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Abstract. In this work we focus on improving the communication com-
plexity of the online phase of honest majority MPC protocols. To this
end, we present a general and simple method to compile arbitrary secret-
sharing-based passively secure protocols defined over an arbitrary ring
that are secure up to additive attacks in a malicious setting, to actively
secure protocols with abort. The resulting protocol has a total com-
munication complexity in the online phase of 1.5(n − 1) shares, which
amounts to 1.5 shares per party asymptotically. An important aspect of
our techniques is that they can be seen as generalization of ideas that
have been used in other works in a rather ad-hoc manner for different
secret-sharing protocols. Thus, our work serves as a way of unifying key
ideas in recent honest majority protocols, to understand better the core
techniques and similarities among these works. Furthermore, for n = 3,
when instantiated with replicated secret-sharing-based protocols (Araki
et al. CCS 2016), the communication complexity in the online phase
amounts to only 1 ring element per party, matching the communication
complexity of the BLAZE protocol (Patra & Suresh, NDSS 2020), while
having a much simpler design.

1 Introduction

Multiparty Computation, or MPC for short, is a cryptographic technique that
allows multiple parties to compute a given function f on private inputs without
revealing anything beyond the output of the computation, even if an adversary
collectively corrupts a subset of the parties. Different types of MPC proto-
cols exist depending on the desired security level and desired guarantees about
the output of the computation. For example, regarding the level of security,
a typical dividing line lies in the fraction of parties is allowed to corrupt: In
the dishonest majority setting the adversary is allowed to corrupt all but one
of the parties, whereas in the honest majority setting the adversary can only
corrupt less than half of the parties. The adversary in the former scenario is
much stronger and therefore much harder to achieve, and protocols in this
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setting, like [KOS16,DKL+13,KPR18,BCS19,CDE+18], are computationally ex-
pensive and must rely in computational hardness assumptions. In contrast, honest
majority protocols are possible without relying on computational assumptions
[BFO12,BTH06,DN07], which makes them more resilient to attacks and also more
efficient due to their simplicity and non-reliance on a computational security
parameter.

Another dividing line is drawn with respect to the type of corruption the
adversary is allowed to make. Typically, two types of corruptions are considered:
passive and active corruptions, with the former type consisting of corrupt parties
respecting the protocol specifications (but trying to learn as much as they can
from sent/received messages); in contrast, actively corrupt parties can deviate
arbitrarily. Finally, regarding the output of the computation there are three
typical notions considered: guaranteed output delivery, where the honest parties
must be able to get output regardless of the adversarial behavior, fairness, where
the honest parties must get output if the adversary gets output, and security
with abort, where either the honest parties get the correct output or they abort.

Many different protocols are designed and optimized for different scenarios
and use-cases. However, in spite of being an active and fruitful research field for
more than three decades, state-of-the-art MPC protocols still add a considerable
overhead with respect to plain “insecure” computation, which makes some po-
tential applications out of reach for the time being. Most of these complexities
appear from the interactive nature of MPC, which requires parties to constantly
communicate large amounts of data distributed across multiple rounds, which
is severely penalized by slow networks and largely distributed parties. Hence,
an important task in MPC today is minimizing the communication complexity
of the protocols for all kind of adversarial settings. One successful approach at
achieving this consists of splitting the computation into an offline and online
phase [Bea92], with the former consisting of all the interaction that is independent
of the parties’ inputs and the latter, which tends to be orders of magnitude more
efficient, made of the execution that requires knowledge of the parties’ inputs.
Given this separation, it is natural to optimize mostly the online phase since it
dictates the total latency from the time the inputs are provided to the time the
output is obtained.

Among all the possible adversarial settings, it is fair to say that honest majority
MPC with abort is one of the scenarios that has received a lot of attention due to
its practical, concrete efficiency [CGH+18,LN17,NV18,ADEN19,EKO+20], and it
has been already used for concrete applications like secure training and prediction
of machine learning models [WGC19,MR18,DEK20,CCPS19,AEV21]. Moreover,
several recent works have focused on improving the concrete communication
complexity of protocols in these settings. For example, BLAZE [PS20] achieves
secure computation for three parties and one active corruption over rings with
a communication complexity in the online phase of only 1 ring element per
party. For an arbitrary number of parties, very recently, Goyal and Song [GS20]
showed how to improve the overall communication complexity of Shamir-based
honest majority protocols by presenting a novel method to check the correctness



of multiplication gates with a communication complexity that is essentially
independent of (specifically, logarithmic in) the circuit size, achieving an amortized
communication complexity of 6 field elements per multiplication gate, distributed
as 4 elements in the offline phase and 2 elements in the online phase.

1.1 Our Contribution

In this work we focus on improving the communication complexity of the online
phase of honest majority MPC protocols that achieve security with abort. To
this end, we present a general method to obtain from any secret-sharing-based
passively secure protocol defined over an arbitrary ring that is secure up to
additive attacks in a malicious setting, an actively secure protocol with abort
over the same ring. The resulting protocol has a total communication complexity
in the online phase of 1.5(n − 1) shares, where n is the number of parties,
which amounts to 1.5 shares per party asymptotically. For three parties, when
instantiated with protocols based on replicated secret-sharing [AFL+16], the
communication complexity in the online phase amounts to 1.5 · 2 = 3 shares
in total, so only 1 share element per party, which matches the communication
complexity of state-of-the-art protocols like BLAZE [PS20], while having a much
simpler and generalizable design.

In addition to this, our construction has the appealing feature that, in the
online phase, a secure dot product of arbitrary length can be computed with a
communication complexity that is independent of the length of the input vectors.3
This is in contrast to other protocols, specially these in the dishonest-majority
setting, that require L secure multiplications to produce a dot product of length
L. This feature enables highly efficient secure linear algebra, which can be applied
for example to linear machine learning models such as linear regression or neural
networks.

Our main protocol, presented in Section 3, is considerably simple and general,
and provides great efficiency. Furthermore, it achieves the strongest privacy no-
tion in the online phase, namely, perfect security. On top of matching the online
complexity of state-of-the-art protocols, our protocol allows us to interpret the
core techniques behind some of the most efficient protocols for specific settings
like 3 and 4-party computation, namely [CCPS19,PS20,CRS20], in a unified
framework which highlights the main tools used in these works to achieve such
low communication complexity. These protocols are constructed in an ad-hoc
manner, introducing specific building blocks that seem to be inherently entan-
gled to the particular setting (3-4 parties). However, our techniques enable the
identification of a common and generalizable pattern behind these constructions.
This is generally very useful as, on top of achieving good efficiency for more
general settings instead of only scenarios with 3 and 4 parties, it enhances the
understanding of these protocol by establishing clear relations among their design.
We discuss this in Section 6.
3 More precisely, at the time of securely computing the dot product only the cost of a
single multiplication must be paid. However, this does not rule out the potential cost
that had to be paid to obtain shares of the inputs to this dot product in a first place.



The communication pattern of our protocol allows almost half of the parties
to be shut down during most of the online phase, which saves in costs and reduces
communication channels. However, in some concrete settings it would be ideal if
these parties could be shut down during all of the online phase, as this could
potentially help saving in operational costs. As an additional contribution, we
present in Section 4 a variant of our first protocol that allows to shut down
essentially half of the parties during the whole online phase.

Finally, we note that the description of our protocols from Sections 3 and 4
considers computation over a field F. However, the works discussed in Section 6
operate over a ring Z2k , so our protocols are in principle not compatible. To
alleviate this disparity, we discuss in Section 5 how to extend our protocols from
Sections 3 and 4 to the ring setting. One of the necessary steps to achieve this
involves extending the results from [GS20], which are set over fields, to the ring
setting, which may be of independent interest.

1.2 Overview of our Techniques

First Protocol Our compiler is conceptually simple and efficient, and requires
little modifications to the underlying MPC protocol that is used as a basis. We
achieve our results by leveraging a function-dependent preprocessing that reduces
the communication complexity of a multiplication gate in the online phase to
that of opening one single shared element, coupled with the simple but crucial
observation that, in the honest-majority setting, only t+ 1 parties are required
to open a shared value non-robustly.

To provide a high level description of the techniques mentioned above, let us
illustrate our compiler for the case of Shamir secret sharing over a field F. Let
[x]d denote a degree-d sharing of x ∈ F. We assume the existence of a method
to multiply two shared values [z]t ← [x]t · [y]t, where z = x · y + δ and δ is an
additive error known by the adversary in the case of an active attack. For our
compiled protocol, we define an alternative type of sharings: We write 〈x〉 if
the parties have shares of a random mask [λx]t, together with the public value
ex = x−λx. This method for secret-sharing is inspired in the work of Ben-Efraim
et al. [BNO19], which shows how to reduce the communication of the SPDZ
protocol by half by making use of a circuit-dependent preprocessing. Furthermore,
the core idea of having a masked version of a secret together with shares of the
mask has been used already in previous works, such as [KKW18] and the works
we consider in Section 6. We write 〈x〉 = ([λx]t , ex).

