system with linear prover complexity and
polylogarithmic verifier complexity (and thus polylogarithmic argument size).

The polylogarithmic verifier time in Theorem 1 is achieved in the preprocessing setting, which means that
the verifier receives as input a short digest of the circuit that can be derived by anyone (in linear time). Some
form of preprocessing is necessary for sublinear verification because just reading the circuit takes linear time.

Technical core: linear-time probabilistic proofs. The technical core of this paper is a probabilistic proof
that simultaneously achieves zero knowledge, linear-time proving, and polylogarithmic-time verification (so
also linear proof length and polylogarithmic query complexity). In more detail, we construct an interactive
oracle proof (IOP) [BCS16; RRR16] for the R1CS problem with the parameters below. Our result significantly
improves over prior linear-time IOPs, as summarized in Figure 1 and further discussed in Section 1.2.

Theorem 2 (informal). There is a public-coin IOP for R1CS over any field F of size Ω(m), where:
• the prover uses O(m) field operations;
• the verifier uses poly(|x|, logm) field operations;
• round complexity is O(logm);
• proof length is O(m) elements in F;
• query complexity is O(logm);
• soundness error O(1).
Moreover, the IOP is semi-honest-verifier zero-knowledge.

The above theorem directly implies Theorem 1, via a known implication that involves combining IOPs
and linear-time collision resistant hashing [BCGGHJ17]. We review this implication in Section 2.1 and, in

4Note that m = Ω(n) without loss of generality because if m < n/3 then there are variables of z that do not participate in any
constraint, which can be dropped. Thus the main size measure for R1CS is the sparsity parameter m.

5The private coins come from using the Goldreich–Kahan technique [GK96]. Achieving public coins is also possible via different
relaxations: (i) we could rely on a reference string (which enables the zero knowledge simulator to access a trapdoor); or (ii) we could
relax the goal to honest-verifier zero-knowledge while remaining in the plain model. See [IMSX15] for more on these considerations.

4

the meantime, we remark that the sublinear verifier time in Theorem 2 is achieved in the holographic setting,
which means that the verifier is given query access to a linear-length encoding of the coefficient matrices that
is computable in linear time. Holographic proofs lead to preprocessing arguments [CHMMVW20; COS20],
enabling the polylogarithmic verification to be preserved through this implication.

The notion of semi-honest-verifier zero-knowledge means that the protocol leaks no information to an
honest verifier for any choice of verifier randomness. This suffices for Theorem 1, as explained in Section 2.1.

We also present results (see Section 2.8) that allow us to prove a variant of Theorem 2 where the IOP
satisfies the stronger property of bounded-query zero-knowledge, but at the cost of a sublinear verifier
time rather than polylogarithmic. Bounded-query zero-knowledge is the hiding notion typically studied for
PCPs [KPT97], and often enables reductions in communication when compiling the IOP into a succinct
argument. The aforementioned loss in verifier time only comes from the fact that known constructions
of “zero knowledge codes” with a linear-time encoder are probabilistic, and the loss could be avoided by
derandomizing such families — this is an exciting open problem in coding theory.

Open questions. Our IOP works for satisfiability problems over fields of at least linear size, as is the
case for all known linear-time IOPs (see Section 1.2); obtaining analogous results for all fields, or just the
boolean field, is open. Moreover, our IOP achieves constant soundness error, and the question of additionally
achieving a sub-constant soundness error (ideally, negligible in a security parameter) is open. Finally, while
our focus is asymptotic efficiency, we are optimistic that the ideas in this paper will facilitate further research
that may additionally achieve good concrete efficiency. (We point to specific ideas for this in Section 2.)

IOP encode circuit cost prover cost verifier cost query complexity zero-knowledge

[BCGGHJ17] O(n) F-ops O(n) F-ops O(
√
n) F-ops O(

√
n) semi-honest zk

[BCG20] O(n) F-ops O(n) F-ops O(nε) F-ops O(nε) not zk
this work O(n) F-ops O(n) F-ops polylog(n) F-ops O(log n) semi-honest zk

Figure 1: Comparison of known IOPs with a linear-time prover. The parameters are for an n-gate arithmetic
circuit defined over a field F of size Ω(n); and ε is any positive constant. The sublinear verification in all cases is
achieved in the holographic setting (the verifier has oracle access to an encoding of the circuit).

1.2 Related work on probabilistic proofs

As our main technical result concerns IOPs, we summarize prior works on probabilistic proofs that study
related questions. Further connections to prior work are given in Section 2 where we overview our techniques.

First we discuss the line of works on probabilistic proofs with linear proof length, a necessary condition
for a linear-time prover (our goal). The first result was [BKKMS13], which provides a PCP for boolean circuit
satisfiability with linear proof length and sublinear query complexity; this is the only known result for PCPs,
and the question of constructing PCPs with linear proof length and polylogarithmic query complexity remains
a major open problem. Subsequently, [BCGRS17] obtained a 3-round IOP for boolean circuit satisfiability
with linear proof length and constant query complexity; and [RR20] showed how to reduce the multiplicative
constant in the proof length to arbitrarily close to 1 at the cost of a slightly larger (still universal) constant
number of rounds. None of these works study linear-time proving or sublinear-time verification.

Next, [BCGGHJ17] obtained a zero-knowledge IOP for arithmetic circuit satisfiability with linear-time
prover and square-root-time verifier. Then [BCG20] improved the verifier time to any sublinear polynomial,
but without zero knowledge. We improve on this by achieving both zero knowledge and polylogarithmic-time

5

verifier. All of these results require working over a finite field of linear size, and analogous results for boolean
circuits are not known. See Figure 1 for a table comparing these latter works.

Recurring tools across many of these works, as well as this paper, include: the sumcheck protocol for
tensor codes [Mei13], proof composition (for PCPs [AS98] and for IOPs [BCGRS17]), the linear-time
sumcheck [Tha13], and the use of codes without the multiplication property. (The property states that
coordinate-wise multiplication of codewords yields codewords in a code whose relative distance is still good).

A central challenge in designing IOPs with linear-time provers is that one cannot adopt “useful” codes
like the Reed–Solomon code since the encoding time is quasilinear. Instead, prior works resorted to using
linear-time encodable codes (e.g., of Spielman [Spi96] or Druk–Ishai [DI14]) that, unfortunately, do not have
the multiplication property, which makes designing IOPs more difficult. (See [Mei12; Mei13] for more on
why the multiplication property is useful in constructing probabilistic proofs.)

1.3 Related work on succinct arguments

The zero-knowledge succinct argument of Kilian [Kil92] is obtained by combining a collision-resistant hash
function and a probabilistically-checkable proof (PCP). If we instantiate Kilian’s construction with PCPs
with a quasilinear-time prover and a polylogarithmic-time verifier [BS08; BCGT13] rather than the PCP used
at the time [BFLS91], we obtain a zero-knowledge succinct argument whose prover runs in quasilinear-time.

In terms of asymptotic complexity of the prover, the above remains, to a first order, the state of the art
for succinct arguments (zero knowledge or not). In particular, the question of constructing PCPs with a
linear-time prover and a polylogarithmic-time verifier is a major open problem.

Reducing the quasilinear cost. Researchers in the last decade have invested significant effort into reducing
prover time in succinct arguments, eliminating many logarithmic multiplicative factors from the prover’s
quasilinear time. Some works have come close to (but did not achieve) a linear time prover, as we explain.

Essentially all approaches for constructing succinct arguments follow this high-level template: first
construct a probabilistic proof in some proof model, and then use cryptography to compile the probabilistic
proof into an argument system. The first step alone typically costs more than linear time because it involves
(among other things) using the Fast Fourier Transform (FFT) to encode the computation as a polynomial.

Several works [BCCGP16; BBBPWM18; WTSTW18; XZZPS19; Set20; ZWZZ20; SL20; KMP20]
construct various forms of succinct arguments without FFTs by first constructing linear-time probabilistic
proofs in certain “algebraic” models and then compiling these into arguments by using homomorphic
commitments. However, the cryptography introduces quasilinear work for the prover,6 usually to perform a
linear number of multi-exponentiations over a cryptographically-large group (which translates to a quasilinear
number of group operations for the prover);7 we refer the reader to the follow up work [LSTW21] for a
detailed discussion of these quasilinear costs in terms of computation size and the security parameter. In sum,
the above line of works has contributed among the best asymptotic prover times for succinct arguments (as
well as excellent concrete efficiency), but the cryptography has precluded linear-time provers.

Linear-time prover and sublinear communication. Bootle et al. [BCGGHJ17] observe that Kilian’s
approach to succinct arguments introduces only linear cryptographic costs, when the collision-resistant hash
function used for the compilation is suitably instantiated. (We elaborate on this in Section 2.1.) Prior work
leveraged this observation to achieve argument systems with linear-time prover and sublinear communication:

6The quasilinear costs in some works (due to cryptography [XZZPS19; ZWZZ20] or an FFT [ZXZS20]) scale with witness size
rather than computation size, and so the prover runs in linear time when the witness is small relative to the computation.

7Some of the cited works still refer to such prover time as “linear” or “asymptotically optimal”. This is a misnomer.

6

• [BCGGHJ17] achieves an honest-verifier zero knowledge argument system for arithmetic circuit satisfia-
bility with a communication complexity of O(

√
n), where the prover performs O(n) field operations and

hash computations while the verifier performs O(
√
n) field operations and hash computations.

• [BCG20] achieves, for every ε > 0, an argument system for R1CS with a communication complexity of
O(nε), where the prover performs O(n) field operations and hash computations while the verifier performs
O(nε) field operations and hash computations. No zero knowledge property is achieved in this work.

There are linear-time candidates for the hash function [AHIKV17], leading to a linear-time prover.
In both cases the technical core is the construction of IOPs with a linear-time prover, but, as discussed in

Section 1.2, these prior works only achieved sublinear query complexity thereby, after compilation, falling
short of the goal of polylogarithmic communication complexity.

7

2 Techniques

Our result about zero-knowledge succinct arguments (Theorem 1) is a direct implication of our result about
zero-knowledge probabilistic proofs (Theorem 2). We review this implication in Section 2.1, and then
dedicate the rest of the technical overview to the main ideas behind Theorem 2: we sketch the steps in our
proof in Section 2.2 and then summarize the main ideas behind each step in Sections 2.3 to 2.6. Results
related to a variant of Theorem 2 with bounded-query zero-knowledge are described in Section 2.8.

2.1 Linear-time succinct arguments from linear-time probabilistic proofs

Known approaches for constructing succinct arguments rely on cryptography to “compile” various forms of
probabilistic proofs into argument systems. However, the cryptography used typically introduces super-linear
overheads, ruling out a linear-time argument system even when compiling a linear-time probabilistic proof.
Bootle et al. [BCGGHJ17] observe that Kilian’s approach [Kil92] is a notable exception. We review this
below because Theorem 2 implies Theorem 1 via this approach; our technical contribution is Theorem 2.

Linear-time arguments via Kilian’s approach. The cryptography used in Kilian’s approach is collision-
resistant hash functions, for which there are linear-time candidates under standard assumptions (e.g., based
on the hardness of finding short codewords in linear codes [AHIKV17]). If we use a linear-time hash function
in Kilian’s approach to compile a linear-time PCP (over a large-enough alphabet) then we obtain a linear-time
argument system.8 While constructions of linear-time PCPs are not known (and seem far beyond current
techniques), the foregoing implication equally holds for IOPs [BCS16; RRR16], a multi-round relaxation
of PCPs. This route was used in [BCGGHJ17; BCG20] to obtain interactive arguments with linear-time
prover and sublinear-time verifier from IOPs with linear-time prover and sublinear-time verifier (see Figure 1).
These arguments were “stuck” in the sublinear regime because the underlying IOPs were also in that regime.

In this paper we take the same route, but significantly improve on the prior state of the art for IOPs.
Linear-time IOPs with polylogarithmic query complexity lead to linear-time arguments with polylogarithmic
communication; moreover, if the IOP verifier runs in polylogarithmic time then so does the argument verifier.

The case of zero knowledge. The IOPs in Theorem 2 additionally satisfy a strong notion of zero knowledge,
which enables us to obtain linear-time succinct arguments that are zero knowledge, as explained below.

Kilian’s approach to additionally achieve zero knowledge makes a non-black-box use of the collision-
resistant hash function and the probabilistic proof’s verifier.9 Subsequently, Ishai et al. [IMSX15] proved that
if the underlying probabilistic proof satisfies a mild notion of zero knowledge then Kilian’s approach can
be significantly simplified to yield a zero-knowledge succinct argument where the collision-resistant hash
function and the probabilistic proof are used as black boxes. This implication, too, preserves linear time of
both building blocks to yield a zero-knowledge succinct argument with a linear-time prover.

The notion of zero-knowledge required of the underlying probabilistic proof depends on the desired
notion of zero knowledge for the argument system. If the argument system is desired to be honest-verifier zero
knowledge (this suffices, e.g., to subsequently apply the Fiat–Shamir heuristic) then the probabilistic proof
must be honest-verifier zero knowledge. If instead the argument system is desired to be malicious-verifier
zero-knowledge then the probabilistic proof must be semi-honest-verifier zero knowledge (the simulator works

8In Kilian’s approach, the argument prover’s cryptographic cost is dominated by the cost to commit to the PCP string via a Merkle
tree. In particular, if the PCP has proof length l and the size of a proof symbol is linear in the input size of the hash function, then the
running time of the argument prover is within a constant of the running time of the PCP prover.

9Modify the Merkle tree to be over hiding commitments to proof symbols (rather than over the proof symbols themselves) and
then prove in zero knowledge that opening the queried locations would have made the probabilistic proof verifier accept.

8

for any possible fixed execution of the honest verifier). A further strengthening known as bounded-query zero
knowledge, the hiding notion typically studied for PCPs [KPT97], enables reductions in communication.

In sum, our IOP (Theorem 2) additionally guarantees zero knowledge because we are then able to obtain
a black-box cryptographic construction of the desired zero-knowledge succinct arguments. Black-box results
are a cryptographic “gold standard” that typically reflect a fuller understanding, and over time lead to more
efficient solutions (once each black-box is suitably optimized), when compared to non-black-box results.

2.2 Proof overview for Theorem 2

Having explained how Theorem 2 implies Theorem 1 via known implications, we now turn our attention to
explaining our proof of Theorem 2, which is a new IOP construction. Below we summarize the steps in our
proof approach; we provide further intuition about these steps in subsequent subsections.

Recall that an IOP is a proof model in which a prover and a verifier interact over multiple rounds, and in
each round the prover sends a proof message and the verifier replies with a challenge message. The verifier
has query access to all received proof messages, in the sense that it can query any of the proof messages at
any desired location. The verifier decides to accept or reject depending on its input, its randomness, and
answers to its queries. The main information-theoretic efficiency measures in an IOP are proof length (total
size of all proof messages) and query complexity (number of read locations across all proof messages), while
the main computational efficiency measures are prover running time and verifier running time.

Our starting point. The starting point of our work is the non-zero-knowledge IOP for R1CS in [BCG20],
which has prover time O(m) and verifier time O(mε) for any a-priori fixed constant ε > 0. That IOP is
obtained in two steps: first construct a tensor IOP for R1CS with linear prover time and constant query
complexity; second apply a compiler that transforms any tensor IOP into a standard IOP. In a tensor IOP, the
verifier may make multiple tensor queries directly to a proof message Π, each of the form q = (q1, . . . , qt),
receiving the answers v := 〈⊗iqi,Π〉. This differs from the usual setting where the verifier queries single
locations of proof string values (i.e., makes point queries).

Steps in our proof. Informally, achieving Theorem 2 without zero knowledge is a careful application of
existing tools to the aforementioned prior work: first “robustify” a slight variant of the IOP in [BCG20], and
then compose it with a suitable inner PCP to reduce the verifier time (and query complexity) to polylogarithmic.
This was not previously achieved, and follows as a special case of the IOP contributed in this work.

Our main technical contribution is to reduce query complexity and verification time from sublinear
to polylogarithmic (an exponential improvement) while preserving the linear time of the prover and also
additionally achieving zero knowledge. This requires overcoming several technical challenges, across several
steps that are sketched below (and displayed diagrammatically in Figure 2).

• Tensor IOP for R1CS with zero knowledge. We modify the tensor IOP for R1CS in [BCG20] to additionally
achieve zero knowledge while preserving all of its efficiency parameters, including a linear prover time,
constant query complexity, and logarithmic verifier time (as a holographic proof).

• From tensor IOPs to standard IOPs while preserving zero knowledge. We present a tensor-query to
point-query compiler that is more efficient than the one in [BCG20] (smaller query complexity and
verifier time) and additionally preserves zero knowledge. The efficiency improvements come from using
proof composition techniques. To preserve the linear complexity and zero-knowledge properties of the
given tensor IOP, the tensor codes used in our compiler must be linear-time encodable and satisfy a
zero-knowledge property, whereby codewords do not reveal any information about the underlying message
when queried in a restricted way. We review this property in Section 2.5.

9

[BCG20]
consistency test

IOPP

robustification
(Section 2.6)

linear-time codes with
weak or strong
zero-knowledge
(Section 2.8.3)

linear-time codes:
[Spi96] for weak zk;
[DI14] for strong zk

robust
consistency test

IOPP

composition
(Section 2.6)

[Mie09]
point-query IOPP

composed
consistency test

IOPP

tensor-to-
point-query

compiler
(Section 2.3)

weak or strong
zero-knowledge

tensor codes
(Section 2.8.2)

SHVZK
tensor-query IOP

for R1CS
(Section 2.4)

[BCG20]
tensor-query IOP

for R1CS

point-query IOP
for R1CS

(Theorem 2)

Figure 2: Our approach to proving Theorem 2.

10

We establish structural properties of zero-knowledge codes and prove that they are preserved under tensor
products. Thus, it suffices to find a linear-time encodable zero-knowledge code to act as the base of the
tensor product code.

• Constructing a base code with zero-knowledge. To prove our main theorem, we use an explicit construction
of zero-knowledge code based on [Spi96] codes, which protect against a single malicious query. This is
enough to prove zero-knowledge against semi-honest verifiers in Theorem 2, which suffices for our main
theorem. We also give a probabilistic construction of zero-knowledge codes based on [DI14] codes which
do not reveal information on the underlying message even when the verifier makes queries to a constant
fraction of codeword entries. This allows us to prove a variation of Theorem 2 with the stronger property
of bounded-query zero-knowledge; we describe this in more detail in Section 2.8.

• Interactive proof composition. Proof composition [AS98] combines an outer proof system and an inner
proof system to obtain a new proof system that (roughly) has the prover and verifier complexity of the outer
proof system, and the query complexity of the inner proof system. The outer proof system must be robust10

and the inner proof system must be a proximity proof.11 We use interactive proof composition of IOPs
[BCGRS17] to achieve the efficiency of our compiler: the outer proof system is a robustification of the
tensor-query consistency check of [BCG20] and the inner proof system is the PCP of proximity of [Mie09].

We do not make any claims regarding the concrete efficiency of our construction. That said, we are optimistic
that the ideas introduced in this work could lead to improved constructions with the same asymptotic
efficiency but better concrete efficiency. In particular, we believe that further research into zero-knowledge
linear-time-encodable codes and further research in specializing the proof composition step to the specific
outer statement (a certain linear computation) may significantly improve efficiency.

2.3 From tensor-queries to point-queries in zero-knowledge

We generically transform any tensor-query IOP into a corresponding point-query IOP, while preserving zero
knowledge. The transformation is parametrized by a zero-knowledge linear code (a notion explained in more
detail in Section 2.5) and outputs a point-query IOP that is bounded-query zero knowledge, meaning that
malicious queries up to a fixed query bound do not leak any information. In contrast, the tensor-query IOP
being transformed is only required to satisfy a weaker notion of zero knowledge, called semi-honest-verifier
zero knowledge, that we describe further below.

Theorem 3 (informal). There is an efficient transformation that takes as input a tensor-query IOP and a
linear code, and outputs a point-query IOP that has related complexity parameters, as summarized below.

• Input IOP: an (F, k, t)-tensor IOP for a relation R with soundness error ε, round complexity rc, proof
length l, query complexity q, prover arithmetic complexity tp, and verifier arithmetic complexity tv.

• Input code: a linear code C over F with rate ρ = k
n , relative distance δ = d

n , encoding time θ(k) · k and
description size |C|.

• Output IOP: a point-query IOP with soundness error Oδ,t(ε) + O(dt/|F|), round complexity Ot(rc),
proof length Oρ,t(q · l), query complexity Ot(q), prover arithmetic complexity tp + Oρ,t(q · l) · θ(k) +
poly(|C|, t, q, k), and verifier arithmetic complexity tv + poly(|C|, t, q, log k).

10A proof system is robust if local view of the verifier is far (e.g. in Hamming distance) from an accepting view with high
probability (over the verifier’s randomness).

11A proximity proof shows that a given input is close to some input in the language.

11

Moreover, when the tensor-query IOP is semi-honest-verifier zero knowledge

• if the code C is 1-query zero-knowledge, then the point-query IOP is semi-honest-verifier zero knowledge;

• if the code C is b-query zero-knowledge, then the point-query IOP is b-query zero knowledge.

Finally, the transformation preserves holography up to the multiplicative encoding overhead θ of C and terms
that depend on ρ and t.12

The formal statement and its proof are in Section 8.13 We now explain the main ideas behind our compiler.

Starting point: an inefficient compiler that breaks zero knowledge. Our starting point is the code-based
compiler of [BCG20], which takes as input a tensor-query IOP (P,V) and a linear error-correcting code C
and produces a corresponding point-query IOP (P̂, V̂). We briefly summarize how the compiler works.

First, the point-query IOP simulates the tensor-query IOP with the modification that: (i) each proof oracle
Π ∈ Fkt is replaced by its encoding Π̂ ∈ Fnt using the tensor product code C⊗t; (ii) instead of making tensor
queries to the proof oracles directly, the new verifier V̂ sends tensor queries q(s) to the prover, who replies
with the answers v(s). Second, the new prover P̂ and new verifier V̂ engage in a consistency test subprotocol
to ensure that the answers v(s) (which may have been computed dishonestly) are consistent with the proofs Π.
The consistency test incorporates a proximity test to make sure that each proof message Π̂ is close to a valid
encoding of some proof message Π (as a malicious prover may send messages which are far from C⊗t). As
part of the consistency check, the prover sends the verifier “folded” proof messages c(s)

j = 〈⊗i≤jq(s)
i ,Π〉

encoded under lower-dimensional tensor codes C⊗t−j . The proximity test works similarly, using random
linear combinations of length k sampled by the verifier instead of structured tensor queries. In both cases, the
verifier checks linear relations between successive encodings c(s)

j and c(s)
j+1 by making O(k) point queries.

This compiler preserves prover time up to the encoding overhead θ(k) as in our Theorem 3, but has two
major shortcomings. The compiler does not preserve zero-knowledge, even if the tensor IOP to be compiled
is zero knowledge. Moreover, the output IOP has query complexity Ω(k) and verifier complexity Ω(k),
which does not suffice for Theorem 3 (we can at most afford a polylogarithmic dependence in k).

Below we elaborate on how we overcome these shortcomings. We begin by explaining semi-honest
verifier zero knowledge, the property of the tensor IOP used to achieve zero knowledge for the output IOP.

Semi-honest-verifier zero knowledge. Here, “semi-honest” means that there exists a simulator that
(perfectly) simulates the honest verifier’s view for any fixed choice of the honest verifier’s randomness.14 This
requirement is stronger than honest-verifier zero-knowledge, where the simulator must simulate the honest
verifier’s view for a random choice of its randomness; also, this requirement is weaker than the standard
definition of zero-knowledge for IOPs, in which the verifier may deviate from the protocol and make arbitrary
queries to the received oracles up to some query bound. Nevertheless, this notion suffices for our compilation
procedure, which will produce point-query IOPs with zero-knowledge against semi-honest verifiers and
against verifiers making a bounded number of point queries.

Approach for zero knowledge. We need to ensure that, in our compiler, if the tensor-query IOP given as
input is semi-honest-verifier zero knowledge then, depending on the zero knowledge property of the code C,
the output point-query IOP is either semi-honest verifier zero knowledge or bounded-query zero knowledge.

12That is, the transformation introduces only multiplicative overheads in terms of θ, ρ, t in the cost of indexing and proving.
13The result in Section 8 (Lemma 8.2) is stated with an additional generic input: an IOP of proximity for a certain tensor-query

relation. The result stated here is obtained by using a new IOP of proximity obtained by applying proof composition techniques to
results from [BCG20] (see Section 9.1 and Section 9.2).

14This is related to special honest-verifier zero-knowledge for sigma protocols.

12

This implication does not hold for the compiler of [BCG20] because, when using a (non-zero-knowledge)
linear code C, a point query to any encoded proof message Π̂ or folded proof message c(s)

j leaks information

about Π. We address the information leaked by Π̂ and c(s)
j in two ways.

We ensure that the folded proof messages c(s)
j do not leak any information by leveraging the fact that

the consistency check of [BCG20] is about a linear relation, and thus can be invoked on a random shift of
the instance of interest. In more detail, the usual approach to making the messages in such a subprotocol
zero-knowledge is to mask the input message as f = γΠ + Ξ, where Ξ is a random message sent by the
prover and γ is a random challenge sent by the verifier after that, and then run the consistency test on the
encoding c = γΠ̂ + Ξ̂ [BCFGRS17]. (The claimed tensor-query answers v(s) need to be adjusted accordingly
too to account for the contribution of Ξ.) Informally, this enables the simulator to randomly sample c and
honestly run the [BCG20] consistency check protocol. Queries on the resulting messages c(s)

j do not reveal
any information, since they are derived from c, which is a random tensor codeword. Further, we do not
require any zero-knowledge properties from the consistency check.

The simulator must still simulate the answers to point queries on Ξ by querying Π̂ instead. To avoid
information leakage from the encoded proofs Π̂, we use a linear code C with bounded-query zero-knowledge.
This is similar to the notion for IOPs, and means that queries to a codeword up to a fixed query bound
do not leak any information. The [BCG20] compiler uses tensor products of codes, and to achieve semi-
honest-verifier zero knowledge for the output IOP, it is important that the tensor product code C⊗t is 1-query
zero-knowledge. Furthermore, to achieve b-query zero knowledge for the output IOP, it is important that the
tensor product code C⊗t is also zero-knowledge against b queries.15 This leads to the problem of finding a
zero-knowledge code which is encodable in linear time, which we discuss in Section 2.8.3, and showing that
the zero-knowledge property of codes is preserved under tensor products, which we discuss in Section 2.8.2.

