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Abstract—Modeling the spread of COVID-19 is crucial for any
effort to manage the pandemic. However, detailed epidemiological
simulations suffer from a scarcity of relevant empirical data,
such as social contact graphs, because such data is inherently
privacy-critical. Thus, there is an urgent need for a method
to perform powerful epidemiological simulations on real-world
contact graphs without disclosing privacy-critical information.

In this work, we propose a practical framework for privacy-
preserving epidemiological modeling (PEM) on contact informa-
tion stored on mobile phones, like the ones collected by already
deployed contact tracing apps. Unlike those apps, PEM allows
for meaningful epidemiological simulations. This is enabled by a
novel Threshold-PIR-SUM protocol to privately retrieve the sum
of a fixed number of distinct values without revealing individual
values. PEM protects the privacy of the users by not revealing
sensitive data to the system operator or other participants, while
enabling detailed predictive models of pandemic spread.

Index Terms—Decentralized Epidemiological Modeling, Pri-
vacy, Private Information Retrieval, COVID-19

I. INTRODUCTION

Mathematical epidemiological modeling aims at predicting
the spread of diseases. It can inform epidemic containment
strategies and political interventions by anticipating the effects
of different control measures. However, detailed epidemiolog-
ical models of communicable diseases, including COVID-19,
have long suffered from a lack of available social interaction
data.

From a modelers perspective, epidemiologists would ideally
like to have access to the complete physical interaction graph
of a population. It has long been known that the topology of
the interaction network has a large influence on the spread
of diseases [61], [64], [66], [70]. Empirical contact graph data
would permit detailed simulations of how a disease propagates
through an interaction network, and what type of interventions
might be most effective at containing it. Yet, direct access to
the social contact graph of a population raises vast privacy
concerns, rendering this direct modeling approach non-viable.

Here, we present a practical framework for privacy-
preserving epidemiological modeling (PEM) to overcome this
barrier. Our goal is to leverage data about physical closeness
collected by mobile devices to realise detailed epidemiologi-
cal modeling while simultaneously protecting privacy. PEM
involves simulating infections of participants, propagating
virtual infections on the real contact graph [66] and analyzing

the simulated spread. Many simulations may need to be run to
compare the effect of different disease management scenarios
(e.g., simulations including or excluding different types of
contacts or assuming different likelihoods of person-to-person
transmission). However, when running multiple simulations
on the real-world connectivity graph, even just the simulated
infection status of other participants can leak information
about the real contact graphs (cf. §IV for details). Thus, PEM
requires sophisticated approaches for protecting the privacy
of all participants. Our PEM protocols can be integrated in
already deployed decentralized contact tracing apps.
Related Work. To thwart the spread of COVID-19, a large
amount of contact tracing systems have been proposed provid-
ing different levels of privacy. These systems aim at informing
people about exposures with infectious persons such that
they can be isolated and tested. They realize contact tracing
either based on the location (via GPS or telecommunication
provider information) or based on proximity (via Bluetooth
LE). The systems can be split into centralized and decentral-
ized approaches. In a centralized contact tracing system (e.g.,
COVIDSafe [24], PEPP-PT [71], StopCovid/ROBERT [48],
[59], TraceTogether [44]), computations such as the generation
of the exchanged identifiers are executed at a central party
that may also store encounter information. In contrast, in
decentralized approaches (e.g., DP-3T [76], Hashomer [72],
PACT [17]), most computations are done locally at the par-
ticipants’ devices and information is typically only shared in
the case of an infection. For more details and comparisons of
different designs we refer the reader to [3], [8], [56], [77].

Beyond contact tracing, models for epidemiological diseases
have been proposed that use real-world data, e.g., aggregated
demographic data [80] or data extracted from social media
platforms [70]. Thereby, the “lack of capacity for data collec-
tion or privacy concerns” was identified as the major challenge
for using standard epidemiological models in [80].

FluPhone [83] aims at applying epidemiological models on
real-world, non-aggregated contact graph data of individual
participants. The project collects proximity data via Bluetooth
LE and GPS location data, but, apart from user identifier
anonymization, uses no privacy-preserving technologies to
ensure privacy.

A system for disease hotspot detection using location data



stored at a mobile network operator or a mobile operating
system manufacturer was proposed in [15]. An Aggregated
PIR protocol correlates the mobile location data with the
infected participants identified by their phone number. This
aggregated PIR protocol is similar to our PIR-SUM protocol
(cf. §V-A), but is based on single-server computational PIR
which is substantially less efficient than our hybrid Threshold-
PIR-SUM protocol (cf. §V-C).

In our work, we enable for the first time to simulate stan-
dard epidemiological models on contact information collected
with mobile devices while preserving privacy and keeping
efficiency in mind.
Outline and our Contributions. After giving related work
(§I) and preliminaries (§II), we provide the following contri-
butions:
• In §III, we introduce privacy-preserving epidemiological

modeling (PEM), its privacy requirements, its ideal func-
tionality, and its components.

• In §IV, we provide a detailed evaluation of two non-
trivial attacks on a PEM system that aim at extracting
information about the contact graph.

• In §V, we introduce new protocols for variants of Private
Information Retrieval (PIR): Threshold PIR-SUM allows
a client to download the sum of t distinct blocks of a
database from a server without learning the values of
individual blocks and without revealing which blocks
were requested. Additionally, we show how to embed it
into an efficient hybrid PIR construction.

• In §VI, we introduce three PEM protocols offering
different levels of trust that enable to use real-world
contact data collected on the users’ mobile devices. In
our protocols, all data remains locally on the users’
devices by distributing the simulation using cryptographic
building blocks. Our three PEM protocols are based
on trusted execution environments (TEE-PEM), mix-nets
(MIX-PEM), and PIR (PIR-PEM), respectively. Addition-
ally, we discuss in detail the strengths and weaknesses of
our protocols.

• In §VII, we analyze privacy guarantees and complexities
of our protocols and show that they are efficient and even
scale up to millions of users.

The goal of our work is to extend the focus of the security
and privacy research community from private contact tracing,
which notifies users about potential exposures in the past,
to privacy-preserving epidemiological modeling for predicting
which implications control measures can have in the future.

II. PRELIMINARIES

In this section, we introduce epidemiological modeling and
the cryptographic building blocks used in our work.

A. Epidemiological Modeling

We use the SEIR model as an example for a mathematical
epidemiological compartmental model [35], [51] that is rou-
tinely used to model disease spread. The SEIR model assigns
each individual of the population to one of the following four

classes: Susceptible (S), Exposed (E), Infectious (I), Recov-
ered (R). Initially, all individuals are susceptible, i.e., they have
not been infected yet and are susceptible to the disease. If they
meet an infectious person, they can get infected, i.e., exposed
and become then infectious after an incubation time. Finally,
they will recover and get healthy.

We focus on agent-based modeling (ABM) [47], [75] to
capture the stochasticity of a heterogeneous population for
modeling the spread of a disease in a realistic manner. In
ABM, each individual of a population is modeled by a so-
called agent that can have specific properties influencing its
likelihood of becoming infected and its transitions between
the classes. Additionally, parameters like the infectivity and
recovery time can be adjusted based on the disease being mod-
eled and newly gained insights about it from epidemiologic
research. The simulation then predicts the spread of the disease
in the population over several simulation steps by simulating
physical interactions between the agents taking their and the
disease’s parameters into consideration. ABM enables flexible
and detailed epidemiological simulations closely modeling a
realistic population.

In the simplest implementation, the transitions of individuals
between classes are simulated centrally based on collected
contact data but sharing such data with a central party is not
acceptable and severely infringes privacy. Our work introduces
privacy-preserving protocols that enable the simulation of
these transitions in a decentralized way on end-user devices
and thereby keep the contact information collected on these
devices private. Our protocols are generic w.r.t. the used
compartmental model, i.e., others than SEIR can be used.

B. Cryptographic Building Blocks

Mix-Nets. Mix-nets [21] and protocols based on the dining
cryptographer (DC) problem [20] were the first approaches to
anonymous messaging. A fundamental technique underlying
mix-nets is oblivious shuffling that provides unlinkability
between the messages. In a mix-net, so-called mix servers
jointly perform the oblivious shuffling so that no single mix
server is able to reconstruct the permutation performed on the
input data. Past research established a wide variety of oblivious
shuffle protocols based on garbled circuits [38], [45], [79],
homomorphic encryption [46], distributed point functions [1],
switching networks [60], permutation matrices [55, §4.1],
sorting algorithms [55, §4.2], and re-sharing [55, §4.3+4.4].
Verifiable shuffles [9], [40], [63] use zero-knowledge proofs
to guarantee that the shuffled messages are a permutation of
the input messages.
Anonymous Credentials. In identity management, the same
identity was traditionally used for each transaction. However,
this allows a service provider to link transactions to the same
individual and leaks more information than necessary. For this
reason, the idea of anonymous credentials was proposed by
Chaum [19]. There, a client holds the credentials of several
unlinkable pseudonyms. The client can then prove that it
possesses the credentials of pseudonyms without the service
provider being able to link different pseudonyms to the same



