
Constructing Secure Multi-Party Computation
with Identifiable Abort

Nicholas-Philip Brandt1, Sven Maier2, Tobias Müller3, and Jörn Müller-Quade2

1 ETH Zurich, Zürich, Switzerland nicholas.brandt@inf.ethz.ch
2 Karlsruhe Institute of Technology, Germany

{sven.maier2,joern.mueller-quade}@kit.edu,
3 FZI Research Center for Information Technology, Germany

tobias.mueller@fzi.de

Abstract. Statistically secure Multi-Party Computation (MPC) proto-
cols based on two-party primitives like Oblivious Transfer [Kil88; IPS08]
have one severe drawback: the adversary can abort the protocol without
repercussions if the majority of all parties are malicious. To evade im-
possibility of fairness [Cle86], the notion of Identifiable Abort (IA) was
introduced in [IOZ14]; here cheaters are exposed upon abort.
Given a broadcast, we tightly link the unanimous identifiability of any
protocol to verifiable graph-theoretical properties using our new Conflict
Graph (CG)-technique. As such, we formalize a necessary and sufficient
CG property that any protocol must fulfill in order to guarantee security
with IA. We conjecture that for certain instances, Identifiable Abort is
actually an NP-hard problem.
Furthermore, we leverage our Conflict Graph in a concrete construction
to give the first upper bound of the minimal setup size, in the sense
of [FGM+01], for n-party MPC in the dishonest majority setting. That
is, in the IA-setting we show that n-party statistically Secure Function
Evaluation (SFE) can be composed from (n− 1)-party SFE and broad-
cast if the maximal number of corruptions is t ≤ (n− 3). Additionally, if
the number of parties is sufficiently small, then our upper bound can be
transitively expanded: for t := (n− k− 3) corruptions, we can construct
n-party SFE form (n− k − 1)-party SFE.

Keywords: Multi-Party Computation · Identifiable Abort · Conflict
Graph · Universal Composability

1 Introduction

Secure Multi-Party Computation (MPC) has been subject to extensive studies
since the 1980’s. The requirements for general MPC have been studied exten-
sively in the literature for a variety of settings. Most notably, MPC protocols
have been constructed from abstract assumptions such as Oblivious Transfer
(OT) instead of concrete computational assumptions [Kil88; IPS08]. Since the
introduction of the real-ideal-paradigm [GMW87] MPC has been based on so-
called hybrid functionalities, such as a Common Reference String (CRS), which is

commonly used e.g. in the Universal Composability (UC)-framework of [Can01].
These hybrid functionalities exhibit the distinct advantage that they can be
based on a variety of computational assumptions such as Discrete Logarithm,
Learning with Errors or Integer Factorization, or even physical assumptions such
as noisy channels [GIS+10; CK88; Cré97].

The systematic study of the minimal size—or minimal complete cardinal-
ity—of an MPC-setup has been initialized by [FGM+01]. In the honest-majority
case there have been several results, among others, [GMW87; BGW88; FGM+01]
without Broadcast, and [RB89; Bea90] with a Broadcast. More than 30 years
ago [RB89; Bea90] showed that, for an honest majority, pairwise secure channels
are sufficient in conjunction with a Broadcast (even for Guaranteed Output De-
livery). In the terminology of [FGM+01] the minimal complete cardinality is 2.
Against a dishonest majority, the minimal complete cardinality is also 2 [Kil88;
IPS08] but only for protocols with Anonymous Abort. This is consistent with
the impossibility of fairness in the dishonest majority setting [Cle86].

However, security with Anonymous Abort allows an adversary to effectively
perform a Denial-of-Service-attack on the protocol without being detected. As a
more promising alternative, the notion of Identifiable Abort (IA) was introduced
in [IOZ14]. Here at least one malicious party is identified by all honest parties
upon abort. Intuitively, this allows the other parties to exclude the identified
culprit in the next protocol run. 1 [IOS12] showed that any functionality of car-
dinality 2 is insufficient for general MPC with cheater identification (IA) without
Broadcast. Yet the first official formalization of Identifiable Abort [IOZ14] al-
ready provided a universal setup of size n called Correlated Randomness-model.

To enhance the understanding of IA we investigate requirements for protocols
to unanimously identify a cheater assuming a Broadcast is available to each
party. Using our Conflict Graph (CG)-technique we initiate the study on the
dishonest majority setting by linking IA to graph-theoretical properties of the
CG. We give the first upper bound for the minimal complete cardinality with
Broadcast in the UC-framework and dishonest-majority setting with IA.

While most research in the area of Identifiable Abort has been directed
towards the efficiency of concrete MPC protocols (such as [DPS+12; SF16;
BOS16]), our construction focuses on a feasibility result showcasing the power
of our CG-technique. Yet we believe that the CG will also prove useful in the
construction of efficient protocols with IA.

Outline In Section 1.1 we summarize our main contributions. After specifying
the considered security notions in Section 1.2 we give a high-level overview of
our results in Section 1.3. In 2, we define the used notations and definitions.
This is followed by the main part of our work; we provide more detailed descrip-
tions and detailed proofs of our Conflict Graph in Section 3. We provide several
constructions in Sections 4 to 7. Finally, we conclude with a summary and an
outlook in Section 8.
1 The protocol has to be designed such that the aborted functionality does not leak
sensitive information that could be used by the adversary in future protocol runs.

2

1.1 Contribution

Our three main contributions are:

Conflict Graph. We introduce the Conflict Graph (CG) and tightly link the
Identifiable Abort property of any MPC-protocol to verifiable graph-theoretical
properties of CG. While the Conflict Graph is of theoretical interest on its
own—we link Identifiable Abort to a potentially NP-hard problem of the CG,
which could provide further insight to Identifiable Abort upon further investi-
gation—we also use it to construct a new MPC-protocol.

Technically, the Conflict Graph is a graph G = ([P],E), where [P] is the set
of parties. G has a vertex for each party P ∈ [P]. An edge e =

{
P,P′

}
∈ E stands

for a publicly declared conflict between the two parties P and P′; we require that
conflicts between honest parties never arise, this is also a guarantee that either
P or P′ is corrupted.

On an abstract level, once sufficiently many conflicts have been declared the
honest parties can leverage this information to unanimously identify a set of
cheaters. In this work, we provide necessary and sufficient conditions for an IA
which facilitates our MPC-construction.

New Oblivious Transfer variant. We reformulate Crepeau’s Committed OT
[Cré90; CvT95] in the multi-party setting. We call our variant Fully Committed
Oblivious Transfer (FCOT) and show its usefullness in the setting of Identifiable
Abort. In an FCOT all parties obtain a receipt after the OT has been performed:
a sender and a receiver have secret inputs as in the classical OT, the remaining
(n− 2) witnesses do not have any input. After the OT-phase, both the sender
and the receiver are committed to their inputs independently and can unveil
them at a later point to all other parties; even after the receiver obtained only
one message, the sender can unveil both m0 and m1, and the receiver can unveil
the choice bit c, such that no party can lie about their actual input.

We also prove equivalence of Secure Function Evaluation and Fully Com-
mitted Oblivious Transfer in the setting of Identifiable Abort. That is, we show
how to instantiate n-party SFE in the FCOT-hybrid-model and how to realize
n-party FCOT using only a SFE hybrid functionality.

Expanding SFE with IA. Finally, we provide an expansion from (n− 1)-party
MPC and n-party Broadcast to n-party MPC. This implies an upper bound for
the minimal complete cardinality for n-party Secure Function Evaluation (SFE)
in the style of [FGM+01], assuming that at most (n−3) parties are malicious. If
the number of parties is sufficiently small, we can extend our result by induction,
yielding a better bound for the dishonest majority setting (compare Fig. 1).

More precisely, we give a protocol that expands FCOT from cardinality
(n− 1) to n. Since FCOT is equally powerful as SFE this implies an expansion of
SFE from (n− 1) to n. As an intermediate result we expand a Commitment from
size (n− 1) to n and then use the n-party Commitment to ensure consistency
across all instances of the (n− 1)-party FCOT.

3

t

k∗(t)

0
2

n

0 n
2

n

n
2 + 3

Our construction
+ induction

n− 2

[RB89]
[Bea90]

Fig. 1: Bounds of the minimal complete cardinality k∗(n, t) with IA vs. maximal
number of malicious parties t given broadcast. The grey area represents the pos-
sible region of k∗(n, t). The dashed lines indicate our bounds (linear induction for
n ∈ O(lnλ/ ln lnλ)).

1.2 Setting

All of our constructions enjoy statistical security, no computational assump-
tions are made. We only assume the existence of hybrid functionalities. This
leaves the means of the realization of these hybrid functionalities up to the user,
e.g. via physical means such as trusted hardware [GIS+10; SSW10] or noisy
channels [CK88; Cré97], or again from computational assumptions with better
efficiency [Bon98; Reg05]. We don’t explicitly assume additional pairwise secure
channels, since they can be emulated by hybrid functionalities of size ≥ 2.

We focus on static corruptions of an arbitrary number of parties. We
denote the maximal number of malicious parties by t < n.

We assume that all messages sent between parties and ideal functionalities
are authenticated. We further assume that all parties have access to an n-party
broadcast, which we model as ideal functionality InBC. This broadcast is mainly
used for our realization of the Conflict Graph, for more details see Section 5.

We generally assume that the simulator gets notified whenever any party
passes input to any functionality. The simulator doesn’t learn anything regarding
the parties secret inputs. It only learns that input was provided.

Finally, for technical reasons, our construction requires a limit on the number
of parties to n ∈ O(lnλ) ∨ n− t ∈ O(1) to efficiently identify malicious parties.
We do not currently know whether this restriction is inherent. Though, note that
the strongest adversarial case t+ 1 = n ∈ poly(λ) is covered in our construction.
However, we want to emphasize that while this seems like a weakness of the

4

Conflict Graph, it is actually a general lower bound on unanimous Identifiability:
we show in Theorem 7 that the graph properties that seem to necessitate the
limitation of n are indeed necessary for an unanimous identification. For more
details on this see Section 3.

The UC Framework We perform our analysis in the Universal Composability
framework [Can00; Can01], which is a strong version of simulation-based se-
curity [GMW87]. The key idea there is to compare a real protocol execution
between mutually distrustful parties to an idealized execution, where a trusted
party performs the computation based on the parties inputs. The behavior of
this party is specified by a functionality F . In the real world, all parties execute
a protocol π , which is said to realize the functionality F , if it can be shown to
be indistinguishable from the ideal world. This requires a Simulator who creates
a transcript of an execution without knowing the parties inputs. More precisely,
the transcripts of both worlds must be indistinguishable for any non-participant.
The transcript includes the output of all parties and the respective adversary.
Indistinguishability implies that the real adversary cannot learn anything from
the real protocol execution that the simulator cannot contrive without knowing
the private inputs.

The UC-model is strictly stronger than the standalone model; without a
trusted setup, Commitments are not possible in the UC-model [CF01] while they
can be constructed from computational assumptions in the standalone model.
Constructions in the UC-model also hold in the standalone model and, con-
versely, impossibilities in the standalone model extend to the UC-model.

We assume a synchronous communication network, as our Conflict Graph
requires that any conflict announced by a party P will eventually be received
by all other parties. In an asynchronous model, the adversary could drop all
messages [CM89; BCG93], resulting in a situation similar to Anonymous Abort,
thus rendering Identifiable Abort essentially useless. In the synchronous model,
however, the adversary can only either let the functionality terminate, or abort
at the cost of unveiling the identity of at least one malicious party. We adapt
the view from the 2020 version2 of [Can00], which describes how synchronous
communication can be achieved by using the functionality FSYN. For the sake
of simplicity, however, we ignore the details of FSYN in our analysis and just
assume a synchronous communication structure.

Identifiable Abort Constructing protocols requires definitions regarding the abort
properties. Intuitively, the most desirable property is guaranteed output, where
an abort is impossible. Unfortunately, fairness and thus guaranteed output is
impossible with a dishonest majority [Cle86]. On the other extreme, the much
weaker notion of Anonymous Abort leaves the adversary capable of stopping
any computation without repercussions and thus is an undesirable property for
many real-world scenarios.

We work in the setting of IA [IOZ14], where abort is possible, but only by
revealing the identity of (at least) one malicious party to all participants. In this
2 Version 20200212:021048

5

https://eprint.iacr.org/2000/067/20200212:021048

setting, all honest parties eventually expel all malicious parties, if the protocol is
aborted too often. Thereby it suffices that, during an unsuccessful protocol run,
all honest parties agree on at least one disruptor. Then the adversary can abort
the protocol at most (n− 1) times, before all malicious parties are excluded or
the protocol succeeds.

We use the following notation to clarify our Identifiable Abort property3:

Notation 1 (Functionalities with IA) We denote by In an n-party func-
tionality with Identifiable Abort.

Definition 1 (Identifiable Abort). Let In be an ideal n-party functional-
ity with parties [P] and malicious subset C ⊆ [P]. In has Multi-Identifiable
Abort, iff all (honest) parties yield output

(
abort,C ′

)
when the adversary sends(

abort,C ′
)
to In. If C ′ 6⊆ C , the message is ignored. In has Uni-Identifiable

Abort, iff In has Multi-IA and |C ′| = 1.

Additional care has to be taken into the protocol design. We generally assume
that the protocols and functionalities are not fair. This means, that the adversary
can learn sensitive information in one protocol run, which it can leverage during
the next execution. The honest parties then neither learn their output, nor have
a precise estimate on how sensitive the data obtained by the adversary is. By
using secret-sharing schemes, we are still able to compose our functionality Fully
Committed Oblivious Transfer (FCOT).

1.3 Overview

Conflict Graph We introduce and analyze the Conflict Graph G and prove a tight
linkage between verifiable graph properties and the identification of disruptors
in the field of Identifiable Abort. The Conflict Graph maintains the global view
of conflicts that arise between parties during a protocol execution.

Let π be an n-party protocol that uses the Conflict Graph. The CG of π is
an undirected, simple graph G = ([P],E) where [P] = {P1, . . . ,Pn} is the set of
parties of π . Intuitively, during the protocol execution a party P that notices any
misbehavior of another party P′ publicly announces that it is in conflict with
P′. While honest parties only issue conflicts with malicious parties, malicious
parties can issue conflicts with any party. It thus holds for each conflict edge
that at least one of the two parties is malicious.

On a high level, we either want a protocol execution to successfully terminate,
or all honest parties to settle on the same set of corrupted parties. Once suffi-
ciently many conflicts are issued honest parties can leverage the Conflict Graph
to unanimously identify parties that actively deviate from the protocol, which
we call disruptors. In particular, any party that aborts a subfunctionality (hy-
brid functionality) is considered a disruptor. Note that the precise condition of
a conflict declaration based on protocol deviations is highly protocol-dependent;
3 Note that the original work [IOZ14] uses the notation F ID

⊥ .