Approach for efficiency. Our modifications to the compiler of [BCG20] to preserve zero-knowledge do not
affect its efficiency; in particular, if the zero-knowledge code C⊗t has a linear-time encoding, then compiler
preserves linear arithmetic complexity of the prover. We are left to reduce the query complexity and the
verifier complexity from Ω(k) to polylogarithmic in k.

First, we discuss query complexity. By first strengthening the consistency test through robustification,
and then using proof composition techniques, we can reduce the query complexity so that it is independent of
k. Further details are given in Section 2.6.

Second, we discuss verifier complexity. After proof composition, the new verifier’s arithmetic complexity
is polynomial in the description size of the computations performed by the original consistency-test verifier.
In this case, the description consists of the verifier randomness used in the protocol, and to generate the
error-correcting code C. The randomness complexity of the [BCG20] compiler isO(q·k ·t), due to the random
linear combinations used in the proximity test. Fortunately, these linear combinations can be derandomized,
as we now explain. The linear combinations are used in the soundness analysis of the [BCG20] proximity test
as part of a “distortion statement”: if any member of a collection of messages is far (in Hamming distance)
from a linear code, then a random linear combination of those messages is also far from the code, except
with some small, bounded, failure probability. Ben-Sasson et al. [BKS18] prove distortion statements for
linear combinations of the form ζ = (α1, α2, α3, . . . , αk) for a uniformly random α ∈ F, at the cost of a
tolerable increase in failure probability, and thus, in the soundness error of the proximity test. This allows us
to dramatically reduce the number of random field elements used in the proximity test from O(q · k · t) to
O(q · t), which suffices for Theorem 3.

15Note also that query bound b must be at least the number of queries that V̂ makes to the encoded proof Π̂.

13

2.4 Tensor IOP for R1CS with semi-honest verifier zero knowledge

The input to the compiler in Section 2.3 is a tensor IOP for R1CS that is semi-honest-verifier zero knowledge.

Theorem 4 (informal). For every finite field F and positive integers k, t ∈ N, there is a (F, k, t)-tensor
holographic IOP for the indexed relation RR1CS, which is semi-honest-verifier zero-knowledge, that supports
instances over F withm = O(kt), that has the following parameters: (1) soundness error isO(m|F|); (2) round
complexity isO(logm); (3) proof length isO(m) elements in F; (4) query complexity isO(1); (5) the indexer
and prover use O(m) field operations; (6) the verifier uses O(|x|+ logm) field operations.

We prove this theorem in Section 4, and summarize the proof below.
Our starting point is the holographic tensor IOP for R1CS in [BCG20], which achieves the same

parameters as in the above theorem16 except that it is not zero knowledge. We apply re-randomization
techniques to modify their construction to achieve zero knowledge against semi-honest verifiers, while
preserving all efficiency parameters. We now elaborate on this: first we review the structure of the tensor IOP
in [BCG20], and then explain how we modify it for zero knowledge.

The holographic tensor IOP of BCG. The holographic tensor IOP for R1CS in [BCG20] follows a standard
blueprint for constructing protocols for R1CS [BCRSVW19], adapted to the case of tensor queries. The
prover first sends oracles containing the full assignment z = (x,w) and its linear combinations zA := Az,
zB := Bz, and zC := Cz. The verifier wishes to check that zA ◦ zB = zC and that zA, zB, zC are the correct
linear combinations of z. To facilitate this, the verifier sends some randomness to the prover, which enables
reducing the first condition (a Hadamard product) to a scalar-product condition. The verifier then engages
with the prover in scalar-product subprotocols for checking the scalar products, and holographic “lincheck”
subprotocols for checking the linear relations (given tensor-query access to suitable linear-time encodings
of the matrices A,B,C). This leads the verifier to make a constant number of tensor queries to each of
z, zA, zB, zC for concluding the subprotocols and performing other consistency checks (e.g., consistency of
z with the public input x).

This protocol is not zero knowledge even for an honest verifier because: (1) the answer to each tensor query
to z, zA, zB, zC reveals information about the secret input w (part of the full assignment z); (2) messages sent
by the prover during the scalar-product and lincheck protocols reveal further information about z, zA, zB, zC .

Approach for zero knowledge. We need to ensure that every prover message and the answer to every
tensor query is simulatable. The fact that queries are linear combinations with a tensor structure would make
this rather difficult if we had to deal with malicious verifiers.17 Fortunately, we seek zero knowledge against
semi-honest verifiers only, which means that it suffices to consider any valid execution of an honest verifier,
and in particular we have the freedom to assume that the verifier’s queries have a certain structure. While
there are generic techniques for related settings (e.g., a transformation for linear PCPs with degree-2 verifiers
in [BCIOP13]), they do not seem to be useful for our setting (tensor IOPs with linear-time proving). So our
approach here will be to directly modify the protocol in [BCG20] by adapting ideas used in prior works.

We incorporate random values into the protocol in two different ways to address the two types of leakage
above. This will enable us to make every prover message and query answer either uniformly random
(independent of the witness) or uniquely determined by other prover messages or query answers. The
simulator that we construct will then simply sample all the random values and derive the rest from them. We
elaborate on this strategy in the paragraphs below.

16We reduce the verifier complexity by generating the verifier’s tensor queries using a short seed.
17For example, constructing linear PCPs that are zero knowledge against malicious verifiers remains an open problem. Constructing

tensor IOPs that are zero knowledge against malicious verifiers, while formally an easier question, appears similarly hard.

14

(1) ZK against verifier queries. The answer to each verifier query is a linear combination (with tensor
structure) of elements in the prover’s oracle message. Intuitively, if we pad each oracle message with as
many random values as the number of queries it receives, and also “force” the linear combination to have
non-zero coefficients in the padded region, then all the query answers will be uniformly random and reveal
no information. Padding each of z, zA, zB, zC with independent randomness, however, does not preserve
completeness because then the padded vectors would not satisfy the R1CS condition.

This naive strategy, however, can be fixed in a straightforward way. We rely on a small R1CS gadget,
whose solutions can be efficiently sampled, for which we can control the amount of independent randomness.
Then we augment the original R1CS instance with this gadget.18 This means that, in the first step of the
protocol, the prover samples a random solution to the R1CS gadget and appends it to the witness to obtain an
augmented witness.19 In the remainder of the protocol, the random solution acts as padding as described
above, while preserving completeness. The choice of how much to pad is made depending on how many
independent queries each oracle receives.

(2) ZK for the subprotocols. Each lincheck subprotocol checks a linear relation Uz = zU , and as with the
point-query compiler, the usual approach to making the messages in such a subprotocol zero-knowledge is
to run the subprotocol on the input vector e = γz + w, where w is a random vector sent by the prover and
γ is a random challenge sent by the verifier after that. (The claimed output vector zU needs to be adjusted
accordingly too). Informally, this enables the simulator to randomly sample e and honestly run the lincheck
protocol, which reveals no information, since the honest verifier only makes queries to e = γz + w, and
never to v and w separately. Since the lincheck subprotocol is used as a black-box, the holographic properties
of our protocol are unaffected by our modifications for zero-knowledge, and are inherited directly from the
lincheck protocol of [BCG20].

The scalar-product subprotocol is a sumcheck protocol on a certain polynomial p. Sumcheck protocols
are usually made zero knowledge by following a similar pattern and running the sumcheck protocol on the
polynomial u := γp+ q, where q is a random polynomial [BCFGRS17]. The simulator can randomly sample
u and honestly run the sumcheck protocol, while simulating answers to q by querying p instead.

Applying this idea in our setting of linear-time provers requires some care. In the protocol of [BCG20],
the polynomial p is the product of two multilinear polynomials f and g, each with log n variables (and thus
O(n) coefficients). To achieve linear arithmetic complexity for the prover, it is crucial that the prover does
not compute the sumcheck directly on p, which could have up to O(n2) coefficients, and works only with f
and g following a certain linear-time algorithm [Tha13]. Thus the prover cannot simply sample a random q.

The solution is to re-randomize the multiplicands f and g separately to γf + r and γg + s, and run the
sumcheck protocol on their product (γf + r)(γg + s). (If p = f · g sums to α then (γf + r)(γg + s) sums
to αγ2 + ργ + σ for some ρ and σ derived from r and s alone.) The prover can then compute on polynomials
with O(n) coefficients, and the simulator can sample each factor of p at random and proceed similarly.

Efficiency. The resulting tensor IOP inherits all efficiency parameters of the non-ZK tensor IOP of [BCG20]:
soundness error O(m/|F|); logarithmic round complexity; linear proof length; constant query complexity;
linear-time indexer; linear-time prover; and logarithmic-time verifier.

18This is distinct from how zero knowledge is achieved for prior IOPs for R1CS based on the Reed–Solomon code [BCRSVW19].
Instead, it is closer in spirit to how semi-honest-verifier zero knowledge was achieved for linear PCPs for circuits or quadratic
arithmetic programs in [GGPR13; BCIOP13].

19We stress that this modification achieves zero knowledge only against semi-honest verifiers, because a malicious verifier could
choose to query the padded vectors with a linear combination that leaves out the randomness and thereby learns information about
the secret witness. Nevertheless, as discussed in Section 2.3, a tensor IOP that is merely semi-honest-verifier zero knowledge suffices
for obtaining a point-query IOP with zero knowledge against bounded-query malicious verifiers.

15

2.5 Hiding properties of linear codes

Linear codes have been used to achieve hiding properties in many applications, including secret sharing,
multi-party computation, and probabilistic proofs. Below we introduce useful notation and then review
the properties of linear codes that we use, along with other ingredients, to achieve zero knowledge IOPs.
Informally, we consider probabilistic encodings for linear codes with the property that a small number of
locations of a codeword reveal no information about the underlying encoded message.
Randomized linear codes. Let C be a linear code over a field F with message length k and block length
n, and let Enc: Fk → Fn be an encoding function for C (that is, Enc(Fk) = C). For a fixed choice of
km and kr such that km + kr = k, we can derive from Enc the bivariate function ˜Enc: Fkm × Fkr → Fn
defined as ˜Enc(m; r) := Enc(m‖r). In turn, this function naturally induces a probabilistic encoding: we
define ˜Enc(m) to be the random variable { ˜Enc(m; r)}r←Fkr . In other words, we have designated the first
km inputs of Enc for the message and the remaining kr inputs for encoding randomness. We shall refer to a
code C specified via a bivariate function ˜Enc as a randomized linear code.
Bounded-query zero knowledge. A randomized linear code is b-query zero knowledge if reading any
b locations of a random encoding of a message does not reveal any information about the message. The
locations may be chosen arbitrarily and adaptively. In more detail, we denote by View(˜Enc(m; r), A) the
view of an oracle algorithm A that is given query access to the codeword ˜Enc(m; r). We say that C is b-query
zero knowledge if there exists a poly(n, log |F|)-time simulator algorithm S such that, for every message
m ∈ Fkm and b-query algorithm A, the following random variables are identically distributed:{

View
(

˜Enc(m; r), A
)}

r←Fkr
and SA .

To achieve even 1-query zero knowledge the random encoding cannot be systematic (as otherwise the
algorithm A could learn any location of the message by querying the corresponding location in the codeword).

The above notion mirrors the standard notion of bounded-query zero knowledge for several models of
probabilistic proofs (PCPs [KPT97; IMS12; IMSX15], IPCPs [GIMS10], and IOPs [BCGV16; BCFGRS17]).
Moreover, it is equivalent, in the special case of codes with a polynomial-time encoding, to the message-
indistinguishability definition of zero knowledge of [ISVW13] (which requires that the encodings of any two
messages are equidistributed when restricted to any small-enough subset of coordinates); see Appendix C.
Bounded-query uniformity. In intermediate steps we also consider a stronger notion of zero knowledge: we
say that C is b-query uniform if any b locations of { ˜Enc(m; r)}r←Fkr are uniformly random and independent
symbols. This is a strengthening over the prior notion because the simulator for this case is a simple fixed
strategy: answer each query with a freshly sampled random symbol. We refer the reader to Example 1 for
more intuition on the difference between the two notions; there we explain how code concatenation, a standard
operation on codes, naturally leads to codes that are bounded-query zero knowledge but not bounded-query
uniform, and in particular the simulator cannot employ the foregoing simple strategy.
Example: Reed–Solomon code. The Reed–Solomon code is a well-known code whose hiding properties
are well understood. Namely, one can achieve b-query uniformity (and thus also b-query zero knowledge) by
interpolating the given message padded with b random elements and then evaluating the resulting polynomial
on a domain disjoint from the interpolation domain. We explore this example further in Section 5.3.1 to build
intuition about algebraic statements proved in this paper (and discussed in Section 2.8.1). The Reed–Solomon
code also happens to be a versatile tool for constructing efficient IOPs, and indeed many IOPs rely on
the Reed–Solomon code to additionally achieve bounded-query zero knowledge [BCGV16; BCFGRS17;
BBHR19; AHIV17; BCRSVW19; COS20]. In this paper, however, we will not use the Reed–Solomon code
in our constructions because its encoding function costs more than linear time.

16

2.6 Interactive proof composition

Our compiler from tensor-query to point-query IOPs uses the consistency check protocol from [BCG20].
When applied to our (F, k, t)-tensor IOP with n = Θ(kt), the consistency check has query complexity
O(n1/t), prover arithmetic complexity O(n) and verifier arithmetic complexity O(n1/t). Though the query
complexity and verifier complexity can be improved by increasing the value of t, they remain sublinear in n.
Thus, the [BCG20] consistency check does not suffice to prove Theorem 3.

We apply interactive proof composition for IOPs [BCGRS17] to reduce both the query complexity and
the verifier complexity, without increasing the prover arithmetic complexity above linear time. (It remains an
interesting question whether one can also achieve proof length that approaches witness length, the efficiency
goal studied in [RR20] via related techniques.)

Interactive proof composition involves an “outer” IOP that is robust and is for the desired relation, and an
“inner” IOP of proximity that is for a relation about the outer IOP’s verifier. At a high level, we wish to apply
this with the consistency check of [BCG20] as the outer IOP and the PCP of proximity of [Mie09] as the
inner IOP. This requires some care, in part because the consistency check of [BCG20] is not robust, and also
because our target parameters do not leave much wiggle room. Below, we elaborate on how we robustify the
outer protocol, and how we perform proof composition.

Robustification. Any IOP can be generically robustified by encoding each proof symbol in every round
via an appropriate error-correcting code: if the IOP has query complexity q then this transformation yields a
robustness parameter20 α = O(1/q) (over the alphabet of the code). This is a straightforward generalization
of robustifications for IPs (each prover message in each round is encoded) and for PCPs (each proof symbol
of the PCP is encoded). This also extends to robustifying IOPPs, in which case each symbol of the witness
whose proximity is being proved is also encoded (and this modifies the relation proved by the IOPP slightly).
For convenience, we state and give a proof sketch for this generic robustification in Appendix A.

Superficially, this robustification seems insufficient to prove Theorem 3 because the IOPP of [BCG20]
has sublinear query complexity q = O(n1/t), which would lead to a robustness parameter that is sub-constant.
However, the queries in [BCG20] are bundled: the verifier always queries entire sets of O(n1/t) locations, so
the IOPP can be restated as a constant-query IOPP over the large alphabet FO(n1/t). To robustify an IOPP
over such a large alphabet, we need to use a code with a linear-time encoding such as [Spi96] (here knowledge
codes are not essential) in order to preserve the linear complexity of the prover. This gives us an IOPP for
tensor queries with prover complexity O(n), verifier complexity O(n1/t), query complexity O(n1/t) over the
alphabet F, constant soundness error, and, most importantly, a constant robustness parameter α. Furthermore,
the verifier randomness complexity, which affects the verifier arithmetic complexity in the composed proof,
is unchanged by robustification. We are now ready for the next step, proof composition, which will enable us
to reduce query complexity and also verifier complexity.

Composition. Interactive proof composition [BCGRS17] applies to any outer IOP that is robust and inner
IOP that is a proof of proximity. If the outer IOP is a proof of proximity (as is the case when using the IOPP
obtained above) then the composed IOP is also a proof of proximity; similarly, if the inner IOP is robust then
the composed IOP is also robust. For convenience, we state this generic proof composition in Appendix B.

We apply proof composition as follows: (i) the outer proof system is the robust IOPP for tensor queries
obtained above; (ii) the inner proof system is the PCP of proximity for NTIME(T) due to Mie [Mie09]. Recall
that the latter achieves any desired constant soundness error and constant robustness parameter, with proof
length Õ(T (|x|)), query complexity O(1), prover time poly(T (|x|)), and verifier time poly(|x|, log T (|x|)).

20An IOP is said to have robustness parameter α if the local view of the verifier is α-close (in relative Hamming distance) to an
accepting view with probability bounded by the IOP’s soundness error

17

Informally, the new verifier in the composed proof system runs the interactive phase of the IOPP for
tensor queries and then, rather than running the query phase of the outer IOPP, runs the PCPP verifier of
[Mie09] to check that the witness is close to a tensor encoding of a message that is consistent with all the
answers to the tensor queries. This reduces the query complexity from O(n1/t) to O(1) queries.

Next we discuss prover complexity and verifier complexity for the composed proof system.
The cost of the prover in the composed proof system is O(n) field operations to run the prover of the

robust IOPP for tensor queries plus poly(T (|x|)) bit operations to run the PCPP prover in [Mie09]. In our
case, the NTIME(T) relation being checked is the decision predicate for the verifier in the robust IOPP, so
that T = O(n1/t) (times smaller factors depending on log |F| since T refers to bit operations rather than field
operations). If we take the tensor power t ∈ N to be a sufficiently large constant, then we can ensure that the
cost of the prover in the composed proof system is dominated by O(n) field operations.

The cost of the verifier in the composed proof system is dominated by poly(|x|, log T (|x|)) bit operations,
the time to run the PCPP verifier in [Mie09]. From the previous paragraph, we know that log T (|x|) =
O(log n). We are thus left to discuss |x|. Here x is the state used to describe (not run) the computation of
the decision predicate for the verifier in the robust IOPP. Hence, |x| is dominated by: (a) the description of
the code C used for the tensor encoding; (b) the description of the tensor queries whose answers are being
checked; and (c) the randomness complexity of the verifier for the robust IOPP. The last term can, via the
derandomization discussed in Section 2.3, be reduced to O(t), a low-order term. The second term depends
on the tensor queries, but for simplicity here we will ignore it because in our application all the tensor queries
can be described via O(t log n) elements, again a low-order term. The first term depends on the choice of
code C, so we keep it as a parameter. In sum, the cost of the verifier in the composed system is poly(|C|, log n)
bit operations.

Remark 2.1 (zero knowledge). We do not require the ingredient discussed above (the IOPP for tensor
queries) to be zero knowledge because we can invoke it on a random instance as explained in Section 2.3.
Nevertheless, we believe that future improvements in zero knowledge IOPs (especially with a focus on
concrete efficiency) will benefit from applying the transformations of robustification and proof composition
to zero knowledge protocols. In such a case, it will be useful to understand how zero knowledge is affected by
these transformations: If the robustified IOP is required to be zero knowledge, what should we require of the
given IOP and code used to encode each symbol? Also, if the composed IOP is required to be zero knowledge,
what should we require of the outer IOP and inner IOP? We took the opportunity to investigate this in our
appendices, taking advantage of the fact that we already had to specify the relevant transformations.

We consider two target notions of zero knowledge: against semi-honest verifiers and against (malicious)
bounded-query verifiers. Then we deduce natural conditions on the ingredients to robustification and
proof composition that suffice to achieve the target notion of zero knowledge. See Lemma A.4 for the
zero knowledge properties of robustification, and Lemma B.6 for the zero knowledge properties of proof
composition. We view these results as an independent contribution to foundational transformations of IOPs.

2.7 Completing the proof of Theorem 2

We have described all of the ingredients for Theorem 2. We briefly summarise how they are combined.
To prove Theorem 2, one applies the compiler in Section 2.3, with the semi-honest-verifier zero-knowledge

tensor-query IOP for relation RR1CS from Theorem 4, and a family of explicit linear-time 1-query zero-
knowledge codes as inputs. The family of codes are obtained from the explicit (deterministic) code construc-
tion of Spielman [Spi96]. Since the codes are encodable in linear-time, the compiler preserves the linear

18

proof length and prover arithmetic complexity of the tensor IOP. The result is the point-query IOP for RR1CS

described in Theorem 2.
The precise details of the proof are given in Section 9.

2.8 On bounded-query zero knowledge

Theorem 2 guarantees zero-knowledge against semi-honest verifiers. However, we can achieve bounded-query
zero-knowledge against a malicious verifier who makes at most O(mε) queries, if we relax the verifier time
in our construction to poly(|x|) +O(mε) field operations.

The reason behind this is as follows. By Theorem 3, the zero-knowledge property in Theorem 2 relies
(among other things) on a family of explicit linear-time encodable error-correcting codes which themselves
have a zero-knowledge property, whereby a single query to a codeword leaks no information about the
encoded message. These codes suffice for semi-honest-verifier zero-knowledge because the honest verifier
never learns more than one query of each codeword. By contrast, in the setting of bounded-query zero-
knowledge, we require codes with a zero-knowledge property against a sublinear number of queries. The
aforementioned codes do not satisfy this property. Instead, we show how to obtain suitable codes from a
probabilistic construction of Druk and Ishai [DI14], leading to an IOP verifier whose randomness complexity
is sublinear.

Obtaining an explicit construction of linear-time encodable zero-knowledge codes remains an interesting
open problem, which would allow us to prove Theorem 2 with both polylogarithmic verifier complexity and
bounded-query zero-knowledge.

2.8.1 Algebraic reformulation of zero knowledge

We provide algebraic reformulations for the properties of bounded-query zero knowledge and bounded-query
uniformity. We use these throughout this work, and deem them to be of independent interest.

Let C be a randomized linear code with encoding function ˜Enc: Fkm × Fkr → Fn. We can split the
generator matrix G ∈ Fn×k associated with ˜Enc into two parts G =

[
Gm Gr

]
so that ˜Enc(m; r) =

Gmm+Grr is the sum of a message part Gmm and a randomness part Grr, which acts as “mask”.
The lemma below involves two codes associated to C:

• C⊥ := {z ∈ Fn | zᵀG = 0} is the dual code of C, which consists of all linear combinations z that
“eliminate” the message part and the randomness part of a codeword, regardless of the choice of message
and randomness. I.e., if z ∈ C⊥ then zᵀ(Gmm+Grr) = 0 for every m ∈ Fkm and r ∈ Fkr .

• D(C) := {z ∈ Fn | zᵀGr = 0} is the code consisting of all linear combinations that eliminate the
randomness part. I.e., if z ∈ D(C) then zᵀ(Gmm+Grr) = zᵀGmm for every m ∈ Fkm and r ∈ Fkr . In
particular, the linear combination z “leaks” information about the encoded message if zᵀGmm is non-zero.

Note that C⊥ ⊆ D(C).

Lemma 2.2. For every b ∈ N the following equivalences hold:

1. C is b-query zero-knowledge if and only if the minimum weight of codewords in D(C) \ C⊥ is at least b+ 1;
2. C is b-query uniform if and only if D(C)’s minimum absolute distance is at least b+ 1.

The difference between the two equivalences is that for the weaker condition (bounded-query zero
knowledge) the minimum-weight requirement is imposed only on codewords in D(C) \ C⊥, rather than

19

on all non-zero codewords in D(C). Below we provide intuition about the equivalences, first discussing
bounded-query uniformity and then bounded-query zero knowledge. Technical details are in Section 5.
Intuition for Equivalence 2. Consider the random variable c := {Gmm+Grr}r←Fkr , which is a random
encoding of the message m ∈ Fkm . If D(C) has minimum absolute distance b + 1, then there is a linear
combination z ∈ Fn of weight b + 1 that eliminates the randomness part Grr. The support of z gives
b+ 1 entries of c that are correlated (via the non-zero coefficients of z), showing that C cannot be (b+ 1)-
query uniform. On the other hand, if no linear combination z ∈ Fn of weight at most b eliminates the
randomness part Grr, then every linear combination of b entries of c is uniformly random. By an XOR
Lemma (Lemma 5.4) this can only happen if each set of b entries of c is uniformly distributed.
Intuition for Equivalence 1. Again consider the random variable c := {Gmm + Grr}r←Fkr . If the
minimum weight of codewords in the set D(C) \ C⊥ is b+ 1, then there is a linear combination z of weight
b+ 1 that eliminates the randomness part Grr (zᵀGr = 0) but does not eliminate the message part Gmm
(zᵀGm 6= 0). The support of z gives b + 1 entries of c that can be used to distinguish between different
messages m according to the value of zᵀGmm (using the non-zero coefficients of z). Therefore, C cannot
be (b + 1)-query zero-knowledge. On the other hand, suppose that no linear combination z of weight at
most b can be used to distinguish between encodings of different messages. Then every low-weight linear
combination of entries of c is either random (if z does not eliminate Grr) or zero (if z eliminates both Grr
and Gmm). Thus, no such low-weight z belongs to the set D(C) \ C⊥.

2.8.2 Tensor products of zero knowledge codes

As part of the tensor-query to point-query compiler (see Section 2.4), the prover sends to the verifier proof
messages Π̂ consisting of tensor-IOP proof messages Π encoded under a tensor code C⊗t. The verifier has
point-query access to the encoded messages Π̂. To ensure that these queries do not leak information (up to a
certain number of queries), we require the tensor code C⊗t to be zero-knowledge. To this end, we prove that
the tensor product operation preserves the property of bounded-query zero-knowledge (and bounded-query
uniformity). In particular, for C⊗t to be zero knowledge it will suffice for C to be zero knowledge. (We
discuss how to obtain a zero-knowledge code that is linear-time encodable after this, in Section 2.8.3.)

Theorem 5. Let C and C′ be randomized linear codes.

1. If C is b-query zero-knowledge and C′ is b′-query zero-knowledge, then C ⊗ C′ is min(b, b′)-query zero-
knowledge.

2. If C is b-query uniform and C′ is b′-query uniform, then C ⊗ C′ is min(b, b′)-query uniform.

The formal statement and proof are provided in Section 6. Below we describe the main ideas behind the
two items in Theorem 5.

