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Abstract

We present passive attacks against CKKS, the homomorphic encryption scheme for arithmetic on
approximate numbers presented at Asiacrypt 2017. The attack is both theoretically efficient (running
in expected polynomial time) and very practical, leading to complete key recovery with high probability
and very modest running times. We implemented and tested the attack against major open source
homomorphic encryption libraries, including HEAAN, SEAL, HElib and PALISADE, and when computing
several functions that often arise in applications of the CKKS scheme to machine learning on encrypted
data, like mean and variance computations, and approximation of logistic and exponential functions
using their Maclaurin series.

The attack shows that the traditional formulation of IND-CPA security (or indistinguishability against
chosen plaintext attacks) achieved by CKKS does not adequately capture security against passive ad-
versaries when applied to approximate encryption schemes, and that a different, stronger definition is
required to evaluate the security of such schemes.

We provide a solid theoretical basis for the security evaluation of homomorphic encryption on ap-
proximate numbers (against passive attacks) by proposing new definitions, that naturally extend the
traditional notion of IND-CPA security to the approximate computation setting. We propose both
indistinguishability-based and simulation-based variants, as well as restricted versions of the definitions
that limit the order and number of adversarial queries (as may be enforced by some applications). We
prove implications and separations among different definitional variants, and discuss possible modifica-
tions to CKKS that may serve as a countermeasure to our attacks.

1 Introduction

Fully homomorphic encryption (FHE) schemes allow to perform arbitrary computations on encrypted data
(without knowing the decryption key), and, at least in theory, can be a very powerful tool to address a
wide range of security problems, especially in the area of distributed or outsourced computation. Since the
discovery of Gentry’s bootstrapping technique [23] and the construction of the first FHE schemes based on
standard lattice assumptions [11, 12, 10, 9], improving the efficiency of these constructions has been one of
the main challenges in the area, both in theory and in practice.

The main source of inefficiency in FHE constructions is the fact that these cryptosystems (or, more
generally, encryption schemes based on lattice problems [44, 37]) are inherently noisy: encrypting (say) an
integer message m, and then applying the raw decryption function produces a perturbed message m + e,
where e is a small error term added for security purposes during the encryption process. This is not much of
a problem when using only encryption and decryption operations: the error can be easily removed by scaling
the message m by an appropriate factor B > 2|e| (e.g., as already done in [44]), or applying some other
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form of error correction to m before encryption. Then, if the raw decryption function outputs a perturbed
value v = m ·B + e, the original message m can be easily recovered by rounding v to the closest multiple of
B. However, when computing on encrypted messages using a homomorphic encryption scheme, the errors
can grow very quickly, making the resulting ciphertext undecryptable, or requiring such a large value of
B (typically exponential or worse in the depth of the computation) that the cost of encryption becomes
prohibitive. The size of the encryption noise e can be reduced using the bootstrapping technique introduced
by Gentry in [23], thereby allowing to perform arbitrary computations with a fixed value of B. However, all
known bootstrapping methods are very costly, making them the main efficiency bottleneck for general purpose
computation on encrypted data. So, reducing the growth rate of the noise e during encrypted computations is
of primary importance to either use bootstrapping less often, or avoid the use of bootstrapping altogether by
employing a sufficiently large (but not too big) scaling factor B. In fact, controlling the error growth during
homomorphic computations has been the main objective of much research work, starting with [11, 12, 10, 9].

Homomorphic Encryption for Arithmetic on Approximate Numbers. One of the most recent
and interesting contributions along these lines is the approach suggested in [18, 17, 33, 16, 14] based on
the idea that in many practical scenarios, computations are performed on real-world data which is already
approximate, and the result of the computation inherently contains small errors even when carried out in
the clear (without any encryption), due to statistical noise or measurement errors. If the goal of encryption
is to secure these approximate real-world computations, requiring the decryption function to produce exact
results may seem an overkill, and rightly so: if the decryption algorithm simply outputs m+e, the application
can treat e just like the noise already present in the input and output of the (unencrypted) computation.
Interestingly, [18] shows that the resulting “approximate encryption” scheme produces results that are almost
as accurate as floating point computations on plaintext data. But the practical impact on the concrete
efficiency of the scheme is substantial: by avoiding the large scaling factor B, the scheme achieves much
slower error growth than “exact” homomorphic encryption schemes. This allows to perform much deeper
computations before the need to invoke a costly bootstrapping procedure, and, in many settings, completely
avoid the use of bootstrapping while still delivering results that are sufficiently accurate for the application.

Not surprisingly, the scheme of [18] and its improved variants [17, 33, 16, 14] (generically called CKKS
after the authors of [18]) have attracted much attention as a potentially more practical method to apply
homomorphic computation on the encryption of real data. The CKKS paper [18] already provided an
open source implementation in the “Homomorphic Encryption for Arithmetic on Approximate Numbers”
(HEAAN) library [30]. Subsequently, other implementations of the scheme have been included in pretty
much all mainstream libraries for secure computation on encrypted data, like Microsoft’s “Simple Encrypted
Arithmetic Library” SEAL [15], IBM’s “Homomorphic Encryption” library HElib [26, 27, 28], and NJIT’s
lattice cryptography library PALISADE [41]. Some of these libraries are used as a backend for other tools,
like Intel’s nGraph-HE compiler [7, 6] for secure machine learning applications, and a wide range of other
applications, including the encrypted computation of logistic regression [29], security-preserving support
vector machines [42], homomorphic training of logistic regression models [5], homomorphic evaluation of
neural networks and tensor programs [21, 20], compiling ngraph programs for deep learning [7], private text
classification [2], and clustering over encrypted data [19] just to name a few.

Our contribution. While, as argued in much previous work, approximate computations have little impact
on the correctness of many applications, we bring into question their impact on security. In particular, we
show that the traditional formulation of indistinguishability under chosen plaintext attack (IND-CPA, [25, 4],
see Definition 1) is inadequate to capture security against passive adversaries when applied to approximate
encryption schemes. In fact, as our work shows, an approximate homomorphic encryption scheme can satisfy
IND-CPA security and still be completely insecure from both a theoretical and practical standpoint. In order
to put the study of approximate homomorphic encryption schemes on a sound theoretical basis, we propose
a new, more refined formulation of passive security (here called IND-CPA+) which properly captures the
capabilities of a passive adversary when applied to approximate (homomorphic) encryption schemes. Our
new IND-CPA+ security definition is a conservative extension of IND-CPA, in the sense that (1) it implies
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Figure 1: A passive attacker against a homomorphic encryption scheme may choose/know the plaintext m
and the homomorphic computation f (thick blue interfaces), and it can read from black interfaces to learn
the ciphertexts ct, ct′ and the decryption results m′. It is not allowed to temper or inject ciphertexts.

IND-CPA security, and (2) when applied to standard (exact, possibly homomorphic) encryption schemes, it
is perfectly equivalent to IND-CPA. However, when applied to approximate encryption, it is strictly stronger:
there are approximate encryption schemes that are IND-CPA secure, but not IND-CPA+.

This is not just a theoretical problem: we show (both by means of theoretical analysis and practical
experimentation) that the definitional shortcomings highlighted by our investigation directly affect concrete
homomorphic encryption schemes proposed and implemented in the literature. In particular, we show that
the CKKS FHE scheme for arithmetics on approximate numbers (both as described in the original paper
[18], and as implemented in all major FHE software libraries [30, 46, 31, 41]) is subject to a devastating key
recovery attack that can be carried out by a passive adversary, accessing the encryption function only through
the public interfaces provided by the libraries. We remark that there is no contradiction between our results
and the formal security claims made in [18]: the CKKS scheme satisfies IND-CPA security under standard
assumptions on the hardness of the (Ring) LWE problem. The problem is with the technical definition of
IND-CPA used in [18], which does not offer any reasonable level of security against passive adversaries when
applied to approximate schemes.

The ideas behind the new IND-CPA+ definition and the attacks to CKKS are easily explained. The
traditional formulation of IND-CPA security let the adversary choose the messages being encrypted, in order to
model a-priori knowledge about the message distribution, or even the possibility of the adversary influencing
the choice of the messages encrypted by honest parties. This is good, but not enough. When using a
homomorphic encryption scheme, a passive adversary may also choose/know the homomorphic computation
being performed1. Finally, a passive adversary may observe the decrypted result of some homomorphic
computations. (See Figure 1 for an illustration.) So, our IND-CPA+ definition provides the adversary with
encryption, evaluation, and a severly restricted decryption oracles2 that model the input/output interfaces
of encryption and evaluation algorithms and the output interface of the decryption algorithm. It is easy
to check (see Lemma 1) that as long as the definition is applied to a standard (exact) encryption scheme,
observing the decryption of the final result of the homomorphic computation provides no additional power
to the adversary: since the adversary already knows the initial message m and the function f , it can also
compute the final result f(m) on its own. So, there is no need to explicitly give to the adversary access to a
decryption (or homomorphic evaluation) oracle.

However, for approximate encryption schemes, seeing the result of decryption may provide additional in-
formation, which the adversary cannot easily compute (or simulate) on its own. In particular, this additional
data may provide useful information about other ciphertexts, or even the secret key material. This possibility
is quite real, as we demonstrate it can be used to attack all the major libraries implementing the CKKS
scheme. The attack is very simple. It involves encrypting a collection of messages, optionally performing
some homomorphic computations on them, and finally observing the decryption of the result. Then, using
only the information available to a passive adversary (i.e., the input values, encrypted ciphertexts, and final
decrypted result of the computation), the attack attempts to recover the secret key using standard linear

1This computation may or may not be secret, depending on whether the scheme is “circuit-hiding”.
2We remark that this use of decryption oracles is only a technical detail of our formulation, and it is quite different from

the decryption oracle used for defining active (chosen ciphertext) attacks: Our decryption oracle only provides access to the
plaintext output interface of a decryption algorithm, and does not allow to apply the decryption algorithm on adversarially
chosen ciphertexts.
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algebra or lattice reduction techniques. We demonstrate the attack on a number of simple, but represen-
tative computations: the computation of the mean or variance of a large data set, and the approximate
computation of the logistic and exponential functions using their Maclaurin series. These are all common
computations that arise in the application of CKKS to secure machine learning, the primary target area for
approximate homomorphic encryption. We implemented and tested the attack against all main open source
libraries implementing approximate homomorphic encryption (HEAAN, RNS-HEAAN, PALISADE, SEAL and
HElib), showing that they are all vulnerable. We stress that this is due not to an implementation bug in the
libraries (which faithfully implement CKKS encryption), but to the shortcomings of the theoretical security
definition originally used to evaluate the CKKS scheme. Still, our key recovery attack works very well both
in theory and in practice, provably running in expected polynomial time and with success probability 1, and
recovering the key in practice, even for large values of the security parameter, in just a few seconds. So, the
attack may pose a real threat to applications using the libraries. It immediately follows from the attack that
the CKKS scheme is not IND-CPA+ secure.

