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Abstract. The recent development of machine learning and cloud com-
puting arises a new privacy problem; how can one outsource computa-
tion on confidential data? Homomorphic encryption (HE) is a solution
for that as it allows computation on encrypted data without decryp-
tion. The Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt ’17) is one
of the highlighted fully homomorphic encryption (FHE) schemes as it
is efficient to deal with encrypted real numbers, which are the usual
data type for many applications such as machine learning. This paper
proposes a generally applicable method to achieve high-precision approx-
imate FHE using the following two techniques. First, we apply the con-
cept of signal-to-noise ratio (SNR) and propose a method of maximizing
the SNR of encrypted data by reordering homomorphic operations in
the CKKS scheme. For that, the error variance is minimized instead of
the upper bound of error when we deal with encrypted data. Second,
we propose a novel polynomial approximation method for the CKKS
scheme from the same perspective of minimizing error variance. We es-
pecially apply the approximation method to the bootstrapping of the
CKKS scheme, where we achieve the smaller error variance in the boot-
strapping compared to the prior arts. The performance improvement of
the proposed methods for the CKKS scheme is verified by implementa-
tion over HE libraries: HEAAN and SEAL. The implementation results
show that the message precision of the CKKS scheme is improved by
reordering homomorphic operations and using the proposed polynomial
approximation. Specifically, the proposed method uses only depth 8, al-
though the bootstrapping precision is increased by 1 bit compared to
that of the previous method using depth 11. We also suggest a loose
lower bound of bootstrapping error in the CKKS scheme and show that
the proposed method’s bootstrapping error is only 2.8 bits on average
larger than the lower bound. Therefore, various applications’ quality of
services using the proposed CKKS scheme, such as privacy-preserving
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machine learning, can be improved without compromising performance
and security.

Keywords: Bootstrapping· Cheon-Kim-Kim-Song (CKKS)· Cryptogra-
phy· Fully homomorphic encryption (FHE)· Privacy-preserving machine
learning (PPML)· Residue number system-CKKS (RNS-CKKS).

1 Introduction

The recent development of machine learning, cloud computing, and blockchain
arises a new privacy problem; how can one write a smart contract on a public
blockchain or outsource computation in machine learning for confidential data?
The need for cryptographic primitives for such scenarios has been exploded, and
there have been extensive studies. Homomorphic encryption (HE) is a specific
class of encryption schemes that allows computation on encrypted data without
decryption. Using HE, one can process encrypted data without decryption or
leaking information.

The Cheon-Kim-Kim-Song (CKKS) scheme is an approximated homomor-
phic encryption scheme [1] using ring-learning with error (RLWE). The CKKS
scheme [1] is one of the highlighted fully homomorphic encryption (FHE) schemes
as it is efficient to deal with real (or complex) numbers, which are the usual data
type for many applications such as deep learning and regression. When we deal
with arbitrary precision real numbers using other FHE schemes such as (B)FV
[16, 17, 20] and BGV [18] schemes, the size of ciphertext has an exponential
growth rate according to the level, where the level of ciphertext is defined by
the maximum depth of operation that can be homomorphically evaluated with-
out bootstrapping. However, the ciphertext size has a polynomial growth rate
according to the level in the CKKS scheme.

The CKKS scheme provides the trade-off between the efficiency and accuracy
of messages, where messages in the CKKS scheme contain errors, and the errors
accumulate during homomorphic operations. To our best knowledge, research
to the date has provided high-probability upper bounds for errors in encrypted
data [1, 2, 7]. As the processing of messages in the CKKS scheme proceeds, the
upper bound of errors in encrypted data increases, and thus it becomes a loose
and useless bound.

In previous studies on the error management of the CKKS scheme, the prob-
abilistic concept has been adopted to some extent. Error control in the CKKS
scheme so far used the high-probability upper bounds of error [1, 2] or average
precision of message [3]. The high-probability upper bounds are derived from the
distribution of error, and the average precision of message provided in [1–4, 7] is
the expectation of the absolute value of error. In other words, it is not unfamiliar
to use probabilistic methods for error analysis.

The CKKS scheme can be considered as a noisy channel. Thus we adopt in
this paper the methodologies from communication theory, which are the power
ratio of the signal (message) and error. The signal power can be controlled by
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the scaling factor of the message, and we show how to minimize the noise power
during approximate operations in the CKKS scheme. Since the errors in the
CKKS system are additive, errors are assumed to be Gaussian distributed due
to the central limit theorem. Moreover, as shown in the later chapter, the high-
probability upper bound becomes quite loose after successive operations. There-
fore, it is better to control the variance of errors rather than the high-probability
upper bound of errors and keep them as tagged information for the ciphertext.

Since a drawback of the CKKS scheme is that errors are accumulated, many
studies have been conducted to reduce errors. Recently, Kim et al. proposed
a new method reducing errors in encrypted data of the CKKS scheme and its
residue number system (RNS) variants using lazy rescaling and different scaling
factors at each level [7]. Although the error was reduced in their paper, the high-
probability upper bound was still used as a measure of error. Especially, error
amplification during the bootstrapping in the CKKS scheme has been studied
in many research. After the first bootstrapping method was proposed in [2], the
Chebyshev interpolation method has been applied to the homomorphic evalua-
tion of modulus reduction [4]. Then, a technique for direct-approximation was
proposed in [5], and the algorithm of finding minimax approximate polynomial
and inverse sine method was presented in [6]. A bootstrapping algorithm for
RNS-CKKS is proposed in [8], but this scale-invariant polynomial evaluation
method can be generalized to the result of [7].

In this paper, we propose a method of managing the variance of errors to
maximize the signal-to-noise ratio (SNR) of the messages in the CKKS scheme
rather than minimizing the high-probability upper bounds of error. There are
mainly two contributions in this paper. First, to minimize the error variance of
the encrypted data, a criterion for optimizing the order of homomorphic oper-
ations is proposed. In the proposed method, the error variance of the CKKS
scheme is treated as a value to be minimized rather than the upper bound of
error, and by doing so, one can manage the error in the encrypted data tightly.
Hence, one can improve the stability of various applications that use approxi-
mate homomorphic encryption by reordering homomorphic operations. Besides,
the accuracy of the resultant message can also be improved. The second contri-
bution is the optimization of the approximate polynomials in terms of the error
variance of the encrypted data of the CKKS scheme. To our best knowledge, this
is the first method to find the optimal approximate polynomial that minimizes
not only the approximation error but also the error in the polynomial basis that
is amplified by coefficients. Thus we can improve the bootstrapping algorithm of
the CKKS scheme using the proposed polynomial approximation method, where
bootstrapping can be implemented with smaller errors and less depth consump-
tion. It is shown in this paper that the proposed method reduces the magnitude of
bootstrapping error compared to the previous work [6]. Moreover, the proposed
method resolves the problem that the approximate polynomials have large coeffi-
cients, which could only be solved using the double-angle formula in the previous
work. The proposed method makes it possible to use a direct-approximation for
the modulus reduction. The comparison with the previous methods shows that
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we can improve the message precision after bootstrapping while reducing the
level consumption for bootstrapping by using the proposed method. Specifically,
the proposed method uses only depth 8, while the bootstrapping precision is
increased by 1 bit compared to that of the previous methods using depth 11.

The remainder of the paper is organized as follows. In Section 2, we provide
the necessary notations and communication theoretic perspective on error. The
CKKS scheme and its bootstrapping algorithm are summarized in Section 3.
A newly proposed method of optimizing error variance of encrypted data and
its analysis are given in Section 4. We provide a new method to find optimal
approximate polynomials for the CKKS scheme in Section 5, focusing on boot-
strapping. The implementation results and comparison are given in Section 6.
Finally, we conclude paper in Section 7 with remarks and possible future research
directions.

2 Preliminaries

2.1 Basic Notation

Vectors are denoted in boldface such as x and every vector is a column vector.
Matrices are denoted by boldfaced capital letters, for example, A. We denote
the inner product of two vectors by 〈·, ·〉 or simply ·. Let u × v denote the
component-wise multiplication of two vectors u and v. Matrix multiplication is
denoted by · or can be omitted when it is unnecessary. When it is evident, x2

denotes the multiplication of x and its complex conjugate, where x ∈ C. x← D
denotes the sampling x according to a distribution D. When a set is used instead
of distribution, it means that x is sampled uniformly at random among the set
elements. Random variables are denoted by capital letters such as X. E[X] and
V ar[X] denote the mean and variance of random variable X, respectively. Some
capital letters may represent something other than a random variable, such as a
constant, but this is context-sensitive.

2.2 Chebyshev Polynomials

The Chebyshev interpolation is a well-known polynomial interpolation method
that uses the Chebyshev polynomials as a basis of the interpolation polynomial.
The Chebyshev polynomial of the first kind, in short, the Chebyshev polynomial
is defined by the recursive relation [33]

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

The Chebyshev polynomial of degree n has n distinct roots in the interval [−1, 1]
and all its extrema are also in [−1, 1]. Moreover, 1

2n−1Tn(x) is the polynomial,
whose maximal absolute value is minimal among monic polynomials of degree n
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and its absolute value is 1
2n−1 . Hence, unlike the monomial basis, the value of the

Chebyshev basis’s high-degree terms do not converge to zero or diverse to infinity
as the degree increases. In addition to the above, the Chebyshev polynomial has
desirable properties as a basis for an approximate polynomial.

2.3 Communication Perspective of the CKKS Scheme

In the field of communications, there has been extensive research on noisy media
such as wireless communication or data storage. In this perspective, the CKKS
scheme can be considered as one of the noisy media; encryption and decryp-
tion correspond to transmission and reception, respectively. The message in the
ciphertext is the signal, and as the final output has an additive error due to
RLWE security, rounding, and approximation, the CKKS scheme itself should
be considered as noisy media.

The SNR is the most widely used measure of signal quality, which is defined
as the ratio of the signal power to the noise power as

SNR =
PS
PN

=
E[S2]

E[N2]
,

where S and N denote the signal (message) and noise (error), respectively. The

power of a signal S is defined by PS = limT→∞
1
2T

∫ T
−T S(t)2dt. As the signal

and noise must be measured at the same or equivalent points in a system, the

ratio of power is identical to the ratio of energy (or the second moment), E[S2]
E[N2] .

As shown in the definition, the signal with high SNR has better quality.