For Item 2 (the simpler case), using the algebraic reformulation given in Lemma 2.2, it suffices to show
that the minimum distance of D(C ⊗ C′) is at least min(b, b′). Unfortunately, it is difficult to directly analyze
D(C ⊗ C′). Although D(C ⊗ C′) can be expressed as a sum of linear-spaces each of which has a known
minimum distance (see Figure 3), this cannot be used to prove any useful bounds. Instead, we analyze the
space R := D(C) ⊗ D(C′)⊥ ⊕ Fn ⊗ D(C′) (also shown in Figure 3). Since R contains D(C ⊗ C′), the
minimum distance of R is a lower bound for the minimum distance of D(C ⊗ C′). Further, R is defined
by a direct sum of two tensor-product spaces (whereas D(C ⊗ C′) seems to require three). This gives a
decomposition of any element of R into two elements with strong restrictions on their rows and columns
(when we view tensors of rank two as matrices), which belong to different spaces and yet must be equal in
almost all of their entries for a low-weight element of R. This allows us to bound the minimum distance of R.

20

Item 1 (which is the harder case) follows in a similar fashion, using a different definition of R and
accounting for the fact that the algebraic characterization of zero-knowledge in Lemma 2.2 uses the set
D(C) \ C⊥, rather than the linear space D(C).

Note that one cannot hope to improve Item 2 to prove that C ⊗ C′ is even max(b, b′)-query uniform in
general. We know that the rows of any codeword of C ⊗ C′ belong to C, and must therefore satisfy various
parity checks. Therefore, if b′ is greater than the block length n of C, then C ⊗ C′ cannot be max(b, b′)-query
uniform. However, one might hope that Item 1 could be improved to O(bb′)-query zero knowledge, which
would imply zero-knowledge against a verifier making a linear number of queries in Theorem 2.

Figure 3: The linear spaces D(C ⊗ C′) and R as subspaces of Fn ⊗ Fn′
.

2.8.3 Zero-knowledge codes with linear-time encoding

To prove our main theorem, Theorem 2, we require an explicit construction of a randomized linear code, that
must be both linear-time encodable and 1-query zero-knowledge. Prior works such as [BCGGHJ17; Cer19]
achieve this by applying a 1-out-of-2 secret sharing scheme to every element of the output of an explicit
(non zero-knowledge) linear-time encodable code, such as [Spi96]. Given the encoding function Enc for a
linear-time encodable code, the new code is defined by ˜Enc(m; r) := (Enc(m) + r, r).

Investigating bounded-query zero-knowledge. To prove the variation on our main theorem, Theorem 2,
with bounded-query zero-knowledge, we require randomized linear codes which are linear-time encodable as
above, but with a stronger zero-knowledge property. In this case, the code must be b-query zero-knowledge
where b is not only greater than 1, but may even be a constant fraction of the block length.

Prior works achieved these properties separately. For example, it is well-known that the Reed–Solomon
code can be made b-query zero-knowledge by using b elements of encoding randomness, but their encoding
functions incur costs quasilinear in the message length. On the other hand, the zero-knowledge properties of
linear-time encodable codes, such as the explicit family by Spielman [Spi96] or the probabilistic family by
Druk and Ishai [DI14], have not been investigated.

We prove the existence of codes satisfying both requirements, via a probabilistic construction. In the
statement below, Hq : [0, 1]→ [0, 1] denotes the q-ary entropy function (see Definition 7.2).

21

Theorem 6. For every finite field F, every ε ∈ (0, 1), and every function β : N→ (0, 1) bounded away from 1,
letting q := |F|, there is a circuit family {Ekm : Fkm×F(Hq(β(km))+ε)·O(km)×FO(km) → FO(km)}km∈N such
that: (1) Ekm has size O(km); (2) with probability at least 1− q−Ωε(km) over R ∈ FO(k), the randomized
linear code Ckm whose encoding function is ˜Enckm(m; r) := Ekm(m, r,R) has constant relative distance
and is O(β(km) · km)-query uniform.

The precise statement of the theorem and its proof are provided in Section 7.
Below we provide intuition about the theorem statement by comparing the parameters to those achievable

by the Reed–Solomon code; then provide an overview of the proof; and finally discuss related constructions
and analyses. Derandomizing Theorem 6, namely the goal of obtaining an explicit family of codes that are
both zero knowledge and linear-time encodable, remains an open problem.

Comparison with RS code. The relation between encoding randomness and bounded-query uniformity is
simple for the Reed–Solomon code: b elements of encoding randomness ensure b-query uniformity. This
relation is more complex for the code in Theorem 6, but we can understand its qualitative behavior by
considering two regimes, depending on whether the desired b is small or large.

• b is small. If β = O(q−σ) for σ ∈ (0, 1), then Hq(β) · km is bounded by O(−β
σ · log β) · km, which itself

is bounded by O(log km
σ) · b. This tells us that O(log km

σ) · b elements of encoding randomness suffice for
b-query uniformity, which in this regime is a factor of O(log km

σ) more than for the Reed–Solomon code.
• b is large. If b is linear in the block length of the code (which is linear in km), then β is constant and

so Hq(β) · km = O(b). This tells us that O(b) elements of encoding randomness suffice for b-query
uniformity, which in this regime is within a constant factor of the Reed–Solomon code.

The regime that we use in this paper is when b is large (linear in km).

Overview of proof of Theorem 6. We use the same code as in [DI14], which is a probabilistic construction
(which we inherit). Our contribution is to show that their construction additionally satisfies the strong
requirement of b-query uniformity, by using Lemma 2.2 and ideas from the analysis of [DI14].

Informally, Druk and Ishai [DI14] construct a family of distributions G = {Gk}k∈N such that, for every
k ∈ N, Gk = {GR ∈ FO(k)×k}R∈FO(k) is a distribution over generator matrices such that: (1) matrix-vector
multiplication is computable in linear time; (2) for any fixed non-zero vector x, when GR is sampled at
random from the distribution, Gx is uniformly distributed. This latter property is known as linear uniform
output, and implies that, with high probability over R, GR has constant relative distance and dual distance.

We are interested in analyzing what happens if we split the message space of a generator matrix G ∈ Gk
into two parts, one of length km for the actual message and another of length kr for the encoding randomness,
for km+kr = k. As in Section 2.5, this induces a corresponding split in the generator matrix: G =

[
Gm Gr

]
.

By Lemma 2.2, the probability that this code is b-query uniform is bounded from below by the probability
that (Gr)

⊥, the dual of Gr, has minimum (absolute) distance at least b+ 1.
Druk and Ishai [DI14] show that G⊥ has constant relative distance with high probability. We observe

that Gr inherits the linear-uniform output property from G, and then adapt their analysis to (Gr)
⊥. We now

summarize the main ideas of their analysis when it is applied to our setting of b-query uniformity. Similarly,
to the standard probabilistic proof of the Gilbert–Varshamov bound, requiring that (Gr)

⊥ has distance at
least b+ 1 is equivalent to showing that each non-zero vector z ∈ Fn with Hamming weight at most b is not
in (Gr)

⊥, i.e., zGr 6= 0. The linear-uniform output property of G implies that zGr is uniformly distributed,
over a random choice of Gr; therefore the probability that z ∈ Fn is in (Gr)

⊥ is at most q−kr . Taking a
union bound over all vectors of weight at most b, of which there are at most qHq(b/n)·n, gives an upper bound
on the probability that the distance of (Gr)

⊥ is at most b.

22

We can choose parameters so that n = O(km) and kr = O(Hq(b/n) · n) with suitable constants so that
q−kr · qHq(b/n)·n = q−Ω(km). In combination with results on the distance of G, this yields Theorem 6.

In sum, we obtain a trade-off between the fraction of the message space allocated to the encoding
randomness and the b-query uniformity of the code. For example, if (as we use in this paper) b is linear in n
then Hq(b/n) is constant and the encoding randomness is a constant fraction of the input.

Comparison with related work. Chen et al. [CCGHV07] show a result analogous to Theorem 6 for random
codes: with high probability over a choice of random code with block lengthO(km), usingHq(β(km))·O(km)
elements of encoding randomness ensures O(β(km) · km)-query zero-knowledge. Random codes, however,
are not linear-time encodable. Theorem 6 can be viewed as strengthening the result for random codes in
[CCGHV07, Theorem 11] to apply to the linear-time codes of [DI14] (and to proving the stronger property of
bounded-query uniformity). The proofs of both results follow the standard template of the existence proof of
codes meeting the Gilbert–Varshamov bound, except that the analyzed code family changes.

Druk and Ishai [DI14] give a linear-time secret sharing scheme for message vectors of constant length,
based on the same code family used to prove Theorem 6. Their construction generalizes to a randomized
encoding scheme with b-query zero-knowledge (and most likely b-query uniformity), where b is determined
by the distance of the dual code. For this code family, the dual distance is linear in km, giving b-query
zero-knowledge for b = Θ(km). However, encoding requires solving a system of linear equations whose
dimension is the same length as the message, and so fails to be linear-time.

Ishai et al. [ISVW13; Wei16] give a generic construction of zero-knowledge codes from any linear code,
which works by randomizing a generator matrix for the code, but this does not preserve linear-time encoding.

23

3 Preliminaries

3.1 Interactive oracle proofs with special queries

Definition 3.1. An indexed relation R is a set of triples (i,x,w) where i is the index, x the instance, and
w the witness. The corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a
witness w such that (i,x,w) ∈ R.

Definition 3.2. A holographic IOP with query class Q (some set of functions) is a tuple IOP = (I,P,V),
where I is the indexer, P the prover, and V the verifier. The indexer is a deterministic polynomial-time
algorithm, while the prover and verifier are probabilistic polynomial-time interactive algorithms.

In an offline phase, the indexer I is given an index i and outputs an encoding Π0 of i.
In an online phase, the prover P receives as input an index-instance-witness tuple (i,x,w) and the

verifier V receives as input the instance x; in addition, the verifier V has query access to Π0 (in a precise
sense specified below), which we denote as VΠ0(x). The online phase consists of multiple rounds, and in
each round the prover P sends a proof message Πi and the verifier V replies with a challenge message ρi.

The prover P may compute its proof message Πi based on its input (i,x,w) and all the verifier challenges
received thus far (none if i = 1 or ρ1, . . . , ρi−1 if i > 1). In contrast, the verifier V may compute its challenge
message ρi based on its input x and on answers obtained by querying (Π0,Π1, . . . ,Πi) via queries in Q.
In more detail, the answer of a query q ∈ Q to (Π0,Π1, . . . ,Πi) is v := q(x,Π0,Π1, . . . ,Πi) (this answer
could also be a special error value in case the proof messages are not according to an expected format).

After the interaction and all queries are concluded, the verifier V accepts or rejects.

Remark 3.3 (non-oracle messages). We allow the prover in an IOP to also send, at any point in the
interaction, arbitrary messages that the verifier will simply read in full (without making any queries) as in a
usual interactive proof. We refer to such messages as non-oracle messages, to differentiate them from the
oracle messages to which the verifier has query access. These non-oracle messages can typically be viewed as
degenerate cases of oracle messages, and we use them in protocol descriptions for convenience of exposition.

A holographic interactive oracle proof IOP = (I,P,V) for an indexed relation R has completeness 1
and soundness error ε if the following holds.

• Completeness. For every index-instance-witness tuple (i,x,w) ∈ R, the probability that P(i,x,w)
convinces VI(i)(x) to accept is 1.

• Soundness. For every index-instance tuple (i,x) /∈ L(R) and malicious prover P̃, the probability that P̃
convinces VI(i)(x) to accept is at most ε.

Public coins. A holographic IOP is public-coin if each verifier message to the prover is a random string.
This means that the verifier’s randomness is its challenge messages ρ1, . . . , ρrc. All verifier queries can be
postponed, without loss of generality, to a query phase that occurs after the interactive phase with the prover.
Non-adaptive queries. A holographic IOP is non-adaptive if all verifier queries depend solely on the input
instance x and the verifier’s randomness, as opposed to some queries depending on answers to prior queries.
For non-adaptive IOPs, the verifier V can be written as a pair of algorithms (Vq,Vd) where: (a) Vq is
probabilistic, takes as input the instance x, interacts with the prover P, and outputs a decision state σ and a
query set I (for the index oracle and proof oracles); and (b) Vd is deterministic, takes as input the decision
state σ and query answers v ∈ ΣI , and outputs a decision bit. For this case, we define the relation R(V) to
be all pairs (σ,v) such that there exist x and I with (σ, I) in the support of Vq(x) and Vd(σ,v) = 1.
Complexity measures. We consider several complexity measures:

24

– round complexity rc is the number of back-and-forth message exchanges between the prover and verifier;
– answer alphabet Σ is the alphabet over which oracle messages are defined;
– proof length l = li + lp + lc where li := |Π0| is the number of alphabet symbols output by the indexer,
lp := |Π1|+ · · ·+ |Πrc| is the total number of alphabet symbols sent in oracle messages by the prover, and
lc is the total number of alphabet symbols sent in non-oracle messages by the prover;

– randomness r is the number of random bits used by the verifier;
– query complexity q is the total number of queries made by the verifier (to any oracle);
– running time ti is the running time of I, tp is the running time of P, and tv is the running time of V. In the

non-adaptive case, tq and td are the running times of the query and decision components of V respectively.

3.2 Point queries and tensor queries

We define the two query classes that we use in this paper, point queries and tensor queries.

Definition 3.4. A holographic IOP with point queries is an IOP with the query class Qpoint defined as
follows: Qpoint is all functions of the form q(x,Π0,Π1, . . . ,Πi) = Πj [k] for some j ∈ {0, 1, . . . , i} and
location k. (If the location k does not exist, the answer is an error.) Namely, each query in the class Qpoint

returns the symbol at a location of the encoded index (j = 0) or of a specified prover message (j > 0).

Definition 3.5. Given a finite field F and positive integers k, t, a holographic IOP with (F, k, t)-tensor
queries is an IOP with the query class Qtensor(F, k, t) defined as follows: Qtensor(F, k, t) contains all
functions of the form q(x,Π0,Π1, . . . ,Πi) = 〈q0⊗ q1⊗ · · · ⊗ qt,Πj〉 for some j ∈ {0, 1, . . . , i} and vectors
q0 ∈ F∗ and q1, . . . , qt ∈ Fk. (If the lengths of the linear combination q0 ⊗ q1 ⊗ · · · ⊗ qt and proof string Πj

do not match, the answer is an error.) Namely, each query in the class Qtensor returns the scalar product of a
certain tensor vector and the encoded index (j = 0) or of a specified prover message (j > 0).

Remark 3.6. In the context of tensor IOPs, we often view a proof message Π ∈ F`·kt as consisting of `
“sub-messages” π1, . . . , π` each in Fkt . In this case, when describing a protocol, we may make a tensor query
q1 ⊗ · · · ⊗ qt to one of the sub-messages π, with the understanding that one can specify an indicator vector
q0 ∈ F` so that 〈q0 ⊗ q1 ⊗ · · · ⊗ qt,Π〉 = 〈q1 ⊗ · · · ⊗ qt, π〉.

3.3 Robust proofs

We sometimes require, for the case of non-adaptive verifiers, a stronger notion of soundness, robust soundness.
Informally this means that, up to a soundness error ε, the information read by the verifier is not only rejecting
but also cannot be modified in few locations to make the verifier accept.

Definition 3.7. A holographic interactive oracle proof (I,P,V) for an indexed relation R has soundness
error ε with robustness parameter α relative to distance ∆ if V’s queries are non-adaptive and, for every
index-instance tuple (i,x) /∈ L(R) and malicious prover P̃,

Pr

[
∆ (v, R(V)|σ) ≤ α

∣∣∣∣ [Π̃, (σ, I)]← 〈P̃,Vq(x)〉
v := (I(i), Π̃)|I

]
≤ ε .

Above, (σ, I) is the output of the query sampler algorithm Vq(x) when interacting with P̃ and Π̃ consists of
all proof oracles sent by P̃ during this interaction; and R(V)|σ is the set of all query answers v′ such that
(σ,v′) ∈ R(V). The probability is taken over Vq’s randomness.

25

3.4 Proximity proofs

A holographic interactive oracle proof of proximity IOPP = (I,P,V) for an indexed relation R has
completeness 1 and soundness error ε with distance function ∆ if the following holds.

• Completeness. For every index-instance-witness tuple (i,x,w) ∈ R, the probability that P(i,x,w)
convinces VI(i),w(x) to accept is 1.

• Proximity soundness. For every index-instance tuple (i,x) and malicious prover P̃, the probability that P̃
convinces VI(i),w(x) to accept is at most ε(∆(w, R|(i,x))). Here the soundness error ε is a function of the
∆-distance of w to the set of valid witnesses R|(i,x) := {w′ | (i,x,w′) ∈ R}. (Intuitively, one expects the
soundness error to go down as the distance of w to valid witnesses increases.) If the set of valid witnesses
R|(i,x) is empty (this happens when (i,x) 6∈ L(R)) then we use the convention ∆(w, ∅) := 1.

We remark that, while not explicit above, each verifier’s query q ∈ Q is to (I(i),w,Π1, . . . ,Πi) and its
answer is q(x, I(i),w,Π1, . . . ,Πi); namely, the candidate witness w is also an input to the query function q.
The definition of IOPs with particular query classes (e.g., point-query IOPs) extend naturally to this case.

Exact proximity proofs. We are sometimes in the position where if ∆(w, R|(i,x)) > 0 then ε(∆(w, R|(i,x))) =
ε where ε ∈ (0, 1) does not depend on the distance. In other words, whenever (i,x) /∈ L(R), then for any
malicious prover P̃, the probability that P̃ convinces VI(i)(x) to accept is at most ε. In such cases, we do not
mention the distance function ∆, and use the terminology exact interactive oracle proof of proximity (exact
IOPP), analogous to that used in [IW14] for probabilistically-checkable proofs.

3.5 Zero knowledge

The main notion of zero-knowledge that we achieve in this paper is (perfect) zero-knowledge against semi-
honest verifiers. This means that for any choice of verifier randomness, an honest verifier’s queries do
not leak any information about the prover’s witness. We also investigate (perfect) zero knowledge against
malicious verifiers that make a bounded number of queries to the proof oracles. This means that the malicious
verifier can send to the honest prover arbitrary messages and also query any proof oracle sent by the prover in
arbitrary, possibly adaptive, ways as long as the number of queried locations does not exceed a given query
bound, which we usually denote by b; the query bound can be a function of other parameters, e.g., input size.

Below we define the notion of view and then the notions of zero knowledge that we use.

Definition 3.8. We denote by View(B,A(a)) the view of A in an interactive protocol with B. Namely, it
is the random variable (r, b1, . . . , bn, v1, . . . , vm) where r is A’s randomness, b1, . . . , bn are non-oracle
messages sent from B to A, and v1, . . . , vm are the answers to A’s queries to B’s oracle messages. (There
is no need to include any messages from A to B as these are implied by the other information in the view.)

Definition 3.9. Let A be an algorithm with adaptive query access to oraclesO1, . . . ,On. Let Q be a stateful
query-checker algorithm which receives the adaptive queries of A and may output ⊥ at any point. We say
that A is a Q-query algorithm if Q never outputs ⊥.

Definition 3.10. A holographic IOP (I,P,V) for an indexed relation R is (perfect) zero-knowledge with
query-checker Q if there exists a polynomial-time simulator algorithm S such that, for every (i,x,w) ∈
R and Q-query algorithm Ṽ, the random variables SṼ(i,x) and View(P(i,x,w), Ṽ) are identically
distributed.

26

Definition 3.11. Let Qb be a query-checker algorithm which outputs ⊥ if more than b queries are made. For
the query-checker Qb, we refer to A from Definition 3.9 as a b-query algorithm, and say that (I,P,V) from
Definition 3.10 has (perfect) zero-knowledge with query bound b.

All results in this paper achieve the definition above via straightline simulators, which means that the
simulator samples the view of the verifier by running through a single execution of the malicious verifier,
simulating any (non-oracle) messages from the prover or the answers to any of the malicious verifier’s queries.

For intermediate building blocks we will also consider a relaxation of the above definition where we
require zero knowledge to hold only against semi-honest verifiers, which are malicious verifiers whose
messages and queries are consistent with some execution of an honest verifier though they may be distributed
differently than those of an honest verifier.

Definition 3.12. A holographic interactive oracle proof (I,P,V) for an indexed relation R is (perfect)
zero knowledge against semi-honest verifiers if there exists a polynomial-time simulator algorithm S such
that, for every (i,x,w) ∈ R and choice of verifier randomness ρ, the random variables SV(i,x;ρ)(i,x) and
View(P(i,x,w),V(i,x; ρ)) are identically distributed.

Remark 3.13. If a holographic IOP (I,P,V) is zero-knowledge with query-checker Q, and for choice
of verifier randomness ρ, the verifier V is a Q-query algorithm, then (I,P,V) is zero knowledge against
semi-honest verifiers.

Finally, we also consider zero knowledge for proximity proofs, which we use towards our main result.
The notion of (perfect) zero knowledge in the definition below is closely related to prior ones used for
proximity proofs, such as for PCPPs in [IW14] and for IOPPs in [BCFGRS17]. The main technical difference
is that we consider a query function f that determines how many queries the simulator makes to the witness
as a function of the number of queries made to the witness and any proof oracles sent by the prover.

Definition 3.14. A holographic interactive oracle proof of proximity IOPP = (I,P,V) for an indexed
relation R is (perfect) zero knowledge with query function f if there exists a polynomial-time simulator
algorithm S such that, for every (i,x,w) ∈ R, query checker Q, and Q-query algorithm Ṽ, the random
variables SṼ,w(i,x) and View(P(i,x,w), Ṽ) are identically distributed, and S is f(Q)-query with respect
to w.

We conclude by remarking that all of the zero knowledge definitions above are sensitive to the choice
of alphabet for the proof oracles because they all refer to the query complexity of certain verifiers (and a
query to a proof oracle returns an entire alphabet symbol). In particular, when we establish that a certain
construction achieves zero knowledge, this is proved for a specific choice of alphabet and there are guarantees
for, e.g., if the alphabet is changed a smaller one and the query bound is increased correspondingly.

Remark 3.15. In the above definitions we required the simulator to output a verifier view, which in particular
includes the verifier’s randomness. However, as we do not restrict the efficiency of verifiers, the verifier’s
randomness could have super-polynomial size, in which case the (polynomial-time) simulator cannot sample
it on the verifier’s behalf. This is a minor technicality that is resolved, as in prior work, as follows: we assume
that the verifier is initialized with its own randomness and the simulator is only required to produce the rest of
the view (simulated messages and query answers) by having access to the verifier but not to its randomness.

27

3.6 Error-correcting codes

We introduce preliminaries on error-correcting codes.
We consider functions c : [n] → F for a given domain [n] and finite field F. The (absolute) distance

d(c, c′) between two functions c, c′ : [n]→ F is the number of inputs for which c and c′ differ; the relative
distance is δ(c, c′) := d(c, c′)/n. The weight of c is the number of inputs for which c is non-zero.

A linear error-correcting code C over F is a set of functions c : [n] → F that form an F-linear space.
The block length is n and the message length is the rank k of the linear space C; the rate is ρ := k/n.
The minimum (absolute) distance d := d(C) is the minimal (absolute) distance between any two distinct
codewords c and c′ in C. The minimum relative distance δ := δ(C) of the code is defined similarly.

For a given function c : [n] → F, if d(c, C) is smaller than the unique decoding radius of C (which is
d(C)/2), there is a unique codeword c ∈ C closest to c; otherwise we default to setting c := 0.

Codewords can also be viewed as vectors in Fn, and we can associate to them messages in Fk. This leads
to two fundamental notions associated to a linear codes.

• Generator matrix. A generator matrix for C is a matrix G ∈ Fn×k whose rows generate C as a linear
subspace of Fn. In particular, G is an injective map from Fk to C, and thus associates to each vector f ∈ Fk
the corresponding codeword c := Gf ∈ C. The cost of encoding a message this way is O(k · n) operations
(or, more generally, is linear in the number of non-zero entries in G). There are multiple generator matrices
for the same code (they are in one-to-one correspondence with ordered bases of C).

• Parity-check matrix. A parity-check matrix for C is a generator matrix H ∈ Fn×(n−k) for the dual code C⊥
or equivalently, a matrix H such that, for every c ∈ Fn, it holds that c ∈ C if and only if Hᵀc = 0. The
cost of checking whether a function c is a codeword in this way is O(n · (n − k)) operations (or, more
generally, is linear in the number of non-zero entries in H). If G is any generator matrix for C, then it holds
that HᵀG = O(n−k)×k, where O(n−k)×k is the (n− k)× k matrix of all zeros.

A parity-check matrix can be efficiently derived from G in O(n · k2) operations by writing G in column-

echelon form
[
Ik
A

]
for some A ∈ F(n−k)×k and setting H :=

[
−Aᵀ

In−k

]
. That H is a parity-check matrix

follows from the fact that H ·Gᵀ = 0, which shows that H generates a sub-code of C⊥, and that C⊥ has
the same rank n− k as H , which then shows that H generates all of C⊥.

The mapping from a message to its codeword need not be performed as a matrix-vector product (a generator
matrix times the message), and so we will use the notation Enc: Fk → C to denote an injective function that
performs this encoding possibly some other way (e.g., via an arithmetic circuit) for the sake of efficiency.
Given the encoding function, one can always recover a generator matrix G by evaluating Enc at each unit
vector of Fk in some canonical order and using the evaluations as the columns of G. We say that this is the
generator matrix G associated with Enc.

Another common operation is error-free decoding, which is the task of computing the (unique) message
that corresponds to a given codeword. This can be done via a left inverse G+ of G (a matrix such that
G+G = Ik); as G has full rank, the left-inverse G+ can be computed as (GᵀG)−1Gᵀ in O(n · k2) operations.

We will represent a linear code via (some representation of) all of these quantities, as follows.

Definition 3.16. Let C be a linear code over a field F. The public parameters (Enc, G,H,G+) of C consist
of an injective encoding function Enc: Fk → Fn such that C = Enc(Fk), a generator matrix G ∈ Fn×k, a
parity-check matrix H ∈ Fn×(n−k), and a left-inverse G+ ∈ Fk×n of G.

