
Feeding Three Birds With One Scone: A Generic
Duplication Based Countermeasure To Fault Attacks

(Extended Version)

Anubhab Baksi∗, Shivam Bhasin∗, Jakub Breier†, Anupam Chattopadhyay∗, Vinay B. Y. Kumar∗

∗Nanyang Technological University, Singapore
anubhab001@e.ntu.edu.sg, sbhasin@ntu.edu.sg, anupam@ntu.edu.sg, vinayby@iitbombay.org

†Silicon Austria Labs, Graz, Austria
jbreier@jbreier.com

Abstract—In the current world of the Internet-of-things and
edge computing, computations are increasingly performed locally
on small connected systems. As such, those devices are often
vulnerable to adversarial physical access, enabling a plethora of
physical attacks which is a challenge even if such devices are
built for security.

As cryptography is one of the cornerstones of secure com-
munication among devices, the pertinence of fault attacks is
becoming increasingly apparent in a setting where a device can be
easily accessed in a physical manner. In particular, two recently
proposed fault attacks, Statistical Ineffective Fault Attack (SIFA)
and the Fault Template Attack (FTA) are shown to be formidable
due to their capability to bypass the common duplication based
countermeasures. Duplication based countermeasures, deployed
to counter the Differential Fault Attack (DFA), work by duplicat-
ing the execution of the cipher followed by a comparison to sense
the presence of any effective fault, followed by an appropriate
recovery procedure. While a handful of countermeasures are
proposed against SIFA, no such countermeasure is known to
thwart FTA to date.

In this work, we propose a novel countermeasure based on
duplication, which can protect against both SIFA and FTA.
The proposal is also lightweight with only a marginally addi-
tional cost over simple duplication based countermeasures. Our
countermeasure further protects against all known variants of
DFA, including Selmke, Heyszl, Sigl’s attack from FDTC 2016.
It does not inherently leak side-channel information and is
easily adaptable for any symmetric key primitive. The validation
of our countermeasure has been done through gate-level fault
simulation.

Keywords—Fault Attack, Countermeasures, DFA, SIFA, FTA

I. INTRODUCTION

With the growth of highly constrained devices that perform
cryptographic operations, the implementation related attacks
are posing a serious threat. Such devices are deployed in what
could be potentially hostile environment, thus allowing any
malicious third party (henceforth denoted as, the attacker) to
extract secret information by any means necessary. In particular,
when the device is carrying out a cryptographic operation, the
attacker may passively observe its physical footprint (such

This is an extended version of the paper with the same title accepted in
Design, Automation and Test in Europe Conference (DATE) – 2021.

as power consumption) or actively alter its normal course of
action (such as a voltage glitch that flips a particular bit). The
former type of attack is known as Side Channel Attack (SCA)
[1], and the latter as Fault Attack (FA) [2].

The focus of this work is fault attack and how to efficiently
protect against such attacks in context of symmetric key
cryptography. The first and one of the most commonly used
models for fault attack is the so-called Differential Fault Attack
(DFA) [3]. This fault model works by first injecting a non-zero
difference δ in the processed data (typically near the end of
the cipher execution). Then, the relationship between δ and
resulting output difference ∆ reveals the secret information.
To resist against DFA, duplication based countermeasures have
been widely proposed in the literature [2, Section 7]. Such a
countermeasure can be broadly classified into detective and
infective [4] classes. Overall, such a countermeasure compares
two independent runs of the same cipher (which we call
the actual and the redundant computations, following [4]),
and checks if both are equal. If true, this output is returned;
otherwise, a predefined recovery procedure (such as returning
a garbage output) takes place.

While such a basic duplication based countermeasure works
fine against DFA (except for the case where two identical faults
are injected in the actual and the redundant computations; which
is shown doable by Selmke, Heyszl and Sigl in FDTC’16 [5]).
Moreover, the new types of fault attacks that are emerging
over the last few years are capable of bypassing it. Of them,
two notable attacks are of interest to this work, namely, the
Statistical Ineffective Fault Attack (SIFA), reported in CHES’18
[6], and Fault Template Attack (FTA), reported more recently
in Eurocrypt’20 [7]. These two fault models do not rely on
the differential (δ,∆) information, which requires knowledge
of the faulty output. Instead, only the correct output from the
cipher, or merely the information on whether or not the fault
injection successfully altered the normal cipher flow would
be sufficient. As a consequence, the basic duplication based
countermeasure, which only blocks releasing of the faulty
output, becomes vulnerable, revealing thereby the need for
specialised countermeasures.