Processing addition gates in the scheme 〈·〉 can be done locally, while process-
ing multiplication gates require some interaction: To obtain 〈x · y〉 from 〈x〉 and
〈y〉 we assume that the parties have shares [λx · λy]t from a preprocessing phase,
which we produce in our work via the protocol from [GS20]. Let [λz]t be the
random mask that will be used for this multiplication. The parties can obtain
ez = x ·y−λz by opening exey+ex [λy]t+ey [λx]t+[λxλy]− [λz]t, thus preserving
the invariant. Notice that the shares ([λx]t , [λy]t , [λxλy]t) correspond to circuit-
dependent multiplication triples, which can be preprocessed very efficiently using
the novel batch-checking technique of Goyal and Song [GS20].



Using the techniques sketched above, each multiplication gate in the online
phase reduces to opening one single shared value. However, the most efficient
method for achieving this, which uses the “king idea” from [DN07], requires n− 1
parties to send their share to one single party (the “king”), who then reconstructs
the secret and sends the result to the other parties. Overall, this implies an overall
communication complexity of 2 · (n− 1) field elements. To further reduce this
count, we notice that it is not necessary for all the parties to send their share to
the king. Indeed, a subset of t parties, plus the king, suffices, as these together
hold t+ 1 shares—enough to reconstruct the secret. Assuming n = 2t+ 1, this
reduces the number of field elements transmitted to t+ (n− 1) = 3

2 (n− 1).
The optimization above comes with a downside in terms of security: By using

t+1 shares to reconstruct the secret rather than all the n shares, it is possible for a
malicious party to fool an honest king into reconstructing an incorrect value.4 To
overcome this issue we observe that, even if the intermediate shares were opened
non-robustly using only t+ 1 shares, the parties still have full degree-t shares of
these values. To verify that the openings were done correctly, we let the parties
take a random linear combination of these shared values, open this single result
robustly (i.e. using all the shares), and then compare the opened value against the
corresponding combination of the values that were non-robustly opened during
the execution of the protocol. This idea can be seen as an adaptation of the
“partial opening” procedure of the SPDZ protocol to the honest majority setting.

Second Protocol Due to the fact that we open shared values using only t + 1
parties, we can set the communication pattern of the protocol sketched above in
such a way that only some fixed subset of t+ 1 parties communicates during the
online phase, until the output phase. In the final check, the parties in this subset
would broadcast the intermediate opened values to the other t parties, and the
check would then be executed.

The fact that all the parties need to be available for the final check is a
downside if one wants to shut down these parties “for good”, once the online phase
has started. To allow the t+ 1 parties that are active during the online phase
to perform the final correctness check without the help of the other parties, we
resort to a rather standard technique in the dishonest majority setting involving
the use of MACs: A value x is shared as [x] together with [r · x] for a random
and global [r]. Then, to check that [x] is opened correctly, the t+ 1 parties that
were active during the online phase (among which a dishonest majority may
be corrupt) use the MAC [r · x] and the key [r]. Furthermore, this check can
be easily batched so that its communication complexity is independent of the
number of openings being verified.

Extension to Rings Most of the techniques used in our work carries over seamlessly
to the ring setting. For example, the online phase of our first protocol from

4 As presented here, a corrupt king can already disrupt the reconstruction of the secret
even if all n shares are used. This is handled in [DN07] by considering multiple kings
and using error correction techniques.



Section 3 does not exploit any specific property of fields, and so works the same
over Z2k . The main issue appears in the offline phase, given that the protocol from
[GS20] that we use to produce the necessary preprocessing material only works
over fields. To extend the protocol from [GS20] to the ring setting, we observe
that the core technique used in this protocol is basic polynomial interpolation,
which can be made to work over Z2k by taking a Galois ring extension of large
enough degree, as done in [ACD+19]. This idea was already used in [BGIN19]
for the three-party setting, whereas our results are applicable to an arbitrary
number of parties and any linear secret-sharing scheme.

Finally, the online phase of our second protocol from Section 4 does not work
directly over Z2k as it relies on the AMD code (x, r ·x, r), which does not provide
any integrity of Z2k due to the lack of invertible elements. Fortunately, the work
of [CDE+18] shows how to extend this integrity mechanism to the ring Z2k by
operating over a larger ring Z2k+κ , where κ is the statistical security parameter.
We show in Section 5 that this technique can be also applied to our protocol.

1.3 Related Work

Honest majority MPC with a small communication footprint has been studied in a
number of works in the last decade or so. One attractive feature of such protocols,
is that they work well for a large number of parties where it is reasonable to
assume that not everyone colludes (in particular, where only a minority colludes).
This setting was investigated in [BHKL18], which demonstrated a concretely
efficient protocol for large number of parties, based on a protocol adapted from
[BTH08].

While [BTH08] has a linear communication complexity, recent research (which
we have already mentioned) have brought this down to logarithmic [GS20].
Moreover, for the specific setting of 3 and 4 parties, specialized protocols have
been shown to be concretely efficient.

Compiling honest majority protocols from passive to active security have
also been studied previously. [CGH+18] show how to efficient convert a passively
secure honest majority protocol with the same properties we require (security
against an active adversary up to additive attacks), into an active secure protocol
with a concretely very small overhead. The authors [ADEN19] show, employing
a similar approach as [CGH+18], how to get a similar compiler for ring based
protocols.

2 Preliminaries

2.1 Notation

We let n be the number of parties among which t are corrupt. In the honest
majority setting it holds that t < n/2, but for simplicity in the presentation, we



will assume that n = 2t+1.5 Let R be a ring of the form Zpk or GF(pk) for some
prime p and some non-negative integer k. We write s ∈R A when s is uniformly
sampled from a finite set A. We let κ denote the statistical security parameter.

2.2 Security Definition

In this work we assume a synchronous network of secure point-to-point channels,
together with a broadcast channel. We consider simulation-based security, which
can be either the universally composability framework [Can01] or the stand-alone
setting [Gol01] as our techniques apply to both. We focus on providing security
with abort, in which the adversary can make the honest parties abort at any
point in the protocol; in particular, the adversary itself may get output before the
honest parties and immediately abort the computation. We assume the existence
of a broadcast channel with abort (that is, the parties either get the value that
was broadcast, or they abort), and we assume that when an honest party aborts,
all honest parties abort, which can be easily achieved using the broadcast channel.
Since the broadcast channel allows for abort, it can be efficiently instantiated via
echo-broadcast by letting the sender distribute the value to be broadcast via the
point-to-point channels, and then letting the receiving parties exchange hashes
of his value and abort if an inconsistency is detected.

When measuring communication complexity, M +BC(N) means that M ring
elements are communicated over point-to-point channels, and N ring elements
are communicated over the broadcast channel. With the broadcast method
sketched above, we would have that BC(N) = (n− 1) ·N , which amounts to the
messages sent by the broadcaster (we ignore the cost of the hash exchange as it
is independent of N).

2.3 Linear Secret Sharing

We consider a linear secret sharing scheme (LSSS) [·] over R. Such a scheme for
our purposes consists of a randomized injective function share : R → (Rm)n such
that the following holds for all x ∈ R. Below, we let share(x) = {xi}ni=1.

– Privacy. For any subset J ⊆ {1, . . . , n} such that |J | ≤ t, the mutual
information between {xi}i∈J and x is 0.

– Reconstruction. There is a function rec : (Rm)t+1 → R such that, for any
subset J ⊆ {1, . . . , n} such that |J | = t+ 1, it holds that rec ({xi}i∈J) = x
(the function rec is implicitly taking the set J as a parameter).

– Linearity. Given {yi}ni=1 = share(y), it holds that {xi + yi}i lies in the image
of share(x+ y).6

5 Some technical complications arise if 2t+ 1 < n, like the fact that the set of honest
parties is strictly larger than t+1, so different subsets of honest parties may reconstruct
shared secrets to different values. This is not really a problem with the protocols,
but it introduces some notational overhead that we would like to avoid.

6 This extends naturally to multiplication by constants. Furthermore, addition by a
constant z can be obtained by the parties generating public shares [z] using some
canonical randomness, and then using the linearity between shared values.



To ease the notation a bit, we may write [x]J := {xi}i∈J , and [x] := [x]
{1,...,n}.

The definition of rec is extended to more than t + 1 shares as follows: Let
K ⊆ {1, . . . , n} such that |K| ≥ t+1. We write rec ({xi}i∈K) = x if, for all J ⊆ K
with |J | = t+1, it holds that rec ({xi}i∈J) = x. Else, we write rec ({xi}i∈K) = ⊥.
In the former case we say that the shares {xi}i∈K are consistent, and in the
latter case we say they are inconsistent.