6

we defer the specifics of our constructions to Section 7. The formal description
of the Conflict Graph functionality looks as follows:

Functionality InCG

InCG proceeds as follows, running with parties [P] = {P1, . . . ,Pn}, malicious
parties C ⊆ [P] and adversary S. Messages not covered here are ignored.
• Upon first activation, initiate the set of conflict edges E := ∅.
• When receiving a message (conflict,Pi) from Pj , append the new

conflict edge {Pi,Pj} to the set of conflict edges E and send
(conflict,Pj ,Pi) to the adversary.

• When receiving a message (query) from Pi, deduce the current Conflict
Graph G∗ := DeduceCG(([P],E), t) and output G∗ to Pi.

When receiving
(
abort,C ′

)
from S with C ′ ⊆ C , then InCG outputs(

abort,C ′
)
to all parties, and then terminates.

The functionality internally maintains the graph. Regardless which party
queries the current Conflict Graph, InCG returns the same graph. This implies a
consistent view to all (honest) parties for any protocol πnCG that realizes InCG.

Keeping in mind that each conflict edge contains at least one corrupted party,
we call any subset of parties which could have caused the structure of Conflict
Graph an explanation of G. Intuitively, an explanation of a Conflict Graph G
comes down to a vertex cover of G. We separate between internal and external
explanations. External explanations allow even non-participants to easily iden-
tify a set of disruptors, given only the Conflict Graph and the maximum number
t of corrupted parties. Internal explanations are limited to explanations of the
graph for a given party P, which knows that itself is behaving honestly.

When queried for the current Conflict Graph, InCG invokes the algorithm
called DeduceCG from Algorithm 1. We call the graph that arises only from de-
clared conflicts the induced CG G while we refer to the output of the InCG func-
tionality as the deduced CG G∗. Before we go into detail about the DeduceCG-
algorithm, we have to introduce some properties of the CG and the relation
between them. For now it suffices to think of DeduceCG as a mechanism for
honest parties to complete the CG with implicit conflicts that have not explic-
itly been declared.

We now show that the properties required for identifying disruptors can be
brought down to properties of the Conflict Graph. The simple idea is that,
once sufficiently many conflicts have arisen, at least one common party must be
contained in all explanations.

Definition 2 (t-settledness). Let n be the number of parties [P] of which at
most 0 ≤ t < n are malicious. Let G∗ = ([P],E) be the Conflict Graph of a
protocol π. Let M (G, t) be the set of all Minimal Vertex Covers (MVCs) of G∗
with size t or less, and let X(G∗, t) be the intersection of all of these MVCs, that

7

is, the set of parties which are present in all MVCs of size ≤ t. We call X(G∗, t)
the settled set of G∗. We call G∗ t-settled, iff X(G∗, t) 6= ∅.

The definition already showcases the equivalence between t-settledness of a
Conflict Graph and its external explanation—each Minimal Vertex Cover of size
≤ t is a valid explanation of corrupted parties that could have caused this graph,
and if each possible explanation implies that a party P is corrupted, then even
non-participants can be convinced that party P is a disruptor.

Algorithm 1 DeduceCG(G, t)
1: ([P],E) := G
2: changed := 1
3: while changed = 1 do
4: changed := 0 . no change in this iteration yet
5: for all P ∈ [P] do
6: ˜[P] := [P] \ ({P} ∪N(P)) . reduced party set
7: if ˜[P] is (t− |N(P)|)-settled then
8: [P]× := X((˜[P],E ∩ 2 ˜[P]), t− |N(P)|) . settled set from Definition 2
9: for P′ ∈ [P]× do
10: E := E ∪ {P,P′} . append inferred conflicts
11: changed := 1 . mark change
12: end for
13: end if
14: end for
15: end while
16: return G∗ := ([P],E) . deduced Conflict Graph

With the definition of t-settledness in mind, we can now analyse the algorithm
DeduceCG. Let’s start with an example Fig. 2c, we can see a graph which is not
3-settled since the vertex covers {P1,P2,P3} and {P4,P5,P6} do not contain
any common party. Note that this graph can only ever appear as an induced
CG, as we will see shortly. We use the notation of Algorithm 1. The algorithm
sequentially takes on the role of each party P ∈ [P] in the induced CG G =
([P],E). From the viewpoint of P, any conflict edge of the form

{
P,P′

}
implies

that P′ is a disruptor, whereas conflicts between two other parties
{

P′′,P′′′
}

leave some uncertainty regarding which of the two might be an actual disruptor.
Hence, P checks for those explanations, which contain all of its declared conflicts,
and which are of size ≤ t. More formally, let N(P) be the neighbors of P in G,
that is, all parties P′ for which

{
P,P′

}
∈ E . The algorithm checks for each party

P, if the rest of the graph on [̃P] := [P] \ ({P} ∪ N(P)) is (t− |N(P)|)-settled
and appends conflicts between P and all parties in the settled set [P]× of the
subgraph on [̃P].

For the induced Conflict Graph from Fig. 2c, this would mean that DeduceCG
would take on the role of P1 and check, if the sub-graph on {P2,P3,P4} is 1-

8

settled. Since the only vertex cover of size 1 contains P4, DeduceCG adds an
edge from P1 to P4 in Fig. 2f.

The functionality InCG can be realized using only a Broadcast-functionality
InBC (see Lemma 13). The protocol lets every party maintain an induced CG
from the broadcasted conflicts and each party can then produce the deduced
CG locally by invoking DeduceCG. In this sense the functionality InCG is merely
a convenient way of handling the Conflict Graph. We emphasize that it is not
an additional assumption if a broadcast is given.

Now we have seen how the t-settledness affects the Conflict Graph, i.e. if
external observers can identify disruptors. However, for Identifiable Abort, it is
not necessary for participants to convince external parties, but only participants
must be able to identify disruptors. We therefore introduce a different graph
property which reflects valid explanations for participants only:

Definition 3 (Biseparation). A Conflict Graph G∗ = ([P],E∗) is called
biseparated, iff there exists a subset E ′ ⊆ E∗ that forms a complete bipartite
graph (biclique) on [P].

Thus, when a Conflict Graph is biseparated, it can be partitioned into two
partitions. Each party agrees with its own partition that all parties from the
other partition are malicious. Consequently, all honest parties must be in one
partition (possibly among some malicious parties).

While biseparation of a graph G is decidable in linear time in n by a breath-
first-search to check whether the complement graph is connected, deciding on
t-settledness is much harder.

The DeduceCG algorithm requires the computation of the settled set X(G, t).
To our knowledge the best known algorithm for this requires computation of
the intersection of all vertex covers of size t. This way

(
n
t

)
=
(
n
n−t
)
subsets of

size t have to be tested if they are vertex covers, thus this trivial algorithm
certainly runs in DTIME

((
n
t

)
n
)
. For efficiency this must be polynomial in λ.

We describe two special efficient cases: First, for arbitrary 0 ≤ t < n we must
limit n ∈ O(lnλ). Second, for t ∈ O(1) or n − t ∈ O(1) we can support any
polynomial n ∈ poly(λ). The case of t ∈ O(1) is uninteresting since this implies
an honest-majority. Hence we obtain the condition n ∈ O(lnλ) ∨ n − t ∈ O(1)
which is used throughout our constructions.

Surprisingly, it seems easier to identify cheaters for t = (n− c) for a constant
c than for t = n/2; if we allow a more powerful adversary, it seems to become
easier to mitigate its attacks. For further research we pose the question: given n
and t, what is the time complexity of computing X(G, t) in general?

We generally assume that protocols use the Conflict Graph correctly, meaning
that honest parties immediately report a conflict with disruptors. While this
seems like a restriction at first, we show that it is not:

Lemma 1 (Informal version of Lemma 10). Let n be the number of parties
[P] of which at most 0 ≤ t < n are malicious. Let π be a protocol that securely
UC-realizes a functionality In in the some M -hybrid model without InCG. Denote

9

P1

P2

P3

P4

(a) 1-settled example

P1

P2

P3

P4

P5

(b) Biseparated example

P1 P6

P2P3

P5

P4

(c) Graph is neither 3-settled nor bisepa-
rated.

P1 P2

(d) 1-settled counterexample

P1

P2

P3

P4

P5

(e) Biseparated counterexample

P1 P6

P2P3

P5

P4

(f) Deduction from a given CG. From P1’s
view, P4 has to be corrupted if t = 3.

Fig. 2: Several (counter-)examples for the introduced conflict graph conditions. Thick
lines are relevant for the respective property.

by π ′ the M ∪ {InCG}-hybrid protocol that is identical to π with the addition that
honest parties use InCG correctly.

Then π ′ also securely UC-realizes In, i.e. π ′ ≥ I .

This lemma allows us to quantify only over protocols that use the Conflict
Graph correctly, while still obtaining meaningful results for all protocols with
Identifiable Abort. Furthermore, it implies that no adversary gains any advan-
tage when using the Conflict Graph correctly.

In Section 3 we elaborate on the relation between t-settledness and bisep-
aration. For now we just remark that t-settledness of the induced CG implies
biseparation of the corresponding deduced CG: if G is t-settled then DeduceCG
will bring the settled set X(G, t) in conflict with all other parties, thereby bisep-
arating the CG G∗.

Remark 1 (DeduceCG biseparates t-settled graphs). Let G be a t-settled induced
Conflict Graph. The deduced CG G∗ := DeduceCG(G, t) is biseparated.

A few example graphs are shown in Fig. 2. Figure 2a shows a graph structure
where the only vertex cover of size 1 is {P1}, thus P1 is in all external explana-
tions, making the graph 1-settled. Note that this graph is also biseparated. The
graph from Fig. 2d on the other hand is not 1-settled; both {P1} and {P2} are

10

valid Vertex Covers. However, biseparation trivially holds. Another example for
biseparation is the Conflict Graph from Fig. 2b. This graph can be split up into
two partitions S0 and S1, where S0 := {P1,P2} and S1 := {P3,P4,P5}. This
implies that all members of S1 are convinced that P1 and P2 are corrupted, thus
allowing them to continue without them. However, if we remove the conflict be-
tween P2 and P5 (see Fig. 2e), the graph is no longer biseparated, thus P5 would
not agree to throw out P2.

Now we state our main result: the equivalence of biseparation and Identifiable
Abort.

Theorem 2 (Informal version of Theorem 7). Let π be a protocol that
securely UC-realizes a functionality In with Identifiable Abort in an M ∪{InCG}-
hybrid model. Upon abort, the deduced Conflict Graph G∗ of π must be bisepa-
rated.

The proof of this theorem can be found in Theorem 7.

Remark 2. A Conflict Graph G = ([P],E) is biseparated, iff its Complement
Graph G is disconnected.

This follows directly from the fact that the complement of a biclique contains
no path from one partition to the other.

SFE-Completeness of FCOT We reformulate Crepeau’s Committed OT [Cré90;
CvT95]) for n-parties as Fully Committed Oblivious Transfer (FCOT) and for-
mally prove its equivalence to Secure Function Evaluation in the setting of Iden-
tifiable Abort. This has the advantage that we can perform our analysis of SFE-
expansion by only expanding FCOT. We thus show in two lemmas that one
implies the other.

Lemma 2 (Informal version of Lemma 11). For every n, there is a protocol
πnFCOT in the {InSFE}-hybrid model that securely realizes InFCOT.

This implies that n parties can use SFE in order to obtain a Fully Committed
Oblivious Transfer. We only provide a brief description of the protocol here;
the full protocol alongside with a security proof is presented in Lemma 12. The
protocol uses four calls to InSFE, which are used for distributing and collecting
secret shares in such a way, that parties obtain enough information to stop a
dishonest sender or receiver from opening up different values, but insufficient
data to reconstruct the messages.

Prior to the first call, the sender S computes n additive secret shares µbj,i
of the two messages mb and the receiver R computes n additive secret shares
γj,i of the choice bit c. Every party, including sender and receiver, also choose
a random number ν. This determines the theoretical input of each party; every
party would want to input ν, S additionally wants to input all shares µbj,i, and R
additionally wants to input the shares γj,i. However, each party creates r shares
of the input, which are then used as actual input for the first function evaluation

11

with InSFE. It outputs the message mc to R; each party additionally obtains the ν
input of µ0, µ1 and γ. The next two instances of InSFE are used for the unveiling
of the sender’s message m0 and m1, respectively, and the last instance of InSFE
opens all shares of the receiver’s choice bit.

Lemma 3 (Informal version of Lemma 12). For every n, there is a protocol
πnSFE in the {InFCOT}-hybrid model that securely realizes InSFE.

Constructing SFE from FCOT is similar to the construction from Ishai, Prab-
hakaran, and Sahai [IPS08]; in fact, in the framework of Identifiable Abort, we
show in Lemma 11 that it suffices to use their exact protocol, but replacing each
invocation of Oblivious Transfer with an invocation of Fully Committed Obliv-
ious Transfer. Upon abort critical FCOTs will be unveiled, thus exposing the
disruptors.

Global Commitment from Fully Committed Oblivious Transfer We prove that
n-Party Global Commitment can be constructed from n-Party Fully Committed
Oblivious Transfer without losing the IA property:

Lemma 4 (Informal version of Lemma 14). For every n, there is a protocol
πnCOM that securely realizes InCOM in the {InFCOT}-hybrid model.

The protocol uses the unveil phase of Fully Committed Oblivious Transfer:
For the commit-phase, the committer C acts as Receiver in the single instance
of InFCOT and inputs the to-be-committed bit m as choice bit, the first actual
receiver R1 of InCOM acts as Sender in InFCOT and sends twice the same randomly
chosen message, the remaining receivers (R2, . . . ,Rn) participate as witnesses.
For the unveil-phase, C sends input (unveil choice) to InFCOT. The security of
this protocol follows from the security guarantees of InFCOT.

SFE expansion Recall that the biseparation allows the protocol to abort consis-
tently. We introduce three relevant lemmas, limiting the amount of subfunction-
alities of size (n−1) in an n-party protocol before the graph becomes biseparated,
effectively stating an upper bound on how many subfunctionalities an adversary
can abort. We use this guarantee to construct an extension from Commitment
and Fully Committed Oblivious Transfer (thus effectively Secure Function Eval-
uation) from size (n− 1) to size n.

Note that, for simplicity only, we require protocols to use the CG correctly
as described in Lemma 10. The most general version of our lemma regarding
subfunctionality abort is the following:

Lemma 5 (Informal version of Lemma 15). Let n be the number of parties
[P] of which at most 0 ≤ t < n are malicious. Let π be an

{
In−1, InCG

}
-hybrid

protocol that uses InCG “correctly”. If the adversary A aborts more than t instances
of In−1, then the Conflict Graph from InCG is biseparated.

12

We refer to all subfunctionalities that use the same set of parties as the same
instance. For functionalities of cardinality n − 1 there are exactly n instances,
one for each party that is excluded. Multiple executions of functionalities on the
same set of parties are considered to belong to the same instance.

A formal proof of this lemma is deferred to Lemma 15. Here we only sketch
the proof. We denote the instance, where all parties but Pi participate, as In−1

Pi
.

