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Abstract. In this paper, we propose a high-precision and low-complexity
Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt ’17) by reducing error
and improving its bootstrapping through error variance minimization.
The proposed algorithm allows us to leave more levels after bootstrap-
ping, and thus, with practical accuracy, we reduce the degree of cipher-
text polynomial of the CKKS scheme from 216 to 215. The sizes of the key
and ciphertext are reduced by at least 1/4, which significantly reduces
their computational complexity. Those are possible from the fact that a
smaller scaling factor can be used with the proposed algorithms for the
same precision since the following two contributions significantly reduce
the error of the CKKS scheme, especially in bootstrapping. First, we
apply the concept of signal-to-noise ratio (SNR) and propose a method
of maximizing the SNR of encrypted data by reordering homomorphic
operations. For that, the error variance is minimized instead of the up-
per bound of error when we deal with encrypted data. Especially, we
propose lazy rescaling and lazy relinearization, which reduces computa-
tional complexity as well as error variance. Second, we propose a novel
polynomial approximation specialized for the CKKS scheme from the
same perspective of minimizing the error variance of the encrypted data.
We mainly apply the approximation to the bootstrapping of the CKKS
scheme, where we achieve a smaller bootstrap error compared to the
prior arts. The performance improvement of the proposed algorithms
for the CKKS scheme is verified by implementation over a well-known
homomorphic encryption library, SEAL. Specifically, for very accurate
bootstrapping, the proposed method achieves the same bootstrap error
with only a depth of 8, whereas it requires a depth of 13 in the prior art.
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(PPML)· Simple encrypted arithmetic library (SEAL) · Signal-to-noise
ratio (SNR).

1 Introduction

The recent development of cloud computing, machine learning, and blockchain
raises a privacy problem; how can one write a smart contract on a public
blockchain or outsource computation in machine learning for confidential data?
The need for cryptographic primitives for such scenarios has been exploded, and
there have been extensive studies. Homomorphic encryption (HE) is a specific
class of encryption schemes that allows computation over encrypted data.

The CKKS scheme [10] is one of the highlighted fully homomorphic encryp-
tion (FHE) schemes as it is efficient to deal with real (or complex) numbers,
which are the usual data type for many applications such as deep learning.
When we deal with fixed-point real numbers using other FHE schemes such as
(B)FV [4, 5, 13] and BGV [3] schemes, the size of ciphertext has an exponential
growth rate according to the level, where the level of ciphertext is defined by the
maximum depth of circuit that can be homomorphically evaluated without boot-
strapping. However, the ciphertext size has a polynomial growth rate according
to the level in the CKKS scheme.

The CKKS scheme provides the trade-off between the efficiency and accu-
racy of messages as encrypted data of the CKKS scheme has an error. Errors in
encrypted data are propagated and added along with homomorphic operations.
To our best knowledge, research to the date has provided high-probability upper
bounds for errors [10, 7, 20, 2]. As the operations on encrypted data proceeds,
the upper bound of errors in encrypted data becomes a loose and useless bound.
Moreover, as attacks against CKKS have recently been proposed [9, 27, 25], re-
ducing errors become more crucial when using the CKKS scheme to mitigate
the risk of the attack. Therefore, there is a need for a new technique that can
thoroughly manage errors in encrypted data. Once tightly managing the error,
a compiler technique can be adopted to reduce the error and computing time.

1.1 Our Results

This paper significantly reduces the error in the encrypted data and computa-
tional complexity of the CKKS scheme by the following two contributions: i)
homomorphic operation reordering and ii) new polynomial approximation algo-
rithm and bootstrapping using it. As a result, we achieve less bootstrapping error
with a smaller scaling factor, and thus we enlarge the levels after bootstrapping.
Therefore, bootstrapping can be done while maintaining practical precision even
if we use a parameter of N = 215 instead of N = 216, where N is the ciphertext
polynomial degree. In contrast, in previous works with N = 215, only about four
levels remain after bootstrapping, and thus we were forced to use N = 216.

By using N = 215 instead of N = 216, the size of the keys and ciphertexts
are reduced by at least 1/4, and the time for all basic homomorphic operations
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is also reduced. We can also significantly reduce the amount of computation
and communication of both the server and client. For example, based on SEAL
(v.3.5)1, the size of the transmitted keys can be reduced from 16.49 GB to 1.63
GB, even if the client only generates power-of-two rotation keys to minimize
client communication instead of the additional computation of the server.

Error Variance Minimization and Homomorphic Operation Reorder-
ing First, we propose a method of managing the variance of errors to maximize
the signal-to-noise ratio (SNR) of the encrypted data rather than the high-
probability upper bounds of error. The CKKS scheme can be considered as a
noisy channel, and thus we adopt the methodologies from communication the-
ory, the SNR. In the proposed method, one can tightly manage the error in the
encrypted data and can effectively reorder homomorphic operations to maximize
SNR. As a simple example, we can reorder the operations to increase the SNR
of the encrypted 74-th Chebyshev polynomial by 1973 times. Specifically, we
propose lazy rescaling and relinearization that reduce the error variance and the
computation time. For example, in the bootstrapping of this paper, the 255th
order polynomial is calculated. If lazy rescaling and linearization are applied, the
computation time can be reduced to a level similar to the conventional method
of calculating the 52nd order polynomial and the double-angle formula [2].

Depth-Optimal Bootstrapping by Novel Polynomial Approximation
The second contribution is a new polynomial approximation specialized for the
CKKS scheme in terms of error variance minimization. To our best knowledge,
this is the first method to find the optimal approximate polynomial that mini-
mizes not only the approximation error but also the error in the polynomial basis
that is amplified by coefficients. We can improve the bootstrapping of the CKKS
scheme using our polynomial approximation, and bootstrapping can be imple-
mented with fewer errors and less depth. The implementation shows that the
proposed method reduces the bootstrap error compared to the state-of-the-arts
[23, 2]. Moreover, the proposed method resolves the problem that the approxi-
mate polynomials have large coefficients, which could only be solved using the
double-angle formula previously. The proposed method allows us to use a direct
approximation for the modulus reduction in the bootstrapping, and thus we can
do bootstrapping with less depth. The implementation result shows that for a
very accurate bootstrapping, the proposed method achieves the same bootstrap
error with only a depth of 8, whereas it required a depth of 13 previously.

Also, we propose various methods for efficient bootstrapping. First, we pro-
pose a method that significantly reduces computation by using lazy rescaling
and linearization with the baby-step giant-step (BSGS) algorithm [17, 23]. Fur-
ther, we propose a novel coefficient-to-slot algorithm that does not consume the
ciphertext level; thus, we can leave more levels after bootstrapping.

However, it is meaningful to use N = 215 for practical precision (16-bit fixed-
point arithmetic) since N = 216 is too heavy for clients with less computational

1 source code: https://github.com/microsoft/SEAL
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power; clients do not want to make 16 GB of keys. Besides, the proposed method
has a significant advantage in reducing the time for bootstrapping, even though
bootstrapping is done more frequently. For instance, a single rotation takes 1.5
s and 19.2 s when N = 215 and N = 216 in our experiment, respectively, and
moreover, if we use larger N , more rotations are required for a bootstrapping.

1.2 Related Works

Bootstrapping of the CKKS Scheme Recently, research on bootstrapping
of the CKKS scheme is actively in progress. After the first bootstrapping was
proposed in [7], the Chebyshev interpolation has been applied to the homo-
morphic evaluation of modulus reduction [6, 17]. Then, a technique for direct-
approximation was proposed using least squares method [24] and Lagrange inter-
polation [19]. However, the magnitudes of approximate polynomial coefficients of
those methods are too large. Recently, two papers regarding the bootstrapping
of the CKKS scheme are accepted to Eurocrypt’21 [23, 2]. The algorithm to find
minimax approximate polynomial and the use of arcsin to reduce approximation
error of the modular reduction is presented in [23]. The bootstrapping for the
non-sparse-key CKKS scheme is proposed, and the computation time for ho-
momorphic linear transformations is significantly improved in [2]. We note that
all of the preceding methods cannot make a valid direct approximation for the
modulus reduction function.

Error Management of the CKKS Scheme Since a drawback of the CKKS
scheme is that errors are accumulated, many studies have been conducted to
reduce errors. Recently, Kim et al. proposed a new method of reducing errors
in encrypted data of the CKKS scheme by doing rescaling before a ciphertext-
ciphertext (non-scalar) multiplication and using different scaling factors at each
level [20]. Error management for the CKKS scheme so far used the high-probability
upper bounds of error [10, 7] or average precision of messages. The high-probability
upper bounds are derived from the distribution of error, and the average pre-
cision of message provided in [10, 7, 6, 17, 20] is the expectation of the absolute
value of error. As will be described later, the high-probability upper bound be-
comes very loose with just several successive homomorphic operations.

Cryptanalysis and Significance of Error Minimization From recent crypt-
analysis of the CKKS scheme, the management of the error in encrypted data
has become more vital. Recently, an attack to recover the secret key using the
error pattern after decryption is proposed [25]. The solution to this attack is
to add errors or perform rounding after decryption, and several libraries have
been updated as such. Since errors are added after decryption, errors in the en-
crypted data should be reduced than before. Moreover, the CKKS scheme uses
a sparse-key to keep errors small, but attacks on sparse-key learning with error
(LWE) was proposed [9, 27]. The error variance of the CKKS scheme is propor-
tional to the Hamming weight of the secret key, and thus the significance of error
management has been increased.
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1.3 Organization of This Work

The remainder of the paper is organized as follows. In Section 2, we provide the
necessary notations and signal-to-noise perspective on error. The CKKS scheme
and its bootstrapping algorithm are summarized in Section 3. A new method of
minimizing error variance of encrypted data by using homomorphic operation
reordering is proposed, and some examples, including the novel lazy rescaling
and lazy relinearization, are given in Section 4. We provide a new method to
find optimal direct approximate polynomials for the CKKS scheme in Section
5, focusing on bootstrapping with a modified baby-step giant-step algorithm for
modulus reduction to reduce the computational complexity and error variance.
The implementation results and comparison are given in Section 6. Finally, we
conclude paper in Section 7 with remarks and possible future research directions.