An important factor of honest-majority secret sharing (and one which does
not hold for a dishonest-majority) is that, when the sharings are consistent, it
is ensured that the correct value will be reconstructed. More precisely, if the
adversary modifies the t entries in [x] corresponding to the corrupt parties, but if
rec ([x]) = x′ 6= ⊥, then it is guaranteed that x′ = x. This is because, if H denotes
the set of honest parties, which satisfies |H| = n− t = t+ 1, rec ([x]) = x′ 6= ⊥
implies that rec

(
[x]

H
)
= x′, but since the shares [x]

H are not modified, this
implies that x′ = x.

2.4 Reconstruction Protocols

We defined secret sharing above as a set of functions, but in practice it is used
as a set of protocols for distributing and reconstructing data among n parties.
In this section we discuss different ways in which the parties can reconstruct
a shared value [x] = {xi}i, where party Pi has the share xi. We consider two
variants: Robust opening, where the value that is opened is guaranteed to be
correct, and a much more efficient non-robust—or “loose”—opening, where the
value that is opened may be incorrect. As we will see in subsequent sections, a
key optimization in this work lies in using loose openings for the majority of our
protocols in way which does not harm correctness or privacy.

Improving Communication Complexity The public reconstruction protocols ΠRec

and ΠLooseRec, as described in Fig. 1, have a communication complexity that is
quadratic in the number of parties as they require (almost) all parties sending
shares to all other parties. This can be improved to linear communication in n as
follows: For ΠLooseRec([x]), the t+ 1 parties P1, . . . , Pt+1 send their shares to P1,
who reconstructs x using these shares, and broadcasts this value to all parties.
The total communication is then t ring elements over point-to-point channels,
plus 1 ring element over the broadcast channel.

Unfortunately, this does not work for ΠRec since the king can lie about the
reconstructed value. To handle this, one can use the techniques from [DN07] to
obtain linear amortized complexity in n (for multiple simultaneous openings).
In a nutshell, this works by batching a sequence of secrets to be opened into
a vector, and encoding this vector using a linear error-correcting code. Then,
each secret in the codeword is opened by using the king idea from above with a
different king for each symbol, and then error correction/detection is applied to
the resulting opened codeword.



Reconstruction Protocols

ROBUST RECONSTRUCTION

ΠPrivRec([x] , i). Robustly reconstructs x towards party Pi. Each party Pj sends
its share xj to Pi, who invokes rec on the received shares and outputs what
rec outputs.

ΠRec([x]). Robustly reconstructs x towards all parties.
1. Parties call ΠPrivRec([x] , i) for all i ∈ {1, . . . , n}.
2. If Pi outputs ⊥ from its reconstruction above, then Pi aborts.

LOOSE RECONSTRUCTION

ΠLoosePrivRec([x] , i). Non-robustly reconstructs x towards party Pi. Each party
Pj for j = 1, . . . , t + 1 sends its share xj to Pi, who invokes rec on the
received shares and outputs whatever rec outputs.

ΠLooseRec([x]). Non-robustly reconstructs x towards all parties. Each party Pj
for j = 1, . . . , t+ 1 broadcasts its share xj . Each party invokes rec on the
received shares and outputs whatever rec outputs.

Fig. 1. Different reconstruction protocols we use in our work

2.5 Sampling Shares of Random Values

We assume two functionalities for sampling shared randomness.

– FRand: Produces a shared value [r] where r ∈R R.
– FCoin: Produces a value r ∈R R known to all parties.

FRand can be instantiated, for example, using the techniques outlined in
[DN07], which are based on Vandermonde matrices, although more efficient
instantiations of FRand exist for particular secret-sharing schemes like replicated
secret sharing cf. [ADEN19,CGH+18]. FCoin can be instantiated by calling FRand

to sample [r], followed by r ← rec([r]), but, like FRand, this functionality can be
instantiated more efficiently in certain cases.

2.6 Correct Multiplication

We assume a functionality FCorrectMult that takes as input two shared values [x] , [y],
and returns [x · y]. This functionality will be only used in the preprocessing.

In this work we consider a very efficient instantiation of FCorrectMult denoted
ΠCorrectMult that combines secure multiplication up to additive attacks, together
with a method to verify that a multiplication triple is correctly computed. We
outline this approach next.



Secure Multiplication up to Additive Attacks Consider a functionality
FMultAddAtt that takes as input two shared values [x] , [y], in addition to a value δ ∈
R from the adversary, and returns [x · y + δ]. As shown in [GIP+14,ADEN19,LN18],
this functionality can be instantiated by popular passively secure multiplication
protocols when set in the active setting, which are considerably more efficient
than a protocol that guarantees correctness under an active adversary. This
property has already been used as a first step in multiple works to obtain actively
secure multiplication [LN18,ADEN19,LN17], and in this work we also leverage
the same techniques.

Verifying Multiplication Triples The second ingredient needed to instantiate
FCorrectMult efficiently is a method to verify that the additive error introduced by
FMultAddAtt is 0. When R is a field, a simple and widely used approach involves
using the so-called sacrifice techniques [DKL+13], where the consistency of a
multiplication is checked by computing a random tuple ([a] , [b] , [c]) where c
is supposed to be equal to a · b, and “sacrificing” this tuple in some way to
check the consistency of the other. This approach requires opening one value per
multiplication being checked. This was later improved in [BFO12] by removing
this dependency when many multiplications are being checked, but it still requires
parties to compute one extra multiplication per multiplication being checked.

Very recently, this was overcome in the work of [GS20], which presents a
method to verify the validity of m multiplications with a communication cost of
O(κ · n+ n2). In particular, communication is independent of m.

Although the techniques introduced in [GS20] are presented in the context of
Shamir secret-sharing specifically, it is possible to check that these techniques
extend to any linear secret-sharing scheme over fields, and in particular those
considered in this work. The only requirement is the existence of a protocol
ΠDotAddAtt that takes as input two arrays of shared values ([xi])Li=1, ([yi])

L
i=1 and

outputs [z] =
[
δ +

∑L
i=1 xiyi

]
, with δ an error introduced by the adversary.

Finally, ΠDotAddAtt should have a communication complexity independent of L.
On the other hand, generalizing to rings like Z2k is not straightforward, as

the techniques in [GS20] rely heavily on polynomial interpolation and other
properties that—unlike the case for fields—do not directly hold over Z2k . In
Section 5 we discuss how to extend the check from [GS20] to Z2k in order to
provide a valid instantiation of FCorrectMult over this type of ring.

3 Optimizing the Online Phase

In this section we present our first protocol whose online phase is optimized so
that the parties only send, in total, 3

2 (n− 1) · k · log(p) bits per multiplication
gate. On top of being conceptually very simple, our optimization allows for a
communication pattern in which only t+ 1 parties are present for most of the
online phase, except that the remaining t parties must return for the output
phase. In Section 4 we present a protocol for which this is not required, that is,



only t+1 parties are required to run all of the online phase, including the output
phase.

We begin by presenting in Section 3.1 the secret sharing construction we will
use in our protocols. Then, in Section 3.2, we present an intuitive overview of our
protocol, and finally, in Section 3.3, we describe our protocol in detail, analyze
its complexity and discuss its security.

3.1 Masked Secret Sharing

Let [·] be a secret sharing scheme over R, as defined in Section 2.3. We define
the following LSSS over R that builds on top of [·].

– share〈·〉(x): Sample a random mask λx ∈ R, call share[·](λx) and append to
each share the value µx = x−λx. We denote this by 〈x〉 = ([λx] , µx = x−λx).

– rec〈·〉 ([λx] , µx): Call λx ← rec[·]([λx]) and if λx 6= ⊥ then output λx + µx,
else output ⊥.

It is easy to see that this new scheme is additively homomorphic. Indeed,
given 〈x〉 = ([λx] , µx) and 〈y〉 = ([λy] , µy) parties can compute shares of the
sum as 〈z〉 = ([λx + λy] , µx + µy).

3.2 General Overview

We begin by providing a high-level view of our protocol. To this end, it is
instructive to begin with a very simple and naive protocol that makes use of the
original LSSS [·], together with correct multiplication triples. We consider this
below in Section 3.2, and then discuss our optimizations in Section 3.2.

Naive Protocol As we mentioned in Section 2.3, a crucial property of honest
majority LSSS is that either the correct value is reconstructed or an abort signal
is generated. This property can be leveraged to obtain simple and efficient actively
MPC protocol as follows:



A Naive Protocol

Input phase. To share its input xi, Pi proceeds as follows:

1. In a preprocessing phase the parties generate consistent shares [ri]
where ri ∈ R is uniformly random and only known to Pi. Such
consistent shares can be generated efficiently as sketched in Section
2.5.