An easy way to increase SNR is to increase signal power, but it is not easy in a
real-world system due to regulation or physical constraints. That is the same for
the CKKS scheme. A larger scaling factor should be multiplied to the message
to increase the power of the message. However, if one uses a larger scaling factor,
the ciphertext level decreases, or larger parameters should be used to keep the
encryption secure under the RLWE problem. Also, usually in the RNS-CKKS
scheme, the scaling factor is limited to 64 bits for efficient implementation. Hence,
to increase SNR, it is essential to reduce the power of noise in the CKKS scheme
rather than increase the signal’s power.

The CKKS scheme trades off the efficiency of computation and accuracy of
the message, and improving the accuracy will make the CKKS scheme more
reliable. Error estimation of the CKKS scheme so far has been focused on the
high-probability upper bound of the error, and the upper bound was tracked
using the upper bound of the message [1, 2]. As the homomorphic operation
continues, the error bound becomes quite loose, and its statistical significance
may fade. In this paper, we propose methods to reduce the power (or energy)
of error. We note that when the mean of error is zero, the energy of error is the
same as its variance. Therefore, hereinafter, the energy and variance of errors
are abused if its mean is zero.
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3 The CKKS Scheme and Its Bootstrapping

3.1 The CKKS Scheme

This section briefly introduces the CKKS scheme [1] and its RNS variant, the
RNS-CKKS scheme [4, 9]. For a positive integer M , let ΦM (X) be the M -th
cyclotomic polynomial of degree N , where M is a power of two, M = 2N , and
ΦM (X) = XN + 1. Let R = Z/ 〈ΦM (X)〉 be the ring of integers of a number
field S = Q/ 〈ΦM (X)〉 , where Q is the set of rational numbers and we write
Rq = R/qR.

The CKKS scheme [1] and its RNS variants [4, 7, 9] provide homomorphic
operations on encrypted real number data with errors. This is done by canonical
embedding and its inverse. Recall that canonical embedding Emb of a(X) ∈
Q/ 〈ΦM (X)〉 into CN is the vector of the evaluation values a at the roots of
ΦM (X) and Emb−1 denotes its inverse. Let π denote a natural projection from
H = {(zj)j∈Z∗M : zj = z−j} to CN/2, where Z∗M is the multiplicative group

of integer modulo M . The encoding (CN/2 → R) and decoding are defined as
follows.

– Ecd(z;∆): For an (N/2)-dimensional vector z, the encoding procedure re-
turns

m(X) = Emb−1
(⌊
∆ · π−1(z)

⌉
Emb(R)

)
∈ R,

where ∆ is the scaling factor and
⌊
π−1(z)

⌉
Emb(R)

denotes the discretization

of π−1(z) into an element of Emb(R).
– Dcd(m;∆): For an input polynomial m(X) ∈ R, output a vector

z = π(∆−1 · Emb(m)) ∈ CN/2,

where its entry of index j is given as zj = ∆−1 ·m(ζjM ) for j ∈ T , where ζM
is the M -th root of unity and T is a multiplicative subgroup of Z∗M satisfying
Z∗M/T = {±1}. This can be basically represented by multiplication by an

N/2×N matrix U whose entries are Uij = ζji , where ζi := ζ5
i

.

The infinity norm of Emb(a) for a(X) ∈ R is called the canonical embedding
norm of a, denoted by ‖a‖can∞ = ‖Emb(a)‖∞. Refer [1] for the property of the
canonical embedding norm.

Adopting notations in [1] and [13], we define three distributions as follows.
For a real number σ > 0, DG(σ2) denotes the distribution of vectors in ZN ,
whose entries are sampled independently from the discrete Gaussian distribu-
tion of variance σ2. HWT (h) is the set of signed binary vectors in {0,±1}N
with Hamming weight h and ZO(ρ) denotes the distribution of vectors from
{0,±1}N with probability ρ/2 for each of ±1 and probability of being zero 1−ρ.
Suppose that we have ciphertexts of level l for 0 ≤ l ≤ L, where level l means
the maximum number of possible multiplications before bootstrapping. For con-
venience, we fix a power-of-two base p > 0 and a power-of-two modulus q and
let ql = q · pl. The base integer p is usually equivalent to the scaling factor ∆.
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The CKKS scheme is defined with the following key generation, encryption,
decryption, and the corresponding homomorphic operations.

– KeyGen(1λ):
• Given the security parameter λ, we choose a power-of-two M , an integer
h, an integer P , a real number σ, and a maximum ciphertext modulus
Q, such that Q ≥ qL.

• Sample the following values:

s← HWT (h), a← RqL , e← DG(σ2).

• Set the secret key and the public key as

sk := (1, s), pk := (b, a) ∈ R2
qL ,

respectively, where b = −as+ e (mod qL) .
– KSGensk(s

′):
Sample a′ ← RPqL and e′ ← DG(σ2). Output the switching key

swk := (b′, a′) ∈ R2
PqL ,

where b′ = −a′s+ e′ + Ps′ (mod PqL).
• Set the evaluation key as evk := KSGensk(s

2).
– Encpk(m):

Sample v ← ZO(0.5) and e0, e1 ← DG(σ2).
Output c = v · pk + (m+ e0, e1) (mod qL).

– Decsk(c):
Output m̄ = 〈c, sk〉.

– Add(c1, c2):
For c1, c2 ∈ R2

ql
, output

cadd = c1 + c2 (mod ql) .

– Multevk(c1, c2):
For c1 = (b1, a1) and c2 = (b2, a2) ∈ R2

ql
, let

(d0, d1, d2) := (b1b2, a1b2 + a2b1, a1a2) (mod ql) .

Output
cmult = (d0, d1) + KSevk((0, d2)),

where b·e denotes the rounding operation.
– cAdd(c1,a;∆):

For a aCN/2 and a scaling factor ∆, output

ccadd ← c+ (Ecd(a;∆), 0).

– cMult(c1,a;∆):
For a aCN/2 and a scaling factor ∆, output

ccmult ← Ecd(a;∆) · c.
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– RSl→l′(c):
For c ∈ R2

ql
, output

cRS =

⌊
ql′

ql
c

⌉
(mod ql′) .

The subscript is omitted when l′ = l − 1.
– KSswk(c):

For c = (c0, c1) ∈ R2
ql

, output

cKS = (c0, 0) +
⌊
P−1 · c1 · swk

⌉
(mod ql) .

We note that cmult = (d0, d1) + KSevk(0, d2). The key switching techniques are
used to provide various operations such as complex conjugate and rotation.

There are computationally more efficient variants of the CKKS scheme,
namely the RNS-CKKS scheme in [4, 9], and the basic operations supported
therein are similar. Hence, it is worth noting that this paper’s proposed meth-
ods aim for all the variants of the CKKS scheme and the original CKKS scheme.

3.2 CKKS Scheme in RNS

The RNS-CKKS scheme performs all operations in RNS. In other words, the
power-of-two modulus ql = q · pl is replaced with

∏l
i=0 pi, where pi’s are chosen

as primes that satisfy pi = 1 (mod 2N) to support efficient number theoretic
transform (NTT). These prime numbers are also chosen such that p/pi is in
the range (1 − 2η, 1 + 2η), where η is kept small, for a scaling factor p, where
i = 1, . . . , l. We note that q0 = p0 is much greater than p as the coefficients of
final message should not be greater than the ciphertext modulus q0.

The RNS-CKKS scheme differs from the original CKKS scheme in the rescal-
ing and key switching. To take advantage of RNS, we use hybrid key switching
technique proposed in [4]. First, for predefined dnum, a small integer such as

4, we define partial products {q̃j}0≤j<dnum =
{∏(j+1)α−1

i=jα pi

}
0≤j<dnum

, where

α = (L+ 1)/dnum. For level l and dnum′ = d(l + 1)/αe, we define [4]

WDl(a) =

([
a
q̃0
ql

]
q̃0

, · · · ,
[
a
q̃dnum′−1

ql

]
q̃dnum′−1

)
∈ Rdnum′ ,

PWl(a) =

([
a
ql
q̃0

]
ql

, · · · ,
[
a

ql
q̃dnum′−1

]
ql

)
∈ Rdnum′

ql
.

Then, for any (a, b) ∈ R2
ql

, we have

〈WDl(a),PWl(b)〉 = a · b (mod ql) .

Then, the rescaling and key switching in the RNS-CKKS scheme are defined as
follows:
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– KSGensk(s
′): For auxiliary modulus P =

∏k
i=0 p

′
i ≈ maxj q̃j , sample a′k ←

RPqL and e′k ← DG(σ2). Output the switching key

swk :=(swk0, swk1)

=({b′k}
dnum′−1
k=0 , {a′k}

dnum′−1
k=0 ) ∈ R2×dnum′

PqL
,

where b′k = −a′ks+ e′k + P · PW(s′)k (mod PqL).
• Set the evaluation key as evk := KSGensk(s

2).
– RS(c):

For c ∈ R2
ql

, output

cRS =
⌊
p−1l c

⌉
(mod ql−1) .

– KSswk(c):
For c = (c0, c1) ∈ R2

ql
and swk := (swk0, swk1), output

cKS = (c0 +

⌊
〈WDl(c1), swk0〉

P

⌉
,⌊

〈WDl(c1), swk1〉
P

⌉
) (mod ql) .

To remove the approximation error introduced by approximate rescaling, one
can use different scaling factor for each level as given in [7].

We note that FullRNS-HEAAN library is (dnum = 1)-case and SEAL is
(dnum = L + 1)-case. We also note that the key switching method using WD
and PD can also be applied to the original CKKS scheme and thus the main
differences between the original CKKS scheme and the RNS-CKKS scheme are
their modulus and rescaling algorithm. However, since we use HEAAN as the
library of the original CKKS scheme and SEAL as the library of the RNS-CKKS
scheme, we describe each.

3.3 Bootstrapping of the CKKS Scheme

There are several studies for bootstrapping of the CKKS scheme [2–6]. The
bootstrapping consists of the following four steps: ModRaise, CoeffToSlot,
EvalMod, and SlotToCoeff.