Note that for any i ∈ [n], after In−1
Pi

has been aborted, the Conflict Graph G∗
contains a biseparated subgraph over all parties except for Pi. We can investigate
the complement graph G. After an abort of In−1

Pi
, the Complement Graph of

the participants without Pi is split into two partitions, which are only connected
via Pi in G. We abuse notation and write G \ Pi for the Complement Graph
where Pi is removed. Say In−1

Pi
was aborted by Pj . If the same party Pj aborts

a second subfunctionality in which Pi is participating, its partition becomes
completely disconnected in the Complement Graph, as Pi would also declare
conflict with Pj . Thus, the adversary cannot re-use a party to abort a different
subfunctionality. Since there are only at most t corrupted parties, we have an
upper bound on the number of subfunctionalities the adversary can abort before
the Conflict Graph becomes biseparated.

We can furthermore specify this result with respect to certain types of ad-
versaries. Against adversaries who can corrupt any subset of parties of size
t ≤ (n− 3), the lemma tightens to:

Lemma 6 (Informal version of Lemma 16). Let t ≤ (n− 3). If t or more
subfunctionalities of cardinality (n− 1) are aborted, then the Conflict Graph is
biseparated.

By requirement, there are at least three honest parties. After t aborts, any
party Pj which aborted In−1

Pi
can only have two neighbors in the Complement

Graph: party Pi, which did not witness the abort, and some other party Pk who
aborted In−1

j . This is true for all of the t parties who aborted a subfunctionality.
Since no conflicts ever arise between honest parties, they have edges in G with
all other honest parties. With t ≤ (n − 3), each honest party has at least two
honest neighbors in G. Additionally, each honest party Pl has an edge with the
party that aborted In−1

l . Thus, after t aborts, only honest parties have three
neighbors in G, allowing them to identify disruptors.

Our next lemma provides a less strict guarantee against a stronger adversary,
which can corrupt up to (n− 1) parties. Here, Lemma 15 yields:

Lemma 7 (Informal version of Lemma 17). Let t < n. If more than (n− 2)
subfunctionalities of cardinality (n− 1) are aborted, then the Conflict Graph is
biseparated.

Let Pi be an honest party. After an abort of In−1
Pi

, the remaining Conflict
Graph G∗ is biseparated. This means that the remaining parties can be separated
into two partitions S0 and S1, which are disconnected in the Complement Graph.

When an other subfunctionality In−1
j that omits party Pj is aborted, it can

only be by a subset of parties from the same partition as Pj , as otherwise, the

13

graph becomes biseparated. This means that Pj can no longer be used for future
aborts, without causing a biseparation. Thus, for each abort, the set of possible
disruptors decreases by one, since the omitted party cannot be used as future
disruptor. Hence, in order to avoid a biseparated Conflict Graph, there has to
be one malicious party which never aborts. With at least one additional party
being honest, we get the bound of (n− 2).

Lemmas 5 to 7 play an essential role in providing a protocol for our main
goal, namely SFE-expansion from (n−1) parties to n parties. But first, we have
to show how to expand COM from (n− 1) parties to n parties:

Lemma 8 (Informal version of Lemma 18). For sufficiently small n or
large t ≤ (n− 2), there exists a protocol πnCOM in the {In−1

COM, InBC}-hybrid model
that securely UC-realizes InCOM.

We assume that there are (n− 1) subfunctionalities of In−1
COM, one for each

omitted receiver Ri. The protocol πnCOM lets the committer C input the same bit
b into all subfunctionality instances In−1

COM. A receiver Ri only accepts the global
unveil of a bit b, if the majority of commitments that Ri witnesses open to b, if at
least three instances of In−1

COM were not aborted, and if at most one of the unveils
opens to to a different bit. Hence, a malicious committer C is forced to either
input the same bit into all In−1

COM, or to abort those where the original input
differed from the to-be-unveiled bit. However, with the limit on the number of
aborts before cheater identification is possible, we show in the formal proof of
Lemma 18 that a corrupted C cannot successfully break the binding property.

With those tools, we are finally ready to investigate the expansion of FCOT.
We denote by S the sender, by R the receiver and by (W1, . . . ,Wn−2) the wit-
nesses. We categorize the used subfunctionalities in two categories: Type-1 sub-
functionalities are functionalities where both S and R participate, that is, all
In−1

Wi
for any i ∈ {1, . . . , n− 2}. Type-2 subfunctionalities are In−1

S and In−1
R .

We use Lemma 6 to limit the amount of possible aborts.

Corollary 1. Let πnFCOT be a protocol that securely UC-realizes InFCOT in the
{In−1

FCOT, InCG}-hybrid model. Either at least two type-1 functionalities successfully
terminate, or the deduced Conflict Graph G∗ is biseparated.

This follows due to the fact that at least four subfunctionalities have to
succeed. There are only two functionalities of type-2; even if those two succeed,
two more have to successfully terminate, which then have to be of type-1.

We use this property to provide a protocol that proves the following lemma:

Lemma 9 (Informal version of Lemma 19). For sufficiently small n or
large t ≤ (n− 3), there is a protocol πnFCOT that UC-realizes InFCOT in the {In−1

FCOT,
InBC}-hybrid model against any adversary that statically corrupts at most t ≤
(n− 3) parties.

The actual protocol works in several iterations. Each iteration employs a
cut-and-choose method, which uses one additive secret sharing scheme and one
threshold secret sharing scheme: initially, (T, r) ∈ poly(λ) are two natural num-
bers defining the total amount of shares. In each iteration, T is updated as

14

In−1
SFE In−1

FCOT

In
BC In

CG

In−1
COM In

COM

In
FCOT

In
SFE

Lemma 11
Lemma 14

Lemma 13

Lemma 18

Lemma 19

Lemma 12

Fig. 3: An overview of the steps we use for proving SFE expansion with Identifiable
Abort in Theorem 8.

number of remaining subfunctionalities, which were not yet aborted. In each
round, the sender uses the additive secret sharing scheme to create T shares
(µ0
j)j=1..T and (µ1

j)j=1..T of the messagesm0 andm1, respectively. Let b ∈ {0, 1}.
The sender uses the (2r/3)-threshold secret sharing scheme to create r shares
(αbj,i)i=1..r of each additive share µbj . Each of the obtained shares αbj,i is sent
to InCOM; additionally, S distributes all the shares αbj,i using (T · r) In−1

FCOT in-
stances, with input

(
messages, α0

j,i, α
1
j,i

)
. The receiver uses InCOM to commit to

the choice bit and sends the same choice bit c to all instances of In−1
FCOT. Wit-

nesses only output their receipt, if all type-1 functionalities In−1
FCOT which have

never been aborted before output a receipt.
A cut-and-choose method is used to ensure correct sharing of S; each party

broadcasts a set of r/10n indices for each subfunctionality. The sender then
unveils the global commitment at those spots.

This protocol allows R to learn mc, since it can obtain sufficiently many
shares to reconstruct all T additive shares µcj . Yet it does not allow R to learn
m1−c; the additive secret sharing scheme used for the creation of µbj ensures that
the information is information-theoretically hidden if only one share is missing,
and the threshold of the threshold secret sharing scheme makes it impossible for
an honest receiver to obtain sufficient information to reconstruct both shares.
The receiver learns its own output of InFCOT, and r/10 additional shares, leaving
him with 11r/10 shares for each tuple (µ0

j , µ
1
j). 2r/3 shares are required for the

construction of µcj , yet reconstructing the whole tuple requires 4r/3 shares.
At the same time, InCOM ensures that both the inputs of S and R can be

unveiled at a later point: A later opening of the senders inputs is trivially possible
by opening all commitments on µbj,i. The other parties can check, if the unveiled
values are consistent with the shares they have seen during the sending-phase.
The unveil of the receivers input works directly by unveiling the choice bit from
the In−1

FCOT subfunctionalities.
By combining all lemmata, it follows that SFE-expansion is indeed possible

in the setting of IA. A short summary of all the steps involved in the expansion
alongside references to the respective proofs is given in Fig. 3.

15

2 Definitions and Notation

We provide a comprehensive glossary after our summary. Furthermore, we use
the following conventions; also see the list of abbreviation and symbols.

Notation 3 For any natural number n ∈ N, we denote by [n] all natural num-
bers between 1 and n, that is,

[n] := {1, 2, . . . , (n− 1), n}

Definition 4 (Negligible functions). A function f : N → R is called neg-
ligible, iff f ∈ o(xc) for all c ∈ R. We later use the equivalent condition
lim
x→∞

ln|f(x)|
ln x = −∞. Denote the set of negligible functions with respect to x by

negl(x).

Definition 5 (Overwhelming functions). A function f : N → R is called
overwhelming, iff 1 − f is negligible. Denote the set of overwhelming functions
with respect to x by owhl(x).

Notation 4 (Construction) We write InA, InB InC , iff there is a protocol πnC
that realizes InC in the {InA, InB}-hybrid-model. More formally:

InA, InB InC ⇐⇒ ∃πI
n
A,I

n
B

C : πI
n
A,I

n
B

C ≥ InC

Usually the index is the security parameter λ, which we omit if it is clear
from the context.

Definition 6 (Minimal complete cardinality). Let n ∈ N be the number of
parties and let t ≤ n be the maximal number of corrupted parties. We denote the
cardinality of a minimal and complete functionality by k∗(n, t). In other words,
a minimal complete functionality of cardinality m′ is the smallest functionality
from which n-party Secure Function Evaluation (SFE) can be constructed.

If they are clear from the context, we omit the parameters n and t.
We make use of secret sharing in our constructions. Thus, we include a brief

description for consistency.

Notation 5 (Secret sharing (informal)) Let p be a prime integer and let
k,m ∈ N be integers such that k ≤ m ≤ p. For a secret s ∈ Zp a secret sharing
(σi)i=1..m is a (k,m)-threshold scheme, iff k or more shares uniquely reconstruct
the secret s but (k− 1) or less shares hide the secret s information-theoretically.

A prominent example is Shamir’s secret sharing [Sha79]. Also particularly ef-
ficient are additive schemes which are always (m,m)-threshold schemes. Here,
shares are simply uniformly distributed numbers from Zp such that s =

⊕m
i=1 σi.

Notation 6 (Boolean random variable) Let B be a boolean random vari-
able. We denote the probabilities as Pr[B] := Pr[B = 1] and Pr[¬B] := Pr[B = 0].

16

Definition 7 ((SFE-)Complete functionalities). For n,m ∈ N+, we call a
functionality Fm of cardinality m (SFE-)complete, iff there exists a {Fm}-hybrid
protocol that securely realizes FnSFE with the same abort property.

Definition 8 (Minimal functionality). We call a functionality Fm with car-
dinality m minimal, iff no functionality of lesser cardinality is complete.

2.1 Functionalities

In this section, we introduce the ideal functionalities we use. We note that all
following functionalities have the output property of Identifiable Abort.

Without writing it out explicitly each time, we generally assume that all
of our functionalities are inherently unfair : Public outputs are first sent to the
corrupted parties. The adversary can then decide if honest parties should receive
the output or not. However, in our setting of Identifiable Abort, withholding an
output is only possible via abort, which in term identifies at least one corrupted
party. The only exception we make is with respect to Broadcast, where our
definition of the Conflict Graph requires some form of fairness.

Secure Function Evaluation We start by providing a formal description of the
functionality for Secure Function Evaluation.

Functionality InSFE

InSFE proceeds as follows, running with security parameter λ, parties [P] =
{P1, ...,Pn}, input set I ⊆ {1, ..., n}, malicious parties C ⊆ [P], adversary
A and function f :

(
(xi)i∈I

)
7→
(

(yj)j∈{1,...,n}, ∆
)
with private input xi and

output yj for Pj and common output ∆. Messages not covered here are
ignored.
• When receiving (input, xi) from Pi with xi ∈ {0, 1}λ and i ∈ I, store

(i, xi). Ignore further messages from Pi.
• When there are (i, xi) in store for all i ∈ I, then send (output, yj , ∆) to

each party Pj and (output) to A, then terminate.
When receiving

(
abort,C ′

)
from A with C ′ ⊆ C , then InSFE outputs(

abort,C ′
)
to all parties, and then terminates.

We denote by yi the private output of a party Pi. Additionally, there is
a common output ∆ which is obtained by all parties. We additionally use an
input set I ⊆ [P] of parties which have to provide input before the computation
starts. This implies that not all parties have to provide input. Otherwise, certain
functionalities such as broadcast cannot be realized using SFE because receiving
parties, that do not provide input, may stall the protocol execution.
InSFE is a versatile functionality, which can be used to realize many function-

alities such as commitments, where only the committer C has to provide input,
while the receiver R only obtains output.

17

Although InSFE is not well-formed, it only requires knowledge about the cor-
rupted parties upon abort. In particular, functionalities with IA need to know
the set of malicious parties C ⊆ [P], since it must check whether the set C ′
in the abort is indeed a subset of C . In this sense, our functionalities are as
well-formed as possible in the setting of IA.

Global Commitment and Broadcast Global Commitments are an extension of
two-party commitments to n parties, where a single committer C is committed
towards (n− 1) recipients.

Functionality InCOM

InCOM proceeds as follows, running with parties [P] = {C,R1, . . . ,Rn−1},
malicious parties C ⊆ [P] and adversary A. Messages not covered here are
ignored.
• When receiving (commit,m) with m ∈ {0, 1} from party C, store m and

send (receipt commit) to all parties and to A. Ignore further messages
of the type (commit, ·) from C.

• When receiving (unveil) from party C and if m is stored, send
(unveil,m) to all parties and to A, then terminate.

When receiving
(
abort,C ′

)
from A with C ′ ⊆ C , then InCOM outputs(

abort,C ′
)
to all parties, and then terminates.

Beyond the inherited guarantees of two-party Commitments such as binding and
hiding, InCOM ensures consistency in that the committer C is committed to the
same bit against all receivers.

We also make use of an ideal Broadcast functionality.

Functionality InBC

InBC proceeds as follows, running with parties [P] = {S,R1, . . . ,Rn−1}, ma-
licious parties C ⊆ [P] and adversary A. Messages not covered here are
ignored.
• When receiving a message (input,m) with m ∈ {0, 1}∗ from party S,

send (output,m) to all parties and to A. Then terminate.
When receiving

(
abort,C ′

)
from A with C ′ ⊆ C , then InBC outputs(

abort,C ′
)
to all parties, and then terminates.

Although InBC is a relatively weak functionality on its own, we later show
that it suffices as single setup to realize the Conflict Graph functionality InCG
from Section 3. We provide an instantiation of InCG using InBC in Section 5, thus
proving that InCG too is a relatively weak setup.

18

We stress that a broadcast InBC can also be constructed from a global commit-
ment InCOM, by letting the sender S commit and immediately unveil the message.

