
Reconstructing with Less:
Leakage Abuse Attacks in Two-Dimensions

Francesca Falzon∗
University of Chicago
ffalzon@uchicago.edu

Evangelia Anna Markatou∗
Brown University

markatou@brown.edu

William Schor
Brown University

william schor@brown.edu

Roberto Tamassia
Brown University
rt@cs.brown.edu

Abstract—Access and search pattern leakage from range
queries are detrimental to the security of encrypted databases,
as evidenced by a large body of work on efficient attacks that
reconstruct one-dimensional databases. Recently, the first attack
in two-dimensions showed that higher-dimensional databases are
also in danger. This attack requires complete information for
reconstruction. In this paper, we develop reconstructions that
require less information. We present an order reconstruction
attack that only depends on access pattern leakage, and em-
pirically show that the order allows the attacker to infer the
geometry of the underlying data. Notably, this attack achieves
full database reconstruction when the 1D horizontal and vertical
projections of the points are dense. We also give an approximate
database reconstruction attack that is distribution-agnostic and
works with any subset of the possible responses, given the order
of the database. We support our results with experiments on real-
world databases with queries drawn from various distributions.
Our attack is effective, e.g. we achieve good reconstructions with
15% percent of the queries under a Gaussian distribution.

Index Terms—Cryptography, Encrypted databases, Searchable
Encryption, Attacks

I. INTRODUCTION

The growing adoption of cloud computing and storage in the
past two decades has been accompanied by a corresponding
increase of data breaches, as data is often stored in plaintext
in the cloud. Encrypted cloud storage reduces the risk of such
breaches. However, encrypted data has been traditionally hard
to search., Searchable encryption provides a practical solution
for processing range queries over encrypted data without the
need for decrypting the data or the queries (see, e.g., [4],
[5], [14], [15] and the survey by Fuller et al. [10]). For the
sake of efficiency, searchable encryption schemes sacrifice full
security by leaking some information about the queries and
their responses. While the security proofs of these schemes
prove that nothing is leaked beyond the given “leakage”, the
underlying data is still vulnerable to inferences from this
leakage (see, e.g., [8], [12], [16]–[18], [20]).

The following standard types of leakage occur in searchable
encryption schemes. A scheme leaks the access pattern if the
adversary observes the encrypted records returned in response
to queries. The search pattern is leaked if the adversary can
distinguish if a query has been previously issued.

*FF and EAM are co-first authors who contributed equally, listed alpha-
betically.

Fig. 1: Reconstruction
of 200 randomly chosen
points from the California
Road Network dataset
using only access patterns.
We can clearly see that the
original location data was
in California.

This work considers an encrypted database with two at-
tributes, referred to as a two-dimensional (2D) database
to which range queries are issued. We assume a passive
persistent adversary who observes the entire access pattern
leakage, i.e., all possible responses of queries, and a subset of
the search pattern leakage. Our adversary aims to reconstruct
the order of the database records in the two dimensions
(attributes) using solely the access pattern, a problem called
order reconstruction. After achieving this goal, the adversary
attempts to further perform an approximate reconstruction of
the (attribute) values of the database records by using the
partial search pattern observed, a problem called approximate
database reconstruction.

A. Contributions
Previous work on reconstruction attacks from range queries
on 2D databases assumes that the adversary has knowledge
of both the entire access pattern leakage and the entire search
pattern leakage [8] and uses both forms of leakage to perform
an attack that reconstructs in polynomial time the database
record values, up to inherent information theoretic limitations.
A natural question left open by this attack is what information
is recoverable when given less leakage. In this work, we make
progress on this question with the following contributions:

1) We show that order reconstruction faces additional in-
formation theoretic limitations when given only access
pattern leakage. We incorporate these limitations into
a complete formal characterization of the family of
databases that have the same access pattern leakage.

2) We present an order reconstruction attack that allows
an adversary who has observed the entire access pattern
leakage to build a linear-space representation of the
family of databases in polynomial time.

3) We design a distribution-agnostic approximate database
reconstruction attack that reconstructs record values
given the order of the records (e.g., obtained with the

above attack) and partial search pattern leakage from
queries issued according to an unknown distribution.

4) We experimentally analyze the practical effectiveness of
our attacks by fully implementing them and deploying
them on real-world and synthetic datasets using a variety
of range query distributions.

5) We develop new combinatorial and geometric concepts
and algorithms related to point reconstruction from range
queries that may be of independent interest.

Our work provides the first order reconstruction attack in
2D from access pattern leakage and the first approximate re-
construction attack in 2D from partial search pattern leakage
and an unknown query distribution. Our order reconstruction
attack is also a full database reconstruction attack for the case
when the 1D horizontal and vertical projections of the points
are dense, i.e., have a record for every domain value.

Our work presents significant improvements over the Full
Database Reconstruction (FDR) of [8]. The FDR attack pre-
sented in [8] assumes a stronger adversary that has observed
all possible queries in the database. Additionally, the FDR
attack fails if even one response is missing. In contrast, we
demonstrate that an adversary can still infer much about
the underlying data values with fewer (and in some cases,
significantly fewer) queries observed. In this work, we also
tackle a different problem, the problem of order reconstruction
using only access pattern and with no knowledge of the query
distribution or search pattern.

Our Approximate Database Reconstruction attack can be
viewed as the two-dimensional analogue of the work on
attacks on 1D databases reported in [17]. To apply previous
approximation approaches that assume knowledge of the order
to 2D databases, we must completely characterize order recon-
struction in 2D. However, much like FDR does not trivially
extend from the 1D to 2D setting, our order reconstruction
method demonstrates an exponential increase in the number of
indistinguishable point configurations in the 2D setting. Thus,
we cannot simply generalize 1D techniques to 2D. We re-
examine a number of support-size estimators to better suit our
problem and build a complex nonlinear system of equations
to model the problem instead of the linear system of [17].

B. Prior and related work
In their seminal work [15], Kellaris et al. show that for a
1D database with domain size [N], one can reconstruct the
values of the database records from access pattern leakage of
range queries using O(N4 logN) queries issued uniformly at
random. Since then, a number of works have explored the
problem in 1D (e.g. [12], [16]–[18], [20]), and in 2D [8].

Order reconstruction in 1D was first introduced in [15], as
the first step of their FDR attack. Grubbs et al. [12] generalize
the attack to one that achieves sacrificial ε-approximate order
reconstruction (ε-AOR); the goal of ε-AOR is to recover
the order of all records, except for records that are either
within εN of each other or within εN of the endpoints. Their
attack achieves sacrificial ε-AOR with probability 1− δ given
O(ε−1 log ε−1 + ε−1 log δ−1) uniform queries.

TABLE I: Comparison of our work with related reconstruction
attacks. Dense1D denotes a 2D database whose horizontal and
vertical projections are 1D dense databases.

Queries Assumptions Leakage Attack

1D 2D Query Data Search OR FDR ADR
range range distrib. distrib. pattern

Kellaris+ [15] X Uniform Any X X X
Lacharité+ [18] X Agnostic Dense X X

Grubbs+ [12] X Uniform Any X X X
Grubbs+ [12] X Uniform Minor X X X

Markatou+ [20] X Agnostic Any X
Markatou+ [20] X Agnostic Any X X

Kornaropoulos+ [17] X Agnostic Any X X

Falzon+ [8] X Agnostic Any X X
Falzon+ [8] X Known Any X

This Work X Agnostic Any X
This Work X Agnostic Any X X
This Work X Agnostic Dense1D X X

Approximate database reconstruction from access pattern
of range queries in 1D has been addressed in [12], [17],
[18]. In [18], Lacharité et al. introduce ε-approximate database
reconstruction (ε-ADR) as the reconstruction of each record
value up to εN error; they then give an attack that achieves ε-
ADR with O(N log ε−1) uniform queries. In [12], the authors
further introduce sacrificial ε-ADR. The goal of ε-ADR is to
recover all values up to and error of εN , while “sacrificing”
recovery of points within εN of the domain end points.
Concepts from statistical learning theory are applied to achieve
a scale-free attack that succeeds with O(ε−2 log ε−1) queries.

In a different vein, Kornaropoulos et al. [17] reconstruct
a 1D database without knowledge of the underlying query
distribution and without having observed all possible queries
by employing statistical estimators to approximate the support
size of the conditional distribution of search tokens given
a particular response. Their agnostic reconstruction attack
achieves reconstruction with good accuracy in a variety of
settings including and beyond the uniform query distribution.

Full database reconstruction in two-dimensions was first
described in [8]. In this work, Falzon et al. describe the
symmetries of databases in two dimensions, prove that the set
of databases compatible with a given access pattern leakage
may be exponential, and give a polynomial-time algorithm
for computing a polynomial-sized encoding of the (potentially
exponential) solution set.

Table I compares our results with previous work.

II. PRELIMINARIES

We recall combinatorial and geometric concepts using the
terminology and notation introduced in [8].

Notation. We denote with [N] the set of integers {1, . . . , N}.
We define the domain of a two-dimensional (2D) database to
be D = N0×N1 for positive integers N0 and N1. We refer to
the points on the segment from (0, 0) to (N0+1, N1+1) as the
main diagonal. Given a point w ∈ D we denote w0 ∈ [N0] as
its first coordinate and w1 ∈ [N1] as its second coordinate i.e.
w = (w0, w1). We say that w dominates x if x0 ≤ w0 and
x1 ≤ w1. This is denoted as x � w. Similarly, we say that w
anti-dominates x if w0 ≤ x0 and x1 ≤ w1. This is denoted as

u2
u4

u1
u3

u5

u6 u7

u8 Fig. 2: Example of domi-
nance graph (blue) and anti-
dominance graph (red) for
a point set with compo-
nents {u1}, {u2, u3}, {u4},
{u5, u6, u7}, and {u8}.

x �a w. The dominance or anti-dominance is said to be strict
if the above inequalities are strict. We say that w minimally
(anti-) dominates x if there is no point v 6= w, x such that w
(anti-) dominates v and v (anti-) dominates x.

A 2D database, D , over a domain D with R ≥ 1 records
is defined as an R-tuple of points in D i.e. D ∈ DR. Each
tuple in D is referred to as a record and each record is
associated with a unique identifier (or ID) in [R] that refers
to its index in the tuple. We let D [j] for some j ∈ [R] denote
the domain value associated with the record ID j. When clear
from context, we may refer to records as points. We denote a
digraph as G = (V,E) such that V is the vertex set and E is
the directed edge set. For any two vertices u, v ∈ V we denote
a directed edge from u to v as the pair (u, v) (Figure 2).

The following definitions are illustrated in Figure 2.

Definition 1. The dominance graph, G = (V,E), of a set of
points S, is the digraph where V = S and (a, b) ∈ E if b
minimally dominates a, a, b ∈ V .

