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Abstract. Statistically secure Multi-Party Computation (MPC) protocols based on two-
party primitives like Oblivious Transfer have one severe drawback: the adversary can abort
the protocol without repercussions if the majority of all parties are malicious. As a compro-
mise between the drawback of Security with Abort and the unachievable notion of fairness,
the notion of Identifiable Abort (IA) was formally introduced.
Given a broadcast channel, we tightly link the unanimous identifiability of any protocol to
verifiable graph-theoretical properties of the Conflict Graph (CG). As an interesting side
note, this technique provides evidence that identifying malicious parties in the IA-setting
requires solving the NP-hard problem of finding Minimum Vertex Covers.
We leverage the Conflict Graph in a concrete construction to give the first upper bound of
the minimal setup size for n-party MPC with IA in the dishonest majority setting. That is,
in the IA-setting we show that n-party statistically Secure Function Evaluation (SFE) can
be composed from (n− 1)-party SFE and broadcast if the maximal number of corruptions is
t ≤ (n−3). Additionally, if the number of parties is sufficiently small, then our upper bound
can be transitively expanded, i.e., for t := (n− k− 3) corruptions, we can construct n-party
SFE from (n− k − 1)-party SFE.

Keywords: Multi-Party Computation · Identifiable Abort · Conflict Graph · Dishonest
Majority · Universal Composability

1 Introduction

Secure Multi-Party Computation (MPC) has been subject to extensive studies since the 1980’s.
The requirements for general MPC have been investigated in the literature for a variety of set-
tings. Most notably, MPC protocols have been constructed from abstract assumptions such as
Oblivious Transfer (OT) instead of concrete computational assumptions [Kil88; IPS08]. Since the
introduction of the real-ideal-paradigm [GM82; GM84; GMW87] MPC has been based on so-called
hybrid functionalities, such as a Common Reference String (CRS), which is commonly used e.g.
in the Universal Composability (UC)-framework of [Can01]. These hybrid functionalities exhibit
the distinct advantage that they can be based on a variety of computational assumptions such
as Discrete Logarithm [DH76], Learning with Errors [Reg05] or Integer Factorization [RSA78], or
even physical assumptions such as noisy channels [GIS+10; CK88; Cré97].

The systematic study of the minimal size—or minimal complete cardinality—of an MPC-setup
has been initialized by [FGM+01]. In the honest-majority case there have been several results,
among others, [GMW87; BGW88; FGM+01] without broadcast, and [RB89; Bea90] with a broad-
cast. More than 30 years ago [RB89; Bea90] showed that, for an honest majority, pairwise secure
channels are sufficient in conjunction with a broadcast (even for Guaranteed Output Delivery). In
the terminology of [FGM+01] the minimal complete cardinality is 2. Against a dishonest majority,
the minimal complete cardinality is also 2 [Kil88; IPS08] but only for protocols with security with
abort (we call it Anonymous Abort (AA) to contrast it to Identifiable Abort). This is consistent
with the impossibility of fairness in the dishonest majority setting [Cle86].

However, security with Anonymous Abort allows an adversary to effectively perform a Denial-of-
Service-attack on the protocol without being detected. As a more promising alternative, the notion
of Identifiable Abort (IA) was first considered in [AL07] and formally introduced in [IOZ14]. Here



at least one malicious party is identified by all honest parties upon abort. Intuitively, this allows
the other parties to exclude the identified culprit in the next protocol run.1 [IOS12] showed that
any functionality of cardinality 2 is insufficient for general MPC with cheater identification (IA)
without broadcast. Yet, the first formalization of Identifiable Abort [IOZ14] was in the Correlated
Randomness modelal, which corresponds to a universal setup of size n.

To enhance the understanding of IA we investigate requirements for protocols to unanimously
identify a cheater assuming that each party has access to a global broadcast functionality. Using our
Conflict Graph (CG)-technique we initiate the study in the dishonest majority setting by linking IA
to graph-theoretical properties of the CG. We give the first upper bound for the minimal complete
cardinality with broadcast in the UC-framework with IA in the dishonest-majority setting.

While most research in the area of Identifiable Abort has been directed towards the efficiency of
concrete MPC protocols (such as [DPS+12; SF16; BOS16]), our construction focuses on a feasibility
result showcasing the power of our CG-technique. Yet we believe that the CG will also prove
useful in the construction of efficient protocols with IA. In fact, [BOS+20] recently presented an
efficient MPC protocol with IA in the dishonest majority setting which uses techniques similar to
our formulation of the Conflict Graph. We see our work as a formal treatment of such conflict
techniques to further their deployment in concrete MPC protocols.

Outline In Section 1.1 we summarize our main contributions. After specifying the considered
security notions in Section 1.2 we give a high-level overview of our results in Section 1.3. In Section 2,
we define the used notations and definitions, define our setting and introduce the functionalities we
use, among others the new Fully Committed Oblivious Transfer variant. This new functionality is
more thoroughly studied in Section 3. We then follow with the main part of our work; we provide
more detailed descriptions and detailed proofs of our Conflict Graph in Section 4. In Section 5, we
show that it can be easily constructed using only a broadcast channel. We particularly enlighten
some steps relevant for SFE-expansion in Section 6 and expand this result to smaller subsets in
Section 7. Finally, we conclude with a summary and an outlook in Section 8.

1.1 Contribution

Our three main contributions are:

Conflict Graph. We formalize a quite intuitive mechanism for cheater identification which we
call the Conflict Graph (CG) and closely link the Identifiable Abort property of any MPC-protocol
to verifiable graph-theoretical properties of the CG. The Conflict Graph is of theoretical interest on
its own—we link Identifiable Abort to a problem related to the Vertex Cover problem which we call
the Intersecting Minimal Vertex Cover (IMVC) problem and which is yet of unknown complexity.
If the IMVC problem is was shown to be efficiently solvable, then our restriction on the number of
parties n could be lifted for our main construction (see Fig. 3). On the other hand, if the IMVC
problem was proven to be (NP-)hard, this would very likely imply a new impossibility result for
Identifiable Abort in general.

Technically, the Conflict Graph is a graph G = ([n],E), where [n] is the set of parties. G has
a vertex for each party P ∈ [n]. An edge e =

{
P,P′

}
∈ E stands for a publicly declared conflict

between the two parties P and P′; we require that conflicts between honest parties never arise,
hence an edge e =

{
P,P′

}
is also a guarantee that either P or P′ is corrupted.

On an abstract level, once sufficiently many conflicts have been declared the honest parties
can leverage this information to unanimously identify a set of cheaters. In this work, we provide
necessary and sufficient conditions for an IA which facilitates our MPC-construction.

New Oblivious Transfer variant. The MPC-completeness of OT [Kil88; IPS08] is not given in
the setting of Identifiable Abort [IOS12]. We thus reformulate Crepeau’s Committed OT [Cré90;
CvT95] in the multi-party setting, and prove it to be an MPC-complete building block in the
setting of IA. The Fully Committed Oblivious Transfer (FCOT) lets all parties obtain a receipt
1 The protocol has to be designed such that the aborted functionality does not leak sensitive information
that could be used by the adversary in future protocol runs. See [CL14] for a treatment of fairness in
the IA-setting
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Fig. 1: Bounds of the minimal complete cardinality k∗(n, t) with IA vs. maximal number of malicious
parties t given broadcast. The grey area represents the possible region of k∗(n, t). The dashed lines indicate
our bounds (O(n) inductions for n ∈ O(lnλ/ ln lnλ)).

after the OT has been performed: a sender and a receiver have secret inputs as in the classical OT,
the remaining (n− 2) witnesses do not have any input. After the OT-phase, both the sender and
the receiver are committed to their inputs independently and can unveil them at a later point to
all other parties; even after the receiver obtained only one message, the sender can unveil both m0
and m1, and the receiver can unveil the choice bit c, such that no party can lie about their actual
input.

Secure Function Evaluation and Fully Committed Oblivious Transfer are equivalent in the
setting of Identifiable Abort. That is, we show how to instantiate n-party SFE in the FCOT-
hybrid-model and how to realize n-party FCOT using only a SFE hybrid functionality.

Expanding SFE with IA. Finally, we provide an expansion from (n− 1)-party MPC and n-party
broadcast to n-party MPC. This implies an upper bound for the minimal complete cardinality for
n-party Secure Function Evaluation (SFE) in the style of [FGM+01], assuming that at most (n−3)
parties are malicious. If the number of parties is sufficiently small, we can extend our result by
induction, yielding a better bound for the dishonest majority setting (compare Fig. 1).

More precisely, we give a protocol that expands FCOT from cardinality (n− 1) to n. Since
FCOT is equally powerful as SFE this implies an expansion of SFE from (n− 1) to n. As an
intermediate result we expand a Commitment from size (n− 1) to n and then use the n-party
Commitment to ensure consistency across instances of the (n− 1)-party FCOT.

1.2 Setting

Our constructions enjoy statistical security, no computational assumptions are made. We only
assume the existence of hybrid functionalities. This leaves the means of the realization of these
hybrid functionalities up to the user, e.g. via physical means such as trusted hardware [GIS+10;
SSW10] or noisy channels [CK88; Cré97], or again from computational assumptions of choice
([Ajt96; Bon98; Reg05] to name only a few). We don’t explicitly assume additional pairwise secure
channels, since they can be emulated by hybrid functionalities of size ≥ 2.

We focus on static corruptions of an arbitrary number of parties. We denote the maximal
number of malicious parties by t < n.

We assume that all messages sent between parties and ideal functionalities are authenticated.
We further assume that all parties have access to an n-party broadcast, which we model as ideal
functionality FnBC. This broadcast is mainly used for our realization of the Conflict Graph; for more
details we refer to supplementary material 5.
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We generally assume that the simulator gets notified whenever any party passes input to any
functionality. The simulator doesn’t learn anything regarding the parties secret inputs. It only
learns that input was provided.

The UC Framework We perform our analysis in the Universal Composability (UC) framework [Can00;
Can01], which is a strong version of simulation-based security [GM82; GM84; GMW87]. The key
idea there is to compare a real protocol execution between mutually distrustful parties to an
idealized execution, where a trusted party performs the computation based on the participants
inputs. The behavior of the trusted party is specified by a functionality F . In the real world, all
parties execute a protocol π , which is said to realize the functionality F , if it can be shown to
be indistinguishable from the ideal world. This requires a Simulator who creates a transcript of
an execution without knowing the parties inputs. More precisely, the transcripts of both worlds
must be indistinguishable for any non-participant, even those who know the parties secret inputs.
The transcript includes the output of all parties and the respective adversary. Indistinguishability
implies that the real adversary cannot learn anything from the real protocol execution that the
simulator cannot contrive without knowing the private inputs.

The UC-model provides much stronger security guarantees than the standalone model, but
comes with some restrictions; without a trusted setup, no protocol π can realize even SFE-
incomplete functionalities such as Commitments [CF01], while computational constructions in the
standalone model exist. Constructions in the UC-model also hold in the standalone model and,
conversely, impossibilities in the standalone model extend to the UC-model.

We assume a synchronous communication network, as our Conflict Graph requires that any
conflict announced by a party P will eventually be received by all other parties. In an asynchronous
model, the adversary could drop all messages [CM89; BCG93], resulting in a situation similar
to Anonymous Abort, thus rendering Identifiable Abort essentially useless. In the synchronous
model, however, the adversary can only either let the functionality terminate, or abort at the
cost of unveiling the identity of at least one malicious party. We adapt the view from the 2020
version2 of [Can00], which describes how synchronous communication can be achieved by using
the functionality FSYN. For the sake of simplicity, however, we ignore the details of FSYN in our
analysis and just assume a synchronous communication structure.

We adapt the view that the direct party-party communication can also be modeled as a two-
party hybrid functionality. Therefore, in our hybrid protocol, honest parties have an authenticated
connection with the hybrid functionalities; the adversary cannot manipulate messages from honest
parties to hybrid functionalities and vice versa. This model corresponds to an adversary that might
control the network but cannot fabricate false messages from honest parties.

Identifiable Abort Constructing protocols requires definitions regarding the abort properties. In-
tuitively, the most desirable property is guaranteed output, where an abort is impossible. Unfor-
tunately, fairness and thus guaranteed output is impossible with a dishonest majority [Cle86]. On
the other extreme, the much weaker notion of Anonymous Abort (security with abort) leaves the
adversary capable of stopping any computation without repercussions and thus is an undesirable
property for many real-world scenarios.

We work in the setting of IA [IOZ14], where abort is possible, but only by revealing the identity
of (at least) one malicious party to all participants. In this setting, all honest parties eventually
expel all malicious parties, if the protocol is aborted too often. Thereby it suffices that, during an
unsuccessful protocol run, all honest parties agree on at least one disruptor. Then the adversary can
abort the protocol at most (n− 1) times, before all malicious parties are excluded or the protocol
succeeds.

We use the following notation to clarify our Identifiable Abort property3:

Notation 1 (Functionalities with IA) We denote by Fn an n-party functionality with Identi-
fiable Abort.

Definition 1 (Identifiable Abort). Let Fn be an ideal n-party functionality with parties [n] and
malicious subset C ⊆ [n]. Fn has Multi-Identifiable Abort, iff all (honest) parties yield output
2 Version 20200212:021048
3 Note that the original work [IOZ14] uses the notation F ID

⊥ .
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(
abort,C ′

)
when the adversary sends

(
abort,C ′

)
to Fn. If C ′ 6⊆ C, the message is ignored. Fn

has Uni-Identifiable Abort, iff Fn has Multi-IA and |C ′| = 1.

Additional care has to be taken into the protocol design. We generally assume that the protocols
and functionalities are not fair. This means, that the adversary can learn sensitive information in
one protocol run, which it can leverage during the next execution. The honest parties then neither
learn their output, nor have a precise estimate on how sensitive the data obtained by the adversary
is. By using secret-sharing schemes, we are still able to compose our FCOT-functionality.

1.3 Overview

Conflict Graph We introduce and analyze the Conflict Graph (CG) G and show how it can be used
to link verifiable graph properties with the identification of disruptors in the field of Identifiable
Abort. The Conflict Graph maintains the global view of conflicts that arise between parties during
a protocol execution.

Let π be an n-party protocol that uses the Conflict Graph. The CG of π is an undirected,
simple graph G = ([n],E) where [n] = {P1, . . . ,Pn} is the set of parties of π . Intuitively, during the
protocol execution a party P that notices any misbehavior of another party P′ publicly announces
that it is in conflict with P′. While honest parties only issue conflicts with malicious parties,
malicious parties can issue conflicts with any party. It thus holds for each conflict edge that at
least one of the two parties is malicious.

On a high level, we either want a protocol execution to successfully terminate, or all honest
parties to settle on the same set of corrupted parties. Once sufficiently many conflicts are issued
honest parties can leverage the Conflict Graph to unanimously identify parties that actively deviate
from the protocol, which we call disruptors. In particular, any party that aborts a subfunctionality
(hybrid functionality) is considered a disruptor. Note that, in general, the precise condition of a
conflict declaration based on protocol deviations is highly protocol-dependent; we defer the specifics
of our constructions to Section 6. The formal description of the Conflict Graph functionality looks
as follows:

Functionality FnCG

FnCG proceeds as follows, running with parties [n] = {P1, . . . ,Pn}, malicious parties C ⊆ [n]
and adversary S. Messages not covered here are ignored.
• Upon first activation, initiate the set of conflict edges E := ∅.
• When receiving a message (conflict,Pi) from Pj , append the new conflict edge {Pi,Pj}

to the set of conflict edges E and send (conflict,Pj ,Pi) to the adversary.
• When receiving a message (query) from Pi, output G to Pi.
When receiving

(
abort,C ′

)
from S with C ′ ⊆ C , then FnCG outputs

(
abort,C ′

)
to all parties,

and then terminates.