2 Preliminaries

2.1 Basic Notation

Vectors are denoted in boldface, such as v, and every vector is a column vector.
Matrices are denoted by boldfaced capital letters, for example, M. We denote
the inner product of two vectors by 〈·, ·〉 or simply ·. Let u × v denote the
component-wise multiplication of two vectors u and v. When it is evident, x2

denotes the multiplication of x and its complex conjugate, where x ∈ C.
x← D denotes the sampling x according to a distribution D. When a set is

used instead of distribution, x is sampled uniformly at random among the set
elements. Random variables are denoted by capital letters such as X. E[X] and
V ar[X] denote the mean and variance of random variable X, respectively. Some
capital letters may represent something other than a random variable, such as a
constant but context-sensitive. Let ΦM (X) be the M -th cyclotomic polynomial
of degree N , and when M is a power of two, M = 2N , and ΦM (X) = XN + 1.
Let R = Z/ 〈ΦM (X)〉 be the ring of integers of a number field S = Q/ 〈ΦM (X)〉 ,
where Q is the set of rational numbers and we write Rq = R/qR.

2.2 Chebyshev Polynomials

The Chebyshev polynomial of the first kind, in short, the Chebyshev polynomial
is defined by the recursive relation [26]

T0(x) = 1, T1(x) = x, and Tn+1(x) = 2xTn(x)− Tn−1(x).

The Chebyshev polynomial of degree n has n distinct roots in the interval [−1, 1]
and all its extrema are also in [−1, 1]. Moreover, 1

2n−1Tn(x) is the polynomial,
whose maximal absolute value is minimal among monic polynomials of degree
n and its absolute value is 1

2n−1 . Hence, unlike the monomial basis, the Cheby-
shev basis’s high-degree terms do not converge to zero or diverge to infinity as
the degree increases. In addition to the above, the Chebyshev polynomial has
desirable properties as a basis for an approximate polynomial.
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2.3 Signal-to-Noise Ratio Perspective of the CKKS Scheme

In the field of communications, there has been extensive research on noisy me-
dia such as wireless communication and data storage. In this perspective, the
CKKS scheme can also be considered as a noisy media; encryption and decryp-
tion correspond to transmission and reception, respectively. The message in a
ciphertext is the signal, and the final output has an additive error due to ring-
LWE (RLWE) security, rounding, and approximation; hence, the CKKS scheme
should be considered as a noisy media.

The SNR is the most widely-used measure of signal quality, which is defined
as the ratio of the signal power to the noise power as

SNR =
E[S2]

E[N2]
,

where S and N denote the signal (message) and noise (error), respectively. As the
signal and noise must be measured at the same or equivalent points in a system,
the ratio of power is identical to the ratio of energy (or the second moment),
E[S2]
E[N2] . As shown in the definition, a signal with high SNR has better quality.

A simple way to increase SNR is to increase signal power, but it is not easy in
real systems due to regulatory or physical constraints. The CKKS system is also
the same; a larger scaling factor should be multiplied to the message to increase
the message power, but if one uses a larger scaling factor, the ciphertext level
decreases, or larger parameters should be used to be secure under the RLWE
problem. Hence, to increase SNR, it is essential to reduce the noise power in the
CKKS scheme rather than increase the signal power.

Error estimation of the CKKS scheme so far has been focused on the high-
probability upper bound of the error after several operations, and the upper
bound was tracked using the upper bound of the message [10, 7]. As the homo-
morphic operation continues, the bound becomes quite loose, and its statistical
significance may fade. In this paper, we propose methods to reduce the power
(or energy) of error. We note that when the mean of error is zero, the energy
of error is the same as its variance. Therefore, the energy and variance of errors
are abused from now on if its mean is zero.

3 The CKKS Scheme and Its Bootstrapping

3.1 The RNS-CKKS Scheme

This subsection briefly introduces the RNS-CKKS scheme [17, 8, 20]. The CKKS
scheme and its RNS variants provide homomorphic operations on encrypted
complex number with errors, which is done by canonical embedding and its
inverse. Recall that canonical embedding Emb of a(X) ∈ Q/ 〈ΦM (X)〉 into CN
is the vector of the evaluation values a at the roots of ΦM (X) and Emb−1 denotes
its inverse. Let π denote a natural projection from H = {(zj)j∈Z∗M : zj = z−j} to

CN/2, where Z∗M is the multiplicative group of integer modulo M . The encoding
(CN/2 → R) and decoding are defined as follows.
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– Ecd(z;∆): For an (N/2)-dimensional vector z, the encoding returns

m(X) = Emb−1
(⌊
∆ · π−1(z)

⌉
Emb(R)

)
∈ R,

where ∆ is the scaling factor and b·eEmb(R) denotes the discretization into

an element of Emb(R).
– Dcd(m;∆): For an input polynomial m(X) ∈ R, output a vector

z = π(∆−1 · Emb(m)) ∈ CN/2,

where its entry of index j is given as zj = ∆−1 · m(ζjM ) for j ∈ T , ζM is
the M -th root of unity, and T is a multiplicative subgroup of Z∗M satisfying
Z∗M/T = {±1}. This can be basically represented by multiplication by an

N/2×N matrix U whose entries are Uij = ζji , where ζi := ζ5
i

.

We define three distributions as follows. For a real number σ, DG(σ2) denotes
the distribution in ZN , whose entries are sampled independently from the dis-
crete Gaussian distribution of variance σ2. HWT (h) is the set of signed binary
vectors in {0,±1}N with Hamming weight h and ZO(ρ) is the distribution from
{0,±1}N with probability ρ/2 for each of ±1 and probability of being zero 1−ρ.

The RNS-CKKS scheme performs all operations in RNS. The ciphertext
modulus Ql = q ·

∏l
i=1 pi is used, where pi’s are chosen as primes that satisfy

pi = 1 (mod 2N) to support efficient number theoretic transform. These prime
numbers are also chosen such that p ≈ pi for the initial scaling factor p. We note
that Q0 = q is much greater than p as the final message’s coefficients should not
be greater than the ciphertext modulus q. For bootstrapping, we choose different
moduli, such as Q′L0+L1

= q ·
∏L0

i=1 pi
∏L1

j=1 p
′
j , where p′j ≈ q and Q′L0+L1

≈ QL.
The CKKS scheme is defined with the following operations.

– KeyGen(1λ):
• Given the security parameter λ, we choose a power-of-two M , an integer
h, an integer P , a real number σ, and a maximum ciphertext modulus
Q, such that Q ≥ QL.

• Sample the following values: s← HWT (h), a← RQL , e← DG(σ2).
• Set the secret key and the public key as

sk := (1, s), pk := (b, a) ∈ R2
QL ,

respectively, where b = −as+ e (mod QL) .

To take advantage of RNS, we use the hybrid key switching technique pro-
posed in [17]. First, for predefined dnum, a small integer such as 4, we de-

fine partial products
{
Q̃j

}
0≤j<dnum

=
{∏(j+1)α−1

i=jα pi

}
0≤j<dnum

, where α =

(L+ 1)/dnum. For level l and dnum′ = d(l + 1)/αe, we define [17]

WDl(a) =

[aQ̃0

Ql

]
Q̃0

, · · · ,

[
a
Q̃dnum′−1

Ql

]
Q̃dnum′−1

 ∈ Rdnum′ ,



8 Y. Lee et al.

PWl(a) =

([
a
Ql

Q̃0

]
ql

, · · · ,
[
a

Ql

Q̃dnum′−1

]
ql

)
∈ Rdnum′

Ql
.

Then, for any (a, b) ∈ R2
Ql

, we have

〈WDl(a),PWl(b)〉 = a · b (mod Ql) .

Then, the operations in the RNS-CKKS scheme are defined as follows:

– KSGensk(s
′): For auxiliary modulus P =

∏k
i=0 p

′
i ≈ maxj Q̃j , sample a′k ←

RPQL and e′k ← DG(σ2). Output the switching key

swk := (swk0, swk1) =({b′k}
dnum′−1
k=0 , {a′k}

dnum′−1
k=0 ) ∈ R2×dnum′

PQL
,

where b′k = −a′ks+ e′k + P · PW(s′)k (mod PQL).
• Set the evaluation key as evk := KSGensk(s

2).
– Encpk(m): Sample v ← ZO(0.5) and e0, e1 ← DG(σ2). Output c = v · pk +

(m+ e0, e1) (mod QL).
– Decsk(c): Output m̄ = 〈c, sk〉.
– Add(c1, c2): For c1, c2 ∈ R2

Ql
, output cadd = c1 + c2 (mod Ql) .

– Mult(c1, c2): For c1 = (b1, a1) and c2 = (b2, a2) ∈ R2
Ql

, return

cmult = (d0, d1, d2) := (b1b2, a1b2 + a2b1, a1a2) (mod Ql) .

– RLevk(d0, d1, d2): For a three-tuple ciphertext (d0, d1, d2) correspond to secret
key (1, s, s2), return (d0, d1) + KSevk((0, d2)).
We note that Multevk consists of two stages: multiplication and relinearization
(KSevk((0, d2))).

– cAdd(c1,a;∆): For a a ∈ CN/2 and a scaling factor ∆, output ccadd ←
c+ (Ecd(a;∆), 0).

– cMult(c1,a;∆): For a a ∈ CN/2 and a scaling factor ∆, output ccmult ←
Ecd(a;∆) · c.

– RS(c): For c ∈ R2
Ql

, output cRS =
⌊
p−1l c

⌉
(mod ql−1) .

– KSswk(c): For c = (c0, c1) ∈ R2
Ql

and swk := (swk0, swk1), output

cKS =

(
c0 +

⌊
〈WDl(c1), swk0〉

P

⌉
,

⌊
〈WDl(c1), swk1〉

P

⌉)
(mod Ql) .

The key-switching techniques are used to provide various operations such
as complex conjugate and rotation. Key switching consists of three steps: i)
Decompose: generate WDl(c1), ii) MultSum: calculate 〈WDl(c1), swk1〉, and
iii) ModDown. Decompose and ModDown are the most time-consuming [2].

To remove the error introduced by approximate scaling factors, one can use
different scaling factors for each level as given in [20], or we can use the scale-
invariant method proposed in [2] for polynomial evaluation. It is noted that Full
RNS-HEAAN libraries are (dnum = 1)-case and SEAL is (dnum = L + 1)-case.
We are using SEAL in the implementation as it is advantageous at the ciphertext
level. We note that this paper aims at all the variants of the CKKS scheme.
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3.2 Bootstrapping of the CKKS Scheme

There are extensive studies for bootstrapping of the CKKS scheme [7, 6, 17,
24, 23, 2]. The bootstrapping consists of the following four steps: ModRaise,
CoeffToSlot, EvalMod, and SlotToCoeff.