Definition 2. The anti-dominance graph, G′ = (V ′, E′), of a
set of points S, is the digraph where V ′ = S and (a, b) ∈ E′
if b minimally anti-dominates a, a, b ∈ V ′.

Definition 3. We define a component, C, of database D to
be a minimal non-empty subset of D such that for any points
p ∈ C and q /∈ C either p and its reflection along the main
diagonal both dominate q or are both dominated by q.

Range queries and leakage. A range query is defined by
a pair of domain points q = (c, d) ∈ D2 such that c � d.
The response or access pattern of a range query is the set of
identifiers of records with values that fall within the range of
the query. The response of a query q = (c, d) is defined to be

Resp(D , q) = {j ∈ [R] : c � D[j] � d}.
We similarly define the response multiset of a database D ,
denoted RM(D), as the multiset of all access patterns of D :

RM(D) = {{Resp(D , q) : q = (c, d) ∈ D2, c � d}}.
We use the double bracket notation to emphasise that this is
a multiset since distinct queries q, q′ may produce the same
response, Resp(D , q) = Resp(D , q′). We define the response
set of D , denoted RS(D), to be the corresponding set in which
each response appears exactly once. The search pattern of
a query q = (c, d) is defined to be a query-specific token
SP(D , q) = t where t ∈

[(
N0+1

2

)(
N1+1

2

)]
. We assume a one-

to-one correspondence between queries and tokens.

Threat model. We study the security of encrypted database
schemes that support two-dimensional range queries and
which leak the access pattern and search pattern of each query.

We consider an honest-but-curious, persistent adversary that
has compromised the database management system or the
client-server communication channel, and can observe the
leakage over an extended period of time. Our order recon-
struction attack considers an adversary that takes RS(D) as
input and wishes to compute the order of all records. Our other
attack considers an adversary that knows the order and some
subset of the possible search tokens and wishes to approximate
the domain value of each record.

Assumptions and reconstruction attacks. We explore recon-
struction under a few different assumptions. In Section V we
assume the adversary knows the size of the domain N0×N1,
and the full response set RS(D). In Section VII we make no
assumption about the number of queries that an adversary may
have observed. We make no assumption about the distribution
from which queries are drawn; we consider an adversary that
has no knowledge of the distribution.

We define the Order Reconstruction (OR) problem as
follows:

Definition 4. OR: Given a set RS(D) of some database D ,
compute all pairs of dominance and anti-dominance graphs
(G,G′) such that any database D ′ with record relationships
defined by (G,G′) is equivalent to D with respect to the
response set, i.e. RS(D) = RS(D ′).

Computing (G,G′) is the information theoretic best that an
adversary can do without additional information (e.g without
knowing the multiplicities of each response, or knowing the
distribution of the data). We define the problem of Approxi-
mate Database Reconstruction (ADR) as follows:

Definition 5. ADR: Given the order of points in D and some
subset of RM(D), approximate the values of the records.

A. Query Densities

We use the generalized notion of computing query densities
in two-dimensions as presented in [8]. Their work extends
the methods in [15] for computing the number of unique
queries that a given set of points must match. By observing
sufficiently many query responses of iid uniformly random
queries, one may recover the value of a point x by computing
the proportion of responses that the identifier of x appears
in. In one-dimension, the function that computes the query
density is quadratic and symmetric around the midpoint of
[N], and thus a given domain value x can be computed
up to two possible solutions: x and its reflection across the
midpoint [15]. We present the generalized definition of query
density of one and multiple points in two-dimensions below.

Definition 6 ([8]). Let D = [N0]× [N1], and x ∈ D, define
ρx =

∣∣{(c, d) ∈ D2 : c � x � d}
∣∣

and for a set of points S ⊆ D define
ρS =

∣∣{(c, d) ∈ D2 : ∀x ∈ S, c � x � d}
∣∣ .

Thus, these are the number of queries that contain x or all
points in S (respectively).

Given a point x = (x0, x1) ∈ D, the formula for computing
ρx is as follows.

ρx = x0 · x1 · (N0 + 1− x0) · (N1 + 1− x1) (1)
More generally, the query density ρS of a set of points S ⊆ D
is as follows.

ρS = (min
x∈S

x0) · (min
y∈S

y1) · (N0 + 1−max
z∈S

z0)

· (N1 + 1−max
w∈S

w1)
(2)

III. ORDER AND EQUIVALENT DATABASES

Before developing our attacks, we present our results on the
information-theoretic limitations of order reconstruction.

A. Equivalent Databases
Definition 7. Databases D and D ′ are equivalent with respect
to the response multiset if RM(D) = RM(D ′) and equivalent
with respect to the response set if RS(D) = RS(D ′).

As shown in [8], given some database D we can generate
a database D ′ that is equivalent with respect to the response
multiset by rotating/reflecting D according to the symmetries
of the square and by independently flipping the reflectable
components across the main diagonal.

Proposition 1. [8] Let D be a database from domain D
that contains components C1 and C2. Let D ′ be a database
containing C1 and C ′2, where each point p ∈ C ′2 is the
reflection of some point p′ ∈ C2 along the diagonal. We have
that databases D and D ′ are equivalent with respect to the
response set, i.e., RS(D) = RS(D ′).

Note that if D and D ′ are equivalent with respect to the
response multiset, then they are equivalent with respect to the
response set. However, the converse is not necessarily true.
We show in Propositions 2 and 3 (Figure 3) that there are two
additional symmetries that produce equivalent databases with
respect to the response set as described

Definition 8. A pair of points (p, q) of a database D is an
antipodal pair if for every point r ∈ D − {p, q} we have
(1) q1 < r1 < p1 and (2) either r0 < min(p0, q0) or r0 >
max(p0, q0). See Figure 3b.

Definition 9. A pair (p, q) of points of a database D are said
to be a close pair if q minimally dominates p, and there exists
no point r ∈ D − {p, q} such that r anti-dominates p or r is
anti-dominated by q or r is between p and q. See Figure 3c.

The following proposition, illustrated in Figure 3b, shows
that one cannot infer the horizontal ordering of an antipodal
pair from the response set.

Proposition 2. Let D be a database from domain D that
contains an antipodal pair (p, q). Let V be the widest vertical
strip of points of D that contains p and q, and let P and
Q be the tallest horizontal strips of V containing p and q,
respectively, but no other point of D . Let D ′ be the database
obtained from D by replacing p with another point, p′, of P
and q with another point, q′, of Q. We have that databases D

and D ′ are equivalent with respect to the response set, i.e.,
RS(D) = RS(D ′).

The proof of Proposition 2 can be found in Appendix C.By
Proposition 2, the two points of the antipodal pair (p, q) of D
and of the corresponding antipodal pair (p′, q′) of D ′ can be
ordered, reverse ordered, or collinear in the horizontal dimen-
sion and these three distinct orderings cannot be distinguished
from the response set RS(D).

Proposition 3. Let D be a database from domain D that
contains a close pair (p, q). Let D ′ be the database obtained
from D by replacing q with any point q′ such that q′0 = q0
and p1 ≤ q′1 ≤ q1. Then D and D ′ are equivalent with respect
to the response set, i.e., RS(D) = RS(D ′).

The proof of Proposition 3 may be found in Appendix C.

Definition 10. Let D be a database and let G and G′ be
the dominance and anti-dominance graphs of D , respectively.
We define Eo(D) as the set of all possible point orderings of
databases equivalent to D with respect to response set, RS(D).

Combining Propositions 1, 2 and 3, we capture all the
information-theoretic limitations of order reconstruction.

Theorem 1. Let D be a two-dimensional database. The set of
point orderings Eo(D) can be obtained from the dominance
graph G, the anti-dominance graph G′, the antipodal pair (if
it exists), and the set of close pairs of D by means of the
following transformations:

1) Flipping the direction of G and/or a subset of components
of G′ according to Proposition 1.

2) If D contains an antipodal pair, add or remove one or
two edges from G or G′ to make the pair collinear or
switch their relationship from strict dominance to strict
anti-dominance or vice versa.

3) For each close pair in D , add or remove one or two edges
from G or G′ to make them collinear or put them in a
strict dominance relationship.

We prove Theorem 1 in Section IV-F. Note that the equiv-
alent configurations of Propositions 2 and 3 arise only with
respect to the response set. The multiplicity information from
the response multiset provided by the search pattern leakage
resolves them. Indeed, Theorem 1 adds transformations (2)
and (3) to transformation (1) given in [8].

B. Chains and Antichains
Our order reconstruction algorithm uses the concepts of chains
and antichains of the dominance and anti-dominance relations
for points in the plane [9], [25]. A set of points S ⊆ D
is a chain if any two points x,w ∈ S are in a dominance
relationship i.e. x � w or w � x. A subset of points A ⊆ D
is an antichain if for any two points x,w ∈ A neither x � w
nor w � x. Let D ⊆ D be a set of points. The height of
a point x ∈ D is the length of the longest chain in D with
x as the maximal element. Note that two points of the same
height cannot have a dominance relation. Thus, the set of all
points in D with the same height yields a partition A of D

′

(a) Illustration of Definition 3 and Proposition 1.
C1 and C2 are components of D . Flipping C2

along the diagonal yields an equivalent database
with respect to the response multi-set.

R

Q

P

L

p
p′

q
q′

(b) Illustration of Definition 8 and Proposition 2.
Points p and q are an antipodal pair. Each
remaining point is in L or R. Replacing p with
p′ ∈ P and q with q′ ∈ Q gives an equivalent
database with respect to the response set.

q′

X
2

p

X
1

X
3

q

Q

(c) Illustration of Definition 9 and Proposition 3.
Points p and q are a close pair. There are no
points in regions X1, X2 or X3. Replacing q
with any q′ ∈ Q yields an equivalent database
with respect to the response set.

Fig. 3: Examples of transformations that yield equivalent databases with respect to the response set (Definition 7).

Fig. 4: An example of a domi-
nance graph and its associated
canonical antichain partition
comprising antichains A0 =
{s}, A1 = {u1, · · ·u6}, and
A2 = {v1, · · · v4}.

into antichains, namely the canonical antichain partition. We
denote the canonical antichain partition by (A0, A1, . . . , AL)
where Ai is the set of points at height i.

