
PEM: Privacy-preserving Epidemiological
Modeling

Daniel Günther1, Marco Holz1, Benjamin Judkewitz2, Helen Möllering1,
Benny Pinkas3, and Thomas Schneider1

1 Technical University of Darmstadt, Darmstadt, Germany
{lastname}@encrypto.cs.tu-darmstadt.de

2 Charité-Universitätsmedizin, Berlin, Germany
benjamin.judkewitz@charite.de

3 Bar-Ilan University, Ramat Gan, Israel
benny@pinkas.net

Abstract. To better manage the current pandemic, it would be bene-
ficial to model the potential effect of measures, e.g., contact restrictions
and school closings, on the spread of COVID-19. However, detailed epi-
demiological simulations suffer from a scarcity of relevant empirical data,
such as social contact graphs. As this data is also inherently privacy-
critical, there is an urgent need for a method to perform powerful epi-
demiological simulations on real-world contact graphs without disclosing
sensitive information.
In this work, we introduce the problem of privacy-preserving epidemio-
logical modeling (PEM). We propose a practical framework for PEM on
contact information stored on mobile phones, like the ones collected by
already deployed contact tracing apps. Unlike existing apps that focus
on past events, PEM allows for meaningful epidemiological simulations
about future developments. PEM protects the privacy of the users by
not revealing sensitive data to the system operator or other participants,
while enabling detailed predictive models of pandemic spread. Our proto-
cols are combining mix-nets with either trusted execution environments
or private information retrieval. We show that they achieve practical
performance for deployments in large regions.

Keywords: Decentralized Epidemiological Modeling · Privacy · Private
Information Retrieval · COVID-19

1 Introduction

In the current pandemic, governmental decision making processes closely re-
semble epidemiological simulations: They put measures in place, wait for a few
weeks, and evaluate the outcome. If the effect is not sufficient different measures
are put into place.

In contrast, epidemiological modeling can predict the spread of diseases for
many scenarios anticipating the effects of different control measures in advance
within a short time period. With these insights, it enables to create informed
epidemic containment strategies and political interventions before putting them
into place. Considering the massive restrictions people face to get the virus



2 Günther et al.

under control, it is in everybody’s interest to determine which measures are
most promising and enable people to securely return to normality as soon as
possible. However, detailed epidemiological models of communicable diseases,
including COVID-19, have long suffered from a lack of available social interaction
data [3,27,39]. From a modeler’s perspective, epidemiologists would ideally like
to have access to the complete physical interaction graph of a population. It
has long been known that the topology of the interaction network has a large
influence on the spread of diseases [44, 49]. Empirical contact graph data would
permit detailed simulations of how a disease propagates through an interaction
network, and what type of interventions might be most effective at containing it.
Yet, direct access to the social contact graph of a population raises vast privacy
concerns, rendering this direct modeling approach non-viable.

In this work, we present a practical framework for privacy-preserving epi-
demiological modeling (PEM) to overcome this barrier. Our goal is to leverage
data about physical closeness collected by mobile devices to realise detailed (de-
centralized) epidemiological modeling on the real contact graph while simultane-
ously protecting privacy. Many simulations need to be run to compare the effect
of different disease management scenarios or to anticipate potential manifesta-
tions of properties of a new unknown disease. However, when running multiple
simulations on the real-world connectivity graph, even just the simulated infec-
tion status of other participants can leak information about the real contact
graphs (cf. §4.1). Thus, PEM requires sophisticated approaches for protecting
the privacy of all participants. Our PEM protocols can be integrated in already
deployed decentralized contact tracing apps.
Related Work. A large amount of contact tracing systems have been proposed
aiming at informing people about exposures with infectious persons such that
they can be isolated and tested. They realize contact tracing either based on
the location (via GPS or telecommunication provider information) or based on
proximity (via Bluetooth LE). The systems can be split into centralized and
decentralized approaches. In a centralized contact tracing system (e.g., Stop-
Covid/ROBERT [32,43] and TraceTogether [30]), computations such as the gen-
eration of the exchanged identifiers are executed at a central party that may also
receive encounter information of people. In contrast, in decentralized approaches
(e.g., DP-3T [54] and PACT [12]), computation and encounter information re-
main (almost completely) locally at the participants’ devices.

A system for privacy-preserving detection of infection hotspots using location
data stored at a mobile network operator was proposed in [7]. While learning
about areas of high risk of contamination also helps policymakers for taking
countermeasures, PEM goes beyond by simulating the effect of various contain-
ment measures in advance.

FluPhone [58] aims at applying epidemiological models on real-world, non-
aggregated contact graph data of individuals. The project collects proximity
data via Bluetooth LE and GPS location data, but only anonymizes user identi-
fiers. Also Biasse et al. [9] suggest to create an anonymized contact graph from
contact information collected via Bluetooth-based decentralized contact tracing



PEM: Privacy-preserving Epidemiological Modeling 3

apps, that can then be used for epidemiological modeling. However, even an
anonymized contact graph without user identifiers and locations would have to
include some time and distance information to enable the determination of the
infection likelihood of contacts. Such information still allows to detect potentially
sensitive behavior patterns, e.g., regularly occurring times of prayers common in
some religions, that might even allow re-identification to a certain extent.
Outline and our Contributions. After giving related work (§1) and prelimi-
naries (§2), we provide the following contributions:
– In §3, we introduce an extension to existing private information retrieval

(PIR) schemes that we call Threshold-PIR-SUM. It allows a client to down-
load the sum of t distinct entries of a database without learning the values of
individual entries and without revealing which entries were requested. Our
idea for verifying properties of multi-server PIR queries via MPC might be
of independent interest.

– In §4, we introduce privacy-preserving epidemiological modeling (PEM), its
privacy requirements, ideal functionality, and components. Further, we pro-
vide a detailed evaluation of two attacks on PEM that aim at extracting
information about the contact graph. Then, we introduce two PEM proto-
cols with different trust assumptions for epidemiological simulations on real-
world contact data collected with the users’ mobile devices. In our protocols,
all data remains locally on the devices by distributing the simulation using
cryptographic building blocks. Our PEM protocols combine mix-nets with
either trusted execution environments or PIR and anonymous credentials.

– In §5, we analyze privacy guarantees, communication costs, and give mi-
crobenchmarks for the runtimes of our protocols. We show that they are
efficient and even scale up to thousands of users.
Our goal is to extend the focus of the privacy research community from

private contact tracing, which notifies users about potential exposures in the
past, to the problem of PEM for predicting the effect of containment measures
in the future.

2 Preliminaries

In this section, we summarize epidemiological modeling and the cryptographic
building blocks used in our work.

2.1 Epidemiological Modeling

State-based compartment models capture the spread of a disease with a few con-
tinuous variables linked by simple differential equations. A prominent example is
the SEIR model [23,37] with four classes to which people are assigned, namely,
susceptible (S), exposed (E), infected (I), and recovered (R). While such mod-
els are useful for capturing macroscopic trends and also used in state-of-the-art
epidemiological research, e.g., [16,53], they often fail to capture the heterogene-
ity of a population. The reason is that they are condensing complex individual
behaviour into few variables, thus, limiting the simulation’s predictive power.