The functionality internally maintains the graph. Regardless which party queries the current
Conflict Graph, FnCG returns the same graph. This implies a consistent view to all (honest) parties
for any protocol πnCG that realizes FnCG.

Keeping in mind that each conflict edge contains at least one corrupted party,4 we call any
subset of parties which could have caused the structure of Conflict Graph an explanation of G.
Intuitively, an explanation of a Conflict Graph G comes down to a vertex cover of G. We separate
between internal and external explanations. External explanations allow even non-participants to
easily identify a set of disruptors, given only the Conflict Graph and the maximum number t of
corrupted parties. Internal explanations are limited to explanations of the graph for a given party
P, which knows that itself is behaving honestly.

We define the FnCG functionality merely for convenience and for structural clarity. It is easily
constructed from a broadcast functionality (itself with IA) as it simply stores broadcasted infor-
mation. See Section 5 for a formal construction.
4 This must be ensured by the protocol using the CG. In particular, our SFE-expansion fulfills this
property.
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In Section 7 we additionally provide an algorithm DeduceCG that, in some sense, completes the
CG in a information-theoretic way . For clarity we refer to the CG returned by the functionality
FnCG as the (induced) CG G and to G∗ := DeduceCG(G, t) as the deduced CG. Since we only use
the deduced CG for efficiency considerations we defer further discussion to Section 7. We now show
that the properties required for identifying disruptors can be brought down to properties of the
Conflict Graph. The simple idea is that, once sufficiently many conflicts have arisen, at least one
common party must be contained in all explanations.

Definition 2 (t-settledness). Let n be the number of parties of which at most 0 ≤ t < n are
malicious. Let G = ([n],E) be the Conflict Graph of a protocol π. Let M (G, t) be the set of all
Minimal Vertex Covers (MVCs) of G with size t or less, and let X(G, t) be the intersection of
all of these MVCs, that is, the set of parties which are present in all MVCs of size ≤ t. We call
X(G, t) the settled set of G. We call G t-settled, iff X(G, t) 6= ∅.

The definition already showcases the equivalence between t-settledness of a Conflict Graph
and its external explanation—each (Minimal) Vertex Cover of size ≤ t is a valid explanation of
corrupted parties that could have caused this graph, and if each possible explanation implies that
a party P is corrupted, then even non-participants can be convinced that party P is a disruptor.

Now we have seen that t-settledness of the Conflict Graph allows for external observers to
identify disruptors, albeit at the cost of computing many Vertex Covers. For Identifiable Abort, it
is usually not necessary for participants to convince external parties, but only participants must be
able to identify disruptors. We therefore introduce a different graph property which reflects valid
explanations for participants only:

Definition 3 (Biseparation). A Conflict Graph G = ([n],E) is called biseparated, iff there
exists a subset E ′ ⊆ E that forms a complete bipartite graph (biclique) on [n].

Thus, when a Conflict Graph is biseparated, it can be partitioned into two partitions. Each party
agrees with its own partition that all parties from the other partition are malicious. Consequently,
all honest parties must be in one partition (possibly among some malicious parties).

While biseparation of a graph G is decidable in linear time in n by a breath-first-search to
check whether the complement graph is connected, deciding on t-settledness is potentially much
harder. See Section 7 for a discussion. We generally assume that protocols use the Conflict Graph
correctly as specified in Lemma 11. While this seems like a restriction at first, we show that it is
not:

Lemma 1 (Informal version of Lemma 11). Let n be the number of parties [n] of which at
most 0 ≤ t < n are malicious. Let π be a protocol that securely UC-realizes a functionality Fn
in the some M -hybrid model without FnCG. Denote by π ′ the M ∪ {FnCG}-hybrid protocol that is
identical to π with the addition that honest parties use FnCG correctly.

Then π ′ also securely UC-realizes Fn, i.e. π ′ ≥ F .

This lemma allows us to transfer results that only hold for protocols with correct CG usage
to all protocols with Identifiable Abort. A consequence is that no adversary gains any advantage
when honest parties use the CG correctly.

In Section 4 we elaborate on the relation between t-settledness and biseparation.
To give an intuition of the graph properties, a few example graphs are shown in Fig. 2. The graph

in Fig. 2a has only one vertex cover of size 1, namely {P1}, thus P1 is in all external explanations,
making the graph 1-settled. Note that this graph is also biseparated. The graph from Fig. 2b on
the other hand is not 1-settled; both {P1} and {P2} are valid Vertex Covers. However, biseparation
trivially holds. Another example for biseparation is the Conflict Graph from Fig. 2c. This graph
can be split up into two partitions S0 and S1, where S0 := {P1,P2} and S1 := {P3,P4,P5}. This
implies that all members of S1 are convinced that P1 and P2 are corrupted, thus allowing them to
continue without them. However, if we remove the conflict between P2 and P5 (see Fig. 2d), the
graph is no longer biseparated, thus P5 would not agree to throw out P2.

We now claim that biseparation of CG G and Identifiable Abort are closely related in the
following sense.
• A biseparated CG G enables a protocol to abort consistently.
• Upon abort, the CG G of any protocol with IA must be biseparated.
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Fig. 2: Several (counter-)examples for the introduced conflict graph conditions. Thick lines are relevant
for the respective property.

The first direction is trivial: each party chooses its opposite partition as the disruptors. Since all
honest parties are in one partition, the abort is consistent and the disruptors are indeed malicious.
The other direction is not so easy to see.

Theorem 2 (Informal version of Theorem 6). Let π be a protocol that securely UC-realizes
a functionality Fn with Identifiable Abort in an M ∪{FnCG}-hybrid model. Upon abort, the Conflict
Graph G of π must be biseparated.

The proof of this theorem can be found in Theorem 6.

Remark 1. A Conflict Graph G = ([n],E) is biseparated, iff its Complement Graph G is discon-
nected.

This follows directly from the fact that the complement of a biclique contains no path from one
partition to the other.

For the other way, we require the property of biseparation for IA:

Remark 2. For any number of parties n, a biseparated CG implies IA.

Note that for n ∈ O(log(λ)), a t-separated CG can be efficiently converted to a biseparated
CG, which relaxes the requirement of CG for IA even further. For larger n this is not evident, and
indeed might actually be NP-hard. (See Section 7 for a discussion.)

SFE-Completeness of FCOT We reformulate Crepeau’s Committed OT [Cré90; CvT95]) for n-
parties as Fully Committed Oblivious Transfer (FCOT) and formally prove its equivalence to
Secure Function Evaluation in the setting of Identifiable Abort. This has the advantage that we
can perform our analysis of SFE-expansion by only expanding FCOT. We thus show in two lemmas
that one implies the other.

Lemma 2 (Informal version of Lemmas 8 and 9). For every number of parties n, the
functionalities FnSFE and FnFCOT are equally powerfull in the setting of IA.

This implies that n parties can use SFE in order to obtain a FCOT and vice versa, that an FCOT
hybrid suffices for SFE with IA.

SFE expansion We refer to all subfunctionalities that use the same set of parties as instances F
of the same instance class, denoted by [F ]. That is, an instance class corresponds to a subset of
parties P ⊆ [n] and consists of all functionalities that interact with exactly P. Further we write
that an instance class is considered aborted, if any instance of this class is aborted. This is because
once the adversary aborted one instance by revealing a malicious party, the adversary can abort
any other instance with the same party without revealing any new information. For functionalities
of cardinality n − 1 there are exactly n instance classes, one for each party that is excluded. For
a given party Pi ∈ [n], we denote by [F ]n−1

Pi
the instance class where all parties except for Pi

participate.
Recall that the biseparation allows the protocol to abort consistently. We introduce three rele-

vant lemmas, limiting the number of aborted instance classes of size (n− 1) in an n-party protocol
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before the graph becomes biseparated, effectively stating an upper bound on how many instance
classes an adversary can abort. We use this guarantee to construct an extension from Commitment
and Fully Committed Oblivious Transfer (thus effectively Secure Function Evaluation) from size
(n− 1) to size n.

The most general version of our lemma regarding subfunctionality abort is the following:

Lemma 3 (Informal version of Lemma 13). Let n be the number of parties [n] of which at
most 0 ≤ t < n are malicious. Let π be an

{
Fn−1,FnCG

}
-hybrid protocol that uses FnCG correctly. If

the adversary A aborts more than t instance classes of size (n− 1), then the Conflict Graph from
FnCG is biseparated.

Note that, for simplicity only, we require protocols to use the CG correctly as described in
Lemma 11. A formal proof of the above lemma is deferred to Lemma 13. Here we only sketch the
proof. Note that for any i ∈ [n], after [F ]n−1

Pi
has been aborted, the Conflict Graph G∗ contains

a biseparated subgraph over all parties except for Pi. We can investigate the complement graph
G. After an abort of [F ]n−1

Pi
, the Complement Graph of the participants without Pi is split into

two partitions, which are only connected via Pi in G. We abuse notation and write G \ Pi for
the Complement Graph where Pi is removed. Say [F ]n−1

Pi
was aborted by Pj . If the same party

Pj aborts a second subfunctionality in which Pi is participating, its partition becomes completely
disconnected in the Complement Graph, as Pi would also declare conflict with Pj . Thus, the
adversary cannot “re-use” a party to abort a different instance class. Since there are only at most
t corrupted parties, we have an upper bound on the number of instance classes the adversary can
abort before the Conflict Graph becomes biseparated.

We can furthermore specify this result with respect to certain types of adversaries. Against
adversaries who can corrupt any subset of parties of size t ≤ (n− 3), the lemma tightens to:

Lemma 4 (Informal version of Lemma 14). Let t ≤ (n− 3). If t or more subfunctionalities
of cardinality (n− 1) are aborted, then the Conflict Graph is biseparated.

By requirement, there are at least three honest parties. After t aborts, any party Pj which
aborted [F ]n−1

Pi
can only have two neighbors in the Complement Graph: party Pi, which did not

witness the abort, and some other party Pk who aborted [F ]n−1
Pj

. This is true for all of the t
parties who aborted a subfunctionality. Since no conflicts ever arise between honest parties, they
have edges in G with all other honest parties. With t ≤ (n − 3), each honest party has at least
two honest neighbors in G. Additionally, each honest party Pl has an edge with the party that
aborted [F ]n−1

Pl
. Thus, after t aborts, only honest parties have three neighbors in G, allowing them

to identify disruptors.
Our next lemma provides a less strict guarantee against a stronger adversary, which can corrupt

up to (n− 1) parties. Here, Lemma 13 yields:

Lemma 5 (Informal version of Lemma 15). Let t < n. Aborting more than (n− 2) instance
classes [F ]n−1 yields a biseparated Conflict Graph.

Let Pi be an honest party. After an abort of [F ]n−1
Pi

, the remaining Conflict Graph G is bisep-
arated. This means that the remaining parties can be separated into two partitions S0 and S1,
which are disconnected in the Complement Graph.

When another instance class [F ]n−1
Pj

that omits party Pj is aborted, it can only be aborted by
a subset of parties from the same partition as Pj , as otherwise, the graph becomes biseparated.
This means that Pj can no longer be used for future aborts without causing a biseparation. Thus,
for each abort, the set of possible disruptors decreases by one, since the omitted party cannot be
reused. Hence, in order to avoid a biseparated Conflict Graph, there has to be one malicious party
which never aborts. With at least one additional party being honest, we get the bound of (n− 2).

Lemmas 4 and 5 play an essential role in providing a protocol for our main goal, namely SFE-
expansion from (n− 1) parties to n parties. To achieve this goal, we use several lemmas, which we
only sketch here. Our first lemma states that COM can be expanded from (n− 1) to n parties:

Lemma 6 (Informal version of Lemma 16). For t ≤ (n− 2), there exists a protocol πnCOM in
the {Fn−1

COM,FnBC}-hybrid model that securely UC-realizes FnCOM.
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Intuitively, we assume that there are (n− 1) instance classes [F ]n−1
COM,Ri

, one for each omitted
receiver Ri. The protocol πnCOM lets the committer C input the same bit b into all subfunctionality
instances [F ]n−1

COM,Ri
. A receiver Ri only accepts the global unveil of a bit b, if the majority of

commitments that Ri witnesses open to b, if at least three instance classes were not aborted, and if
at most one of the unveils opens to to a different bit. Hence, a malicious committer C is forced to
either input the same bit into all Fn−1

COM,Ri
, or to abort those where the original input differed from

the to-be-unveiled bit. However, with the limit on the number of aborts before cheater identification
is possible, we show in the formal proof of Lemma 16 that a corrupted C cannot successfully break
the binding property.

The full protocol alongside the proof can be found in Lemma 16.
We sumarize the above lemmas into a corollary, which limits the amount of subfunctionalities

that can be aborted during the expansion of FCOT: Let S be the sender, R be the receiver and
(W1, . . . ,Wn−2) be the witnesses.

We classify the instances by the excluded parties. Type-1 instance classes exclude an arbi-
trary witness, whereas Type-2 instance classes exclude either the sender or the receiver. Then the
following holds:

Corollary 1 (Informal version of Corollary 3). If π realizes FnFCOT, then at most type-1
functionalities can aborted without causing a biseparated Conflict Graph.

Lemma 14 with t = (n− 3) implies that either at least four instance classes of cardinality
(n− 1) terminate successfully, or the Conflict Graph is biseparated. In the worst case, two of those
could be of Type-2, leaving the remaining two to be of type-1.

Now, we use Corollary 3 to construct a protocol that securely realizes FnFCOT from Fn−1
FCOT and

FnCOM.

Lemma 7 (Informal version of Lemma 17). For t ≤ (n− 3), there is a protocol πnFCOT that
UC-realizes FnFCOT in the {Fn−1

FCOT,FnBC}-hybrid model against any adversary that statically corrupts
at most t ≤ (n− 3) parties.

The full proof of this lemma can be found in Lemma 17. The protocol we introduce there works
in several iterations. Each iteration employs a cut-and-choose method, which uses one additive
secret sharing scheme and one threshold secret sharing scheme: initially, two numbers T, r ∈ poly(λ)
define the total amount of shares to which the secrets are distributed. In each iteration, T is updated
as number of remaining instance classes, which were not yet aborted. This is important, as aborted
instance classes will be dropped and not used anymore.

A new round begins with the sender committing (globally) to a random mask w ∈ {0, 1}∗, which
it also uses for the additive secret sharing scheme to create T shares (µ0

j )j=1..T and (µ1
j )j=1..T of

the masked messages m0 ⊕ w and m1 ⊕ w, respectively. The mask hides the messages and allows
the sender to decide when the receiver should learn the output. For b ∈ {0, 1}, the sender uses
the (2r/3)-threshold secret sharing scheme to create r shares (αbj,i)i=1..r of each additive share µbj .
Each of the obtained shares αbj,i is sent to FnCOM; additionally, S distributes all the shares αbj,i using
(T · r) Fn−1

FCOT instances, with input
(
messages, α0

j,i, α
1
j,i

)
. The receiver uses FnCOM to commit to

the choice bit and sends the same choice bit c to all instances of Fn−1
FCOT. Witnesses only output

their receipt, if all type-1 functionalities Fn−1
FCOT have terminated successfully. If no subfunctionality

instance was aborted, S unveils the mask w.
A cut-and-choose method is used to ensure that S provides correct shares; each party broadcasts

a set of r/10n indices for each subfunctionality. The sender then unveils the Global Commitment
at those spots.

This protocol allows R to learn mc, since it can obtain sufficiently many shares to reconstruct
all T additive shares µcj and the mask has been unveiled. Yet it does not allow R to learn m1−c;
the additive secret sharing scheme used for the creation of µbj ensures that the information is
information-theoretically hidden if only one share is missing, and the threshold of the threshold
secret sharing scheme makes it impossible for an honest receiver to obtain sufficient information to
reconstruct both shares. The receiver learns its own output of FnFCOT, and r/10 additional shares,
leaving him with 11r/10 shares for each tuple (µ0

j , µ
1
j ). 2r/3 shares are required for the construction

of µcj , yet reconstructing the whole tuple requires 4r/3 shares.