Modulus Raising ModRaise is the procedure to change the modulus of a
ciphertext to a larger modulus. Let c be the ciphertext satisfying m(X) =
[〈c, sk〉]q. It can be seen that t(X) = 〈c, sk〉

(
mod XN + 1

)
is of the from t(X) =

qI(X) + m(X) for I(X) ∈ R with a bound ‖I(X)‖∞ < K, where K is upper
bounded by O(

√
h). The following procedure aims to compute the remainder of

the coefficients of t(X) when it is divided by q, homomorphically. In other words,
we homomophically calculate the modulus reduction function, [·]q for the coeffi-
cients of t(X). However, as the modulus reduction is not an arithmetic operation,
it should be evaluated by an approximate polynomial and thus, the crucial point
of bootstrapping is to find a polynomial approximating the modulus reduction
function.
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Putting Polynomial Coefficients in Plaintext Slots Approximate homo-
morphic operations are performed in plaintext slots. Thus, to deal with t(X), we
have to put polynomial coefficients in plaintext slots. In CoeffToSlot step,
the Emb−1 ◦ π−1 is performed homomorphically using matrix multiplication [2]
or FFT-like operations or a hybrid method of both [3]. Then, we have two ci-
phertexts encrypting z′0 = (t0, . . . , tN

2 −1
) and z′1 = (tN

2
, . . . , tN−1) (or combined

using imaginary, e.g., (t0 + i · tN
2
, . . . , tN

2 −1
+ i · tN−1)), where tj denotes the j-th

coefficient of t(X).

Evaluation of the Approximate Modulus Reduction In the EvalMod
step, an approximate evaluation of modulus reduction function of ti’s is per-
formed. As additions and multiplications cannot represent the modulus reduc-
tion function, an approximate polynomial for this function is used instead. For
approximation, it is desirable to control the size of the message so that we can
ensure mi ≤ ε·q for a small ε, where mi is a coefficient of the message polynomial
m(X). At first, Cheon et al. approximated the modulus reduction function as
q
2π sin

(
2πt
q

)
and used an approximate polynomial for sine function using Taylor

series expansion of exponential function in [2]. Hence there exists fundamental
error between the approximate polynomial and modulus reduction function, that
is, the difference of sine function and modulus reduction function, which is upper
bounded by ∣∣∣∣m− q

2π
sin

(
2π
m

q

)∣∣∣∣ ≤ q

2π
· 1

3!

(
2π|m|
q

)3

,

where t(X) = qI(X) + m(X). A Taylor series expansion and the double-angle
formula were adopted as the approximate polynomial of the sine function.

After that, the method of improving polynomial approximation using Cheby-
shev interpolation was proposed [3]. By selecting optimized nodes for Chebyshev
interpolation, Han et al. significantly improved the error performance of the ap-
proximation in the bootstrapping of the CKKS scheme [4]. However, in both
approaches, the sine function is used, and thus there is still the fundamental ap-
proximation error. Then, a direct-approximation method using a discretization
of the target function and the least square method is proposed in [5]. A com-
position with inverse sine function is proposed in [6] to remove the fundamental
approximation error between the sine function and the modulus reduction. In
[6], an approximation algorithm that finds the minimax approximate polynomial,
namely the modified Remez algorithm, is used.

Switching Back to the Coefficient Representation SlotToCoeff is the
inverse operation of CoeffToSlot.
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3.4 Statistical Characteristics of Modulus Reduction and Failure
Probability of Bootstrapping of the CKKS Scheme

After ModRaise, the plaintext in the ciphertext c = (c0, c1) is given as

t(X) = q · I(X) +m(X)

= 〈c, sk〉
(
mod XN + 1

)
.

As sk is sampled from the distribution HWT (h), it has a small Hamming weight
h. Each coefficient of a ciphertext (c0, c1) is an element of Zq and thus, each
coefficient of 〈c, sk〉 = c0 + c1s is considered as a sum of (h + 1) elements in

Zq. Therefore, I(X) =
⌊
1
q 〈c, sk〉

⌉
is upper bounded by 1

2 (h + 1). In practice, a

heuristic assumption is used and a high-probability upper bound K = O(
√
h)

for ‖I‖∞ is used. For example, it is usual to use h = 64 and then it is assumed
that ‖I‖∞ < K = 12.

As (c0, c1) is ciphertext, each coefficient of c0 and c1 can be considered as dis-
tributed uniformly at random by the RLWE assumption. Hence, each coefficient
of t is the sum of h+1 independent uniform random variables; in other words, it
follows a distribution similar to the well-known Irwin–Hall distribution. The ap-
proximate polynomial for modulus reduction is designed under the assumption
that ‖I‖∞ < K. The high-probability upper bound K of ‖I‖∞ is acceptable, but
it outputs a useless value when the input is not in the desired domain, resulting
in the bootstrapping failure. Thus, by using the high-probability upper bound,
the bootstrapping becomes efficient, but it has a certain failure probability. For
example, the probability that ‖I‖∞ ≥ K is 2−24.06, when h = 64 and K = 12.

As we know the distribution of I, the probability distribution of each coef-
ficient can be obtained. We note here that a probabilistic approach is already
used in the error estimation and bootstrapping of the CKKS scheme, and thus
it is reasonable to reduce the error of the CKKS scheme in a probabilistic man-
ner. This approach can be applied in all of the homomorphic computation and
polynomial approximation using the CKKS scheme.

4 Optimization of Error Variance in the Encrypted Data

This section provides a new criterion of qualifying encrypted data of the CKKS
scheme, that is, SNR. It is worth noting that the proposed method is popularly
used in the communication theory. Measuring the quality of the signal by SNR
is the main idea, which is natural and widely used in communication systems.

We can assume the following statements:

i) The mean of error is zero.
ii) The message and error are statistically independent.

The first assumption is straightforward and clear. If the mean of error is not
zero, one can simply subtract the mean value to reduce the error. In general,
the second one is also true. When we deal with approximate polynomial, the
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approximation error is dependent on the message. However, the approximation
error is usually small compared to the message, and the covariance is negligible.
From these two assumptions, the variance of error introduced by multiplication
can be obtained. Moreover, from the central limit theorem, the sum of indepen-
dent random variables can be approximated to a Gaussian distribution. Now,
since the power of noise and the variance of error are the same, we focus on error
variance.

4.1 Tagged Information for Ciphertext

We propose new tagged information for the full ciphertext of the CKKS scheme
to tightly manage the errors in encrypted data. The tagged information for
ciphertext is introduced in [1], and it is used to estimate the magnitude of the
error. The tagged information is composed of a level l, where 0 ≤ l ≤ L, an upper
bound v ∈ R of the message, and a high-probability upper bound B ∈ R of error.
The upper bound is informative when there are few homomorphic operations.
However, as the homomorphic operation continues, the upper bound becomes
exponentially loose and thus useless.

We take a simple example of how the upper bound becomes loose. In [1], 6σ
is used as the high-probability upper bound of the error that follows Gaussian
distribution with variance σ2. The probability that Pr(|X| > 6σ) is 2−27.8.
Previously, the error upper bound of a ciphertext, which was the sum of two
ciphertexts with error upper bounds B1 and B2, was specified as B1 + B2 [1,
7]. Assume that there are 100 distinct fresh ciphertexts and let σ2

o be the error
variance. Then the previous tagged information states that the upper bound of
error is 6σo. Hence, the upper bound of the error in the encrypted data, which
is the sum of the hundred ciphertexts, is 600σo. However, the ciphertexts are
independent, and its error follows the Gaussian distribution with a variance of
100σ2

o . Therefore, the probability of the given upper bound, 600σo, is Pr(|e| >
600σo) ≈ 2−2602.1, which is quite loose, where e is the summation of error. The
previous upper bound is too loose to obtain useful information on the error.
A real application such as deep learning requires a lot more computation than
this, and thus the high-probability upper bound of error becomes looser than
this example. In other words, managing the upper limit of errors is practically
futile.

Instead of using these upper bounds, we propose to use the variance of
messages and errors for tagged information. To manage the variance of error,
the energy of message E[x2] is required. However, to tightly manage the er-
ror variance after multiplication, it is better to have the mean and variance of
the message. In other words, three tuples are the tagged information, which
are tuple of message mean, {E[π(Emb(m))i]}i=0,···N/2−1, tuple of message vari-
ance, {V ar[π(Emb(m))i]}i=0,···N/2−1, and tuple, {V ar[π(Emb(e))i]}i=0,···N/2−1,

denoted by µm ∈ CN/2 and vm,ve ∈ RN/2, respectively, where Decsk(c) = m+e.
If each slot value follows the identical distribution, the tagged information can
be replaced as scalar values µm ∈ C and vm, ve ∈ R. Hence, the full ciphertext is
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given as
(c, l,∆,µm,vm,ve),

where l and ∆ are the level and scaling factor of ciphertext, respectively.
The distribution of messages and errors after homomorphic operations varies

depending on the actual distribution of messages and the dependency between
messages. However, it is difficult to know the exact correlation of the messages,
and their distribution after several homomorphic operations is quite complicated.
Therefore, while managing the mean and variance values, the message and error
can be roughly treated as independent Gaussian distribution. It is shown through
the implementation in Section 6 that errors in the encrypted data can strictly
be managed in this way too.

4.2 Worst Case Assumption

One might argue that an upper bound and minimax approximation should be
used as it is not appropriate to assume that someone other than the data owner
knows the mean and variance of the message, µm and vm. However, it is entirely
reasonable to assume that someone other than the data owner knows minimal
information about the distribution of the message, the mean and variance, for
the following reasons. First, the previously used measure of error, the high-
probability upper bound, is also related to the distribution. Second, in many
applications such as deep learning, control of the distributions of intermediate
node values is crucial. For example, the input is usually normalized or stan-
dardized, and many methods to normalize the intermediate values are widely
used [26]-[29], which is crucial for the accuracy and speed up the training of
neural networks. Finally, some information about the message distribution is
known regardless of security, such as the message distribution after ModRaise
in bootstrapping.

If one does not even want to provide the mean and variance of the message,
the server can assume the worst-case that the coefficients of message m(X) are
distributed uniformly at random in [−B,B]. As the message is in R, which is
discrete, the uniform distribution maximizes the entropy, and then it is obviously
the worst case. Similarly, it can also be assumed that the slot values z ∈ ZN/2
follow centered Gaussian distribution with the variance that the coefficients of
its encoded value are in [−B,B] with high-probability, which maximizes the
differential entropy. In the experimental results in Section 6, even though the
worst-case scenario is used, it is shown that the error value in the proposed
method is smaller than that of the previous methods.