4 Günther et al.

This is why finer-grained, so-called agent-based models have been developed
by epidemiologists and governments to provide more accurate predictions [28].
Such simulations typically involve (1) initialising a large number of agents with
a set of individual properties (e.g., location, age, etc.), (2) assigning initial in-
fections to a small set of starter agents, (3) letting the agents interact according
to a set of interaction rules (e.g., location-based, age-based, etc.), (4) spreading
infections by changing the state of interacting agents, (5) calculating aggregate
data such as the number of infected people at a given time and (6) running the
simulation over many time steps to capture the evolution of a disease. Many such
simulations with varying parameters are run in parallel (e.g., reducing interac-
tions between agents of a certain age, capping the maximum number of allowed
contacts, or setting a selected group of agents to vaccinated – to simulate the ef-
fect of various policy interventions). One of the most critical components of such
models are the rules by which agents interact. Previous models used survey-based
contact matrices, which provide aggregated data such as the average number of
contacts between people in a certain age range [39].

While such simulations represent an important improvement over earlier work
that treat all individuals the same, they still treat all members of an age group
the same. Yet, it is well known that aggregate network statistics often cannot
recreate the dynamics of an actual complex network graph – a fact which is also
highlighted by the prominence of super-spreaders with many more than average
number of contacts. Thus, rather than using aggregate and highly reduced data,
the best case scenario from an epidemiological perspective would be to use the
real-world contact graph between all individual members of the population which
we enable with our PEM protocols in §4.2.

2.2 Cryptographic Building Blocks

Oblivious Shuffling. Mix-nets [14] were one of the first approaches to anony-
mous messaging. A fundamental technique underlying mix-nets is oblivious shuf-
fling that provides unlinkability between the messages. In a mix-net, so-called
mix servers jointly perform the oblivious shuffling so that no single mix server
is able to reconstruct the permutation performed on the input data. Oblivious
shuffling can, e.g., be based on distributed point functions [18] or MPC [2].
Anonymous Credentials. Chaum [13] introduced anonymous credentials where
a client holds the credentials of several unlinkable pseudonyms. The client can
then prove that it possesses the credentials of pseudonyms without the service
provider being able to link different pseudonyms to the same identity. Addi-
tionally, anonymous credentials allow to certify specific properties like the age.
Several instantiations for anonymous credentials have been proposed, e.g., Mi-
crosoft U-Prove [48] or IBM Idemix [31],
Multi-Party Computation (MPC). Secure MPC [57] allows multiple parties
to jointly compute an arbitrary function on their private information without
leaking anything but the output. Thereby, at least one and potentially more
parties are assumed to be non-colluding. In the last years, MPC techniques for
various security models have been introduced, extensively studied, and improved,



PEM: Privacy-preserving Epidemiological Modeling 5

e.g., in [20, 21, 42]. These advancements significantly enhance the efficiency of
MPC making it more and more practical for real-world applications.
Private Information Retrieval (PIR). PIR enables a client C to retrieve one
or multiple blocks of a database DB = [b1, ..., bN ] of N blocks without disclosing
to the server which blocks were requested. The first computational single-server
PIR (cPIR) scheme was introduced by Kushilevitz and Ostrovsky [41]. Recent
cPIR schemes [5, 29] use homomorphic encryption (HE). However, single-server
PIR suffers from significant computation overhead since compute intensive HE
operations have to be computed on each block of the DB for each PIR request. In
contrast, multi-server PIR relies on a non-collusion assumption between multiple
PIR servers and uses only XOR operations [10, 17, 19] making it significantly
more efficient than cPIR. In its simplest form, two-server information theoretic
PIR [17] works as follows: A client C aiming to retrieve block b from a database
of N blocks generates two random N -bit queries q1 and q2, which only differ
in the b-th bit, and sends q1 to server S1 and q2 to server S2. The servers
now XOR the blocks of the database specified by the 1-bits of the queries and
send the result back to C. Since all blocks except the b-th block are included
either zero or two times while block b is in exactly one of the two responses,
C can now XOR both to retrieve block b. Boyle et al. [10] improve the linear
communication complexity of this protocol to logarithmic communication by
using function secret sharing (FSS), where the client shares a function between
two PIR servers which outputs ‘1’ at the index of block b and ‘0’ otherwise.
Garbled Cuckoo Tables. Garbled cuckoo tables (GCT) combine garbled Bloom
filters [24] with cuckoo hashing [38, 47]. Instead of storing a value v in one of k
locations determined by k hash functions as in an ordinary cuckoo table, k XOR
shares of v are stored at the k locations. We design a variant of GCT called
arithmethic garbled cuckoo table (AGCT) that uses arithmetic sharing over the
ring Z2` instead of XOR sharing.
Trusted Execution Environments (TEE). TEEs are hardware-assisted en-
vironments providing secure storage and execution for sensitive data and appli-
cations isolated from the normal execution environment. Data stored in a TEE is
secure even if the OS is compromised. Widely adopted TEEs are Intel SGX [34]
and ARM TrustZone [6] (often used on mobile platforms [45]). Using TEEs for
private computation has been extensively investigated, e.g., [8, 46]. A process
called remote attestation allows external parties to verify that its private data
sent via a secure channel is received and processed inside the TEE using the in-
tended code [15,33]. However, side-channel and cross-layer attacks [11,22] show
that TEEs can be broken with some effort.

3 Threshold-PIR-SUM

For one of our PEM protocols in §4.2, we need a protocol where a client can
privately retrieve the sum of τ distinct entries (corresponding to the infection
likelihood of τ encounters). For this, we extend multi-server PIR to (a) privately



6 Günther et al.

retrieve the sum of τ entries and to (b) ensure that a client retrieves τ distinct
entries. Combining both yields the sum of τ distinct entries.
PIR-SUM. Our first construction (depicted in Fig. 3 in App. A) enables a
client C to query τ blocks (bidx1 , ..., bidxτ ) of a database DB containing N blocks,
where {idx1, ..., idxτ} are the indices of the τ blocks of DB freely chosen by the
client, and retrieve only the sum of these blocks. We assume that all arithmetic
operations are performed in the ring Z2` .

Prior to any communication with the clients, the K PIR servers agree on a
randomly chosen secret sPIR. For τ PIR queries from a client, the servers then
derive τ fresh pseudo-random arithmetic shares from sPIR that sum up to 0, i.e.,
r1 + ...+ rτ mod 2` = 0, where ` is the respective bit length.