Modulus Raising (ModRaise) ModRaise is raises the ciphertext modulus
to a larger modulus. Let c be the ciphertext satisfying m(X) = [〈c, sk〉]q. Then,
t(X) = 〈c, sk〉

(
mod XN + 1

)
is of the from t(X) = qI(X)+m(X) for I(X) ∈ R

with a high-probability bound ‖I(X)‖∞ < K = O(
√
h). The following procedure

aims to calculate the remaining coefficients of t(X) when dividing by q.

Homomorphic Evaluation of Encoding (CoeffToSlot) Approximate ho-
momorphic operations are performed in plaintext slots, but we need component-
wise operations on coefficients. Thus, to deal with t(X), we have to put polyno-
mial coefficients in plaintext slots. In CoeffToSlot step, the Emb−1 ◦ π−1 is
performed homomorphically using matrix multiplication [7], or FFT-like hybrid
method [6]. Then, we have two ciphertexts encrypting z′0 = (t0, . . . , tN

2 −1
) and

z′1 = (tN
2
, . . . , tN−1) (or equivalently, (t0 + i · tN

2
, . . . , tN

2 −1
+ i · tN−1)), where

tj denotes the j-th coefficient of t(X). The matrix multiplication is composed of
three steps [7]: i) rotate ciphertexts ii) multiply diagonal components of matrix
to the rotated ciphertexts and iii) sum up the ciphertexts.

Evaluation of the Approximate Modulus Reduction (EvalMod) In the
EvalMod step, an approximate evaluation of modulus reduction function of ti’s
is performed. As additions and multiplications cannot represent the modulus
reduction function, an approximate polynomial for this function is used. For
approximation, it is desirable to control the message size to ensure mi ≤ ε · q for
a small ε. Previous works et al. approximated the modulus reduction function

as q
2π sin

(
2πt
q

)
[7, 6, 17, 2]. However, in these approaches, the sine function is

used, and thus there is still the fundamental approximation error, that is,∣∣∣∣m− q

2π
sin

(
2π
m

q

)∣∣∣∣ ≤ q

2π
· 1

3!

(
2π|m|
q

)3

.

Then, direct-approximation methods were proposed in [24, 19], but their coeffi-
cients are too large and amplify errors of polynomial basis. A composition with
inverse sine function that offers a trade-off between the precision and the re-
maining homomorphic capacity is proposed in [23] to remove the fundamental
approximation error between the sine function and the modulus reduction.

Homomorphic Evaluation of Decoding (SlotToCoeff) SlotToCoeff is
the inverse operation of CoeffToSlot. Since the matrix elements do not have
to be precise as in CoeffToSlot, we can use a smaller modulus.
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Table 1. Experimental result of probability mass function of I when h = 192.

i PrI (i) i PrI (i) i PrI (i) i PrI (i) i PrI (i) i PrI (i)

0 9.94·10−2 ±4 6.05·10−2 ±8 1.36·10−2 ±12 1.12·10−3 ±16 3.34·10−5 ±20 3.40·10−7

±1 9.64·10−2 ±5 4.58·10−2 ±9 8.02·10−3 ±13 5.15·10−4 ±17 1.16·10−5 ±21 9.41·10−8

±2 8.78·10−2 ±6 3.25·10−2 ±10 4.44·10−3 ±14 2.20·10−4 ±18 3.84·10−6

± 3 7.52·10−2 ±7 2.17·10−2 ±11 2.30·10−3 ±15 8.84·10−5 ±19 1.20·10−6

Table 2. Probability of Irwin-Hall distribution, X =
∑h+1

k=1 Uk, where Uk’s are inde-
pendent and identically distributed U [0, 1] and h = 192. PrX (i) denotes the probability
that Pr

(
h+1
2

+ i− 1
2
≤ X ≤ h+1

2
+ i+ 1

2

)
.

i PrI (i) i PrI (i) i PrI (i) i PrI (i) i PrI (i) i PrI (i)

0 9.91·10−2 ±4 6.05·10−2 ±8 1.37·10−2 ±12 1.15·10−3 ±16 3.46·10−5 ±20 3.71·10−7

±1 9.61·10−2 ±5 4.58·10−2 ±9 8.11·10−3 ±13 5.26·10−4 ±17 1.23·10−5 ±21 1.01·10−7

±2 8.76·10−2 ±6 3.26·10−2 ±10 4.50·10−3 ±14 2.27·10−4 ±18 4.09·10−6

± 3 7.51·10−2 ±7 2.18·10−2 ±11 2.34·10−3 ±15 9.15·10−5 ±19 1.27·10−6

3.3 Statistical Characteristics of Modulus Reduction and Failure
Probability of Bootstrapping of the CKKS Scheme

After ModRaise, the plaintext in the ciphertext c = (c0, c1) is given as

t(X) = q · I(X) +m(X) = 〈c, sk〉
(
mod XN + 1

)
.

sk has Hamming weight h and each coefficient of a ciphertext (c0, c1) is an
element of Zq and thus, each coefficient of 〈c, sk〉 = c0 + c1s is considered as a

sum of (h + 1) elements in [−q/2, q/2). Therefore, I(X) =
⌊
1
q 〈c, sk〉

⌉
is upper

bounded by 1
2 (h+ 1). In practice, a heuristic assumption is used, where a high-

probability upper bound K = O(
√
h) for ‖I‖∞ exists.

The high-probability upper bound K of ‖I‖∞ is us used so far, but EvalMod
outputs a useless value when the input is not in the desired domain, i.e., ‖I‖∞ >
K, resulting in the bootstrapping failure. For example, the probability that
‖I‖∞ ≥ K is about 2−22, when (h,K) = (64, 128), (128, 17) and (192, 21).

We can numerically obtain the distribution of I or analytically calculate
its distribution through heuristic assumption given as follows. From the RLWE
assumption, each coefficient of c0 and c1 can be considered as distributed uni-
formly at random; in other words, coefficients of t follows a distribution similar
to the well-known Irwin–Hall distribution. Table 1 is probability density function
of I, obtained numerically using SEAL. Table 2 is the probability of I, analyti-
cally calculated by using Irwin-Hall distribution. In is shown that our probability
analysis using the Irwin-Hall distribution and the experimental results agree. We
note here that a probabilistic approach is widely used in the error estimation
and bootstrapping of the CKKS scheme, and thus it is reasonable to reduce the
error of the CKKS scheme and its bootstrapping through a stochastic approach.
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4 Optimization of Error Variance in the Encrypted Data

This section provides a new criterion for the quality of the encrypted data of the
CKKS scheme, that is, SNR. Measuring the quality of the encrypted message
by SNR is the main idea, which is natural and widely used in communication
systems. In subsection 4.3, we present three cases that can reduce error and com-
putation time by homomorphic operation reordering: finding polynomial basis,
lazy rescaling and relinearization, and successive multiplication. In the proposed
simple examples, the error can be reduced by up to 1/1973 when calculating poly-
nomials, lazy rescaling, and relinearization reduce the EvalMod time by 42%, and
successive multiplication reduces the error by 1/222.

We can assume the following statements:

i) The mean of error is zero.
ii) The message and error are statistically independent.

The first assumption is straightforward; if the mean is not zero, one can simply
subtract the mean value to reduce the error. In general, the second one is also
true; when we deal with approximate polynomial, the approximation error is de-
pendent on the message, but the approximation error is usually small compared
to the message, and the covariance is negligible. From these two assumptions,
the variance of error introduced by non-scalar multiplication is obtained. More-
over, from the central limit theorem, the sum of independent random variables
can be approximated to a Gaussian distribution. Now, since the power of noise
and the variance of error are the same, we focus on error variance.

4.1 Tagged Information for Ciphertext

We propose new tagged information for the full ciphertext of the CKKS scheme
to tightly manage the errors in encrypted data. The tagged information is intro-
duced in [10], and it is used to estimate the magnitude of the error. The tagged
information so far comprises a level l, an upper bound v ∈ R of the message, and
a high-probability upper bound B ∈ R of error. However, as the homomorphic
operation continues, the upper bound becomes exponentially loose.

We take a simple example of how the upper bound becomes loose. In [10], 6σ
is the high-probability upper bound of the Gaussian error with variance σ2, where
Pr(|X| > 6σ) is 2−27.8. Assume that there are 100 distinct fresh ciphertexts and
let σ2

o be the error variance. Previously, the error upper bound of a sum of two
ciphertexts with error upper bounds B1 and B2, was given as B1 + B2 [10, 20].
Then, the upper bound of the error in the sum of the hundred ciphertexts is
600σo. However, the ciphertexts are independent, and the error of the sum is
Gaussian error with a variance of 100σ2

o . Therefore, the probability of the upper
bound, 600σo, is Pr(|e| > 600σo) ≈ 2−2602.1, which is quite loose, where e is
the summation of error. In conclusion, the previous upper bound is too loose to
obtain useful information of the error after successive homomorphic operations.

A real-world application such as deep learning requires a lot more com-
putation than this, and thus the resultant upper bound is much looser than
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the above example. Thus, instead of using the upper bounds, we propose to
use the variance of messages and errors as the tagged information. In other
words, three tuples are the tagged information, which consist of message means,
{E[π(Emb(m))i]}i=0,···n−1, message variances, {V ar[π(Emb(m))i]}i=0,···n−1, and
error variances, {V ar[π(Emb(e))i]}i=0,···n−1, denoted by µm ∈ Cn and vm,ve ∈
Rn, respectively, where Decsk(c) = m + e and n is number of slots. Hence, the
full ciphertext is given as

(c, l,∆,µm,vm,ve),

where l and ∆ are the level and the scaling factor of a ciphertext, respectively.
If each slot value follows the identical distribution, the tagged information can
be replaced as scalar values µm ∈ C and vm, ve ∈ R.

The distribution of messages and errors after operations depends on the mes-
sages’ actual distribution and the dependencies between messages. However, it is
challenging to know the exact correlation between the messages and their distri-
bution after several homomorphic operations. It is shown through the implemen-
tation in Section 6 that errors in the encrypted data can strictly be managed.