2. To share xi, Pi broadcasts the value xi − ri, and the parties compute
the shares [xi] = (xi− ri) + [ri]. If a proper broadcast channel is used,
the resulting shares are guaranteed to be consistent.

Addition gates. Addition gates are handled locally by using the linearity
property of the LSSS.

Multiplication gates. To multiply [x] and [y], the parties proceed as
follows:

1. In a preprocessing phase, sample random shares ([a] , [b] , [c]), where
c = a · b. Such triples can be generated as presented in Section 2.6,
for example.

2. In the online phase, the parties reconstruct d ← ΠRec([x] − [a]),
e← ΠRec([y]− [b]) (aborting if this is either reconstruction outputs
⊥), and locally compute [x · y] = d [b] + e [a] + [c] + d · e.

Output gates. If party Pi is intended to learn the value of [x], the parties
call ΠPrivRec([x] , i).

It is easy to see that this protocol satisfies security with abort. First, cor-
rectness holds given that addition gates are local and the formula used for the
multiplication gates satisfies

d · b+ e · a+ c+ d · e = x · y,

as can be verified. In regards to privacy, begin by observing that every shared value
throughout the computation is consistent. This is because consistent sharings are
assumed to be produced in the preprocessing, and a proper broadcast channel is
used in the input phase, which ensures this also extends to the input sharings
and also for subsequent wires in the circuit as these are computed using only
linear operations.

Finally, notice that due to the robustness properties of the LSSS and the
consistency of the sharings, the adversary cannot cheat in any opening without
causing an abort, so the only values opened are the d = x− a and e = y− b from
the multiplication gates, which leak nothing about the inputs x and y given that
a and b are uniformly random elements in R unknown to the adversary.

Remark 1. In the template above we pushed all the complexities of dealing with
the additive errors to the preprocessing, where the multiplication triples are



produced. This is good for the problem we have at hand, which is optimizing the
communication complexity in the online phase. However, a different approach
would be to deal with the additive errors in a “post-processing” phase, that is,
one may allow additive errors during the multiplications in the online phase
(for which one could either use potentially incorrect triples, or use the assumed
multiplication produce directly in the online phase, avoiding extra preprocessing),
and then perform some check that guarantees that these errors are zero.

This is what is done by many of the existing honest-majority protocols that
have been proposed in recent years. For example, this approach is taken in
[FLNW17], where cut-and-choose and triple sacrificing techniques are used to
ensure all multiplications are handled correctly. This approach is also considered
in [GS20], where, instead of using their novel triple verification techniques in the
preprocessing phase, as we do here, the authors use the check after the online
phase has been executed to check all multiplications are correct. [EKO+20] also
follows a similar “post-processing” approach.

Optimizing the Naive Protocol As remarked, the basic template presented
above can be (and has been) optimized in many different ways. However, in our
work we aim at optimizing the online phase as much as possible, which implies
that our preprocessing phase may be more inefficient than some of the existing
works. The two optimizations we incorporate to the basic template sketched
above are the following:

1. We use the secret-sharing scheme 〈·〉 instead of [·], and we handle multipli-
cation gates as described in Section 3.1 instead of using triples directly in
the online phase (correct triples must still be preprocessed, as described in
Section 3.1). This lowers the complexity of a multiplication gate from two
openings to only one opening.7

2. Instead of performing each opening robustly, the parties perform the openings
using ΠLooseRec, which is cheaper but may cause reconstructed values to be
incorrect. After all loose openings are done, but before the final output
gates, the correctness of these openings is checked by taking a random linear
combination of the opened values, and opening robustly the same linear
combination over the corresponding shares.8

The first optimization only has an effect on the amount of communication
in the online phase. However, the second optimization, on top of reducing the
overall amount of bits sent, contributes in a much more impactful way: By
using loose openings instead of robust openings, and by cleverly rearranging
the communication pattern, the online phase can be run by just the parties
7 This optimization was already introduced in [BNO19] in the context of the SPDZ
protocol.

8 This is similar to what is done in the SPDZ protocol [DKL+13], where values are
“partially opened” for each multiplication gate (that is, without using the MACs), and
only at the end of the computation these openings are checked by taking a random
linear combination.



P1, . . . , Pt+1, while the remaining parties Pt+2, . . . , Pn only have to come back
for the final check. Removing communication channels among the parties is likely
to have a much more noticeable impact in the efficiency than merely lowering
the communication complexity. Furthermore, as these servers do not participate
for the majority of the computation, this also frees up computing resources and
is more energy efficient.

We remark that, even though we described the masked secret-sharing con-
struction and the naive starting protocol over the arbitrary ring R, in our actual
protocol below the computation ring R is assumed to be a field (which we will
denote as F). We discuss in Section 5 how to extend our protocol so that it also
works over a ring of the form Z2k .

3.3 Main Protocol

With the above intuitive explanation of our protocol, we proceed to a more formal
description of our protocol shown in Fig. 2.

Remark 2. Observe that in the online phase the additions and multiplications can
be handled only by P1, . . . , Pt+1, by performing the openings only among these
parties. Hence, most of the online phase involves communication only among
P1, . . . , Pt+1, which in practical terms means that parties Pt+2, . . . , Pn can go
offline until the checking phase is reached. At this point, the offline parties must
rejoin the computation, receive the partially opened values from the other parties
and participate in the checking and output procedures. Having the ability to
shut down parties has many relevant effects in practice. For instance, it can help
in saving operational costs, as well as allowing parties to allocate resources more
effectively by, say, placing most of the computation on the more powerful servers.
Additionally, shutting down communication channels is particularly good in wide
area networks, where strong use of communication is heavily penalized.

It can be checked that

µxµy + µxλy + µyλx + λxλy − λz = x · y − λz,

which shows that the multiplication gates lead to correct 〈·〉-sharings of the
product of the inputs, and in particular shows that the protocol produces the right
output if all openings are done correctly. Furthermore, to see that the protocol
preserves privacy, observe that, before the checking phase, all intermediate values
remain private since the only openings done throughout the protocol are the
the values µx = x − λx, and since the masks λx are uniformly random and
secret-shared among the parties, µx looks uniformly random as well.

It only remains to be checked that openings are correct with high probability.
As in the protocol, let [η1] , . . . , [ηM ] be the shares that were loosely opened
to η′1, . . . , η′M during the computation phase. Write η′i = ηi + δi, that is, we
express the loosely opened value as the correct one plus an additive error from
the adversary. In the checking phase, parties open

η′ − η =

M∑
i=1

αi(η
′
i − ηi) =

M∑
i=1

αi(ηi + δi − ηi) =
M∑
i=1

αiδi,



Protocol ΠMPCLowOnline

OFFLINE PHASE

– For every wire in the circuit x the parties call [λx]← FRand.
– For every input gate x corresponding to a party Pi, the parties call
ΠPrivRec([λx] , i).

– For every multiplication gate with inputs x, y and output z, the parties call
[λxλy]← FCorrectMult([λx] , [λy]).

ONLINE PHASE

Input Gates. For every input gate x owned by party Pi, the parties do the
following:
1. Pi uses the broadcast channel to send µx = x− λx to all parties.
2. Upon receiving this value, the parties set 〈x〉 = ([λx] , µx)

Addition Gates. For every addition gate with inputs 〈x〉 = ([λx] , µx) and
〈y〉 = ([λy] , µy), the parties locally set 〈x+ y〉 = ([λx] + [λy] , µx + µy).

Multiplication Gates. For every multiplication gate with inputs 〈x〉 =
([λx] , µx) and 〈y〉 = ([λy] , µy), the parties proceed as follows:
1. Call µz ← ΠLooseRec (µxµy + µx [λy] + µy [λx] + [λxλy]− [λz])
2. Set 〈x · y〉 = ([λz] , µz).

Checking Phase. Before any output gate is reconstructed, the parties pro-
ceed as follows. Let [η1] , . . . , [ηM ] be the shares that were loosely opened
to η′1, . . . , η′M during the computation phase (these correspond to [µz] for
every wire z that is the output of a multiplication gate).
1. For i = 1, . . . ,M call αi ← FCoin.
2. Let [η] =

∑M
i=1 αi · [ηi] and η′ =

∑M
i=1 αi · η

′
i. The parties call z ←

ΠRec(η
′ − [η]). If z 6= 0 then the parties abort.

Output Gates. If the parties did not abort above, then for every output
gate 〈x〉 = ([λx] , µx) that is supposed to be learned by Pi, the parties call
ΠPrivRec([λx] , i), and if it succeeds then Pi outputs µx + λx.