For the j-th query of the τ queries from client C, the PIR servers add the
same arithmetic share rj to each element of DB, i.e., b′i = bi+ rj mod 2` where
i ∈ [1, N ], and compute the PIR response in the usual way. Since the client first
needs to XOR the retrieved PIR responses from all PIR servers, the arithmetic
blinding must be applied to the database blocks and cannot be applied to the
PIR responses (since XORing the responses would then impair the arithmetic
sharing). After performing τ PIR requests, the client receives τ arithmetically
blinded blocks b′idx1

, ..., b′idxτ where b′idxj = bidxj + rj mod 2` for j ∈ [1, τ ].
When summing up the blinded blocks, the shares added by the servers cancel
out and the client retrieves the sum of database entries: bsum =

∑τ
j=1 b

′
idxj

=∑τ
j=1(bidxj + rj) =

∑τ
j=1 bidxj mod 2`. However, this alone does not guarantee

that a client requests τ different blocks. Without any further measures, a client
could query the same block in each of the τ PIR requests and divide the sum by
τ to receive block τ in plain.
Threshold-PIR. With our second construction, we force the client to request
τ distinct blocks from the database.

After receiving all PIR queries in one simulation step, each PIR server locally
XORes the queries received from the same client. Then, the PIR servers engage
in a MPC protocol (cf. §2.2) that privately XORs the locally XORed queries
for each client, computes the Hamming weight of the result, and checks that it is
equal to τ . This ensures that exactly τ different entries of the DB are queried by
the client. In our performance evaluation in §5.2, we show that this verification
is very efficient. It is run once per client and takes only 9.88 min with two PIR
servers for a PIR database with 107 entries.

4 Privacy-preserving Epidemiological Modeling (PEM)

Contact tracing apps detect physical contacts to inform people about potential
infections. If this information was combined at a central place, a full contact
graph could be built for epidemiological simulations. However, contact data is
highly sensitive information that should not be shared. A relatively efficient op-
tion to realize privacy-preserving epidemiological modeling (PEM) would be that
each participant (i.e., each device using the contact tracing app) secret shares
its contact information between non-colluding servers that can then jointly run



PEM: Privacy-preserving Epidemiological Modeling 7

TTP
+ paramsim

[#S,#E, #I, #R]

Research 
Institute
(RI)

Susceptible	(S)
Exposed	(E)
Infectious	(I)
Recovered	(R)

2. Encounters:
- a12f
- …

3.

4. 𝑠	 ∗ [#S,#E, #I, #R]
1. paramsim

2. Encounters:
- a12f
- 313k
- …

Fig. 1: Ideal functionality of private epidemiological modeling (PEM).

simulations using MPC (cf. §2.2). Even though such a non-collusion assump-
tion is standard in the crypto community, the general public in some countries
could struggle to trust a system where all contact information is disclosed if the
servers collude. Hence, our system aims at distributing the trust by involving all
participants such that they can keep their own contact information locally.
Ideal Functionality. Fig. 1 gives the ideal functionality of PEM with a trusted
third party (TTP). A research institute (RI) sends simulation parameters paramsim

(e.g., initial class, characteristics of the disease, and activated control measures)
to the TTP (Step 1). In Step 2, the clients send so-called encounter tokens to
the TTP. These encounter tokens were exchanged via Bluetooth LE (similar to
what is done in existing contact tracing apps) during a collection phase in the
real-world when two people have a contact (cf. Fig. 2a). The TTP then recon-
structs the contact graph of the participants and runs the simulation phase, i.e.,
epidemiological simulation for s time steps (Step 3). It sends the aggregated
number of participants per class (e.g., [#S,#E,#I,#R]) for each simulated
time step to the RI (Step 4).
Problem Statement. To realize private epidemiological modeling on a real
contact graph, the simulation phase must ideally be realized anonymously and
distributedly. Thereby, each participant with its device represents an agent in
the terminology of §2.1. To start a simulation, each participant is assigned to
a class (e.g., S,E,I,R for the SEIR model). Then, in each simulation step, the
user anonymously sends an encrypted message to its contacts via the Inter-
net using the anonymous encounter tokens exchanged in the collection phase
(cf. Fig. 2b) as address. These messages encode the likelihood of having infected
the other contact during the encounter, a value we call encounter transmission
intensity (ETI). The ETI can, e.g., be a binary variable (infected/not infected) or
a continuous variable based on several parameters, e.g., distance and duration of
the encounter, transmission likelihood, etc. that is designed by epidemiologists.
Location- or time-based filters that model containment measures can be inte-
grated using the date, time, and coordinates of the respective encounter stored
as metadata on the device. Then, as shown in Fig. 2c, each participant decrypts
and aggregates the ETI it received and updates its simulated class accordingly.
Security Model. We assume that the participants in general follow the proto-
col (i.e., semi-honest security) to achieve correctness of the simulation result, but



8 Günther et al.

dkc9
b1kq

(a) Collection Phase:
Encounter token ex-
change in a physical
encounter.

Received:
dkc9
lo2m

Sent:
dkc9

Sent:
lo2m

simulated

(b) Simulation phase: ETI sent
by one participant in one simu-
lation step.

Sent:
dkc9

(c) Simulation phase:
Updating simulation
class in a simulation
step using total ETI
from received messages.

Fig. 2: System Overview of privacy-preserving epidemiological modeling (PEM).

seek to learn further information about the other participants. This assumption
is reasonable as, given the massive restrictions many people are facing because
of COVID-19 nowadays, many people will be highly motivated to contribute to
a successful epidemiological study, that determines which containment measures
are most promising. However, considering the large number of participants in-
volved, it is likely that few people might behave deliberately dishonestly and
provide a wrong input to the experiment. But since the users can only affect
people they were in contact with in the “real world”, they cannot easily perform
a large-scale attack to change sufficiently many inputs to alter the simulation re-
sult. We experimentally evaluate the effect of manipulations by a small fraction
of the participants in App. B.

We also assume all involved servers to be semi-honest and to not collude.
However, we discuss an attack by a single malicious server in §4.2 as it was
also discussed in the context of contact tracing. The servers could, e.g., be run
by governmental institutions and non-profit organisations like the EFF that are
concerned with data security and privacy.
Privacy Requirements. The privacy requirements of PEM follow from the
ideal functionality (cf. p.7), but for clarity we explicitly point them out:
Encounter Anonymity: PEM must ensure that participants do not learn to whom
they unconsciously had contact.
Re-Identification: Participants must not learn if they unconsciously had contact
with the same person twice. This includes Infection Obscurity: Exposed partici-
pants must not learn who of their encounters infected them (in the simulation).
Contact Graph Privacy: (a) w.r.t. participants: Participants must not be able to
infer anything about contacts of other participants. The only exception is that
exposed participants can infer that someone of their contacts must have been
in contact with a (simulated) infectious participant. As this is only a simulated
infection, we consider this as an acceptable leakage to improve the efficiency of
our protocols; (b) w.r.t. simulation servers/RI : Servers in our system and the
RI must not learn anything about the contact graphs.