https://www.date-conference.com/


A handful of countermeasures against SIFA have been
proposed in the literature [8], [9], [10], [11], [12]. In order to
avoid the pitfall of basic duplication, all those countermeasures
save for [12] rely on some form of triplication of the cipher exe-
cution, followed by an error correction procedure (additionally,
[10] relies on reversible circuits, which is not yet available
as a standard cell library). Assuming the attacker can only
target at most one execution at a time, those countermeasures
block the attacker from gaining any exploitable knowledge. The
countermeasure proposed in [12], on the other hand, relies on
a randomised duplication based approach. Based on a random
coin toss (λ), it is decided whether the cipher will be run
as-is in both the circuits, or the inverted cipher will be run.
The inverted1 cipher essentially maps 0 to 1 and vice-versa. A
final comparison takes place to sense any fault, before taking
appropriate procedure. In this way, the exploitable information
in SIFA, which manifests in the form of a statistical bias, is
removed.

FTA relies on the behaviour of the non-linear component of
a cipher, in the form of an AND gate. By flipping one input
line to an AND gate (while keeping the other input line at an
unknown constant), the output will flip only if the other input
line is at logic 1, and the output will not flip if the other input
line is at logic 0. So, by precisely targeting at an AND gate
input line, the attacker is able to learn information. This attack
would bypass the usual duplication based countermeasure. Also,
unlike DFA, this attack can target any part of the execution.
To the best of our knowledge, no countermeasure against FTA
has been proposed so far.

Contribution
Our work combines the concepts of SIFA and FTA protection

together with the DFA protection, all in one countermeasure
scheme. Our idea is built on top of [12], i.e., relying on
randomised duplication. While other SIFA countermeasures [8],
[9], [10], [11] protect against SIFA as well as FTA, one has
to note that all the countermeasures depend on some form of
error correction (hence triplication, at minimum). Our proposal,
on the other hand, has an overhead closer to that of duplication.
The DFA protection covers all known types of DFA, such as
the algebraic [13], impossible differential [14], collision fault
attack [15], [16]. At the same time, it protects against the
DFA model reported in [5], which works by injecting identical
faults to the actual and redundant computations so that the
countermeasure senses it as the case of no fault and thus passes
the faulty output to the attacker. Moreover, to the best of our
knowledge, no countermeasure has been proposed against FTA
in the literature; thereby making our FTA protection probably
the first-of-its-kind.

II. BACKGROUND: ATTACK MODELS

Based on the presumed power of the attacker, the attack
models can be classified into two broad categories with respect

1Note: The inverted cipher is different from the inverse of the cipher.
The inverted cipher changes the encoding of the bits while performing the
same mathematical operation as the underlying cipher, while the inverse of
the cipher computes the mathematical inverse of the cipher.

to our analysis. In the first, referred to as the classical attack,
the attacker only has access to the cipher as a black-box. Thus,
the attacker is only allowed to provide inputs to the cipher and
receive the corresponding outputs. In the gray box category,
the attacker is given additional access like power consumption
or electromagnetic radiation information (i.e., physical side
channel attacks), or the ability to alter the normal flow of
operation (i.e., fault attack). An illustration of this scenario is
given in Figure 1.

The classical attacks (i.e., the black box model) are protected
by the virtue of the cipher design. However, the situation with
the gray box model is different. To protect against side channel
attack and/or fault attack, specialised countermeasure would
be needed.

Cipher

Classical Attacks (Black Box)

SCA + FA (Gray Box)

SCA + FA

Countermeasures

Cipher Designer

Attacker

Fig. 1: Hierarchy of attack models based on attacker’s power

A. Differential Fault Attack (DFA)
DFA is the first fault attack proposed in the context of

symmetric key cryptography [3], and probably the most
common attack model. Most, if not all, major ciphers are
vulnerable to it (unless any protection mechanism is in place).
The attacker needs both the faulty and non-faulty outputs to
compute the difference, which is used to find the information
on the secret key. This attack targets regions near the end of
the cipher execution, which results in a weakened version of
the classical Differential Attack [17].

1) Variants: Multiple variations of the DFA model have been
proposed in the literature [2, Section 5.1]. For example, the
algebraic fault attack [13] follows exactly the same approach
of DFA, only it solves algebraic equations. Similarly, the
impossible differential fault attack [14] or the collision fault
attack [15], [16] rely on injecting a difference (in the form of
a fault mask) and observe the corresponding output difference,
thus those can be considered as a variant of DFA.

2) Countermeasures: The most common protection against
DFA and its variants is to use duplication, compare and then
take an appropriate recovery procedure [4]. This comparison
can be done either explicitly (detective) or implicitly (infective).
A basic overview of a duplication based DFA countermeasure
is given in Figure 2, the notations are described in Section III.

B. Statistical Ineffective Fault Attack (SIFA)
The recently proposed fault model, SIFA [6] uses the bias in

the fault injection. Say, in a particular set-up, the probability of

2



C ′

C ′′

∆

Yes

No

E1
K

P
⊕

∆ = 0?