Fully Committed Oblivious Transfer Next, we introduce our novel primitive
called Fully Committed Oblivious Transfer (FCOT), which we use for our con-
struction in Section 7:

Functionality InFCOT

InFCOT proceeds as follows, running with parties [P] = {S,R,W1, . . . ,Wn−2},
malicious parties C ⊆ [P] and adversary A. Messages not covered here are
ignored.
• When receiving (messages,m0,m1) from S with m0,m1 ∈ {0, 1}, store

m0,m1. Ignore further messages of the type (messages, ·, ·) from S.
• When receiving (choice, c) from R with c ∈ {0, 1}, store c. Ignore further

messages of the type (choice, ·) from R.
• When both messages from S and R have been received, send

(receipt transfer,⊥) to A and to all parties except R, and send
(receipt transfer,mc) to R.

• When receiving (unveil message, b) from S with b ∈ {0, 1} and m0,m1
are stored, send (unveil message, b,mb) to A and to all parties. Ignore
further messages (unveil message, b) from S.

• When receiving (unveil choice) from R and c is stored, send
(unveil choice, c) to A and to all parties. Ignore further messages from
R.

When receiving
(
abort,C ′

)
from A with C ′ ⊆ C , then InFCOT outputs(

abort,C ′
)
to all parties, and then terminates.

The idea is not completely new; Crépeau [Cré90] introduced a committed
variant of OT under the name of Verifiable OT, which was later renamed to
Committed Oblivious Transfer (COT) [CvT95]. There, the sender inputs two
committed messages (m0,m1), and the receiver inputs the choice bit c. The
receiver obtains the committed mc and can use this for zero-knowledge proofs,
without knowing m1−c and without revealing c in the process.

In Fully Committed Oblivious Transfer (FCOT), the sender S is committed
to both messages m0 and m1, and the receiver R is committed to c. Our ideal
functionality InFCOT is a novel extension of conventional OT, which has proven
to be very useful in the setting of Identifiable Abort.

This n-party extension of OT is motivated by the insight that the results
of [Kil88; IPS08] do not work with IA. In Section 4, we show that FCOT is
SFE-complete in the setting of IA. The proof is based on the construction from
[IPS08], but replaces (2-party) OT-calls with (n-party) FCOT-calls. When a
party notices any misbehavior, it can demand other parties to open their inputs,
thus enabling all parties to retrace the disruptor’s misbehavior without leaking
any information on the parties inputs due to their secret sharing.

19

3 Conflict Graph

We elaborate on our CG technique as sketched in Section 1.3. The main idea
of the CG is that parties can publicly declare conflict with any other party if
misbehavior is detected. Once sufficiently many conflicts have been declared,
n-party Identifiable Abort, as introduced in [IOZ14], becomes possible.

To this end, we introduce an ideal functionality InCG which administrates
observed misbehavior during the execution. In Section 5, we provide a detailed
construction of InCG from a broadcast functionality InBC. The functionality InCG
abstracts away the complexity of deducing all proper conflicts from the public
conflict announcements. To distinguish the Conflict Graph obtained only from
announced conflicts and the proper Conflict Graph, we denote the graph pro-
duced solely by the conflict announcement as induced Conflict Graph by G, and
the graph provided by InCG as the (deduced) Conflict Graph by G∗. Specifically,
InCG applies the DeduceCG algorithm (Algorithm 1) to the induced graph. In-
tuitively, the DeduceCG algorithm takes the role of each party and applies a
special inference rule which is best explained with an example. Consider Fig. 2c
with n = 6 and an upper bound of malicious parties t = 3. This graph is neither
t-settled nor biseparated. However, as party P1 has already identified its neigh-
bors N(P1) = {P5,P6} as malicious, the remaining graph (without {P1,P5,P6})
must be explicable with (t− |N(P)|) = 1 corrupted party. In this case, the re-
maining graph is actually 1-settled. Thus, an honest P1 would declare conflict
with P4. This is exactly the conflict DeduceCG deduces, resulting in the deduced
Conflict Graph with an extra edge e = {P1,P4} in Fig. 2f. Note that we re-
quire a correct usage of InCG, where honest parties only declare a conflict after
noticing misbehavior from another party and where every noticed misbehavior
is reported. This implies that each conflict must contain at least one malicious
party. While honest parties only declare conflicts with disruptors, that is, parties
that actively deviate from the protocol, malicious parties can declare arbitrary
conflicts.

Let’s consider another example. If a n-party functionality In is aborted with
output (abort,Pi), all other (n− 1) parties know that the corrupted party Pi
is a disruptor. Disruptors may also notably deviate from the protocol in any
protocol-dependent manner. Consider, for example, a protocol that specifies that
each party initially sends the message OK via F2

AUTH to all other parties. If party
Pj receives ⊥ from Pi via F2

AUTH, it is clear to Pj that Pi must be malicious. It
is vital to ensure during protocol design, that no conflicts between two honest
parties can occur due to protocol deviations. Intuitively, it must be impossible
for an adversary to frame an honest party such that it is in conflict with another
honest party.

The novel utility of the CG lies in the connection of (unanimous) identifiabil-
ity to verifiable properties of the CG G∗. While formal definitions can be found
in Definitions 2 and 3, here we want to go into more detail about the relation
between the those graph properties. First let’s briefly recall the two properties:
• t-settledness: Intuitively all possible explanations (MVCs) contain at least
one common party. Given a t-settled Conflict Graph it is possible to identify

20

at least one malicious party. In other words, participants as well as outsiders
are able to identify disruptors.

• Biseparation: The graph contains two partitions that are completely in con-
flict with each other. Given a biseparated graph, participants can identify
disruptors (but not necessarily outsiders).

Main result for the Conflict Graph. Next, we present the main result regard-
ing our concept of the Conflict Graph, stating that for any protocol π that
implements a functionality with IA, a deduced biseparated Conflict Graph G∗
is necessary and sufficient upon abort. For the sake of brevity, when referring
to the deduced Conflict Graph of a InCG-hybrid protocol we’ll simply call it the
Conflict Graph.

As mentioned before, on a technical level, we only quantify over protocols
that use the CG correctly. Hence we state nothing about protocols that are not
in the InCG-hybrid model. However, we show that this is not a restriction since
each protocol can be augmented with InCG in a trivial manner where our result
applies.

Lemma 10. Let n be the number of parties in [P] of which at most 0 ≤ t < n
are malicious. Let π be a protocol that securely UC-realizes a functionality In in
some model M excluding InCG. Denote by π ′ the M ∪ {InCG}-hybrid protocol that
is identical to π with the addition that it uses InCG correctly. That is, whenever a
subfunctionality of M with parties S ⊆ [P] is identifiably aborted with disruptors
D ⊂ S, the honest parties in S declare conflicts with D. Hence the subgraph on
S becomes biseparated.

Then π ′ also securely UC-realizes In, i.e. π ′ ≥ I .

Proof. The intuition of this proof is that the information provided by InCG is
only useful for honest parties. In other words, the environment can infer the
conflict graph from its own behavior, thus InCG provides no advantage for the
environment in distinguishing a real execution and a simulation.

Suppose for the sake of contradiction that there exists an environment Z ′
which distinguishes protocol executions of π ′ from simulated ones. This environ-
ment, however, may obtain information from InCG by letting the dummy adver-
sary issue a query to InCG in the name of any corrupted party. Hence Z ′ cannot
directly be used to distinguish π from its simulations.

Though, we can define a new environment Z which internally runs Z ′ and
supplies it with the necessary information from a simulated InCG. To this end
Z start with an empty (induced) CG G := ([P],E) with E := ∅. Whenever Z
obtains (abort,D) from any corrupted party for any subfunctionality on S ⊆
P the environment Z biseparates its simulated CG G on S between D and
S \ D. When Z ′ queries InCG the outer environment Z supplies Z ′ with G∗ :=
DeduceCG(G, t). The simulated CG is identical to the one deduced by InCG in π ′
by requirement on π ′. If, for some reason, a corrupted parties declares a conflict
then Z also incorporates this conflict into its simulated CG.

The outer environment hence distinguishes π from its simulations in contra-
diction to π ≥ In. ut

21

This preliminary result already provides a quite interesting high-level in-
terpretation: for honest parties it is always the best strategy to immediately
publicize their conflicts. In particular there is no use in deferring conflicts in
an attempt to bring the adversary in more conflicts with other honest parties
later on. In other words, the CG only provides a useful service to honest parties.
Now that we have seen that all protocols can easily be augmented with InCG, we
shall proceed to show that Identifiable Abort is equivalent to biseparation of the
corresponding deduced Conflict Graph.

Theorem 7 (Biseparated Identifiable Abort). Let n be the number of
parties of which at most 0 ≤ t < n are malicious. Let π be a protocol that
securely UC-realizes a functionality In with Identifiable Abort in an {Im, InCG}-
hybrid model with m ≤ n. Furthermore let π use InCG correctly, as in Lemma 10.
Upon abort, the Conflict Graph G∗ of π must be biseparated.

Proof. The case of n = 2 is trivial, henceforth we assume n ≥ 3.
We carry out our proof for Uni-Identifiable Abort, however, the same reason-

ing applies for Multi-Identifiable Abort. We prove that, against some environ-
ment Z, a Conflict Graph that is not biseparated must lead to an abort where
the identified party is honest. Together with the fact that no simulator can abort
In with an honest party, this directly contradicts the presupposition that the
protocol π securely realizes In.

Let π be a protocol as described in Theorem 7 with parties [P] = {P1, . . . ,Pn}.
Also, let the Conflict Graph G∗ of π be not biseparated upon abort. For the
sake of contradiction, assume that there is a selector function with which honest
parties can still agree on a common disruptor D. We show that this agreement
cannot exist by constructing a different environment creating the same Conflict
Graph transcript, but where D is honest.

Let Sπ : [P]× τ → 2[P] with (P, τ) 7→ D for D ⊆ [P] be the selector function
that specifies the identified disruptor (set) for each (honest) party P, given the
ordered set of inputs to InCG as τ . For the sake of simplicity, we focus here on
the special case |D| = 1, that is, Sπ outputs a single party D = {D} (Uni-
Identifiable Abort). However, the proof still holds if Sπ outputs D with |D| > 1.
The selector Sπ must only depend on the transcript of all conflicts and the
identity of the given party itself. Otherwise, the environment Z could induce
two different abort-parties for two honest parties.

We now show that for a special environment Z0 there exists a different envi-
ronment Z1 where the same transcript would lead to an accusation of an honest
party. Let the first environment Z0 corrupt up to t parties C 0 ∈ M (G∗, t) (recall
Definition 2). Denote the complement set of honest parties by H 0 := [P] \ C 0.
Environment Z0 produces a transcript τ0 for InCG until the protocol aborts with
output (abort,D), where Sπ

(
P, τ0) = {D} for each P ∈ H 0. The environment

Z0 only lets corrupted parties D ∈ C 0 broadcast conflicts as a retaliation, that
is, it broadcasts conflicts (conflict,P) against an honest party P in the name
of D only after P has publicly declared a conflict (conflict,D). Note that this
is not a restriction since we argue that there exists this environment Z0.

22

H0

C0 H1

C1

D
D

P
P

Fig. 4: Visualization of an exemplary set of corrupted parties and an assumed honest
parties agreement on D for an environment Z0 on the left. The right side shows another,
specifically constructed set of corrupted parties by an environment Z1 which leads to
honest-honest-accusations despite having the same Conflict Graph transcript.

We now show that if there exists another corrupted set of parties (MVC)
C 1 = [P] \ H 1 ∈ M (G∗, t) with C 0 ∪ C 1 6= [P], or equivalently H 0 ∩ H 1 6= ∅,
and D ∈ Sπ

(
P, τ0) ⊆ C 0 ∩ H 1 for all P ∈ H 0, then π cannot securely realize

In. Here the corrupted MVC C 1 is chosen such that the identified party against
Z0 is explicitly excluded. Because there exists a target party Pt in H 0 ∩ H 1,
it will select P∗ ∈ Sπ

(
Pt, τ

0) = Sπ
(
Pt, τ

1) against both environments, though
D is honest when playing with Z1. Specifically, there exists an honest party
Pt ∈ H 0 ∩ H 1 which selects Sπ

(
Pt, τ

0) against Z0 but selects Sπ
(
Pt, τ

1) ⊂ H 1

against Z1. Since both transcripts τ0 and τ1 are equal, the two selected parties
must also be equal. Fig. 4 depicts an exemplary visualization of the corruption
sets.

This leads to the contradiction that against the environment Z1 an honest
party is identified by at least one honest party. Thus, we know that if the above
conditions hold, that is, there exists a MVC C 1 with H 0 ∩ H 1 6= ∅ and D ∈
C 0 ∩H 1, then π cannot securely realize In.

Next, we show that such an MVC actually exists. It only does not exist if for
all feasible explanations C 1 ∈ M (G∗, t), it holds that C 0 ∪C 1 = [P], or if for all
Pt ∈ H 0, it holds that Sπ

(
Pt, τ

0) ⊆ H 0 ∪ C 1. The former is equivalent to C 1 ⊇
H 0. This, however, contradicts the initial assumption that G∗ is not biseparated.
If C 1 = H 0 = [P] \C 0 are both MVCs, this would imply a biseparated Conflict
Graph with partitions C 0 and C 1. If C 1) H 0, it would follow that H 0 is a
valid explanation, that is, H 0 ∈ M (G∗, t), but of smaller size. Hence, we get
that C 1 is not minimal and thus is not contained in M (G∗, t). Both cases lead
to a contradiction with the initial assumption.

Now that we have shown that there exists C 1 ∈ M (G∗, t) that fulfills C 0 ∪
C 1 6= [P] and Sπ

(
P, τ1) ⊆ C 0∩H 1 for all P ∈ H 0, we can define an environment

Z1 that corrupts C 1 and acts such that it produces τ1 before the abort.

23

We conclude our proof by showing that Z1 really can create an equivalent
transcript to τ0. The transcript τ0 of the Conflict Graph G∗ = ([P],E) is es-
sentially an ordered list of (directed) edges (ej)j=1...m. To keep the information
which party broadcasts the conflict, the edges in the transcript are directed,
while the edges in the Conflict Graph are undirected. This mirrors the fact that
the process of the Conflict Graph creation yields more information than the fi-
nal Conflict Graph. Regardless of the environment, each edge of the transcript
ej = (uj , vj) contains at least one corrupted party. When a conflict ej arises in
the protocol execution with Z0, the environment Z1 behaves as follows:
If uj ∈ C 0 and uj ∈ C 1, Z0 and Z1 behave identically.
If uj ∈ C 0 and uj ∈ H 1, then by assumption, Z0 will only declare conflict ej

as a retaliation, that is, after (vj , uj) has been issued, to match the behavior
of an honest party. Therefore Z1 lets vj broadcast (conflict, uj) such that
the retaliation ej follows subsequently from the honest party uj .

If uj ∈ H 0 and uj ∈ C 1, Z1 lets uj broadcast (conflict, vj). If vj is honest, it
will retaliate; if it is not, Z1 lets vj broadcast the retaliation (conflict, uj).