identity. Additionally, anonymous credentials can enable to
certify specific properties like age. Several instantiations for
anonymous credentials have been proposed, e.g., U-Prove [69]
or Algebraic MACs [18].
Private Information Retrieval (PIR). PIR enables a client
C to retrieve one or multiple blocks of a database DB =
[b1, ..., bN ] of N blocks without disclosing to the server
which blocks were requested. The first computational single-
server PIR (cPIR) scheme was introduced by Kushilevitz and
Ostrovsky [54]. Recent cPIR schemes [2], [5], [43] use homo-
morphic encryption (HE). However, single-server PIR suffers
from significant computation overhead since compute intensive
HE operations have to be computed on each block of DB for
each PIR request. In contrast, multi-server PIR relies on a non-
collusion assumption between multiple PIR servers and uses
only XOR operations [23], [25], [29], [30] or function secret
sharing [13] making it significantly more efficient than cPIR.
In its simplest form, two-server information theoretic PIR [23]
works as follows: If a client C wants to retrieve block b
from a database of N blocks it generates two queries q1
and q2 and sends q1 to server S1 and q2 to server S2. Query
q1 ∈R {0, 1}N is chosen at random and q2 is almost equal
to q1 but the b-th bit is flipped. The servers now XOR the
blocks of the database specified by the 1-bits of the queries
of length N bits and send the result back to C. Since all
blocks except the b-th block are included either zero or two
times while block b is in exactly one of the two responses,
C can now XOR both to retrieve block b. This protocol was
optimized in RAID-PIR [29], [30].
Threshold Encryption and Secret Sharing. A threshold
encryption scheme [12], [27], [32], [42] is a public-key encryp-
tion scheme where the secret key is split among X different
parties. It requires at least τ (≤ X) parties for decryption. In
our Threshold-PIR (§V-B), the server instantiates a key keyPIR
for a symmetric encryption scheme and secret shares this key
with a τ -out-of-X secret sharing scheme like Shamir’s secret
sharing [74]. In Shamir’s secret sharing, the server chooses a
random polynomial f of degree τ −1 that evaluates to keyPIR
on input 0 (i.e., fSS(0) = keyPIR). Then, he provides each
party Pn ∈ [1, X] with the share (n, fSS(n)). τ parties can
jointly reconstruct the secret keyPIR with their shares using
polynomial interpolation.
Garbled Cuckoo Tables. Garbled cuckoo tables (GCT) com-
bine garbled bloom filters [36] with cuckoo hashing [52], [68].
In a GCT, each element is mapped to two locations using
two different hash functions. Instead of simply storing the
associated value v in one of the two locations (as in an ordinary
cuckoo table), two XOR shares of the value v are stored at
the two locations, respectively. If one of these locations is
already in use, the XOR share for the other location is set to
be the XOR of v and the data stored in the used location. By
increasing the GCT’s size, [73] guarantees that every element
can be mapped to two locations to store the shares. We design
a variant of GCT called arithmethic garbled cuckoo table
(AGCT). In an AGCT, we use arithmetic sharing instead of
XOR sharing. This is needed for combining the AGCT with

our Threshold-PIR-SUM in §V.
Trusted Execution Environments (TEE). TEEs are
hardware-assisted environments providing secure storage and
execution for sensitive data and applications isolated from
the normal execution environment. Data stored in a TEE is
secure even if the OS is compromised. Widely adopted TEEs
are Intel SGX [50] and ARM TrustZone [6] (often used on
mobile platforms [65]). Using TEEs for private computation
has been extensively investigated, e.g., [7], [10], [67]. A
process called remote attestation allows external parties to
verify that its private data sent via a secure channel is received
and processed inside the TEE using the intended code [4], [22],
[49]. However, side-channel and cross-layer attacks [14], [33],
[82] raise concerns about the security of TEEs.

III. PRIVACY-PRESERVING EPIDEMIOLOGICAL MODELING

Contact tracing apps detect physical contacts to inform
people about potential infections and store information about
the encounters. If this information was combined at a central
place, a full contact graph could be built usable for epidemio-
logical simulations. However, contact data is highly sensitive
information that must not be shared. A relatively efficient
option to realize epidemiological modeling in a privacy-
preserving manner would be that each participant (i.e., each
device using the contact tracing app) secret shares its con-
tact information between non-colluding servers that can then
jointly create the full contact graph and run simulations using
multi-party computation (MPC) [31]. Even though such a non-
collusion assumption is standard in the crypto community, the
general public will struggle to trust a system that discloses all
contact information if the servers collude. Hence, our system
aims at distributing the trust by involving all participants who
can keep their contact graph information completely locally
and still simulate the spread of a disease by sending messages
to each other in an anonymous fashion. Additionally, only
an aggregated simulation result will be released to a research
institute so that no data directly relating to a single identity
is shared. Thus, given that a wide adoption of a PEM app in
the population is needed to get a meaningful and sufficiently
realistic contact graph, a distributed PEM is superior to using
outsourced computation with MPC. We split PEM into two
phases:
• Collection phase: During a physical encounter, partici-

pants exchange data via Bluetooth LE to collect anony-
mous encounter information (cf. Figs. 1a and 1b). They
locally store this along with additional information on
the context of the encounter (for example, duration,
proximity, time, and location). This information can later
be used to include or exclude different encounters in
the simulation phase, to model the effect of contain-
ment measures (e.g., restaurant closings, by excluding all
encounters that happened in restaurants). The collection
phase is independent of the simulation phase, i.e., no
simulation-dependent infection information is exchanged.
When PEM is integrated into a contact tracing app, the
collection phase can be integrated into the normal activity



of this application recording physical contacts. (In theory,
the collected information could be used to create a contact
graph by matching sent/received information. But in PEM
this it not possible because data remains locally on the
clients’ devices.)

• Simulation phase: In the simulation phase, typically
many (e.g., 100 or more) simulations are executed. In
each time step and simulation, each participant has a
current simulated infection class (e.g., susceptible, in-
fected, etc., cf. §II-A). Based on this class, participants
calculate the likelihood of having transmitted infectious
agents during each encounter, a quantity we call ”en-
counter transmission intensity” (ETI). The ETI can, for
example, be a binary variable (infected/not infected)
or a continuous variable proportional to the number
of transmitted particles (e.g., a product of participant
infectiousness, encounter proximity, encounter duration,
etc.). The participant then anonymously sends the en-
crypted ETI via the Internet to its contacts, who calculate
the probability of having been infected during the last
time step, and update their infection classes accordingly.
Again, to model specific control measures in different
simulations, some encounters might be excluded based
on their recorded context s.t. these encounters do not
trigger an ETI message (modeling that they would not
have happened with these control measures in place).
Fig. 1c shows the network of phones modeling the contact
graph that can be created using the data collected in the
collection phase. The simulated spread of the disease
presented in Fig. 1d can be realized in a distributed
but privacy-preserving using our PEM protocols in §VI.
Simulations should typically be run during the night
when devices are idle and, optimally, connected to a
WLAN and a power source. Studies [78], [81] show that
sleeping habits in multiple countries offer a time window
of several hours every night that can be used for this
purpose.

Integration into Contact Tracing. Our protocols are not
designed for a specific contact tracing app. Instead, we aim
at providing generic PEM protocols that can be added on
top of existing contact tracing apps. However, they need
to be decentralized (i.e., contact information stays locally
on the device) and token-based (i.e., participants exchange
information during an encounter via Bluetooth LE).

A. Terminology

We first introduce the underlying terminology.
Infection Class: In this work, we use as an example for an
epidemiological model the agent-based SEIR model (cf. §II-A)
with four infection classes: Susceptible (S), Exposed (E),
Infectious (I), Recovered (R). In every simulation step, each
participant locally determines to which class it is assigned. For
the transition S → E in a simulation, a susceptible participant
(S) has to be informed by its contacts if it had contact to
an infectious (I) person. Whether it becomes exposed (E)
then depends on parameters like the probability of disease

transmission per contact, the duration of the contact, and
the physical closeness during the meeting [11]. Additional
parameters can be included. We privately realize this transition
S → E with our PEM protocols in §VI. The subsequent
transitions E → I and I → R can be computed locally by the
participant and depend on the modeling of the disease, e.g.,
the incubation time (E → I) can correspond to z simulation
steps.
Participant: A participant is a person (i.e., an agent in the
terminology of epidemiological modeling, cf. §II-A) using a
contact tracing app extended by PEM.
Research institute (RI): The research institute (RI) aims at
investigating how different potential control measures, e.g.,
contact restrictions or closing/opening schools enforced by
the government, would influence the spread of a disease.
Furthermore, for new diseases where the infectiosity is un-
known, different possible spreading behaviors of the disease
can be modeled. Thus, it collects the aggregated number of
participants in each class of the epidemiological model (e.g.,
SEIR). To start a simulation, the RI provides the simulation
parameters paramsim containing, e.g., an initial infection class
per participant, control measures taken, the incubation time,
and parameters influencing the spread of the virus.
Initialization. There are two ways how to initialize the par-
ticipants’ infection classes in a simulation: (a) uniform or (b)
non-uniform at random. If the initialization is done uniformly
at random, certain diseases’ propagations cannot be modeled
in a realistic manner. In contrast, when the initialization is
done non-uniformly, e.g., only people from a specific part of
the country are initialized exposed/infectious, the simulation
outputs leak some information about the contacts of this group.
We point out that this information leakage is tolerable as
only the accumulated number of people per infection class
is reported to the RI. However, some information about, e.g.,
the accumulated number of contacts, can still be inferred by
observing how these numbers change. Hence, we leave the
choice about how the initialization is done to epidemiologists
and politics. Moreover, note that information leakage from the
output does not conflict with the ideal functionality of PEM
(cf. §III-D).
Simulation servers: These servers are used to anonymously
exchange messages between the participants.
Simulation: A simulation j ∈ [1, J ], where J is the number
of simulations, is a set of S simulation steps. Each simulation
is instantiated with a public set of parameters paramsim that
determine the initial (simulated) infection class of the par-
ticipants, the probability of infection, and other parameters
required by each participant to privately calculate its infection
class. A simulation simulates the spread of the disease over S
time intervals (called simulation steps).
Simulation Step: In each simulation step s ∈ [1, S], where
S is the number of simulation steps in a simulation j, every
participant updates its current infection class. It uses our PEM
protocols from §VI to infer if it got exposed, i.e., to privately
realize the S → E transition. A simulation step can, for
example, simulate one day.