On the theoretical side, we consider several restricted versions of IND-CPA+, showing implications and
separations among them. For example, one may consider adversaries that perform only a bounded number
k of decryption queries, as may be enforced by an application that chooses a new key every k homomorphic
computations. (IND-CPA may be considered a special case where k = 0.) Interestingly, we show that for
every k there are approximate encryption schemes that are secure up to k decryption queries, but completely
insecure for k + 1.

Organization. The rest of the paper is organized as follows. In Section 2 we provide some mathematical
background about the LWE problem and lattice-based (homomorphic) encryption. In Section 3 we present
our IND-CPA+ security definition, and initiate its theoretical study, proving implication and separation results
between different variants of the definition. In Section 4 we give a detailed description and rigorous analysis
of our attack. Practical experiments using our implementation of the attack are described in Section 5.
Section 6 concludes with some general remarks and a discussion of possible countermeasures to our attack.

2 Preliminaries

Notation. We use notation a = (a0, . . . , an−1) for column vectors, and at = [a0, . . . , an−1] for rows. Vector
entries are indexed starting from 0, and denoted by ai or a[i]. The dot product between two vectors (with
entries in a ring) is written 〈a,b〉 or at · b. Scalar functions f(a) = (f(a0), . . . , f(an−1)) are applied to
vectors componentwise.

For any finite set A, we write x← A for the operation of selecting x uniformly at random from A. More
generally, if χ is a probability distribution, x← χ selects x according to χ.

Standard Cryptographic Definitions. In all our definitions, we denote the security parameter by κ. A
function f in κ is negligible if f(κ) = κ−ω(1). We use negl(κ) to denote an arbitrary negligible function in κ.

We recall the standard notions of public-key encryption scheme and homomorphic encryption scheme.
A public-key encryption scheme with a message space M is a tuple (KeyGen,Enc,Dec) consisting of three
algorithms:

• a randomized key generation algorithm KeyGen that takes the security parameter 1κ and outputs a
secret key sk and a public key pk,

• a randomized encryption algorithm Enc that takes pk and a message m ∈M and outputs a ciphertext
ct, and

• a deterministic decryption algorithm Dec that takes sk and a ciphertext ct and outputs a message m′

or a special symbol ⊥ indicating decryption failure.
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We usually parameterize Enc with pk and write Encpk(·) to denote the function Enc(pk, ·), and similarly we
write Decsk(·) for the function Dec(sk, ·). A public-key encryption scheme is correct if for all m ∈ M and
keys (sk, pk) in the support of KeyGen(1κ), Pr{Decsk(Encpk(m)) = m} = 1 − negl(κ), where the probability
is over the randomness of Enc.

A public-key homomorphic encryption scheme is a public-key encryption scheme with an additional,
possibly randomized, (homomorphic) evaluation algorithm Eval, and such that KeyGen outputs an additional
evaluation key ek besides sk and pk. The algorithm Eval takes ek, a circuit g :Ml →M for some l ≥ 1, and
a sequence of l ciphertexts cti, and it outputs a ciphertext ct′. The correctness of a homomorphic encryption
scheme requires that, for all keys (sk, pk, ek) in the support of KeyGen(1κ), for all circuits g :Ml →M and
for all mi ∈M, 1 ≤ i ≤ l, it holds that

Pr

{
cti ← Encpk(mi) for 1 ≤ i ≤ l,
Decsk(Evalek(g, (cti)

l
i=1)) = g((mi)

l
i=1)

}
= 1− negl(κ),

where the probability is over the randomness of Enc and Eval. We also require that the complexity of Dec is
independent (or a slow growing function) of the size of the circuit g.

In terms of security, we recall the standard security notion of indistinguishability under chosen plaintext
attack, or IND-CPA, for public-key (homomorphic) encryption schemes.

Definition 1 (IND-CPA Security). Let (KeyGen,Enc,Dec,Eval) be a homomorphic encryption scheme. We
define an experiment Exprcpa

b [A] parameterized by a bit b ∈ {0, 1} and an efficient adversary A:

Exprcpa
b [A](1κ) : (sk, pk, ek)← KeyGen(1κ)

(x0, x1)← A(1κ, pk, ek)

ct← Encpk(xb)

b′ ← A(ct)

return(b′)

We say that the scheme is IND-CPA secure if for any efficient adversary A, it holds that

Advcpa[A](κ) = |Pr{Exprcpa
0 [A](1κ) = 1} − Pr{Exprcpa

1 [A](1κ) = 1}| = negl(κ).

Lattices and Rings. A lattice is a (typically full rank) discrete subgroup of Rn. Lattices L ⊂ Rn can
be represented by a basis, i.e., a matrix B ∈ Rn×k with linearly independent columns such that L = BZk.
The length of the shortest nonzero vector in a lattice L is denoted by λ(L). The Shortest Vector Problem,
given a lattice L, asks to find a lattice vector of length λ(L). The Approximate SVP relaxes this condition
to finding a nonzero lattice vector of length at most γ · λ(L), where the approximation factor γ ≥ 1 may be
a function of the dimension n or other lattice parameters.

We write Z,Q,R,C for the sets of integer, rational, real and complex numbers. For any positive q > 0,
we write Rq = R/(qZ) for the set of reals modulo q (as a quotient of additive groups), uniquely represented
as values in the centered interval [−q/2, q/2). Similarly, for any positive integer q > 0, we write Zq = Z/(qZ)
for the ring of integers modulo q, uniquely represented as values in [−q/2, q/2)∩Z =

{
−
⌈
q−1

2

⌉
, . . . ,

⌊
q−1

2

⌋}
.

Let N = 2k be a power of 2, ζ2N = eπı/N the principal (2N)th complex root of unity. We write
K(2N) = Q[X]/(XN + 1) for the cyclotomic field of order 2N , and O(2N) = Z[X]/(XN + 1) for its ring of
integers. The primitive roots of unity ζ2j+1

2N , for j = 0, . . . , N − 1, are precisely the roots of the cyclotomic
polynomial XN+1. We omit the index 2N and simply write K,O and ζ when the value of N is clear from the
context. Elements of K (andO) are uniquely represented as polynomials a(X) = a0+a1·X+. . .+aN−1·XN−1

of degree less than N , and identified with their vectors of coefficients a = (a0, . . . , aN−1) ∈ QN (and ZN ).
For any positive integer q > 0, we write Kq = K/(qK) ≡ QNq for the set of vectors/polynomials with

entries/coefficients reduced modulo q. Similarly for O ≡ ZN and Oq ≡ ZNq .
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LWE and Homomorphic Encryption. The (Ring) Learning With Errors (LWE) distribution RLWEs(N, q, χ)

with secret s ∈ O(2N) and error distribution χ (over O(2N)), produces pairs (a, b) ∈ O(2N)
q where a← O(2N)

q

is chosen uniformly at random, and b = s · a + e for e ← χ. The (decisional) Ring LWE assumption over
O(2N) with error distribution χ and secret distribution χ′ and m samples, states that when s ← χ′, the
product distribution RLWEs(N, q, χ)m is pseudorandom, i.e., it is computationally indistinguishable from
the uniform distribution over (Oq ×Oq)m.

For appropriate choices of χ, χ′ and q, the Ring LWE problem is known to be computationally hard,
based on (by now) standard assumptions on the worst-case complexity of computing approximately shortest
vectors in ideal lattices. Theoretical work supports setting the error distribution χ to a discrete Gaussian
of standard deviation O(

√
N), and setting the secret distribution χ′ to either the uniform distribution over

Oq, or the same distribution as the errors χ. For the sake of efficiency, the Ring LWE problem is often
employed by homomorphic encryption schemes also for narrower secret and error distributions, that lack
the same theoretical justifications, but for which no efficient attack is known, e.g., distributions over vectors
with binary {0, 1} or ternary {−1, 0, 1} coefficients.

The raw (Ring) LWE encryption scheme works as follows:

• The key generation algorithm picks s← χ′, e← χ, a← Oq, and outputs secret key sk = (−s, 1) ∈ O2
q

and public key pk = (a, b) ∈ O2
q where b = s · a+ e follows the LWE distribution.

• The encryption algorithm, Encpk(m) picks random u ← {0, 1}N and e = (e0, e1) ← χ2, and outputs
ct = u · pk + e + (0,m) ∈ O2

q

• The raw decryption algorithm Decsk(ct) outputs 〈sk, ct〉 mod q.

The secret and public keys satisfy the property that 〈sk, pk〉 = e equals the short error vector chosen during
key generation. We qualified this scheme and the decryption algorithm as “raw” because applying the
encryption algorithm, and subsequently decrypting the result (with a matching pair of public and secret
keys) does not recover the original message, but only a value close to it. In fact, for any (sk, pk) produced
by the key generation algorithm, we have

Decsk(Encpk(m)) = u · 〈sk, pk〉+ 〈sk, e〉+m = m+ (ue− se0 + e1) (mod q)

where the perturbation ẽ = (ue− se0 + e1) is small because it is a combination of short vectors u, e, s, e0, e1.
(The size of these vectors is best quantified with respect to the message encoding used by the application, and
it is discussed below.) In order to obtain a proper encryption scheme that meets the correctness requirement,
the message m must be preprocessed, by encoding it with an appropriate error correcting code, which allows
to recover from the error ẽ. For example, if m has binary entries, one can multiply m by a scaling factor bq/2e,
and then round (each coefficient of) the output of the raw decryption algorithm to the closest multiple of
bq/2e. For the sake of improving the efficiency of homomorphic computations, the CKKS encryption scheme
[18] gets away without applying error correction, and directly using the raw decryption algorithm to produce
“approximate” decryptions of the ciphertexts. So, in the following we focus on the “raw” LWE scheme, and
postpone the discussion of error correction to later.

By linearity of Enc, LWE encryption directly supports (bounded) addition of ciphertexts: if ct0 = (a0, b0)
and ct1 = (a1, b1) are encryptions of m0 and m1 with noise e0 and e1 respectively, then the vector sum

ct0 + ct1 = (a0 + a1, b0 + b1) mod q

is an encryption of m0 +m1 with noise e0 + e1.
There are several ways to perform homomorphic multiplication on LWE ciphertexts. As in [18], here

we focus on the “tensoring” technique of [10] implemented using the “raising the modulus” multiplication
method of [24]. This multiplication method uses an appropriate multiple pq of the ciphertext modulus q,
and requires an “evaluation key”, produced during key generation, which is computed and used as follows:

• ek = (a, b) ∈ O2
pq where a← Opq, e← χe and b = as+ e+ ps2 (mod pq).
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• Using ek, the product of two ciphertexts ct0 = (a0, b0), ct1 = (a1, b1) is computed as

ct0 × ct1 = (a0b1 + a1b0, b0b1) + b(a0a1 mod q) · ek/pe .