Let D be a database and let (G,G′) be the dominance
and anti-dominance graphs of D . Now note that the paths in
the dominance graph correspond to chains in D . Formally, if
(u1, u2, . . . , u`) is a path of record IDs in G, then

D [u1] � D [u2] � · · · � D [u`]

and {D [u1],D [u2], . . . ,D [u`]} forms a chain in D . By defini-
tion the edges of G represent the minimal dominance relations
of the points in D and thus determining the length of a longest
possible path in G from a source to u ∈ [R] is equivalent
to determining the height of point D [u] in the database.
This gives us a nice way of partitioning the IDs such that
the partition corresponds to the canonical antichain partition.
Formally, if s is a source of G then D [s] has height 0. And if
Si ⊆ [R] is the set of IDs in G that have a maximum distance
of i from any sink, then the canonical antichain partition of
D is given by

Ai = {D [a] : a ∈ Si}.
For an example, see Fig. 4. Since G is acyclic we can compute
these longest paths efficiently. For convenience we may use
Ai to instead refer to the IDs of points within each partition
of the canonical antichain.

These observations are crucial in the design of our OR
algorithm. E.g., we construct the dominance graph starting at
the IDs of points with height 0. We then compute the partition
on IDs that corresponds to the canonical antichain partition and
use the partition to construct the antidominance graph.

IV. OVERVIEW OF ORDER RECONSTRUCTION

A high-level intuitive explanation for our order reconstruction
algorithm is schematically illustrated in Figure 5, where we

show a database that has distinct extreme points left, right, top
and bottom. We assume, without loss of generality, that right
dominates left. The two parts of the figure distinguish the cases
where top is to the left or right of bottom, respectively. By
symmetry, these two cases cover all the possible configurations
of the extreme points. For simplicity, we assume that none
of the remaining points are horizontally or vertically aligned
with each other or the extreme points. Thus, only the four
extreme points are on the boundary of the rectangle occupied
by the database points. The order reconstruction algorithm
presented in the next section will remove all these simplifying
assumptions and reconstruct an arbitrary database. A first
building block of our order reconstruction algorithm finds such
extreme points from the response set.

A. Partition of the Database into Regions

By drawing horizontal and vertical lines through the extreme
points, we partition the database points into nine regions
labeled XY for X ∈ {T,M,B} and Y ∈ {L,M,R}, where T,
B, L, R, and M stand for top, bottom, left, right, and middle,
respectively. Note that some of these regions may be empty.
We can compute the points in each region from the response
set by finding minimal responses that contain certain pairs
and triplets of extreme points and performing intersections and
differences of such responses with each other and the entire
database. We show how to compute the rows and columns,
from which a region can be computed by intersecting its row
with its column. The middle row and column are the minimal
response containing left and bottom and the minimal response
containing top and bottom, respectively. The other rows and
columns are obtained by computing the minimal response
containing the triplet of extreme points opposite to the column
and subtracting this response from the database. For example,
the left column is obtained by subtracting from the database
the minimal response containing top, right, and bottom.

B. Dominance and Anti-Dominance With a Corner

Consider a subset S of the database containing a dominance
corner, s, defined as a point that dominates or is dominated by
all other points of S. For example, point left is a dominance
corner for the points in region ML in Figure 5a. Another
building block of our algorithm is a method that given S and
s, computes all pairs of points of S that have a dominance

(a) top to the left of bottom (b) top to the right of bottom

Fig. 5: Partition of the database points into nine regions
induced by the four extreme points.

relation. By symmetry, the same methods computes the anti-
dominance relation pairs for a subset of points that admits a
similarly defined anti-dominance corner. Let s be a dominance
corner for S and assume s is dominated by all the other points.
The method considers for each point v of S, the smallest
response containing points s and v. We have the the points
of S in this response are the points of S dominated by v. For
example, in the point set of Figure 4, we have that point s is
a dominance corner. Also, the smallest response containing
s and v3 is {s, u3, u4, v3}, which implies that the points
dominated by v3 are s, u3 and u4.

C. Points in Different Rows and Columns

Consider two points, p, and q. For some placement of these
points into regions, namely when they are in regions in
different rows and columns, we can immediately decide their
horizontal and vertical order and thus whether they are in a
dominance or anti-dominance relation. For example, if p is in
BL and q is in MM, MR, TM, or TR, then we have that q
is above and to the right of p and thus dominates p. Also,
if p is in BM and q is ML or TL, then we have that q is
above and to the left of p and thus q anti-dominates p. Similar
considerations hold for other placements of p and q in different
rows and columns.

D. Points in Different Regions in Same Row or Column

Consider now the case when p and q are in different regions
that share the same row or column. In this case, we know one
of the horizontal or vertical ordering of the points, but not the
other. Let p be in TL and q be in TR. We have that p is to the
left of q. We can use our building block method applied to the
points in the top row and their anti-dominance corner right to
determine whether p and q are in anti-dominance relation. If
they are not, given that p is to the left of q, we conclude that
q dominates p. The same reasoning holds when p is in TL and
q is in TM and, more generally, by symmetry, for p and q in
contiguous regions of the same row or column.

E. Points in Same Region

We now turn to the case when p and q are in the same region.
Here, we need to take into account the configurations of the
extreme points. We distinguish the cases when top is to the

left bottom (Figure 5a) and top is to the right of bottom
(Figure 5b). It is worth noting that we can distinguish these
two cases from the response set only if there is at least a
point in the middle column. Otherwise, top and bottom are
an antipodal pair (Definition 8 and Proposition 2).

In the case of Figure 5a, each region is included in a group
of regions that has a dominance corner and another group
of regions that has an anti-dominance corner. For example,
suppose p and q are in TL, TM, ML, or MM. We have
that left is a dominance corner for the top two rows and
bottom in an anti-dominance corner for the left two rows.
Applying our building block method to these two groups of
regions, we determine whether p and q are in dominance or
anti-dominance relation. In the case of Figure 5a, we can use
the same approach for all regions except MM.

To deal with the remaining case of p and q within region
MM in the configuration of Figure 5b, we observe that using
dominance corner top or bottom, we can determine if p and
q are in dominance relation. If so, we are done, else, we find
the extreme points of MM and apply the order reconstruction
algorithm recursively to the points within this region.

F. Proof of Theorem 1
Proof. Let D be a database and let left, right, top, and bottom
be its four extreme points. Without loss of generality, these
points must take one of the two configurations pictured in
Figure 5. Note, any point’s relative order can be determined
if it is in a dominance relation with one point and in an anti-
dominance relation with another point. If a point is not in such
a relation, then we argue that the three transformations yield
all databases equivalent to D with respect to the response set.
Case 1: If top and bottom are antipodal, we have the
configuration of Figure 5a or Figure 5b with an empty middle
column and the ordering of all pairs of points is determined
with the exception of the antipodal pair (Transformation 2).
Case 2: If top and bottom are not antipodal then we have two
subcases.
Case 2a: If top anti-dominates bottom, we have the config-
uration of Figure 5a where the ordering of all pairs of points
is determined.
Case 2b: Else, top dominates bottom and we have the
configuration of Figure 5b, where the ordering of all pairs
of points is determined except for pairs in MM. If MM = ∅ or
has a single point, we are done. Else, let C be the subset of
points of MM are not in anti-dominance relation with a point
of D not in MM. We have that all the remaining points of
MM have their ordering determined. Also, C comprises one
or more components and/or close pairs whose ordering can be
changed by means of Transformations 1 and 3.
Now, let us show that there are no other possible transfor-
mations that change the order of some pair of points a, b in
C, while leaving RS(D) the same. If b minimally dominates
a, there exists no response in RS(D) that contains right and
a without b. Any such transformation would result in one of
the following changes: (i) a dominates b, (ii) a anti-dominates
b, (iii) b anti-dominates a and (iv) a and b are collinear. In

(i), (ii) or (iii), then there would exist a response in RS(D)
that contains right and a, but not b, which would result in a
different response set. Thus, the transformation would make a
and b be collinear. This is possible only if the corresponding
sets X1, X2 and X3 shown in Figure 3c are empty. As b
minimally dominates a, X3 must be empty. Suppose there is
some point c ∈ X1, then there is a response that contains a
and c without b and a response that contains b and c without
a. If a and b were collinear, one of those responses becomes
impossible, modifying the response set. A similar argument
can be made about X2 so we have that X1, X2, and X3 are
empty. We conclude that a and b form a close pair and that
we are applying Transformation 3 to make them collinear.
Alternatively, if b minimally strictly anti-dominates a, there
exists a response r1 that contains right and a without b and
a response r2 that contains right and b without a. The trans-
formations would result in one of the following changes: (i) a
dominates b, (ii) b dominates a, (iii) a anti-dominates b and (iv)
a and b are collinear. In cases (i), (ii), or (iv) one of responses
r1 or r2 would not exist, resulting in a different response set.
What is left is case (iii), which means the anti-dominance
relationship is flipped by applying Transformation 1.

V. ORDER RECONSTRUCTION

The adversary using the response set can reconstruct the order
of all records in the database (up to equivalent orders). The
order reconstruction algorithm follows the following steps:

(1) Find the extreme points of the database. (Algorithm 9)
(2) Find the first antichain of the database, which contains all

points that do not dominate any point and generate the
dominance graph of the database. (Algorithm 1)

(3) Find all antichains in the dominance graph. (Algorithm 2)
(4) Use antichains to generate the anti-dominance graph.

(Algorithm 3)
(5) Use the dominance and anti-dominance graphs to find any

antipodal pairs (Proposition 2), close pairs (Proposition 3)
and flippable components. (Proposition 1). (Algorithm 4)

This attack achieves FDR when the horizontal and vertical
projections of the points are dense.

A. Preliminaries
Given some point a in the minimal antichain A0, our
order reconstruction attack requires computing the IDs of
all points that dominate D [a]. We developed Algorithm 8
(DominanceID) that takes as input the response set RS(D)
of a database D and an ID a of some point with height 0
in D , and outputs the set of identifiers in [R] of points that
dominate D [a]. The full explanation of our approach and the
pseudocode for Algorithm 8 can be found in Appendix A.

B. Find Extreme Points
The first step is to identify at most four identifiers of points
with extreme coordinate values. Specifically, we wish to find
identifiers of points left, right, top and bottom such that for
all p ∈ D the following hold: (1) left0 ≤ p0 ≤ right0
and bottom1 ≤ p1 ≤ top1, and (2) p 6� left, bottom and

top, right 6� p. Note that since no points in D are dominated
by left and bottom, then their height is 0 and are thus a subset
of A0 in the canonical antichain partition of D . These points
give a starting point for computing the rest of A0. We recover
these extremal points by calling Algorithm 7.

Our approach for finding such a subset of identifiers is as
follows. Let L and S1 be the first and second largest responses
in RS(D), respectively. Then E1 = L−S1 must correspond to
the IDs of points that are extreme in some coordinate. To find
the IDs of points that are extreme in some other coordinate,
find the second largest response S2 that contains E1, and then
compute E2 = L−S2. By extending this process, we find all
points with extremal coordinates. It remains to find the correct
point within each set Ei. Suppose E1 and E2 are the left and
bottom edges, respectively. By finding a, b ∈ [R] such that the
smallest response containing a and b contains no other edge
points, then D [a] and D [b] must not be dominating any other
points in D . Hence left = D [a] and bottom = D [b]. Similarly
for the identifiers of top and right.