Implicit check
→ Infection

Explicit check

→ Detection

C ′ (Output)

E2
K

Garbage/Suppressed
Output

Fig. 2: Duplication based DFA protection

flipping 0 to 1 of a bit is more than the probability of the bit
to stay at 0. Stated differently, the probability that the output
will change or not depends on the actual content of the bit.
Thus, SIFA works only when there is a bias in the fault (i.e.,
the probability of a bit set is not the same as a bit reset). This
assumption on bias is shown practical in [6]. In this way, SIFA
can work only with the cases where the faults do not alter
the normal course of execution (i.e., non-faulty). Since both
the non-faulty and faulty outputs are required for DFA, SIFA
works in a relatively restricted environment. On the flip-side,
SIFA needs more faults (typically in the order of thousands)
compared to DFA (which can work with only one fault).

1) Effect on Contemporary Countermeasures: As described
in [6]; most, if not all, the existing countermeasures till
that point were vulnerable to SIFA. Those countermeasures
are proposed to thwart DFA. In essence, the duplication
based countermeasures check if the actual and the redundant
computations are equal, and stop the attacker getting from
information on the faulty output. SIFA does not make use of
the faulty output, thus making this type of protection useless
(cf. [12, Section 3.1]).

2) Newly Proposed Countermeasures against SIFA: A total
of five SIFA countermeasures have been proposed in the
literature recently, and are outlined below for completeness.

a) Repetition Code: The first countermeasure [8] uses a
triplication of the computations followed by majority voting.
By doing so, even if the biased fault is injected in one of
the computations, the error correction mechanism will always
return the non-faulty output. This blocks the attacker’s access to
the statistical information (i.e., the bias of a bit), thus preventing
SIFA.

b) Masking and Repetition Code: The state bits of a
cipher and the individual sub-operations (such as the SBoxes)
operate differently against SIFA. By this observation, the
authors of [9] have proposed a countermeasure that works in
two phases. The masking (which is a type of countermeasure
against side channel attacks) is used at the state in the first
phase. A triplication followed by majority voting is performed
in the second phase doing the sub-operations.

c) Error Detection through Reversible Computing and
Masking: The authors of [10] propose a countermeasure that

relies on reversible computing2. The SIFA protection comes
from the property of reversibility as well as masking.

d) Error Correction: An error correcting code based SIFA
protection is proposed by the authors of [11]. The authors argue
in favour of a more general error correction than that of the
simple triplication. The validation of their countermeasure is
done through a gate level simulation tool.

e) Removing Bias by Duplication: A randomised du-
plication based countermeasure is proposed in [12], which
also does not rely on expensive side channel countermeasures.
Therefore, it protects against SIFA with a cost lower than
other countermeasures. Unlike the reversible computation based
solution of [10], this countermeasure can be realised using
standard library. This also serves as the starting point of our
countermeasure.

C. Fault Template Attack (FTA)

The fault template attack is a recent inclusion in the family
of fault attacks [7]. This attack is capable of overcoming the
existing fault countermeasures, does not require the faulty
output (only the information on whether or not the output has
changed is sufficient), and also can target at an arbitrary time
during execution of the cipher (thus overcoming the limitation
of DFA, which can only work by targeting regions near the
end of the cipher execution). The main observation that leads
to FTA is that, flipping one input line of the AND gate (while
keeping the other at a constant) will make the output flip only
if the other input line is 1. Thus, the attack can successively
recover all the input lines to each non-linear operation, leading
to the secret key. In some sense, FTA can be thought of a
generalization of DFA and SIFA, as it is capable of using both
the differential and statistical information. To the best of our
knowledge, no countermeasure against FTA has been proposed
till date.

III. OUR THREE-IN-ONE SOLUTION

Despite the supposed contrast among the three major fault
attack models (i.e., DFA, SIFA and FTA), we observe that a
general duplication based countermeasure can be devised that

2Note that the usage of reversible gates will stop the side channel attacks
based on power or electromagnetic channels, as reversible circuits do not leak
such information.

3



can protect against those. As noted earlier, this observation
follows from the duplication based SIFA countermeasure
proposed in [12]. However, this countermeasure does not protect
against the identical faults in the two computations in a DFA
model as proposed in [5]. Therefore, our work extends the
functionality of the SIFA countermeasure to cover the FTA
model as well as the DFA variant of [5] without any extra
overhead.