Fig. 2. Our first protocol with low online communication. The algebraic structure used
for the computation is assumed to be a field F with |F| ≥ 2κ.



and check whether it is 0. Because each αi is sampled after the adversary intro-
duces the error δi (specifically, αi is sampled after the computation concludes),
the above sum is 0 with high probability if and only if δi = 0 for all i = 1, . . . ,M .

Communication Complexity. The offline phase of our protocol consists of sampling
the masks [λx] and preprocessing the triples ([λx] , [λy] , [λz]). This process overall
has a linear communication complexity with respect to the number of parties n.
For the online phase, which is of our particular interest, the total communication
per multiplication gate, ignoring the check phase and the calls to FCoin, amounts
to one call to ΠLooseRec which equals t+BC(1) ring elements. Using the broadcast
protocol with abort sketched in Section 2.2, this amounts to t+(n−1) = 3

2 (n−1).

4 Removing the Extra Parties from the Output Phase

As we discussed before, our protocol from Section 3 has the appealing feature
that most of the online phase can be run only by t+ 1 parties. More precisely,
the only part in which the extra t parties are required is in the preprocessing
and in the output phase. This not only helps in saving in communication, but it
allows these extra t parties to be turned off during the online phase. However,
it would be ideal if the online phase could be run in its entirety, including the
output phase, by t + 1 parties only. This would allow these extra t parties to
be switched off “for good” once the offline phase is finished, which can represent
noticeable savings in many practical scenarios, as for example, when parties run
in servers that are charged for usage time.

In this section we show that this is indeed possible without affecting the
communication complexity of the online phase. This is done at the expense of
having more communication in the offline phase, and slightly more computation
in the online phase. This comes at the expense of requiring the ring R to be a
field F, although we show in Section 5 how to overcome this limitation.

We begin by providing a general overview of our protocol in Section 4.1, and
then we describe our protocol in detail in Section 4.2, together with its complexity
analysis and security proof.

4.1 General Overview

The intuition behind our protocol is that, if 2t + 1 participates in the offline
phase, then it suffices—by being clever as to what kind of material is produced
during preprocessing—to only have t+ 1 parties participate in the online phase.

More precisely, consider the case of a field F, and let us revisit our protocol
from Section 3. Recall that the online phase can be run by t + 1 parties only
since, after the preprocessing is done, only openings are required during the
online phase. However, since the threshold of the secret sharing scheme is t, t+ 1
parties only do not provide enough redundancy, which allows an active adversary
to additively tamper these opened values. We solved this issue in our previous
protocol from Section 3 as follows. Let [η1] , . . . , [ηM ] the shares that were opened
to η′1, . . . , η′M .



1. The parties sample random public values α1, . . . , αM ∈ F. Let [η] =
∑M
i=1 αi [ηi]

and η′ =
∑M
i=1 αiη

′
i.

2. It suffices to check that [η] opens to η′, which is done by opening η′ − [η]
using all of the 2t+ 1 parties, which guarantees that this value is correct.

In the protocol we present in this section we replicate the same steps, except
that we do not want to involve the extra t parties to open [η] robustly. As
mentioned above, t+ 1 parties alone cannot open [η] robustly, and so we resort
to a technique from the dishonest majority MPC literature: Instead of sharing a
value v ∈ F as [v], it is shared as ([v] , [r · v]), where r ∈ F is a global (i.e. it is
the same for all shared values) random key that is also shared as [r]. This “new”
sharing scheme is easily verified to be linear and therefore its invariant can be
kept throughout the whole computation.

The fact that [r] is hidden, and that the sharing ([v] , [r · v]) is linear, can
be used to ensure correctness, provided errors inserted by the adversary during
the check are independent of the honest parties shares. In order to enforce
this, we take a “commit-and-open” approach. In more detail, to open a value
[v], each Pi first commits to their share v(i) of v using an ideal commitment
functionality FCommit, after which they call ΠLooseRec where the received share
is checked against the committed value. While this still permits the adversary
to reveal the wrong value, the error that is induced is nevertheless going to be
independent of the honest parties shares. Note that this commit-and-open is only
needed in the checking and output phase of the protocol; during computation,
invoking ΠLooseRec suffices.

Using this technique, once the M values [η1] , . . . , [ηM ] have been opened to
η1 + δ1, . . . , ηM + δm by the t+ 1 parties running the online phase, these parties
can also check the correctness of these openings without involving the other t
parties by using the extra sharings [r · η1] , . . . , [r · ηM ] , [r] as follows:

1. Like in our protocol from Section 3, begin by sampling random public values
α1, . . . , αM . Let [r · η] =

∑M
i=1 αi [r · ηi] and η′ =

∑M
i=1 αi(ηi + δi). Also, let

[β] = [r · η]− η′ · [r].
2. The parties loosely open β + ε← [β] and abort if this is not equal to 0.

It is easy to see that the check passes if and only if r ·
(∑M

i=1 αiδi

)
= ε, which

happens with probability at most 1/|F| if there is at least one δi that is non-
zero.9 This idea is already widely used in other dishonest-majority protocols like
[KOS16,DKL+13,KPR18,BCS19,CDE+18], but, to the best of our knowledge,
our work is the first to make use of this technique in the honest-majority setting
with the goal of reducing the amount of parties needed for robust opening.10

9 For simplicity we assume that |F| is big enough so that 1/|F| is negligible. The general
case is easily handled by iterating the current construction with multiple r’s.

10 [CGH+18] also uses this idea, but in a different way and with a different goal. In
[CGH+18], the MACs are used not to ensure correct openings, since a complete
honest majority is used for reconstruction, but to disallow additive attacks after
multiplications.



Observe that the communication complexity of the online phase of this new
approach is essentially the same as the one from the protocol in Section 3, given
that the online phase is comprised mostly of loose openings. However, the offline
phase of this new approach is more expensive since, on top of generating the
necessary multiplication triples, it also generates the necessary MACs, which
essentially doubles the required amount of preprocessed material.

We present the protocol in full detail in the next section.

4.2 Main Protocol

We present our optimized protocol in full detail in Fig. 3.
As we mentioned already, this protocol can be seen as an adaptation of

[BNO19] to the honest majority setting, where a dishonest majority is used for
the online phase. Its security follows directly from the security of [BNO19], which
essentially boils down to the following two observations. First, privacy is preserved
throughout the protocol execution because of the same reason as in ΠMPCLowOnline

(only masked values µx are ever opened). Secondly, in the checking phase the
sharing [β] is opened to β + ε. It is easy to see that β + ε is equal to 0 if and only
if r ·

∑M
i=1 αiδi = ε and that this happens with low probability if there is some

δi 6= 0. Indeed, in this case we have
∑M
i=1 αiδi 6= 0 with overwhelming probability,

which in turn implies that r = ε ·
(∑M

i=1 αiδi

)−1
. However, this cannot be the

case except this negligible probability as it implies the adversary could compute
r before it was opened; an impossible task considering r is a uniform random
value. A similar argument holds for the check done in the output phase.

Communication Complexity. Our protocol communicates a linear number of field
elements (in n) in the offline phase, as in protocol ΠMPCLowOnline. For the online
phase, ignoring the final checking phase, the protocol requires t + BC(1) field
elements communicated per multiplication gate. Since the broadcast involves
only the parties P1, . . . , Pt+1, we have that BC(1) = t, so the communication per
multiplication gate is of t+ t = n− 1 field elements.

5 Extension to Rings

In some natural scenarios, one would like to perform computation over Z2k

rather than F. Arithmetic modulo 232 and 264 is supported implemented native
in hardware (as it corresponds to operating with fixed width integers) and is
thus very efficient. Moreover, some important primitives like secure truncation
and secure comparison are more efficient when instantiated over rings, as has
been verified experimentally in works like [DEK20,DEF+19]. As such, the task
of extending our protocols from a field F to a ring of the form Z2k is a well
motivated one, and this is an issue we address in this section.

To begin, we identify the parts that break in each of our two protocols when
ported from F to Z2k . We start with our protocol from Fig. 2 in Section 3. The



Protocol ΠMPCLowChannels

OFFLINE PHASE

– The parties call [r]← FRand.
– For every wire in the circuit x the parties call [λx]← FRand.
– For every input gate x corresponding to a party Pi, the parties call
ΠPrivRec([λx] , i).

– For every multiplication gate with inputs x, y and output z, the parties call
[λxλy]← FCorrectMult([λx] , [λy]).

– For every wire in the circuit x the parties call [rλx]← FCorrectMult([r] , [λx]).
For every multiplication gate with inputs x and y, the parties call [rλxλy]←
FCorrectMult([r] , [λxλy])

ONLINE PHASE

Input Gates. For every input gate x owned by party Pi, the parties do the
following:
1. Pi uses the broadcast channel to send µx = x− λx to all parties.
2. Upon receiving this value, the parties set 〈x〉 = ([λx] , µx)

Only the parties P1, . . . , Pt+1 participate in what follows.
Addition Gates. For every addition gate with inputs 〈x〉 = ([λx] , µx) and
〈y〉 = ([λy] , µy), the parties locally set 〈x+ y〉 = ([λx] + [λy] , µx + µy).