Worst Case Assumption One might argue that a high-probability upper
bound and the minimax approximation should be used as someone other than
the data owner does not know the message distribution. However, it is reason-
able to assume that the computing party knows minimal information about the
distribution of the message, the mean and variance, for the following reasons.
First of all, in previous studies, stochastic assumptions about the distribution
of messages were used naturally, e.g., the message is within the high-probability
upper bound. Second, in many applications such as deep learning, control of the
distributions of intermediate node values is crucial. For example, the input and
the intermediate values are usually normalized or standardized, which is vital
for improving the accuracy and speed of neural network training [14, 1]. Finally,
some information about the message distribution is known regardless of security,
such as the integer part of plaintext coefficient after ModRaise.

If one does not even want to provide the mean and variance of the message,
the server can assume the worst-case that the slot values z ∈ Zn follow centered
Gaussian distribution with a variance they are in [−B,B] with high-probability,
for a given high-probability upper bound B. In other words, one should let
the error variance (B/6)2 and try to minimize the error variance, not the high-
probability upper bound, when reordering operations. In the experimental results
in Section 6, even though the worst-case scenario is used, it is shown that the
error value in the proposed method is smaller than that of the prior arts [17, 23].

4.2 Error in Homomorphic Operations of the CKKS Scheme

The error analysis in homomorphic operations is shown in this subsection. The
following lemmas are based on the lemmas in [10, 7, 20]. The difference is that
previous works used the variances to obtain the high-probability upper bounds,
but we focus on the variance of errors. As mentioned earlier, it is impossible to
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accurately know the distribution of random variables that have been subjected
to multiple calculations. Nevertheless, the management using approximated vari-
ances is much tighter than that of the high-probability upper bound. By using
the scaling factor control in [20] and scale-invariant method in [2], encryption
error and the error in the RNS-CKKS scheme introduced by approximate scaling
factor is removed; hence, we ignore them.

Lemma 4.1 (RNS rescaling). Let (c, l,∆,µm,vm,ve) be an encryption of the
encoded message m(X) ∈ R of z ∈ CN/2. Then(

cRS, l − 1, p−1l ·∆, p
−1
l · µm, p

−2
l · vm, p

−2
l · ve + vscale

)
is a valid encryption of the rescaled message p−1l ·m(X) for cRS ← RS(c) and
vscale = 1

12 (h+ 1)N . Thus, the scaling factor of cRS is p−1l ·∆.

Lemma 4.2 (RNS key-switching). Let (c, l,∆,µm,vm,ve) be a ciphertext
with respect to a secret key sk′ = (1, s′) and let swk ← KSGensk(s

′), where
sk = (1, s). Then

(
c′, l,∆,µm,vm,ve + 1

P 2vks + vscale
)

is a valid ciphertext with

respect to sk for the same message, where c′ ← KSswk(c) and vks = dnum·pα
12 σN .

Lemma 4.3 (Addition and multiplication). Let
(
ci, l,∆i,µm,i,vm,i,ve,i

)
be

two independent encryptions of the encoded messages mi(X) of values zi ∈ CN/2
for i = 1, 2, and let cadd ← Add(c1, c2) and cmult ← Multevk(c1, c2). Then,(

cadd, l,∆1,µm,1 + µm,2,vm,1 + vm,2,ve,1 + ve,1
)

and

(cmult, l,∆1∆2,µm,1 × µm,2,vm,1 × vm,2
, (vm,1 + |µ2

m,1|)× ve,2 + (vm,2 + |µ2
m,2|)× ve,1 + ve,1 × ve,2 + vmult)

are valid encryptions of m1(X)+m2(X) and m1(X) ·m2(X), respectively, where

vmult =
(
Ql
P

)2
vks +vscale and |µ2| refers µ×µ. For addition, ∆1 = ∆2 must be

satisfied.

Lemma 4.4 (Addition and multiplication by constant). Let (c, l,∆,µm,vm,ve)
be an encryption of the encoded message m(X) of z ∈ CN/2. For a constant tuple
a ∈ CN/2, let ccadd ← cAdd(c1,a;∆) and ccmult ← cMult(c1,a;∆′), where ccadd
and ccmult correspond to the constant multiplication and addition with constant
a, scaled by ∆′, respectively. Then,

(ccadd, l,∆,µm +∆a,vm,ve)

and (
ccmult, l,∆∆

′a× µm, ∆
′2a2 × vm, ∆′

2
a2 × ve

)
are valid encryptions of ∆a+ z and ∆′a× z, respectively, where a2 = a× a.

When the sparse packing method [7] is applied, N in the above lemmas can be
replaced by 2n when there are n slots.
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Table 3. Second moment of Ti(x) when x follows the Gaussian distribution with zero
mean and variance σ2 for σ = 1/6 and 1/24, so x is highly probable to be in [−1, 1].

i 0 1 2 3 4 5 6 7

E[Ti(x)2]
σ = 1/6 1.00 0.028 0.898 0.200 0.704 0.376 0.569 0.465
σ = 1/24 1.00 0.002 0.993 0.015 0.973 0.042 0.941 0.078

4.3 Reordering Homomorphic Operations

In this subsection, we show some rules and examples for homomorphic operation
reordering. Using Lemmas 4.1 to 4.4, one can reorder homomorphic operations
to minimize the error variance. The main advantage of reordering homomorphic
operations is that the errors in the encrypted data are reduced without com-
promising security and time. Considering the error propagation in the CKKS
scheme, a small difference in building blocks has an enormous impact on the er-
ror variance as the depth of the circuit increases. It is worth noting that the most
interesting application of the CKKS scheme, deep learning has a deep depth.

Polynomial Basis With Smaller Magnitude of Error Here, we present to
reduce the error in the encrypted polynomial basis by operation reordering. The
implementation shows that, for example, the error variance for T74 is reduced
to 1/1973 by using the proposed method. As will be mentioned later, the error
in the polynomial basis, namely the basis error, is amplified by the evaluated
polynomial coefficients. Therefore, it is crucial to reduce the basis error for poly-
nomial evaluation. Polynomials are frequently used not only for bootstrapping,
but also in various applications using HE [21, 11, 12], for example, an activation
function of a neural network.

As the Chebyshev polynomial basis will be used in the later sections, we use
here the Chebyshev polynomial basis as an example. For depth and simplicity,
Tn(x) is usually obtained by as follows:

Tn(x) = 2T2k(x) · Tn−2k(x)− T2k+1−n(x),

where k is the greatest integer satisfying 2k < n. Let ci be a ciphertext of
message Ti(x) with scaling factor ∆, and it contains error ei Then, the error in
ci+j obtained by ci+j = 2Mult(ci, cj)− c|i−j| is

(2Ti(x)ej + 2Tj(x)ei)∆+ 2eiej − e|i−j| (1)

by Lemma 4.3. We can see that the dominant term of error variance in (1) is

V ar[Ti(x)ej ] = E[Ti(x)2]V ar[ej ]. (2)

Since Ti’s are not independent, calculating the exact error distribution of
encrypted Ti’s is challenging, but roughly according to (2) and Table 3, we can
see that the error multiplied by the even term tends to remain, and the error
multiplied by the odd term tends to decrease. As a simple example, it is assumed
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in Table 3 that the input messages follow the Gaussian distribution with zero
means, and it is shown that E[Ti(x)2] is close to one when i is an even number for
low-degree polynomials. Meanwhile, E[Ti(x)] is zero and V ar[Ti(x)] is a small
value when i is an odd number. Thus, the error is large when multiplication of
even terms is performed when calculating the Chebyshev basis. Therefore, when
n is even, Tn should be calculated by Tn(x) = 2T2k−1(x) · Tn+1−2k − T2k+1−n−2
rather than Tn(x) = 2T2k(x) · Tn−2k − T2k+1−n. Also, it is noted that, for the
above reasons, the power-of-two polynomials have a large basis error.

In practice, basis errors in the lower-degree polynomial are crucial in ho-
momorphic polynomial evaluation because the evaluation algorithms such as
the BSGS algorithm mostly utilize the low-degree terms. Most importantly, the
higher degree terms are obtained from lower degree terms, and the error propa-
gates along with homomorphic operations. Moreover, in bootstrapping, the input
distribution is much more concentrated in the center than that of Table 3 and
thus, the proposed reordering method is quite efficient.

Lazy Rescaling and Lazy Relinearization We propose to do the rescaling
(RS) and relinearization (RLevk) as lazy as possible. This reduces the error and
computation time introduced by RS and RLevk. Since RS and RLevk are performed
after plaintext-ciphertext (scalar) multiplications and additions, more ring mul-
tiplication and addition operations are required. However, since the computation
time of RS and RLevk, and ring addition and multiplication differs by orders of
magnitude, the total computation time is much improved. For example, by using
this method, we can roughly reduce the computation time for EvalMod by 42
percent.

In Kim et al.’s method [20], the scaling factor of a ciphertext is a value around
p2, and it is rescaled right before a multiplication, not after a multiplication. We
generalize their method as to do RS as lazy as possible. In other words, the
ciphertext can have any scaling factor, such as ≈ p3 or p4, and the RS is done
when it is necessary. The RS is done before non-scalar multiplication by the
following rules: i) the scaling factor of at least one of the two ciphertexts must
be ≈ p, ii) ciphertext modulus of two ciphertexts should be the same.

Moreover, we propose to do the most time-consuming part of the multiplica-
tion, RLevk, as lazy as possible, namely the lazy relinearization. Specifically, after
a non-scalar multiplication, the ciphertext is kept in three-tuple (d0, d1, d2) cor-
responding to the secret key (1, s, s2). Then, addition and scalar multiplication
are done without RLevk. Right before a non-scalar multiplication, it is linearized.

By the lazy rescaling and relinearization, we might reduce the computation
introduced by RS and RLevk, preventing the amplification of error. The main idea
is that RS and RLevk introduce error and have a distributive property. Thus, we
reduce the error amplification and the number of RS and RLevk by doing it lazily.