To protect against SIFA, the authors propose a novel concept
of randomised duplication in [12]. Here a random bit λ
(λ $← {0, 1}) determines the encoding of the bits. The bits
are unchanged or inverted, each with probability 1

2 . When run
over multiple test cases, the statistical bias is removed from
the output. The random bit, λ, is generated at each invocation
of the cipher, and is not known to the attacker. We denote
the actual computation by E1

K and the redundant (denoted
by E2

K) where E denotes the cipher and K is the secret key,
and the corresponding outputs are denoted by C ′ and C ′′. If
λ = 1, the inverted logic is employed; where 0 is encoded
as 1, and 1 is encoded as 0. Finally, the output is released
only if the actual and the redundant computations match. If
not, an appropriate recovery procedure takes place, such as an
returning a random output or suppressing the output altogether.
Note that the check on whether or not the actual and the
redundant computations match can be done with an explicit or
implicit check (as described in [4]). The authors substantiate
the claim by using the same fault simulation tool as [11].

As noted already, this countermeasure is subject to the
identical faults as shown in [5] which follows the DFA model.
In this case, the attacker makes use of the observation that
the encoding for the actual and the redundant computations
are the same. Therefore, if the attacker is able to target
both the computations by the identical fault mask, then the
countermeasure would sense it as a case of no fault, thus
passing the faulty output to the attacker.

Overview of Our Three-in-one Countermeasure: With the
same set-up from [12], we now describe the FTA and identical
DFA protection. It may be noted that it enjoys all the benefits
as its predecessor, as detailed in Section IV-B. Figure 3 shows
the overview, and Algorithm 1 presents the algorithmic view.
Here, an on-chip True Random Number Generator (TRNG) is
presumed as the source of entropy. An on-chip TRNG primitive
[18] is an essential component of most systems designed for
security, and is used for a number of applications ranging from
use in cryptographic protocols to even being used to construct
some security countermeasures.

We briefly describe how the situation for λ = 1 (i.e., the
inverted cipher) is implemented (which is also termed as the
inverted cipher). The basic idea is to encode each logic 0 to
logic 1 and vice-versa. To see how it can be done, we start with
the state where all the bits are flipped, thereafter, we change
the XOR and AND operations to XOR and AND, as given in
Table I.

Since the security of λ is already described in [12], we skip
it here for brevity. In short, it can be stated that the attacker is
not able to learn useful information by targeting λ. Note the

TABLE I: Inversion of XOR and AND operations

(a) y = XOR(x0, x1)

x0 x1 x0 x1 y y
0 0 1 1 0 1
0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 1

(b) y = AND(x0, x1)

x0 x1 x0 x1 y y
0 0 1 1 0 1
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 1 0

inverted cipher takes the inverted input P . However, the key
schedule is not affected at the inverted cipher.
Algorithm 1: Our Three-in-one Countermeasure (Identical
DFA in both computations, SIFA, FTA)

Input: P ;K;λ . λ
$← {0, 1} is unknown to the attacker

Output: C if no fault; garbage, otherwise
. Actual computation uses λ

1: if λ = 0 then
2: C ′ = E1

K(P )
3: else
4: C ′ = E1

K(P ) . The input P is shown as inverted
. Redundant computation uses λ

5: if λ = 0 then
6: C ′′ = E2

K(P )
7: else
8: C ′′ = E2

K(P )

9: if C ′ ⊕ C ′′ = 0 then
10: return C ′ . No fault is sensed
11: else
12: return Garbage . Fault is sensed

= 0

Garbage

6= 0

TRNG

λ

λ λ

Redundant
Computation

Key (K)

Input (P )

Actual
Computation

Output (C ′′) Output (C ′)

⊕

Multiplexer

Fig. 3: Schematic for our three-in-one protection

Additional Features over ACISP’20 Countermeasure: The
changes to [12] to extend the countermeasure coverage, to

4



support the FTA [7] protection as well as protection against
identical fault DFA in both the computations [5], are outlined
next.

First, instead of the actual and the redundant independent
values of λ, we fix that the values will be inversion of one
another. This prevents the attacker’s ability to mount the
identical fault masks (as used in [5]). As the actual and the
redundant computations are at inversion of the other, injecting
the same fault mask will result in non-zero outputs, which
will be sensed by the countermeasure. In the context of FTA,
suppose, the attacker is able to target at an input line of one
specific AND operation in one of the computations. This will
enable the attacker to get information on the other input line
of the AND gate. Since the encoding is randomised, the basic
observation in [7] does not apply (the attacker does not know
the value of λ), and consequently, the overall attack will not
work.

Second, TRNGs are generally available as an auxiliary
module in the system-on-chip, hence generating randomness
is commonly not the bottleneck even in the context of edge
computing. Therefore, more randomness can be used in order
to ascertain security against side channel attacks. For this
purpose, we propose a total of three variations depending on
the use of entropy. The first variation, where λ only takes
one bit entropy (i.e., λ $← {0, 1}) is already described and
we refer to it as the prime variant. The second variation uses
one bit of randomness per round of the cipher. For example,
10 bits of randomness would be needed for AES. In the third
variant, we propose to use one bit of randomness per non-linear
operation that acts as a unit (typically an SBox) per round to
have maximum protection. Therefore, we would need 10× 16
bits of randomness for AES.