Without loss of generality, we assume that right dominates
left. If not, simply reflect the database along dimension 0 to
achieve this orientation. Algorithm 9 is inspired by [8].

Lemma 1. Let D be a database and let RS(D) be its response
set. Algorithm 9 (FindExtremePairs) returns all configurations
of extreme points (left, right, top, bottom) such that no points
are dominated by left and bottom, and no points dominate
right and top in O(R2|RS(D)|) time.

The pseudocode for Algorithm 9 is in Appendix B and the
proof of Lemma 1 is in Appendix C.

C. Generate Dominance Graph

This step takes as input the response set RS(D) and some
configuration config given by running Algorithm 9 on RS(D),
and outputs a dominance graph G of D . We first start by
computing all IDs of points with height 0. These must be the
sinks of G. Let left, right, and bottom be given by config. By
assumption, all points not dominated by left and bottom must
be contained in the minimal query containing them.

Then for each a ∈ A0 we build a subgraph of the dominance
graph on a and all IDs that dominate a. We use Algorithm 8,
described in Appendix A, to compute this set of IDs. We
initialize subgraph Ga = {a} and then extend the graph by
finding the next smallest response resp containing a, that also
contains some ID v not yet added to the graph. Since resp
is minimal, then v must dominate everything in the response.
Moreover, v must minimally dominate all IDs that are sinks in
the current Ga and are contained in resp. Thus we add (t, v)
to Ga for all sinks t of Ga contained in resp.

Once subgraphs Ga for all a ∈ A0 have been computed, we
simply take their union, G = ∪aGa, as the dominance graph
and return G and A0.

Lemma 2. Let D be a database, RS(DB) be its response
set, and config the correct configuration output by Algo-
rithm 9 on RS(DB). Given RS(D) and config, Algorithm 1

Algorithm 1: DomGraph(RS(D), config)

Input: Response set RS(D) of database D ; a dictionary config
mapping left, right, top, bottom to IDs.

1: // Find antichain-0. We assume right dominates left.
2: Let small be the smallest response containing left and bottom.
3: Let A0 = small
4: for p ∈ small do
5: Let S be the smallest response that contains right and p.
6: Q = (S ∩ small)− {p}
7: A0 = A0 −Q
8: // Find dominance graph.
9: Let G be an empty graph

10: for each a ∈ A0 do
11: Ga = (V,E) such that Va = {a} and Ea = ∅.
12: S = DominanceID(a, top, left, right,RS(D))
13: Let RS ⊆ RS(D) comprise the responses of size at least 2

that contain a and only other IDs in S.
14: for resp ∈ RS by increasing size do
15: if ∃v ∈ resp such that v /∈ Ga then
16: Add vertex v to Ga

17: for each t of resp such that t is a sink of subgraph of Ga

that contains only points in resp do
18: Add edge (t, v) to Ga.
19: G = ∪a∈A0Ga, and remove any transitive edges
20: return G, A0

(DomGraph) returns the dominance graph of the points in D
in O(R3|RS(D)|) time.

The proof of Lemma 2 can be found in Appendix C.

D. Construct Antichains
Given A0, we now wish to compute the entire canonical
antichain partition of D . Here, we explain how to find the
partition A = (A0, . . . , AL) such that L is the maximum
height of any element in D . Computing each Ai is equivalent
to finding the set of elements whose maximum length path
in G from any a ∈ A0 has length i. Thus, for each p ∈ G
we compute the longest path in G from any a ∈ A0 to p
and then add p to the correct partition in A. Lastly, order the
elements in each antichain A ∈ A such that, without loss of
generality, for any pair of ordered elements c and c′, c �a c′.
If |A| ≤ 2 we are done. Else we compute all responses that
contain exactly two elements in A. If such a response exists
for a pair c, c′ ∈ A then we can infer that there exists no
c′′ ∈ A such that c �a c′′ � c′. Thus we may use these
responses to determine the ordering of the elements in A such
that any element must anti-dominate all previous elements in
the ordering.

Lemma 3. Let D be a database and RS(DB) be its response
set. Given RS(D), a dominance graph G of D , and the
minimal antichain A0, Algorithm 2 (FindAntichains) returns
a dictionary Antichains such that Antichains[i] contains an
ordered list of all IDs at height i in O(R2|RS(D)|) time.

The proof of Lemma 3 can be found in Appendix C.

E. Generate Anti-Dominance Graph
The next step is to take the response set RS(D), the dominance
graph G, and the canonical antichain partition Antichains and
construct the corresponding anti-dominance graph. There are

Algorithm 2: FindAntichains(RS(D), G,A0)

1: // Find antichains.
2: (V,E) = G, Antichains = {}, Antichains[0] = A0

3: Compute longest paths∈ G from all a ∈ A0 to all points in D .
4: L = 0
5: for each p ∈ V do
6: Let ` be the length of the longest path to p from any a ∈ A0.
7: Add p to Antichains[`]
8: L = max(L, `)
9: // Order the points of Antichains[i].

10: for i = 0, · · · , L do
11: if |Antichains[i]| > 3 then
12: Let S be all responses in RS(D) that contain exactly two

elements of Antichains[i] (and perhaps other points)
13: Remove all p 6∈ Antichains[i] from S and make S a set.
14: Order Antichains[i] such that pairs of consecutive points

are responses in S.
15: return Antichains

three major steps that we must take: (1) fix the antichain
orientations so that they are lined up correctly, (2) add any
edges between IDs of different antichains that are in an anti-
dominance relationship, and (3) identify all colinearities.

First we iterate through Antichains; At iteration i, we look
at Antichains[j] for all j < i until we find an edge (c1, c2)
in G such that c1 ∈ Antichains[j] and c2 ∈ Antichains[i]. If
there is another edge (c′1, c

′
2) in G with c′1 ∈ Antichains[j] and

c′2 ∈ Antichains[i], then we check if the edges in the antichains
i and j are consistent. For example, if the orderings are (c1, c′1)
and (c′2, c2) in Antichains[j] and Antichains[i], respectively,
then we flip Antichains[i].

Once the chains are fixed, we add edges for anti-
dominance relationships. We iterate through Antichains[i] and
Antichains[j] for i < j and look at each pair of elements
ai, aj such that ai ∈ Antichains[i] and aj ∈ Antichains[j].
For each ai and aj we compute all their successors and all
predecessors in G. If there exists a path from some successor
of aj to some predecessor of ai, then we add (aj , ai) to G′.
Similarly, if there exists a path from some predessor of aj to
some successor of ai, then we add (ai, aj) to G′.

The last thing that remains is to identify colinearities. For
each edge (q, p) in G′ find the smallest response S containing
q and p. If there exists some k ∈ S such that k and p are not
connected in G′, then they must be colinear and so we add
(k, p) to G′. We similarly check if there exists a colinearity
between k and q and add those edges to G′. The final step
is to remove all transitive edges in G′ (if they exist) to keep
only minimal anti-dominance relationship and return the anti-
dominance graph G′.

Lemma 4. Let D be a database and RS(DB) be its response
set. Given RS(D), the dominance graph G of D , and the or-
dered antichains of D Algorithm 3 returns the anti-dominance
graph of D in O(R3|RS(D)|).

The proof of Lemma 4 can be found in Appendix C.

F. Order Reconstruction
We have already described the algorithms for computing the

extreme points, the dominance graph, the antichains, and the

Algorithm 3: AntiDomGraph(RS(D), G,Antichains)

1: Initialize empty graph G′

2: // Fix chain orientation
3: for i ∈ [1, |Antichains|] do
4: Add an edge in G′ between consecutive points in

Antichains[i− 1]
5: Find (c1, c2) ∈ G, where c1 is the first point in

Antichains[k], k < i in an edge with a point from
Antichains[i]. If there are multiple options for c2, pick the
smallest one in order.

6: if ∃(c′1, c′2) ∈ G, for a point c′1 ∈ Antichains[k], k < i,
which is after c1 in order, and c′2 ∈ Antichains[i], which is
before c2 in order, and there is no path from c′1 to c2 in G
then

7: Flip the order of Antichains[i]
8: Add an edge in G′ between consecutive points in the last

antichain
9: // All chains are fixed; Now add edges between them.

10: for Ai = Antichains[i] and Aj = Antichains[j], such that
i, j ∈ [|Antichains|] and i < j do

11: for ai ∈ Ai and aj ∈ Aj do
12: if ai and aj not connected in G then
13: Find successors of aj , Sj ⊆ Aj , and all predecessors of

aj , Pj ⊆ Aj . Add aj to Sj , Pj .
14: Find successors of ai, Si ⊆ Ai, and all predecessors of

ai, Pi ⊆ Ai. Add ai to Si, Pi.
15: if ∃ path from p to q in G, s.t. p ∈ Sj , q ∈ Pi then
16: Add edge (aj , ai) to G′

17: else if ∃ path from p to aj in G, s.t. p ∈ Pi then
18: Add edge (aj , ai) to G′

19: else if ∃ path from p to q in G, s.t. p ∈ Pj , q ∈ Si then
20: Add edge (ai, aj) to G′

21: else if ∃ path from p to aj in G, s.t. p ∈ Pi then
22: Add edge (aj , ai) to G′

23: // Find any collinearities.
24: Let E be an empty list.
25: for (q, p) ∈ G′ do
26: Pq,p, Sp,q, Pp,q = Boxes(p, q)
27: Let S = ∪Pq,p ∪ Sp,q ∪ Pp,q

28: if ∃k ∈ S, where there is no path from k to p in G′ then
29: Add an appropriate edge between k and p to G′

30: if ∃k ∈ S, where there is no path from k to q to E then
31: Add an appropriate edge between k and q to E
32: Add all edges in E to G′

33: Remove transitive edges from G′

34: Return G′

Algorithm 4: OrderReconstruction(RS(D))

1: PossibleConfigs = FindExtremePairs(RS(D))
2: for config ∈ PossibleConfigs do
3: G = DomGraph(RS(D), config)
4: G′ = AntiDomGraph(RS(D), G,Antichains(RS(D), G))
5: Let closePairs and antipodalPairs be empty lists.
6: Find the smallest response that contains top and bottom. If it

contains no other points, then add (top, bottom) to
antipodalPairs.

7: Find the smallest response that contains left and right. If it
contains no other points, then add (left, right) to
antipodalPairs.