(a) Full contact graph (not known to any
party).

(b) Exchange of secrets during physical en-
counters via BLE (similar to contact tracing
apps).

(c) PEM enables privacy-preserving dis-
tributed simulation of disease spread on
networks of phones via the Internet.

(d) Simulation Phase: Privacy-preserving propagation of simulated infection.

Fig. 1: PEM: System Overview (A=Alice/B=Bob).

B. Privacy Requirements

Encounter Anonymity: Participants must not learn to whom
they unconsciously had contact.
Re-Identification: Participants must not learn if they uncon-
sciously had contact with the same person twice. This includes
Infection Obscurity: Exposed participants must not learn who
of their encounters infected them (in the simulation).
Contact Graph Privacy:
• w.r.t. participants: Participants must not be able to infer

anything about contacts of other participants. The only
exception is that exposed participants can infer that
someone of their contacts must have been in contact
with a (simulated) infectious participant. The second part
cannot be avoided if the participants are able to assess
their intermediate infection classes, as they will learn
when they got exposed. Because this is only a simulated
infection, we consider this as an acceptable leakage to
improve the efficiency of our protocols. However, our
protocols can be adapted to also hide this information. In
TEE-PEM (§VI-A), the class is actually already securely
updated in the TEE.

• w.r.t. simulation servers/RI: Simulation servers and the
RI must not learn anything about the contact graphs.

C. Security Model

In this work, we assume that all participants follow the
protocol (i.e., semi-honest security) to achieve correctness of
the simulation result, but seek to learn further information
about the other participants. This assumption is reasonable as
the participants are interested in contributing to the successful
execution of the epidemiological study. It follows that they do

not refuse to send (encrypted) messages about the infection
likelihood to each other and do not tamper with their own
(simulated) infection class. Again, we explicitly do not con-
sider the scenario when the input data of the participants to
the simulations is not reliable. To understand why it would
not be a problem, let us analyse the causes and effects of
unreliable data. We can think of the following two cases
when the input data could be not completely correct: Firstly,
considering the large number of participants involved, it is
likely that a small fraction of them might behave deliberately
dishonest and provide a wrong input to the experiment, e.g.,
a dishonest user changes its class to infected. But since the
users can only affect people they were in contact with in
the “real” world, they cannot easily perform a large-scale
attack to change sufficiently many inputs to alter the simulation
result. Secondly, considering a large-scale attack taking over
a large fraction of possibly millions of users, e.g., by a state-
level adversary, it would be detectable due to high quantities of
unusual traffic and eventually strong deviations in the results.

We assume all servers to be semi-honest and the PIR servers
to not collude. We discuss why this is different from running
PEM with MPC in §VI-C. The servers could, for example, be
run by governmental institutions and non-profit organisations
like the EFF that are concerned with data security and privacy.

D. Ideal Functionality

Fig. 2 gives the ideal functionality of a simulation with a
trusted third party (TTP). The research institute (RI) sends the
simulation parameters paramsim (e.g., initial infection classes,
characteristics of the disease, and activated control measures)
to the TTP (Step 1). In Step 2, the participants send the en-



Fig. 2: Ideal functionality of private epidemiological modeling.

counter tokens received in the collection phase. The TTP then
reconstructs the contact graph of the participants and calculates
their new classes for S steps (Step 3). It sends the aggregated
number of participants per class ([#S,#E,#I,#R]) for each
simulation step s to the RI (Step 4).

A trivial solution to realize the ideal functionality would be
to deploy the TTP in a TEE (cf. §II-B). However, the resource
limitations of TEEs are a prohibiting factor considering the
massive amount of data that needs to be handled in a large
scale simulation with possibly millions of users. Additionally,
as the TEE would contain the contract graph of the entire
population, it would make it an attractive target for an attack
on the known vulnerabilities of TEEs (cf. §II-B). In contrast,
our protocols in §VI instantiate this ideal functionality such
that no single TTP learns the contact graph.

E. Components

In the following, we describe the components of PEM later
instantiated in our protocols in §VI.
Collection phase:
During an encounter, both participants exchange tokens via
Bluetooth LE and use this connection to determine encounter
parameters paramenc, i.e., details about the encounter like the
duration, distance, and location (cf. §VI). First, in Emit, each
participant sends a encounterToken to the other participant.
Then, in Listen, each participant receives the token from the
other participant. Note, that Emit and Listen can correspond
to the activity of a contact tracing application.
Simulation phase:
• Upload: In each simulation step s, a participant ρ uses its

user-specific parameters paramuser (e.g., its sensitivity to-
wards an infection), its current infection class classinf , the
parameters paramsim of the simulation j ∈ [0, J ] obtained
from the RI, and the encounter parameters paramenc.
With this information, ρ calculates the ETI (indicating
the likelihood of an infection) it would have emitted
during a specific encounter given the respective paramenc

and its current simulated classinf . ρ does this for all

encounters that it had in a specific time interval in the
collection phase. The RI specifies the time interval for
each simulation step s in paramsim in advance before the
start of the simulation phase such that all participants use
the same encounters in s. Note, that in all J simulations,
the same time interval of the collection phase is used for
the s-th simulation step, but different time intervals are
used for different simulation steps in the same simulation.
If a simulation uses filters, e.g., it simulates that schools
are closed, ρ will exclude all encounters it had in school
and not send any messages to them. Location- or time-
based filters can be introduced at any time (also after
the collection phase), e.g., using location information
such as coordinates. The participants only have to define
which location(s) correspond(s) to “school” or other types
of encounters s.t. the application can then automatically
label all collected encounters. ρ sends all encrypted ETI
values to the simulation server(s). We defer the concrete
calculation of the ETI to the epidemiologists.

• Shuffle: The simulation servers apply operations on the
uploaded data to provide anonymity. Fetch: In each
simulation step s, each participant receives the aggregated
sum of ETI infectionInfo to which it has been exposed.

• Update: Each participant updates its infection class with
the received sum of ETIs, the participant’s previous
classinf , and its parameters paramuser. We defer the con-
crete implementation to the epidemiologists.

• Π: After each simulation step s, the number of partici-
pants for each infection class is determined and output to
the RI using a secure aggregation protocol Π.

IV. PEM ATTACK SCENARIOS

In this section, we describe the two non-trivial attacks we
found to threaten the privacy of the users’ contact graphs as
they have important implications on the design of our PEM
protocols in §VI.

A. Linking Identities Attack

When performing multiple simulations (with different sim-
ulation parameters) on the same contact graph, data from
the collection phase gets re-used for every simulation. A
participant Alice (anonymously) sends messages containing
information about the infection risk (ETI, cf. §III) to another
participant Bob. When Bob suspects that two different physical
encounters were with the same person, Alice, he can verify
this as the messages of these encounters in the simulations
correlate with non-negligible probability. Concretely, Bob is
even able to check correlations for all received messages to
detect which messages are from the same Alice. For example,
Bob could have met and identified Alice in a restaurant and
later assumes that he might have met her again in the bus
where he could not identify her because she was wearing a face
mask. In this case, Bob receives Alice’s infection likelihood
represented by the ETI Alice emits (this can be a simple 0/1
for not infected/infected or a more complex representation,
cf. §III) twice — once for each individual encounter. As



(a) Linking Identities Attack:
If Bob has access to the in-
dividual messages sent by his
encounters he can find corre-
lations between the messages.

(b) Sybil Attack: If Bob cre-
ates multiple identities and
records exactly one meeting
with each identity, he can
analyse correlations between
the single messages.

Fig. 3: PEM Attacks (0/1= not infected/infected).

simulated “infections” will appear only for the minority of
contacts, having two/multiple encounters that are infected in
every simulation always at the same simulation steps makes
it likely that these encounters have been with the same
participant or closely related participants (e.g., flatmates). The
problem persists if the ETI is the output of a function with
inputs like the encounter’s duration and distance. Then, Bob
might receive different ETIs from the same Alice for two
different encounters. But they are still correlated and Bob
knows the function for determining the ETI and its inputs such
that he is able to detect correlations over multiple simulations.

To summarize, Bob can link meetings with the same Alice
and with an increasing number of simulations Bob is able to
validate his hypothesis with higher probability. We depict the
attack in Fig. 3a. In order to mitigate this attack in PEM, Bob
must not learn the infection class of individual encounters,
but should also be able to determine his own risk of being
exposed. Thus, our protocols in §VI obliviously sum up the
messages from all encounters of Bob and he only receives the
sum of the messages instead of the individual messages.