Multiplication Gates. For every multiplication gate with inputs 〈x〉 =
([λx] , µx) and 〈y〉 = ([λy] , µy), the parties proceed as follows:
1. Call µz ← ΠLooseRec (µxµy + µx [λy] + µy [λx] + [λxλy]− [λz])
2. Set 〈x · y〉 = ([λz] , µz).

Checking Phase. Before any output gate is reconstructed, the parties pro-
ceed as follows. Let [η1] , . . . , [ηM ] be the shares that were loosely opened
to η′1, . . . , η′M during the computation phase (these correspond to [µz] for
every wire z that is the output of a multiplication gate). Notice that the
parties also have shares [r · ηi] for every i = 1, . . . ,M .
1. For i = 1, . . . ,M call αi ← FCoin.
2. Let [r · η] =

∑M
i=1 αi [r · ηi], η

′ =
∑M
i=1 αiη

′
i and [β] = [r · η]− η′ · [r].

3. Each Pi commits to their share β(i) of β using FCommit.
4. Finally, parties open and check the commitments, compute β = rec([β])

and abort if β 6= 0.
Output Gates. If no honest party aborted above, the parties P1, . . . , Pt+1

proceed as follows to open the final output gate x.
1. Parties commit-and-open [λx] for all output wires x.a

2. Let [ρ] = [rλx]− λ′
x [r]. The parties commit-and-open their share of [ρ]

to the other parties, and abort if ρ 6= 0.
3. If the procedure above does not abort, the parties output µx + λ′

x.

a Since parties Pt+2, . . . , Pn disconnected, they would not be receiving output.
If they were supposed to receive output, they could return to this final phase.
The difference with respect to our protocol from Section 3 is that, in this
case, these returning parties do not need to participate in the protocol, they
only need to receive the shares from the other parties.

Fig. 3. Our second protocol with minimal online complexity. In this protocol, the online
phase can be run by only t+ 1 parties, unlike the protocol from Fig. 2. This protocol
requires the underlying algebraic structure to be a large enough field F.



first issue lies in the instantiation of the FCorrectMult functionality discussed in
Section 2.6. Recall that this functionality is in charge of producing shares of a
product, given shares of the inputs, that is, [x · y] from [x] and [y]. In Section 2.6
we described a general two-step recipe to instantiate such a functionality: (1)
perform the multiplication of [x] and [y] using a protocol for secure multiplication
up to additive attacks to get [x · y + δ], and (2) check that δ = 0 (or, in other
words, that the multiplication was done correctly).

In our instantiation over Z2k we will assume that the base secret-sharing
scheme [·] admits a protocol for multiplication up to additive attacks. (This is
the case for practical instantiations like Shamir and replicated secret-sharing.
See [ADEN19] for concrete constructions and proofs.) With this in hand, the
remaining issue becomes checking the correctness the multiplications. Over fields,
we discussed in Section 2.6 that this could be handled by using the techniques
over fields from [GS20] which, although described in the context of Shamir secret-
sharing, can be easily shown to be extendable to any secret-sharing scheme over
fields. Extending this check to the Z2k setting is not trivial and will be the topic
of Section 5.1.

The second issue when porting our first protocol from F to Z2k lies in the
check performed at the end that involves taking a random linear combination of
the opened values and contrasting it with the corresponding shares. As we showed
in Section 3.3, successfully cheating in this check amounts to finding δ1, . . . , δM ,
not all zero, and ε, such that

∑M
i=1 αiδi = ε for some random α1, . . . , αM . When

working over a field F, δi 6= 0 translates into δi being invertible, which allows
us to rewrite the equation above as αi = δ−1i ·

(
ε−

∑
j 6=i αjδj

)
. As argued, this

holds with probability 1/|F| given that αi ∈ F is uniformly random.
Unfortunately, this argument above not hold over Z2k as δi 6= 0 does not

imply that δi is invertible (recall that only odd numbers are invertible modulo
2k). In fact, the equation

∑M
i=1 αiδi = ε can be satisfied with high probability

(1/2) by choosing δ1 = 2k−1, δi = 0 for i > 1 and ε = 0, as it only requires α1

to be even in order to hold (observe that δ1α1 = 2k−1(2m) = 2km which is 0
modulo 2k, regardless of m). We deal with this issue in Section 5.2.

Finally, our second protocol from Fig. 3 in Section 4, that requires only t+ 1
parties need to stay in the online phase, makes use of MACs in order to enable to
computation to take place among t+ 1 parties. To add a MAC on a shared value
[x], we let the parties have shares [r · x] and [r] for some global and random r. As
we argued in Section 4.2, successfully forging a MAC is equivalent to satisfying
an equation similar to the one described above, and the same issues as before,
over Z2k , appear. A MAC scheme for secure computation over Z2k was presented
in [CDE+18], so for this particular part of our protocol we can directly use the
MAC scheme defined in that work, which we refer the readers to for more details.

5.1 Checking Multiplications over Z2k

Suppose a set of multiplication triples {([ai] , [bi] , [ci])}Mi=1 have been produced,
with ci = ai · bi + δi, and where δi ∈ Z2k is an additive error introduced by the



adversary. Our task is to check that δi = 0 for all i = 1, . . . ,M . As discussed
in Section 2.6, the most efficient method to perform this check over fields is
presented in [GS20]. However, this check can be roughly seen as a “recursive”
refinement of the check from [BFO12], which is the one we will focus on extending
to Z2k in this section.

Checking Triples over F First we recall the check from [BFO12] over F. The
protocol requires |F| ≥ 2M − 1. Also, we assume that one of the triples included
in the check is random and will not be used.

1. Find λ1, . . . , λ2M−1 ∈ F such that λi − λj is invertible (i.e. non-zero) for any
i 6= j. Such a sequence exists since |F| ≥ 2M − 1.

2. Let f(X) and g(X) be polynomials over F of degree at most M − 1 such
that f(λi) = ai and g(λi) = bi for i = 1, . . . ,M , and let aj := f(λj) and
bj := g(λj) for j = M + 1, . . . , 2M − 1. The parties compute [aj ] and [bj ]
for j = M + 1, . . . , 2M − 1, which can be done locally from [ai] , [bi] for
i = 1, . . . ,M − 1 using Lagrange coefficients.

3. Use a multiplication protocol that is secure up to additive attacks to compute
[cj = aj · bj + δj ] for j =M + 1, . . . , 2M − 1.

4. The parties call FRand to obtain [r].
5. Let h(X) be the polynomial of degree at most 2M − 2 such that h(λi) = ci

for i = 1, . . . , 2M − 1. The parties compute [h(r)] locally from {[ci]}2M−1i=1

using Lagrange coefficients.
6. The parties compute [f(r)] locally from {[ai]}Mi=1, and [g(r)] locally from
{[bi]}Mi=1, using Lagrange coefficients.

7. The parties open f(r), g(r) and h(r), and check that h(r) = f(r)g(r).

First we notice that opening the shares in the final step does not undermine
privacy given that these shares are a linear combination of the original triples,
and there is one of these that is random and is not opened. Now, we argue that
the protocol checks correctly that δi = 0, for i = 1, . . . ,M . Indeed, if there is
some δi that is not zero, then h(X) 6= f(X)g(X) as polynomials and in particular,
h(r) 6= f(r)g(r) except with probability (2M − 2)/|F|.

Extending the check to Z2k The check described above does not work over Z2k

for multiple reasons. First, it is not possible to interpolate a polynomial of the
required degree. Second, even if this was possible, it does not hold anymore that,
for two polynomials that are not equal to each other, the probability that the
evaluation at a random point yields the same results is small, which was crucial
for our argument above.

We solve these problems by using Galois ring extensions, as in [ACD+19].
Let φ(X) be a monic polynomial over Z2k of degree d, such that its reduction
modulo 2 is irreducible over F2. Consider the quotient ring R = Z2k [X]/(φ(X)),
which is called a Galois ring of degree d. These rings can be consider to be the
analogue of field extensions, and elements in R can be seen as polynomials of
degree strictly less than d. We can embed elements of Z2k into R by seeing them



as polynomials of degree 0. The main property of these rings is the following,
which is proven in [ACD+19]

Theorem 1. If pd > N , then there exist λ1, . . . , λN such that, for every sequence
(α1, . . . , αN ) ∈ RN , there exist a unique polynomial f(X) over R of degree at
most N − 1 such that f(λi) = αi for all i = 1, . . . , N

In the same work, the following is proved:

Theorem 2 (Lemma 2 in [ACD+19]). Let f(X) be a polynomial over R of
degree ` > 0. Then, the probability that f(r) = 0 for a uniformly random r ∈ R,
is upper bounded by `/pd.