In order to approximately evaluate deep arithmetic circuits, the CKKS scheme combines these addition
and multiplication procedures with a rescaling operation RS, implemented using the key switching technique
of [10]. Rescaling requires the use of a sequence of moduli ql, which for simplicity we assume to be of the
form ql = q0 · pl for some base p, e.g., p = 2. Ciphertexts may live at different levels, with level l ciphertexts
encrypted using modulus ql. The key generation algorithm takes as auxiliary input the highest number of
desired levels L, and produces public and evaluation keys with respect to the largest modulus qL. CKKS
directly supports addition and multiplication only between ciphertexts at the same level. Rescaling is used
to map ciphertexts ct ∈ O2

ql+l′
to a lower level l with the operation

RSl′(ct) =
⌊
ct/pl

′
⌉
∈ O2

ql

where the division and rounding are performed componentwise.

The CKKS message encoding. The CKKS scheme considers a vector of complex numbers (or Gaussian
integers) ã as the set of evaluation points ãj = a(xj) of a real (in fact, integer) polynomial a(X) ∈ Z[X].
This allows to perform pointwise addition and multiplication of vectors (SIMD style) by means of addition
and multiplication of polynomials as (a(X) ◦ b(X))(xj) = a(xj) ◦ b(xj) for any xj , where ◦ ∈ {+,×}.
The evaluation points are chosen among the primitive (2N)th roots of unity ζ2j+1, so that the cyclotomic
polynomial XN + 1 evaluates to zero at all those points, and reduction modulo XN + 1 does not affect the
value of a(xj). This allows to operate on the polynomials modulo XN + 1, i.e., as elements of the cyclotomic
ring O. Since a(X) has real coefficients and primitive roots come in complex conjugate pairs ζ2j+1, ζ2(N−j)−1,
the value of a(X) can be freely chosen only for half of the roots, with the value of a(ζ2(N−j)−1)) uniquely
determined as the complex conjugate of a(ζ2j+1). So, a(X) is used to represent a vector ã of N/2 complex
values. Setting the evaluation points to xj = ζ4j+1 (for j = 0, . . . , N/2 − 1), and using the fact that these
points are primitive roots of unity, interpolation and evaluation can be efficiently computed (in O(N logN)
time) using the Fast Fourier Transform.

Let ϕ : O → CN/2 be the transformation mapping a(X) ∈ O ≡ ZN to ϕ(a) = ã = (a(ζ4j+1))
N/2−1
j=0 ∈

CN/2, and its extension ϕ : S → CN/2 to arbitrary real polynomials, where S = R[X]/(XN + 1) ≡ RN .
We can identify any polynomial a ∈ S by its coefficient vector (a0, a1, . . . , aN−1), and we set ‖a‖2 =
‖(a0, a1, . . . , aN−1)‖2. Similarly we can define ‖a‖1 and ‖a‖∞ as the corresponding norms on the coef-
ficient vector. So the transformation ϕ : S → CN/2 is a scaled isometry, satisfying ‖ϕ(a)‖2 =

√
N‖a‖2

and ‖ϕ(a)‖∞ ≤ ‖a‖1. In what follows, we assume, as a message space, the set of complex vectors
ã ∈ ϕ(O) ⊂ CN/2 which are the evaluation of polynomials a(X) ∈ O with integer coefficients much smaller
than the ciphertext modulus q. Arbitrary vectors z ∈ CN/2 can be encrypted (approximately) by taking the
inverse transform ϕ−1 on a scaled vector ∆ · z, for some scaling factor ∆ ∈ R, such that ‖ϕ−1(∆ · z)‖ � q
and rounding ϕ−1(∆ · z) to a nearby point of the form ϕ(a) for some a(X) ∈ O.

The complete message encoding and decoding functions in CKKS are defined as

• Encode(z ∈ CN/2; ∆) =
⌊
∆ · ϕ−1(z)

⌉
∈ O.

• Decode(a ∈ O; ∆) = ϕ(∆−1 · a) ∈ CN/2.

Once encoded, the scaling factor ∆ is usually implicitly tied to a plaintext polynomial, so we sometimes omit
it when its value is clear from the context.

Since these encoding and decoding operations can be performed without any knowledge of the secret or
public keys, sometimes we assume they are performed at the outset, at the application level, before invoking
the encryption or decryption algorithms. More specifically, we may assume messages ϕ(∆−1 · m) ∈ CN/2
are provided to the encryption algorithm by specifying the integer polynomial m ∈ O, and the decryption
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algorithm returns a message m̃′ = Decode(m′; ∆) represented as the underlying polynomial m′ ∈ O that is
an approximation of m. All this is only for the sake of theoretical analysis, and all concrete implementations
(of the scheme and our attacks to it) include encoding and decoding procedures as part of the encryption
and decryption algorithms. Message encoding can be quite relevant to quantify the amount of noise in a
ciphertext. We say that a ciphertext ct approximately encrypts message m̃ with scaling factor ∆ and noise
ẽ if Decode(Decsk(ct); ∆) = m̃ + ẽ.

3 Security Notions for Approximate Encryption

In this section we present general definitions in the public-key setting that accurately capture passive attacks
against a (possibly approximate, homomorphic) encryption scheme. We recall that in a passive attack the
adversary may control which messages get encrypted, what homomorphic computations are performed on
them, and may observe all ciphertexts produced in the process, as well as the decrypted result of the
computations (as illustrated in Figure 1).

We first present an indistinguishability-based definition (similar in spirit to the standard IND-CPA notion
described in Definition 1). A simulation-based notion is presented in Section 3.2. Then, we explore restricted
and extended variants of these basic definitions.

3.1 Indistinguishability-Based Definition

Our first definition is indistinguishability-based: the adversary chooses a number of pairs of plaintext mes-
sages, and its goal is to determine whether the ciphertexts it receives are encryptions of the first or the
second plaintext in the pairs. In contrast to Definition 1, our new definition allows an adversary to make
multiple challenge queries (m0,m1), rather than a single one. Our adversary can also issue homomorphic
evaluation and decryption queries. We now give the formal definition. For simplicity, and as common in
homomorphic encryption schemes, we assume all messages belong to a fixed message spaceM. In particular,
all messages have (or can be padded to) the same length. We refer to our definition as IND-CPA+, as it
includes IND-CPA (see Definition 1) as a special case, where the adversary makes only one encryption query,
and no homomorphic evaluation or decryption queries.

Definition 2 (IND-CPA+ Security). Let E = (KeyGen,Enc,Dec,Eval) be a public-key homomorphic (possibly
approximate) encryption scheme with plaintext space M and ciphertext space C. We define an experiment

Exprindcpa+

b [A], parameterized by a bit b ∈ {0, 1} and involving an efficient adversary A that is given access
to the following oracles, sharing a common state S ∈ (M×M× C)∗ consisting of a sequence of message-
message-ciphertext triplets:

• An encryption oracle Epk(m0,m1) that, given a pair of plaintext messages m0,m1, computes c ←
Encpk(mb), extends the state

S := [S; (m0,m1, c)]

with one more triplet, and returns the ciphertext c to the adversary.

• An evaluation oracle Hek(g, J) that, given a function g : Mk → M and a sequence of indices J =
(j1, . . . , jk) ∈ {1, . . . , |S|}k, computes the ciphertext c← Evalpk(g, S[j1].c, . . . , S[jk].c), extends the state

S := [S; (g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c)]

with one more triplet, and returns the ciphertext c to the adversary. Here and below |S| denotes the
number of triplets in the sequence S, and S[j].m0, S[j].m1 and S[j].c denote the three components of
the jth element of S.

• A decryption oracle Dsk(j) that, given an index j ≤ |S|, checks whether S[j].m0 = S[j].m1, and, if so,
returns Decsk(S[j].c) to the adversary. (If the check fails, a special error symbol ⊥ is returned.)
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The experiment is defined as

Exprindcpa+

b [A](1κ) : (sk, pk, ek)← KeyGen(1κ)

S := [ ]

b′ ← AEpk,Hek,Dsk(1κ, pk, ek)

return(b′)

The advantage of adversary A against the IND-CPA+ security of the scheme is

Advindcpa+ [A](κ) = |Pr{Exprindcpa+

0 [A](1κ) = 1} − Pr{Exprindcpa+

1 [A](1κ) = 1}|,

where the probability is over the randomness of A and the experiment. The scheme E is IND-CPA+-secure if
for any efficient (probabilistic polynomial time) A, the advantage Advindcpa+ [A] is negligible in κ.

As a standard convention, if at any point in an experiment the adversary makes an invalid query (e.g., a
circuit g not supported by the scheme, or indices out of range), the oracle simply returns an error symbol ⊥.

We remark that, while the adversary in Definition 2 is given access to a decryption oracle, this should
not be confused with indistinguishability under a chosen ciphertext attack (IND-CCA), which models active
adversaries with the capability of tampering with (or injecting) arbitrary ciphertexts. Definition 2 only allows
for decryption queries on valid ciphertexts that have been honestly computed using the correct encryption and
homomorphic evaluation algorithms. Furthermore, the requirement that S[j].m0 = S[j].m1 is to eliminate
trivial attacks where the adversary can distinguish between two computations that lead to different results
when computed on exact values.

Exact encryption schemes can be seen as a special case of approximate encryption, with the added
correctness requirement. So, Definition 2 can be applied to exact as well as approximate encryption schemes.
As a sanity check, we compare our new definition with the traditional formulation of IND-CPA security
(Definition 1) modeling passive attacks against exact encryption schemes. Perhaps not surprisingly, for the
case of exact encryption schemes, our new security definition coincides with the standard notion of IND-CPA
security.

Lemma 1. Any exact homomorphic encryption scheme E is IND-CPA secure if and only if it is IND-CPA+

secure.

Proof. It is easy to see that IND-CPA+ security implies IND-CPA security, as an adversary making only one
E query but no other queries in the IND-CPA+ experiment is also an IND-CPA adversary. So we consider the
reverse direction.

Assume E is IND-CPA secure. Let A be any adversary breaking the IND-CPA+ security of E , and assume
A makes at most l queries in total to E and H. We build adversaries B(i), for 0 ≤ i < l, to break the IND-CPA
security of E .
B(i) takes input 1κ, pk, ek, and it then runs A(1κ, pk, ek). It maintains a state S ∈ (M×M× C)∗ just

like Exprindcpa+

, and it answers oracle queries made by A as follows:

• For each query (m0,m1) to E, if |S| < i, then let c ← Encpk(m1); if |S| > i, then let c ← Encpk(m0);
and if |S| = i, B(i) sends (m0,m1) to Exprcpa

b and receives c. The state S is extended by one more
triplet (m0,m1, c), and c is returned to A.