PEM: Privacy-preserving Epidemiological Modeling 9

4.1 PEM Attack Scenarios

Next, we describe two non-trivial attacks on the privacy of the contact graph
that we mitigate in our PEM protocols.
Linking Identities Attack. When two participants Alice and Bob have met
during the collection phase, Alice (anonymously) sends Bob messages containing
the simulated infection risk (ETI) she exposed Bob to in the respective encounter
in the simulation phase based on her current simulated infection class (and vice-
versa). When Bob now suspects that two different physical encounters were with
the same person, Alice, he can verify this as the messages of these encounters
correlate with non-negligible probability. Concretely, Bob is even able to check
correlations for all received messages to detect which messages are likely to be
from the same person. In this case, Bob receives Alice’s infection likelihood
represented by the ETI Alice emits twice — once for each individual encounter.
As simulated “infections” will appear only for the minority of contacts, having
two/multiple encounters that are sending the same ETI in every simulation
always at the same simulation steps makes it likely that these encounters have
been with the same participant or closely related participants (e.g., flatmates).
The problem persists if the ETI is the output of a function with inputs like the
encounter’s duration and distance. In this case, Bob might receive different ETIs
from the same Alice for two different encounters, but they are still correlated and
Bob knows the function for determining the ETI and its inputs such that he is
able to detect correlations. In order to mitigate this attack, Bob must not learn
the infection class of individual encounters, but should still be able to determine
his own risk of exposure. Thus, our protocols in §4.2 obliviously sum up the
messages from all encounters of Bob.
Sybil Attack. Because of the Linking Identities Attack, our protocols allow Bob
to only receive the sum of his messages. This includes that he cannot change the
set of requested messages in successive simulations to infer differences between
the received sums. However, without further precautions, Bob could create mul-
tiple identities. Thus, for each of his identities he would then learn a sum which
is equal to the ETI of one of his encounters. Note that this requires Bob to meet
only a single Alice and no one else in the collection phase with each identity.
With such a sybil attack [25] with n identities, Bob would be able to receive
n individual messages. Trivially limiting the minimum number of encounters
to encmin does not work: Bob could simply simulate encmin − 1 additional en-
counters with identities created by himself and extract the single valid message
obtained from the real encounter. To protect against such sybil attacks, i.e.,
to prevent an adversary from creating multiple identities, we use anonymous
credentials that increase the costs to create (fake) identities: This can, e.g., be
realized in a closed ecosystem like a company where each member gets exactly
one token to join the simulation. This may also be deployed at a greater scale
on a country level where every citizen receives a token coupled with a digital
ID card. A client Bob can only receive his update for the infection class if he
authenticates himself with his anonymous credentials.



10 Günther et al.

4.2 PEM Protocols

We describe our two PEM protocols next. Let us assume two participants, Alice
and Bob, who have met during the collection phase and are now taking part in
the simulation phase. Alice acts as the sender of a message mi,j , where i is Bob’s
local id for this encounters and j is the number of the current simulation. The
message mi,j is the ETI of Alice during the encounter given her current (sim-
ulated) infection class, encounter distance, duration, etc. Bob receives the sum
of the ETIs from his encounters in simulation step (including Alice’s message)
such that he can estimate if he got exposed and possibly update his infection
class. For the sake of clarity, we do not discuss the analogous steps where Bob
sends a message with his ETI to Alice, and all other participants that had en-
counters with Alice/Bob in the collection phase also send messages to them (and
vice versa). Sending the messages between Alice and Bob is realized using central
servers that must not learn anything about the contact graph as defined in the
privacy requirements (cf. p. 8). The handling of dropouts is discussed in App. B.
Mix-nets for Sender-Anonymity. The messages encoding ETIs include the en-
counter token that can be used by the receiver (i.e., the contact) to download
the message. If they are directly uploaded to a central server, the server could
connect between participants and encounter tokens that were sent over Blue-
tooth (either collected by the server or by participants who collaborate with
the server) and later re-identify participants that upload messages together with
these tokens. Thus, a dishonest server could easily track participants. To thwart
this attack, we use a mix-net to obliviously shuffle all messages. Then, the par-
ticipants obliviously download the (shuffled) messages they are interested in.
Hiding the number of encounters. A participant can prevent the central servers in
our PEM protocols from learning the number of encounters by sending “dummy”
messages indicating no risk of infection to itself.
TEE-PEM. In our first protocol, called TEE-PEM, we assume that the mobile
device of each participant is equipped with a TEE such as ARM TrustZone
(cf. §2.2). Note that this distributes trust over multiple TEEs which is much
more robust than a single TEE holding the complete contact graph (cf. §4) that
would be an attractive target for attacks.

For every time step in the collection phase, e.g., a day, Bob’s TEE uploads
a list of freshly created public keys PKB

i , i ∈ [1, e] (e is the number of max.
possible encounters per simulation step) to the exit node of the mix-net that
returns signatures for each of them. The exit node only signs the public keys
if it can anonymously verify that it is directly communicating with a TEE via
a secure channel. During an encounter, Bob then sends Alice a fresh (unused)
public key together with the corresponding signature provided by the exit node
via Bluetooth LE. By verifying the signature, Alice can convince herself that the
public key was indeed created by a TEE. This concludes the collection phase. In
the simulation phase in each simulation step, Alice’s TEE encrypts her message
mi,j with Bob’s public key PKB

i that she received in the collection phase in
encounter i. Then, the TEE sends the ciphertext and the public key to the
mix-net. The mix-net shuffles all messages of this simulation step and forwards



PEM: Privacy-preserving Epidemiological Modeling 11

them to the exit node. The exit node verifies that PKB
i is only used once per

simulation. Next, the exit node sends all ci,j (where j is the number of the current
simulation) to Bob’s TEE via a secure channel using the PKB

i from Step 1a to
determine Bob as the receiver. Bob’s TEE decrypts and sums all ETIs up. As
Bob committed to his public keys before the collection phase, he cannot lie about
his encounters. Thus, he cannot infer correlations between encounters (cf. §4.1).
Based on the sum of all ETIs sent to him, Bob’s new infection class is determined
in the TEE.
Corrupted TEE. If Bob’s TEE gets corrupted, he can access individual received
messages in plain, i.e., there will not be any protection against the Linking
Identities Attack (cf. §4.1). However, this problem occurs only locally (only Bob’s
contacts are affected). If Alice’s TEE is corrupted, she can freely manipulate her
messages without any restriction. Without the corruption Alice is only able to
manipulate the information originating from her Bluetooth interface once, but
these information are then fixed for all simulations.
Malicious Exit Node. In TEE-PEM, the exit node learns the public keys corre-
sponding to the messages sent to Bob s.t. it is able to track Bob with the help
of a colluding participant who previously received Bob’s respective public key
via BLE and, hence, know the location. Moreover, the exit node could install
Bluetooth sniffers to establish a mass surveillance system. This attack requires
to put physical devices in place and might be considered unrealistic if the exit
node is run by a reasonably trustworthy governmental institution. Our protocol
presented next thwarts this attack.
PIR-PEM. In our second protocol, called PIR-PEM, we use our novel Threshold-
PIR-SUM protocol from §3 such that a malicious exit node cannot track partic-
ipants. To run PIR with address identifiers, we adapt the approach of [4] that is
based on Cuckoo hashing, but switch to an AGCT (cf. §2.2) to ensure that each
participant knows the exact locations of the messages sent to him.