28

Interleaved codes. We say that c is an interleaved codeword if, for some ` ∈ N, we have c ∈ C`. We
equivalently view c as a function from [`]× [n] to F or as a matrix in F`×n.

We consider a single symbol of a function c : [`] × [n] → F to be a column of the ` × n matrix that
represents c (the column thus contains ` elements of F). Accordingly, we define the block-wise (absolute)
distance between two functions c, c′ : [`] × [n] → F to be the number of columns in which c and c′ differ.
If c is within the unique decoding radius of C`, we denote by c the unique codeword in C` that is closest to
c (and otherwise we default to setting c := 0); note that c is obtained by replacing each row of c with the
corresponding closest codeword in C.

Moreover, we define the block-wise relative distance of a set of functions {c(s) : [`]× [n]→ F}s to C to
be the fraction of columns where at least one of the functions deviates from a codeword, as follows:

∆({c(s)}s, C) :=

∣∣{j ∈ [n]
∣∣ ∃ (s, i) s.t. c(s)(i, j) 6= c(s)(i, j)

}∣∣
n

.

Tensor-product codes. The tensor product code C⊗t is the linear code in Fnt with message length kt, block
length nt, and distance dt that comprises all functions c : [n]t → F whose restriction to any axis-parallel line
is in C. Namely, for every j ∈ [t] and a1, . . . , aj−1, aj+1, . . . , at ∈ [n], the function c′ : [n]→ F defined by
c′(i) := c(a1, . . . , aj−1, i, aj+1, . . . , at) is in C. The encoding function associated to C⊗t is defined below.

Definition 3.17. Let G : [n]× [k]→ F be the generator matrix associated with the encoding function Enc
of a linear code C in Fn, and f : [k]t → F a message function with inputs indexed by (i1, . . . , it). The
C⊗t-encoding of f is the function Enc1,...,t(f) : [n]t → F, with inputs indexed by (j1, . . . , jt), defined as
follows:

Enc1,...,t(f)(j1, . . . , jt) :=
∑

i1,...,it∈[k]

G(j1, i1) · · ·G(jt, it)f(i1, . . . , it) .

While the encoding function of C⊗t is most conveniently defined in terms of the generator matrix G of
Enc, it may be significantly cheaper to compute it using EncC .

Lemma 3.18. If the encoding function Enc: Fk → C of a code C has arithmetic complexity θ(k) · k, then
the encoding function Enc1,...,t : Fk → C⊗t of the tensor code C⊗t has arithmetic complexity ρ−t−1

ρ−1−1
θ(k) · kt.

(In particular, if C is linear-time encodable then so is the tensor code C⊗t.)
Proof sketch. View a message in Fkt as kt−1 vectors in Fk. Encode each of the vectors to get a partial
encoding with kt−1n elements. View it as kt−2n vectors in Fk and encode each of them to obtain a partial
encoding with kt−2n2 elements. Compute t partial encodings to obtain the full encoding.

After performing r partial encodings, there are kt−rnr = ktρ−r elements of F, which are then viewed
as kt−1ρ−r vectors of Fk before computing the next partial encoding. In this way, the final encoding can
be obtained via θ(k)kt + θ(k)ktρ−1 + · · · + θ(k)ktρ−t+1 = (1 + ρ−1 + · · · + ρ−t+1)θ(k)kt operations.
Summing the geometric series yields the claimed arithmetic complexity.

In later sections we will also need more general notions of encodings, which consider partial encodings
of a high-dimensional array along different axis-parallel lines. We provide these definitions below.

Definition 3.19. Let G : [n]× [k]→ F be the generator matrix of a linear code C in Fn. The encoding of
a function c : [k] × [a1] × · · · × [ah] → F is the function Enc(c) : [n] × [a1] × · · · × [ah] → F defined as
follows:

Enc(c)(j, ·, . . . , ·) :=
∑
i∈[k]

G(j, i)c(i, ·, . . . , ·) .

More generally, we write Encr to indicate an encoding operation that is applied to the r-th coordinate.

29

3.7 Zero knowledge codes

Let C be a linear code over a field F with message length k and block length n, and let (Enc, G,H,G+)
be public parameters associated to the code. For any choice of km, kr ∈ N such that k = km + kr, we
can split the domain of C’s encoding function Enc into two parts, by considering the bivariate function

˜Enc: Fkm × Fkr → Fn defined as ˜Enc(m; r) := Enc(m‖r). This split naturally induces a probabilistic
encoding: ˜Enc(m) is defined to be the random variable { ˜Enc(m; r)}r←Fkr .

We are interested in hiding properties of the foregoing encoding, for given values of km and kr. In light
of this, we use the term randomized linear code to refer to a code C specified via the tuple (˜Enc, G,G+, H),
where the bivariate function ˜Enc is given explicitly as part of the code description. Observe that, since

˜Enc is linear in both the message and the randomness, we can uniquely split the generator matrix G in two
parts: G =

[
Gm Gr

]
, where Gm ∈ Fn×km corresponds to the message space of Enc, and Gr ∈ Fn×kr

corresponds to the randomness space of Enc. We will rely on this notation throughout this paper.
Common notions associated to a code change accordingly. For example, the message space is now Fkm ,

and so the message length is km and the rate is ρm = km/n. We similarly refer to Fkr as the randomness
space, and call kr the randomness length and ρr = kr/n the randomness rate. The distance of the code is
now the worst-case distance across all possible randomness choices of two encodings.

Below we define the hiding properties that we consider for randomized linear codes, (i) Q-query zero
knowledge, which requires that certain sets of coordinates leak no information about the encoded message;
(ii) Q-query uniformity, which strengthens the prior notion to require that any such set of coordinates
is uniformly random. The following definition uses the same definition of a Q-query algorithm is as in
Definition 3.9.

Definition 3.20. A randomized linear code C is Q-query zero-knowledge for a query-checker Q if there
exists a probabilistic polynomial-time simulator S such that, for every message m ∈ Fkm and Q-query
algorithm A, the following two random variables are equidistributed:
• {View(˜Enc(m; r), A)}r←Fkr , which is the view of A when making adaptive queries to ˜Enc(m; r);
• SA, which is the output of the simulator S given black-box access to A.
Moreover, if the answer to each query made by A is simply uniformly distributed, then we say that C is
Q-query uniform.

As a special case of Definition 3.20, we also consider: (i) bounded-query zero knowledge, which mirrors
the corresponding standard notion for PCPs and IOPs (and, as shown in Appendix C, is essentially equivalent
to the zero knowledge notion considered in [ISVW13; Wei16]); (ii) bounded-query uniformity, which
strengthens the prior notion to require that any sufficiently small set of coordinates is uniformly random.

Definition 3.21. Let Qb be a query-checker algorithm which outputs ⊥ if more than b queries are made, as
in Definition 3.11. For the query-checker Qb, we refer to A from Definition 3.9 as a b-query algorithm, and C
from Definition 3.20 as a b-query zero-knowledge or b-query uniform code.

Next, we define some simple randomised linear codes, starting with an encoding scheme used in
[BCGGHJ17].

Definition 3.22 (split encodings). Let C be a linear code with encoding function Enc: Fkm → Fn. Then, the
randomised linear code C̃ has encoding function ˜Enc: Fkm × Fn → F2n defined as follows:

˜Enc(m; r) :=
(

Enc(m) + r, r
)
.

30

Let Q be a query-checker for ˜Enc(m, r) which outputs 0 if queries are made to both the j-th symbol of
Enc(m) + r and r. It is easy to see that C̃ is Q-query uniform, and in particular, is 1-query uniform.

If C has rate ρ, relative distance δ, and encoding time θ(km) · km, then C̃ has rate ρ/2, relative distance
δ/2, and encoding time θ(km) · km + n.

Example 1 (hiding in code concatenation). We illustrate the differences between the notions of bounded-
query zero knowledge and bounded-query uniformity via a natural code operation: code concatenation.

Let Cin be a bin-query zero knowledge code with encoding function ˜Encin : Fkm × Fkr → Fn, and let Cout
be a bout-query zero knowledge code with encoding function ˜Encout : F× Fk′r → {0, 1}n′ . The concatenated
code C has encoding function ˜Enc: Fkm × Fkr+k′r·n → {0, 1}n′·n defined as follows:

˜Enc
(
m; (r, r1, . . . , rn)

)
:=
(

˜Encout

(
˜Encin(m; r)1; r1

)
, . . . , ˜Encout

(
˜Encin(m; r)n; rn

))
.

Note that the encoding functions use independent encoding randomness each time they are used: first for
encoding the message (via the inner code), and then for each symbol of the resulting encoding (via the outer
code).

The concatenated code C is b-query zero knowledge for b := binbout + bin + bout. Indeed, reading any b
symbols of ˜Enc(m) reveals at most b b

bout+1c = b binbout+bin+bout
bout+1 c = bin symbols of ˜Encin(m), and thus reveals

no information of m. (As we shall see in Section 2.6 and Appendix A, the same computation tells us how
zero knowledge is preserved when robustifying an IOP.)

However, if we assume that Cin is bin-query uniform and Cout is bout-query uniform then we cannot conclude
that C is b-query uniform. (Naturally, we can still conclude that C is b-query zero knowledge as we have only
strengthened the assumptions on Cin and Cout.) Indeed, ˜Enc(m) is always the concatenation of codewords in
Cout, and therefore many substrings of the codeword are not independent.

In sum, code concatenation amplifies bounded-query zero knowledge but not bounded-query uniformity,
and in particular a simulator for a zero knowledge concatenated code may have to do more than “sample a
random symbol and return it”.

31

4 Tensor IOP for R1CS with (semi)honest-verifier zero knowledge

In this section, we give a holographic tensor IOP for the relation RR1CS that is zero knowledge against
(semi-)honest verifiers.

Definition 4.1 (R1CS). The indexed relation RR1CS is the set of all triples

(i,x,w) =
(
(F,m, n,A,B,C), (`, x), w

)
where F is a finite field, A,B,C are matrices in Fm×n, each with at most M non-zero entries, x ∈ F`,
w ∈ Fn−`, and z := (x,w) ∈ Fn is a vector such that Az ◦ Bz = Cz. (Here “◦” denotes the entry-wise
product between two vectors.)

Theorem 4.2. For every finite field F and positive integers k, t, there is a (F, k, t)-tensor holographic IOP,
with non-adaptive queries, for the indexed relation RR1CS that supports instances over F with M = ` · kt,
m = kt − 2,n = kt − 6 and nin = `in · ktin , where `in ∈ [k − 1], and has the following parameters:
• soundness error is O((M + kt)/|F|);
• round complexity is O(log(M + kt));
• proof length is O(M + kt) elements in F;
• query complexity is O(1);
• the prover sends O(log `+ t log k) non-oracle messages;
• the indexer uses O(M) field operations;
• the prover uses O(kt +M) field operations;
• the verifier uses O(`in · ktin + log `+ t log k) field operations;
• the verifier has randomness complexity O(t log k).
Moreover, the tensor IOP is semi-honest-verifier zero-knowledge.

4.1 Preliminaries

Zero-knowledge gadgets. To help achieve zero-knowledge in our construction, we will augment the R1CS
instance with the following matrix gadgets.

Claim 4.3. Let Is denote the s× s identity matrix. Define the following vectors and matrices:

~e1 :=
[
1 0 0

]
, ~e2 :=

[
0 1 0

]
, ~e3 :=

[
0 0 1

]
∈ F3 ,

As := ~e1 ⊗ Is , Bs := ~e2 ⊗ Is, Cs := ~e3 ⊗ Is ∈ Fs×3s .

The solutions to the equation Asz ◦ Bsz = Csz are all vectors z ∈ F3s of the form
(
~p ~q ~p ◦ ~q

)
where

~p, ~q ∈ Fs.

During the R1CS protocol, the prover and verifier engage in a twisted scalar-product sub-protocol and
three executions of a holographic lincheck sub-protocol which are specified in [BCG20]. We note that their
results can be generalised using the notion of ε-biased generators, which allows the verifier’s randomness
complexity to be improved. First, we define ε-biased generators. Then, we define the scalar-product and
holographic lincheck relations, along with theorems specifying tensor IOPs for both relations.

ε-biased generators. We define ε-biased generators over arbitrary fields, using a notion of absolute bias
instead of using the deviation from uniform probabilities.

32

Definition 4.4 (ε-biased generators). Let G : (F \ {0})s → (F \ {0})n be a function. We say that G is
ε-biased if

max
w∈Fn\{0}

Pr
x∈Fs

[〈w,G(x)〉 = 0] ≤ ε .

Lemma 4.5. LetG : (F\{0})s → (F\{0})n be an ε-biased generator and letG′ : (F\{0})s′ → (F\{0})n′

be an ε′-biased generator. Then, the functionG⊗G′ : (x, x′) 7→ G(x)⊗G′(x′) is an (ε+ε′)-biased generator.

Proof. Let w be a non-zero vector in Fn·n′ . Choose x ← (F \ {0})s and x′ ← (F \ {0})s′ uniformly at
random. Writing

〈w,G(x)⊗G′(x′)〉 = wᵀ · (G(x)⊗ In′) · (In ⊗G′(x′)) ,

it is easy to see that wᵀ · (G(x)⊗ In′) is zero with probability at most ε over the choice of x, in which case
〈w,G(x)⊗G′(x′)〉 is also zero. If wᵀ · (G(x)⊗ In′) is not zero, then wᵀ · (G(x)⊗ In′) · (In ⊗G′(x′)) is
zero with probability at most ε′ over the choice of x′.

To achieve the parameters stated in Theorem 4.13, we use the following generator.

Definition 4.6. Let G : (F \ {0})log k → (F \ {0})k be defined by G(x1, . . . , xlog k) =
(∏

i∈S xi
)
S⊆[log k]

By the Schwarz–Zippel lemma, Definition 4.6 gives a log k
|F|−1 -biased generator with arithmetic complexity

O(k).

Relations and subprotocols. The twisted scalar-product sub-protocol and the holographic lincheck sub-
protocol are specified by the following definitions and theorems. (Note that if we set y := 1n in the definition
below then we recover “standard” scalar products.)

Definition 4.7. The twisted scalar product relationRTSP is the set of tuples (i,x,w) = (⊥, (F, n, y, τ), (a, b))
where a, b, y ∈ Fn, τ ∈ F, and 〈a ◦ y, b〉 = τ .

Theorem 4.8 ([BCG20]). For every finite field F and positive integers k, t, there is a (F, k, t)-tensor exact
IOPP for the relation RTSP that supports instances over F with n = ` · kt and y = y0 ⊗ y1 ⊗ . . .⊗ yt for
y0 ∈ F`, y1, . . . , yt ∈ Fk and has the following parameters: soundness error is O(logn

|F|); round complexity
is O(log n); proof length is O(n) elements in F; query complexity is O(1); the prover uses O(n) field
operations; the verifier uses O(log `+ t log k) field operations; and the verifier has randomness complexity
O(t log k).

Definition 4.9. Let U ∈ Fm×n be a matrix with M non-zero entries. The sparse representation of U
consists of valU ∈ FM , rowU ∈ [m]M and colU ∈ [n]M such that valU contains the M non-zero entries of
U ∈ Fm×n and, for all κ ∈ [M], valU(κ) = U(rowU(κ), colU(κ)).

Definition 4.10. The lincheck indexed relation RLC is the set of all triples

(i,x,w) =
(
U, (F,M,m, n), (v, vU)

)
where U ∈ Fm×n is a matrix with M non-zero entries given in sparse representation, v ∈ Fn, vU ∈
Fm, valU ∈ FM , rowU ∈ [m]M , colU ∈ [n]M and Uv = vU.

Lemma 4.11 ([BCG20]). For every finite field F and positive integers k, t, given an ε-biased generator
G : Fs → Fk with circuit complexityO(k), there is an exact (F, k, t)-tensor holographic IOPP for the indexed
relation RLC that supports instances over F with M = ` · kt, m,n = kt and has the following parameters:

33

soundness error is O((M + kt)/|F|+ tε); round complexity is O(log(M + kt)); proof length is O(M + kt)
elements in F; query complexity is O(1); the prover uses O(M + kt) field operations; the verifier uses
O(log(M/kt) + t log k) field operations; and the verifier has randomness complexity O(t(s+ log k)). The
index i consists of (A,B,C, [m], [n]), where A, B and C are given in their sparse representations. Moreover,
the indexer algorithm is degenerate: the encoding of an index i is the index itself.

Remark 4.12. The queries used in our tensor IOP construction and those [BCG20] may be highly structured.
For example, a query q ∈ (Fk)t in which each component is produced by the generator from Definition 4.6
can be described using only t log k field elements. As such, we allow the verifier to produce a description of
each tensor query rather than computing the entire query explicitly, which gives the stated verification time.

4.2 Our construction

The holographic tensor IOP is given in Construction 4.14. In the following theorem, the performance
parameters of the tensor IOP are described in terms of the soundness error, communication complexity, and
round complexity of the sub-protocols. Later, in Section 9, this allows us to demonstrate how our final result
depends critically on these two subprotocols.

Write kSP(N)/|F| for the soundness error of the twisted scalar-product protocol, cSP(N) for its com-
munication complexity and rSP(N) for its round complexity. Write kLC(N)/|F| for the soundness error
of the holographic lincheck protocol, cLC(N) for its communication complexity and rLC(N) for its round
complexity.

Theorem 4.13. For every finite field F and positive integers k, t, given an ε-biased generatorG : (F\{0})s →
(F\{0})k with arithmetic complexityO(k), there is a (F, k, t)-tensor holographic IOP for the indexed relation
RR1CS that supports instances over F with M = ` · kt, m = kt − 2,n = kt − 6 and nin = `in · ktin , where
`in ∈ [k − 1], and has the following parameters:
• soundness error is O((kLC + kSP)/|F|+ tε);
• round complexity is O(rLC + rSP);
• proof length is O(M + kt) elements in F;
• query complexity is O(1);
• the prover sends O(cLC + cSP) non-oracle messages;
• the indexer uses O(M) field operations;
• the prover uses O(kt +M) field operations;
• the verifier uses O(`in · ktin + log `+ t log k) field operations;
• the verifier has randomness complexity O(t(s+ log k)).
Moreover, the tensor IOP is semi-honest-verifier zero-knowledge.

Construction 4.14 (tensor IOP for R1CS). We construct a holographic interactive oracle proof IOP =
(I,P,V) with tensor queries for the indexed relation RR1CS. Given as input an index i = (F,m, n,A,B,C),
the indexer I runs the indexer for the lincheck protocol (implied by Lemma 4.11) on input U to obtain

(rowU , colU , [m], [n]) for each U ∈
{[
A 0
0 A2

]
,

[
B 0
0 B2

]
,

[
C 0
0 C2

]}
, and outputs the oracle message

Π0 :=

({[
A 0
0 A2

]
,

[
B 0
0 B2

]
,

[
C 0
0 C2

]}
, [m], [n]

)
.

The prover P takes as input the index i, instance x = (`, x), and witness w = w, while the verifier V has
query access to the index i and takes as input the instance x. Let G : (F \ {0})s → (F \ {0})k be an ε-biased
generator with arithmetic complexity O(k).

34

• The prover P relies on Claim 4.3 to sample a random solution u ∈ F6 to the equation A2u ◦B2u = C2u
such that the first two entries of u are equal to (1, 0).

• The prover P constructs the full assignment z := (x,w, u) ∈ Fkt . The prover samples vectors y, yA and
yB ∈ Fkt uniformly at random, subject to the condition that the final 2 entries of yA are (0, 1). The prover
computes the vectors

zA :=

[
A 0
0 A2

]
z, zB :=

[
B 0
0 B2

]
z, zC :=

[
C 0
0 C2

]
z,

wA :=

[
A 0
0 A2

]
y, wB :=

[
B 0
0 B2

]
y, wC :=

[
C 0
0 C2

]
y ∈ Fk

t
.

The prover sends the oracle message Π1 := (z, zA, zB, zC , y, yA, yB, wA, wB, wC) ∈ F10·kt .

• The verifier V sends uniformly random seeds ρ1, . . . , ρt ∈ (F \ {0})s and the uniformly random challenge
α ∈ F \ {0}.

• The prover P computes the query vector r := G(ρ1)⊗ · · · ⊗G(ρt), and the field elements

νC := 〈r, zC〉, µ1 := 〈zA ◦ r, yB〉+ 〈yA ◦ r, zB〉, and µ0 := 〈yA ◦ r, yB〉.

The prover P sends the non-oracle message (νC , µ1, µ0) ∈ F3.

• The verifier V performs consistency checks. First, V queries zC in Π1 at r = G(ρ1) ⊗ · · · ⊗ G(ρt) in
order to obtain the answer 〈r, zC〉. Then, V checks that νC = 〈r, zC〉, which shows that νC is the correct
answer to the query on zC .

Moreover, V checks that the (claimed) satisfying assignment z is consistent with the partial assignment x
as follows: sample uniformly random seeds σ1, . . . , σtin+1 ∈ Fs; compute vectors si = G(σi) for i ∈ [tin],
and compute stin+1 by computing G(σtin+1) and changing all but the first `in entries to zero. Set s′tin+1

to be the first `in entries. Then set each of the vectors stin+2, . . . , st ∈ Fk to equal (1, 0, . . . , 0) ∈ Fk;
query z in Π1 at the tensor s := s1 ⊗ · · · ⊗ st in order to obtain the answer 〈s, z〉; and check that
〈s, z〉 = 〈s1 ⊗ · · · ⊗ stin ⊗ s′tin+1, x〉.

• The prover P and verifier V engage in several sub-protocols, which make use of the masking vectors y,
yA and yB , and the images wA, wB , wC of y under A, B and C, to check that zA ◦ zB = zC , Az = zA,
Bz = zB and Cz = zC while ensuring zero-knowledge. Note that V can query, for example, αzA + yA
with query q by applying the query (α, 1)⊗ q to (zA, yA).

– A twisted scalar-product protocol with instance x = (F,m, r, α2νC + αµ1 + µ0) and witness w =
(αzA + yA, αzB + yB) to show that 〈(αzA + yA) ◦ r, αzB + yB〉 = α2νC + αµ1 + µ0.

– A lincheck protocol with i = A, x = (F,M,m, n), and w = (αz + y, αzA + wA) to show that
αzA + wA = A(αz + y).

– A lincheck protocol with i = B, x = (F,M,m, n), and w = (αz + y, αzB + wB) to show that
αzB + wB = B(αz + y).

– A lincheck protocol with i = C, x = (F,M,m, n), and w = (αz + y, αzC + wC) to show that
αzC + wC = C(αz + y).

Lemma 4.15 (completeness). Construction 4.14 has perfect completeness.

35

Sketch of proof. Let (x,w) be a solution to the R1CS instance. Since A2u ◦ B2u = C2u, we know that
z := (x,w, u) satisfies the augmented R1CS instance in which A,B,C are combined with A2, B2, C2. The

prover P computes zA =

[
A 0
0 A2

]
z and similarly for zB and zC , so the equation zA ◦ zB = zC holds.

This means that, for every choice of r = G(ρ1)⊗· · ·⊗G(ρt), we have 〈zA◦r, zB〉 = 〈r, zC〉. Expanding
the expression 〈(αzA + yA) ◦ r, αzB + yB〉, we see that

〈(αzA + yA) ◦ r, αzB + yB〉 = α2〈zA ◦ r, zB〉+ α(〈zA ◦ r, yB〉+ 〈yA ◦ r, zB〉) + 〈yA ◦ r, yB〉
= α2〈r, zC〉+ αµ1 + αµ0

= α2νC + αµ1 + µ0 .

This means that the twisted scalar-product protocol succeeds.
Moreover, for every choice of α, we have A(αz + y) = αAz + Ay = αzA + wA, which means that

the lincheck protocol with A succeeds. Similar reasoning holds for B and C. So the three scalar product
sub-protocols succeed.

Finally, for every choice of s1, . . . , stin+1 and setting stin+2 = · · · = st = (1, 0, . . . , 0) ∈ Fk it holds
that 〈s1 ⊗ · · · ⊗ st, z〉 = 〈s1 ⊗ · · · ⊗ stin ⊗ s′tin+1, x〉, which is the equation checked by the verifier.

Lemma 4.16 (soundness). Let εTSP and εLC be the soundness errors of the (twisted) scalar-product and
lincheck protocols. Construction 4.14 has soundness error

ε := max

{
εTSP + tε+

2

|F| − 1
, εLC +

1

|F| − 1
, (tin + 1)ε

}
.

Proof. Let (i,x) =
(
(F,m, n,A,B,C), (`, x)

)
/∈ L(R) and fix a malicious prover. Let

Π1 = (z, zA, zB, zC , y, yA, yB, wA, wB, wC)

be the first message sent by the malicious prover. At least one of the following cases must hold.

• The Hadamard product is incorrect: zA ◦ zB 6= zC . By Lemma 4.5, the vector r = G(ρ1)⊗ . . .⊗G(ρt)
is the output of a tε-biased generator. Since 〈zA ◦ zB − zC , r〉 = 0 if and only if 〈zA ◦ r, zB〉 = 〈zC , r〉,
we have Prr[〈zA ◦ r, zB〉 = 〈zC , r〉] ≤ tε. Suppose that 〈zA ◦ r, zB〉 6= 〈zC , r〉 and let νC ∈ F be
the claimed value of the inner product sent by the malicious prover in the second message. Either
〈zC , r〉 6= νC or 〈zA ◦ r, zB〉 6= νC (or both). In the former case, the verifier will reject due to the
check that νC = 〈zC , r〉. In the latter case, we apply the Schwartz–Zippel lemma to the non-zero
polynomial h(α) := 〈(αzA + yA) ◦ r, αzB + yB〉 − α2νC − αµ1 − µ0 of degree 2, concluding that
Prα[〈(αzA + yA) ◦ r, αzB + yB〉 = α2νC + αµ1 + µ0] ≤ 2

|F|−1 . By the soundness of the twisted scalar-
product protocol, the verifier accepts with probability at most εTSP. By a union bound, the probability of
accepting is at most εTSP + tε+ 2

|F|−1 .