• For each query (g, J) to H, where g :Mk →M and J = (j1, . . . , jk), let c← Evalek(g, S[j1].c, . . . , S[jk].c),
extend S by one more triplet

(g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c),

and return c to A.
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• For each query j to D, if j ≤ |S| and S[j].m0 = S[j].m1, then return S[j].m0 to A; otherwise return
an error symbol ⊥.

Finally, when A halts with a bit b′, B(i) output this bit.
Since B(i) does not depend on the secret key sk to answer the D queries, it is a valid adversary in the

IND-CPA experiment. Now, let H(i) = Exprcpa
0 [B(i)] for 0 ≤ i < l, and let H(l) = Exprcpa

1 [B(l−1)]. For
1 ≤ i < l, note that H(i) is exactly the same distribution as Exprcpa

1 [B(i−1)]. Furthermore, by the correctness
of exact homomorphic encryption schemes, the D responses from B(i) to A are indistinguishable from those

in the IND-CPA+ experiment; so H(0) and Exprindcpa+

0 [A] are indistinguishable, and the same hold true for

H(l) and Exprindcpa+

1 [A]. So Advindcpa+

[A] ≤
∑

0≤i<l Adv
cpa[B(i)] + negl(κ), which is negligible since E is

IND-CPA secure.

Notice that the above lemma makes essential use of the correctness of exact encryption schemes, and the
proof does not extend to approximate encryption schemes. In fact, for approximate encryption schemes, the
result of decryption is not a simple function of the encrypted messages (and the computations performed
on them), and may potentially depend (in an indirect, unspecified way) on the scheme’s secret key and
encryption randomness. So the information provided by decryption queries is not easily computed by the
adversary on its own, and, at least in principle, IND-CPA+ may be a stronger security notion than IND-CPA
when applied to approximate encryption schemes. We will make this intuition clear in the following sections,
proving formal separation results, and providing concrete attacks to actual approximate encryption schemes.

Also note that the above definition does not guarantee circuit privacy in the homomorphically evaluated
ciphertexts, as the circuit to be evaluated in a query to oracle H does not depend on the bit b of the
IND-CPA+ experiment. In a later section we extend our definition with circuit privacy. Here we focus on the
basic definition (without circuit privacy) which is the most common in cryptography.

3.2 Simulation-Based Definition

As standard in cryptography, secure encryption schemes are expected to hide all partial information about
plaintext messages. In the indistinguishability notion of security, this is captured by the task of distinguish-
ing between any two (adversarially chosen) messages. Simulation-based security (also known as semantic
security) offers a more direct way to express that ciphertexts provide no useful information at all. We con-
sider standalone simulation-based security, following the “real vs ideal worlds” paradigm: the real world is
implemented using the cryptographic scheme to process real input, and the ideal world consists of a simulator
which is given a minimal amount of information and should produce an output essentially equivalent to a
real attack.

We propose the following simulation-based security definition for homomorphic approximate encryption
schemes. For simplicity, we consider a plaintext space with fixed message lengthM = {0, 1}l. The definition
is easily extended to variable-length message spaces.

Definition 3 (SIM-CPA+ Security). Let E = (KeyGen,Enc,Dec,Eval) be a public-key homomorphic (possibly
approximate) encryption scheme with plaintext space M = {0, 1}l. Security is defined with respect to an
adversary A that is given a public/evalution key (pk, ek) and has access to three (stateful) oracles:

• An encryption oracle E(m) that, given a plaintext messages m, returns a ciphertext c.

• An evaluation oracle H(g, J) that, given a function g : Mk → M for some k ≥ 1 and a sequence of
indices J = (j1, . . . , jk) ∈ {1, . . . , |S|}k, returns a ciphertext c.

• A decryption oracle D(j) that, given an index j returns a plaintext message m.

Oracle queries are answered in two different ways, defining a “real” and an “ideal” experiment. The real
experiment maintains a state consisting of a sequence T ∈ (M×C)∗ of message-ciphertext pairs, and the ideal
experiment maintains a sequence of messages T ∈ M∗ as its state. The indexes J and j in the evaluation
and decryption queries are required to be in the range {1, . . . , |T |}, where |T | is the current length of T .
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The real world experiment Real begins by initializing T := [ ] to the empty sequence, and sampling a tuple
of keys (sk, pk, ek) ← KeyGen(1κ) using the scheme’s key generation algorithm. Then, the keys (pk, ek) are
given to A, which is run answering its oracle queries as follows:

• E(m): compute c← Encpk(m), extend the state T := [T ; (m, c)] with one more pair, and return c to A.

• H(g, J): compute c← Evalek(g, (T [j1].c, . . . , T [jk].c)), extend the state

T := [T ; (g(T [j1].m, . . . , T [jk].m), c)]

with one more pair, and return c to A.

• D(j): compute m′ = Decsk(T [j].c) and return it to A.

The ideal world experiment Ideal answers the adversary’s queries using an efficient (stateful) simulator
S (see Fig. 2 for an illustration), which maintains its own state, in addition (and without access) to T . The
ideal experiment begins by initializing T := [ ] to the empty sequence, and starting the simulator S which
produces a pair of keys (pk, ek) that are given to the adversary A. Then, it answers A’s oracle queries as
follows:

• E(m): send the message E to the simulator, S, which replies with a ciphertext c. The state T := [T ;m]
is extended with one more message m, and the ciphertext c is returned to the adversary.

• H(g, J): send the message (H, g, J) to the simulator S, which replies with a ciphertext c. The state

T := [T ; g(T [j1], . . . , T [jk])]

is extended with one more message g(T [j1], . . . , T [jk]), and the ciphertext c is returned to A.

• D(j): send (D, j, T [j]) to the simulator S. The simulator is expected to reply with a message m′ (possibly
different from T [j]) which is returned to the adversary.

As usual, in both experiments, whenever A makes an invalid query, the oracle returns an error symbol ⊥.
The experiments terminate when A halts with an output bit b. This bit is the final output of the experiment,
and it is denoted by Real[A](1κ) or Ideal[S,A](1κ). The advantage of adversary A in breaking SIM-CPA+

security is
Advsimcpa+ [A](κ) = |Pr{Ideal[S,A](1κ) = 1} − Pr{Real[A](1κ) = 1}|.

We say that E is SIM-CPA+-secure if there exists an efficient (probabilistic polynomial time) simulator S
such that, for all efficient A the advantage Advsimcpa+ [A] is negligible in κ.

Toutput

m′j

ci
ci

H(g, J)
E(m) E

D(j)

pk, ek

(H, g, J)
(D, j, T [j]) SA

Figure 2: The ideal world experiment Ideal that involves a simulator S and an adversary A. The box between
A and S indicates that oracle queries from A are processed (with the help of the state T ) by the experiment
before sending to S.

In the ideal world experiment, the input to the simulator describes information that is not necessarily
protected by the scheme E : the number of plaintexts to be encrypted, the homomorphic computation to
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be performed, and the exact computation results (which can be derived from the input plaintexts). The
simulator’s task, given these minimal information, is to simulate any attack that can be mounted by a real
world adversary. As we mentioned, our definition makes an assumption that all plaintext messages, including
plaintext computation results corresponding to homomorphic evaluations, are of the same bit length l. The
definition can be extended to variable length messages by giving the length information |m| to the simulator.

Relations with IND-CPA+-security. For exact homomorphic encryption schemes, it is well known [25,
39] that the simulation-based semantic security is equivalent to the indistinguishability-based IND-CPA se-
curity. So naturally we want to extend such relationship to homomorphic approximate encryption schemes.
The following implication result is easy to check.

Lemma 2. For any homomorphic approximate encryption scheme E, if E is SIM-CPA+-secure, then it is
IND-CPA+-secure. Moreover, the reduction between the two adversaries preserves the number, type and order
of queries.

Proof. Assume E is SIM-CPA+-secure, and fix an IND-CPA+ adversary A. We build two SIM-CPA+ adver-
saries B0 and B1: For b ∈ {0, 1}, Bb receives the public keys (pk, ek), maintains a state M ∈ (M×M)∗,
runs A(1κ, pk, ek) and handles its oracle queries as follows:

• For each E(m0,m1) query, Bb stores this message pair M := [M ; (m0,m1)], queries its oracle E(mb),
and then it returns the oracle response c to A.

• For each H(g, J) query, where J = (j1, . . . , jk), Bb extends its state by a new message pair M :=
[M ; (g(M [j1].m0, . . . ,M [jk].m0), g(M [j1].m1, . . . ,M [jk].m1))], queries its oracle H(g, J), and it then
returns the oracle response c to A.

• For each D(j) query, if M [j].m0 = M [j].m1, Bb queries its oracle D(j) and returns the oracle response
m′ to A; otherwise Bb returns the error symbol ⊥ to A.

By SIM-CPA+-security, there exists a simulator S such that Real[B0] ≈c Ideal[S,B0] and Real[B1] ≈c
Ideal[S,B1]. Note that Real[Bb] and Exprindcpa+

b [A] are exactly the same distribution for both b ∈ {0, 1}.
Also note that, in both Ideal[S,B0] and Ideal[S,B1], if M [j].m0 = M [j].m1 for a decryption query D(j) from
A, then the input given to S in these two ideal world experiments are exactly the same; so Ideal[S,B0] =
Ideal[S,B1]. Therefore the scheme E is IND-CPA+-secure, and our reduction preserves the number, type, and
order of queries.

As exact homomorphic encryption schemes are special cases of homomorphic approximate encryption
schemes, we compare IND-CPA with SIM-CPA+ security. The following lemma shows that (together with
Lemma 1), for exact encryptions, SIM-CPA+ is also equivalent to IND-CPA.

Lemma 3. Any exact homomorphic encryption scheme E is IND-CPA+ secure if and only if it is SIM-CPA+

secure.

Proof. We first show that IND-CPA+ security implies SIM-CPA+. To do so, we build a simulator S. On
start up, S samples keys (sk, pk, ek)← KeyGen(1κ) honestly using the key generation algorithm, and outputs
(pk, ek). The simulator initializes a state C := [ ] that is a sequence of ciphertexts. Then, it handles oracle
queries from an adversary as follows:

• For each E(m) query, S receives a message E, computes c← Encpk(0), extends its state C := [C; c] by
one more ciphertext, and returns c.

• For each H(g, J) query, S receives a message (H, g, J), computes c ← Evalek(g, C[j1], . . . , C[jk]) where
J = (j1, . . . , jk), extends its state as C := [C; c], and returns c.

• For each D(j) query, S receives a message (D, j,m), and it returns m.
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Now, fix any SIM-CPA+ adversary A, and we build an IND-CPA+ adversary B: B(1κ, pk, ek) runs A(1κ)
and sends (pk, ek) to A. It also maintains a sequence M of plaintexts as its state. For oracle queries from
A, B does the following:

• For each E(m) query, B extends its state M := [M ; m] by one more message, sends (m, 0) to the oracle
Epk and receives c, and then it returns c to A.