In PIR-PEM, Bob creates e (e is the number of max. possible encounters per
simulation step) random values rBi . In the i-th encounter in the collection phase,
Bob sends rBi to Alice. Alice uses the random value rBi to blind her message for
Bob ci,j = mi,j + H(rBi ||j) mod 2`, where H is a cryptographic hash function
and j is the number of the current simulation. She sends the ciphertext ci,j and
the address ai = H(rBi ) to the mix-net. After all clients uploaded their messages,
the mix-net obliviously shuffles them. The PIR servers (which can be equal to
the exit nodes of the mix-net) insert the shuffled ci,j concatenated with ai into an
arithmetic garbled cuckoo table (AGCT, cf. §2.2) using ai as insertion key. Once
for all simulations with the same contacts, Bob sends 2γ PIR queries for our
Threshold-PIR-SUM protocol (cf. §3) to each of the PIR servers, where τ = γ
is the number of encounters Bob had (potentially including “dummy” messages
for hiding the real number of encounters). The PIR queries privately request
the two entries of the AGCT determined by ai of each encounter. The clients’
PIR queries for a simulation step are cached by the PIR servers and re-used in
all later simulations. This not only drastically improves communication in all
later simulations, but also ensures that Bob cannot request different entries of



12 Günther et al.

the AGCT in different simulations (thwarting the linkage of encounters by small
variations between the requested sets, cf. §4.1). Additionally, the MPC protocol
for the Threshold-PIR in Threshold-PIR-SUM must also be executed only once
for each simulation step for all simulations with the same collection phase data.
In the next step, Bob retrieves the PIR responses from the PIR servers, extracts
the ciphertexts, and sums them up to get the sum of the blinded messages.
Then, he unblinds it Mj = Cj −

∑
H(rBi ||j) mod 2` to receive the total ETI.

Note that he can use the concatenated addresses ai to determine which of his
encounters participated in the simulation and, thus, which hashes he needs for
unblinding the total ETI (cf. §B).

Manipulated Queries. If Bob met less than γ participants but requests γ
messages, he is still forced to retrieve the sum of exactly γ distinct messages.
However, he cannot unblind the sum as at least one messages was not blinded
with one of his rBi or is just random. If Bob met more than γ participants, he
still only learns the sum of γ messages. Hence, this is equivalent to not meet-
ing the not included participants. Note that Bob commits to the number γ for
all simulations. Thus, he cannot change γ to infer information from differences
between simulation results.
Having only one encounter. If Bob had only one physical encounter, the messages
he would receive in the simulation phase of PIR-PEM would reveal if his contact
was simulated infected by design. This is not avoidable as long as the sum of
ETIs is revealed to Bob. However, as pointed out before, the infection class of a
participant is not sensitive information as it is only simulated. Furthermore, hav-
ing only the message from one contact does not allow Bob to infer correlations.
Nonetheless, we point out that in combination with additional external informa-
tion (e.g., about which groups of the population were initialized as infected), a
message could reveal something about the relationship of the participant to this
group. We consider this edge case to be acceptable and point out that it can be
avoided using TEEs as in TEE-PEM.
Non collusion assumption. We argued in §4 that doing PEM with MPC does
not generate sufficient trust in the population as colluding servers would leak
the whole contact graph. Our PIR-PEM protocols leaks much less information
if the servers collude: Colluding PIR servers would learn which blocks were re-
quested by Bob, but they could not extract the ETI per encounter as they
cannot unblind the message. Hence, colluding servers cannot detect correlations
between participants’ encounters limiting the information leakage to knowing
which messages were requested in a batch.
Result Aggregation. After each simulation step, the total number of par-
ticipants per infection class (e.g., (#S,#E,#I,#R), cf. §2.1) is computed via
secure aggregation and revealed to the research institute (cf. §4). Secure aggre-
gation is a standard problem in privacy-preserving smart metering [26, 40] and
there are several solutions, e.g., using TEE, or a semi-trusted server aggregating
HE ciphertexts, or N non-colluding servers that aggregate secret shares.



PEM: Privacy-preserving Epidemiological Modeling 13

5 Evaluation

In this section, we evaluate our PEM protocols w.r.t to privacy and communica-
tion costs, and give microbenchmarks for the runtimes of their main components.

5.1 Privacy Discussion

We show that our PEM protocols in §4.2 achieve the privacy requirements (p. 8).
Participants: All messages are sent anonymously using a mix-net s.t. no par-
ticipant learns anything about the identity of unconscious contacts (achieving
encounter anonymity). In TEE-PEM, the simulated infection class is securely
updated in a TEE offering protection against re-identification and achieving
contact graph privacy w.r.t participants. In PIR-PEM, clients can infer their
recent class and the sum of ETI, i.e., they learn that one of their contacts must
have been infected when they get exposed. This also yields protection against
re-identification and achieves contact graph privacy w.r.t participants.
Servers: Our protocols involve mix servers and the PIR servers. In TEE-PEM
(§4.2), the non-colluding mix servers shuffle the encrypted messages and PKs
that are then recevied by the exit node. Using an anonymous communication
channel such as Tor, the identity of the participants can be hidden from the
incoming mix servers and outgoing mix exit node. The only accessible informa-
tion are the PKs available to the exit node. As these are unique per encounter,
they do not leak any information about the contact graph. Additionally, using
dummy messages as described in §4.2, the number of encounters can be hidden.
Hence, TEE-PEM provides contact graph privacy w.r.t. the simulation servers.
In PIR-PEM (§4.2), the same argumentation as before applies. However, a set
of PIR servers replaces the mix exit node. As PIR guarantees that participants
can download blocks of the database while hiding which blocks were requested,
PIR-PEM provides contact graph privacy w.r.t. the simulation servers.
RI: The RI provides the simulation parameters and receives the simulation re-
sults. Thus, it is not involved in the simulation and does not learn anything
beyond the output s.t. our protocols provide contact graph privacy w.r.t. the RI.

5.2 Performance

With our work, we want to initiate the discussion on PEM protocols and present
two promising protocols that have feasible communication and computation
costs. Similar to existing contact tracing apps, a fully-fledged implementation
would require to team-up with industry partners to implement a real-world scal-
able system for deployment on a country level. To demonstrate the practicality of
our PEM protocols, we give communication costs and provide microbenchmarks
for their main components. Note that we do not aim at creating the most efficient
instantiation. Surely more optimizations can further improve efficiency and our
protocols can be heavily parallelized with many servers. Instead, our goal here
is to show the practicality of our PEM protocols for a large scale deployment.