B. Sybil Attack

Because a participant Bob must not learn individual mes-
sages with the ETI sent by other participants (cf. §IV-A),
our protocols only allow Bob to receive the sum of his
messages. This includes that he cannot change the set of
requested messages in successive simulations to infer differ-
ences between the received sums. However, without further
precautions, Bob could create multiple identities, and use one
for each encounter. Note, that this still requires Bob to meet
only a single Alice and no one else in the collection phase
with each identity. By performing this sybil attack [37] with n
identities, Bob would be able to receive n individual messages
instead of the sum of the n messages originating from his n
encounters, which again enables him to detect possible corre-
lations between them. We depict the attack in Fig. 3b. Trivially
limiting the minimum number of encounters to encmin does
not work: Bob could simply simulate encmin − 1 additional
encounters with identities created by himself and extract

Fig. 4: Our PIR-Sum protocol. bi is the message stored in the
i-th database block (i ∈ [1, N ]). rj is the random value used in
all database blocks for blinding the j-th response (j ∈ [1, τ ]).

the single valid message obtained from the real encounter.
Thus, we need another mechanism to thwart sybil attacks:
anonymous credentials to increase the costs to create (fake)
identities (cf. §VI).

V. HYBRID THRESHOLD-PIR-SUM

In this section, we introduce two PIR constructions to (a)
privately retrieve the sum of τ blocks in a database and to (b)
ensure that a client retrieves τ distinct blocks of the database.
We combine both protocols to achieve a scheme that requires
a client to retrieve the sum of τ distinct blocks and embed
the combination into an efficient hybrid PIR construction
with multi-server [29], [30] and computational PIR [54].
In §VI-C, we show how to use this protocol to efficiently
privately retrieve the sum of exactly τ distinct blocks of the
database. To the best of our knowledge, this is the first multi-
server Threshold-PIR-SUM protocol. We believe that our PIR
constructions might also be of independent interest.1

A. PIR-SUM

Our first construction, depicted in Fig. 4, enables a client C
to query τ blocks (bidx1 , ..., bidxτ ) of a database DB containing
N blocks, where {idx1, ..., idxτ} are the indices of the τ
blocks of DB freely chosen by the client, and retrieve only
the sum of these blocks.

Prior to any communication with the clients, the K PIR
servers agree on a randomly chosen secret sPIR. For each of
the τ PIR queries from a client, the servers then derive τ fresh
pseudo-random arithmetic shares from sPIR that sum up to 0,
i.e., r1 + ...+ rτ = 0.

For the j-th query of the τ queries from client C, the PIR
servers add the same arithmetic share rj to each element of
DB, i.e., b′i = bi + rj where i ∈ [1, N ], and compute the PIR
response in the usual way. Since the client first needs to XOR
the retrieved PIR responses from all PIR servers, the arithmetic
blinding must be applied to the database blocks and cannot be
applied to the PIR responses (since XORing the responses
would then impair the arithmetic sharing). After performing
τ PIR requests, the client receives τ arithmetically blinded
blocks b′idx1 , ..., b

′
idxτ where b′idxj = bidxj + rj for j ∈ [1, τ ].

When summing up the blinded blocks, the shares added by the

1Note that all our PIR constructions are compatible with multi-block
PIR [29], [30] where multiple blocks can be retrieved in a single query without
increasing the query size.



Fig. 5: Our Threshold-PIR protocol. bi is a message encrypted
with key keyPIR and ki is a share of keyPIR put into the i-th
block (i ∈ [0, N ]).

servers cancel out and the client retrieves the sum of database
entries: bsum =

∑τ
j=1 b

′
idxj =

∑τ
j=1(bidxj + rj) =

∑τ
j=1 bidxj .

However, this alone does not guarantee that a client requests τ
different blocks. Without any further measures, a client could
query the same block in each of the τ PIR requests and divide
the sum of the τ blocks by τ to receive block τ in plain.

B. Threshold-PIR

With our second PIR construction, depicted in Fig. 5
and called Threshold-PIR, we impose the client to request
τ distinct blocks from the database, i.e., we require that
∀i, j ∈ [1, τ ] : i 6= j =⇒ idxi 6= idxj .

The PIR servers decide on a freshly created symmetric
secret key keyPIR and a τ -out-of-N secret-sharing scheme
(where N is the number of blocks in the PIR database) and
secret-share this key. When instantiated with Shamir’s secret
sharing, the τ − 1 random coefficients of the polynomial can
be derived from sPIR. Hence, this step does not require any
interaction between the servers. Note, that a key can only
be used once to request τ distinct blocks and cannot be re-
used. Then, the servers symmetrically encrypt each entry of
the database with keyPIR and append one share of the key
to each block of the database. Only if the client privately
retrieves at least τ distinct blocks, it is able to reconstruct the
symmetric key keyPIR and can decrypt the τ received entries
of the database. Dong et al. [36] use a similar construction to
protect against malicious clients in a private set intersection
protocol and reveal either one share of a secret key or one
entry of a garbled Bloom filter via oblivious transfer.

C. Hybrid Combination

We now combine our PIR-SUM (cf. §V-A) and Threshold-
PIR (cf. §V-B) to Threshold-PIR-SUM such that the client can
only retrieve the sum of τ distinct blocks of the database. The
servers agree on the arithmetic shares r1, ..., rτ as in our PIR-
SUM and, for each of the τ PIR queries of the client, add the
share rj to each element of the database, where j ∈ [1, τ ].
Then, as in Threshold-PIR, the servers encrypt the resulting
values using the key keyPIR for each of the τ PIR queries of the
client. Once the client has retrieved τ of the resulting blocks,
it can reconstruct the key keyPIR, decrypt the arithmetically
blinded values and sum up the blinded values as in the PIR-
SUM construction. The result is the sum of the τ blocks the
client requested.

We cannot directly apply Threshold-PIR-SUM on a large
PIR database DB with small blocks as needed in our PIR-
PEM (§VI-C) because the PIR queries would get too large
(572.21 MiB per client for each simulation step s with u =
100K users and 55.88 GiB per client with u = 10M users).

Fig. 6: Our Hybrid Threshold-PIR-SUM protocol. In order to
receive the block b5, the client first selects the second “su-
perblock” from the database using multi-server PIR. Instead
of sending the PIR responses r1, r2 back, the client performs
a single-server computational PIR (cPIR) query on each of
these. By combining the cPIR responses, the client recovers
exactly block b5.

To optimize communication, we would like to pack C = b̂/|c|
elements into a large superblock of size b̂ =

√
|DB|/K,

where |c| is the size of individual elements. However, since
the blinding value rj of our PIR-SUM protocol is the same for
every element in the database for the j-th PIR query, a client
would be able to learn some information about other elements
in the retrieved superblock. Instead, we apply Threshold-
PIR-SUM to each element in DB individually. But each
PIR request would now directly leak C shares of keyPIR to
the client (one for each of the C elements in the received
block). After extracting τ shares from the superblocks, the
client would be able to decrypt and sum up the elements as
usual (cf. §V-C) although he might not have sent τ queries.

To improve communication while maintaining correctness
and privacy properties, we apply a technique called hybrid
PIR [34] which combines multi-server with single-server com-
putational PIR (cPIR). Our resulting Hybrid Threshold-PIR-
SUM protocol is shown in Fig. 6. We first run multi-server PIR
on superblocks (Step 1), but the servers do not yet send back
the responses. Instead, the client runs a cPIR protocol [54]
with each of the PIR servers to recover only the single intended
element from the superblock (Step 2).

VI. PEM PROTOCOLS

In this section, we introduce three privacy-preserving epi-
demiological modeling (PEM) protocols simulating transitions
of infection classes requiring interaction between participants
(cf. §III-A). For simplicity, we depict only the communication
of two participants Alice and Bob who meet during the
collection phase. Alice acts as the sender of a message mi,j ,
where i is Bob’s local counter for his encounters and j
is the counter of the number of simulations in which he



participated. The message mi,j represents ETI of Alice during
the encounter given her current (simulated) infection class,
encounter distance, duration, etc. Bob receives the sum of ETIs
from his encounters in simulation step s (including Alice’s
message) s.t. he can estimate if he got exposed and possibly
update his infection class. Note that although we do not show
it here for the sake of clarity, Bob also sends a message with
his ETI to Alice and all other participants that had encounters
with Alice/Bob in the collection phase also send messages to
them (and vice versa).

We assume the availability of an encrypted Bluetooth LE
(BLE) channel between Alice and Bob using the trick from
Apple’s Find My protocol [16]: When using the elliptic curve
P-224, 28 bytes are needed to represent a group element. These
bytes can be encoded across the 6-byte randomized MAC
address and 22 bytes of the payload. Clients can now announce
a public key and run an elliptic-curve Diffie–Hellman key
agreement to establish a shared secret. The shared secret can
then be used to privately exchange more data, e.g., a keep-
alive message to determine the encounter duration and the
received signal strength indicator to estimate the physical
distance between the devices. For more details on BLE for
contact tracing we refer the reader to [26].
Anonymous Credentials against Sybils. To thwart sybil
attacks (cf. §IV-B), i.e., to prevent an adversary from creating
multiple identities, we propose to use anonymous credentials
(cf. §II-B). This can, e.g., be realized in a closed ecosystem
like a company where each member gets exactly one token to
join the simulation. This may also be deployed at a greater
scale on a country level where every citizen receives a token
coupled with a digital ID card. As indicated in our protocols
in §VI-B and §VI-C, we require the message receiver Bob to
use the anonymous credentials to anonymously authenticate
with the central server(s).
Mix-nets for Sender-Anonymity. The messages encoding
ETIs include an identifier used by another participant to down-
load the message. If they are uploaded to a server, the server
operator could place a Bluetooth device that collects encounter
tokens and later re-identify participants that upload messages
together with these tokens. Thus, a dishonest server could
easily track participants. To thwart this attack, participants
secret share their messages and identifiers and send a share
to each L − 1 of the L mix servers of a mix-net (cf. §II-B).
The mix servers then obliviously shuffle them (cf. App. A)
and reveal all shares in the shuffled database to either the exit
node of the mix-net (TEE-PEM/MIX-PEM, cf. §VI-A/§VI-B)
or the PIR servers (PIR-PEM, cf. §VI-C).
Complexity. The shuffling requires L communication rounds.
In each round, one mix server sends a share of each of
the N database entries to the L − 1 other servers. Hence,
communication complexity is O(L ∗ (L− 1) ∗N).