9
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Fig. 3: An overview of the steps we use for proving SFE expansion with Identifiable Abort in Theorem 3.

At the same time, FnCOM ensures that both the inputs of S and R can be unveiled at a later
point: A later opening of the senders inputs is trivially possible by opening all commitments on
µbj,i. The other parties can check, if the unveiled values are consistent with the shares they have
seen during the sending-phase. The unveil of the receivers input works directly by unveiling the
choice bit from the Fn−1

FCOT instance classes.
With this, we arrive at our final theorem:

Theorem 3 (SFE expansion). Let n be the number of parties of which at most 0 ≤ t ≤ (n− 3)
are malicious. The functionality FnSFE can be UC-realized in the

{
Fn−1

SFE ,FnBC
}
-hybrid model:{

Fn−1
SFE ,FnBC

}
 FnSFE

Proof. This follows from combining our previous lemmas according to Fig. 3. ut

By extending the broadcast to a multicast, where only a subset of parties receive the message,
we can extend the result for any t ≤ n − 3 using induction: If t ≤ n − 4, then Fn−3

SFE and Fn−1
BC

realize Fn−2
SFE . Further application of this trick implies that F t+2

SFE and {F iBC}ni=t+3 realize FnSFE.
However, since the overall runtime grows multiplicatively in the number of inductions we have

to limit them by O(lnλ/ ln lnλ). For n/2 inductions we obtain an overall runtime of at most

(n)c · (n− 1)c · · · (n/2)c = (n!/(n/2− 1)!)c (1)

for some constant c which is polynomial in λ if e.g. n ∈ O(lnλ/ ln lnλ). For a better bound on n
one would need to give an SFE-protocol with lower runtime.

Corollary 2. For n ∈ O(lnλ/ ln lnλ) and up to t corruptions, it holds for the minimal complete
cardinality that k∗(t) ≤ t+ 2 (given broadcast).

By combining all lemmas, it follows that SFE-expansion is indeed possible in the setting of IA.
A short summary of all the steps involved in the expansion alongside references to the respective
proofs is given in Fig. 3.

2 Definitions and Notation

We provide a comprehensive glossary in our supplementary material. We use the following conven-
tions; also see the list of abbreviation and symbols.

Notation 4 (Construction) We write FnA,FnB  FnC , iff there is a protocol πnC that realizes FnC
in the {FnA,FnB}-hybrid-model. More formally:

FnA,FnB  FnC ⇐⇒ ∃πF
n
A,F

n
B

C : πF
n
A,F

n
B

C ≥ FnC

Usually the index is the security parameter λ, which we omit if it is clear from the context.
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Definition 4 ((SFE-)Complete functionalities). For n,m ∈ N+, we call a functionality Fm
of cardinality m (SFE-)complete, iff there exists a {Fm}-hybrid protocol that securely realizes FnSFE
with the same abort property.

Definition 5 (Minimal functionality). We call a functionality Fm with cardinality m minimal,
iff no functionality of lesser cardinality is complete.

Definition 6 (Minimal complete cardinality). Let n ∈ N be the number of parties and let
t ≤ n be the maximal number of corrupted parties. We denote the cardinality of a minimal and
complete functionality by k∗(n, t). In other words, a minimal complete functionality of cardinality
m′ is the smallest functionality from which n-party Secure Function Evaluation (SFE) can be
constructed.

If they are clear from the context, we omit the parameters n and t.
We use secret sharing schemes in our constructions. Thus, we include a brief description:

Notation 5 (Secret sharing (informal)) Let p be a prime integer and let k,m ∈ N be integers
such that k ≤ m ≤ p. For a secret s ∈ Zp a secret sharing (σi)i=1..m is a (k,m)-threshold scheme,
iff k or more shares uniquely reconstruct the secret s but (k − 1) or less shares hide the secret s
information-theoretically.

A prominent example is Shamir’s secret sharing [Sha79]. Also particularly efficient are additive
schemes which are always (m,m)-threshold schemes. Here, shares are simply uniformly distributed
numbers from Zp such that s =

⊕m
i=1 σi.

2.1 Functionalities

In this section, we introduce the ideal functionalities we use. We note that all following function-
alities exhibit Identifiable Abort.

Without writing it out explicitly each time, we generally assume that all of our functionalities
are inherently unfair : public outputs are first sent to the corrupted parties. The adversary can
then decide if honest parties should receive the output or not. However, withholding an output
corresponds to an abort of the respective functionality; in our setting of Identifiable Abort, this
identifies at least one corrupted party. The only exception we make is with respect to broadcast,
where our definition of the Conflict Graph requires some form of fairness.

Secure Function Evaluation We start by providing a formal description of the functionality for
Secure Function Evaluation.

Functionality FnSFE

FnSFE proceeds as follows, running with security parameter λ, parties [n] = {P1, ...,Pn}, in-
put set I ⊆ {1, ..., n}, malicious parties C ⊆ [n], adversary A and function f :

(
(xi)i∈I

)
7→(

(yj)j∈{1,...,n}, ∆
)
with private input xi and output yj for Pj and common output ∆. Messages

not covered here are ignored.
• When receiving (input, xi) from Pi with xi ∈ {0, 1}λ and i ∈ I, store (i, xi). Ignore further

messages from Pi.
• When there are (i, xi) in store for all i ∈ I, then send (output, yj , ∆) to each party Pj and

(output) to A, then terminate.
When receiving

(
abort,C ′

)
from A with C ′ ⊆ C , then FnSFE outputs

(
abort,C ′

)
to all parties,

and then terminates.

We denote by yi the private output of a party Pi. Additionally, there is a common output ∆
which is obtained by all parties. We additionally use an input set I ⊆ [n] of parties which have
to provide input before the computation starts. This implies that not all parties have to provide
input. Otherwise, certain functionalities such as broadcast cannot be realized using SFE because
receiving parties, that do not provide input, may stall the protocol execution.

11



FnSFE is a versatile functionality, which can be used to even those functionalities,5 where only
one party has to provide input, and only an other party obtains output.
FnSFE is not well-formed, meaning that it knows which parties are corrupted. However, this is

only required upon abort: Functionalities with IA need to know the set of malicious parties C ⊆ [n]
in order to verify that the set C ′ responsible for the abort is indeed a subset of C . In this sense,
our functionalities are as well-formed as possible in the setting of IA.

Global Commitment and broadcast For our constructions, we use a variant of the One-to-Many
Commitment from [CLO+02], with slight modifications to make them suitable for Identifiable
Abort. In this paper, we call the One-to-Many Commitment a Global Commitment.

Functionality FnCOM

FnCOM proceeds as follows, running with parties [n] = {C,R1, . . . ,Rn−1}, malicious parties
C ⊆ [n] and adversary A. Messages not covered here are ignored.
• When receiving (commit,m) with m ∈ {0, 1} from party C, store m and send

(receipt commit) to all parties and to A. Ignore further messages of the type (commit, ·)
from C.

• When receiving (unveil) from party C and if m is stored, send (unveil,m) to all parties
and to A, then terminate.

When receiving
(
abort,C ′

)
from A with C ′ ⊆ C , then FnCOM outputs

(
abort,C ′

)
to all

parties, and then terminates.

Beyond the guarantees that the Global Commitment inherrited from two-party Commitments,
namely the binding and hiding properties, FnCOM additionally ensures consistency in that the com-
mitter C is committed to the same bit against all receivers.

We also make use of the ideal broadcast functionality from [CLO+02], with modifications to
support Identifiable Abort.

Functionality FnBC

FnBC proceeds as follows, running with parties [n] = {S,R1, . . . ,Rn−1}, malicious parties C ⊆
[n] and adversary A. Messages not covered here are ignored.
• When receiving a message (input,m) with m ∈ {0, 1}∗ from party S, send (output,m) to

all parties and to A. Then terminate.
When receiving

(
abort,C ′

)
from A with C ′ ⊆ C , then FnBC outputs

(
abort,C ′

)
to all parties,

and then terminates.

We consider FnBC to be a relatively weak functionality; we use it primarily to realize the Conflict
Graph functionality FnCG from Section 4. We provide an instantiation of FnCG using FnBC in Section 5,
thus proving that FnCG too is a relatively weak setup.

We stress that FnBC too can be aborted by the adversary. While intuitively, this breaks our
guarantees, as any accusations of honest parties against malicious parties can be suppressed, the
reason this does not violate our results comes from the way we use the broadcast and hence the
Conflict Graph; while the remaining functionalities usually omit one party during our constructions,
the broadcast is only executed over the entire set of parties and hence an abort of a broadcast
allows the honest party to identify (at least) one disruptor, thus trivially causing biseparation.

Furthermore, note that it is possible to construct a broadcast FnBC from a Global Commitment
FnCOM, by letting the sender S commit and immediately unveil the message.

Fully Committed Oblivious Transfer Next, we introduce our novel primitive called Fully Committed
Oblivious Transfer (FCOT), which extends normal OTs in two ways: 1. it includes n−2 witnesses,
which obtain a receipt if the message has been transfered successfully, 2. the sender S is committed
to both messages m0 and m1, and 3. the receiver R is committed to c.
5 Such as commitments
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We rigorously use for our construction in Section 6:

Functionality FnFCOT

FnFCOT proceeds as follows, running with parties [n] = {S,R,W1, . . . ,Wn−2}, malicious parties
C ⊆ [n] and adversary A. Messages not covered here are ignored.
• When receiving (messages,m0,m1) from S with m0,m1 ∈ {0, 1}, store m0,m1. Ignore

further messages of the type (messages, ·, ·) from S.
• When receiving (choice, c) from R with c ∈ {0, 1}, store c. Ignore further messages of the

type (choice, ·) from R.
• When both messages from S and R have been received, send (receipt transfer,⊥) to A

and to all parties except R, and send (receipt transfer,mc) to R.
• When receiving (unveil message, b) from S with b ∈ {0, 1} and m0,m1 are stored,

send (unveil message, b,mb) to A and to all parties. Ignore further messages
(unveil message, b) from S.

• When receiving (unveil choice) from R and c is stored, send (unveil choice, c) to A and
to all parties. Ignore further messages from R.

When receiving
(
abort,C ′

)
from A with C ′ ⊆ C , then FnFCOT outputs

(
abort,C ′

)
to all

parties, and then terminates.

The idea is not completely new; Crépeau [Cré90] introduced a committed variant of OT under
the name of Verifiable OT, which was later renamed to Committed Oblivious Transfer (COT)
[CvT95]. There, the sender inputs two committed messages (m0,m1), and the receiver inputs the
choice bit c. The receiver obtains the committed mc and can use this for zero-knowledge proofs,
without knowing m1−c and without revealing c in the process.

Our ideal functionality FnFCOT is a novel extension of conventional OT, which turns out to be
quite useful in the setting of Identifiable Abort.

This n-party extension of OT is motivated by the insight that the results of [Kil88; IPS08]
do not work with IA: in the construction of [IPS08], a party P notices when another party P′
misbehaves towards P. However, a third party P∗ need not necessarily notice such misbehavior of
P′ towards P. Hence parties cannot convince others of the identity of a disruptor, leaving those
constructions only with Anonymous Abort. In Section 3.1, we show that FCOT is SFE-complete
in the setting of IA. The proof is based on the construction from [IPS08], but replaces (2-party)
OT-calls with (n-party) FCOT-calls. When a party notices any misbehavior, it can demand other
parties to open their inputs, thus enabling all parties to retrace the disruptor’s misbehavior without
leaking any information on the parties inputs thanks to their secret sharing.

3 Relations between Functionalities

In this section, we investigate which of the aforementioned functionalities imply each other. Mainly,
we show that FnFCOT and FnSFE are equivalent in the IA-setting, and that FnFCOT suffices to contruct
FnCOM.

3.1 SFE-Completeness of FCOT

In this section, we provide the proofs that Fully Committed Oblivious Transfer (FCOT) and Secure
Function Evaluation (SFE) are equally powerful in the setting of IA, meaning that they can be
constructed from each other. This implies that constructing n-party SFE from (n− 1)-party SFE
and an n-party broadcast comes down to the more intuitive construction of n-party FCOT from
(n− 1)-party FCOT and a broadcast.

Lemma 8 (SFE  FCOT). Let n be any number of parties. There is a protocol πnFCOT in the
{FnSFE}-hybrid model that securely UC-realizes FnFCOT.

Proof. We denote the set of all parties by [n] = {S,R,W1, . . . ,Wn−2}. Further on, we use a seamless
type conversion from algebraic numbers to bit strings when necessary, in the form of Z2N

∼= {0, 1}N .
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We present a protocol that lets the sender use several secret sharings to share its inputs. We
use a secret sharing to create n shares for every input. In fact, we do this r times, ending up in a
total of r · n shares for every input.

Set the number of shares to r ∈ ω
(
n2 + n lnλ

)
. For i ∈ [r], the sharings

⊕n
j=1 µ

0
j,i =: m0 and⊕n

j=1 µ
1
j,i =: m1 distribute the two messagesm0 andm1, and the sharing

⊕n
j=1 γj,i := c distributes

the choice bit c. The number of sharings r is chosen such that the detection of a share alteration
by all honest parties becomes overwhelming. The receiver R obtains sufficiently many shares to
reconstruct one message, but not enough to reconstruct both. The witnesses Wi obtain sufficiently
many shares to detect a manipulation of the shares in the unveiling-phase, but not enough to learn
any message just from the OT-phase. To achieve this, all the witnesses chose one of the n shares
for all of r sharings randomly.

First, we describe the protocol πnFCOT that utilizes four calls to FnSFE. The first instance, FnSFE[f ],
is used for the OT. The next two instances FnSFE

[
g0

S
]
and FnSFE

[
g1

S
]
are used for the unveiling of

the sender’s message m0 and m1, respectively. The last instance FnSFE[gR] is used for the unveiling
of the receiver’s choice bit. The functions are defined as follows:

f : (xS, xR, x0, ..., xn−3) 7→ (yS, yR, y0, ..., yn−3, ∆)

gbS :
(
ubS
)
7→
(
ε,∆′ = ubS

)
gR : (vR) 7→ (ε,∆′′ = vR)

for both b ∈ {0, 1}. The function f provides private outputs for each party and public output ∆.
The inputs and outputs are defined as follows:
xS :=

((
µ0
j,i, µ

1
j,i

)
j=1..n, ν

i
S

)
i=1..r

yS :=
(
γνi

S

)
i=1..r

xR :=
((
γj,i
)
j=1..n, ν

i
R

)
i=1..r

yR :=
(
mc,

(
µ0,i
νi

R
, µ1,i
νi

R

)
i=1..r

)

xl :=
(
νil
)
i=1..r

yl :=
(
µ0,i
νi

l

, µ1,i
νi

l

, γνi
l

)
i=1..r

ubS :=
(
µbj,i
)
j=1..n,i=1..r

∆ := (∆S, ∆R)
vR :=

(
γj,i
)
j=1..n,i=1..r

The common output ∆S takes the value 1, if the encoded bits of all r sharings of m0 are equal
(m0 =

⊕n
j=1 µ

0
j,i for all i ∈ [r]) and all encoded bits of the sharings of m1 are equal. Otherwise ∆S

is 0. Analogously, ∆R is 1, if the sharings of c are consistent and 0 otherwise. Formally, the shares
are bits µ0

j,i, µ
1
j,i, γj,i ∈ {0, 1} and the share choices are numbers νi ∈ Zn. Now that we have the

definitions of the SFE-subfunctionalities we proceed to describe the actual protocol. We assume
inputs S(m0,m1), R(c) and Wl(ε) with empty string ε. Additionally, each party implicitly obtains
a unary representation of the security parameter 1λ.