4.3 Error in Homomorphic Operations of the CKKS Scheme

The error analysis in each operation, such as encoding, encryption, addition,
multiplication, and key switching, is shown in this subsection. It should be noted
that the proposed error variance minimization method can be applied for all
the variants of the CKKS scheme, such as the original CKKS scheme [1], RNS
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variants [4, 9], and the reduced-error variants [7]. The only difference for the
above variants is the variance of errors.

The following lemmas are basically based on the lemmas in [1, 2, 7]. The dif-
ference is that the lemmas so far have focused on high-probability upper bounds
of errors, but in the proposed method, we focus on the variance of errors in
encrypted data because the upper bounds become loose after successive homo-
morphic operations. Error variances in encrypted data for the original CKKS
scheme and the RNS-CKKS scheme are given in the following lemmas. In the
RNS-CKKS scheme, the rescaling factors qi’s are different for each level, and
thus the errors in rescaling are different from that of the original CKKS scheme.

Lemma 1 (Encoding and encryption). Given a secret key sk with Ham-
ming weight h, we have the following variance of encryption noise in the CKKS
scheme:

1

2
σ2N2 + σ2(h+ 1)N.

Proof. Since a(ζjM ) is the inner product of coefficient vector of a polynomial

a(X) and the fixed vector (1, ζjM , . . . , ζ
j(N−1)
M ) with |ζjM | = 1, the random vari-

able a(ζjM ) has variance σ2N , where σ2 is the variance of each coefficient of

a. Therefore, a(ζjM ) has the variances q2N/12, σ2N, ρN , and h, when a(X) is
sampled from U(Rq),DG(σ2),ZO(ρ), and HWT (h), respectively.

v and e0, e1 are chosen from ZO(0.5) and DG(σ2), respectively. We have a
ciphertext c← v · pk + (m+ e0, e1) with error given by

〈c, sk〉 −m (mod qL) = v · e+ e0 + e1 · s.

As v, e, e0, e1, and s are independent, its variance is given as

N/2 · σ2N + σ2N + σ2N · h =
1

2
σ2N2 + σ2(h+ 1)N.

ut

Lemma 2 (Rescaling). Let (c, l,∆,µm,vm,ve) be an encryption of the en-
coded message m(X) ∈ R of z ∈ CN/2, where l is its level. Then(

cRS, l
′, p(l

′−l) ·∆, p(l
′−l) · µm, p

2(l′−l) · vm, p2(l
′−l) · ve + vscale

)
is a valid encryption of the rescaled message p(l

′−l) ·m(X) for cRS ← RSl→l′(c)
and vscale = 1

12 (h+ 1)N .

Proof. The rescaled ciphertext cRS ←
⌊
ql′
ql
c
⌉

satisfies 〈cRS, sk〉 = ql′
ql

(m + e) +

escale, where escale = 〈τ , sk〉 and τ = (τ0, τ1) is the rounding error vector. We can
assume that the coefficients of polynomials τ0 and τ1 are distributed uniformly
at random on ql′

ql
Zql/ql′ , and thus the variance of τ0 + τ1 · s is N/12 + hN/12.

Therefore, the variance of escale is given as 1
12 (h+ 1)N . ut
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Lemma 3 (Addition and multiplication). Let
(
ci, l,∆i,µm,i,vm,i,ve,i

)
be

two independent encryptions of the encoded messages mi(X) of values zi ∈ CN/2
for i = 1, 2, and let

cadd ← Add(c1, c2) and cmult ← Mult(c1, c2).

Then, (
cadd, l,∆1,µm,1 + µm,2,vm,1 + vm,2,ve,1 + ve,1

)
and

(cmult, l,∆1∆2,µm,1 × µm,2,vm,1 × vm,2
, (vm,1 + |µ2

m,1|)× ve,2 + (vm,2 + |µ2
m,2|)× ve,1 + ve,1 × ve,2 + vmult)

are valid encryptions of m1(X)+m2(X) and m1(X) ·m2(X), respectively, where

vmult =
(
ql
P

)2
vks + vscale , vks = 1

12N
2σ2, and |µ2| refers µ × µ. For addition,

∆1 = ∆2 should be satisfied.

Proof. Addition is trivial. The ciphertext of m1(X) ·m2(X)

cmult ← (d0, d1) +
⌊
P−1 · d2 · evk

⌉
(mod ql)

contains additional error e′′ = P−1 · d2e′ and the error by scaling. As d2 = a1a2
and from RLWE assumption, we can assume that d2 is distributed uniformly
at random on Rql . Thus, the variance of Pe′′ is derived as q2lN/12 · σ2N =
1
12q

2
l σ

2N2. The total error is given as

m1e2 +m2e1 + e1e2 + e′′ + escale

and as the means of e1 and e2 are zero and m1 and m2 are independent, the
variance of m1e2 +m2e1 + e1e2 is given as

(vm,1 + |µ2
m,1|)× ve,2 + (vm,2 + |µ2

m,2|)× ve,1 + ve,1 × ve,2.

ut

Lemma 4 (Key-switching). Let (c, l,∆,µm,vm,ve) be a ciphertext with re-
spect to a secret key sk′ = (1, s′) and let swk ← KSGensk(s

′), where sk = (1, s).
Then (

c′, l,∆,µm,vm,ve +
(ql
P

)2
vks + vscale

)
is a valid ciphertext with respect to a secret key sk for the same message, where
c′ ← KSswk(c).

Proof. The proof is similar to that of Lemma 3 and thus, it is omitted. ut
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Lemma 5 (Addition and multiplication by constant). Let (c, l,∆,µm,vm,ve)
be an encryption of the encoded message m(X) of z ∈ CN/2. For a constant tuple
a ∈ CN/2, let

ccadd ← cAdd(c1,a;∆) and ccmult ← cMult(c1,a;∆′),

where ccadd and ccmult correspond to the constant multiplication and addition with
constant a, scaled by ∆′, respectively. Then,

(ccadd, l,∆,µm +∆a,vm,ve)

and (
ccmult, l,∆∆

′a× µm, ∆
′2a2 × vm, ∆′

2
a2 × ve

)
are valid encryptions of ∆a+ z and ∆′a× z, respectively, where a2 = a× a.

Proof. The rounding during encoding, introduces a rounding error. However, we
could assume that the scaling factor is large enough so that there are no errors.
Then, it is self-evident. ut

The following two lemmas are slightly modified from the original lemmas in
[4]. It is noted that in the RNS rescaling, the error introduced by approximate
scaling factor is eliminated by managing the exact scaling factor after rescaling,
∆/pl.

Lemma 6 (RNS rescaling). For the RNS-CKKS scheme, let (c, l,∆,µm,vm,ve)
be an encryption of the encoded message m(X) ∈ R of z ∈ CN/2. Then(

cRS, l − 1, p−1l ·∆, p
−1
l · µm, p

−2
l · vm, p

−2
l · ve + vscale

)
is a valid encryption of the rescaled message p−1l ·m(X) for cRS ← RS(c) and
vscale = 1

12 (h+ 1)N . Thus, the scaling factor of cRS is p−1l ·∆.

Proof. The proof is the same as that of the original CKKS scheme except for
the scaling factor. In RNS-CKKS, the scaling factor is slightly different depend-
ing on the operations done to the ciphertext, and thus when adding different
ciphertexts, an error occurs according to the ratio of pl and p in the process of
forcibly treating the scaling factor as p. The methods to remove such error was
proposed in [7, 8]. ut

Lemma 7 (RNS key-switching). For the RNS-CKKS scheme, let

(c, l,∆,µm,vm,ve)

be a ciphertext with respect to a secret key sk′ = (1, s′) and let swk← KSGensk(s
′),

where sk = (1, s). Then
(
c′, l,∆,µm,vm,ve + 1

P 2vksrns + vscale
)

is a valid cipher-
text with respect to a secret key sk for the same message, where c′ ← KSswk(c)

and vksrns = dnum·pα
12 σN .
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Proof. The key switching noise comes from the rounding terms τ as in Lemma
2 and from the error terms e′k in swk0. The variance of error from τ is vscale. The
other error is given as

〈WDl(c1), {e′k}0≤k<dnum−1〉
P

. (1)

It can be assumed that the i-th component of WDl(c1) follows uniform distri-
bution in q̃i. Then, its variance is q̃i

12 and the variance of each coefficient of e′k is
σ2. Thus, the variance of error in (1) is derived as

P−2 ·
∑

0≤i<dnum′−1

q̃i
12
σN ≈ P−2 · dnum′ · pα

12
σN.

ut

When the sparse packing method [2] is applied, N in the above lemmas can
be replaced by 2n when there are n slots.

4.4 Reordering Homomorphic Operations

As the proposed method enables tight management of errors in encrypted data,
homomorphic operations can be effectively reordered to reduce errors. The main
advantage of reordering homomorphic operations is that the errors in the en-
crypted data are reduced without compromising security and performance. Us-
ing Lemmas 1 to 7, one can reorder homomorphic operations to minimize the
error variance. In this subsection, we show some operations patterns that can
be reordered to reduce the error in encrypted data. Considering that the error
increases cumulatively in the CKKS scheme, the little differences in the following
examples greatly affect the error variance as the depth of operations advances. It
is worth noting that the most beneficial application of the CKKS scheme, deep
learning has a deep of operations, too.

In addition to the below examples, there are many methods to reorder homo-
morphic operations corresponding to the inputs and the operations themselves.
Thus the reordering of homomorphic operations can be done in an on-the-fly
manner. In the field of optimizing compilers, there has been many researche on
instruction reordering [37], and we leave the adoption of compiler techniques as
future work.

Polynomial Basis With Smaller Magnitude of Error In this subsection,
we propose a way to reduce the error in the encrypted polynomial basis by re-
ordering homomorphic operations. The error in each encrypted polynomial basis
depends on the order of homomorphic operations obtaining it. Polynomials are
frequently evaluated not only for bootstrapping [2]-[6] but also in various appli-
cations using HE [12, 22]-[30] as all the homomorphic operations are polynomial
operations, except for the rotation and conjugation.
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In general, it is beneficial to find a polynomial basis first and then evaluate
the polynomial. Doing so consumes less level of ciphertext, and obtaining a
polynomial basis is necessary for efficient evaluation algorithms such as the baby-
step giant-step algorithm or the Paterson-Stockmeyer algorithm. Hence, it is
essential to reduce error in the encrypted polynomial basis.