A. TEE-PEM

In our first protocol, called TEE-PEM and depicted in Fig. 7,
we assume that the mobile device of each participant is
equipped with a TEE such as ARM TrustZone (cf. §II-B).

Note, that this distributes trust over multiple TEEs which
is more robust than a single TEE that holds the encounter
information usable to construct the contact graph (cf. §III-D)
and hence is an attractive target for attacks. We give pseu-
docode for TEE-PEM in App. C and proceed with a high-level
description:

• Prepare: For every time interval in the collection phase
(corresponding to a simulation step s), Bob’s TEE up-
loads a list of freshly created public keys PKB

i , i ∈ [1, e],
where e is number of maximal possible encounters per
simulation step, to the exit node of a mix-net (Step 1a,
cf. §II-B) that returns signatures for each of them
(Step 1b). The exit node only signs the public keys if it
can anonymously verify that it is directly communicating
with a non-tampered TEE via a secure channel.

• Emit: During an encounter, Bob sends Alice a fresh pub-
lic key created in Prepare together with the corresponding
signature via Bluetooth LE (Step 2a).

• Listen: Alice receives the key and corresponding sig-
nature from Bob. By verifying the signature, Alice can
convince herself that the public key was indeed created by
a TEE (Step 2b). Then, she adds the received information
to the list REC.

• Upload: In each simulation step, Alice’s TEE encrypts
her message mi,j with Bob’s public key PKB

i (Step 3a)
that she received in the collection phase in encounter i.
Then, the TEE creates L − 1 shares of the encrypted
message ci,j and PKB

i and sends them to L − 1 nodes
of the mix-net (Step 3b).

• Shuffle: The mix-net shuffles all messages for this simu-
lation step (Step 3c). Afterwards, the exit node combines
all shares and verifies that PKB

i is only used once per
simulation (Step 3d).

• Fetch: The exit node sends all ci,j to Bob’s TEE via a
secure channel using the PKB

i from Step 1a as selection
criterion (Step 3e). Bob’s TEE decrypts and sums them
up (Step 3f). As Bob committed to his public keys (Step
1a), he cannot lie about his encounters. Thus, he cannot
infer correlations between encounters (cf. §IV-A)
Update: Based on the decrypted sum of ETIs, Bob’s new
infection class is determined in the TEE. This new class
is the input for his messages in the next simulation step
of simulation j.

Corrupted TEE. If Bob’s TEE gets corrupted, he can access
individual received messages in plain, i.e., there will not be any
protection against the Linking Identities Attack (cf. §IV-A).
However, this problem occurs only locally (only Bob’s con-
tacts are affected) and one has to corrupt many TEEs for a
large scale attack.

If Alice’s TEE is corrupted, she can freely manipulate her
messages without any restriction. Without the corruption Alice
is only able to manipulate the information originating from her
Bluetooth interface once, but these information are then fixed
for all simulations.



Fig. 7: TEE-PEM: Privacy-preserving epidemiological modeling using TEEs. Step 1a and 1b are done once per time interval
in the collection phase. Step 2 is done per encounter in the collection phase. Steps 3a to 3f are done in every simulation step
of a simulation. [ci,j ]l is the l-th share of the ciphertext ci,j and [PKB

i ]l is the l-th secret share of the public key PKB
i sent

to the l-th mix server.

B. MIX-PEM

Our second protocol is called MIX-PEM and shown in
Fig. 8. It is purely based on secret sharing. We provide
pseudocode for MIX-PEM in §C.

• Prepare: Before the collection phase, Bob creates a set
of e random blinding values rBi , where i ∈ [1, e] and e is
number of maximal possible encounters per time interval,
and uploads a list of hashes of these blinding values to
the exit node of a mix-net (Step 1).

• Emit: During an encounter i, Bob sends one of the
previously created random blinding values rBi .

• Listen: Alice receives the random value from Bob and
adds the received information to the list REC.

• Upload: In each simulation j, Alice blinds her message
with a hash of the random value: ci,j = mi,j+H(rBi ||j)
(Step 3a). H denotes a publicly known cryptographic
hash function. Alice then sends shares of this message
alongside with shares of the hash of the blinding value
rBi to L− 1 of the L mix servers.

• Shuffle: After receiving shares of the messages from all
participants, the mix-net shuffles them to provide sender
privacy (Step 3c). Then, it reveals the shares to the exit
node who combines them to receive the blinded messages
and hashes. It verifies that H(rBi ) is used only once,
i.e., that Bob did not sent rBi several times in different
encounters (Step 3d). Then, it sums up the blinded
messages for each participant using each participant’s list

of blinding values from Step 1 (Step 3e).
• Fetch: The exit node sends the sum Cj and a list of

all hashed blinding values corresponding to the messages
included in the sum (to tolerate dropouts) to the respective
participant Bob (Step 3f). By committing to the hash
values before the collection phase (Step 1), Bob can only
receive the sum messages of all of his encounters in the
simulation (Step 3f). It follows that Bob cannot change
the set of requested messages to infer differences between
the received sums.

• Update: Bob can now identify and remove the blinding
values Mj = Cj −

∑
H(rBi ||j) (Step 3g) and use the

received sum of ETIs to update its infection class.

Malicious Exit Node. In MIX-PEM and TEE-
PEM (cf. §VI-A), the exit node learns the hashes/public keys
corresponding to the messages sent to Bob s.t. it is able to
track Bob when a colluding participant gets Bob’s messages
via BLE. Moreover, the exit node could install Bluetooth
sniffers to establish a mass surveillance system. The sniffers
can collect the tokens from all people passing by while the
exit node knows which tokens belong to the same participant.
In this way, the exit node could construct a movement map
per participant. This attack requires to put physical devices
in place and might be considered unrealistic if the exit node
is run by a reasonably trustworthy governmental institution.
However, for the sake of completeness, we propose a
protocol next that thwarts this attack at the cost of higher



Fig. 8: MIX-PEM: Privacy-preserving epidemiological modeling using random blinding and mixing. Step 1a and 1b are done
once per time interval in the collection phase. Step 2 is done per encounter in the collection phase. Steps 3a to 3g are done
in every simulation step of a simulation. [ci,j ]l is the l-th share of the ciphertext ci,j and [H(rBi )]l is the l-th secret share of
the hash of the random number rBi sent to the l-th mix server.

communication and computation.

C. PIR-PEM

In our third protocol, called PIR-PEM and depicted
in Fig. 9, we use our novel Threshold-PIR-SUM (cf. §V)
to query messages stored in an arithmetic garbled cuckoo
table (AGCT, cf. §II-B) s.t. a malicious exit node cannot track
participants (cf. §VI-B). We provide pseudocode for PIR-PEM
in App. C.

PIR-PEM does not require any commitments prior to the
collection phase. We therefore skip Step 1 and directly start
with the encounter in the collection phase (Step 2).
• Prepare: Bob creates e (e is number of max. possible

encounters per simulation step) random values rBi .
• Emit: In the i-th encounter in the collection phase, Bob

sends rBi to Alice (Step 2).
• Listen: Alice receives the random value rBi from Bob.
• Upload: Alice uses the random value rBi to blind her

message for Bob ci,j = mi,j + H(rBi ||j) (Step 3a) and
sends shares of ci,j and shares of the hash value H(rBi )
to L− 1 mix servers (Step 3b).

• Shuffle: After all clients uploaded their blinded messages,
the L mix servers obliviously shuffle the data in Step
3c. Then, assuming the PIR servers are equal to the
mix servers, the mix servers combine their shares to
create a joint database with all messages. They insert
the ciphertexts ci,j at fcuckoo = 2 positions of the
AGCT, determined by the hash H(rBi ) (Step 3d). For

this purpose, the servers initialize the hybrid Threshold-
PIR-SUM with an 2γ-out-of-N secret sharing, where N
is the size of the AGCT. The PIR servers allow Bob to
fetch exactly 2γ blocks. The servers jointly fill up the
remaining (untouched) locations with random values such
that each server holds the same AGCT afterwards.2

• Fetch: In Step 3e, Bob reveals the number of encounters γ
he had to the PIR servers and creates 2γ PIR queries
for our hybrid Threshold-PIR-SUM (cf. §V-C). Note
that γ corresponds to τ in the general description of
our PIR constructions in §V. The PIR queries privately
request the two entries of the AGCT corresponding to
H(rBi ) of each encounter. The clients’ PIR queries for
a simulation step are cached by the PIR servers and
used in all later simulations, i.e., the PIR queries only
have to be sent once. This not only drastically improves
communication in all later simulations, but also ensures
that Bob cannot request different entries of the AGCT in
different simulations (thwarting the linkage of encounters
by small variations between the requested sets, cf. §IV).
In Step 3f, Bob retrieves the PIR responses from the PIR
servers.