If RLevk is not done before addition or scalar multiplication, the amount of
ring addition and multiplication increases. However, since these operations are
much lighter than RLevk, it is generally beneficial to delay RLevk unless we have
to make extensive additions. For example, when performing an approximate
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𝑐1

𝑐2

𝑐3

𝑐14

𝑐15

…

…

(a) Multiply in order of magnitude of
messages with error variance 244.4

…

𝑐0

𝑐1

𝑐15

…

𝑐2

𝑐14

𝑐3
…

(b) Multiply the larger and smaller
ones first with error variance 221.5

Fig. 1. Two different methods of obtaining
∏15

i=0 ci.

polynomial of order 255 in bootstrapping, this method can reduce RLevk and RS
by 37 and 86 percent, respectively, while the number of polynomial multiplication
and addition are increased by 16 and 19 percent, respectively. As a result, the
total computation time is reduced by 42 percent when N = 215 is used on SEAL.

Successive Multiplication of Ciphertexts with Distinct Magnitudes of
Messages When multiplying many ciphertexts, it is easy to see that the error
can be reduced by pairing the largest and smallest values and multiplying them
first. We assume there are 16 ciphertexts with level l as

(ci, l,∆, 0, 2
52+i, 230),

for i = 0, . . . , 15, where ∆ = 230 and n = 214. We compare two ways to obtain
the multiplication

∏15
i=0 ci in Fig. 1. The resultant message and time are the

same, but the errors variances are 244.4 for Fig. 1(a) and 221.5 for the other.

In summary, we propose three methods of reordering the homomorphic op-
erations to minimize the errors as follows:

i) Mean and variance of the message should be considered when we find the
polynomial basis.

ii) Rescaling and relinearization should be done as lazy as possible.

iii) The error can be reduced by pairing the largest and smallest values and
multiplying them first when successively multiplying ciphertexts.

Aside from the given examples, there must exist tons of optimizations. It is
expected that techniques in optimizing compilers can be adopted to reduce error
in approximate homomorphic encryption without compromising performance.



High-prec. and low-complex. approximate HE by variance minimization 17

5 Optimal Approximate Polynomial and Bootstrapping
of the CKKS Scheme

The CKKS scheme supports addition and multiplication, and thus only poly-
nomials can be evaluated. Hence, approximate polynomials are used to replace
non-polynomial functions, such as ReLU in machine learning and min/max, in
real-world applications [12, 18]. This subsection proposes a new method to find
the optimal approximate polynomial, specially designed for the CKKS scheme
considering the basis error.

5.1 Polynomial Basis Error and Polynomial Evaluation in the
CKKS Scheme

Let {φ0(x), φ1(x), . . . , φn(x)} denote a polynomial basis of degree n. When a
polynomial f(x) =

∑
ciφi(x) is evaluated homomorphically, it is expected that

the result is f(x)+e for a small error e. In the CKKS scheme, there exists error in
encrypted data, and thus, each φi(x) contains independent eb,i due to rounding
and encryption errors, namely the basis error. Thus, the output is given as∑

ci(φi(x) + eb,i) = f(x) +
∑

cieb,i.∑
cieb,i is small in general, as eb,i are small. However, when |ci| are much greater

than ‖f(x)‖∞, such as a high-degree polynomial for bootstrapping,
∑
cieb,i

might overwhelm f(x).
In conclusion, the magnitude of ci’s should be controlled when we find an

approximate polynomial of any non-polynomial functions. High-degree approx-
imate polynomials have large coefficients in general. There have been series of
studies in approximate polynomials in the CKKS scheme [10, 6, 17, 2, 23, 19, 24],
but the error amplified by coefficients were not considered in the previous studies.

5.2 Variance-Minimizing Polynomial Approximation

The approximate polynomial can be optimized by minimizing the variance of
the approximation error, rather the minimax approximate polynomial [23, 17].
As mentioned, the basis error is amplified by coefficients of the approximate
polynomial. Thus, the magnitude of its coefficients should not be large values
and using the generalized least squares method, the optimal coefficients vector
c∗ of the approximate polynomial is obtained as

c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
(3)

for weight constants wi, where wi’s are determined by basis error and eaprx is the
approximation error. We call the proposed approximate polynomial obtained by
(3) as the error variance-minimizing approximate polynomial, and there exists
an analytic solution.
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Significantly, the variance-minimizing approximate polynomial is more effi-
cient than the minimax approximate polynomial for the CKKS bootstrapping.
Considering SlotToCoeff, the error in the j-th slot is given as e(ζjM ) =∑N−1
i=0 ei·ζjiM , which is the sum of independent and identically distributed random

variables, ei · ζjiM . Hence, the upper bound provided by the minimax polynomial
is quite loose, as described previously, and it does not minimize the bootstrap
error. Instead, minimizing the error variance of each coefficient minimizes errors
in slot values after bootstrapping. This implies that minimizing the variance of
the approximate error is optimal to reduce the bootstrap error of the CKKS
scheme. The error variance-minimizing approximate polynomial is described in
detail by taking bootstrapping as a specific example in the next subsection.

5.3 Optimal Approximate Polynomial for Bootstrapping and
Magnitude of Its Coefficients

The most depth-consuming and noisy part of the CKKS bootstrapping is EvalMod.
In this subsection, we show how to find the optimal approximate polynomial for
EvalMod in a variance-minimizing manner. We focus on the direct-approximation
of modulus reduction rather than trigonometric function to minimize the boot-
strap error and depth. However, we note that the proposed error variance-
minimizing method can be applied to arbitrary functions. Nevertheless, since
the proposed method has a lower depth, it is possible to perform EvalMod
faster by the parallelization method described later.

By scaling the modulus reduction function by 1
q , we define fmod(t) = t− i if

t ∈ Ii, that is, fmod :
⋃K−1
i=−K+1 Ii → [−ε, ε] , where Ii = [i− ε, i+ ε] and i is an

integer such that |i| < K. Here, ε denotes the ratio of the maximum coefficient of
the message polynomial and the ciphertext modulus, that is, |mi|/q ≤ ε, where
mi denotes a coefficient of m(X). Let T be the random variable of input t of
fmod(t). Then, T = R+ I, where R is the random variable of the rational part
of t, r, and I is the random variable of i, for t ∈ Ii. It should be noted that
PrT (t) = PrI (i) ·PrR (r) is satisfied for t = r+ i as i and r are independent and⋃
i Ii = [−ε, ε]×{0,±1, . . . ,±(K− 1)}, where PrT ,PrI , and PrR are probability

mass functions or probability density functions of T, I, and R, respectively.
The approximation error for t is given as

eaprx(t) = p(t)− fmod(t) = p(t)− (t− i),

where p(t) the approximates fmod(t). Then the variance of eaprx is given as

V ar[eaprx] = E[e2aprx] =

∫
t

eaprx(t)
2 · PrT (t) dt

=
∑
i

PrI (i)

∫ i+ε

t=i−ε
eaprx(t)

2 · PrR (t− i) dt,

where the mean of eaprx is zero by Lemma 5.1. It is noted that the integral can
be directly calculated or replaced by the sum of discretized values as in [24].



High-prec. and low-complex. approximate HE by variance minimization 19

Lemma 5.1. There exists an approximate polynomial of degree n, p(t), such
that minimizes V ar[f(t)− p(t)] for a function f and satisfies E[f(t)− p(t)] = 0.

Proof. Let p′(t) be a polynomial of degree n that minimizes V ar[f(t) − p′(t)],
and E[f(t)− p′(t)] = µ. polynomial p(t) = p′(t) + µ always satisfies

V ar[f(t)− p(t)] = E[(f(t)− p′(t))2]− µ2 = V ar[f(t)− p′(t)],

where E[f(t)− p(t)] = 0. ut

In the CKKS scheme, large coefficients amplify the basis error, and thus an
approximate polynomial with small coefficients is required. Let the approximate
polynomial p(t) =

∑n
k=0 ckφk(t), and then we find c∗ such that

c∗ = arg minc

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
, (4)

and the solution satisfies

∇c

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
= 0,

where c = (c0, c1, . . . , cn) and w = (w0, w1, . . . , wn) are coefficient and weight
constant vectors, respectively.

It is noted that the variance of error in each basis φi(t), namely basis error,
may differ by i. Hence, a precise adjustment of the magnitude of polynomial
coefficients can also be made using multiple weight constants, wi’s. Theorem 5.1
states that we can find the approximate polynomial for p(t) efficiently; the com-
putation time of solving this system of linear equations is the same as that of
finding an interpolation polynomial for given points, which is faster than the
modified Remez algorithm [23].

Theorem 5.1. There exists a polynomial-time algorithm that finds c = (c0, . . . , cn)
satisfying

arg minc

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
.

Proof. From Lemma 5.1, we have E[eaprx] = 0, and thus it is satisfied that
V ar[eaprx] = E[e2aprx] = E[fmod(t)

2]+2E[fmod(t) ·p(t)]+E[p(t)2]. By substituting
p(t) =

∑n
k=0 ckφk(t), we have

∂

∂cj
V ar[eaprx] = −2E[fmod(t)φj(t)] + 2

n∑
k=0

ck · E[φk(t)φj(t)].

The solution of the following system of linear equations, c∗, satisfies

c∗ = arg minc

(
V ar[eaprx] +

n∑
i=0

wic
2
i

)
:
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(T +wI) · c = y, (5)

where

T =


E[φ0φ0] E[φ0φ1] . . . E[φ0φn]

E[φ1φ0] E[φ1φ1] . . .
...

...
. . .

...
E[φnφ0] E[φnφ1] . . . E[φnφn]

 and y =


E[fmodφ0]
E[fmodφ1]

...
E[fmodφn]

 .

As E[φiφj ] and E[fmodφi] are integral of polynomials, easily calculated. Also,
the equation can be simplified by the linear transformation from monomial basis
to φ, and thus, the approximation of other functions is also easy. ut

5.4 Reducing Complexity and Error Using Odd Function

When the approximate polynomial is an odd function, we can save time find-
ing and homomorphically evaluating the approximate polynomial. Moreover, by
omitting the even-degree terms, we can reduce the approximate and basis error.

Variance-Minimizing Polynomial for an Odd Function This subsection
shows that the variance-minimizing polynomial of an odd function is an odd
function to utilize that fmod(t) is an odd function. Using an odd function, we
can reduce the error and computation time to find and evaluate the polynomial.
First of all, when both fmod(t) and the approximate polynomial, the sizes of
vector and matrix in (5) become half and 1/4, respectively, as we only care about
the odd-degree coefficients. Second, when obtaining each element of (5), we only
need to integrate over the positive domain. Next, the number of operations to
evaluate the approximate polynomial can also be reduced by omitting even-order
terms when using the odd-BSGS algorithm in Algorithm 1. Finally, the amplified
basis error is also reduced as only half of the terms are added. In the following
sections, odd approximate polynomials are obtained and implemented.