14 Günther et al.

Table 1: Client communication per simulation step. Beginning with the second
simulation j ∈ [2, ..., J ], the upload communication of PIR-PEM drastically re-
duces due to the caching of client requests (cf. §5.2).

Per Client
Users u Upload Upload Download

Simulation j 1 2, ..., J 1, ..., J

TEE-PEM (§4.2) 100K 50.00 KiB 50.00 KiB 25.00 KiB
PIR-PEM (§4.2) 287.53 KiB 2.32 KiB 1.56 KiB

TEE-PEM (§4.2) 1M 50.00 KiB 50.00 KiB 25.00 KiB
PIR-PEM (§4.2) 339.48 KiB 2.36 KiB 1.56 KiB

TEE-PEM (§4.2) 10M 50.00 KiB 50.00 KiB 25.00 KiB
PIR-PEM (§4.2) 391.42 KiB 2.40 KiB 1.56 KiB

Since simulation is decoupled from the collection phase, the simulations can
ideally be done overnight when mobile phones are charging and have access to
a high-bandwidth wireless LAN connection. Studies [55, 56] show that sleeping
habits across various countries offer a time window of several hours in every
night that can be used for this purpose.
Instantiation. We instantiate our protocols for 128 bit security. For TEE-PEM,
we use RSA-2048 as encryption scheme because Android offers a hardware-
backed implementation. For PIR-PEM, we assume the use of FSS-PIR [10, 35]
as baseline PIR scheme and two (non-colluding) PIR servers. In both protocols,
addresses are hashed with SHA-256 and trimmed to 40− 1 + log2(ε ·u) bits [52],
where u is the number of participants and ε is the average number of encounters
per client per simulation step. For simplicity, we omit the overhead of remote
attestation and anonymous credentials. A typical simulation step would be a day
such that 14 simulation steps can simulate two weeks. For the communication
costs and benchmarks, we assume that a participant has on average ε = 100
encounters per simulation step, which is, e.g., realistic for a day. To avoid cycles
when inserting n messages into the AGCT, we set its size to 10n. This can be
further improved to 2.4n with negligible collision probability [50–52].
Communication. Tab. 1 shows the client communication per simulation step
for {100K, 1M, 10M} clients. Tab. 2 contains the respective communication costs
per server (i.e., the MIX/PIR-servers and the exit node). In PIR-PEM, the up-
load communication is drastically reduced from the second simulation on, as
clients’ queries are re-used for later simulations with the same physical encoun-
ters. In the first, most expensive simulation with 10M clients, each client has to
upload about 400 KiB per simulation step. In later simulations, the upload is
reduced to 2.4 KiB per simulation step. TEE-PEM requires to upload 50 KiB
per client. The PIR servers hold about 23 GiB in PIR-PEM with 10M clients
while the exit node in TEE-PEM has to handle about 500 GiBs.4

4 The DB size and communication costs of PIR-PEM in the first round can be reduced
by optimizing the database size to 2.4n instead of 10n [50–52]. The upload in that
round is then less than 100 KiB for 10M clients.



PEM: Privacy-preserving Epidemiological Modeling 15

Table 2: Server communication per simulation step.
Per Server

Users u mix-net DB Exit/PIR DB from clients from clients to clients
Simulation j 1, ..., J 1, ..., J 1 2, ..., J 2, ..., J

TEE-PEM (§4.2) 100K 0.22 GiB 2.21 Gib 4.77 GiB 4.77 GiB 2.38 GiB
PIR-PEM (§4.2) 0.22 GiB 0.52 GiB 0.37 GiB 0.22 GiB 0.15 GiB

TEE-PEM (§4.2) 1M 47.68 GiB 23.84 GiB 47.68 GiB 47.68 GiB 23.84 GiB
PIR-PEM (§4.2) 2.25 GiB 22.54 GiB 3.74 GiB 2.25 GiB 1.49 GiB

TEE-PEM (§4.2) 10M 476.84 GiB 238.42 GiB 476.84 GiB 476.84 GiB 238.42 GiB
PIR-PEM (§4.2) 22.92 GiB 229.22 GiB 37.82 GiB 22.92 GiB 14.90 GiB

Runtimes. To assess computation costs, we run microbenchmarks (averaged
over 10 runs) for u = {103, 104, 105} users on each component of TEE-PEM/PIR-
PEM such that runtimes for more users can be interpolated.
Setup and Hardware. We run the benchmarks on the server-side with two PIR
servers with Intel Core i9-7960X CPUs@2.8 GHz and 128 GB RAM connected
with 10 Gbit/s LAN and 0.1 s RTT. The client is a Samsung Galaxy S10+ with
an Exynos 9820@2.73 GHz and 8GB RAM. As Android does not allow third-
party developers to implement applications for Android’s TEE Trusty [1], we use
hardware-backed crypto operations already implemented by Android instead. We
use the code of [35] to instantiate FSS-PIR and implement the Threshold-PIR
(cf. §3) using the MPC framework ABY [21]. As the code of [35] uses Intel
SSE intrinsics that are not available on smartphones, we benchmarked all PIR
components on the servers and multiplied the runtime by 1000× as safe estimate
of the runtime on Android. We implement the AGCT in C++ and follow previous
work on cuckoo hashing [52] by using tabulation hashing for the hash functions.
Runtimes. We approximate the runtimes for mixing the uploaded data using
state-of-the-art benchmark results in Blinder [2]. Each client uploads in each
simulation step ε · u = 100u messages of size 2 · 2048 bits (TEE-PEM) or 128 +
40 − 1 + log2(εu) = 167 + log2(100u) bits (PIR-PEM) each. Blinder can mix
104 1KB messages with 5 non-colluding servers in about 16 seconds with a
GPU. 104/105/106 messages with 160Bits are mixed in about 0.2/0.5/8 minutes.
Based on these results, we generously approximate the runtimes for mixing our
105/106/107 messages in Tab. 3. As Blinder offers security against abort which
is a stronger property than needed, efficiency can be further improved.

Tab. 3 shows the approximated server runtimes for mixing 100u messages
from u users with Blinder [2] next to the results of our microbenchmarks for in-
serting ε ·u = 100u messages into the AGCT, running a Threshold-PIR check of
one client who sent ε = 100 PIR queries, and calculating one PIR response. We
run our experiments for u = {1K, 10K, 100K} participants such that runtimes
for more participants can also be interpolated.5 Mixing 107 messages for 100K
users would take about 1.7h, but can be made more efficient by using a mix-

5 The largest survey-based dataset from 2017/8 for epidemiological modeling has
about 40 000 participants and is 4× larger than the previous standard dataset from
2005/6 [39]. This also shows that such dataset are often not up-to-date.



16 Günther et al.

Table 3: Approximation of server runtimes for mixing all messages based on
Blinder [2] and microbenchmark results for inserting all messages into the AGCT,
running one Threshold-Check per client, and creating one PIR response.