The protocol looks as follows:

On input (local start) from Z to Wl, the witnesses choose their shares by drawing r indices(
νil
)
i∈[r]

$← Zrn, to determine which share of each sharing of the other parties’ inputs will be
obtained by Wl.

On input (messages,m0,m1) from Z to S, S produces r independent, additive n-sharings of
m0 and m1: (µ0

j,i, µ
1
j,i)j∈[n],i∈[r]

$← Z2r·n
n such that for all i ∈ [r] it holds that

⊕
j∈[n] µ

0
j,i =

m0 and
⊕

j∈[n] µ
1
j,i = m1, where j is the index of the share within a sharing and i is the

index of the sharing itself. Then, S draws r numbers
(
νiS
)
i∈[r]

$← Zrn, which determine the
shares of the receiver’s choice bit S obtains. S inputs xS into FnSFE[f ].

On input (choice, c) from Z to R, R produces r independent, additive n-sharings of c:
(γj,i)j=1∈[n],i∈[r]

$← Zr·nn such that for all i ∈ [r] it holds that
⊕

j=1∈[n] γj,i = c, where
j is the index of the share within a sharing and i is the index of the sharing itself. Then,
R draws r numbers

(
νiR
)
i∈[r]

$← Zrn, which determine the shares of the sender’s input R
obtains. R inputs xR into FnSFE[f ].

On output ∆S = 0 or ∆R = 0 from FnSFE[f ] to P, where P ∈ [n], the party P aborts with
output

(
abort,C ′

)
, where S ∈ C ′ ⇐⇒ ∆S = 0 and R ∈ C ′ ⇐⇒ ∆R = 0.
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On output (output, yR, ∆) from FnSFE[f ] to R, R outputs (receipt transfer,mc).
On output (output, yP, ∆) from FnSFE[f ] to P, where P ∈ [n] \ R, party P outputs

(receipt transfer,⊥).
On input (unveil message, b) from Z to S, if (messages,m0,m1) has been received, S inputs

the previously generated ubS into FnSFE
[
gbS
]
.

On output ubS from FnSFE
[
gbS
]
to P, where P ∈ [n] \ S, P checks the consistency with all

previously obtained shares. If all shares match and are consistent, i.e. across all i ∈ [r]
the sharings encode the same bit, P outputs (unveil message, b,mb). Otherwise, P outputs
(abort,S).

On input (unveil choice) from Z to R, if (choice, c) has been received, R inputs vR into
FnSFE[gR].

On output vR from FnSFE[gR] to P, where P ∈ [n] \ R, P checks the consistency with their
previously obtained shares. If all shares match and are consistent across i ∈ [r], P outputs
(unveil choice, c). Otherwise, P outputs (abort,R).

We now give a description of the simulator. At the onset of the simulation, the simulator
follows the program of all uncorrupted witnesses on input (local start) and computes their input
xl according to the protocol and inputs it into the simulated FnSFE in the name of Wl.

On input (receipt messages,⊥) from FnFCOT, the simulator gives local input to all uncor-
rupted simulated parties as follows:
The simulator gives the simulated S local input (messages, 0, 0). Thus, S computes xS
according to the protocol and sends it to FnSFE[f ].
The simulator gives the simulated R local input (choice, 0). Thus, R computes xR according
to the protocol and sends it to FnSFE[f ].

On output (receipt output) from FnSFE[f ], the simulator reports (receipt output) to Z.
If the common output of FnSFE[f ] contains ∆S = 0 or ∆R = 0, the simulator aborts FnFCOT
with output

(
abort,C ′

)
where S ∈ C ′ or R ∈ C ′.

On output (unveil message, b,mb) from FnFCOT, the simulator fabricates input ubS for the
uncorrupted simulated S to send as input into FnSFE

[
gbS
]
. The simulator knows the indices of

all shares of µ0 and µ1 that have been chosen by all other parties in the OT-phase. Either
S learned the choice indices from a corrupted party as local input or it generated the choice
indices itself for the uncorrupted simulated parties. Because each sharing has n additive
shares, there is at least one index ν′

i ∈ Zn for each i ∈ {1, ..., r} whose share is known
by no party (recall that only (n− 1) shares per sharing have been distributed). Hence, the
simulator flips the bits at the correct index for each i ∈ [r] if necessary, that is, iff mb = 1;
recall that µ0 and µ1 encode 0. Denote the manipulated sharings by µ′0 and µ′1; they encode
m0 resp. m1. Finally, the simulator lets S input u′S

b (computed from µ′
b) into FnSFE

[
gbS
]
.

Because the manipulations of the sharings are chosen specifically such that no party yields
a share that is manipulated, no party will notice the equivocation and accept the unveiling
by outputting (unveil message, b,mb).

On output (unveil choice, c) from FnFCOT, the simulator fabricates input uR for the uncor-
rupted simulated R to input into FnSFE[gR]. Here, the simulator proceeds completely analo-
gous to the previous case of the unveiling of the sender’s messages. The same argumentation
regarding the acceptance of the fabricated sharing applies.

On input
(
abort,C ′

)
for FnSFE[·], the simulator aborts FnSFE[·] as well as FnFCOT with(

abort,C ′
)
.

Finally, we describe the simulator’s behavior when handling messages from and to malicious
parties. In general, messages between hybrid functionalities and the environment are forwarded by
the simulator. For simplicity, we assume r to be an uneven number.

On input (input, xS) from corrupted S to FnSFE[f ], the simulator lets S input
(messages,m0,m1) into FnFCOT, where m0 and m1 are the respective majority of the r
encoded bits mb,i =

⊕n
j=1 µ

b
j,i. The input (input, xS) is naturally passed on to FnSFE[f ].

On input (input, xR) from corrupted R to FnSFE[f ], the simulator lets R input (choice, c) into
FnFCOT, where c is the majority of the encoded bits ci =

⊕n
j=1 γj,i. The input (input, xR)

is naturally passed on to FnSFE[f ].
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On input
(
input, ubS

)
from corrupted S to FnSFE

[
gbS
]
, the simulator checks consistency of the

sharings in ubS with the sharings in xS. If they are consistent, then the simulator lets S input
(unveil message, b,mb) into FnFCOT, otherwise the simulator aborts FnFCOT with output
(abort,S).

On input (input, uR) from corrupted R to FnSFE[gR], the simulator checks consistency of the
sharings in vR with the sharings in xR. If they are consistent, then the simulator lets R input
(unveil choice) into FnFCOT, otherwise the simulator aborts FnFCOT with output (abort,R).

It remains to be shown that the simulator does provide an indistinguishable view for any input
of Z. If inconsistent sharings for m0 are fed into FnSFE[f ], then, upon termination of FnSFE[f ],
all honest parties certainly abort with output (abort,S) due to the common output ∆. Also,
if inconsistent sharings for m0 are unveiled in FnSFE[gS], then all honest parties certainly abort
with output (abort,S), as all parties can check their consistency themselves. Consequently, a
discrimination between the hybrid and ideal execution can only occur when the input sharings and
the unveiled sharings are (internally) consistent but unequal. Fortunately, in this case all parties
notice (with overwhelming probability) that the original input m′0 and the unveiled value m0 are
not equal. This can be shown as follows: First note that in each of the r sharings at least one share
must have been altered, otherwise the sharings are inconsistent. We denote this fact as Z ≥ 1
to indicate at least one alteration in each sharing. Now, let Hi

P be a boolean random variable
and Hi

P = 1 be the event that the i-th share index of (honest) party P matches the index of
the maliciously altered share, else Hi

P = 0. We get the probability Pr
[
Hi

P
∣∣ Z ≥ 1

]
≥ 1/n. Let

NP :=
∨r
i=1 H

i
P = ¬

∧r
i=1 ¬Hi

P be the boolean random variable that describes whether P notices
an alteration in any of the r sharings. We provide an upper bound for the probability NP = 1 by

Pr[NP | Z ≥ 1] = 1− Pr[¬NP | Z ≥ 1]

= 1− Pr
[
r∧
i=1
¬Hi

P

∣∣∣∣∣ Z ≥ 1
]

= 1−
r∏
i=1

Pr
[
¬Hi

P
∣∣ Z ≥ 1

]
(2.1)
≥ 1−

r∏
i=1

(1− 1/n)

= 1− (1− 1/n)r

(2)

where (2.1) uses the fact that the different Hi
P are independent of each other. Let the number

of honest parties be h. The final probability p that all honest parties notice any fault is then
greater than (1− (1− 1/n)r)h which can be bounded by p > (1− (1− 1/n)r)n. We apply some
transformations to the desired condition p ∈ owhl(λ) and get the sufficient condition

1− p ≤ 1− (1− (1− 1/n)r)n

= 1−
n∑
i=0

(
n

i

)
(−1)i(1− 1/n)ri

=
n∑
i=1

(
n

i

)
(−1)i+1(1− 1/n)ri

≤

∣∣∣∣∣
n∑
i=1

(
n

i

)
(−1)i+1(1− 1/n)ri

∣∣∣∣∣
≤

n∑
i=1

(
n

i

)∣∣∣(−1)i+1(1− 1/n)ri
∣∣∣

=
n∑
i=1

(
n

i

)
(1− 1/n)ri

≤
(
n

n/2

) n∑
i=1

(1− 1/n)ri

(3)
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From the partial geometric sum over (1− 1/n)r, it follows that:

1− p =
(
n

n/2

)
(1− 1/n)r · ((1− 1/n)r)n − 1

(1− 1/n)r − 1

≤
(
n

n/2

)
(1− 1/n)r

!
∈ negl(λ)

(4)

Since
(
n
n/2
)
∈ Θ(2n/

√
n) the condition

(
n
n/2
)
(1− 1/n)r ∈ negl(λ) is in particular fulfilled by r ∈

ω
(
n2 + n lnλ

)
. We write r = n(n+ lnλ)w with w ∈ ω(1) with respect to λ →∞, thus the above

claim follows from

2n/
√
n · (1− 1/n)n(n+lnλ)w ≤ 2n · (1− 1/n)n(n+lnλ)w

= 2n · ((1− 1/n)n)(n+lnλ)w

≤ 2n · (1/e)(n+lnλ)w

= 2n · e−nwλ−w

≤ λ−w

∈ negl(λ) .

(5)

Although our bound for r is probably not tight, we already see that the protocol is at most
quadratic in n and logarithmic in λ.

ut

Before showing the other implication we first recall the IPS-compiler.

The IPS-Compiler For the sake of completeness, we provide a minor introduction of the so-called
IPS-compiler [IPS08] that is required to understand our proof for SFE-completeness of FCOT.

The IPS-compiler provides n-party MPC from two-party OT against arbitrarily many malicious
parties in the Anonymous Abort setting. Thereby, two separate protocols with different security
guarantees are combined: The so-called outer protocol Π provides security against a malicious
adversary but only for an honest majority t < n/2, while the inner protocol ρ is secure against
arbitrarily many semi-honest parties.

Instead of performing a single MPC directly on the inputs of all n parties, multiple instances
of the inner protocol are run with secret shares of each party’s input. The key idea is to deploy a
watchlist with which parties can pre-compute the to-be-received messages of other parties in some
instances of the inner protocol ρ, thereby detecting any misbehavior. The instances of the inner
protocol are also called servers. In the outer protocol Π, the clients make black-box use of the inner
protocol, resulting in a client-server model. For each server, each party draws a long one-time pad.
When a party inputs a message into the i-th server, it also encrypts the message with successive
parts of the corresponding one-time pad and broadcasts it on its watchlist broadcast channel of the
i-th server. At the beginning of the protocol each party offers each other party a certain fraction of
its own one-time pads via OT. Thus, a party P that is in possession of the one-time pad of another
party’s P′ can read all messages that P′ input into the i-th server. If a party is in possession of all
one-time pads for the i-th server, it can read all messages input into the i-th server. Because the
party knows the complete state of the server, it can pre-compute the messages that it will receive
in advance. If the messages the i-th server actually received deviate from the own pre-computation
based on the watchlist broadcast channel, the affected server must be corrupted and the party can
abort. In this manner, the watchlist mechanism ensures that the servers execute the inner protocol
correctly, hence it suffices for ρ to be secure only against semi-honest adversaries; either sufficiently
many servers are correct or the computation is aborted.

The parameters for the secret sharing are chosen such that the probability for unnoticed devi-
ation from the inner protocol is negligible and no information leaks from the watched servers; for
further details we refer to [IPS08].

A major (necessary) disadvantage of this compiler is that a party that notices malicious mis-
behavior cannot necessarily identify the cheater, much less convince other parties of the protocol
deviation, if the misbehavior occurs on a server that is not on their watchlist.
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Our proofs mitigate this disadvantage by replacing two-party OT FnOT with Fully Committed
Oblivious Transfer FnFCOT. This allows the party that detects the misbehavior to post hoc request
the unveiling of all communication regarding the affected server and the corresponding one-time
pads such that all parties can retrace the inner protocol and identify which party made inputs
to the affected server that do not match the value on the watchlist broadcast channel. Note that
[CL14] obtain MPC with IA by making non-black-box use of the GMW-compiler [GMW87]. Now
we can show the other implication.

Lemma 9 (FCOT  SFE). Let n be any number of parties. There is a protocol πnSFE in the
{FnFCOT}-hybrid model that securely UC-realizes FnSFE.

Proof. Here, we prove that there exists a {FnFCOT}- hybrid protocol Φ that securely UC-realizes
FnSFE. Again, for arbitrary n, denote the set of parties by [n].

We use the IPS-compiler from [IPS08], which compiles two protocols Π and ρ into an
{
F2

OT
}
-

hybrid protocol Φ. There, the outer protocol Π can be formulated in the client-server model and
must be secure against a constant fraction of malicious parties, say t ≤ n/4. The inner protocol
ρ needs to be secure against arbitrarily many, semi-honest (passive) corruptions; it may be in the{
F2

OT
}
-hybrid model. Both protocols depend on the actual function f that is to be evaluated. The

combined protocol Φ then securely realizes FnSFE with Anonymous Abort, iff the outer protocol Π
securely realizes FnSFE. This holds both in the computational and the statistical case.

Their result cannot be directly transferred into the setting of IA. However, if we replace F2
OT-

calls with to FnFCOT, we claim that their result still holds. When a party P notices misbehavior in
server i, it can publicly demand the unveiling of all communication corresponding to server i. If
any party refuses to unveil, it must be malicious and all honest parties can abort with said party.6
If all inputs into server i have been unveiled, then either all parties can retrace any deviation from
the correct protocol transcript, or no actual misbehavior has occurred, then the initial party P
demanded the unveiling without justification. Either way, at least one party can be identified.

Additionally, we must ensure that unveiling all inputs of a single server does not compromise
the privacy to the inputs of the outer protocol Π. In the following, we formalize this idea: Let
n be the number of parties (clients) of the outer protocol. In the original paper [IPS08] there
are m ∈ Θ

(
n2λ

)
servers. Each party gets to select λ watchlists from each party, such that each

party can see all in- and outcoming communication of λ servers. In total, at most a fraction of
nλ/n2λ = 1/n of all servers state is known by any set of parties. Because the used secret sharing
requires a constant fraction of shares to reconstruct the original input, no coalition of parties can
learn the input of another party. Now, if misbehavior occurs and the state of an additional server
is unveiled any coalition of parties knows at most nλ+1

n2λ ≤
2
n , which is still less than a constant

fraction.
To make this more formal, we consider the function f that presents a boolean circuit in NC1.

Then, using the BGW-protocol [BGW88] for Π and the GMW-protocol [GMW87] for ρ, we obtain
a protocol Φ that securely realizes FnSFE[f ] against arbitrarily many corruptions with Anonymous
Abort. Now, we replace all calls to F2

OT with calls to FnFCOT. OT-calls are made in the distribution
phase of the watchlist mechanism and in the inner protocol, in particular the outer protocol stays
unchanged. Call the new protocols Φ′ and ρ′. We require that all communication in the new inner
protocol is processed via FCOTs. This is not an additional restriction because a secure-channel can
be trivially realized by OT and thus by FCOT. However, it enables us to unveil all communication
of the inner protocol upon abort.