Theorem 5.2 shows that when the target function of polynomial approxima-
tion such as fmod(t) is odd and the probability density function is even, the error
variance-minimizing approximate polynomial is also an odd function.

Theorem 5.2. If PrT (t) is an even function and f(t) is an odd functions, the
error variance-minimizing approximate polynomial for f(t) is an odd function.

Odd Baby-Step Giant-Step Algorithm In this subsection, we propose to
use an algorithm to efficiently evaluate odd polynomials over the CKKS scheme
in Algorithm 1, namely the odd-BSGS algorithm. By omitting unnecessary even-
order terms, we can reduce the number of non-scalar multiplication. For example,
when we evaluate a polynomial of degree 255 by using ordinary BSGS algorithm
in [17], 35 non-scalar multiplications are required; however, when we use the
odd-BSGS algorithm [23], 30 non-scalar multiplications are required. Moreover,
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Algorithm 1 Odd-BSGS Algorithm + Lazy Relinearization

Instance: A ciphertext c of t, the BSGS coefficients d = (d0,1, d0,3, . . . , d2l−1,k−1).
Output: A ciphertext encrypting p(t).

1: Let l be the smallest integer satisfying 2lk > n for an even number k.
2: procedure SetUp(c, l, k) . Do not rescale or relinearize ci’s if unnecessary.
3: cchebi ← encryption of Ti(t) . only for all odd i < k and i’s to find such ci’s.
4: ccheb2ik ← encryption of T2ik(t) . for 0 ≤ i < l.
5: end procedure
6: procedure BabyStep(b, ci’s, l, k) . No rescaling here
7: cpoly

0
i ←

∑
j∈{1,3,...,k−1} di,jcchebj(t) . baby polynomials.

8: end procedure
9: procedure GiantStep(p0i ’s, l, k)

10: cpoly
j+1
i ← cpoly

j
2i + cpoly

j
2i+1 · c2jk

. cpoly
j
2i: not linearized, rescaled / c2jk, cpoly

j
2i+1: linearized, rescaled for mult.

11: Recursively, calculate cpoly
l
0

12: return cpoly
l
0

13: end procedure

by the lazy relinearization method, the number of RLevk is reduced to 22. (For
depth optimal evaluation [2], three more RLevk is required.) This is impressive
because in conventional bootstrapping [2], we do 20 RLevk to compute the 52nd
order polynomial and twice of the double-angle formula, even though it has 27

times greater bootstrap error variance than our results.
The odd-BSGS algorithm with lazy rescaling and relinearization is given in

Algorithm 1. We note that the methods in [2, 20] should be applied for op-
timal depth and scale-invariant evaluation, but we omitted it for the sake of
brevity. Also, Mult, cMult, and RS are replaced by · or comments. The BSGS
coefficients are pre-computed for optimal parameters k and l, which minimizes
the number of RLevk, where 2l · k ≥ deg(p(t)). The basic blocks of the odd-
BSGS algorithm are polynomials of degree less than k, namely baby polynomi-
als, p0i (t) =

∑
j∈{1,3,...,k−1} di,jTj(t) for i = 0, 1, . . . , 2l − 1. For example, when

l = 2, we have
p(t) = p20(t) = p10(t) + p11(t) · T2k(t), (6)

where p1i (t) = p02i(t) + p02i+1(t) · Tk(t). It is shown that the coefficients of p0i (t)’s
amplify the basis error, and thus the basis error of degree ≤ k is crucial.

Moreover, we should reduce the magnitude of d. Let c = (c1, c3, . . . , cn) be
a vector of coefficients for Chebyshev basis, in other words, p(t) =

∑
ciTi(t).

Then, c and d have the following linearity:

c = L · d =
[
A2l−1k

]
·
[
A2l−2k 0

0 A2l−2k

]
· · ·

Ak

. . .

Ak

 · d, (7)

where

Ak =

[
Ik/2

1
2Jk/2

0 1
2Ik/2

]
,
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Ik/2 is the k/2×k/2 identity matrix, and Jk/2 is the k/2×k/2 exchange matrix.

5.5 Generalization of Weight Constants and Numerical Method

In this subsection, we generalize the amplified basis error term
∑n
i=0 wic

2
i and

find the optimal approximate polynomial for odd-BSGS algorithm. The numer-
ical method to select the weight constant is also proposed.

Generalization of Weight Constant Let vb,i be the variance of basis error
for the encryption of Ti(x). Then, the basis errors are multiplied by di and the
amplified error is given as

∑n
i=0 d

2
i vb,i. Considering the approximation error,

it is noted that a large scaling factor ∆bs = O(q) is multiplied to the result
of EvalMod [7, 24]. For the sake of brevity, we let ∆bs = q; by letting its
scaling factor q, the slot values after CoeffToSlot become mi/q. Hence, the
approximation error is given as q2 · V ar[eaprx].

Let Ep be a function of d, which is the variance of basis error amplified by
coefficients d = (d0,1, d0,3, . . . , d2l−1,k−1). We simplify Ep by a heuristic assump-
tion that Ti’s are independent and the encryptions of Tk(t), . . . , T2l−1k(t) have
small error. Let T̂i be the product of all T2jk’s multiplied to p0i in the giant step,

for example, T̂0 = 1 and T̂3 = TkT2k in (6). Considering the error multiplied by
di,j , ej ·T̂i is the dominant term as Ti has zero mean and a small variance for small

and odd integer i as in Table 3. Thus, it can say that Ep ≈
∑
i

∑
j d

2
i,jE[T̂ 2

i ]vb,j ,
a quadratic function of d. In other words, we have Ep = dᵀHd, where H is a

diagonal matrix that Hki+j,ki+j = E[T̂ 2
i ]vb,j . Thus, (4) is generalized as

c∗ = arg minc

(
V ar[eaprx] +

1

q2
Ep

)
.

Equation (7) gives us that the optimal coefficient d∗ satisfies(
LᵀTL +

1

q2
H

)
d∗ = Lᵀy.

Numerical Method of Finding Optimal Approximate Polynomial In-
stead of finding Ep, a simple numerical method can also be used. In practice,
the numerical method shows good error performance in the implementation in
Subsection 6.2. We can let wi = w for all i and find w numerically. When w
increases, the magnitude of coefficients decreases and V ar[eaprx] increases, and
thus its sum is a convex function of w. The magnitude of the basis errors that
are amplified by coefficients d has the order of the rounding error whose variance

is N(h+1)
12 . After multiplying ‖d‖2 with the variance, it is added to q2 ·V ar[eaprx].

In other words, we adjust w to minimize

V ar[eaprx] + w · ‖d‖22, (8)
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(a) Result when ε = 2−10 and q = 240
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Proposed
Tn(x) = 2T2k(x) · Tn− 2k − T2k+ 1 −n

(b) Result when ε = 2−5 and q = 245

Fig. 2. Variance of basis error in Ti(t) for even i using HEAAN (a) and SEAL (b) with
various parameters, where h = 64.

where w ≈ N(h+1)
12·q2 . The odd-BSGS coefficients d, which minimizes (8), satisfies

(LᵀTL + wI)d = Lᵀy.

We can fine-tune w by a numerical method of performing bootstrapping and
measure the bootstrap error variance, and then adjust w. Once we decide on d,
it becomes just part of the implementation; one can even hard-wire it.

6 Implementation of the Proposed Method and
Performance Comparison

The proposed methods are implemented on the well-known libraries of the CKKS
schemes, HEAAN and SEAL. We compare the experimental error of the Cheby-
shev polynomial with and without the proposed operation reordering. Finding
error variance-minimizing approximate polynomial is implemented by SageMath,
and the bootstrapping using the proposed approximate polynomial is imple-
mented on SEAL. In this section, several implementation results and compar-
isons for the previous bootstrapping algorithms are also presented.

6.1 Basis Error Variance Minimization

In this subsection, we show how to find a small-error Chebyshev polynomial
basis. Fig. 2 shows the variance of error in Ti(t) for even i’s, where t is the output
value of CoeffToSlot. Square mark and x mark legends are the results with
and without operation reordering, respectively. In other words, the proposed
method uses Ti = 2 · T2k−1 · Ti−2k+1 − T2k+1−2−i to calculate encryption of Ti
for even numbers i. It can be seen that the basis error is significantly improved
by reordering operations to find ciphertext of Ti(t). In particular, for T74(t), the
variance of error for the proposed method becomes smaller by 1/1973 compared
to that without minimization. As shown in Subsection 4.3, multiplication of two
even-degree terms should be avoided when we calculate the even-degree terms.
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Fig. 3. Theoretical mean-square of the approximation error, amplified basis error, and
experimental results, implemented in HEAAN. Polynomials of degree 81 are used.

6.2 Weight Constant and Minimum Approximate Error Variance

In Subsection 5.5, we discussed analytic solution and numerical method for
variance-minimizing approximate polynomial. In this subsection, these meth-
ods are implemented and verified. We confirm that the numerical method finds
a polynomial that is very close to and has a slightly larger error than that of the

optimal one, and w ≈ (h+1)2n
12 .

The experimental results are shown in Fig. 3 with parameterN = 216, h = 64,
and n = 23. The blue lines with triangular legend show the error by polynomial
approximation as n · q2 · V ar[eaprx]. The green lines with x mark legend show
the amplified basis errors as n ·Ep, and the red lines with square legend are for
the mean square of errors obtained by experiments. The reason for multiplying
the above result by n is because in SlotToCoeff, the element size of the
matrix U is 1, and n vectors multiplied by this value are summed. The gray dot
line is the variance of bootstrap error achieved by the analytic solution of the
variance-minimizing approximate polynomial of the same degree, which is the
lower bound of bootstrap error. For the worst-case assumption, we assume that
m is distributed uniformly at random.

In Fig. 3, the sum of blue lines with triangular legend and green lines with x
mark legend meets the red lines with the square legend. In other words, it shows
that the theoretical derivation and experimental results are agreed upon. It can
also be seen that it is possible to obtain an approximate polynomial with a small
error with the proposed numerical method, but the error is slightly larger than
that of the analytical solution. It is noted that the variance of the rescaling error

is (h+1)2n
12 , and the optimal w is close to it.