Third, we implement each n×m SBox as (n+1)×m SBox,
where the extra input line takes the randomness parameter λ.
Thus, the actual SBox and its inversion is implemented at one
place. This is a change from the countermeasure of [12] where
these are separately implemented. We argue this reduces the
attacker’s success probability of mounting an FTA.

IV. EVALUATION

A. Validation through Simulation and Performance

The proposed countermeasure has been validated through
simulation of the technology mapped gate level net-list cor-
responding to the cipher designs in the presence of fault
injections introduced during simulation. We do this through
a modified version of VerFI [19]3 (which is also used in
[11], [12]). In particular, we simulate two following designs
— PRESENT-80 encryption [20] protected with naı̈ve dupli-
cation countermeasure (as shown in Figure 2), PRESENT-80
encryption protected with the proposed countermeasure. The
designs are synthesised targeting the open 45nm Nangate PDK
v13 with appropriate constraints (e.g., ensuring the redundant
paths are not optimised away). Each design is simulated (i.e.,
1 encryption run) a number of times; with the same key used

3Our source codes can be found at https://github.com/vinayby/VerFI.

for all runs, but the plaintext and λ are changed at every
invocation; and the output consists of the plaintext-ciphertext
pair, and whether the injected fault was ineffective or was
detected. The model allows to inject a single fault anywhere
in the design (excluding inconsequential locations, such as the
key register) during any clock cycle/round, and use the same
fault location and fault type across all subsequent simulation
runs. As the results for the earlier rounds would be similar,
we only show the result with the last round attack without
losing generality in Figure 4 as well as in Figure 5. The data
shown in each of Figure 4(a)/Figure 5(a) (naı̈ve duplication) and
Figure 4(b)/Figure 5(b) (our countermeasure) are collected over
a simulation of 80k random runs for PRESENT-80. Figure
4(a) shows a stuck-at 0 fault at the second MSB of the SBox
13, which is able to bypass the naı̈ve duplication, but our
countermeasure blocks the bias as can be seen from Figure
4(b). Similarly, it may be noted from Figure 5(a) that a stuck-at
0 fault is active at the second LSB of the SBox 5 for the actual
and the redundant computations, but its effect is nullified upon
application of our countermeasure as shown in Figure 5(b).

Moreover, the hardware performance of our countermeasure
is given in Table II with the same set-up. Similar to [4], [12],
we do not consider the cost for generating randomness.

TABLE II: Area overheads of our countermeasure

PRESENT-80
Encryption

Gate Equivalents (45nm Nangate PDK)
Combinational Non-combinational Total

Naı̈ve Duplication 1289 1807 3096 (1.00×)
Our Countermeasure 2290 1807 4097 (1.32×)

While with naı̈ve duplication as well as with our counter-
measure, the linear components of the cipher will increase
proportionately, the same for the non-linear components (i.e.,
SBoxes) are not straightforward. In this regard, we show
the overhead of protecting one layer of SBoxes by both the
countermeasures in Table III with respect to PRESENT (sixteen
4× 4 SBoxes) and AES4 (sixteen 8× 8 SBoxes).

TABLE III: Area overhead for PRESENT and AES SBoxes

Countermeasure Gate Equivalents (45nm Nangate PDK)
PRESENT SBoxes AES SBoxes

Naı̈ve Duplication 605 (1.0×) 8363 (1.0×)
Our Countermeasure 1397 (2.3×) 15327 (1.8×)

Following [12], we remark that the software performance
will be similar to the underlying cipher in terms of code size
(possibly marginally increased) and the required number of
clock periods would be essentially the same.

B. Impact on Other Attacks

1) Classical Attacks: In the black-box model, the attacker is
only able to query an input and receive the corresponding
output. The existing attacks are well-understood from a
mathematical/statistical point-of-view. Therefore, the protection
against such attacks is done through the design specification
of the cipher. Since the original specification does not change

4https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

5

https://github.com/vinayby/VerFI
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf


0.0000

0.0498

0.0996

P
ro

b
ab

ili
ty
→

SBox : 0 SBox : 1 SBox : 2 SBox : 3

0.0000

0.0498

0.0996

P
ro

b
ab

ili
ty
→

SBox : 4 SBox : 5 SBox : 6 SBox : 7

0.0000

0.0498

0.0996

P
ro

b
ab

ili
ty
→

SBox : 8 SBox : 9 SBox : 10 SBox : 11

0123456789abcdef
← Nibble value→

0.0000

0.0498

0.0996

P
ro

b
ab

ili
ty
→

SBox : 12

0123456789abcdef
← Nibble value→

SBox : 13

0123456789abcdef
← Nibble value→

SBox : 14

0123456789abcdef
← Nibble value→

SBox : 15

(a) Naı̈ve duplication

0.0000

0.0250

0.0500

P
ro

b
ab

ili
ty
→

SBox : 0 SBox : 1 SBox : 2 SBox : 3

0.0000

0.0250

0.0500

P
ro

b
ab

ili
ty
→

SBox : 4 SBox : 5 SBox : 6 SBox : 7

0.0000

0.0250

0.0500

P
ro

b
ab

ili
ty
→

SBox : 8 SBox : 9 SBox : 10 SBox : 11

0123456789abcdef
← Nibble value→

0.0000

0.0250

0.0500

P
ro

b
ab

ili
ty
→

SBox : 12

0123456789abcdef
← Nibble value→

SBox : 13

0123456789abcdef
← Nibble value→

SBox : 14

0123456789abcdef
← Nibble value→

SBox : 15

(b) Our countermeasure

Fig. 4: Results for gate level simulation (bias at SBox: 13)

in our countermeasure, all the security claims related to the
classical attacks remain prevalent.

2) Side Channel Attack: As our proposal directly follows-up
from that of [12], we claim the same side channel security.
Detailed discussion is omitted here for the sake of brevity,
but we argue that an existing side channel countermeasure
can be adopted without any specialised technique as the
changes are done at the cipher design level. Our countermeasure
does not open up any additional side channel vulnerability in
hardware/software (which apparently happens, for example,
with the SIFA countermeasure of [8]).

3) Two Biased Faults: As our countermeasure can protect
against an attacker capable of injecting one biased (SIFA/FTA)

fault, one may be interested in the effect of two biased faults.
Targetting two locations with biased faults will not yield
meaningful information to the attacker, by an extension of the
current security claim. Therefore, the only way the attacker can
leverage two biased faults is to target the encoding parameter
λ (similar to [12]). In this context, we note that, this model
where the attacker injects more than one biased fault at distinct
locations is not proposed in the literature.

4) Inverted Fault Mask: If the attacker is capable of injecting
a fault mask at one computation while injecting the inversion
of that mask to the other computation, our countermeasure
will treat this as a case of no fault. However, it is to be noted

6



0.0000

0.0500

0.0999

P
ro

b
ab

ili
ty
→

SBox : 0 SBox : 1 SBox : 2 SBox : 3

0.0000

0.0500

0.0999

P
ro

b
ab

ili
ty
→

SBox : 4 SBox : 5 SBox : 6 SBox : 7

0.0000

0.0500

0.0999

P
ro

b
ab

ili
ty
→

SBox : 8 SBox : 9 SBox : 10 SBox : 11

0123456789abcdef
← Nibble value→

0.0000

0.0500

0.0999

P
ro

b
ab

ili
ty
→

SBox : 12

0123456789abcdef
← Nibble value→

SBox : 13

0123456789abcdef
← Nibble value→

SBox : 14

0123456789abcdef
← Nibble value→

SBox : 15

(a) Naı̈ve duplication

0.0000

0.0251

0.0501

P
ro

b
ab

ili
ty
→

SBox : 0 SBox : 1 SBox : 2 SBox : 3

0.0000

0.0251

0.0501

P
ro

b
ab

ili
ty
→

SBox : 4 SBox : 5 SBox : 6 SBox : 7

0.0000

0.0251

0.0501

P
ro

b
ab

ili
ty
→

SBox : 8 SBox : 9 SBox : 10 SBox : 11

0123456789abcdef
← Nibble value→

0.0000

0.0251

0.0501

P
ro

b
ab

ili
ty
→

SBox : 12

0123456789abcdef
← Nibble value→

SBox : 13

0123456789abcdef
← Nibble value→

SBox : 14

0123456789abcdef
← Nibble value→

SBox : 15

(b) Our countermeasure

Fig. 5: Results for gate level simulation (bias at SBox: 5)

that this model has never been reported in the literature, not
to mention is considerably more difficult compared to two
identical fault masks. Identical fault masks can be achieved,
for example, by an injection set-up if all its parameters are
preserved. In contrast, one has carefully has to start with a
fault mask, then tweak the parameters until the inverse fault
mask is achieved.

5) Other Fault Attacks: Another fault model, Persistent Fault
Attack (PFA) [21] works only when the SBox is implemented
in the circuit as a look-up table. This is not a requirement for
our countermeasure to work, therefore we claim PFA is a not
threat to our countermeasure.

It is known that SIFA generalizes the ineffective [22] and

the statistical [23] fault attack models. Therefore, protection
against SIFA automatically ascertains security against those
fault models. Combining all; DFA, SIFA and FTA cover a
vast range of existing fault attack models. While the task of
validating our countermeasure against each existing fault attack
model is left as a future work, we are not aware of any fault
attack model which is not inherently protected by our proposal.