• A linear combination is incorrect: zA 6= Az or zB 6= Bz or zC 6= Cz. Suppose that zA 6= Az, without
loss of generality. Then, there exists some i ∈ [kt] such that (zA)i 6= (Az)i. We apply the Schwartz–
Zippel lemma to the non-zero polynomial P (α) := α [(zA)i − (Az)i] + [(wA)i − (Ay)i] of degree 1,
concluding that P (α) = 0 with probability at most 1

|F|−1 , and hence Prα[A(αz+e) = αzA+wA] ≤ 1
|F|−1 .

If A(αz + e) 6= αzA + wA, then by the soundness of the lincheck protocol, the verifier accepts with
probability at most εLC. By a union bound, the acceptance probability is at most εLC + 1

|F|−1 .

36

• Inconsistency with the partial assignment: z 6= (x,w) for some w. Note that after setting the final entries of
stin+1 to zero, it is still the output of an ε-biased generator. By Lemma 4.5, the vector s1⊗· · ·⊗stin⊗s′tin+1

is the output of a (tin + 1)ε-biased generator. This implies that Prs1,...,stin+1 [〈s1 ⊗ · · · ⊗ st, z〉 = 〈s1 ⊗
· · · ⊗ stin+1, x〉] ≤ (tin + 1)ε. The acceptance probability is at most (tin + 1)ε.

Lemma 4.17 (zero-knowledge). Construction 4.14 is (semi)honest-verifier zero-knowledge.

Proof. We give an efficient simulator S for Construction 4.14, such that for every index-instance tuple
(i,x) ∈ L(R) and verifier randomness r, the random variables SV(i,x, r) and View(P(i,x,w),V(i,x, r))
are identically distributed.

1. Start simulating V.

2. Sample (νC , µ1, µ0) uniformly at random from F3, and send to V as non-oracle messages.

3. Receive the challenge α from V. Receive the seeds ρ1, . . . , ρt from V and compute r = G(ρ1)⊗
· · · ⊗G(ρt).

4. Sample uniformly random e, eA, eB ∈ Fkt conditioned on 〈eA ◦ r, eB〉 = α2νC + αµ1 + µ0, and
such that the entries of eA corresponding to the (1, 0) in zA are equal to (α, 1). Compute

fA :=

[
A 0
0 A2

]
e, fB :=

[
B 0
0 B2

]
e, fC :=

[
C 0
0 C2

]
e ∈ Fk

t
.

5. Engage in a twisted scalar-product subprotocol with V to prove that 〈eA ◦ r, eB〉 = α2νC +αµ1 +µ0,
and lincheck subprotocols to prove that Ae = fA, Be = fB and Ce = fC .

6. Answer the verifier’s tensor query 〈r, zC〉 with νC . Receive the seeds σ1, . . . , σtin+1, compute
s1, . . . , stin+1, and answer the verifier’s tensor query 〈s1 ⊗ · · · ⊗ st, z〉 with 〈s1 ⊗ · · · ⊗ stin , x〉.

Efficiency. We show that S runs in polynomial time. This is clear apart from Item 4. To see that Item 4
is also efficient, note that the condition 〈eA ◦ r, eB〉 = α2νC + αµ1 + µ0 from Item 4 imposes a quadratic
constraint on eA, eB . The simulator samples eA first uniformly at random. Now, eA enforces a linear
constraint on eB . Since one entry of eA is α which is non-zero, eB is sampled by sampling all entries except
the entry corresponding to α uniformly at random, and then choosing the entry corresponding to α to satisfy
the linear constraint.

Finally, we argue that S simulates the verifier’s view perfectly. In a simulated view, all of the values
(eA, eB, e, νC , µ1, µ0) are uniformly random (except for three entries of eA being fixed to (α, 1)) conditioned
on satisfying the relation checked by the twisted scalar-product sub-protocol. The vectors fA, fB and fC are
then fully determined by e. The values of any queries made as part of the sub-protocols are determined by e,
fA fB and fC .

Correctness. To see that S simulates the view of V perfectly, we will display all of the randomisers used by
the prover in a real proof, and then examine the distribution of oracle and non-oracle messages and queries.

37

First, we display the randomizers in the last 2 entries of zA, zB, zC , yA, yB , and the last 6 entries of z, y.
All values denoted by letters and asterisks are sampled uniformly at random in a real execution by the honest
prover:

zA[−2 :] 1 0
yA[−2 :] 0 1

zB[−2 :] a1 a2

yB[−2 :] b1 b2
zC [−2 :] a1 0

z[−6 :] zA[−2 :] zB[−2 :] zC [−2 :]
y[−6 :] ∗ ∗ ∗

We now examine the distribution of oracle and non-oracle messages and queries.

• Claim: The vector αz + y is uniformly random. This is obvious due to the values of z and y as displayed
above.

• Claim: the distribution of αzA + yA is uniformly random, except for the first three entries which are (α, 1).
This is obvious due to the values of zA and yA as displayed above.

• Claim: The messages µ1 = 〈zA ◦ r, yB〉+ 〈yA ◦ r, zB〉 and µ0 = 〈yA ◦ r, yB〉, and the vector αzB + yB
are uniformly random. These values can be written µ1

µ0

αzB + yB

 =

(yA ◦ r)ᵀ (zA ◦ r)ᵀ
0k

t
(yA ◦ r)ᵀ

αIkt Ikt

[zB
yB

]
.

Consider the sub-matrix obtained by dropping the columns corresponding to all but the final 2 entries of zB
and yB . By choice of zA and yA, and since all entries of r are non-zero, this sub-matrix has full row-rank.
The matrix equation above can be rewritten as the sum of a vector which depends on the witness, and the
aforementioned sub-matrix multiplied by the random input vector (a1, a2, b1, b2). The claim follows.

• Claim: The query answer νC = 〈r, zC〉 is uniformly distributed. This follows from the fact that the
following equation holds, in which every term except νC is known to be uniformly distributed.

〈(αzA + yA) ◦ r, αzB + yB〉 = α2νC + αµ1 + µ0 .

• Claim: The answers to the queries made as part of the three lincheck protocols are fully determined by
αz + y. As described in Construction 4.14, the verifier makes, for example, query (α, 1) ⊗ q to (z, y)
which is the same as query q to αz + y, and queries (α, 1) ⊗ q′ to (zA, wA) which is the same as query
q′ to αzA + wA, and similarly for B and C. This means that these query answers are determined by the
vectors αz + y, αzA +wA, αzB +wB and αzC +wC , and hence all by determined by αz + y, which is a
random vector.

• The answer to the query 〈s1 ⊗ · · · ⊗ st, z〉 is always equal to 〈s1 ⊗ · · · ⊗ stin , x〉 which is independent of
the witness.

38

5 Algebraic reformulation of zero knowledge codes

We provide algebraic reformulations of the conditions in Definition 3.21 that we use in this work. Throughout
this section we fix a randomized linear code C = (Enc, G,H,G+) over a field F, and state results that
involve the following vector space: D(C) := {z ∈ Fn | zᵀGr = 0}.

Lemma 5.1. The following are equivalent:
1. C is b-query zero-knowledge for exactly the integers b ∈ [B].
2. The minimum weight of codewords in D(C) \ C⊥ is B + 1.

Lemma 5.2. The following conditions are equivalent:
1. C is b-query uniform for exactly the integers b ∈ [B].
2. D(C) has minimum (absolute) distance B + 1.

We first prove Lemma 5.2 in Section 5.1 as it is simpler, and then prove Lemma 5.1 in Section 5.2.

Remark 5.3. The second condition in Lemma 5.2 is closely related to the condition on the rows of G given
in [Wei16, Lemma 6.4.1], which essentially states that D(C) has no codeword of weight less than B + 1.
That this condition implies b-query zero-knowledge is proved in [Wei16, Lemma 6.4.1]. Here, we strengthen
that result to an equivalence by making two modifications:
• we consider the stronger notion of b-query uniformity rather than b-query zero-knowledge;
• we consider a condition on D(C), namely, its minimum distance (there is no codeword of weight less than
B + 1 but there does exist a codeword of weight B + 1).

In this section we use several times the following version of the XOR Lemma.

Lemma 5.4 (XOR Lemma). Two random variables X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) over Fn are
equidistributed if and only if, for every z ∈ Fn, the random variables zᵀX and zᵀY over F are equidistributed.
In particular, a random variable X = (X1, . . . , Xn) ∈ Fn is uniformly distributed if and only if, for every
non-zero z ∈ Fn, the random variable zᵀX ∈ F is uniformly distributed.

5.1 Proof of Lemma 5.2

We prove each of the two implications in turn.
1 ⇒ 2. By hypothesis, C is B-query uniform but not (B + 1)-query uniform. This implies that there exists
a message m∗ ∈ Fkm and a subset J∗ ⊆ [n] with B + 1 entries such that Enc(m∗, r)J∗ is not uniformly
distributed. By Lemma 5.4, there exists non-zero z∗ ∈ FJ such that 〈e|J∗ , z∗〉 is not uniformly distributed.

Let w∗ := (w∗m, w
∗
r), where ((w∗m)ᵀ)i :=

∑
j∈J(z∗)ᵀj (Gm)i,j for each i ∈ [km], and ((w∗r)

ᵀ)i :=∑
j∈J(z∗)ᵀj (Gr)i,j for each i ∈ [kr]. Then, w∗r must be the zero vector, otherwise 〈e|J∗ , z∗〉 would be

uniformly distributed. Therefore, z∗ can be padded with zeroes to obtain a codeword in D(C) of weight
B + 1. Further, any codeword in D(C) with weight at most B contradicts the B-query uniformity of C via
Lemma 5.4. Therefore, the minimum distance of D(C) is exactly B + 1.
2 ⇒ 1. Fix a message m ∈ Fkm and a subset J ⊆ [n] of at most B locations. We argue that, for a random
r ∈ Fkr , the entries in J of e := Enc(m, r) are uniformly distributed. By Lemma 5.4, it suffices to check that
for every non-zero vector z ∈ FJ the random variable 〈z, e|J〉 is uniformly distributed. Let G =

[
Gm Gr

]
be the generator matrix of C, so that e = Gmm+Grr. Setting w := (wm, wr) defined similarly to w∗m and
w∗r above. Then, writing e in terms of m, r and G, we have

〈z, e|J〉 =
∑
j∈J

zjej =
∑
j∈J

zj(Gmm+Grr)j = 〈wm,m〉+ 〈wr, r〉 .

39

By our hypothesis, wr cannot be the zero vector, otherwise, z can be padded with zeroes to obtain a codeword
in D(C) of weight B, which is less than the minimum distance of D(C). Hence wr is non-zero, so 〈r, wr〉 is
uniformly distributed since r is uniformly distributed over Fkr , and so 〈z, e|J〉 is also uniformly distributed.
The non-zero vector z ∈ FJ was arbitrary, and by Lemma 5.4 we conclude that e|J is uniformly distributed.
Further, m and J were also arbitrary, which proves that C is b-query uniform. Finally, it is clear that C is not
(B+ 1)-query uniform because the codeword inD(C) of weight B+ 1 that exists by hypothesis gives a linear
relation between B + 1 entries of e. This shows that if |J | = b+ 1 then e|J is not uniformly distributed.

5.2 Proof of Lemma 5.1

We prove each of the two implications in turn, using the definition of b-query zero-knowledge given by
Definition C.1.

1 ⇒ 2. By hypothesis, C is B-query zero-knowledge but not (B + 1)-query zero-knowledge. This implies
that there exist distinct messages m,m′ ∈ Fkm and a subset J ⊆ [n] of at most B + 1 locations such that the
distributions {e|J | e = Enc(m; r), r ← Fkr} and {e′|J | e′ = Enc(m′; r′), r′ ← Fkr} are not identical.

By Lemma 5.4, there exists a vector z ∈ FJ such that the distributions of 〈z, e|J〉 and 〈z, e′|J〉 are
not identical. Let G =

[
Gm Gr

]
be the generator matrix of C, so that e = Gmm + Grr and similarly

for e′. Let wm ∈ Fkm and wr ∈ Fkr be defined by (wᵀ
m)i :=

∑
j∈J z

ᵀ
j (Gm)i,j for each i ∈ [km], and

(wᵀ
r)i :=

∑
j∈J z

ᵀ
j (Gr)i,j for each i ∈ [kr]. Then, as in the proof of Lemma 5.2, we have

〈z, e|J〉 = 〈wm,m〉+ 〈wr, r〉 , 〈z, e′|J〉 = 〈wm,m′〉+ 〈wr, r′〉 .

By our hypothesis, wr must be the zero vector, otherwise 〈z, e|J〉 and 〈z, e′|J〉 are both uniformly random
over F. Therefore, z can be padded with zeroes to obtain a codeword z∗ ∈ D(C) with at most B + 1 entries.
Further, wm must be non-zero, otherwise both 〈z, e|J〉 and 〈z, e′|J〉 would be equal to zero. Hence z∗Gm 6= 0
and z∗ is not an element of C⊥, which can be written {x | xGm = 0 ∧ xGr = 0}. Finally, note that z∗ must
have exactly B + 1 non-zero entries; a z∗ with weight at most B would give a linear distinguisher for some
set of B entries of e and e′ and contradicts the B-query zero-knowledge property of C.

2 ⇒ 1. We show that for every set J ⊆ [n] of size at most B, and every message pair m,m′ ∈ Fkm , the
distributions {e|J | e = Enc(m; r), r ← Fkr} and {e′|J | e′ = Enc(m′; r′), r′ ← Fkr} are identical. By
Lemma 5.4, it suffices to show that for all vectors z ∈ FJ , the random variables 〈z, e|J〉 and 〈z, e′|J〉 are
identically distributed. We may pad z ∈ FJ with zeroes to obtain z∗ ∈ Fn of weight at most B. By our
hypothesis, the minimum weight codeword of D(C) \ C⊥ is B + 1. Hence, any such z∗, which has weight
at most B, is either not an element of D(C), or is an element of C⊥. In the first case, z∗Gr 6= 0. Setting
w∗ = (w∗m, w

∗
r), defined similarly to wm and wr above, we see that w∗r 6= 0 and that 〈z, e|J〉 and 〈z, e′|J〉

are both uniformly distributed over F. In the second case, w∗r = z∗Gr = 0 and w∗m = z∗Gm = 0. We see
that w∗r 〈z, e|J〉 and 〈z, e′|J〉 are both equal to zero. Since m,m′ and J were arbitrary, we conclude that C
has B-query zero-knowledge.

Finally, it is clear that C is not (B + 1)-query zero-knowledge because the weight B + 1 codeword z∗ of
D(C) \ C⊥ that exists by hypothesis yields a relation 〈z, e|J〉 = 〈wm,m〉 for J of size B + 1 and non-zero
wm. This shows that one can distinguish between messages that have different values of 〈wm,m〉.

5.3 Examples

We illustrate how the algebraic reformulations in this section relate to two well-known codes: the Reed–
Solomon code (Section 5.3.1) and the Reed–Muller code (Section 5.3.2).

40

5.3.1 Example: Reed–Solomon code

Let km, kr, k and n be positive integers such that k = km+kr. Consider the randomized linear code C derived
from the Reed–Solomon code C = RS[n, k, n− k + 1], whose encoding function Enc: Fkm × Fkr → Fn is
defined by generator matrix

G =
[
Gr Gm

]
=

1 ω1 ω2

1 · · · ωkr−1
1 ωkr1 · · · ωk−1

1

1 ω2 ω2
2 · · · ωkr−1

2 ωkr2 · · · ωk−1
2

...
...

...
. . .

...
...

. . .
...

1 ωn ω2
n · · · ωkr−1

n ωkrn · · · ωk−1
n

for (pre-determined) distinct points ω1, . . . , ωn ∈ F. Here, we have split the input to the encoding function
into a kr-element randomizer followed by a km-element message (for any desired km and kr such that
km + kr = k). One can verify that, for every message m ∈ Fkm , if r ∈ Fkr is random then any subset of kr
entries of Enc(m, r) are uniformly distributed. We now explain how to alternatively understand this through
the lens of Lemma 5.2 and the code D(C).

Observe that Gr generates the Reed–Solomon code RS[n, kr, n − kr + 1]. Next observe that D(C) is
its dual code and is straightforward to understand: the dual of an MDS code is also an MDS code (and so
the distance of the dual is easy to compute) and, in particular, the dual of a Reed–Solomon code is also a
Reed–Solomon code. One can thus verify that D(C) = RS[n, n − kr, kr + 1]. Since D(C) has minimum
distance kr + 1, Lemma 5.2 shows that C is kr-query uniform. This agrees with our prior conclusion.

Furthermore, any subset of kr + 1 entries of Enc(m, r) leak information about m. One can understand
this via Lemma 5.1 and the set D(C) \ C⊥. Observe that C⊥ is the Reed-Solomon code RS[n, n− k, k + 1]
which has minimum distance greater than kr + 1. This means that removing C⊥ from D(C) does not change
the weight kr + 1 of the minimum weight codeword, and so C is zero-knowledge for at most kr queries.

5.3.2 Example: Reed–Muller code

Let `, `′,m be positive integers such that ` < `′ ≤ m. Let H be a subgroup of the multiplicative group of Fq
with |H| = h. Consider the Reed-Muller code RM[H,m, `′] over Fq. That is, RM[H,m, `′] is defined to be

RM[H,m, `′] = {(f(~ω))~ω∈Hm | f ∈ Fq[Z1, . . . , Zm] with deg(f) ≤ `′ and ∀i ∈ [m],degZi(f) ≤ h− 1}

which has block length n = hm. The code RM[H,m, `′] has a generator matrixG where column corresponds
to a distinct monomial in Z1, . . . , Zm, evaluated at all points in Hm, and the columns are ordered by graded
lexicographic order of monomials. We may derive a randomised linear code C by assigning the random part
of the input to the monomials of degree at most `. This means that the matrix Gr is a submatrix of G which
generates RM[H,m, `].

Let s, t be the unique non-negative integers such that t < h − 1 and ` = s(h − 1) + t. The code
RM[H,m, `] has minimum distance (h − t) · hm−s−1. The dual of the Reed–Muller code RM[H,m, `]
is RM[H,m,m(h − 1) − ` − 1], which is D(C). Further, D(C) has minimum distance (t + 2) · hs. By
Lemma 5.2, C is b-query uniform for b < (t+ 2) · hs.

Now we analyse the zero-knowledge property of C via Lemma 5.1 and the set D(C) \ C⊥. Let s′, t′

be the unique non-negative integers such that t′ < h − 1 and `′ = s′(h − 1) + t′. Observe that C⊥ is the
Reed–Muller code RM[H,m,m(h− 1)− `′ − 1] which has minimum distance (t′ + 2) · hs′ . This is always
strictly greater than the minimum distance (t + 2) · hs of D(C). Thus, removing C⊥ from D(C) does not
change the weight of the minimum weight codeword, and so C is b-query zero-knowledge for b < (t+ 2) · hs
queries.

41

6 Tensor products of zero-knowledge codes

We define the tensor product C ⊗ C′ of two randomized linear codes C and C′. The definition matches the
standard notion of tensor products in that the vector space C ⊗ C′ is the tensor product of the vector spaces
C and C′. However, we additionally need to specify how the randomized encoding function of C ⊗ C′ uses
encoding randomness.

Definition 6.1. Let C be a [n, km, kr, d] randomized linear code with encoding function EncC : Fkm×Fkr →
Fn. Let C′ be a [n′, k′m, k

′
r, d
′] randomized linear code with encoding function EncC′ : Fk

′
m×Fk′r → Fn′ . The

encoding function EncC⊗C′ for the [nn′, kmk
′
m, kmk

′
r + krk

′
m + krk

′
r, dd

′] randomized linear code C ⊗ C′ is
defined by the following procedure:

• Extend the input message m ∈ Fkm×k′m to the matrix m̃ ∈ F(km+kr)×(k′m+k′r) by padding with entries
sampled independently and uniformly at random from F.

• Output the codeword c ∈ Fn×n′ obtained by applying ˜EncC to each row of m̃ and then applying ˜EncC′ to
each column of the result.

If C has generator matrix
[
Gm Gr

]
and C′ has generator matrix

[
G′m G′r

]
, then C ⊗ C′ has generator

matrix
[
Gm ⊗G′m Gm ⊗G′r Gr ⊗G′m Gr ⊗G′r

]
, where the first part corresponds to the message

and the last three parts correspond to the encoding randomness.
In this section we prove that the properties of bounded-query zero knowledge and bounded-query

uniformity are preserved under the tensor operation.

Theorem 6.2. Let C and C′ be randomized linear codes.

1. If C is b-query zero-knowledge and C′ is b′-query zero-knowledge, then C ⊗ C′ is min(b, b′)-query zero-
knowledge.

2. If C is b-query uniform and C′ is b′-query uniform, then C ⊗ C′ is min(b, b′)-query uniform.

If we iteratively apply the above result to C and C′ = C⊗i for each i ∈ [t−1] then we obtain this corollary:

Corollary 6.3. Let C be a randomized linear code.
1. If C is b-query zero-knowledge, then, for any t ∈ N, C⊗t is b-query zero-knowledge.
2. If C is b-query uniform, then, for any t ∈ N, C⊗t is b-query uniform.

We now proceed to the proof of Theorem 6.2. We start with some preliminaries and a structural result
(Proposition 6.7), and then prove each item of the theorem.

Definition 6.4. Let F be a field and M ∈ Fm×n a matrix. We define Null(M) to be the left null-space of M :

Null(M) := {x ∈ Fm : xᵀM = 0} .

Lemma 6.5. Let f : V →W and f ′ : V ′ →W ′ be surjective linear maps. Then

ker(f ⊗ f ′) = ker(f)⊗ V ′ + V ⊗ ker(f ′)

Proof sketch. We have V = I ⊕K, where I ' W and K = ker f , and similarly for V ′. Thus, f ⊗ f ′ is a
linear mapping from V ⊗V ′ toW ⊗W ′, where V ⊗V ′ is equal to (I⊗I ′)⊗(I⊗K ′)⊗(K⊗I ′)⊗(K⊗K ′).
Now, f ⊗ f ′ maps I ⊗ I ′ to W ⊗W ′, and has kernel (I ⊗ K ′) ⊗ (K ⊗ I ′) ⊗ (K ⊗ K ′), which can be
rewritten as (K ⊗ V ′) + (V ⊗K ′).

42

Corollary 6.6. For randomized linear codes C and C′, (C ⊗ C′)⊥ = C ⊗ Fn′ + Fn ⊗ C′.

Proof. Setting f(x) = xᵀG and f ′(x) = xᵀG′ gives the result. The surjectivity of f and f ′ are guaranteed
by the full rank of G and G′.

Proposition 6.7. For randomized linear codes C and C′,

D(C ⊗ C′) = (C ⊗ C′)⊥ +D(C)⊗D(C′) = C ⊗ Fn
′
+ Fn ⊗ C′ +D(C)⊗D(C′)

Proof. The spaces D(C ⊗ C′) and (C ⊗ C′)⊥ are characterised explicitly as follows.

D(C ⊗ C′) =
{
z ∈ Fn·n

′
: zᵀ · (Gr ⊗G′m) = 0 ∧ zᵀ · (Gm ⊗G′r) = 0 ∧ zᵀ · (Gr ⊗G′r) = 0

}
,

(C ⊗ C′)⊥ =
{
z ∈ Fn·n

′
: zᵀ · (G⊗G′) = 0

}
.

It is clear that D(C ⊗ C′) contains both (C ⊗ C′)⊥ and D(C)⊗D(C′), and so (C ⊗ C′)⊥ +D(C)⊗D(C′) ⊆
D(C ⊗ C′).

Now we show that D(C ⊗ C′) ⊆ (C ⊗ C′)⊥ +D(C)⊗D(C′).
By definition, C⊥ ⊆ D(C) ⊆ Fn. Given a basis A = {ai}i∈I for C⊥, we may extend it to a basis A ∪B

for D(C) by adding B = {bj}j∈J such that no element bj is contained in C⊥, and then again to a basis
A ∪B ∪ C for Fn by adding C = {ck}k∈K such that no element ck is contained in D(C). The same applies
to (C′)⊥ ⊆ D(C′) ⊆ Fn′ . Considering the pairwise tensor products of basis elements for Fn and Fn′ gives a
basis of rank-2 tensors for Fn·n′ .

It suffices to show that any rank-2 basis element z ⊗ z′ ∈ D(C ⊗ C′) is in (C ⊗ C′)⊥ +D(C)⊗D(C′). If
z⊗z′ ∈ D(C⊗C′), then by definition ofD(C⊗C′), we have (zᵀGr)⊗(z′ᵀG′m) = 0, (zᵀGm)⊗(z′ᵀG′r) = 0
and (zᵀGr) ⊗ (z′ᵀG′r) = 0. Thus, at least one of zᵀGr and z′ᵀG′r must be equal to zero. If both are zero,
then z ⊗ z′ ∈ D(C)⊗D(C′).

On the other hand, if, without loss of generality, zᵀGr = 0 and z′ᵀG′r 6= 0, then since (zᵀGm) ⊗
(z′ᵀG′r) = 0, we must have zᵀGm = 0. Then, as zᵀGm = 0 and zᵀGr = 0, we have z ∈ C⊥, and so
z⊗z′ ∈ C⊥⊗Fn′ . By Corollary 6.6, we have (C⊗C′)⊥ = C⊥⊗Fn′+Fn⊗(C′)⊥, and so z⊗z′ ∈ (C⊗C′)⊥.

Therefore, D(C ⊗ C′) ⊆ (C ⊗ C′)⊥ +D(C)⊗D(C′), which completes the proof.

Proof of Item 2 in Theorem 6.2. Using the algebraic characterisation of b-query uniformity from Lemma 5.2,
it suffices to prove that if D(C) has minimum distance at least b+ 1, and D(C′) has minimum distance at least
b′ + 1, then D(C ⊗ C′) has minimum distance at least min(b, b′) + 1. Without loss of generality, suppose that
b ≤ b′. We show that D(C ⊗ C′) has minimum distance at least b+ 1.

LetR := D(C)⊗Fn′+Fn⊗D(C′). By Proposition 6.7, we haveD(C⊗C′) = (C⊗C′)⊥+D(C)⊗D(C′).
Since C⊥ ⊆ D(C) and C′⊥ ⊆ D(C′), we have D(C ⊗ C′) ⊆ R. This means that the minimum distance of R
is a lower bound for the minimum distance of D(C ⊗ C′), so it suffices to show that the minimum distance
of R is at least b+ 1. We will demonstrate this by showing that each element of R with at most b non-zero
entries must be equal to zero. This implies that each non-zero element z ∈ R has weight at least b+ 1.