As the Chebyshev polynomial basis will be used in the later sections for
polynomial approximation in bootstrapping, we use here the Chebyshev polyno-
mial basis as an example. However, we note that the method in this subsection
can also be applied to other polynomial bases. Tn(x) is usually obtained by the
following recursive equation

Tn(x) = 2T2k(x) · Tn−2k − T2k+1−n,

where k is the greatest integer satisfying 2k < n. This is beneficial in terms of
depth and simplicity; T2k(x) is the maximum degree term that can be obtained
within the depth k and by using just T2k(x) and Ti(x)’s for 0 ≤ i ≤ 2k, we can
obtain all Ti(X)’s for 2k < i ≤ 2k+1.

Let ci be the ciphertext of message Ti(x) with scaling factor ∆ for i =
0, . . . , n. Considering that ci contains error ei, the error in cn obtained by
Tn(x) = 2Tk(x) · Tn−2k(x) − T2k+1−n(x) is (2T2k(x)en−2k + 2Tn−2k(x)e2k)∆ +
2e2ken−2k−e2k+1−n by Lemma 3, if we ignore the key-switching error for brevity.
When the ciphertext is rescaled by ∆, the error becomes

2T2k(x)en−2k + 2Tn−2k(x)e2k + escale,rs + (2e2ken−2k − e2k+1−n)/∆,

where escale,rs is another scaling error as described in Lemma 2. It is noted that
∆ is large enough so that (2e2ken−2k − e2k+1−n)/∆ can be ignored. Roughly,
as Tn−2k(x) and e2k are independent and E[e2k ] is zero, the variance of error
Tn−2k(x)e2k is given as

V ar[Tn−2k(x)e2k ] = V ar[Tn−2k(x)]V ar[e2k ] + E[Tn−2k(x)]2V ar[e2k ]

= E[Tn−2k(x)2]V ar[e2k ].
(2)

Since Ti’s are not independent variables, calculating the exact error distri-
bution in encrypted Ti’s is not straightforward, but roughly according to (2)
and Table 1, we can see that the error multiplied by the even term tends to
remain and the error multiplied by the odd term tends to decrease. In Table 1,
it is shown that E[Ti(x)2] is close to one when i is an even number. Meanwhile,
E[Ti(x)] is zero and V ar[Ti(x)] is a small value when i is an odd number. That
is, since even degree terms have a large mean of squares, the error is large when
multiplication of even terms is used when calculating the Chebyshev basis.

Therefore, when n is even, Tn should be calculated by Tn(x) = 2T2k−1(x) ·
Tn+1−2k−T2k+1−n−2 rather than Tn(x) = 2T2k(x) ·Tn−2k−T2k+1−n. The power-
of-two degree terms T2k can only be found by the product of T2k−1 , to consume
the least level. Thus, the power-of-two degree terms have a large error, and it
is also shown in implementation in Subsection 6.1. Now, it is clear that it is
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Table 1. Mean, variance, and second moment of Ti(x) when x follows the Gaussian
distribution with zero mean and variance σ2 for σ = 1/6 and 1/24, so that the input
is highly probable to be in [−1, 1].

i
σ = 1/6 σ = 1/24

E[Ti(x)] V ar[Ti(x)] E[Ti(x)2] E[Ti(x)] V ar[Ti(x)] E[Ti(x)2]

0 1.000 0.000 1.000 1.000 0.000 1.000
1 0.000 0.028 0.028 0.000 0.002 0.002
2 -0.944 0.006 0.898 -0.997 0.000 0.993
3 0.000 0.200 0.200 0.000 0.015 0.0154
4 0.796 0.070 0.704 0.986 0.0004 0.973
5 0.000 0.376 0.376 0.000 0.042 0.042
6 -0.601 0.208 0.569 -0.970 0.002 0.941
7 0.000 0.465 0.465 0.000 0.078 0.078

better to avoid using the power-of-two degree terms as possible as we can when
evaluating polynomials.

As a simple example, it is assumed in Table 1 that the input messages follow
the Gaussian distribution with zero means. It is common to normalize or stan-
dardize the input value in deep learning [26–29], which is the most attractive
application of HE. Thus we are interested in inputs that follow Gaussian distri-
bution. Besides, x should be in [−1, 1] to use Chebyshev polynomials, and thus
the input is concentrated in the center (zero). Table 1 shows that the smaller
the order of the messages and more centered, the larger the even terms and the
smaller the odd terms.

There are several reasons why this property is essential. In practice, errors in
lower degree terms are essential in homomorphic polynomial evaluation because
the evaluation algorithms such as the baby-step giant-step algorithm mostly
utilize the lower degree terms. Most importantly, as the higher degree terms are
obtained from lower degree terms, and the error is accumulated, minimizing error
in lower degree terms is crucial. Finally, in the case of bootstrapping, the input
distribution is much more concentrated in the center compared to the case of
examples in Table 1 and thus, the proposed reordering method is quite efficient
in bootstrapping.

In Subsection 6.1, the implementation shows that the error in encrypted
polynomial basis can be reduced by reordering homomorphic operations. For
example, the error variance for the proposed method becomes smaller by 1/1973
compared to the case without minimization for T74. We can also conclude that
the modified baby-step giant-step algorithm in [6] is advantageous in terms of
error because the baby-step giant-step algorithm proposed in [4] utilizes power-
of-two degree terms.

Lazy Rescaling We generalize the technique to treat rescaling as a part of
multiplication, which is proposed in [8] to do rescaling as lazy as possible. In
the method suggested by Kim et al. [7], the scaling factor of the ciphertext is
a value around ∆2, and scaling is performed right before a multiplication, not
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after a multiplication. It was shown that error could be reduced and especially,
the encryption error can be removed by this method [7]. We generalize this so
that the ciphertext can have any scaling factor such as ≈ ∆3 or ∆4, and the
rescaling is done as lazy as possible.

As shown in Lemma 2, error in encrypted data is divided by the scaling
factor, and rounding error is added when the ciphertext is rescaled. The critical
point is that the rescaling has a distributive property, and thus, rescaling can
be reordered to reduce errors. In other words, since the rounding errors occur
through rescaling in general, it should be done as lazy as possible. For example,
as suggested in [7], ciphertexts can be rescaled right before a multiplication. This
method prevents further amplification of rescaling errors by addition as well as
reduces the number of required rescalings. Moreover, this method reduces the
number of rescaling, and thus the more additions out of the total operation, the
better the effect.

To reduce the error, rescaling can also be reordered with constant multiplica-
tions as well as additions. For example, when one calculating encryption of ax8

by using c, which is the encryption of x with scaling factor ≈ ∆2, previously,
the calculation was as follows [7]

c2 ← Mult(RS(c),RS(c))

c4 ← Mult(RS(c2),RS(c2))

c8 ← Mult(RS(c4),RS(c4))

coutput ← cMult(RS(c8), a;∆),

(3)

and it consumes four levels. However, we can reorder the operation as

ca ← cMult(RS (c) , a1/8;∆)

c2a ← Mult(RS(ca),RS(ca))

c4a ← Mult(RS(c2a),RS(c2a))

c8a ← Mult(RS(c4a),RS(c4a)).

(4)

When ax8 is obtained using (3), the error introduced by rescaling is amplified
by a unlike (4). However, when a is an integer, it is not necessary to consume
level; in other words, a is not scaled by ∆, and thus (3) may be advantageous in
terms of depth. In that case, unless a is a prime number, depth and error can
be reduced simultaneously by multiplying the factors of a in advance.

Equation (4) can be improved further by replacing the first line in (4) as

c′a ← RS
(

cMult(c, a1/8;∆)
)
.

Let us compare the error in ca and c′a. Let c be a ciphertext whose the full
ciphertext is expressed as (

c, l,∆2,µm,vm,ve
)
.

Then, from Lemma 2, the full ciphertext of RS(c) is expressed as(
RS(c), l − 1, ∆,∆−1µm, ∆

−2vm, ∆
−2ve + vscale

)



High-Precision Approximate HE by Error Variance Minimization 21

𝑐1

𝑐2

𝑐3

𝑐14

𝑐15

…

…

(a) Multiply in order of magnitude of
messages with error variance 244.4

…

𝑐0

𝑐1

𝑐15

…

𝑐2

𝑐14

𝑐3
…
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ones first with error variance 221.5

Fig. 1. Two different methods of obtaining
∏15

i=0 ci.

and thus, the full ciphertext of ca is obtained as(
ca, l − 1, ∆2, a1/8µm, a

1/4vm, a
1/4ve + a1/4∆2vscale

)
.

However, the full ciphertext of cMult(c, a1/8;∆) is obtained as(
cMult(c, a1/8;∆), l − 1, ∆3, a1/8∆µm, a

1/4∆2vm, a
1/4∆2ve

)
and thus, the full ciphertext of c′a is given derived as(

c′a, l − 1, ∆2, a1/8µm, a
1/4vm, a

1/4ve + vscale

)
.

We note that vscale is negligible but a1/4∆2vscale is not. In (4), the rescaling
error introduced by RS(c) is amplified by a, but we can even rule out this by
lazy rescaling.

This technique is quite powerful when evaluating high-degree polynomials,
such as approximate modulus reduction in bootstrapping. If rescaling is done
before multiplying coefficients, the rounding error is amplified by the coefficients
and added by the number of terms, but if rescaling is done as late as possible,
it is added only once.

Successive Multiplication of Ciphertexts with Distinct Magnitudes of
Messages When multiplying many ciphertexts, it is not difficult to see that the
error can be reduced by pairing the large and small values and multiplying the
largest and smallest values first. Let us give an example of how to reduce errors
while the calculation time is maintained. There are 16 ciphertexts with level l as

(ci, l,∆, 0, 2
52+i, 230),
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for i = 0, . . . , 15, where ∆ = 230 and N = 214. We compare two ways to obtain
the multiplication

∏15
i=0 ci in Fig. 1. The results and computation time are the

same. However, the variances of errors are 244.4 for the operation in Fig. 1(a)
and 221.5 for the other.

In summary, we propose three methods of reordering the homomorphic op-
erations to minimize the errors as follows:

i) Mean and variance of the message should be considered when we find the
polynomial basis.

ii) Resizing should be done as lazy as possible.

iii) The error can be reduced by pairing the large and small values and mul-
tiplying the largest and smallest values first when successively multiplying
ciphertexts.