If uj ∈ H 0 and uj ∈ H 1, Z0 and Z1 behave identically.
The transcript produced by Z1 is therefore identical to τ0, which concludes our
contradiction. ut

4 SFE-Completeness of FCOT

In this section, we prove that Fully Committed Oblivious Transfer (FCOT) and
Secure Function Evaluation (SFE) are equally powerful in the setting of IA,
meaning that they can be constructed from each other. This implies that con-
structing n-party SFE from (n− 1)-party SFE and an n-party broadcast comes
down to the more intuitive construction of n-party FCOT from (n− 1)-party
FCOT and a broadcast.

Lemma 11 (SFE FCOT). Let n be any number of parties. There is a
protocol πnFCOT in the {InSFE}-hybrid model that securely UC-realizes InFCOT.

Proof. We denote the set of all parties by [P] = {S,R,W1, . . . ,Wn−2}. Further
on, we use a seamless type conversion from algebraic numbers to bit strings when
necessary, in the form of Z2N

∼= {0, 1}N .
We present a protocol that lets the sender create many secret sharings of its

inputs. The receiver R obtains sufficiently many shares to reconstruct one mes-
sage, but not enough to reconstruct both. The witnesses Wi obtain sufficiently
many shares to detect a manipulation of the shares in the unveiling-phase, but
not enough to learn any message just from the OT-phase.

First, we describe the protocol πnFCOT that utilizes four calls to InSFE. The
first instance, InSFE[f], is used for the OT. The next two instances InSFE

[
g0

S
]

and InSFE
[
g1

S
]
are used for the unveiling of the sender’s message m0 and m1,

respectively. The last instance InSFE[gR] is used for the unveiling of the receiver’s

24

choice bit. The functions are defined as follows:

f : (xS, xR, x0, ..., xn−3) 7→ (yS, yR, y0, ..., yn−3, ∆)

gbS :
(
ubS
)
7→
(
ε,∆′ = ubS

)
gR : (vR) 7→ (ε,∆′′ = vR)

for both b ∈ {0, 1}. The function f provides private outputs for each party and
public output ∆. The inputs and outputs are defined as follows:
xS :=

((
µ0
j,i, µ

1
j,i

)
j=1..n, ν

i
S

)
i=1..r

yS :=
(
γνi

S

)
i=1..r

xR :=
((
γj,i
)
j=1..n, ν

i
R

)
i=1..r

yR :=
(
mc,

(
µ0,i
νi

R
, µ1,i
νi

R

)
i=1..r

)

xl :=
(
νil
)
i=1..r

yl :=
(
µ0,i
νi

l

, µ1,i
νi

l

, γνi
l

)
i=1..r

ubS :=
(
µbj,i
)
j=1..n,i=1..r

∆ := (∆S, ∆R)
vR :=

(
γj,i
)
j=1..n,i=1..r

Let r ∈ ω
(
n2 + n lnλ

)
be the number of shares in which each γj,i is divided. For

i ∈ [r], the sharings
⊕n

j=1 µ
0
j,i =: m0 and

⊕n
j=1 µ

1
j,i =: m1 distribute the two

messages m0 and m1, and the sharing
⊕n

j=1 γj,i := c distributes the choice bit c.
The number of sharings r is chosen such that the detection of a share alteration
by all honest parties becomes overwhelming. The common output ∆S takes the
value 1, if the encoded bits of all r sharings of m0 are equal (m0 =

⊕n
j=1 µ

0
j,i

for all i ∈ [r]) and all encoded bits of the sharings of m1 are equal. Otherwise
∆S is 0. Analogously, ∆R is 1, if the sharings of c are consistent and 0 otherwise.
Formally, the shares are bits µ0

j,i, µ
1
j,i, γj,i ∈ {0, 1} and the share choices are num-

bers νi ∈ Zn. Now that we have the definitions of the SFE-subfunctionalities we
proceed to describe the actual protocol. We assume inputs S(m0,m1), R(c) and
Wl(ε) with empty string ε. Additionally, each party implicitly obtains a unary
representation of the security parameter 1λ.

The protocol looks as follows:
On input (local start) from Z to Wl, Wl draws r numbers

{
νil
}
i∈[r]

$← Zrn,
to determine which share of the other parties’ inputs will be obtained by Wl.

On input (messages,m0,m1) from Z to S, S produces r independent, additive
n-sharings of m0 and m1: (µ0

j,i, µ
1
j,i)j∈[n],i∈[r]

$← Z2r·n
n such that for all i ∈

[r] it holds that
⊕

j∈[n] µ
0
j,i = m0 and

⊕
j∈[n] µ

1
j,i = m1, where j is the

index of the share within a sharing and i is the index of the sharing itself.
Then, S draws r numbers

{
νiS
}
i∈[r]

$← Zrn, which determine the shares of the
receiver’s choice bit S obtains. S inputs xS into InSFE[f].

On input (choice, c) from Z to R, R produces r independent, additive n-
sharings of c: (γj,i)j=1∈[n],i∈[r]

$← Zr·nn such that for all i ∈ [r] it holds that⊕
j=1∈[n] γj,i = c, where j is the index of the share within a sharing and i

is the index of the sharing itself. Then, R draws r numbers
{
νiR
}
i∈[r]

$← Zrn,
which determine the shares of the sender’s input R obtains. R inputs xR into
InSFE[f].

25

On output ∆S = 0 or ∆R = 0 from InSFE[f] to P, where P ∈ [P], the party
P aborts with output

(
abort,C ′

)
, where S ∈ C ′ ⇐⇒ ∆S = 0 and R ∈

C ′ ⇐⇒ ∆R = 0.
On output (output, yR, ∆) from InSFE[f] to R, R outputs (receipt transfer,

mc).
On output (output, yP, ∆) from InSFE[f] to P, where P ∈ [P] \ R, party P

outputs (receipt transfer,⊥).
On input (unveil message, b) from Z to S, if (messages,m0,m1) has been

received, S inputs the previously generated ubS into InSFE
[
gbS
]
.

On output ubS from InSFE
[
gbS
]
to P, where P ∈ [P] \ S, P checks the consis-

tency with all previously obtained shares. If all shares match and are con-
sistent, i.e. across all i ∈ [r] the sharings encode the same bit, P outputs
(unveil message, b,mb). Otherwise, P outputs (abort,S).

On input (unveil choice) from Z to R, if (choice, c) has been received, R
inputs vR into InSFE[gR].

On output vR from InSFE[gR] to P, where P ∈ [P] \ R, P checks the consis-
tency with their previously obtained shares. If all shares match and are con-
sistent across i ∈ [r], P outputs (unveil choice, c). Otherwise, P outputs
(abort,R).
We now give a description of the simulator. At the onset of the simula-

tion, the simulator follows the program of all uncorrupted witnesses on input
(local start) and computes their input xl according to the protocol and in-
puts it into the simulated InSFE in the name of Wl.
On input (receipt messages,⊥) from InFCOT, the simulator gives local input

to all uncorrupted simulated parties as follows:
The simulator gives the simulated S local input (messages, 0, 0). Thus, S
computes xS according to the protocol and sends it to InSFE[f].
The simulator gives the simulated R local input (choice, 0). Thus, R com-
putes xR according to the protocol and sends it to InSFE[f].

On output (receipt output) from InSFE[f], the simulator reports (receipt
output) to Z.
If the common output of InSFE[f] contains ∆S = 0 or ∆R = 0, the simulator
aborts InFCOT with output

(
abort,C ′

)
where S ∈ C ′ or R ∈ C ′.

On output (unveil message, b,mb) from InFCOT, the simulator fabricates input
ubS for the uncorrupted simulated S to send as input into InSFE

[
gbS
]
. The

simulator knows the indices of all shares of µ0 and µ1 that have been chosen
by all other parties in the OT-phase. Either S learned the choice indices
from a corrupted party as local input or it generated the choice indices itself
for the uncorrupted simulated parties. Because each sharing has n additive
shares, there is at least one index ν′i ∈ Zn for each i ∈ {1, ..., r} whose share
is known by no party (recall that only (n− 1) shares per sharing have been
distributed). Hence, the simulator flips the bits at the correct index for each
i ∈ [r] if necessary, that is, iff mb = 1; recall that µ0 and µ1 encode 0. Denote
the manipulated sharings by µ′0 and µ′1; they encode m0 resp. m1. Finally,
the simulator lets S input u′S

b (computed from µ′
b) into InSFE

[
gbS
]
.

26

Because the manipulations of the sharings are chosen specifically such that no
party yields a share that is manipulated, no party will notice the equivocation
and accept the unveiling by outputting (unveil message, b,mb).

On output (unveil choice, c) from InFCOT, the simulator fabricates input uR
for the uncorrupted simulated R to input into InSFE[gR]. Here, the simulator
proceeds completely analogous to the previous case of the unveiling of the
sender’s messages. The same argumentation regarding the acceptance of the
fabricated sharing applies.

On input
(
abort,C ′

)
for InSFE[·], the simulator aborts InSFE[·] as well as InFCOT

with
(
abort,C ′

)
.

Finally, we describe the simulator’s behavior when handling messages from
and to malicious parties. In general, messages between hybrid functionalities and
the environment are forwarded by the simulator. For simplicity, we assume r to
be an uneven number.
On input (input, xS) from corrupted S to InSFE[f], the simulator lets S input

(messages,m0,m1) into InFCOT, wherem0 andm1 are the respective majority
of the r encoded bits mb,i =

⊕n
j=1 µ

b
j,i. The input (input, xS) is naturally

passed on to InSFE[f].
On input (input, xR) from corrupted R to InSFE[f], the simulator lets R input

(choice, c) into InFCOT, where c is the majority of the encoded bits ci =⊕n
j=1 γj,i. The input (input, xR) is naturally passed on to InSFE[f].

On input
(
input, ubS

)
from corrupted S to InSFE

[
gbS
]
, the simulator checks con-

sistency of the sharings in ubS with the sharings in xS. If they are consistent,
then the simulator lets S input (unveil message, b,mb) into InFCOT, other-
wise the simulator aborts InFCOT with output (abort,S).

On input (input, uR) from corrupted R to InSFE[gR], the simulator checks con-
sistency of the sharings in vR with the sharings in xR. If they are consistent,
then the simulator lets R input (unveil choice) into InFCOT, otherwise the
simulator aborts InFCOT with output (abort,R).
It remains to be shown that the simulator does provide an indistinguishable

view for any input of Z. If inconsistent sharings for m0 are fed into InSFE[f],
then, upon termination of InSFE[f], all honest parties certainly abort with output
(abort,S) due to the common output ∆. Also, if inconsistent sharings for m0
are unveiled in InSFE[gS], then all honest parties certainly abort with output
(abort,S), as all parties can check their consistency themselves. Consequently,
a discrimination between the hybrid and ideal execution can only occur when the
input sharings and the unveiled sharings are (internally) consistent but unequal.
Fortunately, in this case all parties notice (with overwhelming probability) that
the original input m′0 and the unveiled value m0 are not equal. This can be
shown as follows: First note that in each of the r sharings at least one share
must have been altered, otherwise the sharings are inconsistent. We denote this
fact as Z ≥ 1 to indicate at least one alteration in each sharing. Now, let Hi

P be
a boolean random variable and Hi

P = 1 be the event that the i-th share index of
(honest) party P matches the index of the maliciously altered share, else Hi

P = 0.
Using the our Notation 6, we get the probability Pr

[
Hi

P
∣∣ Z ≥ 1

]
≥ 1/n. Let

27

NP :=
∨r
i=1 H

i
P = ¬

∧r
i=1 ¬Hi

P be the boolean random variable that describes
whether P notices an alteration in any of the r sharings. We provide an upper
bound for the probability NP = 1 by

Pr[NP | Z ≥ 1] = 1− Pr[¬NP | Z ≥ 1]

= 1− Pr
[
r∧
i=1
¬Hi

P

∣∣∣∣∣ Z ≥ 1
]

= 1−
r∏
i=1

Pr
[
¬Hi

P
∣∣ Z ≥ 1

]
(1.1)
≥ 1−

r∏
i=1

(1− 1/n)

= 1− (1− 1/n)r

(1)

where (1.1) uses the fact that the different Hi
P are independent of each other. Let

the number of honest parties be h. The final probability p that all honest parties
notice any fault is then greater than (1− (1− 1/n)r)h which can be bounded by
p > (1− (1− 1/n)r)n. We apply some transformations to the desired condition
p ∈ owhl(λ) and get the sufficient condition

1− p ≤ 1− (1− (1− 1/n)r)n

= 1−
n∑
i=0

(
n

i

)
(−1)i(1− 1/n)ri

=
n∑
i=1

(
n

i

)
(−1)i+1(1− 1/n)ri

≤

∣∣∣∣∣
n∑
i=1

(
n

i

)
(−1)i+1(1− 1/n)ri

∣∣∣∣∣
≤

n∑
i=1

(
n

i

)∣∣∣(−1)i+1(1− 1/n)ri
∣∣∣

=
n∑
i=1

(
n

i

)
(1− 1/n)ri

≤
(
n

n/2

) n∑
i=1

(1− 1/n)ri

(2.1)=
(
n

n/2

)
(1− 1/n)r · ((1− 1/n)r)n − 1

(1− 1/n)r − 1

≤
(
n

n/2

)
(1− 1/n)r

!
∈ negl(λ)

(2)

28

where (2.1) follows from the partial geometric sum with q = (1− 1/n)r. Since(
n
n/2
)
∈ Θ(2n/

√
n) the condition

(
n
n/2
)
(1− 1/n)r ∈ negl(λ) is in particular ful-

filled by r ∈ ω
(
n2 + n lnλ

)
. We write r = n(n+ lnλ)w with w ∈ ω(1) with

respect to λ→∞, thus the above claim follows from

2n/
√
n · (1− 1/n)n(n+lnλ)w ≤ 2n · (1− 1/n)n(n+lnλ)w

= 2n · ((1− 1/n)n)(n+lnλ)w

≤ 2n · (1/e)(n+lnλ)w

= 2n · e−nwλ−w

≤ λ−w

∈ negl(λ) .

(3)

Although our bound for r is probably not tight, we already see that the protocol
is at most quadratic in n and logarithmic in λ.

ut

Lemma 12 (FCOT SFE). Let n be any number of parties. There is a
protocol πnSFE in the {InFCOT}-hybrid model that securely UC-realizes InSFE.

Proof. Here, we prove that there exists a {InFCOT}- hybrid protocol Φ that se-
curely UC-realizes InSFE. Again, for arbitrary n, denote the set of parties by
[P] = {S,R,W1, . . . ,Wn−2}.

We use the IPS-compiler from Ishai, Prabhakaran, and Sahai [IPS08], which
compiles two protocols Π and ρ into an

{
F2

OT
}
-hybrid protocol Φ. There, the

outer protocol Π can be formulated in the client-server model and must be
secure against a constant fraction of malicious parties, say t ≤ n/4. The inner
protocol ρ needs to be secure against arbitrarily many, semi-honest (passive)
corruptions; it may be in the

{
F2

OT
}
-hybrid model. Both protocols depend on

the actual function f that is to be evaluated. The combined protocol Φ then
securely realizes InSFE with Anonymous Abort, iff the outer protocol Π securely
realizes InSFE. This holds both in the computational and the statistical case.