If not aborted, the original protocol Φ and the new protocol Φ′ yield exactly the same results.
Note that the original simulator S and the new simulator S ′ learn exactly the same information,
if no abort occurs.

In the original protocol, if any party aborts, then the original simulator S also abort the ideal
functionality FnSFE[f ]. The new simulator S ′, however, must provide a set of corrupted parties to
abort the ideal functionality FnSFE[f ]. Hence, all simulated parties in the simulated new protocol Φ′
must provide output

(
abort,C ′

)
. The new protocol ensures this in the following way. Whenever a

party P aborts in the original protocol Φ due to a malicious message from the i-th server, it, instead,
broadcasts (challenge, i). Then, all parties unveil the FCOTs used to distribute their watchlist
one-time pads and all FCOTs in the i-th instance of the inner protocol (i-th server). More precisely,
6 Our synchronous model allows parties to register when a party denies unveiling.
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we actually assume a
(
n2λ
λ

)
-FCOT for each party which can be canonically constructed from

(2
1
)
-

FCOTs. Then each choice index in the
(
n2λ
λ

)
-FCOT corresponds to multiple choice bits in the(2

1
)
-FCOTs in a priori known manner, hence all

(2
1
)
-messages mc associated with the i-th watchlist

can be unveiled.
Consequently, all parties learn the complete in- and outcoming messages of the i-th server

but no additional communication of any other server. Thus each party can retrace the complete
computation of the i-th server and register any deviation from the protocol. If the aborting party
P indeed received a malicious message on the i-th server, then all party notice this misbehavior
and identify the disruptor party P. They then abort with

(
abort,P′

)
. If the aborting party lied

about receiving a malicious message on the i-th server, then the other parties can retrace that all
message that P received were indeed correct, and they will abort with (abort,P). Either way, the
simulator will abort the ideal functionality FnSFE with the corresponding abort output.

Note that because the abort happens at exactly the same time as in the original protocol,
the new protocol leaks exactly as much information as the original one which is secure. Also, by
unveiling the state of the corrupted server i, the adversary does not learn anything that it did not
know beforehand. ut

3.2 Global Commitment from Fully Committed Oblivious Transfer

We present a protocol, which realizes FnCOM in a FnFCOT-hybrid model, and thus prove the following
lemma:

Lemma 10. There is a protocol πnCOM that securely UC-realizes FnCOM in the {FnFCOT}-hybrid
model:

FnFCOT  FnCOM

Proof. We assume our n parties for FnCOM to be [n] := (C,R1, . . . ,Rn−1), our n parties for FnFCOT
are [n]′ := (S,R,W1, . . . ,Wn−2). We start by sketching the protocol:

On input (commit,m) for m ∈ {0, 1} from Z to C, C acts as R in FnFCOT and inputs
(choice,m).

On input (receipt commit) from FnCOM to Ri for i ∈ [n− 1], all receiver for i 6= 1 ignore the
message. R1 acts as the sender in FnFCOT: it draws one random message m′ $← {0, 1} and
sends (messages,m′,m′) to FnFCOT.

On input (unveil) from Z to C and (receipt transfer,mc) from FnFCOT to C, C sends
(unveil choice) to FnFCOT.

On input (unveil choice, c) from FnFCOT to any receiver Ri for i ∈ [n− 1], Ri outputs
(output, c).

A simulator for this case is straightforward, since all the secrets are sent to the hybrid func-
tionality FnFCOT:

1. If C is corrupted:
On input (choice, c) from C to FnFCOT, S sends (commit, c) to FnCOM in the name of C.

2. If C is honest:
On input (receipt commit) from FnCOM, S simulates FnFCOT according to the code of SFCOT
with arbitrary input.

3. If Ri for i ∈ [n] is corrupted:
On input (messages,m0,m1), if mc /∈ {0, 1}, S aborts with output R1. Else, S reports
(receipt transfer) to Z.

4. If Ri for i ∈ [n] is honest:
S acts according to the protocol of Ri.

5. If C is corrupted:
On input (unveil choice) from R to FnFCOT, S sends c to all Ri for i ∈ [n− 1].

6. If C is honest:
On input (unveil, c) from FnCOM, S reports message (unveil choice, c) to all Ri.
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The simulator trivially provides an indistinguishable view:

• Simulation of FnFCOT follows from simulation-based security.
• The only secret is the to-be-committed bit m, as the receivers Ri obtain no secret input,
meaning that S can execute their protocol.

• Against an honest committer, S just has to send messages from FnFCOT accordingly and
pretend that C used the correct choice bit – which does not have to be known in advance,
as (unveil choice, c) is only required after FnCOM unveiled c.

• Against a corrupted committer, S learns c via simulation of FnFCOT.

Thus, the claim follows. ut

4 Conflict Graph

We elaborate on our CG technique introduced in Section 1.3. The main idea of the CG is that parties
can publicly declare conflict with any other party if misbehavior is detected. Once sufficiently many
conflicts have been declared, n-party Identifiable Abort, as introduced in [IOZ14], becomes possible.

We introduce an ideal functionality FnCG which administrates accusations of misbehavior during
the execution. Since the functionality FnCG merely abstracts away the publication and retaliation of
conflicts via broadcasts, we postpone the detailed construction to Section 5 and focus on its usage
here. Before going into detail about the correct usage of FnCG we want to reiterate the relevant
graph properties for IA.

The novel utility of the CG lies in the connection of (unanimous) identifiability of malicious
parties to verifiable properties of the CG G. While formal definitions can be found in Definitions 2
and 3, here we want to go into more detail about the relation between the those graph properties.
First let us briefly recall the two properties:
• t-settledness: Intuitively there is at least one fixed party present in all possible explanations
(MVCs) of size ≤ t. This means that t-settledness of a Conflict Graph is a minimal requirement
to identify at least one malicious party with absolute certainty. Hence, this suffices to convince
both participants and outsiders that a party is a disruptor.

• Biseparation: The graph contains two partitions, where each party in one partition is in conflict
with every party from the other partition. Given a biseparated graph, participants can identify
disruptors as all parties in the opposite partition, but outsiders might not know which partition
contains honest parties.
We now introduce three important results consolidating the relevance of the Conflict Graph in

the IA-setting, informally stating the following: for any protocol π that implements a functionality
with IA, (1) a biseparated Conflict Graph G of π implies IA of π is possible, (2) Identifiable
Abort of π results in a biseparated CG, and (3) π can be augmented with the CG-functionality
FnCG. By combining Items (1) and (2), we can conclude that, in a sense, Identifiable Abort and
biseparation of G are equivalent.

Item (3) enables us to transform any secure protocol into one which uses the CG such that our
results apply. This allows us to only quantify over protocols that use the CG correctly.

Definition 7 (Correct usage of CG). A protocol π in the FnCG-hybrid model uses the Conflict
Graph correctly, if it is guaranteed that no honest–honest–conflicts occur, and whenever a subfunc-
tionality with parties S ⊆ [n] is identifiably aborted with disruptors D ⊂ S, the honest parties in S
declare conflicts with D.

Note that the first requirement may include protocol-specific conflicts, for which it must be ensured
that a conflict is only issued if one party really is corrupt. The second requirement, namely the
conflict declaration with disruptors, causes the subgraph on the participating parties S to be
biseparated; similar to the uni-/multi-abort, honest parties in S declare conflict with D and all
parties that do not declare conflict with D.

Our results do not apply to protocols that are not in the FnCG-hybrid model or that use FnCG
arbitrarily. However, we show that this is not a restriction: each protocol can be augmented with
FnCG in a trivial manner such that our results apply to the augmented protocol.
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Lemma 11 (Conflict Graph augmentation). Let n be the number of parties in [n] of which
at most 0 ≤ t < n are malicious. Let π be a protocol that securely UC-realizes a functionality Fn
in some model M excluding FnCG. Denote by π ′ the M ∪ {FnCG}-hybrid protocol that is identical
to π with the addition that it uses FnCG correctly according to Definition 7. Then π ′ also securely
UC-realizes Fn, i.e. π ′ ≥ F .

Proof. The intuition of this proof is that the information provided by FnCG is only useful for honest
parties. In other words, the environment can infer the Conflict Graph from its own behavior, thus
FnCG provides no advantage for the environment in distinguishing a real execution and a simulation.

Suppose, for the sake of contradiction, that there exists an environment Z ′ which distinguishes
protocol executions of π ′ from simulated ones. Z ′ can obtain information from FnCG by letting
the dummy adversary issue a query to FnCG in the name of any corrupted party. Hence Z ′ cannot
directly be used to distinguish π from its simulations.

We define a new environment Z which internally runs Z ′ and supplies it with the necessary
information from a simulated FnCG. To this end, Z starts with an empty CG G := ([n],E) with
E := ∅. Whenever Z obtains (abort,D) from any corrupted party for any subfunctionality on
S ⊆ P, the environment Z biseparates its simulated CG G on S between D and S \ D. When Z ′
queries FnCG, the outer environment Z supplies Z ′ with G. The simulated CG is identical to the
one provided by FnCG in π ′ by requirement on π ′. If a corrupted party declares a conflict, then Z
also incorporates this conflict into its simulated CG.

Using the inner environment Z, the outer environment Z ′ can distinguish π from its simulations;
this is a contradiction to our requirement that π ≥ Fn. ut

This preliminary result already provides a quite interesting high-level interpretation: for honest
parties it is always the best strategy to immediately publicize their conflicts. In particular there
is no use in deferring conflicts in an attempt to bring the adversary in more conflicts with other
honest parties later on. In other words, the CG only helps honest parties.

Now that we have seen that all protocols can easily be augmented with FnCG, we shall proceed
to show that Identifiable Abort corresponds to biseparation of the corresponding Conflict Graph.

Theorem 6 (Biseparated Identifiable Abort). Let n be the number of parties of which at
most 0 ≤ t < n are malicious. Let π be a protocol that securely UC-realizes a functionality Fn with
Identifiable Abort in an {Fm,FnCG}-hybrid model with m ≤ n. Let π use FnCG correctly according
to Definition 7. Upon abort, the Conflict Graph G of π must be biseparated.

Proof. The case of n = 2 is trivial, henceforth we assume n ≥ 3.
We carry out our proof for Uni-Identifiable Abort, however, the same reasoning applies for

Multi-Identifiable Abort. For the sake of contradiction, let π be a protocol that was aborted,
where honest parties settled on some party P, but where the Conflict Graph is not biseparated.
Let Z be the environment that caused the CG. We prove that the lack of biseparation allows for
a different environment Z ′ that causes the same CG: It lets honest parties output P, but where
P is honest. Since no simulator can abort Fn with an honest party, this directly contradicts the
presupposition that the protocol π securely realizes Fn.

All honest parties unanimously settling for a disruptor P against environment Z implies that
there must be some mechanism they used. We model this mechanism as a selector function Sπ ;
honest parties use the output of Sπ to agree on a common disruptor D.

We show that such an agreement, hence such a function, cannot exist: the original environment
Z caused the given CG-transcript τ where party P was accused of cheating. We construct an
environment Z ′ which creates the same Conflict Graph transcript, but in a setting where P is
honest.

Let Sπ : [n] × τ → 2[n] with (P, τ) 7→ D for D ⊆ [n] be the selector function that specifies the
identified disruptor (set) for each (honest) party P, given the set of inputs to FnCG as τ . Without
loss of generality, let |D| = 1. The selector Sπ must only depend on the transcript of all conflicts
and the identity of the given party itself. Otherwise, the environment Z could induce two different
abort-parties for two honest parties.

We denote by C the set of parties corrupted by Z. Correctness dictates that P ∈ C , meaning
that the disrupter all honest parties agreed on really is malicious; otherwise, we are done. We
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Fig. 4: Visualization of an exemplary set of corrupted parties and an assumed honest parties agreement on
D for an environment Z0 on the left. The right side shows another, specifically constructed set of corrupted
parties by an environment Z1 which leads to honest-honest-accusations despite having the same Conflict
Graph transcript.

construct a different environment Z ′ that causes the same transcript τ of the Conflict Graph G.
By definition of Sπ , this would lead to an identification of the same party P.
Z corrupted up to t parties C ∈ M (G, t). Denote the complement set of honest parties by

H := [n] \ C .
Without losing generality of our proof,7 we can assume that the environment Z only lets

corrupted parties D ∈ C broadcast conflicts as a retaliation; that is, it broadcasts conflicts
(conflict,P) against an honest party P in the name of D only after P has publicly declared
a conflict (conflict,D).

Since we assume G to be not biseparated, there exists an other possible corrupted set of parties
(a different MVC on G) C ′ = [n] \H ′ ∈ M (G, t) with C ∪C ′ 6= [n], or equivalently H ∩H ′ 6= ∅. If
D ∈ Sπ (P, τ) ⊆ C ∩H ′ for all P ∈ H , then π cannot securely realize Fn. Here the corrupted MVC
C ′ is chosen such that the identified party against Z is explicitly excluded.

Thus, we can fix a target party Pt in H ∩ H ′, which by requirement will select D ∈ Sπ (Pt, τ)
against both environments, despite D being honest when playing with Z ′. The transcripts τ against
both environments are equal, hence the selection function Sπ has the same output distribution
against both environments; we can safely assume that the two selected parties must also be equal.
Fig. 4 depicts an exemplary visualization of the corruption sets.

Against the environment Z ′, an honest party is identified by at least one honest party. We
know that if the above conditions hold, that is, there exists a MVC C 1 with H 0 ∩ H 1 6= ∅ and
D ∈ C 0 ∩H 1, π cannot securely realize Fn.

Thus, we have to show that such an MVC actually exists. If it does not exist, then for all
feasible explanations C ′ ∈ M (G, t), it holds that C ∪ C ′ = [n], or if for all Pt ∈ H , it holds that
Sπ (Pt, τ) ⊆ H ∪ C ′. The former is equivalent to C ′ ⊇ H , which contradicts the initial assumption
that G is not biseparated: If C ′ = H = [n] \ C are both MVCs, this would imply a biseparated
Conflict Graph with partitions C and C ′. If C ′ ) H , it would follow that H is a valid explanation,
that is, H ∈ M (G, t), but of smaller size. Hence, we get that C ′ is not minimal and thus is not
contained in M (G, t). Both cases lead to a contradiction with the initial assumption.

Now that we have shown that there exists a set of corrupted parties C ′ ∈ M (G, t) that fulfills
C ∪C ′ 6= [n] and Sπ (P, τ) ⊆ C ∩H ′ for all P ∈ H , we can define an environment Z ′ that corrupts
C ′ and acts such that it produces τ before the abort.

We conclude our proof by showing that Z ′ really can create an equivalent transcript τ . The
transcript τ of the Conflict Graph G = ([n],E) is essentially an ordered list of (directed) edges
(ej)j=1...m. To keep the information which party broadcasts the conflict, the edges in the transcript
are directed, while the edges in the Conflict Graph are undirected. This mirrors the fact that the
process of the Conflict Graph creation yields more information than the final Conflict Graph.
7 Our proof works by contradiction, meaning that existence of two environments suffices. Hence, this is
not a restriction since we argue that there exists an environment Z0.
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Regardless of the environment, each edge of the transcript ej = (uj , vj) contains at least one
corrupted party. When a conflict ej arises in the protocol execution with Z, the environment Z ′
behaves as follows:
If uj ∈ C ∩ C ′, Z and Z ′ behave identically.
If uj ∈ C ∩H ′, then by assumption, Z will only declare conflict ej as a retaliation, that is, after

(vj , uj) has been issued, to match the behavior of an honest party. Therefore Z ′ lets vj broadcast
(conflict, uj) such that the retaliation ej follows subsequently from the honest party uj .