8: for each edge (b, a) ∈ G do
9: if (b, a) satisfy Definition 9 then

10: Add (b, a) to closePairs
11: if response set of points with orders (G,G′) is RS(D) then
12: Return (G,G′, antipodalPairs, closePairs)

anti-dominance graph. We now put all these pieces together
to design an algorithm that achieves OR of a target database
D given its response set RS(D). Algorithm 4 succeeds at
OR by taking the following steps. First it runs Algorithm 9
(FindExtremePairs) to compute all candidate configurations
of the extreme points; by computing all constant number of
the configurations, we guarantee that at least one of those
configurations must correspond to a correct arrangement of
the extreme points in D (up to rotation/reflection).

For each possible configuration computed above, it
then computes the dominance graph using Algorithm 1
(DomGraph) and the anti-dominance graph using Algorithm 3
(AntiDomGraph). Incorrect configurations, result in graphs
that are either of an incorrect form or result in a pair
of dominance and anti-dominance graphs (G,G′) such that
databases with orders described by (G,G′) are not compatible
with RS(D). Algorithm 4 continues to iterate through the
configurations until a correct pair of graphs (G,G′) is found
and returned. Given a response set RS(D) of some database
D as input, Algorithm 4 (OrderReconstruction) is guaranteed
to terminate and output a correct graph pair.

Theorem 2. Given the response set RS(D) of a 2D database
D with R records, Algorithm 4 (OrderReconstruction) returns
an O(R)-space representation of the set Eo(D) of all possible
orderings of the points of databases equivalent to D with
respect to the response set. The algorithm runs in time
O(R3|RS(D)|), which is O(R7).

Proof. By Lemma 1, PossibleConfigs has all possible config-
urations of a given set of extreme points. Thus, at some point
we pick the correct config. By Lemmas 2 and 4, we know that
G and G′ return correct weak dominance and anti-dominance
graphs. By Proposition 2, we know that if the smallest re-
sponse that contains top and bottom is empty, then they are
an antipodal pair. Similarly for left and right. We find all such
pairs. We iterate though pairs of points and find any that satisfy
the close pair requirements from Definition 9, constructing the
closePairs set. The anti-dominance graph encodes in it any
components, as the separate connected components of anti-
dominance graph form the different flippable components.

By Theorem 1, given (G,G′, antipodalPairs, closePairs)
output by the algorithm, we can construct all members of
set Eo(D). The first graph we return is sufficient as any
other extreme point configurations whose response set matches
RS(D) are either rotations/reflections or contain antipodal
pairs. This Algorithm takes O(R3|RS(D)|) time, as it takes
O(R3|RS(D)|) time to run Algorithms 9, 1, 2 and 3. Finding
antipodal pairs takes O(|RS(D)|) and finding close pairs
O(R3). Finally, it takes O(R4) time to generate and compare
the leakage.

We can encode graphs G and G′ by their linear extensions in
linear space, and the sets antipodalPairs and closePairs contain
at most O(R) points.

Fig. 6: (Left) Reconstructed dominance graph (blue edges)
and anti-dominance graph (red edges) of 200 randomly chosen
points from the California Road Network dataset. (Right) The
dominance and anti-dominance graphs for the order recon-
struction of 08/31/2009 from the Malte Spitz dataset.

G. Experimental Results
In the previous subsections, we discussed the limitations of OR
and described an algorithm that succeeds at OR when given
the response set of a database. We now support our theoretical
results with experimental results. We have deployed our OR
attack on two real-world location datasets.

The California Road Network dataset [19] comprises
21, 047 road network intersections indexed by longitude and
latitude. The longitude coordinates range between −124.389◦
and −114.294◦ and the latitude coordinates range between
32.541◦ and 42.017◦. We took a random sample of 200 points,
truncated the coordinates to one decimal place, and scaled by
a factor of 10. The resulting domain had size [98]× [93]. We
generated the response set for those points and then ran our
OR attack (Algorithm 4) on that response set.

We chose to use this dataset because of its prior use in
the order-revealing encryption (ORE) literature. Although the
leakage we consider in this work is strictly less than the
leakage produced by even the most secure ORE schemes (e,g,.
Ideal), the goal of our OR attack parallels the goals of the sort
attacks on ORE-schemes [21] [6] in many ways. Unlike those
attacks, we allow the points to be co-linear and we make no
assumption about the density of the data. Similar to the 2D-
sort attack, though, we aim to recover the relative orders of
the records corresponding to the correlated encrypted columns
in two-dimensional space.

In Figure 1, we depict the result of our reconstruction of
200 random points from this dataset. One can observe that al-
though, in theory, we only recover the relative orders of all the
points, the actual reconstruction leaks additional information
about the overall “shape” of the data. For our reconstruction,
after finding the order of the points, each point is assigned
coordinates corresponding to its index in each dimension’s
ordering. The figure shows each antichain in a different color,
illustrating the height increase. The reconstructed dominance
graph (blue edges) and anti-dominance graph (red edges) of
the points are shown in Figure 6. Note that in both Figure 1
and Figure 6, the x-axis is inverted. This is because, in the
Western hemisphere, the longitude axis is inverted.

Malte Spitz is a German politician who published six
months of his phone location data. The Spitz data includes
location data of Spitz’s whereabouts from 166 days, between
8/31/2009 and 2/21/2010. We took longitude and latitude data
from the first day of the Spitz data, truncated to one decimal
place, and scaled by a factor of 10. In Figure 6, we include
the reconstructed dominance and anti-dominance graphs. We

picked this data as it has been used in previous work on
reconstruction attacks [8], [17].

Order reconstruction in two-dimensions is significantly
more enlightening than in one-dimensions. We conjectured
that the geometry of the data is more observable when data
is (close to) dense in one or both of the domains. Our results
from the California dataset support this: we can clearly see
that this location data comes from the state of California. In
the Spitz case, we can still recover the shape of the dataset
and see that it’s a deeply diagonal database with a number of
collinearities and reflectable components.

VI. ESTIMATING THE RHO FUNCTIONS

One of the challenges of reconstructing a database D with
only partial knowledge of RM(D), is that the adversary can
no longer compute the exact ρ values by simply looking
at RM(D) and counting the number of unique queries that
contain the corresponding identifier(s). As such, the two-
dimensional FDR attack [8] can no longer be applied. To
overcome the challenge of reconstruction with missing queries,
we draw inspiration from [17] and use statistical estimators to
obtain estimates of the ρ values. In this section, we show how
to estimate the ρ values for two dimensional range queries;
we provide an overview of a number of non-parametric
estimators that make no assumptions about the underlying
query distribution. Then, in Section VII we show how these
ρ estimates can be used to construct a system of non-linear
equations whose solution corresponds to an approximate re-
construction of the target database.

Given a sample (multiset) M of m token-response pairs,
we show how one may compute the appropriate sub-multisets
L ⊆ M that correspond to the ρ functions of interest. Each
of these sub-multisets is used to approximate the value of its
respective ρ value. We extend [17] by experimentally evaluat-
ing a number of statistical estimators beyond Jacknknife and
Valiant-Valiant, and presenting our findings.

Formally, let D be a database of R records and let
M = {{(t1, A1), . . . , (tm, Am) : Ai ∈ RS(D)}}

be a sample (i.e. multiset) of m token-response pairs that
are leaked when queries are issued according to an arbitrary
distribution. Define Li for ID i ∈ [R] to be the multiset of
token-response pairs in M in which the response contains i.

Li = {{tk : i ∈ Ak and (tk, Ak) ∈M}}
We can similarly define a subset Li,j for i, j ∈ [R] as follows.

Li,j = {{tk : {i, j} ∈ Ak and (tk, Ak) ∈M}}
Note that when M contains all unique token-response pairs of
D , then ρi = |set(Li)| and ρi,j = |set(Li,j)| for all i, j ∈ [R].

We introduce some basic notation and definitions from prior
work on estimators. To remain consistent with prior estimator
literature, in this section, N and D do not refer to the domain
or database, respectively. Let N be the size of sample L and
let n denote the size of a subsample L ⊆M . Denote by D the
number of distinct tokens in M and d the number of distinct
tokens in a sub-sample L ⊆M .

Definition 11. [24] Let L be a sample and let fi be the
number of search tokens that are observed i times in L. The
fingerprint of a sample L is the vector F = (f1, f2, ..., fn),
where |L| = n. We can express the total number of token-
response pairs in L as n =

∑n
i=1 ifi and the number of

observed distinct search tokens as d =
∑n
i=1 fi.

A. Non-parametric Estimators

Sampling-based estimators have been used across various do-
mains for goals ranging from estimating the number of unique
attributes in a database of [13], the number of unique species
in a population sample (e.g. [1], [2]), even the number of
words that Shakespeare must have known [7]. Recently, non-
parametric estimators have been used for database reconstruc-
tion setting to estimate the support size of the given conditional
probability distribution of a particular record identifier.

In this section, let M be the sample of observed token-
response pairs from database D ∈ DR. Let L be a sub-multiset
of M comprised of all token-response pairs that contain the
identifiers of the points whose ρ value we wish to compute.
The goal is to estimate ρ̂ ≈ ρ for use in reconstruction. We
employ non-parametric estimators to estimate ρ.

Chao-Lee. Chao and Lee proposed an estimator that utilizes
sample coverage [3]. Let pi be the probability that a query
sampled from the distribution matches the i-th token-response
pair, of the possible Q =

(
N0+1

2

)(
N1+1

2

)
token-response pairs.

Let 1L(i) be the following indicator function.

1L(i) =

{
1 if i-th token-response pair is in L
0 otherwise.

The sample coverage C of a sample L is the sum of the
probabilities of the the token-response pairs that appear in
L: C =

∑Q
i=1 pi · 1L(i). Note that Ĉ = 1 − f1/n is a

natural estimate for C, which can then be used to estimate
ρ̂ ≈ d/Ĉ. Chao and Lee use this approximation in combination
with an additive term to correct estimates of data drawn
from skew distributions. Let ρ̂ChaoLee = d

Ĉ
+ n(1−Ĉ)

Ĉ
· γ̂2,

where γ̂ is an estimate of the coefficient of variation γ =
(
∑
i(pi − pmean)2/Q)1/2/pmean and pmean is the mean of

the probabilities p1, . . . , pQ.

Shlosser. In [23], Shlosser derived the estimator

ρ̂Schloss = d+
f1
∑n
i=1(1− q)i · fi∑n

i=1 i · (1− q)i−1 · fi
,

where q is the probability with which a pair is included
in the sample. This estimator rests on the assumption that
q = n/Q. As [13] notes, the Shlosser estimator further
rests on the assumption that E[fi]/E[f1] ≈ Fi/F1 where
Fi is the number of tokens that appear i times in entire
database; This assumption isn’t often satisfied in our setting,
but our experiments demonstrate that Shlosser did comparable
to Jackknife in various cases.