Their result cannot be directly transferred into the setting of IA. However, if
we replace F2

OT-calls with to InFCOT, we claim that their result still holds. When
a party P notices misbehavior in server i, it can publicly demand the unveiling
of all communication corresponding to server i. If any party refuses to unveil, it
must be malicious and all honest parties can abort with said party. If all inputs
into server i have been unveiled, then either all parties can retrace any deviation
from the correct protocol transcript, or no actual misbehavior has occurred, then
the initial party P demanded the unveiling without justification. Either way, at
least one party can be identified.

Additionally, we must ensure that unveiling all inputs of a single server does
not compromise the privacy to the inputs of the outer protocol Π. In the fol-
lowing, we formalize this idea: Let n be the number of parties (clients) of the
outer protocol. In the original paper [IPS08] there are m ∈ Θ

(
n2λ

)
servers. Each

party gets to select λ watchlists from each party, such that each party can see

29

all in- and outcoming communication of λ servers. In total, at most a fraction
of nλ/n2λ = 1/n of all servers state is known by any set of parties. Because the
used secret sharing requires a constant fraction of shares to reconstruct the orig-
inal input, no coalition of parties can learn the input of another party. Now, if
misbehavior occurs and the state of an additional server is unveiled any coalition
of parties knows at most nλ+1

n2λ ≤
2
n , which is still less than a constant fraction.

To make this more formal, we consider the function f that presents a boolean
circuit in NC1. Then, using the BGW-protocol [BGW88] for Π and the GMW-
protocol [GMW87] for ρ, we obtain a protocol Φ that securely realizes FnSFE[f]
against arbitrarily many corruptions with Anonymous Abort. Now, we replace
all calls to F2

OT with calls to InFCOT. OT-calls are made in the distribution phase
of the watchlist mechanism and in the inner protocol, in particular the outer
protocol stays unchanged. Call the new protocols Φ′ and ρ′. We require that all
communication in the new inner protocol is processed via FCOTs. This is not an
additional restriction because a secure-channel can be trivially realized by OT
and thus by FCOT. However, it enables us to unveil all communication of the
inner protocol upon abort.

If not aborted, the original protocol Φ and the new protocol Φ′ yield exactly
the same results. Note that the original simulator S and the new simulator S ′
learn exactly the same information, if no abort occurs.

In the original protocol, if any party aborts, then the original simulator S
also abort the ideal functionality FnSFE[f]. The new simulator S ′, however, must
provide a set of corrupted parties to abort the ideal functionality InSFE[f]. Hence,
all simulated parties in the simulated new protocol Φ′ must provide output(
abort,C ′

)
. The new protocol ensures this in the following way. Whenever a

party P aborts in the original protocol Φ due to a malicious message from the
i-th server, it, instead, broadcasts (challenge, i). Then, all parties unveil the
FCOTs used to distribute their watchlist one-time pads and all FCOTs in the
i-th instance of the inner protocol (i-th server). More precisely, we actually as-
sume a

(
n2λ
λ

)
-FCOT for each party which can be canonically constructed from(2

1
)
-FCOTs. Then each choice index in the

(
n2λ
λ

)
-FCOT corresponds to multiple

choice bits in the
(2

1
)
-FCOTs in a priori known manner, hence all

(2
1
)
-messages

mc associated with the i-th watchlist can be unveiled.
Consequently, all parties learn the complete in- and outcoming messages of

the i-th server but no additional communication of any other server. Thus each
party can retrace the complete computation of the i-th server and register any
deviation from the protocol. If the aborting party P indeed received a malicious
message on the i-th server, then all party notice this misbehavior and identify the
disruptor party P. They then abort with

(
abort,P′

)
. If the aborting party lied

about receiving a malicious message on the i-th server, then the other parties can
retrace that all message that P received were indeed correct, and they will abort
with (abort,P). Either way, the simulator will abort the ideal functionality InSFE
with the corresponding abort output.

Note that because the abort happens at exactly the same time as in the
original protocol, the new protocol leaks exactly as much information as the

30

original one which is secure. Also, by unveiling the state of the corrupted server
i, the adversary does not learn anything that it did not know beforehand. ut

5 Conflict Graph from Broadcast

In this section, we present a protocol πnCG, that realizes InCG in the {InBC}-hybrid
model, which proves the following lemma:

Lemma 13. Let n be the number of parties of which at most 0 ≤ t < n are
malicious; subject to n ∈ O(lnλ) ∨ n− t ∈ O(1). There is a protocol πnCG in the
{InBC}-hybrid model that securely UC-realizes InCG:

InBC InCG (4)

Proof. We proof our statement by providing a protocol description for πnCG and
prove it secure by providing a simulator. We have n parties [P] = {P1, . . . ,Pn}.
The protocol is given as follows:
Initialize. All parties start with a graph G = ([P],E) with E = ∅.
On input (conflict,Pi) from Z to Pj , Pj inputs (input, (conflict,Pj ,Pi))

to InBC.
On input (output, (conflict,Pj ,Pi)) from InBC, all parties P ∈ [P] add {Pj ,Pi}

to E .
On input (query) from Z to Pi, Pi locally computes G∗ := DeduceCG(G, t)

and outputs G∗.
A simulator for this protocol is straightforward:
1. If P is corrupted:

On input (input, (conflict,Pj ,Pi)) from P to InBC, if Pj = P, S calls InCG
with input (conflict,Pi) in the name of P and sends (output, (conflict,Pj ,
Pi)) to all other parties in the name of InBC.

2. If P is honest:
On input (conflict,P,Pi) from InCG to S, S calls InBC with input (output,
(conflict,P,Pi)) into InBC in the name of P.

The simulator provides an indistinguishable view for Z:
• Inputs (query) do not have to be handled at all. For honest parties, the
parties merely forward the request and obtain the correct conflict graph G∗.
Corrupted parties neither send messages for (query), nor change the state
of the functionality InCG in any way, since G∗ is computed locally in the
protocol.

• For corrupted parties, S obtains the input via the simulated InBC. If the
broadcasted message was valid, S inputs this into InCG, thus causing the
same behavior as if an honest party had called InCG.

• For honest parties, S only has to simulate the behavior of InBC.
The restriction n ∈ O(lnλ)∨n− t ∈ O(1) comes from the fact that parties must
compute DeduceCG. ut

31

6 Global Commitment from Fully Committed Oblivious
Transfer

We present a protocol, which realizes InCOM in a InFCOT-hybrid model, and thus
prove the following lemma:

Lemma 14. There is a protocol πnCOM that securely UC-realizes InCOM in the
{InFCOT}-hybrid model:

InFCOT InCOM

Proof. We assume our n parties for InCOM to be [P] := (C,R1, . . . ,Rn−1), our
n parties for InFCOT are [P]′ := (S,R,W1, . . . ,Wn−2). We start by sketching the
protocol:
On input (commit,m) for m ∈ {0, 1} from Z to C, C acts as R in InFCOT and

inputs (choice,m).
On input (receipt commit) from InCOM to Ri for i ∈ [n− 1], all receiver for

i 6= 1 ignore the message. R1 acts as the sender in InFCOT: it draws one random
message m′ $← {0, 1} and sends (messages,m′,m′) to InFCOT.

On input (unveil) from Z to C and (receipt transfer,mc) from InFCOT to
C, C sends (unveil choice) to InFCOT.

On input (unveil choice, c) from InFCOT to any receiver Ri for i ∈ [n− 1], Ri
outputs (output, c).
A simulator for this case is straightforward, since all the secrets are sent to

the hybrid functionality InFCOT:
1. If C is corrupted:

On input (choice, c) from C to InFCOT, S sends (commit, c) to InCOM in the
name of C.

2. If C is honest:
On input (receipt commit) from InCOM, S simulates InFCOT according to the
code of SFCOT with arbitrary input.

3. If Ri for i ∈ [n] is corrupted:
On input (messages,m0,m1), if mc /∈ {0, 1}, S aborts with output R1. Else,
S reports (receipt transfer) to Z.

4. If Ri for i ∈ [n] is honest:
S acts according to the protocol of Ri.

5. If C is corrupted:
On input (unveil choice) from R to InFCOT, S sends c to all Ri for i ∈ [n− 1].

6. If C is honest:
On input (unveil, c) from InCOM, S reports message (unveil choice, c) to
all Ri.
The simulator trivially provides an indistinguishable view:
• Simulation of InFCOT follows from simulation-based security.
• The only secret is the to-be-committed bit m, as the receivers Ri obtain no
secret input, meaning that S can execute their protocol.

• Against an honest committer, S just has to send messages from InFCOT ac-
cordingly and pretend that C used the correct choice bit – which does not

32

have to be known in advance, as (unveil choice, c) is only required after
InCOM unveiled c.

• Against a corrupted committer, S learns c via simulation of InFCOT.
Thus, the claim follows. ut

7 SFE expansion for t ≤ (n − 3)

Our proof for SFE-expansion is structured in three lemmata. Each provides a
limit on the maximum number of hybrid subfunctionalities that can be aborted.
This implies a guarantee that some subfunctionalities cannot be aborted. Using
this guarantee, we provide a protocol that uses n-party broadcast to expand
(n− 1)-party global commitments In−1

COM to n-party global commitments InCOM.
We then use this n-party commitment as a tool in the expansion of FCOT from
(n− 1) parties to n parties.

We perform our analysis in the Universal Composability Framework [Can01],
which offers security guarantees regardless of the environment in which a protocol
is executed. This allows for modular constructions using subfunctionalities.

Lemma 15 (General subfunctionality abort). Let n be the number of par-
ties of which at most 0 ≤ t < n are malicious. Let π be an

{
In−1, InCG

}
-hybrid

protocol that uses the Conflict Graph correctly; according to Lemma 10. If the
adversary A aborts more than t subfunctionality instances of cardinality (n− 1),
then the Conflict Graph from InCG is biseparated.

Proof. Denote the set of n parties by [P] = {P1, . . . ,Pn}. Let t′ ≤ t be the
actual number of parties corrupted by the adversary A. W.l.o.g., let H =
{P1,P2, . . . ,Pn−t′} be the set of honest parties and let C = {Pn−t′+1, . . . ,Pn}
be the set of corrupted parties.

We now show that, if A aborts too many subfunctionalities, a set of parties
must be separated from all others in the Complement Graph, thus leaving the
corresponding Conflict Graph biseparated. Note that the Complement Graph is
initially a complete graph and loses edges, when subfunctionalities are aborted. 4

Since honest parties are never in conflict, their mutual edges are never removed.
We only consider subfunctionalities of cardinality (n− 1); thus, we have one
subfunctionality instance for each excluded party P ∈ [P].

We call the set of corrupted parties that aborts a subfunctionality instance
the disruptor set D. By Di we denote the disruptor set for the subfunctionality
instance that excludes Pi, and by Z the set of corrupted parties that disrupted
no subfunctionality so far. The disruptor sets corresponding to honest parties
D1, . . . ,Dn−t′ alongside with Z partitions C , meaning that D1 ·∪· · · ·∪Dn−t′ ·∪Z =
C . Z is disjoint with any Di. If there was a nonempty intersection between
two different disruptor sets Di and Dj , then this intersection Iij := Di ∩ Dj

would be in conflict with all parties who participated in In−1
Pi

and with the ones
4 For simplicity, neglect the fact that edges could also be removed, if a party obviously
deviates from the protocol.

33

P1

P2

P3

Z

D1

D2

D3

P1

P2

P3

Z

Pi Di

Pj Dj

Pk Dk

P1

P2

P3

Z

Pp

Pq

Dl

Fig. 5: Complementary Conflict Graph for the abort strategy with three honest parties
Left: Result of aborting In−1

1 , In−1
2 and In−1

3 . Middle: Same graph after additionally
aborting In−1

i , In−1
j and In−1

l . Right: The P3 branch can never be terminated.

who participated in In−1
Pj

, which is all parties. Thus, Iij would be completely
separated in the Complement Graph. Consequently, the complementary CG loses
all edges except the ones between Z and H and for each i ∈ [n− t′], the ones
between Pi and Di. The respective sets internally form a complete graph. See
the left side of Fig. 5 for the case t′ = (n− 3). Until now, only functionalities
that omitted honest parties were aborted.

Recall that the complementary Conflict Graph must be connected in order
for its complement graph not to be biseparated (Remark 2). Therefore, any
subfunctionality In−1

Pi
for any omitted party Pi ∈ Di∪Z can only be aborted by

other parties within the same set. Otherwise, it would be disconnected from its
own set Di or Z , respectively. Since it already is disconnected from H , Z and all
other Dj , it would be completely isolated in the complementary Conflict Graph.

Consider, for example, the case where D′ (D1 \{Pi} disrupts In−1
Pi

for some
Pi ∈ D1. This causes all remaining parties Pj ∈ D1 \

(
{Pi} ∪D′

)
to declare

a conflict with D′. Thus, those parties would be separated from D′. Since Pi
was excluded from this subfunctionality, it remains connected to both D1 and
D′. This turns the Complement Graph into a tree containing subsets of parties
as nodes, where H is the root node containing all honest parties. The tree has
one leaf that contains all non-disruptors Z and (n− t′) branches, one for each
honest party. Again, both H and Z internally form a complete graph. The abort
of any In−1

Pj
for Pj ∈ Di for an arbitrary i 6= j thus leads to an extension of

the respective branch. However, the adversary cannot abort the subfunctionality
corresponding to the leaf node of each branch; there would have to be some party
left that could abort the subfunctionality, which would then cause a conflict,
thus separating a subset of the branch from the rest. As a consequence, at least
(n− t′) subfunctionalities must succeed. The adversary can thus abort at most
t′ subfunctionalities, before the Conflict Graph becomes biseparated. ut

34

We consider two special cases: one where we have at least three honest parties
(t ≤ n− 3) and one where the adversary can corrupt all but one parties (t ≤
n− 1).

In the former case, where t ≤ n−3, only strictly less than t subfunctionalities
of cardinality (n− 1) can be aborted when using the Conflict Graph technique.
For this case, Lemma 15 tightens to:

Lemma 16 (Strong subfunctionality abort). Let 0 ≤ t ≤ (n− 3). If t
or more subfunctionalities of cardinality (n− 1) are aborted, then the Conflict
Graph is biseparated.

Proof. It suffices to consider the case for t aborted subfunctionalities. Assume
that t subfunctionalities are aborted. Each of the t disruptors D′ can have at
most two edges in G, namely the party Pi who was omitted in the functionality
In−1

Pi
that D′ aborted and the party Pj that disrupted In−1

D′ . However, honest
parties Pk can still have up to three neighbors in G, namely two actual honest
parties and one disruptor who aborted In−1

Pk
. Honest parties can use this fact

to determine its malicious neighbor: at least (n− t− 1) of its neighbors form a
clique, while the malicious neighbor has only two neighbors of its own. Thus, the
honest parties can declare a conflict with the party outside of their clique. This
leaves the Conflict Graph such that all parties who are part of the clique in G
form one partition, whereas all disruptors form the second partition. Thus, the
Conflict Graph is biseparated. ut

We now consider the case t ≤ (n− 1). Here, Lemma 15 yields:

Lemma 17 (Weak subfunctionality abort). Let 0 ≤ t < n. Either at
most (n− 2) subfunctionalities of cardinality (n− 1) are aborted, or the Conflict
Graph is biseparated.