• For each H(g, J) query, where J = (j1, . . . , jk), B extends its state M := [M ; g(M [j1], . . . ,M [jk])] by
one more message, sends (g, J) to the oracle Hek and receives c, and then it returns c to A.

• For each D(j) query, B returns M [j] to A.

By the correctness of exact homomorphic encryption schemes, we see that Exprindcpa+

0 [B] is indistinguish-
able from the real world experiment Real[A]. On the other hand, the ideal world experiment Ideal[S,A] is

exactly the same as Exprindcpa+

1 [B]. Since E is IND-CPA+ secure, it is also SIM-CPA+ secure.
For the reverse direction, we can directly apply Lemma 2.

For homomorphic approximate encryption schemes in general, we do not know if IND-CPA+ security
implies SIM-CPA+ security, and we leave it as an interesting open question.

3.3 Restricted Security Notions and Separations Between Them

We have observed that, for exact encryption schemes, {IND-CPA+,SIM-CPA+} security is equivalent to
the traditional IND-CPA security. (See Lemma 1.) We now show that {IND-CPA+,SIM-CPA+} is strictly
stronger than IND-CPA, i.e., there are approximate encryption schemes that are provably IND-CPA secure
(under standard complexity assumptions) but are not {IND-CPA+,SIM-CPA+} secure. In order to get a more
refined understanding of the gap between these notions, we introduce a natural parameterization of IND-CPA+

and SIM-CPA+ security, that smoothly interpolates between IND-CPA and {IND-CPA+,SIM-CPA+}. Then,
we define a number of restricted notions of security, and show separations between them, showing that
there is an infinite chain of (strictly) increasingly stronger definitions, ranging from IND-CPA all the way to
{IND-CPA+,SIM-CPA+}.

Restricting the numbers of queries. We parameterize the definition by imposing a bound on the
number of queries that may be asked by the adversary.

Definition 4 ((q, `)-IND-CPA+ Security). For any two functions q(κ) and `(κ) of the security parameter κ,
we say that a homomorphic encryption scheme is (q, `)-IND-CPA+ secure if it satisfies Definition 2 for all
adversaries A that make at most `(κ) queries to oracles E,H, and at most q(κ) queries to oracle D.

We combined the encryption (E) and evaluation (H) queries into a single bound `(κ) for simplicity,
and because both type of queries produce ciphertexts. The bound ` could be significant for approximate
encryption schemes as security with respect ` queries to E and H does not appear to imply security with
respect to `+1 such queries. This is in contrast to proper (exact) encryption schemes in the public-key setting
where one-message security implies multi-message security. It remains an interesting open question to find
out the relationship between (q, `)-IND-CPA+ and (q, `+ 1)-IND-CPA+ securities (and same for SIM-CPA+).

The definition is easily extended to more general formulations, but we will be primarily interested in the
bound q on the number of decryption queries, which are the distinguishing feature of approximate encryption
schemes. When ` is an arbitrary polynomial, and only the number of decryption queries q(κ) is restricted,
we say that a scheme is q-IND-CPA+ secure.

Now, we can think of IND-CPA security as a special case of (q, `)-IND-CPA+, for q = 0 and ` = 1, as
the only query to E/H must be an encryption query. (Oracle E must be called at least once before one
can use H to homomorphically evaluate a function on a ciphertext.) So, bounding the number of queries
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allows to smoothly transition from the traditional IND-CPA definition (i.e., (0, 1)-IND-CPA+ security), to our
IND-CPA+ (i.e., (poly, poly)-IND-CPA+ security).

Similar to IND-CPA+ security, we can also consider parameterizations of the SIM-CPA+ security using
bounds on the numbers of queries that an adversary is allowed to ask. We say that a homomorphic encryption
scheme is (q, `)-SIM-CPA+ secure if it satisfies Definition 3 for all adversariesA that make at most `(κ) queries
to oracles E,H, and at most q(κ) queries to oracle D. When ` is an arbitrary polynomial, and only the number
of decryption queries q(κ) is restricted, then we say that a scheme is q-SIM-CPA+ secure.

Naturally, for proper (exact) encryption schemes, all these definitions are equivalent, and it is only in the
approximate encryption setting that the definitions can be separated.

In the following proposition we show that there exists some scheme that is secure for up to some fixed
number q of decryption queries but insecure for just q+1 decryption queries. We remark that the encryption
scheme described in the proof is presented for the sole purpose of separating the two definitions. More natural
examples that separate IND-CPA and IND-CPA+ will be described in Section 4, where we present attacks to
approximate encryption schemes from the literature.

Proposition 1. Assume there exist a pseudorandom function and an IND-CPA-secure exact homomorphic
encryption scheme. Then, for any fixed q ≥ 2, there exists a homomorphic approximate encryption scheme
that is (q, `)-SIM-CPA+-secure but not (q + 1, `)-IND-CPA+-secure.

Proof. Let E = (KeyGen,Enc,Dec,Eval) be an exact homomorphic encryption scheme that is IND-CPA secure.
Let PRF : {0, 1}κ×X → Y be a secure pseudorandom function, and without loss of generality, we can assume
that X = Y = {0, 1}k, where k = |sk| is the length of the secret key of E . Let 0 < β < 1 be some small
positive number, which will be the upper bound on decryption errors, i.e., the approximation upper bound
in E ′. Let (π, π−1) be an encoding scheme from {0, 1}k to [0, β).

We build the following homomorphic approximate encryption scheme E ′ = (KeyGen′,Enc′,Dec′,Eval′):

• The key generation algorithm KeyGen′(1κ) samples (sk, pk, ek) ← KeyGen(1κ) and a PRF key K ←
{0, 1}κ. Then it outputs (sk′, pk, ek), where sk′ = (sk,K).

• The encryption algorithm Enc′ and the evaluation algorithm Eval′ are identical to Enc and Eval, re-
spectively.

• The decryption algorithm Dec′(sk,K)(c) first decrypts the ciphertext c to m = Decsk(c). It outputs

m+π(PRFK(m mod (q+1))) if m (mod (q+1)) 6≡ 0, and it outputs m+π(sk⊕r) for r = ⊕qi=1PRFK(i)
otherwise.

When an adversaryAmakes at most q decryption queries, the resulting decryption errors {Dec′sk′(ci)−mi |
ci ← Encpk(mi)} are computationally indistinguishable from random strings due to pseudorandomness of
PRF. So one can show that the scheme E ′ is (q, `)-SIM-CPA+-secure using a reduction to the IND-CPA
security of E . However, if an adversary can make q+1 decryption queries, then it can completely recover the
secret key sk using the decryption errors as secret shares of sk. So E ′ is not (q + 1, `)-IND-CPA+-secure.

Restricting the query ordering. In the definition of IND-CPA+ security, we did not state any restriction
on the relative order of queries made by the adversary. In particular, queries can be made in many rounds,
and a later query can depend on the responses from earlier queries. Such notion is called security with
adaptively chosen queries, or simply adaptive security.

There are several other natural query orderings that can be imposed on the adversary, and enforced
by an application. For example, it is often the case that inputs are encrypted and collected in advance,
before any homomorphic evaluation or decryption operation takes place. As an extreme situation, one can
consider a fully non-adaptive setting, where the adversary specifies all its queries in advance after seeing the
public/evaluation key. We call this the (fully) non-adaptive model. Non-adaptive security is much easier to
formulate, and we fully spell out its definition now.
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Definition 5 (Non-Adaptive (q, `)-IND-CPA+ Security). Let E be a homomorphic (possibly approximate)
encryption scheme E = (KeyGen,Enc,Dec,Eval). Let q and ` be two polynomial bounds in κ. We say that E
is non-adaptively (q, `)-IND-CPA+-secure if for all efficient adversary A = (A0,A1) consisting of two steps
such that

({m(i)
0 }ki=1, {m

(i)
1 }ki=1, {(gi, Ji)}`i=k+1, {ji}

q
i=1, st)← A0(1κ, pk, ek),

where (sk, pk, ek)← KeyGen(1κ), m
(i)
0 = gi(m

(Ji)
0 ), m

(i)
1 = gi(m

(Ji)
1 ) for i = k + 1, . . . , `, and all gi are valid

circuits with indices Ji ∈ {1, . . . , `}∗, the following two distributions are indistinguishable to A1(1κ, st):

{ {ci ← Encpk(m
(i)
0 )}ki=1, {ci ← Evalek(gi, c(Ji))}

`
i=k+1, {Decsk(ci) | m

ji
0 = mji

1 }
q
i=1 },

and
{ {ci ← Encpk(m

(i)
1 )}ki=1, {ci ← Evalek(gi, c(Ji))}

`
i=k+1, {Decsk(ci) | m

ji
0 = mji

1 }
q
i=1 },

where the probability is over the randomness of A and in Enc and Eval.

We can also define a non-adaptive variant of SIM-CPA+ security in a way similar to Definition 5 such that
all queries must be specified by the adversary at once, after seeing the public-key. Note that, the implication
result of Lemma 2 applies to any query model, i.e., if a scheme is SIM-CPA+-secure in some query model,
then it is IND-CPA+-secure in the same query model.

Typically the same security notion is weaker in the non-adaptive model than in the adaptive model, as
some attacks are only feasible in the latter model. We show that this is also the case for homomorphic
approximate encryption schemes. As before, the encryption scheme described in the following proof is not
intended to be used. It is just a theoretical construction, provided simply for the purpose of showing that a
scheme may satisfy one definition but not the other.

Proposition 2. Assume there exist an IND-CPA-secure exact homomorphic encryption scheme and a secure
pseudorandom permutation. Then there exists a homomorphic approximate encryption scheme that is non-
adaptively SIM-CPA+-secure, but it is not adaptively (2, 2)-IND-CPA+-secure.

Proof. Let E be an IND-CPA secure exact HE scheme, and let H : {0, 1}κ × X → X be a pseudorandom
permutation for some set X that contains the secret key space of E . We first define another pseudorandom
permutation F : {0, 1}κ ×X → X:

∀x ∈ X. FK(x) = H−1
K (HK(x)⊕ 1).

Notice that FK(FK(x)) = x for all x ∈ X. Let (π, π−1) be an encoding scheme from X to [0, β) for some
small β < 1.

We now build a homomorphic approximate encryption scheme E ′.

• KeyGen′(1κ) = (sk′, pk, ek): Sample (sk, pk, ek) ← E .KeyGen(1κ), and also sample K ← {0, 1}κ for the
pseudorandom permutation F . Then set sk′ = (sk,K), and return (sk′, pk, ek).

• Enc′pk(·) and Eval′ek(·, ·) are exactly the same as E .Encpk and E .Evalek.

• Dec′sk,K(c) = m+ π(r), where m = E .Decsk(c), r = FK(sk) if m = 0, and r = FK(m) otherwise.