Writing Fn′ as a direct sum Fn′ = D(C′)⊕ I(C′), we have R = D(C)⊗ I(C′) + Fn ⊗D(C′). We may
therefore express any z ∈ R as the difference z = z1− z2, for some z1 ∈ D(C)⊗ I(C′) and z2 ∈ Fn⊗D(C′).
Note that each row of z1 lies in D(C), each column of z1 lies in I(C′), and each column of z2 lies in D(C′).

Suppose that z ∈ R has at most b non-zero elements. Write z = z1− z2 as above. At least n− b columns
of z are equal to zero. Hence, z1 and z2 are equal on these n− b columns. Since each column of z2 lies in
D(C′) then these n− b columns of z1 lie in D(C′), and hence in D(C′)∩ I(C′), which is {0}. This means that

43

n− b columns of z1 are equal to zero, and that each row of z1 contains at most b non-zero entries. Since the
minimum distance of D(C) is at least b+ 1, each row of z1 is zero, so z1 is zero. Thus, z = z2 ∈ Fn⊗D(C′).
But since the minimum distance of Fn ⊗D(C′) is at least b′ + 1, which is at least b+ 1, we see that z = 0.

This implies that each non-zero element z ∈ R has weight at least b+ 1, completing the proof.

Proof of Item 1 in Theorem 6.2. Using the algebraic characterisation of b-query zero-knowledge from Lemma 5.1,
it suffices to prove that if D(C) \ C⊥ has minimum weight at least b+ 1, and D(C′) \ (C′)⊥ has minimum
weight at least b′ + 1, then D(C ⊗ C′) \ (C ⊗ C′)⊥ has minimum weight at least min(b, b′) + 1. Without loss
of generality, suppose that b ≤ b′. We show that D(C ⊗ C′) \ (C ⊗ C′)⊥ has minimum weight at least b+ 1.

Use N(C) to denote the linear subspace orthogonal to C⊥ such that D(C) = C⊥ ⊕N(C). We observe
that since Fn = C⊥ ⊕ C and D(C) ⊂ Fn, so N(C) ⊂ C. Define a new linear space

R :=
(
C⊥ ⊗ Fn

′
+ C ⊗ (C′)⊥

)
+ C ⊗N(C′) \

(
C⊥ ⊗ Fn

′
+ C ⊗ (C′)⊥

)
.

By Proposition 6.7, we have D(C ⊗ C′) = (C ⊗ C′)⊥ +D(C)⊗D(C′). Since D(C) = C⊥ ⊕N(C) and
D(C′) = C′⊥ ⊕ N(C′), we have D(C ⊗ C′) = C⊥ ⊗ Fn′ + C ⊗ C′⊥ + N(C) ⊗ N(C′). Additionally since
N(C) ⊂ C, D(C ⊗ C′) \ (C ⊗ C′)⊥ ⊂ R.

This means that the minimum weight of R is a lower bound for the minimum weight of D(C ⊗ C′) \ (C ⊗
C′)⊥, so it suffices to show that the minimum weight of R is at least b+ 1.

We may therefore express any z ∈ R as the difference z = z1 − z2, for some z1 ∈ C⊥ ⊗ Fn′ and
z2 ∈ C ⊗ D(C′) \ C ⊗ (C′)⊥. Note that each row of z1 lies in C⊥, each row of z2 lies in C, and there exists a
column of z2 that lies in D(C′) \ (C′)⊥.

Suppose that z ∈ R has at most b non-zero elements. Write z = z1 − z2 as above. At least n− b rows of
z are equal to zero. Hence, z1 and z2 are equal on these n − b rows. Since each row of z1 lies in C⊥ then
these n− b rows of z2 lie in C⊥, and hence in C⊥ ∩ C, which is {0}. This means that n− b rows of z2 are
equal to zero, and that each column of z2 contains at most b non-zero entries. Since the minimum distance of
D(C′) \ C′⊥ is at least b+ 1, no column of z2 lies in D(C′) \ C′⊥, so z = z1 − z2 cannot be in R. We derive
a contradiction.

This implies that each element z ∈ R has weight at least b+ 1, completing the proof.

44

7 Zero-knowledge codes with linear-time encoding

We state and prove our result about the existence of linear codes that are both linear-time encodable and
b-query zero knowledge (in fact, b-query uniform).

Definition 7.1. A field-agnostic circuit over variables x1, . . . , xn is a directed acyclic graph such that
(i) every node with in-degree 0 is labeled by a variable xi; (ii) every other gate is labelled by either + or ×.21

Definition 7.2. Hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x) is the q-ary entropy function.

Theorem 7.3. For every choice of rate parameters ρ, ρm, ρr ∈ (0, 1) with ρ = ρm+ρr, there is a polynomial-
time constructible field-agnostic circuit family {Ek}k∈N where Ek has size O(k), k + ν(k) inputs and n
outputs, with ν(k) = O(k) and k = bρnc such that for any finite field F (of size q) the following holds:
• for every R ∈ Fν(k), Ek(·, R) is an injective linear encoding function with message length k and block

length n, which defines a randomised linear code Ck with kr = dρrne and km = k − kr;
• for every ε > 0,

Pr
R←Fν(k)

[
the relative distance of Ck is greater than H−1

q (1− ρ− ε)
]
≥ 1− q1−εn .

• for every ε > 0,

Pr
R←Fν(k)

[
Ck is b-query uniform with (b+ 1)/n > H−1

q (ρr − ε)
]
≥ 1− q−εn .

In Section 7.1 we introduce preliminaries and then in Section 7.2 we prove the theorem.

7.1 Preliminaries

We recall several definitions and results about linear uniform output families (LUO families) from Druk and
Ishai [DI14]. Let F be a finite field with q elements.

Definition 7.4. A (F, k, n)-LUO family is a distribution A over linear functions A : Fk → Fn such that for
every non-zero x ∈ Fk and every y ∈ Fn it holds that PrA←A[Ax = y] = q−n. Equivalently, for every fixed
non-zero x ∈ Fk, the distribution of Ax induced by a choice of A according to A is uniform over Fn.

Lemma 7.5 (transposition). If A is a (F, k, n)-LUO family then Aᵀ := {Aᵀ |A← A} is a (F, n, k)-LUO
family. Namely, for every non-zero y ∈ Fn and every x ∈ Fk it holds that PrA←A[Aᵀy = x] = q−k.

Theorem 7.6. For every parameter c ∈ N there is a polynomial-time constructible family {Ek}k∈N of
field-agnostic circuits where Ek has size O(k), k + ν(k) inputs and ck outputs, such that for any field F,
viewing Ek as a function Ek : Fk × Fν(k) → Fck, the function family {AR(x) := Ek(x,R)}R∈Fν(k) is a
(F, k, ck)-LUO family when R is chosen uniformly in Fν(k).

Proof. The circuit family Ek : Fk × Fν(k) → Fck of [DI14] provides a suitable LUO family. It remains to
prove that the circuits Ek are field-agnostic. The Ek are given by a composition of circuits as Ek(x,R) =
fk ◦MR ◦ gk. The circuit gk is the encoding function for a recursive construction of a variant of Spielman
codes, and for a suitable choice of base code, gk uses only addition and fan-out gates. The circuit fk is the

21A standard arithmetic circuit is defined over a field F, and nodes with in-degree 0 can be labelled by elements of F as well as
variables. A field-agnostic circuit can be viewed as a circuit over any field F.

45

transpose (see e.g. [KKB88]) of gk obtained by reversing the direction of the circuit for gk and thus also
consists only of addition and fan-out gates. Finally, MR is left-multiplication by a block-diagonal matrix
with entries specified by R, and it is clear that this circuit can be implemented as stated since R is an input to
the circuit.

Theorem 7.7 (good codes from LUO). Let F be a finite field, δ ∈ [0, 1− 1/q) a distance parameter, ε > 0
an error parameter, and n ∈ N a block length; define the message length k := d(1−Hq(δ)− ε) · ne. If A is
a (F, k, n)-LUO family then the image of A : Fk → Fn sampled from A is a linear code with rate k/n and
relative distance strictly greater than δ, except with probability at most q1−εn over the choice of A.

Theorem 7.8 (good dual codes from LUO). Let F be a finite field, ε > 0 an error parameter, k a message
length and n ∈ N a block length. Let A be a (F, k, n)-LUO family. If A : Fk → Fn sampled from A defines
a code C, then the kernel of A is the dual code C⊥ with rate 1− k/n and relative distance strictly greater
than H−1

q (k/n− ε), except with probability at most q−εn over the choice of A.

7.2 Proof of Theorem 7.3

Lemma 7.9. Let F be a finite field with q elements. Let A be a (F, k, n)-LUO family. Let ε > 0 be
an error parameter, ρr ∈ (0, 1) be a randomness rate and b ∈ N be a bound such that ρr ≤ k/n and
ρr ≥ Hq((b+ 1)/n) + ε. Then, for A← A, the associated randomized linear code C = (A,G,G+, H) with
kr = dρrne is b-query uniform, except with probability at most q−εn over the choice of A.

Proof. The code C has generator matrix G =
[
Gm Gr

]
. We give a lower bound on the minimum distance

of D(C) that holds with high probability over the random choice of A ∈ A. Recall that D(C) = {z ∈
Fn | zᵀGr = 0}, so if C is induced by the LUO family A then D(C) is induced by the LUO family
Aᵀ|[k]\[km] := {Aᵀ|[k]\[km] |A ← A}. This is indeed a LUO family by Lemma 7.5 and the fact that
truncating the output preserves the LUO property. By Theorem 7.8, D(C) has relative distance strictly greater
than (b+ 1)/n = H−1

q (ρr − ε) except with probability at most 1− q−εn. Hence, by Lemma 5.2, C is b-query
uniform.

Remark 7.10. Lemma 7.9 gives a lower bound on the amount of randomness needed for a randomized linear
code to achieve b-query uniformity. This lower bound is essentially the same as the bound appearing in the
probabilistic construction of zero-knowledge codes from [Wei16, Theorem 6.3], rewritten using the q-ary
entropy function rather than the binary entropy function. This is because both results make use of the same
condition on D(C) appearing in Lemma 5.2.

Our code construction is, however, different. The construction of [Wei16] takes any fixed code C with
generator matrix G, and constructs a new generator matrix G by sampling a matrix M which satisfies certain
constraints, and setting G′ := GM−1. When encoding is performed using the generator matrix G′, then the
result is a randomized linear code that is b-query uniform. This does not guarantee any linear-time encoding
properties. For this reason, our construction in Lemma 7.9 shows that the condition of Lemma 5.2 is satisfied
with high probability over a random code induced by a LUO family A.

More concretely, the construction of [Wei16] analyzes D(C) defined by the kernel of G∗r for GM−1 =[
G∗m G∗r

]
for a randomly generated M , and G fixed, whereas we analyze the kernel of Gr over the choice

of G induced by a random choice of function from a LUO family.

Remark 7.11. Besides a probabilistic construction, [Wei16] also gives a fully explicit construction of
zero-knowledge codes. It is an interesting open problem to give a fully explicit construction of linear-time
encodable codes with comparable b-query uniformity.

46

Proof of Theorem 7.3. We discuss each of the items in the theorem in turn.

• By Theorem 7.6, there exists a polynomial-time constructible (q, k, n)-LUO family with k = bρnc (after
truncating and padding the input and output if necessary) given by Ek : Fk × Fν(k) → Fn (so that each
member of the family is given by E(·;R) for some R ∈ Fν(k)).

• By Theorem 7.7, we know that setting C = Ek(·, R) for random R gives a linear code with relative distance
at least H−1

q (1− ρ)− ε, except with probability at most q1−εn. Given Ek, one can efficiently compute the
public parameters for C.

• By Lemma 5.2 and Lemma 7.9, C is b-query uniform with b at least H−1
q (ρr − ε) except with probability

at most q−εn.

7.3 Setting parameters

Performance parameters. We now explain how to choose parameters in Theorem 7.3 to prove Theorem 6.
Fix a field F of size q, a constant ε ∈ (0, 1) and a constant K bounded away from 1, and consider the

problem of constructing a family of random encoding circuits whose input size is denoted by km. Find
constants δ, εr ∈ (0, 1) that satisfy

1−Hq(δ)−Hq(K)− εr − ε > 0 . (1)

Set the randomness rate ρr := Hq(K) + εr and the total rate ρ := 1 − Hq(δ) − ε. By definition this
ensures that the message rate ρm = ρ− ρr > 0. Then set the query bound b ≤ K · km/(ρ− ρr). Finally set
the code length n = km/ρm and the total message length k = ρn.

Now we apply Theorem 7.3 to the parameters F, k, ρ, ρm, ρr, εr, b, to obtain a family of random encoding
circuits with input randomness length

kr =
Hq(K) + εr

1−Hq(δ)−Hq(K)− εr − ε
km , (2)

and output length,

n =
1

1−Hq(δ)−Hq(K)− εr − ε
km . (3)

The failure to achieve relative distance at least δ occurs with probability at most q1−εn.
The failure to achieve b-query uniformity occurs with probability at most q−εrn.

Obtaining Theorem 6. Suppose that β : N → (0, 1) is bounded away from 1, so that there exists some
constant K < 1 with β(km) ≤ K for all km. This means that Hq(β(km)) is bounded away from 1. Thus, it
is possible to choose εr and δ in (0, 1) satisfying Equation (1) for any value of km.

Consider Equation (2) and Equation (3). Since β is bounded away from 1, we see that 1 − Hq(δ) −
Hq(β)− εr − ε is bounded below by a constant, and so kr = (Hq(β) + εr) ·O(km) and n = O(km).

Continuing this reasoning implies that the randomness used to generate the code and the code length are
both linear in km.

47

8 From tensor queries to point queries with zero knowledge

Definition 8.1. The indexed relation Rcons is the set of tuples

(i,x,w) =
(
⊥, (F, C, `, q, t, {q(s)}s, {vs}s), c

)
such that c = EncC⊗t(f) ∈ F`·nt for some f ∈ F`·kt , for each s ∈ [q], q(s) = (q

(s)
0 , . . . , q

(s)
t) ∈ F` ×

(
Fk
)t,

and for all s ∈ [q], 〈⊗iq(s)
i , f〉 = v(s).

Lemma 8.2. There exists an explicit polynomial-time transformation T that satisfies the following. The
inputs to the transformation are as follows:

• A randomised t-linear tensor code C⊗t over F with encoding function ˜EncC⊗t , which has rate ρm = ktm
nt ,

randomness rate ρr = kt−ktm
nt , relative distance δ = dt

nt , and encoding arithmetic complexity θ(km) · ktm.

• A holographic interactive oracle proof IOP = (I,P,V) with queries in Qtensor(F, km, t) for an indexed
relationR with: soundness error ε; round complexity rc; proof length l = li+ lp = `ktm; query complexity q;
arithmetic complexity ti for the indexer; arithmetic complexity tp for the prover; and arithmetic complexity
tv for the verifier; semi-honest-verifier zero-knowledge.

• An interactive oracle proof of proximity IOPP = (P′,V′) with queries in Qpoint for the indexed relation
Rcons(F, C, `, q, t) with soundness error ε′; round complexity rc′; proof length l′; input query complexity
q′x, the number of verifier queries to the input oracle; proof query complexity q′π, the number of verifier
queries to the IOPP proof oracles; arithmetic complexity tp′ for the prover; arithmetic complexity tv′ for
the verifier.

The output of the transformation (Î, P̂, V̂) := T (C, IOP, IOPP) is an interactive oracle proof with queries in
Qpoint for the indexed relation R with the following parameters:

• soundness error max(ε, (1− 1/|F|)ε′(1/4) + 1/|F|) ;
• round complexity rc + rc′ + 1;
• proof length O

(
nt

ktm
· l
)

+ l′;

• query complexity 2q′x + q′π, where 2q′x queries are to the IOP proof oracles, and q′π queries are to the
IOPP proof oracles;

• indexer time ti + ti′;
• prover time tp + tp′; and
• verifier time tv + tv′.

Moreover,

1. if the interleaved code
(
C⊗t
)` is Q-query zero knowledge and the honest IOPP verifier V′’ witness

queries are compatible with Q, then (Î, P̂, V̂) is zero knowledge against semi-honest verifiers;

2. if
(
C⊗t
)` is b-query zero knowledge, (Î, P̂, V̂) is zero knowledge against all verifiers making at most b

queries to the IOP oracles.

Finally, if inputs are public-coin protocols then the output of the transformation is also a public-coin
protocol.

48

Remark 8.3. The round complexity is rc+ rc′+ 1 in the case that the verifier V makes non-adaptive queries,
because then V̂ can handle all of the queries in a single round. In the case where the q queries are made
as adaptively as possible, the round complexity would be rc + rc′ + q. If V is public-coin, then P̂ already
knows all of the queries and the round complexity would be rc + rc′.

Remark 8.4. The stated time for the (honest) prover P̂ assumes that P̂ has access to the output of the indexer
I, since P̂ must compute and send the answers to tensor queries involving the output of I.

8.1 Construction

Though Definition 3.5 specifies that tensor queries are of the form q(x,Π0, . . . ,Πi) = 〈q0⊗q1⊗· · ·⊗qt,Πj〉,
our transformation below handles tensor queries of the form 〈q0 ⊗ q1 ⊗ · · · ⊗ qt, stack(Π0, . . . ,Πrc)〉, which
are more general.

Construction 8.5. We describe the construction of (Î, P̂, V̂). The new indexer Î, given an index i, runs I
on i to produce Π0 ∈ F`0·ktm , pads Π0 with zeroes for encoding randomness to get Π̃0 ∈ F`0·kt , computes
Π̂0 := ˜EncC⊗t(Π̃0) ∈ F`0·nt , and outputs Π̂0. The new prover P̂ receives as input the index i, an instance x,
and a witness w, while the new verifier V̂ receives as oracle the encoded proof Π̂0 and as input the instance
x. The new prover P̂ and the new verifier V̂ interact in two phases, a simulation phase and a consistency
phase. We describe each in turn.
(1) Simulation phase. For each i ∈ [rc], P̂ and V̂ simulate the i-th round of the interaction between
P(i,x,w) and VI(i)(x), as well as any tensor queries by V to the received proof strings.

1. Prover messages. For any proof message Πi ∈ F`i·ktm that it receives from P, P̂ pads Πi with uniformly-
sampled encoding randomness to get Π̃i ∈ F`i·kt , computes a new proof message Π̂i := ˜EncC⊗t(Π̃i) ∈
F`i·nt , and sends Π̂i to V̂. Also, P̂ forwards any non-oracle messages from P to V via V̂.

2. Verifier messages. V̂ receives challenge message ρi from V and forwards it to P̂, who forwards it to P.

3. Tensor queries. If V̂ receives any tensor query (or queries) q ∈ Qtensor(F, km, t) on (Π0,Π1, . . . ,Πi)
from V, it sends the query q to P̂, who checks whether the set of tensor queries V̂ sent so far could be made
by the verifier V. If not, P̂ terminates the interaction. If so, it responds by computing q(x,Π0,Π1, . . . ,Πi)
and sending it to V̂ as a non-oracle message. Then V̂ forwards this (alleged) query answer to V.

This completes the simulation of the tensor IOP. If at this point the tensor IOP verifier V rejects, then the new
verifier V̂ rejects too. (There is no need to check if the IOP prover P̂ answered tensor queries honestly.)
(2) Consistency phase. In this phase the IOP verifier V̂ checks that the IOP prover P̂ honestly answered
the tensor queries of the tensor IOP verifier V in the simulation phase. Suppose that the tensor queries of V
are {q(s) = (q

(s)
0 , . . . , q

(s)
t)}s∈[q], and the prover P̂ has sent alleged answers {v(s)}s∈[q] to them; note that

these are known to both parties. The IOP prover P̂ and IOP verifier V̂ interact as follows.

1. Masking. The prover P̂ samples uniformly random mask Ξ ∈ F`·ktm , pads Ξ with uniformly-sampled
encoding randomness to get Ξ̃ ∈ F`·kt , computes an encoding Ξ̂← ˜EncC⊗t(Ξ̃) ∈ F`·nt , and sends Ξ̂ to V̂.
The prover computes ws := q(s)(x,Ξ) for each s ∈ [q], and sends (ws)s∈[q] ∈ Fq to V̂ as a non-oracle
message. The verifier V̂ responds with a challenge α sampled uniformly from F.

Define the functions

Π̃ := Stack(Π̃0, . . . , Π̃rc) ∈ F`·k
t
,

49

Π̂ := Stack(Π̂0, . . . , Π̂rc) ∈ F`·n
t
,

f̃ := α · Π̃ + Ξ̃ ∈ F`·k
t

, and

c := α · Π̂ + Ξ̂ ∈ F`·n
t
.

Note that c = EncC⊗t(f̃). Moreover, P̂ already knows the value of f̃ and of c at every point, and V̂ can
compute the value of any point in c by querying the corresponding points in Π̂ and Ξ̂.

2. Consistency test. Let {q(s)}s be the set of tensor queries. Let {q(s)
∗ }s be the set of queries obtained by

taking each query q(s) ∈ F` × (Fkm)t and appending zeroes to the end of each component to obtain an
element of F` × (Fk)t. Note that 〈⊗q(s)

∗ , f̃〉 = 〈⊗q(s), f〉 for each s ∈ [q].

The prover P̂ and verifier V̂ engage in the IOP of proximity protocol IOPP = (P′,V′) for Rcons with
index i = ⊥, instance x = (F, C, `, q, t, {q(s)

∗ }s, {α · vs + ws}s), and witness w = c to ensure that
c ∈ (C⊗t)` (or at least close) and that for all s ∈ [q], 〈⊗q(s)

∗ , f̃〉 = α · vs + ws. If V′ rejects in this
sub-protocol, then V̂ rejects.

8.2 Proof of Lemma 8.2

Proof. The round complexity, proof length, query complexity, indexer time, prover time, and verifer time
follow directly from the construction. The completeness follows from the completeness of the original tensor
IOP protocol (I,P,V) and the completeness of the IOPP protocol (P′,V′).

Soundness. Suppose (i,x) 6∈ L(R), fix a malicious prover P̃. Let Π̂ be the oracle messages sent to V̂
during the simulation phase and Ξ̂ be the mask sent at the start of the consistency phase. At least one of the
following cases would hold:

• Π̂ or Ξ̂ is 1/2-far from (C⊗t)` (here we consider blockwise distance). Let Π̂⊥ and Ξ̂⊥ denote the com-
ponents of the oracles that are orthogonal to (C⊗t)`. Let Te := {j ∈ [nt] | ∃i ∈ [`] s.t. Π̂⊥[i, j] 6=
0 ∨ Ξ̂⊥[i, j] 6= 0}. Define a collection of disjoint sets of coordinates {Sβ}β∈F where Sβ := {j ∈ Te |
∀i ∈ [`k], βΠ̂⊥[i, j] + Ξ̂⊥[i, j] = 0}. Note that

∑
β∈F|Sβ| ≤ |Te| and |Te| > nt/2. Then

Pr
α∼F

[αΠ̂ + Ξ̂ is 1/4-close to (C⊗t)`] = Pr
α∼F

[αΠ̂⊥ + Ξ̂⊥ is 1/4-close to 0`·n
t
]

= Pr
α∼F

[δ|Sα|≥|Te|−nt/4] (δE is the indicator variable of event E)

≤ 1

|F|
· |Te|
|Te| − nt/4

<
2

|F|
.

Since the probability can only be multiples of 1/|F|, we obtain an upper bound of 1/|F|. In this case V̂
accepts with probability at most 1/|F|+ (1− 1/|F|)ε′(1/4).

• Π̂ and Ξ̂ are 1/2-close to (C⊗t)`. In this case V̂ accepts with probability at most ε by the soundness of the
original IOP protocol.

Zero knowledge. By construction, if the honest IOPP verifier V′’s witness queries are compatible with
some query checker Q, then the resulting honest IOP verifier V̂’s queries to Π̂ and Ξ̂ are also compatible

50

with Q. Thus, to show the two zero knowledge properties of the compiler, it suffices to prove that when(
C⊗t
)` is Q-query zero knowledge, the new protocol is zero knowledge for every verifier whose queries to Π̂

and Ξ̂ are compatible with Q.
We define a simulator Ŝ that when given access to such a verifier Ṽ, the original IOP simulator S, 2

identical simulators S1 and S2 for the code
(
C⊗t
)`, and input (i,x) simulates the view of Ṽ in the real

protocol.

1. Start simulating Ṽ.

2. Answer any tensor query q(s) ∈ Qtensor(F, k, t) on Π by first checking whether the set of tensor
queries Ṽ sent so far could be made by the honest IOP verifier V. If not, return “stop”. If so, send
q(s) to S and reply with S’s answer vs.

3. Forward any point query to Π̂ to S1 and answer with the simulator’s output. Denote the set of queries
by QΠ̂,0.

4. For each tensor query q(s) ∈ Qtensor(F, k, t) to the encoded mask, sample a uniformly random
element in F as the answer ws and send it to Ṽ. In the consistency phase, forward any query to Ξ̂ to
S2 and answer with the simulator’s output. Let QΞ̂ be Ṽ’s point queries to Ξ̂ before the simulation of
the next step. Let AΞ̂ be Ŝ’s answers to these queries.

5. Receive the challenge α from Ṽ.

6. For any q ∈ QΞ̂ \ QΠ̂,0, sample Π̂(q) uniformly at random in F. Sample X ∈ F`·kt uniformly at
random conditioned on that

∀q(s) ∈ Qtensor(F, k, t), q(s)(x, X) = αvs + ws, (4)

∀(j0, . . . , jt) ∈ QΞ̂, X̂(j0, . . . , jt) = αΠ̂(j0, . . . , jt) +AΞ̂(j0, . . . , jt) . (5)

Let f̃ := X . In the rest of the consistency phase, run the IOPP prover P′ on instance xIOPP =

(F, C, `, q, t, {q(s)
∗ }s, {q(s)

∗ (x, X)}s) using witness X̂ to generate messages and oracles for the IOPP
protocol.

7. Answer any query q to Ξ̂ (resp. Π̂) by first checking if q has been made to Π̂ (resp. Ξ̂). If not, forward
it to S2 (resp. S1) and answer with the simulator’s output. If so, answer with X̂(q)− αΠ̂(q) (resp.
α−1(X̂(q)− Ξ̂(q))).