The infective attack [4] (i.e., flipping one bit of comparison
in duplicate-and-compare) is hard to attack in hardware, as the
attacker would typically need a split-nanosecond precision5.

5It may be relatively easy with software implementations (e.g., flipping
the zero-flag register with a fault).

7



Therefore we do not put any infective DFA countermeasure for
simplicity, although the proposals from [4] can be incorporated
atop if needed.

V. CONCLUSION

A randomised duplication based approach is presented in
this work, which is able to thwart against three major models
of fault attacks. More precisely, our countermeasure protects
against the differential fault attack (DFA) [3], the statistical
ineffective fault attack (SIFA) [6], and the most recent member
in the fault attack family, the fault template attack (FTA) [7].
The basic idea follows from that of the SIFA countermeasure
proposed recently in [12]. To prevent the attacker from getting
any usable information, previous countermeasures to SIFA
(such as, [8], [11]) use a form of error correction. In the work
of [12], the authors propose to use random encoding in a
duplicated setting, so as to remove the statistical bias which
is the source of usable information to the attacker. We note
that originally this countermeasure does not protect against the
attacker who is able to apply identical fault mask to both the
computations, a DFA model which is shown practical in [5].
With our amendments to this countermeasure, we show how
it is possible to achieve protection against this DFA model as
well as the FTA model. To the best of our knowledge, our
work serves as the first FTA countermeasure.

We hope our work will encourage more research in fault/side
channel attacks as well as efficient countermeasures against
those. In particular, one may be interested in a combined
side channel and fault countermeasure. Also, a cipher can
be constructed so that its inversion can be implemented with
relatively low overhead, thereby reducing the overall cost.

REFERENCES

[1] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing
the secrets of smart cards. Springer, 2007.

[2] A. Baksi, S. Bhasin, J. Breier, D. Jap, and D. Saha, “Fault attacks
in symmetric key cryptosystems,” Cryptology ePrint Archive, Report
2020/1267, 2020, https://eprint.iacr.org/2020/1267.

[3] E. Biham and A. Shamir, “Differential Fault Analysis of Secret
Key Cryptosystems,” in Advances in Cryptology - CRYPTO ’97, ser.
Lecture Notes in Computer Science, J. Kaliski, BurtonS., Ed. Springer
Berlin Heidelberg, 1997, vol. 1294, pp. 513–525. [Online]. Available:
http://dx.doi.org/10.1007/BFb0052259

[4] A. Baksi, D. Saha, and S. Sarkar, “To infect or not to infect: A
critical analysis of infective countermeasures in fault attacks,” IACR
Cryptology ePrint Archive, vol. 2019, p. 355, 2019. [Online]. Available:
https://eprint.iacr.org/2019/355

[5] B. Selmke, J. Heyszl, and G. Sigl, “Attack on a dfa protected aes by
simultaneous laser fault injections,” in Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016 Workshop on. IEEE, 2016, pp. 36–46.

[6] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel,
and R. Primas, “SIFA: exploiting ineffective fault inductions on
symmetric cryptography,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2018, no. 3, pp. 547–572, 2018. [Online]. Available:
https://doi.org/10.13154/tches.v2018.i3.547-572

[7] S. Saha, A. Bag, D. B. Roy, S. Patranabis, and D. Mukhopadhyay,
“Fault template attacks on block ciphers exploiting fault propagation,” in
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, ser. Lecture
Notes in Computer Science, A. Canteaut and Y. Ishai, Eds.,
vol. 12105. Springer, 2020, pp. 612–643. [Online]. Available:
https://doi.org/10.1007/978-3-030-45721-1 22

[8] J. Breier, M. Khairallah, X. Hou, and Y. Liu, “A countermeasure against
statistical ineffective fault analysis,” Cryptology ePrint Archive, Report
2019/515, 2019, https://eprint.iacr.org/2019/515.

[9] S. Saha, D. Jap, D. B. Roy, A. Chakraborty, S. Bhasin, and
D. Mukhopadhyay, “A framework to counter statistical ineffective
fault analysis of block ciphers using domain transformation and error
correction,” IEEE Trans. Information Forensics and Security, vol. 15,
pp. 1905–1919, 2020. [Online]. Available: https://doi.org/10.1109/TIFS.
2019.2952262

[10] J. Daemen, C. Dobraunig, M. Eichsleder, H. Gross, F. Mendel, and
R. Primas, “Protecting against statistical ineffective fault attacks,”
IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2020, Issue 3, pp. 508–543, 2020. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8599

[11] A. R. Shahmirzadi, S. Rasoolzadeh, and A. Moradi, “Impeccable circuits
ii,” Cryptology ePrint Archive, Report 2019/1369, 2019, https://eprint.
iacr.org/2019/1369.