Jackknife. The jackknife method was introduced by Que-
nouille as a technique for correcting the bias of an estima-
tor [22]. We use the jackknife estimators described in [1] [2],
which have been used extensively in biology for the related

Distribution Spitz Random Grid

Uniform

Beta

Gaussian

TABLE II: Effectiveness of the estimators.

problem of species estimation, as well as used in database
reconstruction [17] and the problem of estimating the number
of unique attributes in a relational database [13].

One can view d as a biased estimate of the true ρ. Thus,
given a biased estimate d, jackknife estimators use sampling
with replacement to estimate the bias biasjack, and obtain
ρ̂jack = d − biasjack. Let dn denote the number of unique
tokens in L and let dn−1(k) denote the number of unique
tokens in L when the k-th token-response removed. Note that
dn−1(k) = dn − 1 if and only if the k-th pair is unique in L.
Let dn−1 = (1/n)

∑n
k=1 d(n−1)(k). The first order jackknife

estimator is ρ̂jack = d− (n−1)(d(n−1)−d). The second order
jackknife consequently consider all n samples generated by
leaving one pair out, in addition to all

(
n
2

)
generated by leaving

two pairs out. This method can be extended to an k-th order
jackknife estimators that generates

∑k
i=1

(
n
i

)
samples and has

bias O(n−k+1).

B. Experiments

We ran our estimators against three databases with domain size
[24] × [24]. The first one is the first day of the Spitz dataset
(described Section V-G), a dataset deeply diagonal exhibiting
numerous colinearities and flippable components. The second
database contains points in a grid formation in one corner of
the database. The last database contains a random placement
of points in the domain. We call these databases Spitz, Grid
and Random. Note that the same day from the Spitz database
showcased the FDR algorithm in [8]. These databases can be
found in tables III, V, and VI. They were chosen as they
represent three fairly different point distributions.

We tested the estimation robustness of each estimator under
the (i) Uniform distribution, (ii) Beta(2,1) distribution and
(iii) Gaussian(1/2, 1/5) distribution. Recall that our goal is to
estimate the ρ value for each ID and for all pairs of IDs. Thus,
for each estimator, we computed ρ̂i and ρ̂i,j for all i, j ∈ [R]
under different query distributions and then computed the
mean squared error. Our empirical results demonstrate that
the Chao-Lee estimator performed best (Table II). We initially
considered the Valiant-Valiant estimator that was use in [17],
but it did not perform as well in our case.

Queries Uniform Beta Gaussian

15000

45000

75000

TABLE III: Reconstruction of the Random database under
different distributions and number of observed queries. The
blue points denote our reconstruction and the green the origi-
nal. The blue shapes represent clusters of points from original
database (transparent) mapped to the reconstruction (darker).

VII. APPROXIMATE DATABASE RECONSTRUCTION

Our distribution-agnostic attack for approximate database
reconstruction depends on the order reconstruction algorithm
and consists of two parts. First, we use support size estimator,
Chao-Lee, to estimate how many query responses contain a
point or a set of points. Then, we use these estimates to
construct a system of equations, whose solution gives an
approximate reconstruction of the database.

A. Algorithm

We assume knowledge of the ordering of the database as given
by the Algorithm 4. The first step of ADR is to build a system
of equations. We know that point p with coordinates p0, p1 will
be included in ρp = p0p1(N0−p0)(N1−p1) unique responses.
The Chao-Lee estimator will give us an estimate of ρ′p. We
can then construct an equation with unknowns xp, yp.

xpyp(N0 − xp)(N1 − yp) = ρ′p (3)

Given a pair of point p, q, where p dominates q, we know
that both points are included in ρp,q = q0q1(N0−p0)(N1−p1)
unique responses. We estimate ρ′p,q , and construct an equation

with unknowns xp, yp, xq, yq .
xqyq(N0 − xp)(N1 − yp) = ρ′p,q (4)

We build a similar equation from any ordering of p and q.
For any two points, that are both in a dominance and

and anti-dominance relationship, we know that they must be
collinear. We add this constraint to our system. We use the
Chao-Lee estimator to approximate the ρ values (ρp, ρp,q) from
the subset of responses we have seen. We then construct a first
guess for the values of the points using their ordering. Each
point p is given coordinates corresponding to its indexes in the
first and second dimension. Finally, we find an approximation
of the database’s point values using a least-squares approach.

Algorithm 5 takes as input a subset S of the response
multiset RM(D), the ordering G,G′ and the domain size
(N0, N1). It returns a reconstructed point set.

Algorithm 5: ADR(S ⊆ RM(D), G,G′, N0, N1)

1: Let g be a reconstruction of the point values using G and G′

2: Create a system of ρ equations for all single points and pairs,
including any collinearities.

3: Using the subset of responses we have observed S and the
Chao-Lee estimator approximate the ρ value of each equation.

4: return the least-squares solution to the system of equations
initializing at g

B. Experiments

Algorithm 5 gives us an approximation of the database points.
We test our attack on three the Spitz, Grid and Random
datasets as before. We performed experiments with three
different distributions by sampling queries according to the
(i) uniform distribution, (ii) Beta(2,1) distribution and (iii)
Gaussian(1/2, 1/5) distribution. In Tables III, V and VI, we
present the reconstruction of the Random, Grid, and Spitz
datasets, respectively. The reconstructions are obtained after
having observed 15000, 45000 and 75000 queries. Since
the domain of the database is [24] × [24], there are 90000
unique queries. In our reconstructions we observe between
15% and 57% of the unique queries. For each distribution
and number of observed queries, we show two plots. In the
first, our reconstruction is plotted with blue circles and the
original points are green crosses. In the second plot, we use
agglomerative clustering to cluster the points of the original
dataset. We draw the alpha shape of each cluster both in the
original data and the reconstructed to visualize the similarities
between the two.

We observe that even with a small number of queries, the
reconstructed points look “similar” to the original ones. We
quantitatively analyze the similarity by matching the clusters
of the original points to the reconstruction. In Table IV, we
show how well our reconstruction did by calculating the mean
error, which is the averaged sum of the euclidean distance of
the reconstructed points to the original. We also calculate the
mean squared error, similarly to the mean error, but we square
the euclidean distance before summing. Finally, to measure
similarity between the reconstructed database and the original,
we use Procrustes analysis [11], which scales/dilates, rotates,

Observed Queries 15000 45000 75000

Error Metric
Mean

Squared
Error

Mean
Error

Procrustes
Disparity

Query
Ratio

Mean
Squared

Error

Mean
Error

Procrustes
Disparity

Query
Ratio

Mean
Squared

Error

Mean
Error

Procrustes
Disparity

Query
Ratio

Spitz
Uniform 2.967 1.492 0.018 15% 0.037 0.176 0.0 39% 0.032 0.162 0.0 56%

Beta 12.471 3.264 0.095 15% 13.428 3.325 0.03 37% 9.45 2.878 0.028 51%
Gaussian 8.606 2.55 0.066 15% 9.329 2.665 0.011 36% 9.032 2.674 0.005 50%

Grid
Uniform 0.091 0.298 0.026 15% 0.005 0.06 0.001 39% 0.002 0.042 0.0 56%

Beta 4.995 1.849 0.718 15% 7.232 2.493 0.336 37% 0.699 0.8 0.042 51%
Gaussian 7.302 2.431 0.372 15% 37.344 5.433 0.497 36% 6.948 2.478 0.313 50%

Random
Uniform 0.62 0.725 0.006 15% 0.017 0.118 0.0 39% 0.008 0.082 0.0 57%

Beta 2.214 1.393 0.015 15% 3.361 1.697 0.017 37% 1.927 1.28 0.008 51%
Gaussian 2.974 1.585 0.017 15% 3.617 1.794 0.024 36% 2.303 1.396 0.012 49%

TABLE IV: Performance of our Approximate Reconstruction Attack.

Queries Uniform Beta Gaussian

15000

45000

75000

TABLE V: Reconstruction of the Grid database under different
distributions and numbers of observed queries. The blue points
denote our reconstruction and the green the original. The
blue shapes represent clusters of points from original database
(transparent) mapped to the reconstruction (darker).

reflects and translates the reconstructed points attempting to
minimize the sum of the squares of the pointwise distances of
the reconstructed and original sets. The resulting Procrustes
disparity varies from 0 to 1, with 0 indicating optimal similar-
ity. As expected, the reconstruction does best under a uniform
distribution.

We observe that under few responses, the reconstruction
struggles with very diagonal datasets (like Spitz), but does very
well when the database contains points covering all parts of the
domain (like Random). We observe that our reconstruction can
effectively find the “shape” of the database under almost all
our experimental settings with few queries (15%). A notable

Queries Uniform Beta Gaussian

15000

45000

75000

TABLE VI: Reconstruction of the Spitz database under dif-
ferent distributions and number of observed queries. The blue
points denote our reconstruction and the green the original.
The blue shapes represent clusters of points from original
database (transparent) mapped to the reconstruction (darker).

exception is Grid under non-uniform distributions, where our
reconstruction underperforms. In the Spitz data, we observe
a number of points that are reflected along the diagonal, a
manifestation of reflecting components, which are an intrinsic
limitation of the attack (Theorem 1 and [8]).

VIII. FUTURE WORK DIRECTIONS

This paper makes progress toward the development of practical
reconstruction attacks from range queries in encrypted 2D
databases and the understanding of the intrinsic limitations of
such attacks. A first future direction is to optimize the theoret-
ical and practical performance of our order reconstruction and

approximate reconstruction algorithms by deploying advanced
data structures and specialized nonlinear solvers. Additionally,
it would be interesting to experiment on a larger suite of real-
world datasets and query distributions. Another open problem
is to explore partial order reconstruction when only a subset of
the access pattern leakage is available to the adversary. Some
of our techniques extend to higher dimensions so our work lays
a foundation for the development of reconstruction attacks and
understanding of their limitations for databases where range
searches are performed on multiple attributes.

REFERENCES

[1] K. P. Burnham and W. S. Overton, “Estimation of the size of a closed
population when capture probabilities vary among animals,” Biometrika,
vol. 65, no. 3, pp. 625–633, 1978.

[2] ——, “Robust estimation of population size when capture probabilities
vary among animals,” Ecology, vol. 60, no. 5, pp. 927–936, 1979.

[3] A. Chao and S.-M. Lee, “Estimating the number of classes via sample
coverage,” Journal of the American Statistical Association, vol. 87,
no. 417, pp. 210–217, 1992.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[5] Dawn Xiaoding Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proc. IEEE Symp. on Security and
Privacy, ser. SP, 2000.

[6] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed by
order-revealing encryption?” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
1155–1166.