• Update: In Step 3g, Bob reconstructs keyPIR, decrypts
his PIR responses, and sums them up to get the sum of

2Alternatively, the operations can be done by a single server who distributes
the AGCT to all other PIR servers, but this requires communication among
the non-colluding PIR servers.



Fig. 9: PIR-PEM: Privacy-preserving epidemiological modeling using our novel Threshold-PIR-SUM (cf. §V). Step 2 is
performed once per encounter in the collection phase. Steps 3a to 3f are performed for each time interval in multiple simulations.
[ci,j ]l is the l-th share of the ciphertext ci,j and [H(rBi )]l is the l-th secret share of the hash of the random number rBi sent
to the l-th mix server.

the blinded messages. Then, he unblinds it Mj = Cj −∑
H(rBi ||j) to receive the ETI.

Manipulation Attempts by Bob. We show that Bob gains
nothing from lying about the number of encounters γ in Step
3e due to our Threshold-PIR-SUM: If Bob met less then γ
participants in the collection phase, he is still forced to retrieve
the sum of exactly 2γ distinct blocks from the AGCT. But, he
cannot unblind messages that are not blinded with his rBi .
If he requests a block that was not filled with a message, it
contains a random value s.t. he cannot learn anything about
the set of encounters from which he correctly requested the
messages. If Bob met more than γ participants, he still only
learns the sum of γ messages. Hence, this is equivalent to not
meeting the not included participants. Note that Bob commits
to the number γ for all simulations. Thus, he cannot change
γ to extract information from differences between simulation
results.
Hiding the number of encounters. A participant can prevent
the simulation servers in all our PEM protocols from learning
the number of encounters by sending “dummy” messages
indicating no risk of infection to itself using the unused public
keys/random values.
Having only one encounter. If Bob had only one physical
encounter, the messages he would receive in the simulation
phase of MIX-PEM (§VI-B) and PIR-PEM §VI-C) would
reveal if his contact was simulated infected by design. This
is not avoidable as long as the sum of ETIs is revealed to
Bob. However, as pointed out before, the infection class of a
participant is not sensitive information as it is only simulated.

Furthermore, having only the message from one contact does
not allow Bob to infer correlations. Nonetheless, we point out
that in combination with additional external information (e.g.,
about which groups were initialized as infected (cf. §III-A)),
a message could reveal something about the relationship of
the participant to this group. We consider this edge case to
be acceptable and point out that it can be avoided with TEE-
PEM (§VI-A).
Non collusion assumption. We argued in §III that doing PEM
with MPC would not achieve a sufficient trust level for a
broad adoption in the population due to the non collusion
assumption. However, multi-server PIR as used in our hybrid
Threshold-PIR-SUM also requires that the PIR servers do
not collude. Let us analyze the information leakage when
this assumption would break: The servers could learn which
blocks were requested by Bob, but they could not extract the
ETI per encounter as they do not hold the random values
needed to compute the hashes used by Alice to blind the
messages. Hence, colluding PIR servers cannot detect correla-
tions between participants’ encounters limiting the information
leakage to knowing which messages were requested in a batch
(with an anonymous communication channel). Thus, the attack
of a malicious exit node colluding with a participant detailed
in §VI-B would be possible if the PIR servers collude.

D. Result Aggregation

Secure aggregation is needed to determine the total number
of participants per infection class (cf. §II-A) in each simulation
step s and to reveal it to the research institute (cf. §III-A).



per client per server
users u database size upload upload download from clients from clients to clients

simulation j 1, ..., J 1 2, ..., J 1, ..., J 1 2, ..., J 1, ..., J
TEE-PEM (§VI-A) 915.53 MiB 21.89 KiB 18.75 KiB 12.50 KiB 2.09 GiB 1.79 GiB 1.19 GiB
MIX-PEM (§VI-B) 100K 305.18 MiB 7.81 KiB 6.25 KiB 1.58 KiB 0.75 GiB 0.60 GiB 0.15 GiB
PIR-PEM (§VI-C) 366.21 MiB 9.36 MiB 6.25 KiB 25.00 KiB 913.70 GiB 0.60 GiB 2.38 GiB
TEE-PEM (§VI-A) 89.40 GiB 21.89 KiB 18.75 KiB 12.50 KiB 208.62 GiB 178.81 GiB 119.21 GiB
MIX-PEM (§VI-B) 10M 29.80 GiB 7.81 KiB 6.25 KiB 1.58 KiB 74.51 GiB 59.60 GiB 15.05 GiB
PIR-PEM (§VI-C) 35.76 GiB 93.45 MiB 6.25 KiB 25.00 KiB 891.24 TiB 59.60 GiB 238.42 GiB

TABLE I: Communication per simulation step. Beginning with the second simulation j ∈ [2, ..., J ], the upload communication
drastically reduces due to the caching of client requests. u is the total number of users. The maximal number of encounters per
user in a simulation step is e = 100. For simplicity, we omit the overhead of remote attestation and anonymous credentials.
We assume (ECC) public keys with 256 bits, ECC ciphertexts/signatures with 512 bits, messages with 128 bits, and trim hash
values to 128 bit.

Secure aggregation is a standard problem in privacy-preserving
smart metering [39], [41], [53] and there are several solutions,
e.g., using TEE, or a semi-trusted server aggregating HE
ciphertexts, or N non-colluding servers that aggregate secret
shares. Our focus in this work is on introducing PEM and
designing efficient protocols for PEM. We refer to the related
literature on secure aggregation for this building block.

E. Dropouts

PEM protocols must also be able to handle participant
dropouts as mobile devices regularly lose connection or run
out of battery. Generally, if messages are not received, this
simulates that the respective encounter had no risk of infec-
tion. Assuming that the share of not transmitted messages is
randomly distributed and just a small proportion of the overall
messages, it does not significantly change the simulation
result. Furthermore, our protocols are designed s.t. dropouts
do not harm the functionality: In TEE-PEM (§VI-A), the
exit node forwards all messages that it received for Bob
identifying them by the PKs uploaded by Bob in Step 1a.
Unused PKs are ignored. In MIX-PEM (§VI-B), the exit node
identifies all messages that are meant for Bob by the hashes
uploaded in Step 1. It sums these messages and forwards the
sum with a list of the corresponding hashes s.t. Bob knows
how to unblind the ETIs (and excludes hashes of dropped-
out participants). In PIR-PEM (§VI-C), an additional step is
needed to tolerate dropouts: before sending messages to his
encounters (“Alices”), Bob has to send a “dummy” message to
himself for each of its encounters encoding no exposure. The
PIR servers later replace this message by the real message of
Alice. However, if Alice has dropped out, the dummy message
remains in the AGCT.

VII. EVALUATION

In this section, we evaluate the privacy guarantees achieved
by our PEM protocols and their complexities.

A. Privacy Protection

Participants: In our PEM protocols (§VI), all participants
communicate anonymously using a mix-net s.t. they do
not learn anything about the identity of unconscious con-
tacts (achieving encounter anonymity). Only the sum of

ETIs is revealed to the participants to protect against re-
identification (§III-B).
Simulation servers: The simulation servers are the mix
servers, the exit node, and the PIR servers. In TEE-PEM
(§VI-A), the non-colluding mix servers receive secret shares of
the encrypted messages and PKs. The exit node receives the ci-
phertexts and PKs. Using an anonymous communication chan-
nel, the identity of the participants can be hidden from the mix
servers/exit node. The only accessible information are the PKs
available to the exit node. As these are unique per encounter,
they do not leak any information about the contact graph.
Additionally, using dummy messages as described in §VI-C,
the number of encounters can be hidden. Hence, TEE-PEM
provides contact graph privacy w.r.t. the simulation servers
(cf. §III-B). In MIX-PEM (§VI-B), the same argumentation
as for TEE-TEM applies, just that the messages are blinded
with hashes instead of being encrypted. Thus, MIX-PEM
provides contact graph privacy w.r.t. the simulation servers.
In PIR-PEM (§VI-C), the same argumentation as for the
previous two protocols applies. However, a set of PIR servers
replaces the exit node. As PIR guarantees that participants can
download blocks of the database while hiding which blocks
were requested, PIR-PEM provides contact graph privacy
w.r.t. the simulation servers.
RI: The RI provides the simulation parameters paramsim and
gets the simulation results. Thus, it is not involved in the
simulation and does not learn anything beyond what can be
derived from the output s.t. our protocols provide contact
graph privacy w.r.t. the RI (§III-B).

B. Complexity Analysis

Database sizes. The database stores the (encrypted) mes-
sages from all participants, i.e., at most e messages for each
participant, where e is the number of encounters each user
can maximally have. In TEE-PEM (§VI-A), the database is
significantly larger than in the other protocols due to the
use of public key cryptography. The database size for PIR-
PEM (§VI-B) is slightly larger than the database in MIX-
PEM (§VI-C) because PIR-PEM uses an arithmetic garbled
cuckoo table to store the database entries. In all protocols, the
database size mainly depends on the number of users u and
the maximum number of encounters e.