Note that Ŝ runs in polynomial time. In particular, in Item 2 checking whether the set of tensor queries is
in the support of the honest verifier’s query sets requires solving a system of linear equations of constant
dimensions. Additionally since an honest verifier makes only constant number of tensor queries, this step only
takes constant time. In Item 6, we conditionally sample X . Let R denote the randomness used in encoding
X . Equation (4) imposes linear constraint on X , while Equation (5) imposes linear constraint on X and R.
These constraints can be efficiently generated from the queries q(s) and the generator matrix of the code

51

C. Since Qtensor(F, k, t)’s size is bounded by a constant and QΞ̂’s size is bounded by |S|, the set of linear
equations on X and R can be solved in poly(|S|, `kt, log |F|) time. Other steps of Ŝ are clearly efficient.

To see that Ŝ simulates the view of Ṽ perfectly, we consider a hybrid experiment in which the “hybrid
prover” reads all of the witness z (like the honest prover in the real world) but can modify messages after
they are sent (like the simulator in the ideal world).

1. Start simulating Ṽ.

2. Answer any tensor query q(s) to Π̂ by first checking whether the set of tensor queries V̂ sent so far
could be made by the honest IOP verifier V. If not, return “stop”. If so, send q(s) to S and reply with
S’s answer vs.

3. Forward any point query to Π̂ to S1 and answer with the simulator’s output. Denote the set of queries
by QΠ̂,0 and the answers by AΠ̂,0 .

4. Construct a uniformly random Π ∈ F`·ktm such that for each s ∈ [q], the answer to the tensor query
q(s) on Π is vs. Find the encoding of Π such that for all q ∈ QΠ̂,0, Π̂(q) = AΠ̂,0(q).

5. Sample a random mask Ξ ∈ F`·ktm , pad it with randomness to get Ξ̃ ∈ F`·kt , and then encode the
padded mask to obtain Ξ̂ ∈ F`·nt . Compute ws = q(s)(x,Ξ) and send the answers to Ṽ.

6. Answer any query to Π̂ by Π̂, and any query to Ξ̂ by Ξ̂. Let QΞ̂ be Ṽ’s queries to Ξ̂ before the
simulation of the next step. Let AΞ̂ be Ŝ’s answers to these queries.

7. Receive the challenge α from Ṽ.

8. Query Π̂ at all locations in QΞ̂. Sample X ∈ F`·kt uniformly at random conditioned on that

∀q(s) ∈ Qtensor(F, k, t) q
(s)
∗ (x, X) = αvs + ws,

∀(j0, . . . , jt) ∈ QΞ̂, X̂(j0, . . . , jt) = αΠ̂(j0, . . . , jt) +AΞ̂(j0, . . . , jt) .

9. Replace Ξ̂ with X̂ − αΠ̂.

10. Simulate the rest of the interaction with the oracles Ξ̂, Π̂, and X̂ .

By the zero-knowledge property of the original IOP protocol, in this experiment ({q(s), vs}s,Π) are
identically distributed as in the real protocol. Also since Ṽ’s queries to Π̂ and Ξ̂ are compatible with Q

and the interleaved code
(
C⊗t
)` is Q-query zero knowledge, the distribution ({q(s)

∗ , vs}s, (QΠ̂,0, AΠ̂,0)) is

identical to the distribution produced by the prover. So the joint distribution of ({q(s)
∗ , vs}s, (QΠ̂,0, AΠ̂,0), Π̂)

is also identical to that in the real protocol. Moreover all queries to Ξ̂ after Item 9 have the correct distribution
as in the actual protocol. Finally, the view of Ṽ in the above experiment follows the same distribution as the
output of the simulator Ŝ. Therefore (Î, P̂, V̂) is zero-knowledge for any Ṽwhose queries to Π̂ and Ξ̂ are
compatible with Q.

52

53

9 Main theorem

Below we state our main theorem, Theorem 9.1, which is an IOP with point queries for rank-1 constraint
satisfiability, and the formal analogue of Theorem 2. Theorem 9.1 differs from Theorem 2 in that we expose
several parameters of interest, described below. See Remark 9.2 and Remark 9.3 for an explanation of how
these parameters lead to Theorem 2.

In the following theorem, we denote byM the number of non-zero entries in theN×N matricesA,B and
C in an instance of RR1CS. Write kSP(N)/|F| for the soundness error of the twisted scalar-product protocol,
cSP(N) for its communication complexity and rSP(N) for its round complexity. Write kLC(N,M)/|F|,
cLC(N,M), and rLC(N,M) for the corresponding parameters of the lincheck protocol.

Theorem 9.1 (main). Let F be a finite field. Let t ∈ N be a constant. Let C : FN1/t → FO(N1/t) be a
code with constant rate and distance, which is linear-time encodable, with description size |C|. There is a
public-coin holographic IOP (with point queries) for RR1CS instances with size M = O(N) and fields F
with |F| = Ω(N) that has the following efficiency:

• answer alphabet F;
• soundness error is O((M + kSP(N) + kLC(N,M))/|F|);
• round complexity is O(rSP(N) + rLC(N,M));
• proof length is O(M +N);
• query complexity is O(cSP(N) + cLC(N,M));
• the indexer uses O(M) field operations
• the prover uses O(M +N) + poly(|C|, N1/t) field operations;
• the verifier uses O(`in · ktin) + poly (|C|, logN) field operations.

Moreover, the protocol is semi-honest-verifier zero knowledge. Let β : N → (0, 1) be a function bounded
away from 1. If the code C is also βN1/t-query zero knowledge, the protocol is zero knowledge for all
verifiers making at most βN1/t queries.

Remark 9.2. If we just want a semi-honest-verifier zero-knowledge protocol, we can use explicit codes C.
In this case |C| = O(1). Thus the second component of verifier time is poly (|C|, logN) ∈ polylog(M). So
the total verifier time is polylogarithmic in M . We can pick t that exceeds the polynomial degree in the
expression for prover time, so that the total prover time is linear in M .

If we want the stronger notion of bounded-query zero-knowledge, we can use the zero-knowledge codes
given by Theorem 7.3. In this case |C| = O(N1/t). Then we can pick t that exceeds the polynomial degrees
in the expressions for prover time and verifier time, so that poly(|C|, N1/t) and poly (|C|, logN) are both in
o(M). So the prover time is linear in M and the verifier time is sublinear in M .

Remark 9.3. When M = O(N), the best known efficiency parameters for the scalar-product and lincheck
protocols satisfy cSP(N), rSP(N), kSP = O(logN), cLC(N,M), rLC(N,M) = O(logM), kLC(N,M) =
O(M). These arise from Theorem 4.8, and Lemma 4.11 instantiated with the bias-biased generator of
Definition 4.6.

We obtain this IOP for RR1CS in three steps. First, we construct a robust IOPP for the relation Rcons.
Then we use proof composition to improve the round complexity and query complexity of the IOPP. Finally,
we apply the compiler in Lemma 8.2 to this efficient IOPP for Rcons and to the tensor-query IOP for RR1CS

in Theorem 4.13 to obtain the protocol in the theorem statement. In the rest of the section, we explain each of
the steps.

54

9.1 Step 1: robustification

We start with the following IOPP for the relation Rcons.

Definition 9.4. The indexed relation R′cons is the set of tuples

(i,x,w) =
(
⊥, (F, C, `, q, t, {q(s)}s, {vs}s), c

)
such that c = EncC⊗(t−1)(f) ∈ F`k·nt−1

for some f ∈ F`·kt , for each s ∈ [q], q(s) = (q
(s)
0 , . . . , q

(s)
t) ∈

F` ×
(
Fk
)t, and for all s ∈ [q], 〈q(s), f〉 = v(s).

Lemma 9.5. Let b ∈ Θ(k). Let C : Fk → Fn be a linear code with constant rate ρ = k/n, constant relative
distance δ = d/n, linear encoding arithmetic complexity θ(k) · k, and description size |C|. There exists an
non-adaptive interactive oracle proof of proximity IOPP = (P, (Vq,Vd)) with point queries for the relation
R′cons(F, C, `, q, t, {q(s)}s, {vs}s) with the following parameters:

• answer alphabet F`k for the witness, and Fk for the proof;
• soundness error ε(∆) = `knt−1/|F|+ 1−min{δt−1/4,∆/2t−1};
• round complexity O(t);
• proof length O(q · nt−2) symbols in Fk;
• query complexity 1 to the witness and O(t · q) to the proof;
• prover time O(|C|+ q · t`kt);
• verifier time O(|C|+ qk · (`+ t));
• verifier randomness complexity O(t · q) elements in F;
• Vd’s decision state σ = (x, r) where r is the verifier randomness;
• Vd time O(|C|+ qk · (`+ t)).

Moreover, the verifier’s witness queries are compatible with a query checker Q which allows revealing at
most 1 column (in F`k) from the interleaved codeword in

(
C⊗(t−1)

)`k
.

Proof sketch. This IOPP is obtained by modifying the ‘consistency phase’ of [BCG20, Construction 9.4]
which uses a proximity test [BCG20, Lemma 10.1] as a subroutine.

To obtain an IOPP for Rcons, we run the consistency phase of [BCG20, Construction 9.4], but parse the
message f (0)

0 as a t-dimensional array of size `k · kt−1 rather than a (t+ 1)-dimensional array of size ` · kt.
The first components q(s)

0 ∈ F` and q(s)
1 ∈ Fk of each tensor query are then grouped together as a single

component q(s)
0 ⊗ q

(s)
1 ∈ F`k, and the first ‘folding’ step applies q(s)

0 ⊗ q
(s)
1 of f (0)

0 .
We also derandomise the proximity test [BCG20, Lemma 10.1] to reduce the verifier randomness

complexity from O((`+ t) · k · q) field elements to O(t · q) field elements. Although this change increases
the soundness error, it will help us to improve the final IOP verifier’s running time after applying proof
composition.

The proximity test checks whether, for a set of messages {c̃0, . . . , c̃t}, we have that c̃i is close to an
interleaved C⊗(t−i)-codeword. This is achieved by recursively “folding” the higher dimensional messages to
reduce their dimension, by taking a random linear combination of their coefficients at each stage. Executing
the protocol with the array sizes described above would require the verifier to sample uniformly random
vectors ζ1 ∈ F`k and ζ2, . . . , ζt ∈ Fk. However, in this case, the verifier’s randomness complexity would be
O(k), which prevents polylogarithmic verification after proof composition. However, we can replace each
ζi with a random vector of the form (α1

i , α
2
i , α

3
i , . . . , α

|ζi|
i) for a uniformly random αi ← F, and replace

55

[BCG20, Lemma 10.10] with [BKS18, Theorem 4.1] in the soundness proof of the proximity test. This
modification increases the soundness error, but we can tolerate the increase for sufficiently large fields.

Remark 9.6. As it is, [BKS18, Theorem 4.1] states that if ζi is a random vector of the form (α1
i , α

2
i), and

if any component of a message c̃i ∈ (Fnt−i)2 is far from the codespace C⊗(t−i), then the random folding
of c̃i by ζi is also far from C⊗(t−i) with probaility at least 1 − nt−i

|F| . The the same proof can be used to

show that when the random vector is ζi = (α1
i , α

2
i , α

3
i , . . . , α

k
i) and the message c̃i ∈ (Fnt−i)k, the same

probability is at least 1− (k−1)nt−i

|F| . We also note that the analysis in [BKS18] could potentially be adapted to
show that if random Reed-Muller vectors are used to fold the messages, the first term in the soundness error
could be improved from `knt−1/|F| to polylog(k, n)/|F|, with verifier randomness complexity changing to
O(t · q log `k).

In the construction above, we use a b-query zero-knowledge code C with for b ≤ k.
Next, we reduce the verifier query complexity through proof composition. We first robustify the current

IOPP for R′cons to obtain a robust IOPP for Rcons.

Corollary 9.7. Let C : Fk → FO(k) be a randomised linear code with constant rate and relative distance,
linear-time encoding, membership-deciding, and decoding time, and description size |C|. The relation Rcons

has a non-adaptive point-query IOPP (Pr, (Vqr,Vdr)) with:

• answer alphabet F;
• round complexity O(t);
• proof length O(q · `kt);
• query complexity O(qk · (`+ t));
• soundness error O(kt/|F|) +O(1) with robustness Θ(1/(`+ t));
• prover time O(|C|+ q · t`kt);
• verifier time O(|C|+ qk · (`+ t));
• verifier randomness complexity O(tq);
• Vdr’s decision state σ = (x, r) where r is the verifier randomness;
• Vdr time O(|C|+ qk · (`+ t)).

Moreover, the verifier’s witness queries are compatible with a query checker Qr which allows revealing at
most 1 column (in FO(`k)) from the interleaved codeword in

(
C⊗(t−1)

)O(`k)
.

Proof. Apply Lemma A.1 to the point-query IOPP for R′cons in Lemma 9.5. In Lemma 9.5, the witness has
alphabet F`k, and will be encoded in ` parts by applying C to blocks of length k. This converts a witness for
the relation R′cons into a witness for the relation Rcons. Thus the new witness can be viewed as ` codewords
in C⊗t, or equivalently O(`k) codewords in C⊗(t−1). Proof elements have alphabet Fk and will be encoded
using C.

9.2 Step 2: composition

Lemma 9.8 ([Mie09]). Fix any T (n) = Ω(n), δ = δ(n) > 0, and ε = ε(n) > 0. Every relation R in
NTIME(T) has a PCPP for R with (1) answer alphabet {0, 1}; (2) proof length T (|x|) · polylog(T (|x|));
(3) query complexity O(log(1/ε) · log(1/δ)/δ); (4) soundness error ε with proximity parameter δ; (5) prover
time poly(T (|x|)); (6) verifier time poly(|x|, log T (|x|)).

56

Corollary 9.9. Let ε ∈ (0, 1) be a constant. For instances of Rcons in which each query q(s) is described
using a short seed of length O(t log k), there is a point-query IOPP (P,V) with:

• answer alphabet F;
• round complexity O(t);
• proof length O(q · `kt);
• query complexity Oε(t log t);
• soundness error O(kt/|F|) +O(1) + ε with proximity parameter Θ(1/t);
• prover time poly(|C|+ qk · (`+ t));
• verifier time poly(|C|+O(q · t log k), log (|C|+ qk · (`+ t))).

Moreover, the verifier’s witness queries are still compatible with a query checker Qr which allows revealing
at most 1 column (in FO(`k)) from the interleaved codeword in

(
C⊗(t−1)

)O(`k)
.

Proof. Apply Lemma B.1 to the robust outer IOP provided by Corollary 9.7 and the inner IOP of proximity
provided by Lemma 9.8.

The inner relationR(Vdr) has instance (x, r) := (F, C, `, q, t, {q(s)}s, {vs}s, r), where C has description
size |C|, r has sizeO(q·t), and by assumption, the query set has a description of sizeO(q·t log k). This means
that the instance size is |C|+O(q ·t log k). The witness size ofR(Vdr) is equal to the query complexity of the
robust outer IOP. Thus it has sizeO(qk ·(`+t)). The verifier’s decision time is T (|x|) = O(|C|+qk ·(`+t)).
Substituting these values into Lemma 9.8, the final IOPP’s proof length, prover time and verifier time are as
written in the statement.

The round complexity O(t) is inherited from the robust outer IOPP, while the query complexity
Oε(t log t) is obtained from the applying Lemma 9.8 with the proximity parameter δ = Θ(1/t).

9.3 Step 3: tensor queries to point queries

Finally, we apply the transformation given in Lemma 8.2 to the tensor-query RR1CS IOP of Theorem 4.13,
the Rcons IOPP in Corollary 9.9, and two different zero knowledge codes to produce two point-query IOPs
for RR1CS and complete the proof of Theorem 9.1. Set N = ktm and M = ` · ktm for some km, t ∈ N.
Theorem 4.13 gives a (F, km, t)-tensor IOP for RR1CS, which has query complexity q = O(1), and for which
each query can be described by a short seed of size O(t log km).

By Definition 3.22, there exists a randomized linear code C : Fkm × FO(km) → FO(km) which has
constant message rate, randomness rate, and relative distance, and is linear-time encodable and 1-query
zero-knowledge. Therefore the tensor code C⊗(t−1) is also 1-query zero-knowledge. If we encode the
interleaved code

(
C⊗(t−1)

)`k
as in the proof of Corollary 9.7, the resulting interleaved code is Qr-query

zero knowledge. Moreover, by Corollary 9.9, the Rcons IOPP verifier V′ for code C is compatible with Qr.
As a result, applying Lemma 8.2 to the tensor-query RR1CS IOP, the Rcons IOPP, and C gives a point-query
RR1CS IOP with the stated parameters. Moreover, the IOP is zero knowledge against semi-honest verifier
zero-knowledge.

By Theorem 7.3, there also exists a randomized linear code C′ : Fkm × FO(km) → FO(km) which has
constant message rate, randomness rate, and relative distance, is linear-time encodable, and is βkm-query zero-

knowledge. Thus the interleaved code
(
C′⊗(t−1)

)O(`km)
is βkm-query zero knowledge. Apply Lemma 8.2

to the tensor-query RR1CS IOP, the Rcons IOPP, and the code C′. The resulting point-query IOP has the stated
parameters, and it is zero knowledge against all verifiers making at most βkm queries to the IOP oracles.

57

A Robustification

We state a generic lemma about robustification for IOPs (Lemma A.1); it extends corresponding generic
robustifications for PCPs and IPs. We include the construction for convenience (Construction A.3) and sketch
its proof. We also prove properties about how zero knowledge is affected by proof composition (Lemma A.4).

Lemma A.1. Suppose that we are given the following two ingredients.

• IOP. A holographic IOP (I,P,V) for R with queries in Qpoint with the following parameters: round
complexity rc; answer alphabet Σ; oracle length l = li+ lp; query complexity q; soundness error ε; indexer
time ti; prover time tp; verifier time tv; verifier randomness r.

• Code. A randomized code C : Σ→ Λn with public parameters (Enc, G,H,G+), relative distance δ (over
alphabet Λ), encoding time θ, membership-deciding time ψ, and error-free decoding time η. (In particular,
the rate of C is ρ := log |Σ|

n·log |Λ| .)

Then the protocol in Construction A.3 (see below) is a holographic IOP (Ir,Pr,Vr) with queries in Qpoint

for the indexed relation R with the following parameters:

• round complexity rc;
• answer alphabet Λ;
• index oracle length n · li and proof oracle length n · lp;
• query complexity n · q;
• soundness error ε with robustness δ

2q ;
• indexer time ti + li · θ;
• prover time tp + lp · θ;
• verifier time tv + q · (ψ + η);
• verifier randomness r.

If (I,P,V) is public coin (resp., has non-adaptive queries) then (Ir,Pr,Vr) is public coin (resp., has
non-adaptive queries).

Remark A.2 (multiple alphabets). Lemma A.1 and Lemma A.4 extend to holographic IOPs with multiple
alphabets Λ1, . . . ,Λs provided that |Λi| = Θ(|Λ1) for each i ∈ [2, . . . , s], and error-correcting codes
C1, . . . , Cs with respect to these alphabets. The parameters of (Ir,Pr,Vr) are then modified to use the
minimum of the relative distances and the maximum of the block lengths, relative distances, encoding,
checking, and error-free decoding times.

Construction A.3. The new indexer Ir runs the old indexer I on the given index to obtain an index oracle
Π0 = (a0,1, . . . , a0,li) ∈ Σli, encodes each symbol a0,j ∈ Σ using the given code to obtain a string of symbols
C(a0,j) ∈ Λn, and then outputs the new index oracle C(Π0) := (C(a0,1), . . . , C(a0,li)) ∈ Λn·li.

The new prover Pr and new verifier Vr respectively simulate the old prover P and old verifier V, with
modifications depending on the code C as described below.

• The new prover encodes each symbol in each proof. For each round i ∈ [rc], when the old prover P outputs a
proof oracle Πi = (ai,1, . . . , ai,lpi) ∈ Σlpi , Pr encodes each symbol ai,j ∈ Σ using the given code to obtain
a string of symbols C(ai,j) ∈ Λn and sends the encoded proof C(Πi) := (C(ai,1), . . . , C(ai,lpi)) ∈ Λn·lpi .

• The new verifier checks membership in the code. Whenever the old verifier V wishes to read the j-th
symbol of the i-th oracle Πi, the new verifier Vr does the following:

58

– Use n queries queries to read c̃i,j ∈ Λn, the j-th string in the i-th oracle.
– If i = 0 (V’s query was to the index oracle Π0) then decode c̃i,j to the symbol ai,j ∈ Σ. (Note that we

already know that c̃i,j is in the code C because it is an output of the new indexer Ir.)
– If i ∈ [rc] (V’s query was to one of the proof oracles Π1, . . . ,Πrc) check that c̃i,j is in the code C (e.g.

using the parity-check matrix H of C or a more efficient algorithm if known) and, if so, decode c̃i,j to
the symbol ai,j ∈ Σ (e.g. using the matrix G+ or otherwise).

– Give ai,j as the query answer to the old verifier V.

In sum, the new verifier Vr accepts if and only if all read strings are in the code C and the old verifier V
accepts the corresponding decodings.

Proof of Lemma A.1. Completeness and the efficiency parameters of (Ir,Pr,Vr) claimed in the lemma
(round complexity, answer alphabet, proof length, query complexity, prover time, and verifier time) directly
follow from the construction. Below we prove robustness and preservation of zero knowledge.

We show that (Ir,Pr,Vr) is (δ
2q , ε)-robust. Namely, we show that, for any cheating prover P̃r, with

probability at most ε, the view of Vr is δ
2q -close to some accepting view.

Fix an arbitrary malicious prover P̃r and, for each round i ∈ [rc], denote by c̃i,j ∈ Λn the j-th string in
the i-th proof string sent by P̃r; note that each c̃i,j is a random variable that depends on the transcript so far.
Denote by vρ the view of the new verifier Vr, when using randomness ρ, and interacting with the malicious
prover P̃r. Note that vρ consists of q strings in Λn. Let ci,j be any codeword in C that is closest to c̃i,j (which
need not be in C), and let vρ be the view of Vr when each c̃i,j is replaced with its “correction” ci,j .

Let E be the event that the “corrected” view vρ makes the new verifier Vr accept. The event E occurs
with probability at most ε because, if not, then the malicious prover P̃ whose proofs are decodings of proofs
output by P̃r would make the old verifier V accept with probability greater than ε, a contradiction to the
soundness of V. We now argue that if E does not occur (vρ is rejecting) then it holds that the view of Vr is
δ
2q -far from accepting, which will conclude the proof.

We distinguish between two cases.

• There exists a string c̃i,j in the view vρ that is δ/2-far from C. Then we directly conclude that vρ is δ
2q -far

from being accepted (regardless of E in fact), because all accepting views consist of strings in the code.
Note that the loss in distance in the denominator is because the string c̃i,j contains n symbols out of the n ·q
symbols in the view vρ, and in the worst case all other strings are in the code and contribute no distance.

• Every string c̃i,j in the view vρ is δ/2-close to C. Fix any view v′ that is δ
2q -close to vρ. We need to argue

that v′ is a rejecting view. If v′ contains any string that is not in C then, by construction of the new verifier
Vr, v′ is rejecting. So suppose that every string in v′ is in C. In this case we argue that v′ equals the
corrected view vρ, which is rejecting because we assumed that E does not hold.

Consider any string c′ in v′. Let c and c be the corresponding strings in vρ and vρ respectively. Via the
triangle inequality:

0 ≤ ∆Λ(c′, c) ≤ ∆Λ(c′, c) + ∆Λ(c, c) < q · δ
2q

+
δ

2
= δ .

Since C has relative distance δ, we conclude that c′ = c. And since the chosen string was arbitrary, we
deduce that, as claimed, v′ equals the corrected view vρ.

59

Lemma A.4. The implications below hold for the robustification in Lemma A.1.

1. Semi-honest-verifier zero knowledge. If (I,P,V) is zero knowledge again semi-honest verifiers, then
so is (Ir,Pr,Vr).

2. Bounded-query zero knowledge. If C is b′-query zero knowledge and (I,P,V) is b-query zero knowl-
edge, then (Ir,Pr,Vr) is (b′b+ b′ + b)-query zero knowledge.

Proof of Item 2 in Lemma A.4. Let S be the simulator for the old IOP (I,P,V) and let S be the simulator
for the code C. Below we construct the new simulator Sr for the new IOP (Ir,Pr,Vr).

Fix an index i, instance x, and witness w such that (i,x,w) ∈ R and fix a (b′b+ b′+ b)-query malicious
verifier Ṽr. We need the random variables SṼr

r (i,x) and View(Pr(i,x,w), Ṽr) to be identically distributed.
The new simulator Sr receives as input an index i and instance x, and computes the encoded index Ir(i)

for later use. Then S starts running Ṽr and simulates its view by taking different actions depending on Ṽr.
Whenever Ṽr outputs a message for the new prover Pr, the new simulator Sr forwards this message to the
old simulator S (as if it were a message for the old prover P). Whenever Ṽr makes a query to the index
oracle Ir(i), the new simulator Sr directly answers the query (as it knows the index and has computed the
encoded index so that it knows the answer to all such queries). Whenever Ṽr makes a query to a proof oracle,
Sr proceeds as follows. Suppose that Ṽr’s query is to the j-th string in the i-th proof oracle (for i ∈ [rc]).

• Sr answers the first b′ distinct queries to this string by using an (independent) execution of the code
simulator S for this string. Any subsequent queries (beyond the first b′) exceed the ZK bound of the code
C, which means that we cannot rely on S to simulate answers to them. This brings us to the next option.

• Sr answers subsequent queries by relying on the old simulator S. Specifically, Sr asks S to simulate the
j-th symbol in the i-th proof oracle, which leads to an answer ai,j ∈ Σ; then Sr samples a codeword
C(ai,j) ∈ Λn that agrees with the previous b′ answers, and answers all future queries to this string via this
sampled codeword.

Observe that Sr asks S to simulate at most b b′b+b′+bb′+1 c = b queries, which S can do by assumption.
Also observe that the codeword in the second step can be found efficiently. Let R denote the randomness

used in encoding ai,j . The answers to the previous b′ queries each imposes a linear constraint on R. These
constraints can be efficiently generated from the previous queries and the generator matrix of the code C. The
set of linear equations on R can be solved in poly(b′, log |Σ|, log |Λ|) time.