[7] B. Efron and R. Thisted, “Estimating the number of unseen species:
How many words did shakespeare know?” Biometrika, vol. 63, no. 3,
pp. 435–447, 1976.

[8] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern, and
R. Tamassia, “Full Database Reconstruction in Two Dimensions,” in
Proc. ACM Conf. on Computer and Communications Security, ser.
CCS, 2020.

[9] S. Felsner and L. Wernisch, “Maximum k-chains in planar point
sets: Combinatorial structure and algorithms,” SIAM J. Comput.,
vol. 28, no. 1, pp. 192–209, 1998. [Online]. Available: https:
//doi.org/10.1137/S0097539794266171

[10] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gade-
pally, R. Shay, J. D. Mitchell, and R. K. Cunningham, “SoK: Crypto-
graphically protected database search,” in Proc. IEEE Symposium on
Security and Privacy 2017, ser. S&P 2017, 2017.

[11] J. C. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40,
no. 1, pp. 33–51, 1975.

[12] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Learning to
reconstruct: Statistical learning theory and encrypted database attacks,”
in Proc. IEEE Symp. on Security and Privacy 2019, ser. S&P 2019,
2019.

[13] P. Haas, J. Naughton, S. Seshadri, and L. Stokes, “Sampling-based
estimation of the number of distinct values of an attribute,” in VLDB,
1995.

[14] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. on Computer and Com-
munications Security, ser. CCS. ACM, 2012.

[15] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks on
secure outsourced databases,” in Proc. ACM Conf. on Computer and
Communications Security 2016, ser. CCS 2016, 2016.

[16] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Data recovery
on encrypted databases with k-nearest neighbor query leakage,” in Proc.
IEEE Symp. on Security and Privacy 2019, ser. S&P 2019, 2019.

[17] ——, “The state of the uniform: Attacks on encrypted databases beyond
the uniform query distribution,” in Proc. IEEE Symp.on Security and
Privacy 2020, ser. S&P 2020, 2020.

[18] M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved reconstruc-
tion attacks on encrypted data using range query leakage,” in Proc.
IEEE Symp. on Security and Privacy 2018, ser. S&P 2018, 2018.

[19] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On
trip planning queries in spatial databases,” in Advances in Spatial
and Temporal Databases, C. Bauzer Medeiros, M. J. Egenhofer, and
E. Bertino, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 273–290.

[20] E. A. Markatou and R. Tamassia, “Full database reconstruction with
access and search pattern leakage,” in Proc. Int. Conf on Information
Security 2019, ser. ISC 2019, 2019.

[21] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. ACM Conf. on Computer and
Communications Security 2015, ser. CCS 2015, 2015.

[22] M. H. Quenouille, “Approximate tests of correlation in time-series,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 11, no. 1, pp. 68–84, 1949.

[23] A. Shlosser, “On estimation of the size of the dictionary of a long text
on the basis of a sample,” Engineering Cybernetics, no. 19, p. 97–102,
1981.

[24] P. Valiant and G. Valiant, “Estimating the unseen: Improved estimators
for entropy and other properties,” in Advances in Neural Information
Processing Systems, vol. 26, 2013, pp. 2157–2165.

[25] G. Viennot, “Chain and antichain families grids and young tableaux,”
in Orders: Description and Roles Ordres: Description et Rôles, ser.
North-Holland Mathematics Studies, M. Pouzet and D. Richard, Eds.
North-Holland, 1984, vol. 99, pp. 409 – 463.

APPENDIX A
DESCRIPTION OF ALGORITHM 8

In this section we describe in full detail how given the
response set RS(D) and the ID a of a point with height 0,
one can compute the full set of IDs of points that dominate
D [a]. We start by describing a helper function called Boxes.

Let a, b ∈ [R] be the IDs of two points in D . Algorithm
Boxes, takes as input a pair (a, b) and returns the following
responses of RS(D) (see Figure 7):

• Sa,b: minimal response containing a and b.
• Pa,b: D minus the maximal responses containing b but

not a; i.e., set of points p such that every response
containing b and p contains also a.

• Pb,a: D minus the maximal responses containing a but
not b; i.e., set of points p such that every response
containing a and p contains also b.

Algorithm 6: Boxes(a, b)

1: Let Sa,b be the smallest response in RS(D) containing a and b
2: Let L = D
3: Let Pb,a and Pa,b be empty lists
4: for p ∈ L do
5: if @r ∈ RS(D), s.t. p, b ∈ r and a /∈ r then
6: Add p to Pa,b

7: if @r ∈ RS(D), s.t. p, a ∈ r and b /∈ r then
8: Add p to Pb,a

9: return Pb,a, Sa,b and Pa,b

b

Pa,b

Sa,b

Pb,a

a

b

Pa,b

Sa,b

Pb,a

a

Fig. 7: Illustrating the sets output by Algorithm 6 for points a
and b, when b strictly anti-dominates a (left) and when b and
a are collinear (right).

Note that given a pair of IDs (a, b), there are at most two
distinct maximal responses containing a but not b (or b but
not a). These responses comprise the points in the maximal
horizontal and vertical strips of the domain that contain a but
not b (or b but not a). Note that if a and b share the same
horizontal or vertical coordinate, only one of the above strips
is nonempty.

https://doi.org/10.1137/S0097539794266171
https://doi.org/10.1137/S0097539794266171

Algorithm 8 (DominanceID) leverages Boxes to determine
if top dominates a. If yes, then we return the minimal response
containing a, top and right. Else top must strictly antidominate
a. Let S be the smallest response containing a, top and right
and let M be the smallest response containing a and top. It
is clear that S − M contains all IDs of points that strictly
dominate a. To find the IDs of points that are colinear with a,
we run Edges with M − {a} as input; the IDs of points that
are colinear with a must be one of the edges in the output. In
particular, the colinear points must be p ∈ E such that E is
the edge not containing top, left, or any element of A0. And
so the algorithm outputs (S −M) ∪ E.

Algorithm 7: Edges(S,RS(D))

1: Let RS′ be the set of responses that contain only points in S
2: Let L be the largest response in RS′

3: Let S1 be the 2nd largest response in RS′. E1 = L− S1.
4: Let S2 be the 2nd largest response containing E1.
E2 = L− S2.

5: Let S3 be the 2nd largest response containing E1 and E2. If
S3 exists, E3 = L− S3.

6: Let S4 be the 2nd largest set containing E1, E2, and E3. If S4

exists, E4 = L− S4.
7: return E1, E2, E3, E4

APPENDIX B
PSEUDOCODE

A. Psuedocode for Algorithm 9

APPENDIX C
PROOFSA. Proof of Proposition 2

Proof. Let D [i] = p, D [j] = q, D ′[i] = p′, and D ′[j] = q′.
We first show that RS(D) ⊆ RS(D ′). Consider a response A
in RS(D) that contains i and not j. We will exemplify a query
to D ′ with response A. Consider the set B = (A−{i}). Since
D [i] has a unique maximal value in the second coordinate the
set B must be an element of RS(D). By assumption, RS(D−
{p, q}) = RS(D ′−{p′, q′}) and so we have that B ∈ RS(D ′).
Let (c, d) ∈ D2 be a query that generates the response B in
D ′. Now consider the query ((min0, 1), (max0, d1)) where
min0 = min(c0, p0, p

′
0) and max0 = max(d0, p0, p

′
0). Since

the only additional identifier contained in this region is i, then
the response generated by this query is A = B ∪ {i} which
implies A ∈ RS(D ′).

A similar argument holds for queries that contain j and not
i, as well as queries that contain both i and j, which concludes
the forward direction of the proof. One can also extend this
reasoning to show that RS(D ′) ⊆ RS(D).

B. Proof of Proposition 3
Proof. Let D [i] = q and D ′[i] = q′. By assumption RS(D −
{q}) = RS(D ′ − {q′}). We first show that RS(D) ⊆ RS(D ′).
We claim that for any response A∪{i} in RS(D) there exists
a response A ∪ {i} ∈ RS(D ′). Let A ∪ {i} be a response in
RS(D) and let (c, d) ∈ D2 be a query to D that produces
such a response. We will consider two possible cases and in

Algorithm 8: DominanceID(a, top, left, right,RS(D))

1: Let S1 be the smallest response that contains left, top and
right.

2: Let S2 be the smallest response that contains s1, top and right.
3: Let M be the smallest response that includes s1 and top
4: for p ∈M do
5: if p ∈M − S2 then
6: Pp,top, Sp,top, Ptop,p = Boxes(top, p)
7: S = Pp,top ∪ Sp,top ∪ Ptop,p

8: if left, right ∈ S then
9: // a and top are collinear

10: return S2

11: else if left ∈ S then
12: // top dominates a
13: return S2

14: else if right ∈ S then
15: // top anti-dominates a
16: E = Edges(M − {a},RS(D))
17: S2 = S2 −M
18: Add all p in an edge in E not containing top or a′ ∈ A0

to S2.
19: return S2

20: else if p ∈M − S1 then
21: Pp,a, Sa,p, Pa,pBoxes(a, p)
22: S = Pp,a ∪ Sa,p ∪ Pa,p

23: if left, right ∈ S then
24: // a and top are collinear
25: return S2

26: else if right ∈ S then
27: // top dominates a
28: return S2

29: else if left ∈ S then
30: // top anti-dominates a
31: E = Edges(M − {a},RS(D))
32: S2 = S2 −M
33: Add all p in an edge in E not containing top or a′ ∈ A0

to S2.
34: return S2

35: return S2

Algorithm 9: FindExtremePairs(RS(D))

Input: Response set RS(D) of database D
1: E1, E2, E3, E4 = Edges(D ,RS(D))
2: Let PossibleConfigs be all possible combinations of E1, E2,
E3 and E4 into LeftE,RightE,TopE,BottomE.

3: Initialize empty dictionary config.
4: for LeftE,RightE,TopE,BottomE in PossibleConfigs do
5: for E1, E2 ∈ {LeftE,BottomE}, {RightE,TopE} do
6: for a, b ∈ E1 × E2 do
7: if the smallest response in RS(D) that contains a and b

does not contain any other element of E1 or E2 then
8: Add a, b to config under their corresponding key left,

right, top, or bottom.
9: Return to line 5.

10: Add config to PosExtremes.
11: Return PosExtremes

each case explicitly give a query to D ′ that must result in the
response A ∪ {i}.

Case 1: p0 < c0. Consider the query ((c0,min1), d) issued
to D ′ such that min1 = min(q′1, c1). If min1 = c1 then
Resp(D ′, ((c0,min1), d)) = Resp(D ′, (c, d)) = A ∪ {i} since
all points r ∈ A are identical in both D and D ′ and q′ is
contained in this query. Else if min1 = q′1 then by definition of
close pair, q, q′ must minimally dominate p. So no additional
points beside q′ are contained in the response generated by
((c0,min1), d) thus Resp(D ′, ((c0,min1), d)) = A ∪ {i}.