[12] A. Baksi, V. B. Kumar, B. Karmakar, S. Bhasin, D. Saha, and
A. Chattopadhyay, “A novel duplication based countermeasure to
statistical ineffective fault analysis,” in Information Security and Privacy
- 25th Australasian Conference, ACISP 2020, Perth, WA, Australia,
November 30 - December 2, 2020, Proceedings, 2020, pp. 525–542.
[Online]. Available: https://doi.org/10.1007/978-3-030-55304-3 27

[13] N. T. Courtois, K. Jackson, and D. Ware, “Fault-algebraic attacks on
inner rounds of des,” e-Smart’10 Proceedings: The Future of Digital
Security Technologies, 2010.

[14] E. Biham, L. Granboulan, and P. Q. Nguyen, “Impossible fault analysis
of RC4 and differential fault analysis of RC4,” in Fast Software
Encryption: 12th International Workshop, FSE 2005, Paris, France,
February 21-23, 2005, Revised Selected Papers, 2005, pp. 359–367.
[Online]. Available: https://doi.org/10.1007/11502760 24

[15] J. Blömer and V. Krummel, “Fault based collision attacks on
AES,” in Fault Diagnosis and Tolerance in Cryptography, Third
International Workshop, FDTC 2006, Yokohama, Japan, October
10, 2006, Proceedings, 2006, pp. 106–120. [Online]. Available:
https://doi.org/10.1007/11889700 11

[16] L. Hemme, “A differential fault attack against early rounds of
(triple-)des,” in Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, 2004, pp. 254–267. [Online]. Available:
https://doi.org/10.1007/978-3-540-28632-5 19

[17] E. Biham and A. Shamir, “Differential cryptanalysis of des-like
cryptosystems,” in Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1990, Proceedings, 1990, pp. 2–21. [Online]. Available:
https://doi.org/10.1007/3-540-38424-3 1

[18] K. Wold and C. H. Tan, “Analysis and enhancement of random number
generator in fpga based on oscillator rings,” in 2008 International
Conference on Reconfigurable Computing and FPGAs. IEEE, 2008, pp.
385–390.

[19] V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic fault
diagnosis using verfi,” IACR Cryptology ePrint Archive, vol. 2019, p.
1312, 2019. [Online]. Available: https://eprint.iacr.org/2019/1312

[20] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher,” in CHES, vol. 4727. Springer, 2007, pp. 450–466.

[21] F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi,
and K. Ren, “Persistent fault analysis on block ciphers,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2018, no. 3, pp. 150–172, Aug. 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7272

[22] C. Clavier, “Secret external encodings do not prevent transient
fault analysis,” in Cryptographic Hardware and Embedded Systems -
CHES 2007, 9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings, 2007, pp. 181–194. [Online]. Available:
https://doi.org/10.1007/978-3-540-74735-2 13

[23] P. S. Nahid Farhady Ghalaty, Bilgiday Yuce, “Analyzing the efficiency of
biased-fault based attacks,” Cryptology ePrint Archive, Report 2015/663,
2015, https://eprint.iacr.org/2015/663.

8

https://eprint.iacr.org/2020/1267
http://dx.doi.org/10.1007/BFb0052259
https://eprint.iacr.org/2019/355
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.1007/978-3-030-45721-1_22
https://eprint.iacr.org/2019/515
https://doi.org/10.1109/TIFS.2019.2952262
https://doi.org/10.1109/TIFS.2019.2952262
https://tches.iacr.org/index.php/TCHES/article/view/8599
https://eprint.iacr.org/2019/1369
https://eprint.iacr.org/2019/1369
https://doi.org/10.1007/978-3-030-55304-3_27
https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/11889700_11
https://doi.org/10.1007/978-3-540-28632-5_19
https://doi.org/10.1007/3-540-38424-3_1
https://eprint.iacr.org/2019/1312
https://tches.iacr.org/index.php/TCHES/article/view/7272
https://doi.org/10.1007/978-3-540-74735-2_13
https://eprint.iacr.org/2015/663

	Introduction
	Background: Attack Models
	Differential Fault Attack (DFA)
	Variants
	Countermeasures

	Statistical Ineffective Fault Attack (SIFA)
	Effect on Contemporary Countermeasures
	Newly Proposed Countermeasures against SIFA

	Fault Template Attack (FTA)

	Our Three-in-one Solution
	Evaluation
	Validation through Simulation and Performance
	Impact on Other Attacks
	Classical Attacks
	Side Channel Attack
	Two Biased Faults
	Inverted Fault Mask
	Other Fault Attacks


	Conclusion
	References