Proof. We only proof the case of a single honest party P. If more parties are
honest, less subfunctionalities can be aborted.

Denote the set of parties by [P] = {P1, . . . ,Pn}; w.l.o.g., assume that P = P1,
meaning that P1 is honest. Furthermore, denote the corrupted parties as C .

After an abort of In1 , the subgraph on [P] \ {P1} must be biseparated. The
only way this does not result in a biseparated Conflict Graph is if is all other
parties are malicious. If the subgraph is additionally t-settled, the excluded party
P1 can identify the settled set, causing a completely biseparated Conflict Graph.
If the subgraph on [P]\{P1} only biseparated, we call the two partitions S0 and
S1. We now focus our attention to the complement Conflict Graph, G = ([P],E).
Note that biseparation of the Conflict Graph implies that no edge e = (P,P′) ∈ E
exists in G such that P ∈ S0,P′ ∈ S1. However, in our Conflict Graph, P1 is still
connected to both partitions. Each party in S0 can only be aborted by a subset
of S0, since otherwise, a set of disruptors in S0 of a functionality in S1 would be
in conflict with all other parties; the same argument holds for S1. Every time a
functionality omitting a party in any partition is aborted, that party is removed
from the respective set, thereby shrinking the set. Hence, each set must have at

35

least one party Pi, whose hybrid functionality InPi
cannot be aborted, without

creating a biseparated Conflict Graph. ut

We now have two limits on the maximal number of hybrid functionalities
that the adversary can abort before causing a biseparated Conflict Graph. Using
them, we are able to expand the (SFE-incomplete) functionality Global Com-
mitment (GCOM) from In−1

COM to InCOM.

Lemma 18 (COM expansion). Let n be the number of parties of which at
most 0 ≤ t ≤ (n− 2) are malicious; subject to n ∈ O(lnλ)∨n− t ∈ O(1). There
exists a protocol π in the

{
In−1

COM, InBC
}
-hybrid model that securely UC-realizes

InCOM: {
In−1

COM, I
n
BC
}
 InCOM (5)

Proof. We only consider bit-commitments, which can be canonically extended
to string-commitments. Let the set of parties be [P] = {C,R1, . . . ,Rn−1} and
let b be the bit that the committer C commits to. We present a protocol that
uses (n− 1) COM-subfunctionality instances In−1

Rl
for each excluded receiver Rl.

Additionally, it uses the Conflict Graph InCG which can be realized using InBC;
here the condition n ∈ O(lnλ)∨n− t ∈ O(1) comes into play again. For the sake
of simplicity, we denote by In−1

Pi
the Commitment-subfunctionality which omits

Ri. Denote C’s input to In−1
l by bl and the abort set for In−1

l by Dl. Let I0 be
the set of subfunctionalities where bl = 0, let I1 be the set of subfunctionalities
where bl = 1, and let I× be the set of subfunctionalities that have previously
been aborted. Note that InCG ensures that I× is public knowledge; the abort
of a subfunctionality In−1

l results in a biseparated subgraph on [P] \ {Rl} and
if a subgraph is biseparated, the corresponding subfunctionality is considered
aborted. It holds that |I0|+|I1|+|I×| = (n− 1), since there are (n− 1) instances
of In−1

Pi
.

In the following we give a description of the protocol.
Let b be the bit C wants to commit to. For runtime restrictions, we assume

that the unary security parameter 1λ is also input.
Protocol:

1. On input (commit, b) with b ∈ {0, 1} from Z to C, C sends (commit, b) to
In−1
l for all l ∈ {1, . . . , n− 1}.

2. Once Rl has received output from any In−1
Pj

for j 6= l, the receiver Rl checks
|I×|:
If t ≤ n− 3 and |I×| ≥ t, then the Conflict Graph is biseparated due to

Lemma 16. Rl aborts with the identified set of parties.
If |I×| ≥ n− 1, then the Conflict Graph is biseparated due to Lemma 17.

Rl aborts with the identified set of parties.
Otherwise, Rl outputs (receipt commit).

3. On input (unveil) from Z to C, C sends (unveil) to In−1
l for all l ∈

{1, . . . , n− 1}.
4. Once Rl has received output from all In−1

Pj
for j 6= l, Rl sends (receipt,Rl)

to InBC.

36

5. Once Rl has received (receipt,Rj) from all Rj for j 6= l via InBC, Rl checks
|I×|.
If |I×| ≥ n− 1, then the Conflict Graph is biseparated due to Lemma 17.

Rl aborts with the identified set of parties.
If |I×| = n− 2, excluded receiver Rl, i.e. In−1

l has been aborted, concurs
with the output of their (only) neighbor P in G. Rl does so by broad-
casting (help) whereupon P broadcasts its output. If P is the committer,
the committer broadcasts its bit b. Otherwise, P is a receiver who checks
all of its unveiled bits for consistency. If all but one bit are equal, then
this bit b is the output (unveil, b). The receiver broadcasts (unveil, b)
to signal to Rl to output the same. If inconsistent bits have been received,
then P broadcasts (abort,C) and outputs the same.

If |I×| = n− 3, essentially the same strategy as in the previous case ap-
plies. Only, here are up to three honest parties possible, therefore ex-
cluded receivers only concur with neighbors in G which have at least
three neighbors themselves. These neighbors are naturally included in
all subfunctionalities that have not been aborted.

If |I×| ≤ n− 4, Rl checks the unveil messages:
Since |I×| ≤ n−4 each receiver gets at least three messages; there is also
In−1

0 , which omits the Committer C, which is not used. If all but one
unveilings are consistent with b′, Rl outputs (unveil, b′).
Otherwise, Rl outputs (⊥) and sends {conflict,C} to InCG.

In our synchronous model, messages sent by a Sender are guaranteed to be
received by the dedicated Receiver. If Rl doesn’t obtain a receipt from all
other parties in Step 5, then at least one of the following has to be true:
(a) the Conflict Graph is already biseparated after Step 2, which implies
that all honest parties have aborted; or (b) the missing message’s sender Rj
must be corrupted. Hence a missing message from Rj is considered an abort
of InBC from Rj . Since this semisettles the entire Conflict Graph, the InCOM
functionality is aborted.

The intuition behind the protocol is the following: The committer C commits
its bit b to all subfunctionalities, which gives honest receivers consistent opening
information. The adversary has two levers to disturb the protocol: One is to
abort subfunctionalities, thus increasing |I×|; we have shown in Step 16, that
this is only possible for up to t aborts, before the Conflict Graph becomes bisep-
arated. The other option the adversary has is to let a corrupted committer use
different bits in different subfunctionalities. If at least four subfunctionalities are
not aborted, then the second adversarial strategy no longer works, since all re-
ceivers will notice a sufficient inconsistency in the subfunctionalities. Therefore
the adversary has to abort many subfunctionalities. This increases the honest
parties knowledge about the identity of malicious parties sufficiently for honest
parties to identify each other. Finally, if too many subfunctionality are aborted,
such that only one is left, the Conflict Graph has sufficiently many edges that a
identification is possible. If a receiver does not accept, one of two cases must have
happened: Both in Step 2 and Step 5, R rejects if |I×| ≥ t. In that case, it follows

37

from Lemma 16 and Lemma 17 that the resulting Conflict Graph is biseparated,
hence identification for an abort is possible. If t ≤ (n− 3) Lemma 16 applies
directly, whereas if t ≥ (n− 2) and |I×| > t Lemma 17 applies.

We note that our strategy does not work directly for t ≤ (n− 1) because the
honest party has no other honest party to rely on, if too many subfunctionalities
are aborted.

Proving security of this protocol is straightforward. First note that in every
case the behavior of honest receivers in unambiguous. We can thus formulate
a coherent simulator. In particular, the dummy adversary’s and the corrupted
parties’ local in- and output is forwarded from and to the environment.
On output (receipt commit) from InCOM, the simulator gives local input to

all uncorrupted simulated parties as follows: The simulator gives the uncor-
rupted C local input (commit, 0), hence C inputs (commit, 0) into all In−1

l .
On output (unveil,m) from InCOM, the simulator lets the simulated function-

alities In−1
l output (unveil,m). This is possible because In−1

l is a simulated
functionality and thus fully under the simulator’s control.

Once all broadcasts (receipt,Rl) from InBC have been received, the simulator
lets C input (unveil) into the ideal functionality InCOM.

On input
(
abort,C ′

)
from Z for In−1

l , the simulator sends
(
abort,C ′

)
to

In−1
l .

If the (simulated) Conflict Graph becomes biseparated, the simulator aborts
InCOM with the malicious partition

(
abort,C ′

)
.

Finally, we describe the simulator’s behavior when handling messages from/to
malicious parties.
On input (commit,ml) from corrupted C to In−1

l , the simulator lets C pass
(commit,ml) on to In−1

l . After receiving local input for all (non-aborted)
subfunctionalities, the simulator lets C input (commit,m) into InCOM where
m is the majority of all ml. If there is no majority then C inputs a random
bit m. The inputs (commit,ml) are naturally passed to the simulated In−1

l .
On input (unveil) from corrupted C to In−1

l , the simulator lets C forward
(unveil) to In−1

l .
On input (receipt commit) from corrupted Rl to In−1

Pj
, the simulator forwards

(receipt commit) in the name of Rl.
The key to a coherent simulation is that the protocol ensures that the outputs

of all (honest) receivers are consistent, this can be leveraged by the simulator to
abort the functionality on invalid inputs of the (corrupted) committer. ut

To provide SFE-expansion as sketched in Fig. 3, the one missing step re-
quired is an expansion of FCOT. Denote the parties as sender S, receiver R
and witnesses W1 through Wn−2. We call type-1 subfunctionalities In−1

Pi
for all

i ∈ {1, . . . , n− 2} which exclude a witness Wi and type-2 subfunctionalities both
In−1
n−1 and In−1

n , which exclude the Sender S and the Receiver R, respectively. In
abuse of notation, we refer to them as In−1

S and In−1
R .

Corollary 2. Let π be a protocol that securely realizes InFCOT. At least two type-1
functionalities cannot be aborted, otherwise the Conflict Graph is biseparated.

38

This follows from Lemma 16 with t = (n− 3), which states that only strictly
less than (n− 3) subfunctionalities of cardinality (n− 1) can be aborted without
producing a biseparated Conflict Graph. Conversely, at least four subfunction-
alities of cardinality (n− 1) must succeed, two of which may be In−1

S and In−1
R .

Hence the remaining two must be of type-1.
Now, we use Corollary 2 to construct a protocol that securely realizes InFCOT

from In−1
FCOT and InCOM.

Lemma 19 (FCOT expansion). Let n be the number of parties of which at
most 0 ≤ t ≤ (n− 3) are malicious; subject to n ∈ O(lnλ)∨n− t ∈ O(1). There
is a protocol πnFCOT that UC-realizes InFCOT in the

{
In−1

FCOT, InBC
}
-hybrid model:{

In−1
FCOT, I

n
BC
}
 InFCOT (6)

Proof. We describe the protocol πnFCOT. Denote the parties as sender S, receiver
R and witnesses W1 through Wn−2.
The protocol is iteration-based. Let I× be the set of type-1 subfunctionalities
that have been aborted. There are T := (n− 2− |I×|) type-1 subfunctionalities
that have not yet been aborted. In each iteration of the protocol enumerate
these as

(
In−1

1 , ..., In−1
T

)
. The protocol uses r ∈ ω(n lnλ) sessions of each re-

maining subfunctionality In−1
l 6∈ I×. We implicitly use the string variant of the

commitment functionality, which can be constructed from the aforementioned
bit commitment. We consider a subfunctionality to be aborted, if the Conflict
Graph of its participants is biseparated. Note that InBC follows trivially from
a InCOM by immediately unveiling the commitment. Furthermore, we showed in
Lemma 18, that InCOM follows from In−1

COM. We show in Section 6 that In−1
COM

follows from In−1
FCOT. Hence, our construction works in the

{
In−1

COT, InBC
}
-hybrid

model; we still use the terms In−1
COM and InCG in our proofs.

The central idea of the protocol is to use secret sharings of the sender’s mes-
sages to perform multiple FCOTs of cardinality (n− 1) and to globally commit
to these shares. We use a cut-and-choose trick, where some shares are unveiled to
ensure that the FCOTs and Commitments are equal. After the Oblivious Trans-
fer, the receiver commits to the received shares. The secret sharing implies that
he cannot unveil a different choice bit afterwards. We assume inputs S(m0,m1),
R(c) and Wl(ε) together with the implicit unary security parameter 1λ.

The protocol is parameterized by two natural numbers T ∈ poly(λ) and
r ∈ poly(λ), which define the amount of distributed additive shares.

Protocol iteration:
1. If the Conflict Graph becomes biseparated, all honest parties abort with

their opposite partition.
2. On input (messages,m0,m1) with m0,m1 ∈ {0, 1} from Z to S, S creates

an additive T -sharing of m0 and m1 called (µ0
j)j=1..T and (µ1

j)j=1..T , re-
spectively. S then creates an r-sharing (αbj,i)i=1..r for each share µbj with a
(2r/3)-threshold secret sharing scheme. S inputs (messages, α0

j,i, α
1
j,i) into

the i-th session of In−1
Pj

for all i ∈ [r] and j ∈ [T] and commits globally to
each share by sending α0

j,i resp. α0
j,i into InCOM for each i ∈ [r] and j ∈ [T].

39

3. On input (choice, c) with c ∈ {0, 1} from Z to R, R sends (choice, c) to all
remaining subfunctionalities In−1

l for all l ∈ [T]. Additionally, R sends c to
InCOM.

4. If subfunctionality In−1
l 6∈ I× is aborted, the current iteration ends and In−1

l

is added to I×.
5. When a party P has received (receipt messages) resp. (receipt choice)

from all r sessions of all type-1 FCOT-subfunctionalities that include P, P
outputs (receipt messages) resp. (receipt choice).

6. When no subfunctionality has been aborted in this iteration and all T
subfunctionalities have successfully finished their OT-phase with output
(receipt transfer,⊥) to S, R learns mc: it obtains all r shares αcj,i of
all T additive shares µcj of mc. Each Wi and R verify the integrity of the
sender’s commitments, by verifying that the sender’s global commitments in-
deed contain the correct input used for the FCOT-subfunctionalities. Each
party P ∈ [P]\{S} broadcasts the set of r/10n indices i ∈ [r] per subfunctio-
nality l ∈ [T]. For each index (i, l), the sender has to unveil the corresponding
global commitment and the FCOT-subfunctionality.