With these two facts at hand, we are ready to extend the protocol for checking
multiplication triples from F to Z2k . This is done as follows. Let R be a Galois
ring extension of degree d > log2(2M − 1). First, observe that one can extend
the secret sharing scheme [·], which is defined over Z2k , to R by simply secret-
sharing each of the coefficients of a given polynomial in R. Also, we can multiply
shared elements of R (with security up to additive attacks) by making use of
the underlying multiplication over Z2k . Given this, it is easy to see that the
protocol presented over fields also works over Z2k if the parties interpret the
shared triples as sharings of constant polynomials over R: The necessary sequence
λ1, . . . , λ2M−1 ∈ R for interpolation exists, which follows from Theorem 1 and
the fact that 2d > 2M − 1, and the final check h(r) ?

= f(r)g(r) is sound, from
Theorem 2.11

5.2 Random Linear Combinations over Z2k

In this context, a set of shared values [η1] , . . . , [ηM ] have been opened to
η′1, . . . , η

′
M , and the parties would like to check that ηi = η′i for all i = 1, . . . ,M .

To achieve this over Z2k we make use of a Galois ring extension R of degree κ,
as follows. Assume for simplicity that κ divides M , say M = κ · `. Intuitively,
our method consists of “packing” the elements of Z2k into elements of R, and
performing the same check we did over F, but over R. This is described in detail
below.

11 Here we would take d such that (2M − 1)/2d is negligibly small. If one wants to keep
the weaker requirement d > log2(2M − 1) only, one can make use of the packing
techniques presented in [ACD+19].



Checking correctness of openings over Z2k

1. For j = 1, . . . , `, the parties define the following shared polynomial
φj ∈ R and the following public polynomial φ′j ∈ R:

[φj ] =
[
η1+(j−1)·κ

]
+X

[
η2+(j−1)·κ

]
+ · · ·+Xκ−1 [ηκ+(j−1)·κ

]
,

φ′j = η′1+(j−1)·κ +X · η′2+(j−1)·κ + · · ·+Xκ−1 · η′κ+(j−1)·κ.

2. The parties call FCoin to sample α1, . . . , α` ∈R R.
3. The parties compute locally [φ] =

∑`
j=1 αj · [φj ] and φ′ =

∑`
j=1 αj ·φ′j .

4. The parties call z ← rec(φ′ − [φ]). If z 6= 0 then the parties abort.

Security follows a similar argument as the one provided in Section 3.3, mixed
with the properties of Galois rings. More precisely, suppose that η′i = ηi + δi,
where the adversary knows δ′i ∈ Z2k . It is easy to see that this allows us to write,
φ′j = φj + εj , for j = 1, . . . , `, and where εj ∈ R is known by the adversary. With
this notation, one can verify that the check holds if and only if

∑`
j=1 αj · εj = 0:

Suppose that some δi0 is not zero. This implies some εj0 not being zero, and
so the equality above, once we fix αj and δj for j 6= j0, can be seen as a the
evaluation of a polynomial of degree 1 over R producing 0 when evaluated at a
random point αj0 ∈ R. From Theorem 2, this can happen with probability at
most 1/2κ.

6 A Unified View of Other Works

So far we have presented two honest-majority protocols with abort, ΠMPCLowOnline

and ΠMPCLowChannels, that aim at simplifying and improving the online phase
specifically. These protocols are conceptually very simple and general, and their
main building blocks, namely the masked secret-sharing scheme from Section 3.1
and the MACs from Section 4, were already present in previous works.

Nevertheless, the main potential of our protocols, specially the one from
Section 3, is that it provides a general paradigm for protocols with efficient online
phase, and it enables a unified view of the design behind some other protocols in
the literature. Here we review some of the protocols that fall within our design.
However, we need to describe first replicated secret-sharing for the three-party
case.

Replicated Secret Sharing Consider n = 3. To secret-share a value x ∈ F among 3
parties P1, P2, P3 using replicated secret-sharing, the dealer samples r1, r2, r3 ∈R
F subject to x = r1 + r2 + r3, and sends (ri, ri+1) to Pi, where the sub-indexes
wrap modulo 3. The necessary building blocks for this scheme, like multiplication
protocols that are secure up to additive attacks, can be found for example in
[CGH+18]. Our protocol from Section 3 has a communication complexity in the
online phase per multiplication gate of 1.5(3− 1) = 3 elements, which amounts
to an average 1 element per party.



6.1 Trident

Trident [CRS20] is a four-party protocol over Z2k that tolerates one active
corruption. Three types of sharings are defined in [CRS20]:

1. ([·] in [CRS20]) A value v ∈ Z2k is shared among P1, P2, P3 by sending
v1 ∈R Z2k to P1, v2 ∈R Z2k to P2 and v3 = v − v1 − v2 to P3.

2. (〈·〉 in [CRS20]) A value v ∈ Z2k is shared among P1, P2, P3 by sampling
v1, v2 ∈R Z2k , setting v3 = v− v1 − v2, and sending (v2, v3) to P1, (v1, v3) to
P2 and (v1, v2) to P3.

3. (J·K in [CRS20]) A value v ∈ Z2k is shared among P0, P1, P2, P3 if
– There is a random λv ∈R Z2k shared among P1, P2, P3 according to the

scheme from item 2 above.
– P0 knows all these shares.
– P1, P2, P3 all know the value mv = v + λv.

sampling v1, v2 ∈R Z2k , setting v3 = v − v1 − v2, and sending (v2, v3) to P1,
(v1, v3) to P2 and (v1, v2) to P3.

For the purpose of this section we will denote the first two secret-sharing
schemes by [·]1 and [·]2, respectively. Note that these are simply additive secret
sharing and replicated secret sharing. Our main observation is that the third
secret sharing scheme above corresponds (up to some difference in signs) to our
secret sharing scheme from Section 3.1 using replicated secret sharing [·]1 among
P1, P2, P3 as the base sharing, with the additional property that the “extra party”
P0 knows the replicated shares of the mask.

It is now not hard to verify that the multiplication protocol from [CRS20]
(Protocol ΠMult in [CRS20]) corresponds—quite literally—to our protocol from
Section 3 without the loose opening optimization (that is, parties P1, P2, P3 open
values robustly leveraging the redundancy of replicated secret sharing). The only
difference lies in the preprocessing of the mask triples ([λx]2 , [λy]2 , [λxλy]2): Our
protocol from Section 3 uses generic honest-majority correct triple generation
methods since we only have three parties, but in [CRS20] the existence of an
extra party P0 is leveraged in order to make the preprocessing more efficient. In
a bit more detail, the preprocessing in [CRS20] proceeds as follows:

1. The parties sample shares [λx]2 , [λy]2, where P0 knows all these shares.
2. Parties P1, P2, P3 run the passive multiplication protocol from [AFL+16] to

multiply these shares. In this protocol P1 sends one ring element to P3, P2

sends one ring element to P1, and P3 sends one ring element to P2. However,
active corruption may cause an additive attach in the output, which renders
the resulting product incorrect. To make sure that each party sends the
correct value, [CRS20] makes use of the fact that P0 knows all these shares,
so P0 also sends the corresponding messages12 alongside P1, P2 and P3.

Remark 3. The idea of having extra parties helping in the preprocessing can be
generalized to more than 4 parties using Shamir secret-sharing with threshold t.
12 In fact, hashes of these suffice.



This is done as follows: Consider our protocol from Section 3. The protocol is
intended to be run by 2t+1 parties, which requires some multiplication triples to
be preprocessed. As we have seen already, most of the complexities arise from the
fact that preprocessing these triples in an honest-majority setting is not simple,
given that an active adversary may cause triples to be incorrect, which must
be checked. However, if there are t extra parties to assist in this preprocessing
(without modifying the adversary threshold, that is, at most t parties out of
the new 3t + 1 parties are corrupt), we can apply very efficient protocols to
preprocess correct triples, like [DN07,BTH08]. To see why this would be much
simpler, observe that the security bottleneck in these protocols is when the parties
need to open degree-2t sharings, but with 3t+1 parties this can be done robustly.
With 2t+ 1 parties these openings may lead to additive attacks on the output,
which requires an extra phase to check the triples.

6.2 ASTRA

This protocol, proposed by Chaudhari et al. [CCPS19], is set in the 3-party
setting with active security over the ring Z2k . The protocol from [CCPS19]
achieves a communication complexity of 4 elements per multiplication in the
online phase, whereas our protocol instantiated with replicated secret-sharing
achieves a communication complexity of 3 elements in the online phase.