Aside from the given examples in this paper, there must exist tons of opti-
mization methods. It is expected that techniques in optimizing compilers can
be adopted to reduce error in approximate homomorphic encryption without
compromising performance.

5 Optimal Approximate Polynomial and Bootstrapping
of the CKKS Scheme

Usually, HE schemes support addition and multiplication, and thus only poly-
nomials can be evaluated. However, non-polynomial functions such as ReLU,
min/max function, multiplicative inverse, and modulus reduction are frequently
required in their applications [36]. Hence, approximate polynomials are used to
replace those non-polynomial functions in real-world applications [24]. This sub-
section proposes a new method to find the optimal approximate polynomial for
the CKKS scheme using the generalized least mean square method.

5.1 Polynomial Basis Error and Polynomial Evaluation in the
CKKS Scheme

Rounding of ciphertexts introduces an additional error during rescaling and key
switching in the CKKS scheme. Also, these errors and encryption errors are
amplified through homomorphic operations. Generalized polynomial basis of
degree n is denoted by {φ0(t), φ1(t), . . . , φn(t)}. For instance, monomial basis
{1, x, x2, . . . , xn} and Chebyshev polynomial basis {T0(x), T1(x), . . . , Tn(x)} are
polynomial bases. We can assume that each polynomial basis has independent
errors due to rounding and encryption errors, namely, the basis errors.

When a polynomial f(x) =
∑
ciφi(x) is evaluated homomorphically, it is

expected that the result is f(x)+e for a given input x and small error e. However,
in the CKKS scheme, there exists an error in encrypted data and thus, each basis
of polynomial, φi(x) contains independent basis error eb,i. Hence, the output is
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given as ∑
ci(φi(x) + eb,i) =

∑
ciφi(x) +

∑
cieb,i

= f(x) +
∑

cieb,i.

As eb,i is a small value, the error
∑
cieb,i is small in general. However, when |ci|

is much larger than ‖f(x)‖∞ such as a high-degree polynomial for bootstrapping,∑
cieb,i might overwhelm f(x).
High-degree approximate polynomials have large coefficients in general. The

outputs of the approximate polynomial for modulus reduction, which is essential

for the bootstrapping of the CKKS scheme, are in [−ε, ε], where ε = |m|
q . There

have been series of studies in approximate polynomials in the CKKS scheme
[1]–[6], but the error amplified by coefficients were not considered in the pre-
vious studies. The magnitude of coefficients of approximate polynomial should
be controlled when we find the approximate polynomial of any non-polynomial
functions, as well as the modulus reduction, which deteriorates message precision
by the successive homomorphic operations.

5.2 Variance Minimizing Polynomial Approximation

In the encrypted data of the CKKS scheme, errors include errors added for
security, rounding errors, approximation errors, and errors added during homo-
morphic operations. Therefore, from the central limit theorem, the basis errors
can be considered Gaussian random variables with zero means. The approximate
polynomial can be optimized by minimizing the variance of the approximation
error, rather than using minimax approximate polynomial [6].

As shown in Subsection 5.1, basis error is amplified by coefficients of the ap-
proximate polynomial. Thus, the magnitude of its coefficients should not be large
values and using the generalized least squares method, the optimal coefficients
vector c∗ of the approximate polynomial is obtained as

c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
(5)

for weight constants wi, where wi’s are determined by basis error and eaprx is the
approximation error. We call the proposed approximate polynomial obtained by
(5) as the error variance minimizing approximate polynomial, and there exists
an analytic solution. It is noted that when wi’s are all zero, the approximate
polynomial minimizes the variance of approximation error only.

Especially, error variance minimizing approximate polynomial is more effi-
cient and suitable for the bootstrapping of the CKKS scheme as it reduces the
bootstrapping error compared to the minimax approximate polynomial. Consid-
ering SlotToCoeff, the error in the j-th slot is given as e(ζjM ) =

∑N−1
i=0 ei · ζjiM ,

which is an addition of independent and identically distributed random vari-
ables, ei · ζjiM . Hence, the minimax approximate polynomial does not minimize
the variance of errors, which are the actual errors in the encrypted data in boot-
strapping. Instead, minimizing the error variance of each coefficient minimizes
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errors in slot values after bootstrapping. This implies that minimizing the vari-
ance of approximate polynomial error is optimal to reduce the error during the
bootstrapping of the CKKS scheme compared to the minimax approximation.
The error variance minimizing approximate polynomial is described in detail by
taking bootstrapping as a specific example in the next subsection.

5.3 Optimal Approximate Polynomial for Bootstrapping and
Magnitude Its Coefficients

The key part of the bootstrapping of the CKKS scheme is the homomorphic eval-
uation of the modulus reduction. In [2], the modulus reduction is approximated
by the sine function, and the approximate polynomial for the sine function is
homomorphically evaluated using a Taylor series expansion and the double-angle
formula. Moreover, with optimized nodes for the Chebyshev interpolation, the
polynomial approximation is significantly improved [4]. The least-square method
to find better approximate polynomial without trigonometric functions is pro-
posed in [5] and the method to find minimax approximate polynomial is also
proposed in [6].

In [6], the modulus reduction function, t (mod q) is considered as

q

2π
arcsin ◦ sin

(
2πt

q

)
and the approximate polynomials for arcsin(·) and sin(·) are evaluated sequen-
tially. This paper focuses on the direct-approximation of modulus reduction
rather than trigonometric function approximation to minimize the bootstrapping
error and depth. However, as the proposed error variance minimizing method can
be applied to any function, the composite method and double-angle formula for
faster evaluation in [4, 6] can also be applied to the proposed method.

By scaling the modulus reduction function by 1
q , we define fmod(t) = t− i if

t ∈ I− i, that is, fmod :
⋃K−1
i=−K+1 Ii → [−ε, ε] , where Ii = [i− ε, i+ ε] and i is an

integer such that |i| < K. Here, ε denotes the ratio of the maximum coefficient of
the message polynomial and the ciphertext modulus, that is, |mi|/q ≤ ε, where
mi denotes a coefficient of message polynomial m(X).

Let T be the random variable of input t of fmod(t). Then, T = R+ I, where
R is the random variable of r, the rational part of t and I is the random variable
of i, for t ∈ Ii. It should be noted that PrT (t) = PrI (i) · PrR (r) is satisfied for
t = r+ i as i and r are independent and

⋃
i Ii = [−ε, ε]×{0,±1, . . . ,±(K − 1)},

where PrT ,PrI , and PrR are probability mass functions or probability density
functions of T, I, and R, respectively.

The approximation error in t is given as

eaprx(t) = p(t)− fmod(t)

= p(t)− (t− i),
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where p(t) is the approximate polynomial of fmod(t). Then the variance of eaprx
is given as

V ar[eaprx] = E[e2aprx]− E[eaprx]
2

= E[e2aprx]

=

∫
t

eaprx(t)
2 · PrT (t) dt,

where the mean of eaprx is zero by Lemma 8. This gives us the following equation

V ar[Eaprx] =
∑
i

∫
m

eaprx(t)
2 · PrR (r) · PrI (i) dt

=
∑
i

PrI (i)

∫ i+ε

t=i−ε
eaprx(t)

2 · PrR (t− i) dt.

It is noted that the integral can be directly calculated or replaced by the sum of
discretized values as in [5].

Lemma 8. Let p(t) be an approximate polynomial that minimizes V ar[f(t) −
p(t)] for a function f . Then, E[f(t)− p(t)] = 0 is satisfied.

Proof. Assume that E[f(t) − p(t)] = µ 6= 0. Then, we can see that it is always
satisfied that

V ar[f(t)− (p(t) + µ)] = E[(f(t)− p(t))2]− µ2

< V ar[f(t)− p(t)],

which is a contradiction.
ut

Let {φ0(t), φ1(t), . . . , φn(t)} be a generalized polynomial basis. Then, we rep-
resent the approximate polynomial by p(t) =

∑n
k=0 ckφk(t), where ck’s are co-

efficients. In this paper, polynomial approximation aims to find the coefficients
that minimize V ar[eaprx]. However, it should be noted that the approximation

of the modulus reduction, fmod(t), t ∈
⋃K−1
i=−K+1 Ii, is required to be very accu-

rate, especially for the bootstrapping and thus, a high dimensional approximate
polynomial should be used. The problem is that high-degree approximate poly-
nomials usually have large coefficients. Generally, it is not a problem, but in the
case of the CKKS scheme, large coefficients amplify the errors on the polynomial
basis. Therefore, a high-degree approximate polynomial with small coefficients
is required. Hence, we find c∗ such that

c∗ = arg minc

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
, (6)

and the solution satisfies

∇c

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
= 0,
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where c = (c0, c1, . . . , cn) and w = (w0, w1, . . . , wn) are coefficient and weight
constant vectors, respectively.

It is noted that the variance of error in each φi(t) may be different. For
example, when the ciphertext of x4 is obtained by multiplying the ciphertext
of x2, while the ciphertext of x2 contains a rounding error ernd,2. Then, the
ciphertext of x4 has error 2ernd,2x

2 + e2rnd,2 + ernd,4. In general, we can say that
a high-degree term of polynomial basis causes a larger error. Hence, a precise
adjustment of the magnitude of polynomial coefficients can also be made using
multiple weight constants, wi’s.

Theorem 1. There exists a polynomial-time algorithm that finds c = (c0, . . . , cn)
satisfying

arg minc

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
.

Proof. From Lemma 8, we can assume that E[eaprx] = 0. Then, we have the
following equation

V ar[eaprx] = E[e2aprx]− E[eaprx]
2

= E[e2aprx]

= E[fmod(t)
2]2E[fmod(t) · p(t)] + E[p(t)2].

By substituting p(t) =
∑n
k=0 ckφk(t), we have

∂

∂cj
V ar[eaprx] = −2E[fmod(t)φj(t)] + 2

n∑
k=0

ck · E[φk(t)φj(t)].

The solution of the following system of linear equations, c∗ satisfies

c∗ = arg minc

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
:

T · c = y, (7)

where

T =


E[φ0φ0] + w0 E[φ0φ1] . . . E[φ0φn]

E[φ1φ0] E[φ1φ1] + w1 . . .
...

...
. . .