If uj ∈ H ∩ C , Z ′ lets uj broadcast (conflict, vj). If vj is honest, it will retaliate; if it is not, Z ′
lets vj broadcast the retaliation (conflict, uj).

If uj ∈ H ∩H ′, Z and Z ′ behave identically.
The transcript produced by Z ′ is therefore identical to the one from Z. ut

5 Conflict Graph from Broadcast

Here we provide the full protocol πnCG alongside the proof, that πnCG really realizes FnCG in the
{FnBC}-hybrid model, which proves the following lemma:

Lemma 12. Let n be the number of parties of which at most 0 ≤ t < n are malicious. There is a
protocol πnCG in the {FnBC}-hybrid model that securely UC-realizes FnCG:

FnBC  FnCG (6)

Proof. We proof our statement by providing a protocol description for πnCG and prove it secure by
providing a simulator. We have n parties [n] = {P1, . . . ,Pn}. The protocol is given as follows:

Initialize. All parties start with a graph Gi = ([n],E i) with E i = ∅.
On input (conflict,Pi) from Z to Pj , Pj inputs (input, (conflict,Pj ,Pi)) to FnBC.
On input (output, (conflict,Pj ,Pi)) from FnBC, all parties P ∈ [n] add {Pj ,Pi} to E i.
On input (query) from Z to Pi, Pi outputs it own Gi.

A simulator for this protocol is straightforward:

1. If P is corrupted:
On input (input, (conflict,Pj ,Pi)) from P to FnBC, if Pj = P, S calls FnCG with input
(conflict,Pi) in the name of P and sends (output, (conflict,Pj ,Pi)) to all other parties
in the name of FnBC.

2. If P is honest:
On input (conflict,P,Pi) from FnCG to S, S calls FnBC with input (output,
(conflict,P,Pi)) into FnBC in the name of P.

The simulator provides an indistinguishable view for Z:

• Inputs (query) do not have to be handled at all. For honest parties, the parties merely
forward the request and obtain the correct conflict graph G.

• For corrupted parties, S obtains the input via the simulated FnBC. If the broadcasted message
was valid, S inputs this into FnCG, thus causing the same behavior as if an honest party had
called FnCG.

• For honest parties, S only has to simulate the behavior of FnBC.

ut

6 SFE expansion for t ≤ (n − 3)

Before we explain our proof for SFE-expansion, we need three additional lemmas. Each provides
a limit on the maximum number of hybrid instance classes that can be aborted; this implies a
guarantee that either some instance classes have to terminate successfully, or a malicious party
is exposed. Using this guarantee, we provide a protocol that uses n-party broadcast to expand
(n− 1)-party Global Commitments Fn−1

COM to n-party Global Commitments FnCOM. We then use
this n-party commitment as a tool in the expansion of FCOT from (n− 1) parties to n parties.
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Fig. 5: Complementary Conflict Graph for the abort strategy with three honest parties Left: Result of
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. Right: The P3 branch can never be terminated.

Lemma 13 (General subfunctionality abort). Let n be the number of parties of which at
most 0 ≤ t < n are malicious. Let π be an

{
[F ]n−1

,FnCG

}
-hybrid protocol that uses the Conflict

Graph correctly according to Definition 7. If the adversary A aborts more than t subfunctionality
instance classes of cardinality (n− 1), then the Conflict Graph from FnCG is biseparated.

Proof. Denote the set of n parties by [n] = {P1, . . . ,Pn}. Let t′ ≤ t be the actual number of parties
corrupted by the adversary A. W.l.o.g., let H = {P1,P2, . . . ,Pn−t′} be the set of honest parties
and let C = {Pn−t′+1, . . . ,Pn} be the set of corrupted parties.

We now show that, if A aborts too many instance classes, there is a set of parties separated from
all others in the Complement Graph, thus leaving the corresponding Conflict Graph biseparated.
Note that the Complement Graph is initially a complete graph and loses edges, when instance
classes are aborted. 8 Since honest parties are never in conflict, their mutual edges are never
removed. We only consider instance classes of cardinality (n− 1); thus, we have one subfunctionality
instance class for each excluded party P ∈ [n].

We call the set of corrupted parties that aborts a subfunctionality instance class the disruptor
set D. By Di we denote the disruptor set for the subfunctionality instance class that excludes Pi,
and by Z the set of corrupted parties that disrupted no subfunctionality so far. The disruptor
sets corresponding to honest parties D1, . . . ,Dn−t′ alongside with Z partitions C , meaning that
D1 ·∪ · · · ·∪Dn−t′ ·∪Z = C . Z is disjoint with any Di. If there was a nonempty intersection between
two different disruptor sets Di and Dj , then this intersection Iij := Di ∩ Dj would be in conflict
with all parties who participated in [F ]n−1

Pi
and with the ones who participated in [F ]n−1

Pj
, which is

all parties. Thus, Iij would be completely separated in the Complement Graph. Consequently, the
complementary CG loses all edges except the ones between Z and H and for each i ∈ [n− t′], the
ones between Pi and Di. The respective sets internally form a complete graph. See the left side of
Fig. 5 for the case t′ = (n− 3). Until now, only functionalities that omitted honest parties were
aborted.

Recall that the complementary Conflict Graph must be connected in order for its complement
graph not to be biseparated (Remark 1). Therefore, any instance class [F ]n−1

Pi
for any omitted

party Pi ∈ Di ∪ Z can only be aborted by other parties within the same set. Otherwise, it would
be disconnected from its own set Di or Z , respectively. Since it already is disconnected from H , Z
and all other Dj , it would be completely isolated in the complementary Conflict Graph.

Consider, for example, the case where D′ ( D1 \ {Pi} disrupts [F ]n−1
Pi

for some Pi ∈ D1. This
causes all remaining parties Pj ∈ D1 \

(
{Pi} ∪D′

)
to declare a conflict with D′. Thus, those parties

would be separated from D′. Since Pi was excluded from this instance class, it remains connected
to both D1 and D′. This turns the Complement Graph into a tree containing subsets of parties as
nodes, where H is the root node containing all honest parties. The tree has one leaf that contains all
non-disruptors Z and (n− t′) branches, one for each honest party. Again, both H and Z internally
form a complete graph. The abort of any [F ]n−1

Pj
for Pj ∈ Di for an arbitrary i 6= j thus leads

8 For simplicity, neglect the fact that edges could also be removed, if a party obviously deviates from the
protocol.
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to an extension of the respective branch. However, the adversary cannot abort the instance class
corresponding to the leaf node of each branch; there would have to be some party left that could
abort the instance class, which would then cause a conflict, thus separating a subset of the branch
from the rest. As a consequence, at least (n− t′) instance classes must succeed. The adversary can
thus abort at most t′ instance classes, before the Conflict Graph becomes biseparated. ut

We consider two special cases of Lemma 13: one with at least three honest parties (t ≤ n− 3)
and one where the adversary can corrupt all but one parties (t ≤ n− 1).

In the former case, where t ≤ n − 3, only strictly less than t instance classes of cardinality
(n− 1) can be aborted when using the Conflict Graph technique. For this case, Lemma 13 tightens
to:
Lemma 14 (Strong subfunctionality abort). Let 0 ≤ t ≤ (n− 3). If t or more instance
classes of cardinality (n− 1) are aborted, then the Conflict Graph is biseparated.

Proof. It suffices to consider the case for t aborted instance classes. Each of the t disruptors D′ can
have at most two edges in G, namely the party Pi that was omitted in the functionality [F ]n−1

Pi

that D′ aborted and the party Pj that disrupted [F ]n−1
D′ . However, honest parties Pk can still

have up to three neighbors in G, namely two actual honest parties and one disruptor who aborted
[F ]n−1

Pk
. Honest parties can use this fact to determine its malicious neighbor: at least (n− t− 1) of

its neighbors form a clique, while the malicious neighbor has only two neighbors of its own. Thus,
the honest parties can declare a conflict with the party outside of their clique. This leaves the
Conflict Graph such that all parties who are part of the clique in G form one partition, whereas
all disruptors form the second partition. Thus, the Conflict Graph is biseparated. ut

We now consider the case t ≤ (n− 1). Here, Lemma 13 yields:

Lemma 15 (Weak subfunctionality abort). Let 0 ≤ t < n. Either at most (n− 2) instance
classes of cardinality (n− 1) are aborted, or the Conflict Graph is biseparated.

Proof. We only proof the case of a single honest party P. If more parties are honest, less instance
classes can be aborted.

Denote the set of parties by [n] = {P1, . . . ,Pn}; w.l.o.g., assume that P = P1, meaning that P1
is honest. Furthermore, denote the corrupted parties as C .

Let [F ]nP1
be a (n−1)-party functionality that is executed as part of a bigger n-party computa-

tion.9 Upon abort of [F ]nP1
, the subgraph on [n]\{P1} must be biseparated. The only way this does

not result in a biseparated Conflict Graph is if is all other parties are malicious. If one partition
is of size > t, the excluded party P1 can efficiently identify the settled set, causing a completely
biseparated Conflict Graph. If the subgraph on [n] \ {P1} only biseparated, we call the two par-
titions S0 and S1. We now focus our attention to the complement Conflict Graph, G = ([n],E).
Note that biseparation of the Conflict Graph implies that no edge e = (P,P′) ∈ E exists in G such
that P ∈ S0,P′ ∈ S1. However, in our Conflict Graph, P1 is still connected to both partitions. The
instance class of each party in S0 can only be aborted by a subset of S0, since otherwise, a set
of disruptors in S0 of a functionality in S1 would be in conflict with all other parties; the same
argument holds for S1. Every time a functionality omitting a party in any partition is aborted,
that party is removed from the respective set, thereby shrinking the set. Hence, each set must have
at least one party Pi, whose hybrid functionality [F ]n−1

Pi
cannot be aborted, without creating a

biseparated Conflict Graph. ut

We now have proven limits on the maximal number of hybrid functionalities that the adversary
can abort before causing a biseparated Conflict Graph. Using them, we are able to expand the
(SFE-incomplete) functionality Global Commitment (GCOM) from Fn−1

COM to FnCOM.
Our proof for SFE-expansion uses those three lemmas. Recall that it follows from Lemmas 13

to 15, that the Conflict Graph is biseparated when the adversary aborts more than min(t, n − 2)
subfunctionalities.

With those limits, we are able to expand the (SFE-incomplete) functionality Global Commit-
ment (GCOM) from Fn−1

COM to FnCOM.
9 This implies that despite all (n− 1) participants being malicious and thus the functionality technically
never being called, P1 knows that this functionality is executed, and aborts have to be reported correctly,
or the protocol is considered to be terminated successfully.
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Lemma 16 (COM expansion). Let n be the number of parties of which at most 0 ≤ t ≤ (n− 3)
are malicious. There exists a protocol π in the

{
Fn−1

COM,FnBC
}
-hybrid model that securely UC-realizes

FnCOM: {
Fn−1

COM,F
n
BC
}
 FnCOM (7)

Proof. We only consider bit-commitments, which can be canonically extended to string-commitments.
Let the set of parties be [n] = {C,R1, . . . ,Rn−1} and let b be the bit that the committer C commits
to. We present a protocol that uses (n− 1) COM instance classes [F ]n−1

Rl
for each excluded receiver

Rl. Additionally, it uses the Conflict Graph FnCG which can be realized using FnBC. Denote C’s input
to [F ]n−1

Rl
by bl and the abort set for [F ]n−1

Rl
by Dl. Let I0 be the set of instance classes where

bl = 0, let I1 be the set of instance classes where bl = 1, and let I× be the set of subfunctional-
ities that have previously been aborted. Note that FnCG ensures that I× is public knowledge; the
abort of a subfunctionality [F ]n−1

Rl
results in a biseparated subgraph with vertices [n] \ {Rl}. If

a subgraph is biseparated, the corresponding instance class is considered aborted. It holds that
|I0|+ |I1|+ |I×| = (n− 1), since there are (n− 1) instance classes [F ]n−1

R1
through [F ]n−1

Rn
.

In the following, we give a description of the protocol. Let b be the bit C wants to commit to.
For runtime restrictions, we assume that the unary security parameter 1λ is also input.

Protocol:
1. On input (commit, b) with b ∈ {0, 1} from Z to C, C sends (commit, b) to [F ]n−1

Rl
for all

l ∈ {1, . . . , n− 1}.
2. Once Rl has received output from any [F ]n−1

Pj
for j 6= l, the receiver Rl checks |I×|:

If |I×| ≥ t, then the Conflict Graph is biseparated due to Lemma 14. Rl aborts with the
identified set of parties.

Otherwise, Rl outputs (receipt commit).
3. On input (unveil) from Z to C, C sends (unveil) to [F ]n−1

Rl
for all l ∈ {1, . . . , n− 1}.

4. Once Rl has received output from all [F ]n−1
Pj

for j 6= l, Rl sends (receipt,Rl) to FnBC.
5. Once Rl has received (receipt,Rj) from all Rj for j 6= l via FnBC, Rl checks |I×|.

If |I×| ≥ n− 3, then the Conflict Graph is biseparated due to Lemma 14. Rl aborts with
the identified set of parties.

If |I×| ≤ n− 4, Rl checks the unveil messages:
Since n − |I×| ≥ 4 each receiver gets at least three messages. Recall that there is also
[F ]n−1

C which is not used. If all but one unveilings are consistent with b′, Rl outputs
(unveil, b′).
Otherwise, Rl sends {conflict,C} to FnCG and outputs (abort,C).

In our synchronous model, messages sent by a Sender are guaranteed to be received by the
dedicated Receiver. If Rl doesn’t obtain a receipt from all other parties in Step 5, then at least
one of the following has to be true: (1) the Conflict Graph is already biseparated after Step 2,
which implies that all honest parties have aborted; or (2) the missing message’s sender Rj must
be corrupted. Hence a missing message from Rj is considered an abort of FnBC from Rj . Since this
biseparates the entire Conflict Graph, the FnCOM functionality is aborted.

The intuition behind the protocol is the following: The committer C commits its bit b to all
subfunctionalities, which gives honest receivers consistent opening information. The adversary has
two levers to disturb the protocol: One is to abort subfunctionalities, thus increasing |I×|; we have
shown in Lemma 14, that this is only possible for up to t aborts, before the Conflict Graph becomes
biseparated. The other option the adversary has is to let a corrupted committer use different bits
in different subfunctionalities. If at least four subfunctionalities are not aborted, then the second
adversarial strategy no longer works, since all receivers will notice a sufficient inconsistency in the
subfunctionalities. Therefore the adversary has to abort many subfunctionalities. This increases
the honest parties’ knowledge about the identity of malicious parties sufficiently for honest parties
to identify each other. Finally, if too many subfunctionality are aborted, such that only three are
left, the Conflict Graph has sufficiently many edges that a identification is possible.

We note that our strategy does not work directly for t ≥ (n− 2) because Lemma 15 only guar-
antees that two instance classes must work. Therefore one receiver may only receive one unveiled
bit.
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Proving security of this protocol is straightforward. First note that in every case the behavior
of honest receivers in unambiguous, meaning consistent among receivers. We can thus formulate a
coherent simulator. In particular, the dummy adversary’s and the corrupted parties’ local in- and
output is forwarded from and to the environment.

On output (receipt commit) from FnCOM, the simulator gives local input to all uncorrupted
simulated parties as follows: The simulator gives the uncorrupted C local input (commit, 0),
hence C inputs (commit, 0) into all [F ]n−1

Rl
.

On output (unveil,m) from FnCOM, the simulator lets the simulated functionalities [F ]n−1
Rl

output (unveil,m). This is possible because [F ]n−1
Rl

is a simulated functionality and thus
fully under the simulator’s control.

Once all broadcasts (receipt,Rl) from FnBC have been received, the simulator lets C input
(unveil) into the ideal functionality FnCOM.

On input
(
abort,C ′

)
from Z for [F ]n−1

Rl
, the simulator sends

(
abort,C ′

)
to [F ]n−1

Rl
.