Proof of Item 1 in Lemma A.4. Let S be the simulator for the old IOP (I,P,V). Below we construct the
new simulator Sr for the new IOP (Ir,Pr,Vr).

Fix an index i, instance x, and witness w such that (i,x,w) ∈ R and fix the randomness ρ for the old
verifier V. Note that Vr does not use any additional randomness beyond the randomness used by V. We
need the random variables SVr(i,x;ρ)

r (i,x) and View(Pr(i,x,w),Vr(i,x; ρ)) to be identically distributed.
The new simulator Sr receives as input an index i and instance x, and computes the encoded index Ir(i)

for later use. Then Sr starts running Vr and simulates its view by taking different actions depending on
Vr. Whenever Vr outputs a message for the new prover Pr, the new simulator Sr forwards this message
to the old simulator S (as if it were a message for the old prover P). Whenever Vr makes a query to the
index oracle Ir(i), the new simulator Sr directly answers the query (as it knows the index and has computed
the encoded index so that it knows the answer to all such queries). Whenever Vr makes a query to a proof
oracle, Sr proceeds as follows. If Vr’s query is to the j-th string in the i-th proof oracle (for i ∈ [rc]), then
since Vr is semi-honest, it queries the entire j-th string. To simulate the j-th string, Sr asks S to simulate
the j-th symbol in the i-th proof oracle, which leads to an answer ai,j ∈ Σ; then Sr samples a codeword

60

C(ai,j) ∈ Λn that agrees with the previous b′ answers, and answers all future queries to this string via this
sampled codeword. This procedure is efficient because the encoding algorithm for the code C is efficient.

Since, by assumption, S simulates the view of V perfectly, the encoded view is a perfect simulation of
the view of Vr.

61

B Proof composition

We state a generic lemma about proof composition for IOPs (Lemma B.1). We include the construction for
convenience (Construction B.5) but omit the proof; see [BCGRS17] for more details on interactive proof
composition for IOPs (which extends the classical notion of non-interactive proof composition for PCPs
[AS98]). We also prove properties about how zero knowledge is affected by proof composition (Lemma B.6).

Lemma B.1. Suppose that the conditions below hold with parameters such that δin(σout(n)) ≤ αout(n).

• Outer IOP with robustness. There is a holographic IOP (Iout,Pout,Vout) with non-adaptive queries in
Qpoint for an indexed relation R with the following parameters: round complexity rcout; answer alphabet Σ;
oracle length lout = liout + lpout; randomness rout; query complexity qout; decision state size σout; soundness
error εout; robustness αout; indexer time tiout; prover time tpout; verifier time tvout = tqout + tdout.

• Inner IOP with proximity. There is an IOPP (Pin,Vin) with queries in Qpoint for the relation R(Vout)
with round complexity rcin; answer alphabet Σ; proof length lin; randomness rin; query complexity qin;
soundness error εin; proximity δin; prover time tpin; verifier time tvin.

Then the protocol in Construction B.5 (see below) is a holographic IOP (I,P,V) with queries in Qpoint for
the indexed relation R with the following parameters:

• round complexity rc(n) = rcout(n) + rcin(σout(n));
• answer alphabet Σ;
• index oracle length li(n) = liout(n);
• proof oracle length lp(n) = lpout(n) + lin(σout(n));
• randomness r(n) = rout(n) + rin(σout(n));
• query complexity q(n) = qin(σout(n));
• soundness error ε(n) = εout(n) + εin(σout(n));
• indexer time ti(n) = tiout(n);
• prover time tp(n) = tpout(n) + tqout(n) + tpin(σout(n));
• verifier time tv(n) = tqout(n) + tvin(σout(n)).

If the two proof systems are public coin then so is (I,P,V).

We provide some remarks, then state the construction for proof composition (see Construction B.5), and
finally prove how zero-knowledge properties are preserved in the construction.

Remark B.2 (outer proximity or inner robustness). If the outer IOP has proximity parameter δout, then the
composed proof system is an IOP with proximity parameter δ(n) = δout(n). If the inner IOP has robustness
parameter αin then the composed proof system is an IOP with robustness parameter α(n) = αin(σout(n)).

Remark B.3 (different alphabets). Lemma B.1 asserts that the outer and inner proof systems use the same
alphabet for the prover messages. This is not essential: if the two alphabets differ, the same argument as
above goes through, and the composed proof system will have some messages over one alphabet and other
messages over the other alphabet. In particular, in Section 9 the outer proof system will be over a given field
F and the inner proof system will be over the boolean field F2.

Remark B.4 (on the ZK query bound). The expression for b in Equation (6) may look odd, but it can be
intuitively explained. First, if the outer proof system does not satisfy any zero knowledge property (bout = 0)

62

then the composed proof system also will not (b = 0), regardless of the inner proof system. This makes sense
since the verifier in the composed proof system does have access to the proof transcript of the outer proof
system. So suppose that the outer proof system has a non-trivial zero knowledge property (bout > 0); this
property may degrade a little or not at all in the composed proof system, depending on the inner proof system,
because it is used to argue that a local view is satisfied. For illustrative purposes, let us consider two cases:

• Suppose that the inner proximity proof satisfies no zero knowledge property, which means that the condition
holds with the constant function fin(·) := qout, because a witness for the relation R(Vout) consists of qout

symbols. (All proximity proofs satisfy the “trivial” zero knowledge property where the simulator queries
all locations of the witness, which means that f returns the size of the witness.) In this case, it could be
that the inner proof system reveals all qin locations of the local view and in addition the verifier can make b
queries to the outer proof transcript. We need that b+ qout ≤ bout which gives b ≤ bout − qout, i.e., we “lost”
qout queries.

• Suppose that the inner proximity proof satisfies zero knowledge with fin(i) := i, i.e., the simulator only
has to query the witness at i locations whenever a malicious verifier makes i queries across the witness and
proof transcript. In this case the expression maxj=0,1,...,i{j + fin(i− j)} equals i, which means that we
get the better bound b ≤ bout, which means no degradation in the query bound.

Construction B.5. The new indexer I takes as input an index i and outputs the encoded index Π0 := Iout(i).
The new prover P receives as input the index i, an instance x, and witness w. The new verifier V receives as
oracle the encoded index Π0 and as input the instance x. The protocol between P and V proceeds as follows.

• Outer. The new prover P and new verifier V engage in the interactive phase of (Pout(i,x,w),V
Iout(i)
out (x))

for the indexed relation R, leading to the outer proof transcript Πout (which is in addition to the encoded
index Iout(i)). Note that the interactive phase does not include the (non-adaptive) query phase of Vout.

• Sample local view. The new verifier V sends the (whole) randomness string rout of the outer verifier Vout to
the new prover P. Both P and V compute (σ, I) := Vqout

(x, rout). These define an inner instance xin := σ
and inner witness win := (Iout(i),Πout)|I for the relation R(Vout) of accepting local views for the outer
verifier Vout. Note that the new verifier V has oracle access to the encoded index Iout(i) and outer proof
transcript Πout, and in particular also to the inner witness win.

• Inner. The new prover P and the new verifier V engage in an execution of (Pin(xin,win),V
win
in (xin)) for

the relation R(Vout). The new verifier V accepts if and only if the inner verifier Vin does.

Lemma B.6. The implications below hold for the proof composition in Lemma B.1.

1. Semi-honest-verifier zero knowledge. If (Iout,Pout,Vout) is zero knowledge against semi-honest verifiers,
then so is (I,P,V) (regardless of any zero-knowledge properties of (Pin,Vin)).

2. Bounded-query zero knowledge. If (Iout,Pout,Vout) is zero knowledge with query bound bout and
(Pin,Vin) is zero knowledge with query function fin then (I,P,V) is zero knowledge with query bound

b := max

{
i ∈ N

∣∣∣∣ max
j=0,1,...,i

{j + fin(i− j)} ≤ bout
}

. (6)

Proof of Item 2 in Lemma B.6. Recall the zero knowledge properties of the outer and inner proof systems:

63

• By the zero-knowledge property of (Pout,Vout), there is an efficient simulator Sout such that, for every
index-instance-witness triple (i,x,w) ∈ R and bout-query malicious verifier Ṽout, the random variables
SṼout

out (i,x) and View(Pout(i,x,w), Ṽout) are identically distributed.

• By the zero-knowledge property of (Pin,Vin), there is an efficient simulator Sin such that, for every instance-
witness pair (xin,win) ∈ R(Vout) (the relation of accepting local views for Vout), query bound b ∈ N,
and b-query malicious verifier Ṽin, the random variables SṼin,win

in (xin) and View(Pin(xin,win), Ṽ
win
in) are

identically distributed and Sin makes at most fin(b) queries to win.

We use the above simulators to construct an efficient simulator S for the composed proof system (I,P,V).
Let Ṽ be a b-query malicious verifier for (I,P,V) whose view S must simulate. Unlike the honest

verifier, Ṽ may arbitrarily query any of the proof strings sent by the new prover P. Also, Ṽ does not make
queries to the encoded index I(i), as Ṽ can itself apply the (deterministic) indexer I to the index i.

The new simulator S receives as input an index i and instance x, and computes the encoded index Iout(i)
for later use. Then S starts running Ṽ and simulates its view by relying on executions of the outer simulator
SṼout

out (i,x) and the inner simulator SṼin,win
in (xin) as described below. Note that the inner instance xin is

explicitly defined, while the outer verifier Ṽout, inner verifier Ṽin, and inner witness win are implicitly defined.

• Simulate outer proof system. Whenever Ṽ outputs a message for Pout, S forwards this message to Sout.
Whenever Ṽ makes a query to a proof string of the outer proof system (i.e., to a location in Πout), S
forwards this query to Sout and replies with the simulated answer provided by Sout. (Note that Ṽ may make
queries during this phase, even though the honest verifier V does not.)

• Determine malicious local view. After the interactive phase of the outer proof system, Ṽ outputs a malicious
choice of randomness string r̃out. The simulator S runs the outer query sampler Vqout

(x, r̃out) to obtain the
inner instance xin := σ̃ and the positions of the local view Ĩ (which are positions in Iout(i) and Πout).

• Simulate inner proof system. Whenever Ṽ outputs a message for Pin, S forwards this message to Sin.
Whenever Ṽ makes a query to a proof string of the inner proof system, S forwards this query to Sin and
replies with the simulated answer provided by Sin. Note that this may in turn cause Sin to query some
locations in win (which is the encoded index Iout(i) and outer proof transcript Πout restricted to positions in
Ĩ). For all such queries, if the query is to Iout(i) then S answers it directly (as it has the index and already
has computed the encoded index); if instead the query is to Πout then S forwards the query to Sout and
replies with the resulting simulated answer. Moreover, in this phase Ṽ may still choose to directly query a
location of the outer proof transcript Πout, and again S relies on Sout to simulate the answer to such queries.

Suppose that the b-query verifier Ṽ makes j queries to the outer proof transcript Πout and b − j queries
to the inner proof transcript Πin. The inner simulator Sin will make fin(b − j) queries to the inner witness
win, and S will forward up to fin(b− j) queries to the outer simulator Sout. (Some queries to win are to the
encoded Iout(i), and those are not forwarded to Sout.) This means that in total Sout will have to simulate up to
j + fin(b− j) queries. Since Ṽ gets to choose the value of j, Sout will have to simulate, in the worst case,
maxj=0,1,...,b{j + fin(b− j)} queries. As long as the outer query bound bout is at least this worst-case bound,
the outer simulator Sout will succeed in the simulation, and in turn so will the new simulator S.

Proof of Item 1 of Lemma B.6. The semi-honest-verifier zero-knowledge property of (Pout,Vout) states that
there is an efficient simulator Sout such that, for every index-instance-witness triple (i,x,w) ∈ R and every
choice of randomness ρout for Vout, the following random variables are identically distributed:

SVout(i,x;ρout)
out (i,x) and View(Pout(i,x,w),Vout(i,x; ρout)) .

64

We use the simulator Sout to construct an efficient simulator S for the composed proof system (I,P,V).
The new simulator S receives as input an index i and instance x, and computes the encoded index Iout(i)

for later use. Then S starts running V and simulates its view by relying on executions of the outer simulator
S
Vout(i,x;ρout)
out (i,x). Note that the inner instance xin is explicitly defined, while the outer verifier Vout, inner

verifier Vin, and inner witness win are implicitly defined.

• Simulate outer proof system. Whenever V outputs a message for Pout, S forwards this message to Sout.
Since V is semi-honest, V does not make any queries during this phase.

• Determine semi-honest local view. After the interactive phase of the outer proof system, V outputs a
choice of randomness string rout (which can be distributed arbitrarily). The simulator S runs the outer query
sampler Vqout

(x, rout) to obtain the inner instance xin := σ, the positions of the local view I (which are
positions in Iout(i) and Πout), and the view of Vout, which forms the witness win for the inner proof system.

• Simulate inner proof system. The simulator S runs the inner prover Pin, and mediates an interaction
between V and Pin. Whenever V outputs a message for Pin, S forwards this message to Pin. Whenever V
makes a query to a proof string of the inner proof system, S answers this query using oracles output by Pin.
The verifier V may also query some locations in the encoded index Iout(i) and outer proof transcript Πout

restricted to positions in I (which forms win). For all such queries, if the query is to Iout(i) then S answers
it directly (as it has the index and has already computed the encoded index); if instead the query is to Πout

then S forwards the query to Sout and replies with the resulting simulated answer. Note that since V is
semi-honest, no other locations of the outer proof transcript Πout are queried.

By assumption, Sout simulates the view of Vout perfectly. In either a simulated proof, or a real proof, the view
of V is obtained by running Pin on the view of Vout. Thus, S provides a perfect simulation. Since Sout and
Pin are efficient, so is S.

65

C Equivalence of zero-knowledge code definitions

The following is a reformulation of [Wei16, Definition 2.3.2].

Definition C.1. Let C be a randomized linear code with randomized encoding function Enc. Let b ∈ N be a
query bound and ε > 0 a statistical distance parameter. We say that C is (b, ε)-ZK if for every set J ⊆ [n]
of size at most b, and every message pair m,m′ ∈ Fkm , the statistical distance between Enc(m)|J and
Enc(m′)|J is at most ε.

Lemma C.2 and Lemma C.3 show that Definition C.1 and Definition 3.21 are equivalent when C has a
polynomial-time encoding function. However, Definition 3.21 may be stronger, for example, for codes with
an exponential-size block length for which a polynomial number of entries can be efficiently simulated.

Lemma C.2. If a randomized linear code C is b-query zero-knowledge then it is (b, 0)-ZK.

Proof. The distribution of SA equals {View(Enc(m; r), A)}r←Fkr for any message m ∈ Fkm and any
b-query verifier A, so specializing to A which queries a set J demonstrates that Enc(m)|J is identically
distributed for any query set.

Lemma C.3. If a randomized linear code C is (b, 0)-ZK, then it is b-query zero-knowledge. Moreover, the
running time of the simulator S is the time taken to compute Enc(0).

Proof. The simulator S simply computes the codeword Enc(0) and answers the verifier’s queries with the
entries of Enc(0). Since the distribution of Enc(0) is identical to that of Enc(m) for any message m, the
simulation is perfect.

66

Acknowledgments

This research was supported in part by: the Berkeley Haas Blockchain Initiative and a donation from the
Ethereum Foundation. Part of the work was conducted while the first author was employed by UC Berkeley.

References
[AHIKV17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod Vaikuntanathan.

“Low-Complexity Cryptographic Hash Functions”. In: Proceedings of the 8th Innovations in Theo-
retical Computer Science Conference. ITCS ’17. 2017, 7:1–7:31.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. “Ligero:
Lightweight Sublinear Arguments Without a Trusted Setup”. In: Proceedings of the 24th ACM
Conference on Computer and Communications Security. CCS ’17. 2017, pp. 2087–2104.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization of NP”.
In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBBPWM18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”. In: Proceedings of the 39th
IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 315–334.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowledge
with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology Conference.
CRYPTO ’19. 2019, pp. 733–764.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum disclosure proofs of knowledge”.
In: Journal of Computer and System Sciences 37.2 (1988), pp. 156–189.

[BCCGP16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the
35th Annual International Conference on Theory and Application of Cryptographic Techniques.
EUROCRYPT ’16. 2016, pp. 327–357.

[BCFGRS17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and
Nicholas Spooner. “Zero Knowledge Protocols from Succinct Constraint Detection”. In: Proceedings
of the 15th Theory of Cryptography Conference. TCC ’17. 2017, pp. 172–206.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sublinear
Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Pro-
ceedings of the 23rd International Conference on the Theory and Applications of Cryptology and
Information Security. ASIACRYPT ’17. 2017, pp. 336–365.

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. “In-
teractive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming. ICALP ’17. 2017, 40:1–
40:15.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. “On the Concrete Efficiency
of Probabilistically-Checkable Proofs”. In: Proceedings of the 45th ACM Symposium on the Theory
of Computing. STOC ’13. 2013, pp. 585–594.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size Zero
Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography
Conference. TCC ’16-A. 2016, pp. 33–64.

67

[BCIOP13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. “Succinct
Non-Interactive Arguments via Linear Interactive Proofs”. In: Proceedings of the 10th Theory of
Cryptography Conference. TCC ’13. 2013, pp. 315–333.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas
P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of the 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques. EURO-
CRYPT ’19. 2019, pp. 103–128.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceed-
ings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations in
polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing.
STOC ’91. 1991, pp. 21–32.

[BKKMS13] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. “Constant
Rate PCPs for Circuit-SAT with Sublinear Query Complexity”. In: Proceedings of the 54th Annual
IEEE Symposium on Foundations of Computer Science. FOCS ’13. 2013, pp. 320–329.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. “Worst-Case to Average Case Reductions
for the Distance to a Code”. In: Proceedings of the 33rd ACM Conference on Computer and
Communications Security. CCS ’18. 2018, 24:1–24:23.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM Journal
on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

[CCGHV07] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikuntanathan. “Secure
Computation from Random Error Correcting Codes”. In: Proceedings of the 26th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT’ 07.
2007, pp. 291–310.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward.
“Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In: Proceedings of the
39th Annual International Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’20. 2020, pp. 738–768.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum and Transparent
Recursive Proofs from Holography”. In: Proceedings of the 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

[Cer19] Andrea Cerulli. “Efficient zero-knowledge proofs and their applications”. 2019.

[Cha+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. “Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives”. In: Proceedings of the 24th ACM Conference on Computer and
Communications Security. CCS ’17. 2017, pp. 1825–1842.

[DI14] Erez Druk and Yuval Ishai. “Linear-time encodable codes meeting the Gilbert–Varshamov bound and
their cryptographic applications”. In: Proceedings of the 5th Innovations in Theoretical Computer
Science Conference. ITCS ’14. 2014, pp. 169–182.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span Programs
and Succinct NIZKs without PCPs”. In: Proceedings of the 32nd Annual International Conference
on Theory and Application of Cryptographic Techniques. EUROCRYPT ’13. 2013, pp. 626–645.

[GH98] Oded Goldreich and Johan Håstad. “On the complexity of interactive proofs with bounded commu-
nication”. In: Information Processing Letters 67.4 (1998), pp. 205–214.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. “Interactive locking, zero-
knowledge PCPs, and unconditional cryptography”. In: Proceedings of the 30th Annual Conference
on Advances in Cryptology. CRYPTO’10. 2010, pp. 173–190.

68

[GK96] Oded Goldreich and Ariel Kahan. “How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP”. In: Journal of Cryptology 9.3 (1996), pp. 167–190.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. “ZKBoo: Faster Zero-Knowledge for Boolean
Circuits”. In: Proceedings of the 25th USENIX Security Symposium. Security ’16. 2016, pp. 1069–
1083.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of interactive
proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version appeared in
STOC ’85., pp. 186–208.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “On interactive proofs with a laconic prover”. In:
Computational Complexity 11.1/2 (2002), pp. 1–53.

[HK20] David Heath and Vladimir Kolesnikov. “Stacked Garbling for Disjunctive Zero-Knowledge Proofs”.
In: Proceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 569–598.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-knowledge from secure
multiparty computation”. In: Proceedings of the 39th Annual Symposium on Theory of Computing.
STOC’07. 2007, pp. 21–30.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. “On Efficient Zero-Knowledge PCPs”. In:
Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography. TCC ’12.
2012, pp. 151–168.

[IMSX15] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On Zero-Knowledge PCPs:
Limitations, Simplifications, and Applications. Available at http://www.cs.virginia.edu/
˜mohammad/files/papers/ZKPCPs-Full.pdf. 2015.

[ISVW13] Yuval Ishai, Amit Sahai, Michael Viderman, and Mor Weiss. “Zero Knowledge LTCs and Their
Applications”. In: Proceedings of the 16th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, and of the 17th International Workshop on Randomization
and Computation. APPROX-RANDOM ’13. 2013, pp. 607–622.

[IW14] Yuval Ishai and Mor Weiss. “Probabilistically Checkable Proofs of Proximity with Zero-Knowledge”.
In: Proceedings of the 11th Theory of Cryptography Conference. TCC ’14. 2014, pp. 121–145.

[KKB88] Michael Kaminski, David Kirkpatrick, and Nader Bshouty. “Addition Requirements for Matrix and
Transposed Matrix Products”. In: Journal of Algorithms 9.3 (1988), pp. 354–364.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. “Improved Non-Interactive Zero Knowledge
with Applications to Post-Quantum Signatures”. In: Proceedings of the 25th ACM Conference on
Computer and Communications Security. CCS ’18. 2018, pp. 525–537.

[KMP20] Abhiram Kothapalli, Elisaweta Masserova, and Bryan Parno. A Direct Construction for Asymptoti-
cally Optimal zkSNARKs. Cryptology ePrint Archive, Report 2020/1318. 2020.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. “Probabilistically checkable proofs with zero knowl-
edge”. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing. STOC ’97.
1997, pp. 496–505.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[LSTW21] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time zero-knowledge SNARKs
for R1CS. Cryptology ePrint Archive, Report 2021/030. 2021.

[Mei12] Or Meir. “Combinatorial PCPs with Short Proofs”. In: Proceedings of the 26th Annual IEEE
Conference on Computational Complexity. CCC ’12. 2012.

[Mei13] Or Meir. “IP = PSPACE Using Error-Correcting Codes”. In: SIAM Journal on Computing 42.1
(2013), pp. 380–403.

69

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In: Annals of
Mathematics and Artificial Intelligence 56 (3 2009), pp. 313–338.

[RR20] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”. In: Proceed-
ings of the 61st Annual IEEE Symposium on Foundations of Computer Science. FOCS ’20. 2020,
pp. 846–857.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs for Dele-
gating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory of Computing.
STOC ’16. 2016, pp. 49–62.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275. 2020.

[Set20] Srinath Setty. “Spartan: Efficient and general-purpose zkSNARKs without trusted setup”. In: Pro-
ceedings of the 40th Annual International Cryptology Conference. CRYPTO ’20. Referencing
Cryptology ePrint Archive, Report 2019/550, revision from 2020.02.28. 2020, pp. 704–737.

[Spi96] Daniel A. Spielman. “Linear-time encodable and decodable error-correcting codes”. In: IEEE
Transactions on Information Theory 42.6 (1996). Preliminary version appeared in STOC ’95.,
pp. 1723–1731.

[Tha13] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Proceedings of the 33rd
Annual International Cryptology Conference. CRYPTO ’13. 2013, pp. 71–89.

[WTSTW18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. “Doubly-efficient
zkSNARKs without trusted setup”. In: Proceedings of the 39th IEEE Symposium on Security and
Privacy. S&P ’18. 2018, pp. 926–943.

[WYKW20] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, Scalable, and
Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits. IACR Cryp-
tology ePrint Archive, Report 2020/925. 2020.

[Wei16] Mor Weiss. “Secure Computation and Probabilistic Checking”. 2016.

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. “Libra:
Succinct Zero-Knowledge Proofs with Optimal Prover Computation”. In: Proceedings of the 39th
Annual International Cryptology Conference. CRYPTO ’19. 2019, pp. 733–764.

[ZWZZ20] Jiaheng Zhang, Weijie Wang, Yinuo Zhang, and Yupeng Zhang. Doubly Efficient Interactive Proofs
for General Arithmetic Circuits with Linear Prover Time. Cryptology ePrint Archive, Report
2020/1247. 2020.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent Polynomial Delegation
and Its Applications to Zero Knowledge Proof”. In: Proceedings of the 41st IEEE Symposium on
Security and Privacy. S&P ’20. 2020, pp. 859–876.

70

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work on probabilistic proofs
	1.3 Related work on succinct arguments

	2 Techniques
	2.1 Linear-time succinct arguments from linear-time probabilistic proofs
	2.2 Proof overview for theorem:informal:main
	2.3 From tensor-queries to point-queries in zero-knowledge
	2.4 Tensor IOP for R1CS with semi-honest verifier zero knowledge
	2.5 Hiding properties of linear codes
	2.6 Interactive proof composition
	2.7 Completing the proof of theorem:informal:main
	2.8 On bounded-query zero knowledge

	3 Preliminaries
	3.1 Interactive oracle proofs with special queries
	3.2 Point queries and tensor queries
	3.3 Robust proofs
	3.4 Proximity proofs
	3.5 Zero knowledge
	3.6 Error-correcting codes
	3.7 Zero knowledge codes

	4 Tensor IOP for R1CS with (semi)honest-verifier zero knowledge
	4.1 Preliminaries
	4.2 Our construction

	5 Algebraic reformulation of zero knowledge codes
	5.1 Proof of lemma:zkcequiv
	5.2 Proof of lemma:zkcequiv2
	5.3 Examples

	6 Tensor products of zero-knowledge codes
	7 Zero-knowledge codes with linear-time encoding
	7.1 Preliminaries
	7.2 Proof of lem:lintimezkc
	7.3 Setting parameters

	8 From tensor queries to point queries with zero knowledge
	8.1 Construction
	8.2 Proof of theorem:compiler

	9 Main theorem
	9.1 Step 1: robustification
	9.2 Step 2: composition
	9.3 Step 3: tensor queries to point queries

	A Robustification
	B Proof composition
	C Equivalence of zero-knowledge code definitions
	Acknowledgments
	References