...
E[φnφ0] E[φnφ1] . . . E[φnφn] + wn


and

y =


E[fmod(t)φ0(t)]
E[fmod(t)φ1(t)]

...
E[fmod(t)φn(t)]

 .
As E[φiφj ] and E[fmod(t)φi(t)] are integral of polynomials, these are easy to
calculate. ut
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Theorem 1 states that the approximate polynomial for p(t) is found efficiently.
In other words, the computation time of solving this system of linear equations
is the same as that of finding an interpolation polynomial for given points, which
is faster than the modified Remez algorithm [6].

5.4 Reducing Complexity and Error Using Odd Function

When the approximate polynomial is an odd function, one can save time to find
and homomorphically evaluate the approximate polynomial. Using the fact that
fmod(t) is an odd function and the minimax approximate polynomial of an odd
function is also an odd function, the approximate polynomial for fmod(t) with
only odd degree terms was derived [5, 6]. Moreover, the number of operations to
evaluate the approximate polynomial can also be reduced by omitting even-order
terms. Besides, the amplified basis error is also reduced as there are only half
of the terms to be added when the approximate polynomial is an odd function.
Theorem 2, it is shown that when the target function of polynomial approxi-
mation such as fmod(t) is odd and the probability density function is even, the
error variance minimizing approximate polynomial is also an odd function from
the following theorem. In the following section, odd approximate polynomials
are obtained and implemented based on the following theorem.

Theorem 2. When PrT (t) is an even function and f(t) is an odd function, the
error variance minimizing approximate polynomial for f(t) is an odd function.

Proof. Existence and uniqueness: The error variance minimizing approximate
polynomial minimizes V ar[eapprx] +

∑
wic

2
i , which is a quadratic polynomial for

the coefficients c. Hence, there exists the one and only solution.
Oddness: Let Pm denote the subspace of the polynomial function of degree

at most m and fm(t) denote the unique element of Pm that is closest to f(t)
in the variance of difference. Then, V ar[−f(−t) − p(t)] +

∑
wic

2
i is minimized

when p(t) = −fm(−t), because

V ar [−f(−t)− p(t)] =

∫
t

(−f(−t)− p(t))2 · Pr(t)dt

=

∫
−u
−(f(u) + p(−u))2 · Pr(−u)du

=

∫
u

(f(u)− (−p(−u)))
2 · Pr(u)du

is satisfied and the squares of coefficients of fm(t) and −fm(−t) are the same. As
the error variance minimizing approximate polynomial is unique, we conclude
that fm(t) = −fm(−t).

ut

5.5 Generalization of Weight Constants and Numerical Method

Earlier it is noted that the weight constant vector w provides the trade-off
between the magnitude of coefficients and variance of polynomial approximation
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Algorithm 1 Generalized Odd Baby-Step Giant-Step Algorithm [6]

Instance: A ciphertext for t, a polynomial of degree n, p(t) =
∑n

i=0 ciTi(t).
Output: A ciphertext encrypting p(t).

1: Let l be the smallest integer satisfying 2lk > n for an even number k.
2: Evaluate T2(t), T3(t), . . . , Tk(t) inductively, but even degree polynomials other than
Tk(t) are not necessary to be obtained unless it is used to obtain other polynomials.

3: Evaluate T2k(t), T22k(t), . . . , T2l−1k(t) inductively.
4: Find polynomials r(t), q(t) of degree ≤ 2l−1k, which satisfy p(t) = r(t) +
q(t)T2l−1k(t) in forms of linear combinations of the Chebyshev polynomial basis.

5: Evaluate q(t) and r(t) recursively, by using the quotient and remainder polynomials
when those are divided by T2l−2k(t).

6: Evaluate p(t) using T2l−1k(t), q(t), and r(t).

error. In this subsection, we generalize the amplified basis error term
∑n
i=0 wic

2
i

and find the optimal approximate polynomial for baby-step giant-step algorithm.
The numerical method to select the weight constant vector w is also proposed.

The basis error can be found using the method proposed in Subsection 4.4
or numerically. Let vb,i be the variance of basis error in a slot of ciphertext
which is an encryption of Ti(x). Then, the basis errors are multiplied by ci and
the amplified error is given as

∑n
i=0 c

2
i vb,i. Considering the approximation error,

it should be noted that a large scaling factor ∆bs = O(q) is multiplied to the
result of EvalMod [2, 5]. For brevity of description, we let ∆bs = q; it is proper,
because there are coefficients of m(X), mi’s in the slots after CoeffToSlot,
and by letting its scaling factor q, the slot values become mi/q with scaling
value q. Hence, the approximation error is given as q2 · V ar[eaprx]. Therefore, it
is optimal when wi has the value vb,i/q

2.
However, in practice, fast evaluation algorithms such as the baby-step giant-

step and the Paterson-Stockmeyer algorithms are used to evaluate the polyno-
mial efficiently. Thus, the coefficients are changed and the errors are not simply
added.

The generalized baby-step giant-step algorithm for an odd degree polynomial
is given in Algorithm 1. The basic blocks of the baby-step giant-step algorithm
are polynomials of degree less than k, so-called baby-step polynomials, pi(t) =∑
j∈{1,3,...,k−1} di,jTj(t) for i = 0, 1, . . . , 2l − 1. Then, it can easily be seen that

p(t) consists of pi(t)’s and Tk(t), . . . , T2l−1k(t). For example, when l = 2, we have

p(t) = (p3(t)Tk(t) + p2(t))T2k(t) + p1(t)Tk(t) + p0(t). (8)

Hence, when p(t) is evaluated, the coefficients of pi(t)’s amplify the basis error,
and thus, minimizing the basis error of basis elements with a degree less than k
is crucial.

Let Ep be a function of d, which is the variance of basis error amplified by
coefficients d = (d0,1, d0,3, . . . , d2l−1,k−1). A heuristic assumption that Ti’s are
independent and the encryptions of Tk(t), . . . , T2l−1k(t) have small error simpli-
fies Ep. Let T̂i be the product of all T2jk’s multiplied by pi, for example, T̂0 = 1
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and T̂3 = TkT2k in (8). Considering the error multiplied by di,j , ej · T̂i is the
dominant term as Ti has zero mean and very small variance. Thus, it can be
said that Ep =

∑
i

∑
j d

2
i,jE[T̂ 2

i ]vb,j , which is a quadratic function of d. In other
words, we have Ep = dᵀHd, where H is a diagonal matrix that

Hki+j,ki+j = E[T̂ 2
i ]vb,j .

Thus, (6) is generalized as

c∗ = arg minc (V ar[q · eaprx] + Ep) .

Since c and d have linearity, ∇cEp can easily be calculated. Specifically, we
have

c = Ld

=
[
A2l−1k

]
·
[
A2l−2k 0

0 A2l−2k

]
· · ·

Ak

. . .

Ak

 · d, (9)

where

Ak =

[
Ik/2

1
2Jk/2

0 1
2Ik/2

]
,

Ik/2 is the k/2×k/2 identity matrix, and Jk/2 is the k/2×k/2 exchange matrix.

Equation (9) is derived from Tm(x)Tn(x) = 1
2 (Tm+n(x) + T|m−n|(x)). Then, we

have ∇cEp = 2L−1
ᵀ
HL−1c. Hence, the optimal coefficient c∗ satisfies(

T + L−1
ᵀ
HL−1

)
c∗ = y.

Instead of finding Ep, a simple numerical method can also be used. Actually,

the value of T̂i is close to one, and moreover, the numerical method shows good
error performance in the implementation in Subsection 6.2. We can let wi = w for
all i and find the value using the numerical method for brevity. When w increases,
the coefficients c decreases, and V ar[eaprx] increases, and thus its sum is a convex
function of w. Thus, the optimal polynomial is found by using numerical methods
by finding the optimal w. c is uniquely determined by w, and using c, the
coefficients for the baby-step giant-step algorithm or the Paterson-Stockmeyer
algorithm can be calculated. The magnitude of the basis errors that are amplified

by coefficients is similar to the rounding error whose variance is N(h+1)
12 . After

multiplying ‖L−1c‖2 with the variance, it is added to q2 · V ar[eaprx]. In other
words, we adjust w to minimize

V ar[eaprx] +
w

q2
· ‖L−1c‖22,

where w is close to N(h+1)
12 .
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Table 2. Probability mass function of I.

i PrI (i) i PrI (i)

0 0.3343019 ±6 0.00342346
±1 0.13919181 ±7 0.00091685
±2 0.09646158 ±8 0.00020066
±3 0.05556329 ±9 0.00003567
±4 0.02655144 ±10 0.00000511
±5 0.01049854 ±11 0.00000059

The proposed method is efficient when an accurate approximation is required.
In [8], a bootstrapping for the CKKS scheme with a non-sparse key was proposed;
in other words, the secret key has Hamming weight h ≈ N/2. In that case, K is
a considerable value, so that a high-degree approximate polynomial is required.
Therefore, if the method proposed in this paper is applied to the non-sparse key
case, its impact on bootstrapping error reduction will be significant.

6 Implementation of the Proposed Method and
Performance Comparison

The proposed method of minimizing error variance is implemented on HEAAN
and SEAL, which can be widely applied to many different applications. We
compare the experimental error of the Chebyshev polynomial of the first kind
in the case of applying the reordering method proposed in the paper and not.
Finding error variance minimizing approximate polynomial is implemented by
SageMath. Recently, we implemented the bootstrapping algorithm for SEAL,
which will be released soon. The bootstrapping using the proposed approximate
polynomial is implemented by modifying HEAAN and SEAL. In this section,
several implementation results and comparisons for the bootstrapping algorithms
of the state-of-the-art methods are also presented.

6.1 Error Variance Minimization

In this subsection, we show how to find the Chebyshev polynomial basis with
smaller errors in HEAAN and SEAL. The input for bootstrapping is t = r+i, and
for the worst-case assumption, we assume that r follows the uniform distribution
[−ε, ε], where ε = 2−10. The probability mass function of I is given in Table 2.