If the (simulated) Conflict Graph becomes biseparated, the simulator aborts FnCOM with the
malicious partition

(
abort,C ′

)
.

Finally, we describe the simulator’s behavior when handling messages from/to malicious
parties.
On input (commit,ml) from corrupted C to [F ]n−1

Rl
, the simulator lets C pass (commit,ml) on

to [F ]n−1
Rl

. After receiving local input for all (non-aborted) subfunctionalities, the simulator
lets C input (commit,m) into FnCOM where m is the majority of all ml. If there is no majority
then C inputs a random bitm. The inputs (commit,ml) are naturally passed to the simulated
[F ]n−1

Rl
.

On input (unveil) from corrupted C to [F ]n−1
Rl

, the simulator lets C forward (unveil) to
[F ]n−1

Rl
.

On input (receipt commit) from corrupted Rl to [F ]n−1
Pj

, the simulator forwards
(receipt commit) in the name of Rl.

The key to a coherent simulation is that the protocol ensures that the outputs of all (honest)
receivers are consistent, this can be leveraged by the simulator to abort the functionality on invalid
inputs of the (corrupted) committer. ut

The COM-expansion lemma plays into the next lemma by ensuring consistency across multiple
FCOT instance classes. Now we have all the tools required to investigate the expansion of FCOT.
We denote by S the sender, by R the receiver and by (W1, . . . ,Wn−2) the witnesses. We categorize
the used instance classes in two categories: Type-1 instance classes consist of functionalities where
both S and R participate, that is, all [F ]n−1

Wi
for any i ∈ {1, . . . , n− 2}. Type-2 instance classes are

[F ]n−1
S and [F ]n−1

R .

Corollary 3. Let π be a protocol that securely realizes FnFCOT. At least two type-1 functionalities
cannot be aborted, otherwise the Conflict Graph is biseparated.

This follows from Lemma 14 with t = (n− 3), which states that only strictly less than (n− 3)
instance classes of cardinality (n− 1) can be aborted without producing a biseparated Conflict
Graph. Conversely, at least four instance classes of cardinality (n− 1) must succeed, two of which
may be [F ]n−1

S and [F ]n−1
R . Hence the remaining two must be of type-1.

Using Corollary 3, which states that with three or more honest parties, there must be two
subfunctionalities that terminate or else the Conflict Graph becomes biseparated, we can now
prove the final step missing in Fig. 3; namely, the actual expansion of FnFCOT.

Lemma 17 (FCOT expansion). Let n be the number of parties of which at most 0 ≤ t ≤ (n− 3)
are malicious. There is a protocol πnFCOT that UC-realizes FnFCOT in the

{
Fn−1

FCOT,FnBC
}
-hybrid model:{

Fn−1
FCOT,F

n
BC
}
 FnFCOT (8)

Proof. We describe the protocol πnFCOT. Denote the parties as sender S, receiver R and witnesses
W1 through Wn−2.
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The protocol is iteration-based. Let I× be the set of type-1 subfunctionalities that have been
aborted. There are T := (n− 2− |I×|) type-1 subfunctionalities that have not yet been aborted.
In each iteration of the protocol enumerate these as

(
[F ]n−1

W1
, ..., [F ]n−1

WT

)
. The protocol uses

r ∈ ω(n lnλ) instances of each remaining subfunctionality [F ]n−1
Pl

6∈ I×. We implicitly use the
string variant of the commitment functionality, which can be constructed from the aforementioned
bit commitment. We consider a subfunctionality to be aborted, if the Conflict Graph of its partic-
ipants is biseparated. Note that FnBC follows trivially from a FnCOM by immediately unveiling the
commitment. Furthermore, we showed in Lemma 16, that FnCOM follows from Fn−1

COM. We show in
Section 3.2 that Fn−1

COM follows from Fn−1
FCOT. Hence, our construction works in the

{
Fn−1

FCOT,FnBC
}
-

hybrid model; we still use the terms Fn−1
COM and FnCG in our proofs.

The central idea of the protocol is to use secret sharings of the sender’s messages to perform
multiple FCOTs of cardinality (n− 1) and to globally commit to these shares. We use a cut-
and-choose trick, where some shares are unveiled to ensure that the FCOTs and Commitments are
equal. After the Oblivious Transfer, the receiver commits to the received shares. The secret sharing
implies that he cannot unveil a different choice bit afterwards. We assume inputs S(m0,m1), R(c)
and Wl(ε) together with the implicit unary security parameter 1λ.

The protocol is parameterized by two natural numbers T ∈ poly(λ) and r ∈ poly(λ), which
define the amount of distributed additive shares.

Protocol iteration:
1. If the Conflict Graph becomes biseparated, all honest parties abort with their opposite

partition.
2. On input (messages,m0,m1) with m0,m1 ∈ {0, 1} from Z to S, S creates a mask
w ∈ {0, 1}∗ and uses the additive T -sharing scheme to create shares of m0 ⊕ w and
m1 ⊕ w called (µ0

j )j=1..T and (µ1
j )j=1..T , respectively. S then uses the r-sharing to cre-

ate shares (αbj,i)i=1..r for each share µbj with a (2r/3)-threshold secret sharing scheme. S
inputs (messages, α0

j,i, α
1
j,i) into the i-th instance of [F ]n−1

Pj
for all i ∈ [r] and j ∈ [T ] and

commits globally to w by sending w to FnCOM and to each share by sending α0
j,i resp. α1

j,i

into FnCOM for each i ∈ [r] and j ∈ [T ].
3. On input (choice, c) with c ∈ {0, 1} from Z to R, R sends (choice, c) to all remaining

subfunctionalities [F ]n−1
Pl

for all l ∈ [T ]. Additionally, R sends c to FnCOM.
4. If subfunctionality [F ]n−1

Pl
6∈ I× is aborted, the current iteration ends and [F ]n−1

Pl
is added

to I×. All parties continue at 1.
5. When a party P has received (receipt messages) resp. (receipt choice) from all r in-

stances of all type-1 FCOT-subfunctionalities that include P, P outputs (receipt messages)
resp. (receipt choice).

6. When no subfunctionality has been aborted in this iteration and all T subfunctionalities have
successfully finished their OT-phase with output (receipt transfer,⊥) to S, the sender
S opens the global Commitment to w. R reconstructs the T values µcj from the r shares
αcj,i and then mc ⊕w by combining µcj . Finally, from the unveil of the global Commitment,
R reconstructs mc by applying w to the result. Each Wi and R verify the integrity of the
sender’s commitments, by verifying that the sender’s global commitments indeed contain
the correct input used for the FCOT-subfunctionalities. Each party P ∈ [n]\{S} broadcasts
the set of r/10n indices i ∈ [r] per subfunctionality l ∈ [T ]. For each index (i, l), the sender
has to unveil the corresponding global commitment and the FCOT-subfunctionality.

7. Upon receiving (unveil message, b) from Z to S, S sends (unveil) to all FnCOM. Upon
receiving their shares, the parties output (unveil message, b,mb).

8. Upon receiving (unveil choice) from Z to R, R inputs (unveil choice) into all FCOT-
functionalities and (unveil) into FnCOM to unveil c. The other parties first check consistency
of all unveiled choice bits. If not consistent, all honest parties declare conflict with R. If the
choice bits are consistent c′, then the other parties check consistency between the unveiled
choice bits of the FCOT-instances and the global commitment. If internally inconsistent or
inconsistent with the global commitment, the affected FCOT is considered aborted, since
all participating party are able to identify the receiver as malicious. If no biseparation has
been reached, then each (honest) party outputs the globally unveiled choice bit c as local
output.
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Now, we give a description of the simulator.

On input (commit, w) from corrupted S to FnCOM, the simulator lets S input (commit, w) into
the simulated FnCOM.

On input (commit, αbj,i) from corrupted S to FnCOM, the simulator lets S input
(commit, (αbj,i, b, i, j)) into the simulated FnCOM.

On input (messages, α0
j,i, α

1
j,i) from corrupted S to the i-th instance of [F ]n−1

Pj
, once message

(commit, w) from S to FnCOM has been received, the simulator applies w to both inputs and
lets S forward the result to the simulated [F ]n−1

Pj
.

On input (messages, α0
j,i, α

1
j,i) from corrupted S to all instances of all remaining FCOT-

functionalities, once message (commit, w) from S to FnCOM has been received, the simulator
computes m0 and m1 by combining the obtained shares and applying w on the result. Then
the simulator lets S input (messages,m0,m1) into FnFCOT.

On input (choice, cj,i) from corrupted R for the i-th instance of [F ]n−1
Pj

, the simulator lets S
forward the input to the simulated [F ]n−1

Pj
.

On input (choice, cj,i) from corrupted R to all i-th instances of all remaining FCOT-
functionalities and (commit, c) for FnCOM, the simulator lets R input (choice, c) into FnFCOT.

On output (receipt transfer,⊥) from FnFCOT, the simulator gives local input to simulated
parties as follows:
If the receiver is malicious, then S learns mc from the ideal FnFCOT in the name of R
through (receipt transfer,mc). Otherwise, the simulator gives the uncorrupted R lo-
cal input (choice, 0). If the sender is uncorrupted, the simulator gives S local input
(messages,m0,m1) with m1−c = 0. If the receiver is uncorrupted, the simulator also uses
mc = 0. Then, the simulator simulates the protocol program with the respective inputs. If
any party is malicious, its inputs are directly forwarded to the simulated hybrid functional-
ities. Consequently, the simulated dummy adversary receives (receipt transfer,⊥) from
each simulated FCOT-subfunctionality which is forwarded to the environment.

On input (unveil) from corrupted S to the instance of FnCOM used to commit to αbj,i, the
simulator lets S input (unveil) into the respective simulation of FnCOM.

On input (unveil) from corrupted S to the instance of FnCOM used to commit to w, the
simulator lets S input (unveil) into the respective simulation of FnCOM.

On input (unveil messages, b) from corrupted S to all instances of all remaining FCOT-
functionalities, the simulator lets S input (unveil messages, b) into FnFCOT.

On output (unveil message, b,mb) from FnFCOT, the simulator unveils all
shares of mb from all FCOT-subfunctionalities and all their commitments. If the local in-
put (messages,m0,m1) of the simulated sender matches with the unveiled mb, then the
simulation is valid.
However, if the simulated sender’s input is not equal to the ideal uncorrupted sender’s
input, the simulator must equivoke some of the FCOTs and COMs. Therefore, the simulator
fabricates additive shares µbj and sub-shares αbj,i that encode mb but still are consistent with
the shares that the environment learned so far. The simulator must be able to equivoke more
than r/3 (out of r) shares of a single FCOT-subfunctionality. This is possible because the
consistency check in the OT-phase only leaks less than r/10 per subfunctionality to the
environment, leaving more than 9r/10 for the simulator to equivoke.
If the receiver is malicious, then the environment also learns the shares that the receiver
obtains during the OT-phase. However, if the receiver is malicious, then the simulator
already learned mc prior to giving the simulated sender its input, hence the simulated
sender’s input mc is consistent with mb if b = c. Otherwise the environment only has less
than r/2 shares per FCOT, leaving r − (r/2 + r/10) > r/3 for the simulator to equivoke.
Furthermore, the simulator knows exactly which shares can be equivocated since every share
that the environment obtains comes from the simulator.

On input (unveil choice) from a corrupted R to all remaining FCOT-subfunc- tionalities,
the simulator lets R input (unveil choice) into FnFCOT.
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On output (unveil choice, c) from FnFCOT, the simulator lets all instances of all simulated
FCOT-subfunctionalities [F ]n−1

Pl
output (unveil choice, c) to all parties and the dummy

adversary.
On input

(
abort,C ′

)
for [F ]n−1

Pl
, the simulator aborts [F ]n−1

Pl
with

(
abort,C ′

)
.

If the (simulated) Conflict Graph becomes biseparated, the simulator aborts FnCOM with the
malicious partition

(
abort,C ′

)
.

Also, if an adversarial sender wanted to prepare its share commitments in order to equivoke its
message afterwards, then it would have to alter more than r/3 shares. Recall that r ∈ ω(n lnλ).
Because at least r/10n ∈ ω(lnλ) shares are uniformly randomly opened for control, the probability
that the sender chooses more than r/3 shares none of which are controlled is negligible. More
formally, the probability that none of the r/3 altered shares is controlled is bounded by

p =
r/10n−1∏
i=0

r − r/3− i
r − i

≤
r/10n−1∏
i=0

2/3
1− 1/10n

≤
r/10n−1∏
i=0

2/3
9/10

≤ (20/27)r/10n

(9)

which is negligible because r/10n ∈ ω(lnλ). ut

Intuitively, security follows from the fact that each FCOT-subfunctionality unveils less than r/10
shares, but reconstruction requires 2r/3 shares. A user can learn at most 11r/10 shares, whereas
4r/3 would be required to learn both messages. If S tries to unveil a different value than its original
input, it would have to either change the Commitment on the mask w or deviate in more than
r/3 shares of any one subfunctionality. The former is not possible due to the binding property of
FnCOM. For the latter, note that for each subfunctionality, a party can probe r/10n shares. Thus, S
has negligible probability of successfully deviating from the original FCOT-input in the required
number r/3 of global commitments.

The integrity check in the OT-phase ensure that the values must match the FCOT-inputs
with overwhelming probability. From Corollary 3, it follows that at least for two [F ]n−1

Pl
6∈ I×, all r

instances must be unveiled. Also, R unveils the commitments to its received shares. If R tries to learn
both messages, R to have input (1− c) into all instances of at least two FCOT-subfunctionalities;
in that case, R cannot learn mc, since

(
µcj
)
j∈{T} is an additive sharing and thus requires all shares

for reconstruction.
We now have proven all the steps depicted in Fig. 3, which leads us to the following conclusion.

Corollary 4 (SFE expansion). Let n be the number of parties of which at most 0 ≤ t ≤ (n− 3)
are malicious. The functionality FnSFE can be UC-realized in the

{
Fn−1

SFE ,FnBC
}
-hybrid model:{

Fn−1
SFE ,FnBC

}
 FnSFE

7 Expanding the result

The result from Corollary 4 allows to expand (n− 1)-party SFE to n-party SFE, thus proving an
upper bound on the minimum cardinality assuming that t ≤ (n− 3). With earlier results of Rabin
and Ben-Or [RB89] and Beaver [Bea90] investigating the honest majority setting, this leaves open
the question if we can do better for smaller t between n/2 and n− 3.

In this section, we answer this question positively by extending the results by induction. For
that, we additionally require a multicast 10 functionality were the recipient set can be chosen by
10 Here, a global broadcast with suitable masking technique could provide such a multicast. We leave this

to future work.
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the sender. This allows us to tighten our result for any t ≤ n − 3: As we have shown, Fn−2
SFE and

FnBC realize Fn−1
SFE for t ≤ n − 3. If we assume that t ≤ n − 4, then we have that Fn−3

SFE and Fn−1
BC

realizes Fn−2
SFE . By induction we get F t+2

SFE and all F iBC for i ∈ {t+ 3, . . . , n} realize FnSFE.
However, we stress that this implies a limitation regarding the number of induction steps and

hence, the number of parties n due to the additional runtime.
We have to do at most n/2 inductions, which results in a runtime of

(n)c · (n− 1)c · · · (n/2)c = (n!/(n/2− 1)!)c (10)

for c ∈ poly(λ). This implies that we have to choose n ∈ O(lnλ/ ln lnλ). This bound depends
on our SFE-protocol; using a more efficient one would relax this restriction. For example, with
polylogarithmic n ∈ polylog(λ) and elementary expansion runtime L ∈ polylog(n) we get o(nε)
inductions for some positive ε < 1. However, we conjecture that we cannot arbitrarily relax this re-
striction, due to the following observation that potentially links cheater extraction of a biseparated
Conflict Graph to an NP-hard problem:

Recall the generic IA conditions from Section 4 state that IA is possible if the induced CG
is biseparated. However, this is only a possibility statement; in general, a t-settled CG does not
suffice because it is generally hard to extract the settled set X from the CG. In fact, finding the
intersection of all MVCs of size at most t is an abstract graph-theoretical problem on its own. To
the best of our knowledge, this problem has not been investigate in the literature; we hence study
it as the Intersecting Minimal Vertex Cover (IMVC) problem. Here, we show that for arbitrary
graphs (not necessarily CGs) the IMVC problem is NP-hard by giving a reduction to the standard
MinVC problem. The Decisional Minimal Vertex Cover problem [Kar72] states the hardness of
deciding whether a given graph G has a Vertex Cover of size at most k. We use the abbreviation
MinVC for Minimum VCs and MVC for minimal VCs.