Users u Per Server Per Client
Mix Insertions AGCT Threshold-PIR (cf. §3) Response

Simulation j 1, ..., J 1, ..., J 1 1, ..., J

1K 40 s 10.49 ms 5.31 s 0.90 s
10K 10 min 0.11 s 1.26 min 13.09 s

100K 1.7 h 1.53 s 9.88 min 1.85 min

Table 4: Average client runtimes per simulation step: Creation of ε = 100 mes-
sages, 2ε = 200 PIR queries, and extraction of the total ETI from the PIR
responses. They are not affected by the number of clients.

Messages creation PIR queries ETI extraction
Simulation j 1, ..., J 1 1, ..., J

TEE-PEM (§4.2) 0.08 s - 3.04 s
PIR-PEM (§4.2) 1.50 ms 0.49 s 4.90 s

ing technique with weaker security guarantees than Blinder and parallelization
as discussed before. Threshold-PIR must only be performed once per client as
queries are re-used for later simulations. All other operations only take a few
seconds. Additionally, parallelization using more servers is possible.

Tab. 4 gives our microbenchmark results for the client-side for an average of
ε = 100 encounters. As the number of participants u taking part in the simulation
does not change the average number of encounters a person has per time step
in reality, the runtimes on the client side are not affected by u. As shown, each
client has only a few seconds of computation per simulation step.

Based on our microbenchmarks, an entire PIR-PEM simulation with 14 sim-
ulation steps (i.e., 14 days) and u = 100K clients would take about 59 657 hours
with two servers. Thus, even without further optimizations, the whole simula-
tion could be run on about 20 000 servers (or on 240 servers for u = 10K users)
during 6 hours in one night. In comparison, the bottleneck of TEE-PEM is only
the mixing, resulting in about 24 hours or 8 servers for doing one simulation
with u = 100K users within 6 hours.

6 Conclusion

In this work, we introduced the problem of privacy-preserving epidemiological
modeling (PEM) which enables to privately simulate the spread of a disease on
real contact graphs collected on mobile devices. We introduced two PEM pro-
tocols based on different trust assumptions and showed that they have practical
performance. As building block of independent interest, we designed a PIR-based
protocol for privately querying the sum of multiple distinct blocks. Our protocol
uses MPC to verify properties of a multi-server PIR query. We hope to motivate
further research towards highly efficient PEM.



PEM: Privacy-preserving Epidemiological Modeling 17

References

1. Third-party Trusty applications, https://source.android.com/security/

trusty#third-party_trusty_applications

2. Abraham, I., Pinkas, B., Yanai, A.: Blinder – Scalable, Robust Anonymous Com-
mitted Broadcast. In: CCS (2020)

3. Adam, D.: Special report: The simulations driving the world’s response to COVID-
19. Nature (2020)

4. Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., Yeo,
K.: Communication-computation trade-offs in PIR. (2019), https://eprint.iacr.
org/2019/1483.pdf

5. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amor-
tized query processing. In: S&P (2018)

6. ARM: ARM security technology building a secure system using TrustZone tech-
nology (2009), https://developer.arm.com/documentation/genc009492/c

7. Bampoulidis, A., Bruni, A., Helminger, L., Kales, D., Rechberger, C., Walch,
R.: Privately connecting mobility to infectious diseases via applied cryptography
(2020), https://eprint.iacr.org/2020/522

8. Bayerl, S.P., Frassetto, T., Jauernig, P., Riedhammer, K., Sadeghi, A.R., Schneider,
T., Stapf, E., Weinert, C.: Offline model guard: Secure and private ML on mobile
devices. Design, Automation & Test in Europe Conference & Exhibition (2020)

9. Biasse, J.F., Chellappan, S., Kariev, S., Khan, N., Menezes, L., Seyitoglu, E., Som-
boonwit, C., Yavuz, A.: Trace-σ: a privacy-preserving contact tracing app (2020),
https://eprint.iacr.org/2020/792

10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: CCS (2016)

11. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: USENIX Security
(2017)

12. Chan, J., Foster, D., Gollakota, S., Horvitz, E., Jaeger, J., Kakade, S., Kohno,
T., Langford, J., Larson, J., Sharma, P., Singanamalla, S., Sunshine, J., Tessaro,
S.: PACT: Privacy sensitive protocols and mechanisms for mobile contact tracing
(2020), https://arxiv.org/pdf/2004.03544.pdf

13. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. In: Communications of the ACM (1985)

14. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM (1981)

15. Chen, G., Zhang, Y., Lai, T.H.: OPERA: Open Remote Attestation for Intel’s
Secure Enclaves. In: CCS (2019)

16. Chen, Y.C., Lu, P.E., Chang, C.S., Liu, T.H.: A time-dependent sir model for
covid-19 with undetectable infected persons. Transactions on Network Science and
Engineering (2020)

17. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Annual Foundations of Computer Science (1995)

18. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging
system handling millions of users. In: S&P (2015)

19. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: EUROCRYPT (2020)

20. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In:
ESORICS (2013)

https://source.android.com/security/trusty#third-party_trusty_applications
https://source.android.com/security/trusty#third-party_trusty_applications
https://eprint.iacr.org/2019/1483.pdf
https://eprint.iacr.org/2019/1483.pdf
https://developer.arm.com/documentation/genc009492/c
https://eprint.iacr.org/2020/522
https://eprint.iacr.org/2020/792
https://arxiv.org/pdf/2004.03544.pdf


18 Günther et al.

21. Demmler, D., Schneider, T., Zohner, M.: ABY - A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation. In: NDSS (2015)

22. Dessouky, G., Gens, D., Haney, P., Persyn, G., Kanuparthi, A., Khattri, H., Fung,
J.M., Sadeghi, A.R., Rajendran, J.: Hardfails: Insights into software-exploitable
hardware bugs. In: USENIX Security (2019)

23. Diekmann, O., Heesterbeek, H., Britton, T.: Mathematical tools for understanding
infectious disease dynamics. Princeton University Press (2012)

24. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS (2013)

25. Douceur, J.R.: The sybil attack. In: International Workshop on Peer-to-Peer Sys-
tems (2002)

26. Erkin, Z., Troncoso-pastoriza, J.R., Lagendijk, R.L., Perez-Gonzalez, F.: Privacy-
preserving data aggregation in smart metering systems: an overview. In: Signal
Processing Magazine (2013)

27. Ferguson, N.: What would happen if a flu pandemic arose in Asia? Nature (2005)
28. Ferguson, N.M., Cummings, D.A., Fraser, C., Cajka, J.C., Cooley, P.C., Burke,

D.S.: Strategies for mitigating an influenza pandemic. Nature (2006)
29. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: TCC (2019)
30. Government of Singapor: TraceTogether, safer together (2020), https://www.

tracetogether.gov.sg/

31. IBM: Specification of the Identity Mixer Cryptographic Library Version 2.3.0*
(2010), IBM Research Report RZ 3730

32. Inria, Fraunhofer AISEC: ROBust and privacy-presERving proximity Tracing pro-
tocol (2020), https://github.com/ROBERT-proximity-tracing/documents