Case 2: c0 ≤ p0. Since the query (c, d) contains q then we
have c � p and q � d. Moreover p � q′ � q and so we have
Resp(D ′, (c, d)) = A ∪ {i}.

That proves the forward direction of the proof. A similar
argument holds for the backward direction and we conclude
that RS(D) = RS(D ′).

C. Proof of Lemma 1
Proof. We first show that Algorithm 7 returns the correct
edges i.e. the sets Ei for i ≤ 4 contain IDs of all points
with an extreme coordinate value. Note that the second largest
response in RS(D) must exclude the ID of some extreme
point p. For a contradiction, suppose p is not extreme. Then
we could minimally extend the query to include p and the
resulting query would have a response strictly larger than
the original query and strictly smaller than [R] since it is
not extreme, hence a contradiction. Now consider the second
largest response containing the ID of p. The remaining ID(s)
must correspond to points with an extreme coordinate value in
another direction, else we could minimally extend the query to
include the non-extreme point(s). By extending this reasoning,
we recover the IDs of all points with an extreme coordinate.

In Algorithm 9, line 2 stores the at most 4! assignments
of the Ei to LeftE,RightE,TopE, and BottomE. The for loop
on line 4 then iterates through each possible assignment to
identify the correct IDs within each edge set. We want to
find the IDs for the left-most point, a, and bottom-most point,
b, such that no points are dominated by D [a] or D [b]. This
corresponds to finding a ∈ LeftE and b ∈ BottomE such
that the minimal response containing them contains no other
extreme points. Suppose for a contradiction that some edge
point c was dominated by either a or b, then the minimal
query must also contain c. A similar argument holds for the
top-most and right-most points.

The algorithm terminates in O(R|RS(D)|) time. It takes
O(R2|RS(D)|) time to find the edges. Then, we iterate through
pairs of edges and look through RS(D) to find a smallest
response.

D. Proof of Lemma 2
Proof. Let left, right, top and bottom be the points defined by
config. WLOG assume that right dominates left and bottom.
We first show that lines 2 to 7 find a set of IDs of points that
are not dominating any point in D (i.e. a minimal antichain A0

of D up to rotation/reflection). By correctness of Algorithm 9,
no point is dominated by either left or bottom. Let S be the

smallest response in RS(D) containing left and bottom. All
points not dominated by left and bottom must be in S, and
thus we initialize A0 = S.

By assumption, right must dominate all points with IDs in
S. Let p be a point with ID in S and consider the response T
of query (p, right). If there is a point q with ID in S such that
p � q, then its ID must also be in response T . In line 6 we
find the set Q of all such IDs and delete Q from A0. Since the
for loop on line 4 iterates through all IDs in S, and deletes the
IDs of all points that must dominate at least one other point
in S, then at the end of the loop A0 must be the set of all
points not dominating any other point.

On lines 10 to 18, we construct the dominance graph. Let
S be the IDs output by DominanceID(RS(D), a) for some
a ∈ A0. Note that S − {a} corresponds to the IDs of all
records that dominate D [a]. The for loop starting on line 14
correctly builds the dominance subgraph on all IDs in S. We
show that the following loop invariant is maintained: at the end
of iteration ` (1) no point with ID in S \V (Ga) is dominated
by a point with a vertex in Ga and (2) if i and j are in V (Ga)
and D [j] minimally dominates D [j], then edge (i, j) is in Ga.
At the start Ga = {a}; this is correct since a ∈ A0 and A0 is
the set of IDs of points that do not dominate any other point.
Assume that at iteration ` the invariant holds. Find the next
smallest response T that contains a and only other IDs in S.
If T contains v not in Ga then add it to Ga. (1) holds since
no point in S \V (Ga) dominates D [v], otherwise it would be
contained in T and we could form a strictly smaller response
contradicting the minimality of T . For each sink t ∈ Ga such
that t ∈ T we add (t, v) to Ga. (2) holds since D [v] must
dominate all points with IDs in T∩V (Ga) and must minimally
dominate all sinks t in Ga that are contained in T . Suppose
there is some ID j in V (Ga) that is minimally dominated by
v but is not a sink. Then this would violate the correctness of
Ga at the end of iteration ` and hence this cannot happen.

Putting it all together, we want to show that taking the union
of all Ga gives us the complete dominance graph G. Let p, q ∈
D be any points such that p � q. By correctness of A0, there
exists some a ∈ A0 such that D [a] � p, q, and thus p and q
are contained in the minimal query of a, right, and top. By
the correctness of Ga, then an edge from the IDs of p to q
must be added when constructing Ga. Since every dominance
edge is added to a graph Ga of some a, then taking the union
over all Ga gives the complete dominance graph of D .

The Algorithm terminates in O(R3|RS(D)|) time. It takes
O(R|RS(D)|) time to find the first antichain. Then, Algorithm
8 takes O(R2|RS(D)|) and may be run R times.

E. Proof of Lemma 3
Proof. Let A0 be the set of IDs of points with height 0. We
argue that the height of p ∈ V is given by the maximum
length of a path from a to p over all a ∈ A0. Fix some p ∈ V
and suppose that the maximum length of any path from the
vertices in A0 to p is `, and let there be such a maximal path
from some a ∈ A0 to p. By correctness of Algorithm 1, the
path from a to p in G corresponds to a chain in database D .

Thus the height of p is ≥ `. Suppose for a contradiction that
p has height `′ > `; By definition of height there must exist
a chain C ⊆ D of size `′ with p as the maximal element.
Let c1 � c2 � · · · � c`′ be the elements of C. We have that
ci+1 must minimally dominate ci, otherwise we could could
extend the chain from a to p to have length greater than `′. By
correctness of G, each edge (ci, ci+1) must be in G. Hence
the length of the longest path from a to p in G is `′ > `, a
contradiction. Thus the height of p is given by the length of
the longest path from a to p over all a ∈ A0.

Let L be the number of partitions in the canonical antichain
partition of D . We have shown that Algorithm computes the
partition A = (A0, . . . , AL) correctly. Let a1, . . . , am be
elements of a partition A ∈ A. We show that Algorithm 2 cor-
rectly computes an ordering of a1, . . . , am i.e. a aγ1 , . . . , aγm
such that γi = 1, . . . ,m and for all j either aγj �a aγj+1 or
aγj+1 �a aγj . If |A| < 3 then we are done. |A| ≥ 3 then
on line 12 we compute all responses in RS(D) that contain
exactly two elements in A and denote this set as S. A response
containing exactly two elements a, a′ ∈ A exists only if a
minimally anti-dominates a′ (or vice versa). Next we delete
all p ∈ D − A from responses in S and make it a set. Let
{a, a′} be an element of the resulting set S. WLOG suppose a′

minimally anti-dominates a. Suppose that there exists another
set {a′, a′′} ∈ S. Then by transitivity a′′ must minimally anti-
dominate a′. We can thus “order” the elements in A by finding
consecutive pairs of points in the responses.

This Algorithm terminates in O(R2|RS(D)|) time, as it
takes O(R2) time to find the longest paths in G and
O(R2|RS(D)|) to order the antichains.

F. Proof of Lemma 4
Proof. The antichains returned by Algorithm 2 may have
inconsistent direction. The first step of Algorithm 3 is to
fix their orientation. We assume that the first antichain, A0,
has the correct orientation. Then, we find the first element of
A0 that has a dominance edge to a point in A1, the second
antichain. Let that edge be (c1, c2), c1 ∈ A0, c2 ∈ A1. If there
are multiple options for c2, we pick the smallest one in order.
Note that each member p of antichain i must have a dominance
edge with some member q of antichain j, j < i. Otherwise, p
would be part of some previous antichain.

If the order of antichain 1 is wrong, then a point c′1 ∈
A0 in order before c1 must have an edge with point c′2 ∈
A1, in order after c2. If the chains were correctly ordered
that would be impossible as c′2 anti-dominates c1 and c1 anti-
dominates c′1. Thus, c′2 cannot dominate c′1. Thus, Algorithm
2 can correctly orient the second chain given the order of the
previous antichains. Maintaining this invariant, Algorithm 2
correctly orients all antichains.

We begin constructing the anti-dominance graph by adding
anti-dominance edges between consecutive pairs of points in
each antichain.

It remains to add anti-dominance edges between points in
different antichains. The algorithm iterates through pairs of
chains, and finds points ai and aj that are not connected

in G and ai ∈ Ai, aj ∈ Aj , i < j. Point ai either anti-
dominates aj or aj anti-dominates ai. In order to determine
their relationship, we look for a dominance edge between the
antichains. If aj anti-dominates ai, then all predecessors of
ai are also anti-dominated by aj and its successors. So, if a
predecessor of aj dominates a successor of ai. Then aj must
anti-dominate ai. Similarly, if a successor of aj dominates a
predecessor of ai, then ai anti-dominates aj .

Note that this technique finds only strict anti-dominance
edges. It remains to find any collinear anti-dominance edges as
well. Given a pair of points p and p, such that q anti-dominates
p, and a point k that is in Boxes(p, q), k must have an anti-
dominance relationship with both. If no such path exists in G′,
we add appropriate edges depending on which of the Boxes
k is in. Note that in some cases, as explained by Proposition
3, it’s impossible to determine all collinearities.

Our definition of the anti-dominance graph is that it contains
minimal anti-dominance edges. Thus, after we remove any
transitive edges, we have generated D’s anti-dominance graph.

The Algorithm terminates in O(R2|RS(D)|) time, as it takes
O(R2) to fix the antichains and add edges between them
and O(R3|RS(D)|) to run the Boxes algorithm for any anti-
dominance pair.

	Introduction
	Contributions
	Prior and related work

	Preliminaries
	Query Densities

	Order and Equivalent Databases
	Equivalent Databases
	Chains and Antichains

	Overview of Order Reconstruction
	Partition of the Database into Regions
	Dominance and Anti-Dominance With a Corner
	Points in Different Rows and Columns
	Points in Different Regions in Same Row or Column
	Points in Same Region
	Proof of Theorem 1

	Order Reconstruction
	Preliminaries
	Find Extreme Points
	Generate Dominance Graph
	Construct Antichains
	Generate Anti-Dominance Graph
	Order Reconstruction
	Experimental Results

	Estimating the Rho Functions
	Non-parametric Estimators
	Experiments

	Approximate Database Reconstruction
	Algorithm
	Experiments

	Future Work Directions
	References
	Appendix A: Description of Algorithm 8
	Appendix B: Pseudocode
	Psuedocode for Algorithm 9

	Appendix C: Proofs
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