Algorithm 1 hasMinVC(G = ([n],E), k)
1: G′ := copy(G)
2: X := ∅
3: while !isVC(G,X) do . check if is Vertex Cover in O(n)
4: removeIsolatedNodes(G′) . O(n)
5: X ′ := ∅
6: t := 0
7: while X ′ = ∅ do . at most |G′| ≤ n iterations
8: if t < |G′| then
9: X ′ := findIMVC(G′, t)
10: else
11: X ′ := {Pnext} . Pnext ∈ G′ lexicographically smallest
12: end if
13: t := t+ 1
14: end while
15: X := X ∪X ′ . |X | strictly increases until it becomes VC
16: G′ := G′ \X ′ . remove nodes X ′ and incident edges
17: if |X | > k then
18: return 0
19: end if
20: end while
21: return 1

In the following, we provide a reduction of IMVC problem to the decisional MinVC problem;
it requires at most n2 calls to an oracle for the IMVC problem findIMVC to solve the decisional
MinVC problem. This yields the somewhat surprising insight that either the special class of Conflict
Graphs yields exclusively easy MinVC instances which can be solved efficiently, or finding the settled
set of an arbitrary CG is actually NP-hard.

To analyse why Algorithm 1 yields a valid reduction we have to check its runtime and its
correctness. In each outer while-loop, the candidate set X grows by at least one party. Hence, the
outer while-loop is executed at most n times. Verifying that a set of nodes corresponds to a VC can
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be done in time linear in n. The oracle findIMVC is called at most once per inner loop-iteration, i.e.
at most n2 times. Finally, removing isolated nodes comes down to checking if any nodes without
neighbors exist and removing them; this can be done in time O(n).

Analyzing the correctness is more tricky. Intuitively, the algorithm accumulates a candidate
vertex set X that always remains a subset of some MinVC but steadily increases. Our main focus
is on the two lines 9 and 11 where the new vertices are chosen that are added to the candidate
set X . In both cases we have to ensure that the nodes of X ′ are in a common MinVC with the
already chosen X . If line 9 gets executed, then X ′ := findIMVC

(
G′, t

)
is chosen as vertices that

are in all remaining MVC. Hence, adding these vertices to X still yields a subset of some MinVC
of G. If line 11 gets executed, no IMVC exists in G′. The reduction adds the lexicographically first
node (this could as well be a random node without any loss of correctness). The reason that any
vertex can be added to X while maintaining a subset of a MinVC is that each vertex is contained
in at least one MinVC of G′. If there was one vertex without a corresponding MinVC, then all
its neighbors—whose existance is guaranteed by removeIsolatedNodes—must be in all MVCs, in
contradiction to the case condition.
The loop invariant that X is a subset of some MinVC of G is maintained in both cases. Finally,
we get either that X becomes a VC, thus the MinVC answer is true, or the size of X exceeds k,
then the size of each MinVC of G must also exceed k, the answer is false.

While the reduction shown above showcases NP-hardness of IMVC over general graphs, we
stress that even if the hardness remains on CGs, where we know that no edges between one
partition (the honest parties) can ever exist, we can solve the problem for sufficiently small n: For
n ∈ O(lnλ) ∨ n − t ∈ O(1), we introduce an algorithm called DeduceCG, which can deduce a
biseparated graph from any t-settled graph in polynomial-time by intersecting all VCs of size at
most t. Hence, for n ∈ O(lnλ) ∨ n − t ∈ O(1), a t-settled induced CG already implies the ability
to abort.

Algorithm 2 DeduceCG(G, t)
1: ([n],E) := G
2: changed := 1
3: while changed = 1 do
4: changed := 0 . no change in this iteration yet
5: for all P ∈ [n] do
6: Pred := [n] \ ({P} ∪N(P)) . reduced party set
7: if Pred is (t− |N(P)|)-settled then
8: [n]× := findIMVC((Pred,E ∩ 2Pred ), t− |N(P)|)
9: for P′ ∈ [n]× do
10: E := E ∪ {P,P′} . append inferred conflicts
11: changed := 1 . mark change
12: end for
13: end if
14: end for
15: end while
16: return G∗ := ([n],E) . deduced Conflict Graph

Informally, the algorithm adds new edges whenever a parties view can only be explained by
a certain other party being malicious. The algorithm sequentially takes on the role of each party
P ∈ [n] in the induced CG G = ([n],E). Take for example the graph in Fig. 6a, which is not 3-
settled since the vertex covers {P1,P2,P3} and {P4,P5,P6} do not contain any common party. The
algorithm starts by taking the viewpoint of P1; in this role, any conflict edge of the form

{
P1,P′

}
implies that P′ is a disruptor, whereas conflicts between two other parties, e.g. {P3,P5}, leaves
some uncertainty with respect to the corruptions. Hence, the algorithm computes all explanations
subject to the fact that the neighbors of P1 are corrupted, and which are of size ≤ t. To those, it
declares new conflicts, despite the fact that these two parties may have never even interacted with
one another. The algorithm then repeats this step for each party P ∈ [n].

More formally, let N(P) be the neighbors of P in G, that is, all parties P′ for which
{

P,P′
}
∈ E .

The algorithm checks, if the rest of the graph on [n]\({P}∪N(P)) is (t− |N(P)|)-settled and appends
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P1 P6

P2P3

P5

P4

(a) Graph is neither 3-settled nor biseparated.

P1 P6

P2P3

P5

P4

(b) Deduction from a given CG. From P1’s view, P4 has to be corrupted
if t = 3.

Fig. 6: An example of a graph that is not biseparated but produces a biseparated deduced graph. Thick
lines are relevant for the respective property.

conflicts between P and all parties in the settled set of this subgraph.
For the induced Conflict Graph from Fig. 6a with t = 3, this would mean that DeduceCG would
take on the role of P1 and check, if the sub-graph on {P2,P3,P4} is 1-settled. Since the only vertex
cover of size 1 contains P4, DeduceCG adds an edge from P1 to P4 in Fig. 6b.

In an information-theoretic sense the DeduceCG algorithm completes an induces CG. The
deduced CG contains all conflicts, even those which might be hard to generate by finding the
settled set of the induced CG and biseparating it from its complement. This is exactly the reason
why DeduceCG is at least as hard as finding the IMVC of the CG.

Many of the results we achieve from the Conflict Graph exploit the guarantee that each edge
contains at least one disruptor. While this is obviously the case for edges which are caused by
subfunctionality abort and has to be ensured during protocol-specific accusations, this is not so
obvious for edges which were added by the DeduceCG algorithm. However, we stress that this is
the case.

Lemma 18 (Correctness of DeduceCG). Let G = ([n],E) be a Conflict Graph, where it holds
for all edges {Pi,Pj} ∈ E, that at least one of Pi and Pj is corrupt. For all edges {Pi,Pj} ∈ E∗ of
the deduced CG G∗ = ([n],E∗) := DeduceCG(G), it holds that at least one of Pi and Pj is corrupt.

Proof. We prove our claim by contradiction. Let {Pi,Pj} be a an edge in E∗. The edge can have
only two possible origins. Either it was part of the original Conflict Graph, that is, {Pi,Pj} ∈ E ;
this would be a contradiction to our assumption regarding G = {[n],E}. Or the edge was added
during DeduceCG. From the conditions that have to be fulfilled according to Algorithm 2 in order
for an edge to be added, we can infer a lot of information. Without loss of generality, we assume
that the edge was added while the view of Pi was investigated and that Pi is honest; that is,
DeduceCG deduced that in the view of Pi, Pj must be malicious.

Let G′ = {[n] \ {Pi ∪ N(Pi)},E} be the conflict graph that excludes Pi and its neighbors
N(Pi). By requirement from Algorithm 2, G′ is t′-settled for t′ = (t − |N(Pi)|) and furthermore,
all explanations of t′ corrupted parties contain Pj as corrupted party. This implies for the original
conflict graph containing all parties, that Pj is also selected in the cover of size t in [n]. Pj also
has a set of direct neighbors N(Pj) in G; if we now assume {Pi,Pj} to be an honest-honest edge,
thus if Pj is honest, by correctness of G all neighbors N(Pj) are corrupted.

Let C be the set of corrupted parties. By requirement, it holds that |C | ≤ t. If Pi is honest,
then it holds that |C | − |N(Pi)| ≤ t′. Thus, there is a valid explanation of size t′ that contains
all corrupted parties in C \ N(Pi). If Pj is honest, C contains N(Pj) entirely. Thus, there is
an explanation that excludes Pj , meaning that the subgraph G′ is not t′-settled and hence, the
DeduceCG-algorithm will not add the honest-honest edge {Pi,Pj}. ut

Note that our SFE-expansion (Section 6) doesn’t suffer from the logarithmic limitation of
n because we actually don’t need the DeduceCG algorithm. Our construction only uses hybrid
functionalities of size (n − 1); the only way for an adversary to force an abort is to abort many
subfunctionalities. Fortunately, Lemmas 13 to 15 already yield a biseparated CG as a result of too
many subfunctionality aborts (as opposed to t-settledness). Therefore, when an abort is forced by
the adversary, it is also possible to identify disruptors because of the biseparation of the induced
CG.
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Here, we want to point out an interesting observation: When the setup, that is, the size of
the hybrid functionality, is large, e.g. (n− 1), then the deduced CG does not yield an advantage
over the induced CG due to the aforementioned biseparation guarantee of ours abort lemmas.
However, if the setup is small, e.g. 2, then (statistically secure) protocols for SFE might become
impossible, as shown by [IOS12] without broadcast. This begs the question if the minimal complete
cardinality (minimal setup size) is different when a functionality for the induced resp. deduced
graph is provided. There is no difference for small n since the deduction can be efficiently computed.
However, for superlogarithmic n this is not clear and we pose it as an open question for further
research.

Lastly, if we use induction to extend our SFE-expansion (comp. Corollary 2) we have a slightly
sublogarithmic bound on n again; this bound stems from the efficiency of the elementary SFE-
expansion and can only be remedied by improving the efficiency of the SFE-expansion protocol to
sublinear in n. We also pose this as an open question for further research.

8 Summary and Outlook

Summary. We introduced a new tool for the analysis of protocols in the framework of Identifiable
Abort [IOZ14]: the Conflict Graph (CG). We tightly linked properties of protocols with Identifiable
Abort to verifiable graph properties of the Conflict Graph, namely biseparation and t-settledness,
which we hope will contribute to further research in the field of Identifiable Abort. In particular,
we have shown that any protocol with Identifiable Abort can be augmented to yield a biseparated
CG upon abort, and that the abort parties are fixed as soon as the CG becomes t-settled. We
elaborated that for a sufficiently small number of parties n, there exist extractors to biseparate
any t-settled CG, which leads to a conjectured NP-hardness of Identifiable Abort.

We extended Oblivious Transfer to yield a helpful tool in the IA-setting. Our new primitive,
Fully Committed Oblivious Transfer (FCOT), is provably as powerful as Secure Function Evalua-
tion in the setting of IA, but much easier to analyze.

Using the Conflict Graph and the SFE-completeness of FCOT, we constructed n-party SFE
from (n− 1)-party SFE and a broadcast channel. Our construction holds even against adversaries
without any runtime restrictions, as long as at least three parties are honest. This SFE-expansion
yields an upper bound on the minimal complete cardinality k∗(t) in the sense of [FGM+01]: Given
a broadcast channel, we have shown that k∗(t) ≤ (t + 2) for n ∈ O(lnλ/ ln lnλ). This bound
complements the results of [RB89; Bea90] in the dishonest-majority setting; compare Fig. 1.

In conclusion, our CG-technique provides a new way of furthering the understanding of IA.

Outlook. Since we introduced a new methodology to analyze protocols with Identifiable Abort, new
open questions naturally arise. The first open problem is regarding the efficiency of our protocols.
One other direction we believe to be worth investigating is to drop the requirement of the broadcast
channel. Another open issue is to tighten our upper bound on k∗; here one would need to provide
abort-lemmas similar to Lemmas 13 to 15 for subfunctionalities of cardinality n− 2 or less.

A different research direction is to clarify the time complexity of computing the settled set X
as defined in Definition 2 in a CG that is not biseparated. Either it is efficiently computable for
all t, which could be useful for efficient broadcast protocols in the style of [CFF+05], or deducing
a Conflict Graph is actually harder for smaller t than for larger t. Lastly, we know that for a
logarithmic number of parties, t-settled Conflict Graphs can be transformed into biseparated Con-
flict Graphs, from which the identification is trivially possible. In Section 7, we already provided
an algorithm DeduceCG to compute the deduced Conflict Graph from a given induced Conflict
Graph. The logarithmic bound on the number of parties comes from the requirement to compute
X , which contains all MVCs of size ≤ t. While we know that this problem is NP-hard for general
graphs, we do not know yet if the class of Conflict Graphs provide some property that can be used
for a more efficient solution of this problem.

34



Acronyms

AA Anonymous Abort
CG Conflict Graph
COM Commitment
COT Committed Oblivious Transfer
CRS Common Reference String
DLog Discrete Logarithm
DoS Denial-of-Service
FCOT Fully Committed Oblivious Transfer
GCOM Global Commitment
GOD Guaranteed Output Delivery
IA Identifiable Abort
IF Integer Factorization
IMVC Intersecting Minimal Vertex Cover
LWE Learning with Errors
MPC Multi-Party Computation
MVC Minimal Vertex Cover
OT Oblivious Transfer
SFE Secure Function Evaluation
UC Universal Composability
VC Vertex Cover

Symbols

A: adversary real/hybrid adversary
α: sub-share of a message m
C: committer committing party
C : corrupted parties set of all corrupted parties
D: disruptor party party that maliciously deviates from the protocol
D: disruptors set of disruptor parties
E: complementary edges complement of the conflict edges
E: conflict edges contains a pair of parties {P,P′} if P broadcasts (conflict,P∗)
ε: empty string
F : ideal functionality; unless specifically mentioned, we assume this to be in a setting with iden-

tifiable abort
G: complement graph complement of the conflict graph
G: conflict graph represents all public conflicts between parties
γ: additive share of a choice bit c
H : honest parties set of all honest parties
I×: set of aborted subfunctionalities
k∗: complete minimal cardinality minimal cardinality of a functionality that is complete for

n-party Multi-Party Computation (MPC) for a given maximal number of corruptions t
M : MVCs set of MVCs
µ: additive share of a message m
n: (total) number of parties
[n]: parties set of all parties
negl: negligible functions set of negligible functions with respect to a given argument
ν: choice index of a share
owhl: overwhelming functions set of overwhelming functions w.r.t. an argument
P: party protocol party
Φ: combined protocol of the IPS-compiler



Π: outer protocol of the IPS-compiler
R: receiver receiving party
ρ: inner protocol of the IPS-compiler
S: selector function specified by a protocol
S : partition partition of a graph
S: sender sending party
S: simulator simulates a protocol execution using a ideal functionality
t: maximal number of corrupted parties
τ : transcript
W: witness passive party that only receives a receipt
X : set of parties that can be identified as malicious by an outsider
Z: environment
Z : non-disruptors set of corrupted parties that never disrupt
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