In Tab. I, we give concrete numbers for u = 100K and
u = 10M users. We set the upper bound for the number of
encounters per day e = 100 based on numbers provided by
research on epidemiological modeling [28], [57], [58], [62].
Even for a nation-wide deployment with u = 10M users, our
largest database size of about 89 GiB for TEE-PEM is realistic.
For u = 100K users, the database size is only about 916 MiB.
MIX-PEM even achieves a database size of about 305 MiB
for u = 100K users and about 30 GiB for u = 10M users.
Communication. Tab. I shows the total client communication
per simulation step. We assume the use of [29] as outer multi-
server PIR scheme and the straightforward approach of [54]
using EC ElGamal as our inner cPIR scheme (cf. §V-C). We
justify the use of the simplistic cPIR scheme by the fact
that cPIR is applied to only 9.57 KiB for u = 100K resp.
95.68 KiB for u = 100M . Even for a nation-wide deployment
with u = 10M users, each user’s total communication in
PIR-PEM is 37.38 MiB. For the more realistic deployment
of u = 100K users, PIR-PEM has 3.76 MiB communication
per user. Note that communication is drastically reduced in
all subsequent simulations since the PIR queries only have to
be uploaded once (cf. §VI-C). In all subsequent simulations,
the total communication per client is only 31.25 KiB and
independent of the number of users u. Hence, simulating vari-
ous different spread behaviors becomes extremely inexpensive.
Since simulation is decoupled from the collection phase, the
first simulation can be done over night when people sleep [78],
[81] s.t. mobile phones are charging and have access to a high-
bandwidth wireless LAN connection.

In Tab. II in App. B, we depict the asymptotic complexities
of our protocols. Each mix server secret shares the elements of
its database to the other servers totaling (L− 1) · |DB| bytes.
In the final step of the shuffling, L − 1 servers exchange
their shares again to retrieve the plaintext database. The total
communication of the mix-net with L = 3 servers equals
L · (L − 1) · |DB| + (L − 1) · |DB| = 8 · |DB| which is
reasonably practical.
Computation. Our protocols are computationally inexpensive
as they mainly rely on information-theoretically secure primi-
tives and symmetric cryptography. Apart from generating the
PIR queries (which can be precomputed), client computation
is independent of the total number of users u. Particularly,
we do not employ expensive cryptographic primitives like
homomorphic encryption in our PEM protocols.
Implementation. With our work, we want to initiate the
discussion on PEM protocols and present three promising
protocols that have feasible communication and computation
complexities. Implementing our protocols is out of scope for
now, as it would require to team-up with industry partners to
implement a real-world scalable system for deployment on a
country level.

VIII. CONCLUSION

In this work, we introduced the problem of privacy-
preserving epidemiological modeling (PEM) which enables
the distributed and private simulation of the spread of a

disease on real contact graphs collected on mobile devices.
We presented three PEM protocols based on different trust
assumptions, discussed their weaknesses, and showed that
they have manageable complexities to be implemented for
Millions of users. As building block which might be of
independent interest, we designed a communication-efficient
PIR-based protocol for privately querying the sum of multiple
distinct blocks. We hope to motivate further research and
implementations towards highly efficient PEM.
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APPENDIX

A. Shuffling with Mix-Net

The oblivious shuffle protocol (cf. §II-B) for L = 3 mix
servers works as follows: The L − 1 mix servers S1,S2
that receive the shares of messages from the participants first
agree on a permutation π and reorder their shares accordingly.
Then, one of the servers, let’s say S2, again secret-shares its
(permuted) shares among the remaining L − 1 mix servers,
i.e., S1 and S3. S1 now adds the received shares to its own
(permuted) shares of the database entries. Now, S1 and S3
hold shares that sum up to the plaintext messages. They
can now agree on another permutation π′ and repeat the
shuffle procedure after which S2 and S3 hold the two times
permuted shares of the database entries. Finally, S2 and S3
send their permuted shares to S1 (or a special exit server)
who reconstructs the permuted messages.

B. Communication complexities

In Tab. II, we give formulas for the communication costs
of our three private epidemiological modeling protocols.

C. Pseudo-Code PEM

List. 1 provides an overview about the information flow and
computations at a participant in our three PEM protocols. In

TEE-PEM (§VI-A)
database size u · γ · (512 + 256)
client upload γ · 256 + γ · (L− 1) · (512 + 256)
client download γ · (512 + 512)

MIX-PEM (§VI-B)
database size u · γ · (128 + 128)
client upload γ · 128 + γ · (L− 1) · (128 + 128)
client download 128 + γ · 128

PIR-PEM (§VI-C)
database size ((2 + ε) · u · γ + log2(u · γ) + λ) · 128
client upload γ · ((L− 1) · (128 + 128) + 2 · |DB|

b̂
+

K · κ+ 2 ∗K ∗ b̂
128

∗ 512)
client download γ · 2 ·K · 512

TABLE II: Communication costs in bits for one simulation
step s of our protocols in §VI. u is the total number of users,
γ is an upper bound for the number of encounters each user
had, L = 3 is the number of mix servers, K = 2 is the number
of PIR servers, b̂ =

√
|DB|/K is the optimal block size of

the multi-server PIR scheme, ε = 0.4 is the a Cuckoo hash
parameter from [73], λ = 40 bit is the statistical security
parameter, and κ = 128 bit is the computational security
parameter. We assume (ECC) public keys of size 256 bits,
ECC ciphertexts and signatures of size 512 bit, messages of
size 128 bit and trim hash values to 128 bit.

this section, we provide details about the instantiations of each
of the components that we described in §III-E for our TEE-
PEM (§VI-A), MIX-PEM (§VI-B), and PIR-PEM (§VI-C).

Listing 1: {TEE,MIX,PIR}-PEM: Participant
Input : l i s t mixServers , timeInterval , paramuser , identityInformation , ( for PIR−PEM: PIRServers )
/ / setup −> only for MIX−PEM and PIR−PEM
anonymCredentialsData = getCredentials ( credentialIssuer , identityInformation )

global l i s t REC, SENT = ∅
L = |mixServers|
exitNode = mixServers [L−1]

/ / col lect ion phase
for each t imeInterval :
Emit ( )
l i s t receivedData . add(receiveBLE () )
for k ∈ 1 . . . receivedData . length :
Listen( receivedData [k] )

/ / simulation phase
J = getNumberOfSimulations(from = RI)
classinf = getIni t ia l Infect ionClass (from = RI)

for j ∈ 1 . . . J :
paramsim = getSimulationParameters (from = RI , j )
S = getSimSteps (paramsim )
for s ∈ 1 . . .S:

/ / i t e r a t e through B’s ( received ) encounter information
for (encounterToken , paramenc ) ∈ f i l t e r (REC, paramsim , day = s) :
ck,j = Upload(classinf ,paramuser , paramsim , paramenc , encounterToken)
l i s t sharesEncryption , sharesReceiverInfo = ∅
sharesEncryption = XORSharing. create (ck,j ,L−1)
/ / create shares of the PK or hash of the random value sent during the encounter
sharesReceiverInfo = XORSharing. create (encounterToken . getReceiverInformation ( ) ,L−1)
for l ∈ 1 . . .L) :

/ / 3b : send shares to mix−net
send(mixServers [ l ] , sharesEncryption [ l ] , sharesReceiverInfo [ l ] )

infectionInfo = Fetch( f i l t e r (SENT, paramsim , day = s) )
classinf = Update( infectionInfo ,classinf ,paramuser )

Listing 2: Mix-net Server l (Shuffle)
Input : l i s t part icipants , l i s t otherMixServers , exitNode
/ / simulation phase
J = getNumberOfSimulations(from = RI)

for j ∈ 1 . . . J :
paramsim = getSimulationParameters (from = RI , j )
S = getSimSteps (paramsim )
for s ∈ 1 . . .S:
Dl = receive ( par t ic ipants )
/ / 3c : jo in t ly shuffle the received data
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DBl = shuffle ( otherMixServers , Dl )
send(exitNode , DBl )

Pseudo-Code TEE-PEM. List. 3 to 7 show the workflow of
TEE-PEM (§VI-A) at a participant B. Note that all operations
need to be executed in a TEE, i.e., the exit node will only
send the ciphertexts to B in List. 7 if it can verify that it
is communicating with a valid TEE via secure attestation
(cf. §II-B). Similarly, the signature verification in List. 5
ensures that the exit node has verified that it received the PKs
from a valid TEE before signing them. List. 8 presents the
exit node’s activities.

Listing 3: TEE-PEM: Prepare
function Prepare(e) {

global l i s t keypairs = ∅
l i s t signatures = ∅

/ / generate e key pairs
for i ∈ 1 . . .e :
PKBi , SKBi = generateECCKeyPair ( )

keypairs . add ( (PKBi , SKBi ) )

/ / 1a & 1b: send a l l public keys to the exi t node and receive signatures
σBi = send(exitNode , PKBi )

signatures . add(σBi )

return signatures
}

Listing 4: TEE-PEM: Emit
function Emit ( ){

signatures = Prepare(getMaxNumberEncounter ( ) )
counter i = 0
for each encounter :
encounterToken = ( keypairs [ i ] . pk , signatures [ i ] )
/ / 2a : send a PK and the respective signature to other par t ic ipant in the BLE range ( via

encrypted BLE channel )
sendBLE(encounterToken)
paramenc = ( getLocation ( ) , getEncounterDuration ( ) , getEncounterDistance ( ) )
SENT. add ( (encounterToken , paramenc ) )
i++

}

Listing 5: TEE-PEM: Listen
function Listen(encounterToken){

PK
Ak
k

, σ
Ak
k

= unpack(encounterToken)
/ / 2b

i f verifySignature (σ
Ak
k

,PK
Ak
k

) :
paramenc = ( getLocation ( ) , getEncounterDuration ( ) , getEncounterDistance ( ) )
/ / s tores PKs + signatures from other par t ic ipants Ak in the BLE range

REC. add(encounterToken , paramenc )
}

Listing 6: TEE-PEM: Upload
function Upload(classinf , paramuser, paramsim, paramenc, encounterToken){