6.3 Comparison of the Proposed Bootstrapping and Prior Arts
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Fig. 4. Comparison of the minimum achievable variance of approximation error of the
proposed method and that of the minimax polynomial, when ε = 2−10.

Comparison of Approximate Error Variance We compare the error vari-
ance of the proposed method and the minimax approximate polynomial [23] in
Fig. 4. We deliberately set a harsh condition to our method in the experiment. In
other words, for finding polynomials and measuring variance, we use distinct dis-
tributions of messages: uniform and Gaussian distributions, respectively. How-
ever, Fig. 4 shows that despite the harsh condition, our method achieves less
error. Therefore, we can see that the probability distribution of I is a dominant
term of approximate error variance. As the distribution of I is given regardless
of security or input message as in Table 1, we can always improve bootstrapping
through variance-minimizing approximate polynomial.

Experimental Result of Bootstrap Error The experimental results of boot-
strap errors, implemented on SEAL, using various methods are compared in
Table 4. In this table, the proposed variance-minimizing polynomial directly ap-
proximates fmod(t), and the previous methods approximate the sine function and
use the double-angle formula. For a very high precision achieved by a method
in [23], 1

2π arcsin (t) is evaluated, which consumes at least two more levels. The
scale-invariant evaluation [20, 2] is also applied to the previous methods.

In Table 4, the first four rows are with h = 64 and n = 23 for a very accu-
rate bootstrapping, and we can see that the proposed method has a much less
bootstrap error compared to the prior arts with the same depth. In contrast,
the previous methods have limited precision or require more depth of bootstrap-
ping to evaluate arcsin. The rests of the rows are implementation results for
fine-tuned parameter sets with a bootstrap error variance at most 2−27.58 and
the maximum message coefficients 16. This corresponds to the 16-bit fixed-point
precision: 4-bit above and 12-bit below the decimal point. As the bottleneck of
error in the CKKS scheme is bootstrapping, we determine the precision of the
system through the variance of bootstrap error. [15] states that fixed-point arith-
metic with 4-bit precision above and 12-bit precision below the decimal point is
enough to train a neural network. The variance of error by stochastic rounding
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Table 4. Comparison of the variance of bootstrap error of the proposed variance-
minimizing polynomial and prior arts. The error variance is obtained by 216 samples of
experiments implemented on SEAL. The last four rows are fine-tuned parameters set
for 16-bit precision. The proposed method and [2] achieve the similar precision even
though the proposed method uses an 8 times smaller q. Thus, more room for level.

algorithm h N n log p log q log ε
EvalMod

depth #relin V ar[e] precision
cos r sin−1

[17]
64

216 23 50 60 −10 52 2 - 8 20 2−41.90 0+19.65
[23] 216 23 50 53 −3 52 2 17 13 - 2−68.32 0+32.86

proposed 64 216 23 50 58 −10 fmod: 111 7 17* 2−38.73 0+18.07
23 50 58 −8 fmod: 255 8 25* 2−68.30 0+32.86

[2] + [23] 192 216 214 57 50 −3 75 2 31 14 - 2−73.43 0+38.51

[2] 192 216 214 39 53 -10 52 2 - 8 20 2−29.56 4+12.99
210 35 49 −10 52 2 - 8 20 2−29.65 4+13.03

proposed 192 216 214 36 49 −9 fmod: 255 8 25* 2−28.22 4+12.32
210 32 45 −9 fmod: 255 8 25* 2−28.83 4+12.62

[2] 192 215 214 39 53 −10 52 2 - 8 20 2−29.41 4+12.91
210 35 49 −10 52 2 - 8 20 2−29.64 4+13.02

proposed 192 215 214 36 49 −9 fmod: 255 8 25* 2−28.52 4+12.47
210 32 45 −9 fmod: 255 8 25* 2−29.01 4+12.71

*lazy relinearization applied

Table 5. Fine-tuned parameters for 16-bit accuracy of the proposed method and prior
arts, where N = 215

algorithm n logQLP logP log p log q precision CtS Mod StC rem. level

[2]
214

767
54 39 53 4+12.91 53 424 44 4

210 50 35 49 4+13.02 49 392 40 6

proposed
214

767
50 36 49 4+12.47 49 392 44 6

210 46 32 45 4+12.71 45 360 40 8

proposed + new CtS
214

767
50 36 49 4+12.47 0 392 37 8

210 46 32 45 4+12.71 0 360 40 10

with 12-bit precision below decimal point is given as 1
12 (2−12)2 = 2−27.58. It is

shown that the proposed method achieves the error variance of 2−29.01 with scal-
ing factor ≈ 232 and ε = 2−9, while the previous methods require scaling factor
≈ 235 and ε = 2−10. Therefore, previously, it was challenging to use N = 215,
as at most 4 to 6 levels remain after bootstrapping; we improve this by the pro-
posed variance-minimizing approximate polynomial and operation reordering.
At 16-bit precision, [23] was excluded because performing arcsin is a waste of
level.

Table 5 shows the fine-tuned parameter sets, their precision, and the remain-
ing level. CtS, Mod, and StC correspond to CoeffToSlot, EvalMod, and
SlotToCoeff, respectively, in the table. Using the proposed method leaves
much more levels after bootstrap: 4 → 6 (50%) for n = 210, 6 → 8 (33%) for
full slots. Hence, we can significantly reduce the required number of bootstrap-
ping. If there are many levels, the linear transformations could be performed
faster by consuming additional levels [17, 16], but it is assumed here that such a
method is not used. However, as the parameter size itself has been reduced from
N = 216 to 215, bootstrapping is performed quickly without this hybrid method,
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Table 6. Computation time and key size by N in SEAL , tested in single core, Intel
Xeon Silver 4210 CPU @ 2.20GHz, 64 GB ram. This experiment is for full-level cipher-
texts with parameter p = 236, q = 245, and h = 192, with 128-bit security. The result
may differ by ciphertext level.

SKGensk RS RLevk rotation Add cMult swk pk

N = 215 30,628 ms 28 ms 322 ms 1,547 ms 1.51 ms 18.58 ms 111 MB 6.5 MB
N = 216 333,096 ms 144 ms 3,417 ms 19,294 ms 8.57 ms 23.01 ms 1054 MB 27.6 MB

and moreover, it is more suitable for parallelism. We note that n = 214 is a nice
parameter as one channel of 128× 128 images fits in one ciphertext.

In Table 6, the comparison of time and key sizes by N is given. The ta-
ble shows that by reducing N from 216 to 215, we can significantly reduce the
computation time and key sizes; the time for rotation is reduced by 1/12, and
the key-switching key size is reduced by 1/10. It is worth noting that when N is
larger, more key-switching keys are required, and more rotations are required for
bootstrapping even though the slot size is the same. Therefore, the advantage
of memory, communication, and time by using N = 215 outweigh the benefit of
the number of levels by using N = 216. The advantage is even more crucial for
the clients as they have limited computational resources. We note that Han and
Ki’s method reduces the key sizes, but it trades the ciphertext level [17].

It is worth noting that all the previous techniques, such as the double-angle
formula and composition with arcsin, can also be utilized along with variance-
minimizing approximate polynomial. Although the variance-minimizing approx-
imate polynomial gives us a nice approximation of fmod, it is observed that its
performance gets worse at a higher degree. This is because it is challenging to
approximate with the limited magnitude of coefficients. Using the double-angle
formula, we can narrow the approximation domain, and trigonometric functions
are suitable to approximate, and thus the use of the double-angle formula and
the inverse sine function is useful for a very accurate bootstrapping. However,
instead of previous approximations, we should use the variance-minimizing ap-
proximation for a more accurate approximation of the trigonometric functions
as the proposed variance-minimizing approximation improves the approximation
by using the distribution of I. It is advantageous to approximate more accurately
where the probability is high. Moreover, it reduces the basis error and the ap-
proximate error at the same time.

One might argue that the proposed bootstrapping may fail because the ap-
proximation error is too large where the probability is very low. In fact, it is not;
by experiments, we check that the maximum approximation error of the error
variance-minimizing polynomial is also small.

Further Level Saving With New SlotToCoeff In Table 5, one or two level
gain is achieved through new SlotToCoeff in the last two rows. This section
presents a new SlotToCoeff algorithm that does not consume a ciphertext
level; the proposed SlotToCoeff trades the remaining level and computation
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Fig. 5. Parallelization of Algorithm 1 for 255th degree polynomial, k = 32, and l = 3.

time. In ordinary ModRaise [7], the ciphertext modulus is raised to QL0+L1
,

but we propose to change the ciphertext modulus to P ′QL0+L1
for P ′ ≤ P .

For a ciphertext whose modulus is greater than QL0+L1 , key switching is not
allowed, and thus we cannot rotate it. However, we still can perform scalar mul-
tiplication, rescaling, addition, and coefficient permutation (without key switch-
ing). The following procedure performs CoeffToSlot, but the ciphertext mod-
ulus after it is QL0+L1

, not QL0+L1−1. First, perform rotations on the cipher-
text, and then multiply the corresponding diagonal terms of the matrix U−1

with scaling factor P ′, and then rescale it. Then, we can and should perform key
switching for rotation. The key switching is composed of Decompose, MultSum,
and ModDown [2]; we change the order of ModDown and ciphertext addition. In
other words, we decompose the ciphertexts whose coefficients are permuted and
multiplied by the diagonal components of U−1, perform MultSum, and then add
them all together. Then, only one ModDown is required for the proposed Co-
effToSlot and the memory consumption is O(1). However, since matrix-BSGS
[2] cannot be used in this method, it still requires much computation.

Parallelism and The Proposed Method In the proposed method, instead
of evaluating consecutive low-degree polynomials, we compute the high-degree
polynomial once by the odd-BSGS algorithm. Although the proposed lazy rescal-
ing and relinearization significantly reduce the computation, we briefly introduce
the parallelization of the BSGS algorithm as it can be applied along with Al-
gorithm 1 and further improve the performance. In HE applications, the server
generally has a significant computational resource, and thus we can effectively
utilize the resources by parallelization. Thus, the advantages of parallel comput-
ing outweigh the disadvantages of a few additional multiplications. The proposed
method has a lower depth than the method using arcsin, and thus despite more
multiplications, it can be calculated faster through parallelization.