One can check that F is a pseudorandom permutation against non-adaptive adversaries, i.e., those
adversaries who submit their queries all at once. So in the non-adaptive model, the real world approximate
decryption result m + π(r) obtained from decryption queries can be simulated knowing just m and the
bound β, without using the secret key sk. Since E is IND-CPA secure, we see that E ′ is non-adaptively
SIM-CPA+-secure.

But, the noises in decryption results are no longer pseudorandom in the adaptive model. In fact, an
adaptive adversary A against IND-CPA+ security experiment can first query the encryption oracle on 0,
and then ask to decrypt the corresponding ciphertext to get e = π(FK(sk)). Next, A asks to encrypt
π−1(e) = FK(sk) and then asks to decrypt its ciphertext. At this point A gets the decryption result
π−1(e) + π(sk), and A can fully recover sk. So E ′ is not adaptively (2, 2)-IND-CPA+-secure.
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3.4 Extensions to Circuit Privacy and Functional Decryption Queries

In this section we consider extensions of our definitions that may be interesting in applications. The exten-
sions capture settings where the honest users want to hide the computation performed on the ciphertexts, or
can enforce the secure postprocessing of decrypted messages, before any information about them is provided
to the intended application. Circuit privacy has already been considered in the standard (exact) FHE set-
ting. Postprocessing with functional decryption queries is a new issue, specific to the setting of approximate
encryption schemes. We only provide definitions here, leaving further study of these notions to future work.

Circuit privacy. Homomorphic encryption schemes that hide the computaton performed on the encrypted
inputs are called circuit private, because the computation is often represented as a circuit. Most homomorphic
encryption schemes (in their basic form) are not circuit private. Accordingly, we did not include any circuit
privacy requirement to any of our definitions. However, all definitions are easily extended to achieve that
property as follows.

For SIM-CPA+ security, one changes the information that the oracle H gives to S when replying to
evaluation queries: instead of sending (H, g, J) to the simulator, H sends E to S. This informs the simulator
to produce something, without knowing the computation (g, J), that should be indistinguishable from the
ciphertext produced by homomorphic evaluation Evalek(g, T [j1].c, . . . , T [jk].c) in the real world experiment,
where J = {j1, . . . , jk}.

For IND-CPA+ security, homomorphic evaluation queries specify not one g, but two circuits g0, g1, pos-
sibly with different index sets J0, J1.3 Then the state S is extended with a tuple (m0,m1, c) where m0 =
g0(S[j0,1].m0, . . . , S[j0,k0 ].m0), m1 = g1(S[j1,1].m1, . . . , S[j1,k1 ].m1), c← Evalek(gb, S[jb,1].mb, . . . , S[jb,kb ].mb),
J0 = {j0,1, . . . , j0,k0}, J1 = {j1,1, . . . , j1,k1}, and the ciphertext c is returned to the adversary.

Functional Decryption Extension. We also consider the possiblity that the homomorphic encryption
scheme is used in a controlled environment where the result of decryption (of a homomorphic computation) is
securely post-processed using some function f , which reveals only some information about the (approximate)
result of the homomorphic computation. This function f should be thought of as part of the decryption
algorithm (or library implementing the approximate homomorphic encryption scheme), as it is essential for
security that the adversay does not get to see the result of decryption m, but only f(m). By restricting the
choice of f to some class of allowed functions L, one can limit the amount of information that the adversary
can extract from the output of a computation.

Formally, we can extend our definitions of (q, `)-{IND-CPA+,SIM-CPA+} to include another parameter, an
class L of efficiently computable post-processing functions, and we expand the decryption queries to include
a function f ∈ L. We call such queries the functional decryption queries, with the following specification:

• In IND-CPA+ definition, the decryption oracle D accepts queries of the form (j, f), where j ≤ |S| is an
index and f ∈ L is a post-processing function. If f(S[j].m0) = f(S[j].m1), then the oracle D returns
f(Decsk(S[j].c)). Otherwise, the oracle returns the error symbol ⊥.

• In SIM-CPA+ definition, functional decryption queries have the form D(j, f). For each functional
decryption query, the simulator is given (D, j, f, f(T [j])).

These extended security definitions are called (L, q, `)-{IND-CPA+,SIM-CPA+})-security. Our earlier defini-
tions are the special case where L = {id} only contains the identity function id(x) = x, and the adversary
can see the full result of decryption.

For IND-CPA+ security, the requirement that f(S[j].m0) = f(S[j].m1) is to eliminate trivial attacks
where the adversary can distinguish between two computations that lead to different results when computed
on exact values. For SIM-CPA+ security, we let the simulator see the post-processing function and the post-
processed result derived from the exact values, which captures the maximal information could be gained by
an attacker if the scheme were to be secure.

3One may consider weaker definitions, with only one J , which reveal the “topology” of the circuit, but not the value of its
“gates”.
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When considering circuit privacy for IND-CPA+-security, we may also expand functional decryption
queries by replacing f with a pair of possibly different post-processing functions f0, f1. Still, we require
that f0(S[j].m0) = f1(S[j].m1) to eliminate the trivial attack.

4 Attacks to Homomorphic Encryption for Arithmetics on Ap-
proximate Numbers

In this section we describe a key recovery attack against the CKKS scheme, including both theoretical
and practical analysis. Based on such attack, we can conclude that the CKKS scheme is not IND-CPA+

secure. Note that our attack is much stronger than a simple indistinguishability attacks: we show how to
efficiently recover the secret (decryption) key of the scheme. Clearly, once the secret key has been recovered,
it is easy to break the formal IND-CPA+ security definition. Note that while recovering the secret key makes
our attacks stronger, any security analysis of improved variants of CKKS or other approximate encryption
schemes should still use IND-CPA+, and not simply avoid our key recovery attack.

4.1 Theoretical Outline

The technical idea behind the attack is easily explained by exemplifying it on a symmetric key version of
LWE encryption. (Breaking the CKKS scheme involves additional complications due to the details of the
encoding/decoding functions discussed below.) We recall that in a passive attack (against a symmetric
key encryption scheme Es(m)), the adversary can observe the encryption Es(m) of any message m of its
choice. In LWE encryption, the key is a random vector s ∈ Znq , and a (possibly encoded) message m ∈ Zq is
encrypted as Es(m) = (a, b) where a ∈ Znq is chosen at random, and b = 〈s,a〉+m+ e (mod q) for a small
random integer perturbation e ∈ Z. If the encryption scheme works on “approximate numbers”, (m+ e) is
treated as an approximation of m, and the decryption algorithm outputs Ds(a, b) = b− 〈s,a〉 = m+ e.

Our most basic attack involves an adversary that asks for an encryption of m = 0, so to obtain a ciphertext
ct = (a, b) where b = 〈s,a〉+e (mod q). The adversary then asks to compute the identity function id(x) = x
on it. (This is the same as performing no computation at all.) Finally, it asks for an approximate decryption
of the result, and computes

c = b− Decs(ct) = (〈s,a〉+ e)− (m+ e) = 〈s,a〉 (mod q). (1)

This provides a linear equation 〈s,a〉 = c (mod q) in the secret key. Collecting n such linear equations and
solving the resulting system (e.g., by Gaussian elimination) recovers the secret key s with high probability.

It is easy to see that there is nothing special about the message 0, or the fact that no computation
is performed: as long as the adversary knows the ciphertext ct (possibly the result of a homomorphic
computation) and gets to see the approximate decryption of ct, the same attack goes through. However,
the actual scheme described in [18] and subsequent papers, and their open source implementations include
several modifications of the above scheme, introduced to make the scheme more useful in practice, but which
also make the attack less straightforward. We briefly describe each of these modifications, and how the
attack is adapted. In the most general case, our attack requires not just the solution of a linear system
of equations, but the use of lattice reduction for the (polynomial time solution) of a lattice approximation
problem.

Public Key. First, CKKS is a public key encryption scheme, where, as standard in lattice based encryption,
the public key can be seen as a collection of encryptions of 0 values. This makes no difference in the attack, as
the ciphertexts still have the same structure with respect to the secret key, and the (approximate) decryption
algorithm is unmodified. Switching to a public key system has the only effect of producing larger noise vectors
e in ciphertexts.
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Ring Lattices. In order to achieve practical performance, all instantiations of the CKKS scheme make use
of cyclic/ideal lattices [40] and the Ring LWE problem [37, 38]. Specifically, the vectors a, s are interpreted
as (coefficients of) polynomials a, s in the power-of-two cyclotomic rings O(2N) popularized by the SWIFFT
hash function [43, 35, 36] and widely used in the implementation of lattice cryptography since then. In a
sense, switching to ideal lattices makes the attack only more efficient: the linear equation 〈s,a〉 = c (mod q)

becomes an equation a · s = c ∈ O(2N)
q in the cyclotomic ring modulo q, which can be solved (even using a

single ciphertext) by computing the (ring) inverse of a, and recovering s as

s′ = a−1 · c ∈ Oq. (2)

A little difficulty arises due to the choice of q. The first implementation of CKKS, the HEAAN library [30]
sets q to a power of 2 to simplify the treatment of floating point numbers. Subsequent instantiations of CKKS
also use a prime (or square-free) q of the form h · 2n + 1 together with the Number Theoretic Transform
for very fast ring operations[36]. For a (sufficiently large) prime q, the probability of a random element a
being invertible is very close to 1, but this is not the case when q is a power of two. If a is not invertible,
we can still recover partial information about the secret key s, and completely recover s by using multiple
ciphertexts.

Euclidean Embedding. In order to conveniently apply the CKKS scheme on practical problems, the
input message space is set to CN/2 for some N that is a power of 2, the set of vectors with complex entries,
or, more precisely, their floating point approximations. A message z ∈ Ck, for some integer 1 ≤ k ≤ N/2,
can be considered as a vector in CN/2 (by padding it with 0 entries), and it is then encoded to

m = Encode(z; ∆) =
⌊
∆ · ϕ−1(z)

⌉
∈ ZN ≡ O,

where ∆ is some precision factor. The “decode” operation Decode : O → Ck sends an integer polynomial m
to

Decode(m; ∆) = ϕ(∆−1 ·m) ∈ Ck,

where the entries corresponding to the 0-paddings are dropped. Decode is an approximate inverse of Encode
as z′ = Decode(Encode(z; ∆); ∆) is close (but not exactly equal) to z.

This is slightly more problematic for our attack, because a passive adversary only gets to see the result
of final decryption z′ ∈ Ck, rather than the ring element m′ = a · s + b ∈ O that is required by our attack,
in addition to the ciphertext ct = (a, b). Moreover, given the approximate nature of the encoding/decoding
process, Decode(m′) is not even the exact (mathematical) transformation ϕ(∆−1 ·m′), but only the result
of an approximate floating point computation. We address this by setting k = N/2 (so, at least the vector
Decode(m′) has the right dimension over C), and re-encoding the message output by the decryption algorithm
to obtain Encode(Decode(m′)).