As the domain of Chebyshev polynomial is [−1, 1], {Ti(t/K)}0≤i≤n is used as
the polynomial basis, and it can be seen that the distribution of the input t/K
is concentrated at zero. As shown in Subsection 4.4, multiplication between two
even degree terms should be avoided when we calculate the even degree terms.
Fig. 2 shows the variance of error in Ti(t) for even i’s. It can be seen that error in
encrypted data can be greatly reduced by only changing the order of calculating
Ti(t). In particular, for T74(t), the variance of error for the proposed method
becomes smaller by 1/1973 compared to that without minimization.
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20 40 60 80 100 120
i

2× 10−10

4× 10−10

6× 10−10

8× 10−10

Var[ei/∆]

Proposed
Tn(x) = 2T2k(x) · Tn− 2k − T2k+ 1 −n

(a) Result in HEAAN, where ε = 2−10 and q = 240

20 40 60 80 100 120
i

5× 10−12

1× 10−11

1.5× 10−11

Var[ei/∆]

Proposed
Tn(x) = 2T2k(x) · Tn− 2k − T2k+ 1 −n

(b) Result in SEAL, where ε = 2−5 and q = 245

Fig. 2. Variance of error in Ti(t) for even i using HEAAN and SEAL with various
parameters.
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6.2 Weight Constant and Minimum Error Variance

In Subsection 5.5, we discussed analytic solution and numerical method for op-
timal approximate polynomial. In this subsection, the above methods are imple-
mented and verified, together with the theoretical values of approximation error
and the amplified basis error. Besides, we confirm that although the numeri-
cal method finds a polynomial that is very close to the value obtained through
Subsection (5.5), it has a slightly larger error than this.

The approximate polynomial minimizing V ar[eaprx] + w · ‖c‖22 can be found
for a given weight constant w. For the scaling factor ∆bs = q of bootstrapping,
the variance of approximation error in the slot after EvalMod is given as

q2 · V ar[eaprx].

The variance of amplified basis errors by coefficients are given as

Ep = (L−1c)
ᵀ
H(L−1c).

Finally, in the SlotToCoeff step, the plaintext vectors are multiplied with
the first half of the encoding matrix U and their diagonal vectors have the
magnitude of one. Hence, the variance of the approximation error is multiplied
by the number of slots n. In summary, the total errors by bootstrapping are
given as

n ·
(
q2 · V ar[eaprx] + Ep

)
.

The experimental results, the theoretical variance of the approximate error,
and the basis error are shown in Fig. 3. The default parameters in HEAAN
library are used for the experiment: N = 216, h = 64, σ = 3.2 and the number of
slots is n = 23. The experimental result is averaged over 256 experiments, where
the scaling factors are ∆ = 40, 45, the number of slots l is 8 and ε = 2−10 in this
experiment. Therefore, q = 50, 55 for ∆ = 40, 45, respectively.

The blue lines with triangular legend show the error by polynomial approxi-
mation as

n · q2 · V ar[eaprx].

The green lines with x mark legend show the amplified basis errors as

n · Ep

and the red lines with square legend are for the mean square of errors obtained by
experiments. The gray dot line is the variance of bootstrapping error achieved by
using the error variance minimizing approximate polynomial of the same degree.
For the worst-case assumption, we assume that m is distributed uniformly at
random. However, we use m that is not uniformly distributed. Therefore, the
total error can further be reduced when the distribution of m is known.

In Fig. 3, the sum of blue lines with triangular legend and green lines with x
mark legend meets the red lines with the square legend. Thus, it shows that the
theoretical derivation and experimental results are agreed upon. It can also be
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(a) Theoretical variance of errors and experimental result
when scaling factor is 240
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(b) Theoretical variance of errors and experimental result
when scaling factor is 245

Fig. 3. Theoretical energy of approximation error, amplified basis error, and energy
of experimental results, implemented in HEAAN. A polynomial of degree 81 is used.
The gray dot line is the variance of bootstrapping error that is achieved by using the
polynomial with coefficients that c∗ = arg minc (V ar[q · eaprx] + Ep) , which is the lower
bound of bootstrapping error.
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Fig. 4. Comparison of the minimum achievable variance of approximation error of
the proposed method and that of the minimax polynomial, when ε = 2−10 and no
controlling of coefficients of both approximate polynomials.

seen that it is possible to obtain an approximate polynomial with a small error
even by using the numerical method, but the error is slightly larger than that of
an accurately calculated approximate polynomial. It is noted that the variance

of the rescaling error is (h+2)2n
12 and the optimal w is close to (h+2)2n

12q2 ≈ 26.4

because each element of Chebyshev polynomials has error mainly introduced by
rescaling.

6.3 Comparison of the Proposed Method with the Previous
Methods

Minimized Error Variance by the Proposed Method and Error Vari-
ance of Minimax Polynomial The best-known approximation method for the
CKKS bootstrapping so far is the modified Remez algorithm [6]. The modified
Remez algorithm is an iterative method that finds the minimax approximate
polynomial for piece-wise continuous functions such as fmod(t). Using the modi-
fied Remez algorithm, the minimax approximate polynomial for fmod(t) can be
found. The minimax approach is reasonable when the input distribution is un-
known. However, in the CKKS bootstrapping, the input distribution is partially
known; the probability mass function of I follows a distribution similar to the
Irwin–Hall distribution. We use the worst-case assumption that r is uniformly
distributed when we derive the variance minimizing approximate polynomial.
However, in the experiment of finding the variance of approximate error for the
given approximate polynomials for both methods, we let r follow the Gaussian
distribution, not the uniform distribution because the message polynomial is
assumed to be the resultant value of compound operations and summations.
In other words, by assuming the distribution of the message polynomial differ-
ently for finding the variance minimizing approximate polynomial and actually



High-Precision Approximate HE by Error Variance Minimization 35

calculating the variance, the experiment is conducted in an unfavorable environ-
ment to the proposed method. It is noteworthy that a lower error variance than
minimax polynomial is achieved when using the proposed method, despite the
worst-case assumption. It is shown that the distribution of I has a dominant
effect on the error.

It is shown in Fig. 4 that the variance of approximation error is smaller when
the error variance minimizing polynomial is used, as expected. This means that
the proposed method reduces the approximation error during bootstrapping.
As the magnitude of the coefficients of the approximate polynomial cannot be
controlled in the modified Remez algorithm, the approximate polynomials for
both methods are compared without controlling the magnitude of coefficients in
Fig. 4. It is noted here that the variance of approximation errors shown in Fig.
4 is not practical in the CKKS scheme due to the basis error and the enormous
coefficients of the approximate polynomials. However, it is possible to reduce
the magnitude of the coefficients of the approximate polynomial in the proposed
method with slightly increased error variance. In contrast, the previous methods
cannot control the magnitude of its coefficients, and thus the use of the double-
angle formula is essential, which results in a large error variance and more depth.

Experimental Result of Bootstrapping Error There are experimental re-
sults, but they are being visualized.

Fundamental Error of Baby-step Giant-step Algorithm This subsection
discusses a very loose lower bound of bootstrapping error, which is the constant
term of bootstrapping error, and shows that the proposed method is very close
to the lower bound. As the lazy rescaling method is applied, the rescaling is
performed after a baby-step polynomial is obtained. In other words, we have
ciphertext cj ’s with scaling factor close to ∆2, which are encryptions of Tj(t)’s.
Then, the rescaling is not performed to cj and coefficients are multiplied as

c′j ← cMult(cj , di,j ;∆).

Then, c′j ’s are added up and rescaled by one level. Let cpi denote the summation
of c′j and then it is an encryption of pi(t), where cpi includes amplified basis error
and additional basis error.

Then the giant-step such as

Mult(RS(cpi),RS(ck)) + cpi+1

is performed. Of course, RS(cpi), RS(ck), and cpi+1
have independent rounding

errors, whose variances are (h+1)·2n
12 . Although E[pi(t)

2] is usually greater than
one, but for a very loose bound, we let E[pi(t)

2] = E[Tk(t)2] ≤ 1, and then
the rounding errors are maintained and added. It is noted that the number of
rescaling cannot further be reduced by the commutative property since the level
and a scaling factor of cpi and ck are the same; these errors are independent of
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the coefficients d, in other words, it is the constant term of modulus reduction
error. There are 2l − 1 such operations in the giant-step.

The error in ModRaias is further amplified by SlotToCoeff. During
SlotToCoeff, key switching makes the 2n shifted copy of the ciphertext (in-
troduces rounding error), and the slot values are multiplied by ζji ’s, whose mag-
nitudes are one, and added up.

There are 3 × (2l − 1) independent rounding errors that occur during the
baby-step giant-step algorithm, and one more rounding error occurs during key
switching. There are n copies of such ciphertexts, and they are all added up.
Roughly, the variance of error introduced by such rounding is given as(

(h+ 1) · 2n
12

× (3× (2l − 1) + 1)

)
× 2n ≈ 214.9,

where n = 23 and l = 3 in the experiment. We note that this is a very loose
lower bound of error, but the proposed method achieves an error of only 2.8 bits
greater than this lower bound on average.

7 Conclusion

In this paper, we introduced two novel methods to improve the precision of the
CKKS scheme. First, SNR, a widely-used measure of performance when dealing
with noisy media such as communication systems, was adopted for the error
variance minimization of the CKKS scheme. To maximize the SNR of encrypted
data, we proposed a method to minimize the variance of errors; To do this, we
replaced the high-probability upper bound that has been in the tagged infor-
mation so far with the variance of errors. As a result, we could tightly manage
the error, and the homomorphic operations were effectively reordered to min-
imize the error variance. Second, we proposed a method to find the optimal
approximate polynomial for the CKKS scheme in the same aspect of minimizing
the error variance. Especially, the newly proposed operation reordering and ap-
proximate polynomial were applied to the bootstrapping of the CKKS scheme,
and it is shown that the error performance of the bootstrapping of the CKKS
scheme was greatly improved compared to that of the previous methods. To
our best knowledge, this is the first bootstrapping algorithm that contemplates
various parameters, slot size, the error characteristics of the CKKS scheme, and
the polynomial evaluation algorithm. From its implementation on HEAAN and
SEAL, it was shown that the proposed bootstrapping algorithm achieves less
variance of error in encrypted data while consuming less level, compared to the
previous works. Even though the number of non-scalar multiplication is slightly
increased compared to the composite method, the lower depth is more important
for future parallel implementation.

From the proposed method, now there are two criteria to reorder homomor-
phic operations when we use the CKKS scheme: error variance reduction and
computation time reduction. In addition to the proposed three examples in this
paper, there are various methodologies to reorder homomorphic operations to
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minimize the error, and it will affect the error performance of the CKKS scheme
significantly for the deeper operations. Since many studies to adjust the order of
operations for general purposes have been done in the field of compilers, apply-
ing the results of these researches will lead to significant improvement in many
applications using the CKKS scheme. We leave application-specific reordering of
homomorphic operations with compiler techniques as further work.
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