In Fig. 5, a diagram of parallelization of Algorithm 1 is given. The Cheby-
shev basis with the same depth can be computed in parallel as they have no
dependency. Hence, we can obtain all the Chebyshev basis for the baby step
before calculating ccheb2ik’s. When we use lazy rescaling, the baby step does not
require rescaling or relinearization, and thus it is evaluated quickly. Moreover,
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the low-degree terms of baby polynomials can be summed in advance before the
high-degree terms so that the baby step can be done with the setup process in
parallel. The giant step is done as follows: the first step is the product of the
baby polynomial and cchebk, the next step is the product of the first step’s output
and ccheb2k, and so on. Therefore, the first step can be combined with finding
ccheb2k. Each step of the giant step and computing a ccheb2ik both require one
non-scalar multiplication and one addition, and thus they take the same time.

7 Conclusion

In this paper, we introduced two novel methods to improve the precision and
complexity of the CKKS scheme. First, SNR, a widely-used measure of error per-
formance of noisy media such as communication systems, was adopted as a mea-
sure of message quality. To maximize the SNR of encrypted data, we proposed
a method to minimize the variance of errors; we replaced the high-probability
upper bound in the tagged information with the variance of errors for tight
management of error. As a result, the homomorphic operations were effectively
reordered to minimize the error variance. Second, we proposed a method to find
the optimal approximate polynomial for the CKKS scheme in the same aspect of
reducing the error variance. Especially, the newly proposed operation reordering
and variance-minimizing approximate polynomial were applied to the bootstrap-
ping of the CKKS scheme. The proposed two contributions allowed us to leave
more levels after bootstrapping, and thus, we reduced the degree of ciphertext
polynomial of the CKKS scheme from 216 to 215 with practical precision for deep
learning. The sizes of the key and ciphertext are reduced by at least 1/4, which
significantly reduces their computational complexity.

From its implementation on SEAL, it is shown that the bootstrap error of
the CKKS scheme was significantly improved. To our best knowledge, this is
the first bootstrapping algorithm that contemplates various parameters, such
as slot size, the error characteristics of the CKKS scheme, and the polynomial
evaluation algorithm. Even though the number of non-scalar multiplication is
slightly increased, we could reduce the computation time by the proposed lazy
rescaling and relinearization. Moreover, the lower depth and error have two main
advantages: the use of N = 215 and parallelization.

In this work, 16-bit fixed-point arithmetic with rounding was referenced as a
practical parameter. However, the error shape is different in the CKKS scheme;
random noise is added to the message. Thus, it is worth further researching how
much error is tolerated when learning and inference in noisy environments like
the CKKS scheme. From our proposed method, now there are two criteria to
reorder homomorphic operations when we use the CKKS scheme: error variance
reduction and computation time reduction. In addition to the examples in this
paper, there are various methodologies to reorder homomorphic operations to
minimize the error, and it will affect the error performance of the CKKS scheme
significantly for deeper operations. In the field of optimizing compilers, there has
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been much research on instruction reordering, such as peephole optimization [22],
and we leave the adoption of compiler techniques as future work.
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A Comparison of Approximate Error Variance of the
Proposed Method and Error Variance of Minimax
Polynomial

We put additional comments on Fig. 4 in this appendix. The best-known ap-
proximation method for the CKKS bootstrapping so far is the modified Remez
algorithm [23], which finds the minimax approximate polynomial. The minimax
approach is reasonable when the input distribution is unknown. However, in the
CKKS bootstrapping, the input distribution is partially known; the probability
mass function of I is known regardless of security as in Table 1. Therefore, our
variance-minimizing approximate polynomial is effective as it utilizes stochastic
information. Finding the variance-minimizing approximate polynomial, we use
the worst-case assumption that r is uniformly distributed. However, in the actual
experiment of measuring error variance for the given approximate polynomials,
we assume r follows the Gaussian distribution. In other words, we experiment
in a harsh environment for our proposed method by using different message
distributions for finding polynomial and calculating variance.

It is shown in Fig. 4 that the variance of the approximation error for the
proposed method is less than that of minimax polynomial, despite the harsh con-
dition. Therefore, we can see that the probability distribution of I is a dominant
term of approximate error variance. As the distribution of I is given regardless
of security or input message, we can always improve bootstrapping by using our
method. As the magnitude of the approximate polynomial coefficients cannot
be reduced in the modified Remez algorithm, the approximate polynomials for
both methods are compared without controlling the magnitude of coefficients in
Fig 4. In other words, the variance-minimizing approximation with w = 0 in (3)
is used in Fig. 4. However, unlike the prior approaches, it is possible to reduce
the approximate polynomial coefficients in the proposed method with slightly
increased error variance. In contrast, the use of the double-angle formula is es-
sential for previous methods, which results in more depth.

B Proofs of Lemmas

Proof (Theorem 5.2). Existence and uniqueness: Equation (4) is a quadratic
polynomial for the coefficients c, and thus there exists one and only solution.
Oddness: Let Pm be the subspace of the polynomial of degree at most m and
fm(t) denote the unique element in Pm that is closest to f(t) in the variance
of difference. Then, V ar[−f(−t) − p(t)] +

∑
wic

2
i is minimized when p(t) =
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−fm(−t), because

V ar [−f(−t)− p(t)] =

∫
t

(−f(−t)− p(t))2 · Pr(t)dt

=

∫
−u
−(f(u) + p(−u))2 · Pr(−u)du

=

∫
u

(f(u)− (−p(−u)))
2 · Pr(u)du,

and the squares of coefficients of fm(t) and −fm(−t) are the same. As the
variance-minimizing approximate polynomial is unique, we conclude fm(t) =
−fm(−t).

ut

Proof (Lemma 4.1). The rescaled ciphertext cRS ←
⌊
p−1l c

⌉
satisfies 〈cRS, sk〉 =

p−1l (m + e) + escale, where escale = 〈τ , sk〉 and τ = (τ0, τ1) is the rounding error
vector. We can assume that the coefficients of polynomials τ0 and τ1 are dis-
tributed uniformly at random on p−1l Zpl , and thus the variance of τ0 + τ1 · s is
N/12 + hN/12. Therefore, the variance of escale is given as 1

12 (h+ 1)N .
In RNS-CKKS, the scaling factor is slightly different depending on the op-

erations done to the ciphertext, and thus when adding different ciphertexts, an
error occurs according to the ratio of pl and p in the process of forcibly treating
the scaling factor as p. The methods to remove such error was proposed in [20,
2]. ut

Proof (Lemma 4.2). The key switching noise comes from the rounding terms τ
as in Lemma 4.1 and from the error terms e′k in swk0. The variance of error from
τ is vscale. The other error is given as

〈WDl(c1), {e′k}0≤k<dnum−1〉
P

. (9)

It can be assumed that the i-th component of WDl(c1) follows uniform distri-

bution in Q̃i. Then, its variance is Q̃i
12 and the variance of each coefficient of e′k

is σ2. Thus, the variance of error in (9) is derived as

P−2 ·
∑

0≤i<dnum′−1

Q̃i
12
σN ≈ P−2 · dnum

′ · pα

12
σN.

ut

Proof (Lemma 4.3). The addition is trivial. The ciphertext of m1(X) ·m2(X)

cmult ← (d0, d1) +
⌊
P−1 · d2 · evk

⌉
(mod Ql)

contains additional error e′′ = P−1 · d2e′ and the error by scaling. As d2 = a1a2
and from RLWE assumption, we can assume that d2 is distributed uniformly
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at random on RQl . Thus, the variance of Pe′′ is derived as Q2
lN/12 · σ2N =

1
12Q

2
l σ

2N2. The total error is given as

m1e2 +m2e1 + e1e2 + e′′ + escale

and as the means of e1 and e2 are zero and m1 and m2 are independent, the
variance of m1e2 +m2e1 + e1e2 is given as

(vm,1 + |µ2
m,1|)× ve,2 + (vm,2 + |µ2

m,2|)× ve,1 + ve,1 × ve,2.

ut

Proof (Lemma 4.4). The rounding during encoding introduces a rounding error.
However, we could assume that the scaling factor is large enough so that there
are no errors. Then, it is self-evident. ut

C Example of Error Variance Reduction by Lazy
Rescaling

For example, when one calculates encryption of ax8 by using c, which is the
encryption of x with scaling factor ≈ ∆2, previously, the calculation was done
as [20]

c2 ← Mult(RS(c),RS(c))

c4 ← Mult(RS(c2),RS(c2))

c8 ← Mult(RS(c4),RS(c4))

coutput ← cMult(RS(c8), a;∆),

(10)

and it consumes four levels. However, in the proposed method we can reorder
the operation as

ca ← cMult(RS (c) , a1/8;∆)

c2a ← Mult(RS(ca),RS(ca))

c4a ← Mult(RS(c2a),RS(c2a))

c8a ← Mult(RS(c4a),RS(c4a)).

(11)

When ax8 is obtained using (10), the error introduced by RS is amplified by a
unlike (11). However, when a is an integer, it is not necessary to consume level;
in other words, a is not scaled by ∆, and thus (10) may be advantageous in
terms of depth. In that case, unless a is a prime number, depth and error can
be reduced simultaneously by multiplying the factors of a in advance.

Equation (11) can be improved further by replacing the first line in (11) as

c′a ← RS
(
cMult(c, a1/8;∆)

)
.
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Let us compare the error in ca and c′a. Let c be a ciphertext whose the full
ciphertext is expressed as (

c, l,∆2,µm,vm,ve
)
.

Then, from Lemma 4.1, the full ciphertext of RS(c) is expressed as(
RS(c), l − 1, ∆,∆−1µm, ∆

−2vm, ∆
−2ve + vscale

)
and thus, the full ciphertext of ca is obtained as(

ca, l − 1, ∆2, a1/8µm, a
1/4vm, a

1/4ve + a1/4∆2vscale

)
. (12)

However, the full ciphertext of cMult(c, a1/8;∆) is obtained as(
cMult(c, a1/8;∆), l − 1, ∆3, a1/8∆µm, a

1/4∆2vm, a
1/4∆2ve

)
and thus, the full ciphertext of c′a is given as(

c′a, l − 1, ∆2, a1/8µm, a
1/4vm, a

1/4ve + vscale

)
.

We note that vscale (C) is negligible after a RS, but a1/4∆2vscale in (12) is not. In
(11), the RS error introduced by RS(c) is amplified by a, but we can even rule
out this by skipping RS.