PK
Ak
k

, σ
Ak
k

= unpack(encounterToken)
mk,j = getETI(classinf , paramuser, paramsim, paramenc )
/ / 3a : encrypt message
ck,j = Enc

PK
Ak
k

(mk,j)

return ck,j
}

Listing 7: TEE-PEM: Fetch
function Fetch(encounterToken , paramenc ){

/ / 3e
l i s t ciphertexts = receive (exitNode)

ETIsum = 0
for i ∈ 0 . . . ciphertexts . length :

/ / 3f
mi,j = Deckeypairs[i].sk ( ciphertexts [ i ] )
ETIsum += mi,j

return ETIsum
}

Listing 8: TEE-PEM: ExitNode (Shuffle)
Input : mixNet , part icipants ,
/ / col lect ion phase
for each t imeInterval :

for p ∈ par t ic ipants :
authenticationInformation , PKs = receivePKs(p)
/ / check that valid TEE i s used
i f verify ( authenticationInformation ) :

/ / 1b : send signatures
send ( [ sign (key) for key in PKs])

/ / simulation phase
J = getNumberOfSimulations(from = RI)
classinf = getIni t ia l Infect ionClass (from = RI)

for j ∈ 1 . . . J :
paramsim = getSimulationParameters (from = RI , j )
S = getSimSteps (paramsim )
for s ∈ 1 . . .S:

sharesCiphertexts , sharesPKs = receiveData (mixNet)
ciphertexts , PKs = XORSharing. combine( sharesCiphertexts , sharesPKs)
/ / 3d : check that hashes are used only once
checkUsage(PKs)
/ / 3e : send ciphertexts
send( part icipants , ciphertexts )

Pseudo-Code MIX-PEM. List. 9 to 13 show the workflow
of MIX-PEM (§VI-B) at a participant. Note that the steps 1)
and 3f) in List. 9, List. 13, and List. 14 are only executed
by the exit node if the participant can authenticate itself
with anonymous credentials (§II-B). List. 14 presents the exit
node’s activities.

Listing 9: MIX-PEM: Prepare
function Prepare(e){

global l i s t blindingValues = ∅

/ / generate e random values
for i ∈ 1 . . .e :
rBi = generateRandomValue ( )

blindingValues . add(rBi )
/ / 1
sent (exitNode , anonymCredentialsData , H(rBi )

}

Listing 10: MIX-PEM: Emit
function Emit ( ){
Prepare(getMaxNumberEncounter ( ) )

counter i = 0
for each encounter :
encounterToken = blindingValues[i]
/ / 2: send random value to other par t ic ipant in the BLE range ( via encrypted BLE channel )
sendBLE(encounterToken)
paramenc = ( getLocation ( ) , getEncounterDuration ( ) , getEncounterDistance ( ) )
SENT. add ( (encounterToken , paramenc ) )
i++

}

Listing 11: MIX-PEM: Listen
function Listen(encounterToken){

r
Ak
k

= encounterToken

paramenc = ( getLocation ( ) , getEncounterDuration ( ) , getEncounterDistance ( ) )
/ / s tores random values and encounter parameters from other par t ic ipants Ak in the BLE range

REC. add(r
Ak
k

, paramenc )
}

Listing 12: MIX-PEM: Upload
function Upload(classinf , paramuser, paramsim, paramenc, encounterToken){

r
Ak
k

= encounterToken

mk,j = getETI(classinf , paramuser, paramsim, paramenc )
/ / 3a : blind message

ck,j = mk,j +H(r
Ak
k
||j)

return ck,j
}

Listing 13: MIX-PEM: Fetch
function Fetch(encounterToken ,paramenc ){

/ / 3f
sumShares , hashes = receive (exitNode)

for i ∈ 1 . . . hashes . length :
/ / determine blinding value
rB = match( hashes [ i ] , blindingValues )



sumShares −= H(rB ||j)
return sumShares
}

Listing 14: MIX-PEM: ExitNode (Shuffle)
Input : mixNet , par t ic ipants
l i s t collectedHashes = ∅
/ / col lect ion phase
for each t imeInterval :

for p ∈ par t ic ipants :
collectedHashes . append( receiveHashes (p) )

/ / simulation phase
J = getNumberOfSimulations(from = RI)
classinf = getIni t ia l Infect ionClass (from = RI)

for j ∈ 1 . . . J :
paramsim = getSimulationParameters (from = RI , j )
S = getSimSteps (paramsim )
for s ∈ 1 . . .S:

sharesMessage , sharesHashes = receiveData (mixNet)
/ / 3d : combine shares
messages , hashes = XORSharing. combine(sharesMessage , sharesHashes )
checkUsage( hashes ) / /3d : check that hashes are used only once
/ / 3e : adds messages that have the same receiver ( hashes came from the same sender −> stored in

collectedHashes )
sumMessages = sum( collectedHashes , messages , hashes )
/ / 3f : send sums to par t ic ipants + verify anonymous credentials
send( part icipants , sumMessages , hashes )

Pseudo-Code PIR-PEM. List. 15 to 19 show the workflow
of PIR-PEM (§VI-C) at a participan. Note that the steps 3e)
and 3f) in List. 19 and List. 20 are only executed by the exit
node if the participant can authenticate itself with anonymous
credentials (§II-B). List. 20 presents the exit node’s activities.

Listing 15: PIR-PEM: Prepare
function Prepare(e){

global l i s t blindingValues = ∅

/ / generate e random values}
for i ∈ 1 . .e :
rBi = generateRandomValue ( )

blindingValues . add(rBi )
}

Listing 16: PIR-PEM: Emit
function Emit( i ){
Prepare(getMaxNumberEncounter ( ) )
counter i = 0
for each encounter :
encounterToken = blindingValues[i]
/ / 2: send random value to other par t ic ipant in the BLE range ( via encrypted BLE channel )
sendBLE(encounterToken)
paramenc = ( getLocation ( ) , getEncounterDuration ( ) , getEncounterDistance ( ) )
SENT. add ( (encounterToken , paramenc ) )
i++

}

Listing 17: PIR-PEM: Listen
function Listen(encounterToken){

r
Ak
k

= encounterToken

paramenc = ( getLocation ( ) , getEncounterDuration ( ) , getEncounterDistance ( ) )
/ / store random value and encounter parameters from other par t ic ipants Ak in the BLE range

REC. add(r
Ak
k

, paramenc )
}

Listing 18: PIR-PEM: Upload
function Upload(classinf , paramuser, paramsim, paramenc, encounterToken){

r
Ak
k

= encounterToken

mk,j = getETI(classinf , paramuser, paramsim, paramenc )
/ / 3a : blind message

ck,j = mk,j +H(r
Ak
k
||j)

return ck,j
}

Listing 19: PIR-PEM: Fetch
function Fetch(encounterToken ,paramenc ){

i f j==0: / / f i r s t simulation \rightarrow generate & upload PIR requests
l i s t req = ∅
for rBi ∈ SENT. encounterToken :

req . add(HybridPIR . generateReqest (H(rBi ) ) )
/ / 3e
sent (PIRServers , anonymCredentialsData , req , |SENT|)

l i s t ciphertexts , keyShares = ∅
for i ∈ e :

/ / 3f
PIRResponse = receive ( PIRservers )
ct , ks = HybridPIR . reconstruct (PIRResponse)
ciphertexts . add( ct )
keyShares . add(ks )

/ / combine using threshold secret sharing scheme (TSS)
keyPIR = TSS. combine(keyShares )

Cj = 0
for i ∈ 1 . . ciphertexts . length :
rBi = blindingValues [ i ]
/ / decrypt and unblind message
c = DeckeyPIR

( ciphertexts [ i ] ) − H(rBi ||j)
Cj += c

return Cj
}

Listing 20: PIR-PEM: ExitNode (Shuffle)
Input : mixNet , par t ic ipants
/ / simulation phase
J = getNumberOfSimulations(from = RI)
PIRQueries = ∅

// 3d: combine shares and create AGCT

for j ∈ 1 . . . J :
paramsim = getSimulationParameters (from = RI , j )
S = getSimSteps (paramsim )
for s ∈ 1 . . .S:

// 3d: combine shares and create AGCT
sharesMessages , sharesHashes = receiveData (mixNet)
messages , hashes = XORsharing . combine( sharesMessages , sharesHashes )
AGCT = createAGCT(messages , hashes )

for u ∈ 1 . . par t ic ipants . length :
i f j == 1:

// PIR queries are reused for all simulations
PIRQueries [s ] [u] = getQueries ( par t ic ipants [u] )

keyPIR = KDF(sPIR || ”PIR key” || j || s || u)

// create (2 ∗ γu)-out-of-(AGCT.length) threshold-shares of keyPIR
// where γu is the number of encounters of participant u
keyShares = TSS. create (keyPIR , 2 ∗ γu , AGCT. length )

// create XOR sharing of zero
r = XORSharing. create (0 , 2 ∗ γu )

// precompute PIR responses
PIRResponses = ∅

for l in 1 . . (2 ∗ γu ) :
PIRDB = ∅

for k ∈ 1 . .AGCT. length :
PIRDB[k] = ( (EnckeyPIR

(AGCT[k] + r[l]) , keyShares[k]) )

PIRResponses[l] = HybridPIR . createResponses (PIRQueries[s][u][k] , PIRDB)

// 3f: send PIR responses
send( par t ic ipants[u] , PIRResponses)
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