At this point, depending on the concrete choice of parameters of the scheme, we may have Encode(Decode(m′)) =
m′, in which case we can carry out the above attack by setting up a system of linear equations or computing
inverses in the cyclotomic ring. We summarize this case in the following theorem.

Theorem 1 (Linear Key-Recovery Attack against CKKS). Fix a particular instantiation of the CKKS
scheme under the Ring-LWE assumption of dimension N and modulus q, and fix a key tuple (sk, pk, ek) ←
KeyGen(1κ). Given k = O(N) ciphertext cti for 1 ≤ i ≤ k, that are either encryptions under pk or ho-
momorphic evaluations under ek, and given their approximate decryption results z′i = Decode(Decsk(cti); ∆)
with a scaling factor ∆, if Encode(z′i; ∆) = Decsk(cti) for all 1 ≤ i ≤ k, then we can efficiently recover the
secret key sk with high probability.

Moreover, if the ciphertext modulus q is a prime or a product of distinct primes, then the above holds for
all k ≥ 1.
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4.2 Analysis of Encoding/Decoding Errors

To see for what concrete parameters the linear attack can be applied, we take a closer look at the error
introduced by the encoding and decoding computation. In practice, since N is a power of 2, the classical
Cooley-Tukey FFT algorithm is used to implement the transformation ϕ and its inverse ϕ−1, and the
computation is done using floating-point arithmetic that could cause round-off errors.

Fix a ciphertext ct, and let m′ = Decsk(ct) ∈ O be its approximate decryption (before decoding) with
a scaling factor ∆. Let ẑ′ = Decode(m′; ∆) be the computed value of z′ = ϕ(∆−1 ·m′). To carry out the
attack, we compute the encoding of ẑ′ with the scaling factor ∆: first we apply inverse FFT to compute
u = ∆ ·ϕ−1(ẑ′), and then we round its computed value û to m′′ = bûe ∈ O. Let ε = û−m′ be the encoding
error, where m′ is the coefficient vector of m′. We see that Encode(Decode(m′; ∆); ∆) = m′ if and only if
‖ε‖∞ = ‖û−m′‖∞ < 1

2 .
Assume the relative error in computing the Cooley-Tukey FFT in dimension N is at most µ in l2 norm.

Then ‖ẑ′ − z′‖2 ≤ µ ·
√
N

∆ ‖m
′‖2, ‖û− u‖2 ≤ µ(1 + µ) · ‖m′‖2, and ‖u−m′‖2 ≤ µ · ‖m′‖2. It follows that

‖ε‖∞ = ‖û−m′‖∞ ≤ ‖û−m′‖2 ≤ (2µ+ µ2)‖m′‖2.

In [13], Brisebarre et. al. presented tight bounds on the relative error µ in applying the Cooley-Tukey FFT
algorithm on IEEE-754 floating-point numbers. According to their estimate, µ ≈ 53 · 2−53 for N = 216 and
double-precision floating-point numbers. So, in such setting, we expect to see Encode(Decode(m′; ∆); ∆) 6=
m′, i.e., ‖ε‖∞ > 1

2 , when ‖m′‖2 > 245. (As we will see in the next section, our experimental results using
existing CKKS implementations suggest this is a very conservative estimation.) The rescaling operation can
be used to reduce the size of the approximate plaintext m′, which is already used to maximize the capacity
of homomorphic computation in CKKS.

Lattice attack. In case Encode(Decode(m′)) ≈ m′ is only an approximation of what we want for the linear
key recovery attack, it is still possible to recover sk by solving a (polynomial time) lattice approximation
problem.

Theorem 2 (Lattice Attack against CKKS). Fix a particular instantiation of the CKKS scheme under the
Ring-LWE assumption of dimension N and modulus q, and fix a key tuple (sk, pk, ek)← KeyGen(1κ). Given
a ciphertext ct ∈ O2

q with a scaling factor ∆, and given an approximate decryption z′ = Decode(Decsk(ct); ∆)

of ct, if the encoding error ε = ∆·ϕ−1(z′)−Decsk(ct) satisfies ‖ε‖2 ≤ 2−
N
2 ·(q
√
N−h), where h = HW(s) ≤ N

is the Hamming weight of s, then the secret key sk can be efficiently recovered.

Proof (sketch). Let ct = (a, b) for some a, b ∈ Oq. We consider the following approximate CVP instance.
Let A = φ(a) ∈ ZN×N be the negacyclic matrix representation of a. Consider the following matrix

B =

(
A qIN
1t 0t

)
∈ Z(N+1)×(2N),

where 1t = [1, . . . , 1] is a N -dimensional row vector of all 1 entries. Let L = L(B) be the integer lattice
generated by B, let u = ∆ · ϕ−1(z′) ∈ RN , and let t = (u− b, 0)t ∈ RN+1, where b is the coefficient vector
of b. Our CVP instance asks to find v ∈ L such that ‖v − t‖2 ≤ δ for some δ > 0.

To set the parameter δ, notice that v0 = (m′− b, 〈1, s〉) is a lattice point, and ‖v0− t‖22 = ‖ε‖22 + 〈1, s〉2.
On the other hand, if m′′ − b = Ar + qw for some r,w ∈ ZN , then v1 = (m′′ − b, 〈1, r〉) ∈ L is also a lattice

point. We have ‖v1−t‖22 = ‖ε−bεe ‖22 +〈1, r〉2. Note that r = A−1(m′−b)+A−1 bεe (mod q) = s+A−1 bεe
(mod q). In CKKS, s is chosen from a uniform distribution on ternary coefficients {±1, 0} with Hamming
weight h ≤ N , so | 〈1, r〉 | ≥ |

〈
1, A−1ε

〉
− h|. We can assume that bεe is independent of m′ − b, so A−1 bεe

(mod q) is close to uniform, and so it holds with high probability that |
〈
1, A−1ε

〉
| ≤ 2

√
3 · q
√
N . When

‖ε‖2 ≤ 2−
N
2 · (q

√
N − h), we can set δ = 2

√
3 · q
√
N and obtain m′− b with high probability by solving such

CVP instance in polynomial time. Then, we can mount the linear attack as in Theorem 1.
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Algorithm 1: The pseudocode outlining our key recovery attack experiments.

Input: Lattice parameters (N, log q), initial scaling factor ∆0, plaintext bound B, and circuit g.
1 Sample (sk, pk, ek)← KeyGen(N, log q,∆0), where (1, s) = sk

2 Sample z← CN/2 such that |zi| ≤ B for all 1 ≤ i ≤ N/2
3 Encrypt ctin ← Encpk(Encode(z; ∆0))
4 Evaluate ctout ← Evalek(g, ctin)
5 Decrypt z′ ← Decode(Decsk(ctout); ∆), where ∆ is the scaling factor in ctout

6 Encode m′′ ← Encode(z′; ∆)
7 Compute s′ ← a−1 · (m′′ − b) ∈ Oq, where (b, a) = ctout

8 return s′ = s

5 Experiments

The basic idea of our linear attack is so simple that it requires no validation. However, as described in the
previous section, a concrete instantiation of the CKKS scheme may include a number of details that make
the attack more difficult in practice. Given the simplicity of our attack, we also considered the possibility
that the implementations of CKKS may not correspond too closely to the theoretical scheme described in
the papers, and included some additional countermeasures to defend against the attack.

To put our linear attack to a definitive test, we implemented it against publicly available libraries
HEAAN [30], PALISADE [41], SEAL [46], and HElib [31] that implement the CKKS scheme, and we ran
our attack over some homomorphic computations that are commonly used in real world privacy-preserving
machine-learning applications. Our experimental results against the libraries are summarized in Tables 1
and 2. For most of the parameter settings, our attack can successfully and quite efficiently recover the
secret key, showing it is widely applicable to these CKKS implementations. In the following, we discuss our
experiment and the relevant implementation details of these libraries, and we briefly analyze the results. We
also consider RNS-HEAAN [45], an alternative implementation similar to HEAAN that includes RNS (residue
number system) optimizations, obtaining similar results.

We did not implement the lattice based attack. The main difficulty in running the lattice attack in our
experiment is that it requires lattice reduction in very large dimension, beyond what is currently supported by
state of the art lattice reduction libraries. However, the theoretical running time of the attack is polynomial,
and the corresponding parameter settings should still be considered insecure. In the following, we refer to
our linear attack as the attack.

5.1 Implementation of Our Attack and Experiments

A pseudocode outline of our experiment programs is presented in Algorithm 1. Such programs model the
situations where an attacker can influence an honest user to perform certain homomorphic computations and
can obtain both the final ciphertexts and the decrypted approximate numbers. A successful run indicates
that the target CKKS implementation is not IND-CPA+-secure.

For concrete homomorphic computations, we choose to compute the variance of a wide range of input data
to exemplify how our attack may be affected by large underlying plaintexts in extreme cases. Specifically,
our program encrypts the input data to a single ciphertext ctin in the full packing mode, and then it performs
one homomorphic squaring, followed by several homomorphic rotations and summations to homomorphically
compute the sum of squares, and finally it does a homomorphic multiplication by a constant 2/N to obtain
ctout that encrypts the variance. We also compute the logistic function (1+e−x)−1 and exponential functions
ex using their Maclaurin series up to a degree d, to check whether our attack may be affected by the bigger
noises and the possibly adjusted scaling factors due to multi-level homomorphic computations. Once the
homomorphic computation is done, our program decrypts ctout to approximate numbers z′, and mounts our
linear attack as in Steps 6 and 7 of Algorithm 1. We remark that all these homomorphic computations are
very common in applications of the CKKS scheme.
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Attack applied to HEAAN, PALISADE, SEAL, HElib
B 1 2 22 23 24 25 26 27 28 29

Variance
log ∆0 = 30 X X X X X X X X X X
log ∆0 = 40 X X X X X X X X X X
log ∆0 = 50 X X X X X X 1.21 5.41 20.65 80.19

Table 1: The results of applying our attack on homomorphically computed variance of N/2 = 215 random
complex numbers of magnitude 1 ≤ B ≤ 29. We carried out the attack against all main open source
implementations of CKKS, obtaining similar results. Numbers are packed into all slots, and are encoded
using various initial scaling factors ∆0. For each parameter combination (∆0, B), we ran our programs 100
times against each library. A “X” indicates that, for all these libraries with the particular parameters,
the attack always succeeded to recover sk. A few cells where a number is shown, correspond to extreme
parameters where some runs failed to recover sk, and the number is the maximum (over all libraries) of
the average l∞ norms of the encoding error ε. These settings are still subject to attacks based on lattice
reduction, see Sections 4.2 and 5.3 for details.

In our programs, we use the data structures and public APIs provided by each library to carry out the
key recovery computation4. Note that an attacker is free to use any method, not necessarily these public
interfaces, to carry out the attack.