7. Upon receiving (unveil message, b) from Z to S, S sends (unveil) to all
InCOM. Upon receiving their shares, the parties output (unveil message, b,mb).

8. Upon receiving (unveil choice) from Z to R, R inputs (unveil choice)
into all FCOT-functionalities and (unveil) into InCOM to unveil c. The other
parties first check consistency of all unveiled choice bits. If not consistent,
all honest parties immediately abort with (abort,R). If the choice bits are
consistent c′, then the other parties check consistency between the unveiled
choice bits of the FCOT-sessions and the global commitment. If internally
inconsistent or inconsistent with the global commitment, the affected FCOT
is considered aborted, since all participating party are able to identify the
receiver as malicious.

Now, we give a description of the simulator.

On input (messages, α0
j,i, α

1
j,i) from corrupted S to the i-th session of In−1

Pj
,

the simulator lets S forward the input to the simulated In−1
Pj

.
On input (messages, α0

j,i, α
1
j,i) from corrupted S to all sessions of all remaining

FCOT-functionalities, the simulator computesm0 andm1 from the obtained
shares. Then the simulator lets S input (messages,m0,m1) into InFCOT.

On input (commit, αbj,i) from corrupted S to InCOM, the simulator lets S input
into the simulated (commit, (αbj,i, b, i, j)) to InCOM.

On input (choice, cj,i) from corrupted R for the i-th session of In−1
Pj

, the sim-
ulator lets S forward the input to the simulated In−1

Pj
.

On input (choice, cj,i) from corrupted R to all i-th sessions of all remaining
FCOT-functionalities and (commit, c) for InCOM, the simulator lets R input
(choice, c) into InFCOT.

On output (receipt transfer,⊥) from InFCOT, the simulator gives local input
to simulated parties as follows:
If the receiver is malicious, then S learns mc from the ideal InFCOT in the

40

name of R through (receipt transfer,mc). Otherwise, the simulator gives
the uncorrupted R local input (choice, 0). If the sender is uncorrupted, the
simulator gives S local input (messages,m0,m1) with m1−c = 0. If the
receiver is uncorrupted, the simulator also uses mc = 0. Then, the sim-
ulator simulates the protocol program with the respective inputs. If any
party is malicious, its inputs are directly forwarded to the simulated hy-
brid functionalities. Consequently, the simulated dummy adversary receives
(receipt transfer,⊥) from each simulated FCOT-subfunctionality which
is forwarded to the environment.

On input (unveil messages, b) from corrupted S to all sessions of all remaining
FCOT-functionalities, the simulator lets S input (unveil messages, b) into
InFCOT.

On output (unveil message, b,mb) from InFCOT, the simulator unveils all
shares of mb from all FCOT-subfunctionalities and all their commitments.
If the local input (messages,m0,m1) of the simulated sender matches with
the unveiled mb, then the simulation is valid.
However, if the simulated sender’s input is not equal to the ideal uncorrupted
sender’s input, the simulator must equivoke some of the FCOTs and COMs.
Therefore, the simulator fabricates additive shares µbj and sub-shares αbj,i
that encode mb but still are consistent with the shares that the environment
learned so far. The simulator must be able to equivoke more than r/3 (out
of r) shares of a single FCOT-subfunctionality. This is possible because the
consistency check in the OT-phase only leaks less than r/10 per subfunc-
tionality to the environment, leaving more than 9r/10 for the simulator to
equivoke.
If the receiver is malicious, then the environment also learns the shares that
the receiver obtains during the OT-phase. However, if the receiver is mali-
cious, then the simulator already learned mc prior to giving the simulated
sender its input, hence the simulated sender’s input mc is consistent with
mb if b = c. Otherwise the environment only has less than r/2 shares per
FCOT, leaving r − (r/2 + r/10) > r/3 for the simulator to equivoke.
Furthermore, the simulator knows exactly which shares can be equivoked
since every share that the environment obtains comes from the simulator.

On input (unveil choice) from a corrupted R to all remaining FCOT-subfunc-
tionalities, the simulator lets R input (unveil choice) into InFCOT.

On output (unveil choice, c) from InFCOT, the simulator lets all sessions of
all simulated FCOT-subfunctionalities In−1

l output (unveil choice, c) to
all parties and the dummy adversary.

On input
(
abort,C ′

)
for In−1

l , the simulator aborts In−1
l with

(
abort,C ′

)
.

If the (simulated) Conflict Graph becomes biseparated, the simulator aborts
InCOM with the malicious partition

(
abort,C ′

)
.

Also, if an adversarial sender wanted to prepare its share commitments in
order to equivoke its message afterwards, then it would have to alter more than
r/3 shares. Recall that r ∈ ω(n lnλ). Because at least r/10n ∈ ω(lnλ) shares are
uniformly randomly opened for control, the probability that the sender chooses

41

more than r/3 shares none of which are controlled is negligible. More formally,
the probability that none of r/3 altered shares are altered is controlled is bounded
by

p =
r/10n∏
i=0

r

3
1

r − i

≤
r/10n∏
i=0

r

3
1

r − r/10n

= 3r/10n+1(1− 1/10n)r(1−1/10n)

≤ 3er/n·ln(3)/10−r

= 3e−r(1−ln(3)/10n)

≤ 311/10e−r

(7)

which is negligible by the the bound on r ∈ ω(n lnλ). ut

Intuitively, security follows from the fact that each FCOT-subfunctionality un-
veils less than r/10 shares, but reconstruction requires 2r/3 shares. A user can
learn at most 11r/10 shares, whereas 4r/3 would be required to learn both mes-
sages. If S tries to unveil a different value than its original input, it would have
to deviate in more than r/3 shares of any one subfunctionality. For each sub-
functionality, a party can probe r/10n shares. Thus, S has negligible probability
of successfully deviating from the original FCOT-input in the required number
r/3 of global commitments.

The integrity check in the OT-phase ensure that the values must match the
FCOT-inputs with overwhelming probability. From Corollary 2, it follows that
at least for two In−1

l 6∈ I×, all r sessions must be unveiled. Also, R unveils the
commitments to its received shares. If R tries to learn both messages, R to have
input (1− c) into all sessions of at least two FCOT-subfunctionalities; in that
case, R cannot learn mc, since

(
µcj
)
j∈{T} is an additive sharing and thus requires

all shares for reconstruction.

Theorem 8 (SFE expansion). Let n be the number of parties of which at
most 0 ≤ t ≤ (n− 3) are malicious; subject to n ∈ O(lnλ) ∨ n− t ∈ O(1). The
functionality InSFE can be UC-realized in the

{
In−1

SFE , InBC
}
-hybrid model:{

In−1
SFE , I

n
BC
}
 InSFE (8)

Proof. This theorem follows from combining our previous lemmas according to
Fig. 3. ut

If we additionally assume a multicast functionality were the recipient set can
be chosen by the sender, then we can tighten our result for any t ≤ n − 3. By
induction we can deduce an upper bound of the minimal complete cardinality
for each number of maximal corruptions; as we have shown In−2

SFE and InBC realize
In−1

SFE for t ≤ n−3. But this also holds for t ≤ n−4, then we have that In−3
SFE and

42

In−1
BC realizes In−2

SFE . By induction we get It+2
SFE and all IiBC for i ∈ {t+ 3, . . . , n}

realize InSFE.
However, when the number of inductions is linear in n then a slightly lower

bound n ∈ O(lnλ/ ln lnλ) applies regardless of the hardness of computing X .
This restriction comes from the polynomial runtime in n of the SFE-expansion.
For n/2 inductions we obtain an overall runtime of at most

(n)c · (n− 1)c · · · (n/2)c = (n!/(n/2)!)c (9)

for some constant c which is polynomial in λ iff n ∈ O(lnλ/ ln lnλ). For a better
bound on n one would need to give an SFE-protocol with lower runtime, e.g.
polylogarithmic runtime in n would support arbitrary n ∈ poly(λ).

Corollary 3. For n ∈ O(lnλ/ ln lnλ) and up to t corruptions, it holds for the
minimal complete cardinality that k∗(t) ≤ t+ 2 (given broadcast).

It is an interesting insight that composing functionalities is possible when
three parties are honest. Intuitively, this is the case because in each subfunctio-
nality, we now have a guarantee that at least two parties are honest such that
upon abort they share the same information about the disruptors.

8 Summary and Outlook

Summary. We introduced a new tool for the analysis of protocols in the frame-
work of Identifiable Abort [IOZ14]: the Conflict Graph (CG). We tightly linked
properties of protocols with Identifiable Abort to verifiable graph properties of
the Conflict Graph, namely biseparation, which we hope will contribute to fur-
ther research in the field of Identifiable Abort. In particular, we show that the
biseparation of the CG of any protocol is both necessary and sufficient for an
Identifiable Abort.

We introduced a new variant of Oblivious Transfer, namely Fully Commit-
ted Oblivious Transfer, which we show to be as powerful as Secure Function
Evaluation in the setting of IA, yet which is easier to analyze.

Using the Conflict Graph and the SFE-completeness of FCOT we constructed
n-party SFE from (n− 1)-party SFE and a broadcast channel. Our construction
holds even against statistical adversaries, as long as at least three parties are
honest. This SFE-expansion yields an upper bound on the minimal complete
cardinality in the sense of [FGM+01]: k∗(t) ≤ t + 2 for n ∈ O(lnλ/ ln lnλ)
given broadcast. This bound complements the results of [RB89; Bea90] in the
dishonest-majority setting; compare Fig. 1:

In conclusion our CG-technique provides a new way of furthering the under-
standing of IA.

Outlook. Since we introduce a new methodology to analyze protocols Identifiable
Abort there are naturally many open questions. The first open problem is to
improve the efficiency of our protocols or to remove the broadcast requirement.

43

Another open issue is to tighten our upper bound on k∗, here one would need
to provide abort-lemmas similar to Lemmas 15 to 17 for subfunctionalities of
cardinality n− 2 or less.

A third research direction is to clarify the time complexity of computing the
settled set X as defined in Definition 2. Either it is efficiently computable for all
t, which could be useful for efficient broadcast protocols in the style of [CFF+05],
or deducing a conflict graph is actually harder for smaller t than for larger t.
Lastly, one could look for another algorithm to compute G∗ than DeduceCG
that is efficiently computable without needing to compute X .

44

Acronyms

AA Anonymous Abort
BC Broadcast
CG Conflict Graph
COM Commitment
COT Committed Oblivious Transfer
CRS Common Reference String
DLog Discrete Logarithm
DoS Denial-of-Service
FCOT Fully Committed Oblivious Transfer
GCOM Global Commitment
GOD Guaranteed Output Delivery
IA Identifiable Abort
IF Integer Factorization
LWE Learning with Errors
MPC Multi-Party Computation
MVC Minimal Vertex Cover
OT Oblivious Transfer
SFE Secure Function Evaluation
UC Universal Composability
VC Vertex Cover

46

Symbols

adversary real/hybrid adversary
sub-share of a message m
complementary edges complement of the conflict edges
complement graph complement of the conflict graph
committer committing party
corrupted parties set of all corrupted parties
disruptor party party that maliciously deviates from the protocol
disruptors set of disruptor parties
conflict edges contains a pair of parties {P,P′} if P broadcasts (conflict,P∗)
partition partition of a graph
empty string
ideal functionality with unspecified output property
conflict graph represents all public conflicts between parties
additive share of a choice bit c
honest parties set of all honest parties
set of aborted subfunctionalities
ideal functionality with identifiable abort
complete minimal cardinality minimal cardinality of a functionality that is

complete for n-party Multi-Party Computation (MPC) for a given t
MVCs set of MVCs
additive share of a message m
(total) number of parties
negligible functions set of negligible functions with respect to a given argu-

ment
non-disruptors set of corrupted parties that never disrupt
choice index of a share
overwhelming functions set of overwhelming functions w.r.t. an argument
parties set of all parties
party protocol party
combined protocol of the IPS-compiler
outer protocol of the IPS-compiler
receiver receiving party
inner protocol of the IPS-compiler
selector function specified by a protocol
sender sending party
simulator simulates a protocol execution using a ideal functionality
maximal number of corrupted parties
transcript
witness passive party that only receives a receipt
set of parties that can be identified as malicious by an outsider
environment

References

[BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure compu-
tation. In pages 52–61, 1993.

[Bea90] D. Beaver. Multiparty protocols tolerating half faulty processors. In pages 560–
572, 1990.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In pages 1–10, 1988.

[Bon98] D. Boneh. The decision Diffie-Hellman problem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423, 1998. Invited paper.

[BOS16] C. Baum, E. Orsini, and P. Scholl. Efficient secure multiparty computation
with identifiable abort. In pages 461–490, 2016.

[Can00] R. Canetti. Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
http://eprint.iacr.org/2000/067.

[Can01] R. Canetti. Universally composable security: a new paradigm for crypto-
graphic protocols. In pages 136–145, 2001.

[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In
pages 19–40, 2001.

[CFF+05] J. Considine, M. Fitzi, M. K. Franklin, L. A. Levin, U. M. Maurer, and
D. Metcalf. Byzantine agreement given partial broadcast. 18(3):191–217,
July 2005.

[CK88] C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened
security assumptions (extended abstract). In pages 42–52, 1988.

[Cle86] R. Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In pages 364–369, 1986.

[CM89] B. Chor and L. Moscovici. Solvability in asynchronous environments (ex-
tended abstract). In pages 422–427, 1989.

[Cré90] C. Crépeau. Verifiable disclosure of secrets and applications (abstract). In
pages 150–154, 1990.

[Cré97] C. Crépeau. Efficient cryptographic protocols based on noisy channels. In
pages 306–317, 1997.

[CvT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer
and private multi-party computation. In pages 110–123, 1995.

[DPS+12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In pages 643–662, 2012.

[FGM+01] M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete
primitives for secure multi-party computation. In pages 80–100, 2001.

[GIS+10] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding
cryptography on tamper-proof hardware tokens. In pages 308–326, 2010.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
pages 218–229, 1987.

[IOS12] Y. Ishai, R. Ostrovsky, and H. Seyalioglu. Identifying cheaters without an
honest majority. In pages 21–38, 2012.

[IOZ14] Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation
with identifiable abort. In pages 369–386, 2014.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In pages 572–591, 2008.

48

http://eprint.iacr.org/2000/067

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In pages 20–31,
1988.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty proto-
cols with honest majority (extended abstract). In pages 73–85, 1989.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. In pages 84–93, 2005.

[SF16] G. Spini and S. Fehr. Cheater detection in SPDZ multiparty computation.
In pages 151–176, 2016.

[Sha79] A. Shamir. How to share a secret. 22(11):612–613, November 1979.
[SSW10] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud com-

puting. In A. Acquisti, S. W. Smith, and A.-R. Sadeghi, editors, Trust
and Trustworthy Computing, pages 417–429, Berlin, Heidelberg. Springer
Berlin Heidelberg, 2010.

49

	Constructing Secure Multi-Party Computation with Identifiable Abort