33. Intel: Attestation Service for Intel® Software Guard Extensions, https://api.
trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

34. Intel: Intel® Software Guard Extensions Programming Reference (2014), https:
//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

35. Kales, D., Omolola, O., Ramacher, S.: Revisiting user privacy for certificate trans-
parency. In: EuroS&P (2019), Code: https://github.com/dkales/dpf-cpp

36. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. USENIX Security (2019)

37. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of
epidemics—i. In: Bulletin of Mathematical Biology (1991)

38. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. Journal on Computing (2010)

39. Klepac, P., Kucharski, A.J., Conlan, A.J., Kissler, S., Tang, M.L., Fry, H., Gog,
J.R.: Contacts in context: large-scale setting-specific social mixing matrices from
the bbc pandemic project. MedRxiv (2020)

40. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: PETS (2011)

41. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS (1997)

42. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party
computation combining BMR and SPDZ. In: CRYPTO (2015)

43. Ministère de l’Économie, des Finances et de la Relance: StopCovid (2020), https:
//www.economie.gouv.fr/stopcovid

44. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex
heterogeneous networks. The European Physical Journal B-Condensed Matter and
Complex Systems (2002)

https://www.tracetogether.gov.sg/
https://www.tracetogether.gov.sg/
https://github.com/ROBERT-proximity-tracing/documents
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/dkales/dpf-cpp
https://www.economie.gouv.fr/stopcovid
https://www.economie.gouv.fr/stopcovid


PEM: Privacy-preserving Epidemiological Modeling 19

45. Ngabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S.: TrustZone explained:
Architectural features and use cases. In: International Conference on Collaboration
and Internet Computing (2016)

46. Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Vaswani, K., Costa, M.:
Oblivious multi-party machine learning on trusted processors. In: USENIX Security
(2016)

47. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms (2004)
48. Paquin, C., Zaveruch, G.: U-Prove Cryptographic Specification V1.1 (Revision 3)

(2013), http://www.microsoft.com/uprove
49. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic

processes in complex networks. In: Reviews of modern Physics (2015)
50. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXosS Fast, malicious

private set intersection. In: EUROCRYPT (2020)
51. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via

cuckoo hashing. In: EUROCRYPT (2018)
52. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on

OT extension. TOPS (2018)
53. Small, M., Tse, C.K.: Small world and scale free model of transmission of SARS.

In: International Journal of Bifurcation and Chaos (2005)
54. Troncoso, C., Payer, M., Hubaux, J.P., Salathé, M., Larus, J., Bugnion, E., Lueks,

W., Stadler, T., Pyrgelis, A., Antonioli, D., et al.: Decentralized privacy-preserving
proximity tracing (2020), https://arxiv.org/pdf/2005.12273.pdf

55. Walch, O.J., Cochran, A., Forger, D.B.: A global quantification of “normal” sleep
schedules using smartphone data. Science advances (2016)

56. Woollaston, V.: Sleeping habits of the world revealed: The US wakes up grumpy,
China has the best quality shut-eye and South Africa gets up the earliest (2015),
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-

habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-

South-Africa-wakes-earliest.html

57. Yao, A.C.C.: How to Generate and Exchange Secrets. In: FOCS (1986)
58. Yoneki, E.: Fluphone study: Virtual disease spread using haggle. In: Workshop on

Challenged Networks (2011)

A SUM-PIR

Fig. 3 shows the idea of our PIR-SUM protocol presented in §3.

Fig. 3: Our PIR-SUM protocol. bi is the message stored in the i-th database
block (i ∈ [1, N ]). rj is the random value used in all database blocks for blinding
the j-th response (j ∈ [1, τ ]).

http://www.microsoft.com/uprove
https://arxiv.org/pdf/2005.12273.pdf
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html


20 Günther et al.

B Dropouts and Manipulations

PEM protocols must tolerate that participants drop out while the simulation is
running as mobile devices regularly lose connection or run out of battery. Both
our protocols (§4.2) can cope with such dropouts: In TEE-PEM, the exit node
identifies all messages for Bob based on the PKs uploaded by Bob in the collec-
tion phase and forwards these to Bob. Unused PKs (corresponding to dropouts)
are ignored. In PIR-PEM, we add an additional step: In each simulation step of
the first simulation, Alice publishes on a bulletin board the value H ′(rBi ), where
H ′ is a cryptographic hash function and rBi is the encounter token received from
Bob in encounter i. By downloading the entire bulletin board6, these values allow
the receiver Bob (and only him as only he and Alice know their shared encounter
tokens) to determine which of his encounters take part in the simulation. He sets
the number of encounters per simulation step, τ , to the number of encounters
that take part in the simulation and creates his PIR queries accordingly. After
the first simulation, the PIR servers know for which addresses ai they should
receive messages as the addresses remain constant over all simulations and they
have seen them in the first simulation. If one of the messages does not arrive
(because Alice dropped out), the servers insert 0 + ri||0 · · · 0 into the AGCT in-
stead of the real message (ci,j + ri)||ai. If Bob downloads a message of the form
ri||0 · · · 0, he can use ri to correctly unblind his total ETI.
Experiments. For simulating the deviations caused by dropouts and manipu-
lated inputs, we implemented a simple plaintext SEIR model. The effects were
measured by the normalized differences between the number of people assigned
to a class per simulation step averaged over 1 000 runs.

First, we simulated that {0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%} of 1000 clients
randomly drop out per simulation step. The experiments showed that the dropout
of x% clients causes on average about 0.5x% of the clients to be assigned to
different classes (S,E,I,R). The dropouts, however, do not change the simula-
tion’s trend at all, but create a small parallel shift. We also assessed the ef-
fect of {0.1%, 0.5%, 1%} of 1000 clients manipulating the simulation by delib-
erately indicating that they are infectious. The change of the number of clients
per class is significantly stronger compared to the dropouts. Concretely, with
{0.1%, 0.5%, 1%} of the clients doing the manipulation, the number of people
per class changes by about {4.5%, 14%, 21%}. While with 0.1% of the clients, the
overall trend of a not manipulated simulation is preserved, the disease’s spread
is significantly speed up with 0.5%/1% manipulating clients. These results are
transferable to the opposite case where people indicate to be always healthy. We
assume that only very few people would deliberately try to harm simulations
considering that it is in most people’s interest to find effective containment mea-
sures. However, if a significant proportion is suspected to potentially manipulate
the simulation, stronger PEM protocols than ours need to be designed.

6 The hashes can also be trimmed to 40− 1 + log2(ε ·u) bits [52]. The n = ε ·u hashes
in the bulletin board can be compressed to n/l + n · v bits [36], i.e., about 42 MB
for u = 100K clients with tag size t = 32 and load factor l = 66%.


	-0.4cmPEM: Privacy-preserving Epidemiological Modeling-0.3cm