5.2 Details on Different Implementations of CKKS

We considered the latest versions of all these libraries: HEAAN version 2.1 [30], PALISADE version 1.10.4 [41],
SEAL version 3.5 [46], and HElib version 1.1.0 [31] and RNS-HEAAN [45]. All these libraries implement
the transformation ϕ and its inverse using the classical Cooley-Tukey FFT algorithm on double-precision
floating-point numbers. Still, they contain several distinct implementation details relevant to our attack.

Multi-precision integers vs. double-CRT representation. All versions of HEAAN (version 1.0 as
in [18], version 1.1 as in [16], and the most recent version 2.1) use multi-precision integers to represent key
materials and ciphertexts. Consequently, HEAAN achieves very good accuracy in approximate decryption,
but at the same time it rarely introduces any encoding error, resulting in a great success rate in our key
recovery experiment.

To improve efficiency, the residual number system, aka double-CRT representation, is adopted to the
CKKS scheme in [17], and it is implemented in RNS-HEAAN. Other libraries also implement the RNS
variant of CKKS, with some different details:

• During decryption, RNS-HEAAN uses only the first RNS tower of ciphertexts; so it expects the scaled
plaintext to be much smaller than the 60-bit prime modulus in the first tower. Other libraries convert
the double-CRT format to multi-precision integers before applying the canonical embedding; so they
support a larger plaintext space and are more accurate.

• During rescaling, RNS-HEAAN uses a power-of-2 rescaling factor, while the other libraries’ rescaling
factors are the primes or close to primes in the moduli chain. In particular, PALISADE optimizes the
rescaling factors to reduce the errors and precision loss in many homomorphic operations [32].

As observed in our experiment, among the RNS implementations of CKKS, our attack was more successful
against the libraries using more accurate element representations and scaling factors.

4The source code of our attack implementations are available at https://github.com/ucsd-crypto/CKKSKeyRecovery.
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Attack applied to HEAAN, PALISADE, SEAL, HElib
HEAAN PALISADE SEAL HElib

∆0 B d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10

Logistic
230 1 X X X X X X X X
240 1 X X X X X X 3.1 6.7
250 1 X X X X X X 8.2 8.2

Exponential

230
1 X X X X X X X X
2 X X X X X X n/a n/a
8 X X X X X X n/a n/a

240
1 X X X X X X 1.9 8.2
2 X X X X X X n/a n/a
8 X X X X X X n/a n/a

250
1 X X X X X X 8.1 8.2
2 X X X X X X n/a n/a
8 7.6 15.2 8.1 18.2 2.2 4.3 n/a n/a

Table 2: The results of applying our attack to homomorphically computed logistic and exponential functions
on random real numbers of magnitude B ∈ {1, 2, 8} packed into full N/2 = 215 slots, evaluated using their
Maclaurin series of degree d ∈ {5, 10}. For each parameter setting, we ran our experimental program 100
times for each library, and here “X” indicates sk was recovered in all these runs against a particular library.
A few cells where a number is shown, correspond to extreme parameters when some runs failed to recover
sk, and the number is the average l∞ norm of the encoding error ε in these runs. For HElib, “n/a” indicates
the parameters are not supported by the library.

PALISADE. In addition, PALISADE uses extended precision floating-point arithmetic in Decode, which has
64-bit precision on X86 CPUs. This further improves the accuracy of approximate decryption, but perhaps
unintentionally making our attack more successful by a tiny margin (comparing to other libraries).

HElib. Unlike other libraries, HElib adjusts the scaling factor used in Encode and many homomorphic
operations according to the estimated noise size and the magnitude of the plaintext. It expects the input
numbers to have magnitude at most 1 for optimal precisions. So our experiment with HElib chooses random
input only within the unit circle.

RNS-HEAAN. Looking back to RNS-HEAAN, its implementation of Decode introduces a small round-off
error in a conversion from uint64_t to double. As a result, such (seemingly unexpected) implementation
choice may lead to reduced precision (by only a few bits), but it also results in more failed runs in our
experiment. Still, when our attack fails, the encoding errors are quite small, and so RNS-HEAAN is still
subject to the lattice reduction attack. We tried to “fix” this by more carefully converting between number
systems, and we immediately see a much better success rate for our attack.

5.3 Experiment Results

We set up all libraries with the highest supported lattice dimension N = 216, which also corresponds to
the highest security level. By the analysis in Section 4.2 (and also observed in our experiment), the larger
the dimension is, the higher the chance an encoding error may show up (leading to failed attack runs).
On the other hand, since the claimed security decreases with larger values of the modulus q, we set it to
around 350 bit, which is a secure, yet realistic value for FHE schemes. According to common evaluation
methodologies [1], the associated LWE problem provides a level of security well above 256 bits. (Specifically,
in dimension N = 216, it is estimated that 256-bits of security are achieved even for moduli q with over 700
bits.)
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In all our experiments, we use the full packing mode with N/2 slots. For the variance computation,
we generate random input numbers with magnitude B ≤ 29. For the experiment on the logistic and the
exponential functions, we set the maximal degree of their Maclaurin series to d ≤ 10, which provides good
approximation for inputs smaller than 1.

Our experiments are executed in a 64-bit Linux environment running on an Intel i7-4790 CPU. The attack
is very efficient, especially for the RNS-CKKS implementations, as the key recovery computation can benefit
from using NTT and parallelization. Each individual run in our experiment finishes within several seconds
to just one minute, with most of the running time taken by the key generation and encryption/homomorphic
evaluation operations, rather than the attack itself. For each homomorphic computation task, for each
parameter setting, and for each library, we run our attack 100 times to record the success rate and the
encoding error ε. The results of the experiments with HEAAN, PALISADE, SEAL, and HElib are presented
in Tables 1 and 2. As shown in these tables, our attack always succeeded to recover the secret key in most
parameter settings against all the libraries, especially for typical input sizes and scaling factors. The failed
cases in both tables correspond to the extreme parameters where the l2 norm of the underlying plaintext
exceeds 252, showing better practical performance than the worse case analysis in Section 4.2. (There
are more failed cases with HElib because its adjusted scaling factors are typically larger and so are the
plaintexts.) Comparing the results on the logistic and the exponential functions, we conclude that a deeper
level of homomorphic computation has no significant effect on our attack, and the runs in the last row of
Table 2 failed due to larger plaintext sizes. In particular, the encoding error ε with SEAL is smaller than
other libraries because its implementation of Decode incurs less round-off errors in scaling by ∆−1.

We did a limited number of experiment with RNS-HEAAN because it has a small plaintext space. Nonethe-
less, we see a consistent but small encoding error of size ‖ε‖∞ ≤ 27 in our RNS-HEAAN experiments when
B2∆0 ≈ 250.

6 Conclusion

We proposed new security definitions, extending the traditional IND-CPA security notion, that properly cap-
ture the passive security requirement for (homomorphic) approximate encryption schemes. The necessity
of adequate security notions for approximate encryption reminds us that correctness and security are two
essential issues for cryptographic systems that must be considered at the same time. From a theoretical
perspective, we initiated the study of IND-CPA+ security for approximate computation, by presenting im-
plication and separation results between variants of the definition. There are still many very interesting
research directions and open questions regarding IND-CPA+ security as well as simulation-based security.
We leave further study of these new security notions to future work.

For our attack against the CKKS scheme, as it essentially recovers the encryption noise ẽ of the ciphertext,
a natural countermeasure to harden the CKKS scheme is to modify the decryption algorithm, so that it does
not output m + ẽ, but only an approximation that does not depend on the secret key and encryption
randomness. Below we discuss two specific ways to do that. We remark that that our suggestions are just
simple countermeasures to mitigate the effect of the attacks described in our work. Finding a more solid
solution, provably achieving the notion of IND-CPA+ security proposed in this paper, is left as an open
problem.

Gaussian noise. Perhaps the most natural way to do that (from an LWE perspective) is to add Gaussian
noise to the result of the decryption function, similar to the noise introduced by the encryption algorithm.
While this makes the schemes perhaps more robust, it does not seem an adequate countermeasure. The reason
is that an attacker may repeatedly request decryptions of the same ciphertext. If the noise is unbiased, it
can be easily reduced by taking several decryptions, and computing their average. The result will not be
exact, but the noise can be made arbitrarily small by using a sufficiently large (still polynomial) number of
calls, so that it can be eliminated either using rounding and Gaussian elimination, or applying the theoretical
lattice-based attacks described in Section 4.2.
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Deterministic noise or rounding. To avoid the above weakness, one can effectively limit the number
of decryption calls to 1 per ciphertext by adding a deterministic noise in the decryption algorithm, e.g., as a
pseudorandom function applied to the ciphertext (and key derived from the decryption key.) This is similar
to the noise flooding techniques used in many lattice cryptographic contexts such as bootstrapping and
circuit privacy of homomorphic encryption. It is perhaps not practical to apply noise flooding generically to
achieve unbounded IND-CPA+ security, as it requires a superpolynomial modulus, but it might be feasible
to achieve a bounded q-IND-CPA+ security for any a-priori fixed q, using techniques similar to [3, 8, 22].
A rigorous analysis is required not only for security but also for practical efficiency and tradeoffs in the
accuracy of the approximate computation, and we leave this to future work.

Exact decryption. One can set up parameters in such a way that b(m+ ẽ)/∆e = bm/∆e, at least with
high probability, where the rounding operation is taken to certain precision. This effectively replaces the idea
of approximate decryption with an exact decryption algorithm, but for a modified message. This could be a
more promising direction to enhance the CKKS scheme, and it requires a careful analysis of encryption noises
together with rounding errors. Intuitively, instead of interpreting a ciphertext as encoding an approximate
number m+ ẽ, we regard them as encryptions of an approximate value b(m+ ẽ)/∆e. We can then define the
operations supported by the homomorphic encryption scheme in such a way to ensure exact, deterministic
behavior, both for homomorphic computations and final decryption.

Since the resulting scheme satisfies the standard notion of correctness for encryption (even if, perhaps,
for a less standard set of operations than simple addition and multiplication), it can be easily analyzed using
the traditional definition of security, and it is immediate to show that the scheme is secure under passive
attacks based on a standard (Ring) LWE assumption.

Responsible Disclosure

We disclosed details of our attack to the developers of HEAAN, SEAL, HElib, and PALISADE at the beginning
of October 2020 (and also to Lattigo [34] at a later time, after porting our attack to the GO programming
language used by that library), before making our paper public. All teams were very responsive, and they
quickly acknowledged that our attack works and it represents a serious threat that needs to be addressed. All
libraries already took some action, addressing the vulnerability to different degrees, ranging from warning
the users that any use of the decryption function (except in very controlled environments where the result
of decryption is kept private,) to implementing some mitigation strategy along the lines discussed in the
previous section. In particular, we have tested the latest development versions of HElib and PALISADE, and
we can confirm our attack is no longer effective against them. Developing and implementing a variant of
CKKS which provably achieves IND-CPA+ with only a modest decrease in performance is left to future work.
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