Although it is not obvious at first glance due to the presentation in [CCPS19],
the ASTRA protocol is closely related to ours. We begin by reviewing their
protocol for passive security.

Passive Security The ASTRA protocol defines new types of sharings:

1. ([·] in [CCPS19]) The dealer shares v among P1, P2 by sending v1 to P1 and
v2 = v − v1 to P2, where v1 ∈ Z2k is uniformly random.

2. (J·K in [CCPS19]) The dealer shares v among P0, P1, P2 by sampling λv, λv,1 ∈R
Z2k and sending (λv,1, λv,2 = λv − λv,1) to P0, (mv = v+ λv, λv,1) to P1 and
(mv, λv,2) to P2.

For the purpose of this write-up, we denote these secret-sharing schemes by
[·]1 and [·]2. There are two ways in which the secret-sharing scheme [·]2 can be
interpreted. First, it can be seen as parties P1, P2 having additive shares [·]1
of a mask [λv]1, together with the masked value mv = v + λv, with party P0

knowing the shares of λv. This can be interpreted (up to changes in the sign)
as our masked secret-sharing scheme from Section 3.1 applied to additive secret
sharing among P1, P2, with the additional property that P0 knows the shares of
the masks. This is analogous of what we saw in Trident in Section 6.1. Abusing
notation slightly, we denote this as [v]2 = ([λv]1 , v + λv), which resembles the
notation from Section 3.1, except that there is an extra party, P0, who knows
the shares of λv.

A second interpretation is that, although not observed in [CCPS19], the
scheme [·]2 is just a simple variant of replicated secret-sharing in which some of



the signs are flipped, which can be seen from the fact that v = mv − λv,1 − λv,2,
and the fact that each party has two of these summands. This is an interesting
observation on its own: Three-party replicated secret-sharing is equivalent to
our masked secret sharing from Section 3.1 between two parties, where the third
party knows the shares of the mask.

With these interpretations it is easy to see how passive multiplication is
handled in [CCPS19] (protocol Πs

Mul in [CCPS19]): Their protocol follows the
template of our protocol from Section 3.3, that is, parties P1, P2 preprocess [λxλy]1
(in fact, P0 preprocesses these for them) and they reconstruct an appropriate linear
combination of the shared values. More precisely, using the notation in [CCPS19],
parties P1, P2 reconstruct mz = mxmy −mx [λy]1 −my [λx]1 + [λz]1 + [λxλy]1,
which is, up to changes in the sign, what is done in Section 3.3.

We conclude that, for passive security, ASTRA can be regarded as a simple
variant of our protocol from Section 3.3 applied to the 2-party setting where
another party knows the shared mask and also helps with the preprocessing.

Active Security The protocol above suffers from two major attack vectors
in the active setting: A corrupt P0 may generate the preprocessing incorrectly,
or a corrupt P1 or P2 may lie in the reconstruction of [mz]1. The following
expose describes how [CCPS19] handles these issues, and also serves to establish
a relation with our methods.

To handle corruption in the multiplication protocol, the authors in [CCPS19]
add several steps to the basic semi-honest protocol (this is presented in protocol
Πm

Mul in [CCPS19]). We present these steps below, trying to maintain their
notation but also establishing their relation with our more general protocol from
Section 3.

1. P1 and P2 sample common shares δx, δy, δz and define [δx − λx]2 = ([λx]1 , δx)
and [δy − λy]2 = ([λy]1 , δy)

2. The parties compute [c]2 = ([χ]1 , c+χ) where c = ab, a = δx−λx, b = δy−λy
and χ is uniformly random. The parties do this as in our protocol from
Section 3.3: P1 and P2 first locally compute [c+ χ]1 = δxδy − δx [λy]1 −
δy [λx]1 + [λxλy]1 + [χ]1, they send these shares to each other to reconstruct
c+ χ. They also send the shares of [χ]1 to P0 to preserve the invariant. Let
δz = (c+ χ) + δxδy. Since χ is uniformly random, but the parties P1 and P2

ultimately learn c+ χ, it is equivalent if we P1 and P2 sample δz and define
[χ]1 := δz − δxδy − [c]1. This is what is actually done in [CCPS19]. This has
the advantage that they do not need to communicate to obtain c+ χ.

3. The parties may have cheated when sending the shares above, but this can be
ruled out by verifying that ([a]2 , [b]2 , [c]2) is a correct multiplication triple.
This is done by sampling another correct random triple and performing a
sacrifice step.

4. In the online phase the parties P1 and P2 opened mz = x · y + λz as per the
passive protocol from the previous section, but due to cheating this value may



be incorrect. P1 and P2 send m?
x = mx+δx and m?

y = my+δy to P0,13 which
leads to masked shares 〈x〉 = ([a]2 ,m

?
x = x+ a) and 〈y〉 = ([b]2 ,m

?
y = y+ b),

reusing the notation from our masked secret-sharing scheme from Section 3.1,
with minor changes in the signs.

5. The parties compute locally [xy + λz −mz]2 = m?
xm

?
y −m?

x [b]2 −m?
y [a]2 +

[c]2+[λz]2−mz, and they check that this shared value is equal to 0 as follows:
Let α1, α2 be the shares held by P0, and let β, αi be the shares held by Pi
for i = 1, 2. These are supposed to be shares of 0, so they should satisfy
β = α1 + α2. P0 sends a hash of α1 + α2, and P1 and P2 check that the hash
of β is the same as the one received from P0.14 The parties abort if this is
not the case.

We see then that, to compute an actively secure multiplication in ASTRA,
the parties begin by performing the passive multiplication. However, it must be
checked that the value mz = xy+λz was opened correctly. To do this, the parties
first obtain replicated shares [xy]2 and then compute [α]2 = [xy]2 + [λz]2 −mz.
The goal now is to check that α = 0, but this can be done very efficiently since
replicated secret sharing is a particular instance of honest-majority secret sharing,
which has enough redundancy.

The major complexity in [CCPS19] lies in computing [xy]2. This is done by
first computing masked shares 〈x〉 = ([a]2 ,m

?
x) and 〈y〉 = ([b]2 ,m

?
y) and using

what can be regarded as our multiplication protocol from Section 3.3 (which as
we stressed was already present in [BNO19]) in order to compute [xy]2 efficiently.
This requires to preprocess a correct random triple ([a] , [b] , [c]), which, as we
showed above, is produced in [CCPS19] by cleverly exploiting the correlations
that the parties already have from [λx]1 , [λy]1 , [λxλy]1.

Comparison to our protocol. Now that we have described ASTRA’s multiplication
protocol in a setting that is as close to ours as possible, we can easily compare
our work with theirs.

Both of these works make use of the masked secret sharing scheme from
Section 3.1 in some form: ASTRA uses it on top of additive secret sharing
among P1 and P2, using P0 as a helper, in a similar way as done in Trident (see
Section 6.1). Ours uses it on top of replicated secret sharing among the three
parties.

To ensure active security, both protocols must ensure that the opening of
certain shared value on the base secret-sharing scheme is done correctly. In our
work the base secret-sharing scheme is replicated secret-sharing, so we could
simply make use of the redundancy of the scheme, but instead we do this in a
more efficient way by open non-robustly using only two parties and verifying
correctness at the end of the protocol. In ASTRA, however, the base secret-sharing
scheme is additive secret sharing, which is not robust by default. To overcome
13 Actually, only P1 needs to send the actual values. The other party P2 can send hashes

of these and P0 verifies that these match.
14 The checks for all multiplication gates can be concatenated so that only one hash is

sent at the end of the protocol.



this issue, like in our protocol, replicated shares of the value to be opened are
computed, but instead of opening these directly (which would undermine the
whole idea of using additive secret sharing), the parties exploit the fact that the
(potentially incorrect) value was already opened, and that checking equality to 0
with replicated secret sharing is much cheaper than directly opening the value.

We see then that both protocols use similar building blocks and have a similar
design: Open cheaply but non-robustly and then check at the final stage that
these openings were correct, using communication which is independent of the
amount of openings being checked. Both protocols have a communication pattern
in which only two parties need to be online most of the time. However, our
protocol uses a smaller amount of communication overall.

6.3 BLAZE

After unfolding the ASTRA protocol in the previous section, it is very easy to
understand the BLAZE protocol from [PS20], as these are closely related. To keep
the presentation here as concise as possible we will not introduce any additional
notation.

In the ASTRA protocol as sketched above, P1 and P2 must sendm?
x = mx+δx

and m?
y = my + δy in step 4 to P1 so that the masked shares 〈x〉 = ([a]2 ,m

?
x =

x+ a) and 〈y〉 = ([b]2 ,m
?
y = y + b) can be obtained. The main observation in

[PS20] is that the values m?
x and m?

y (denoted by β?x and β?y in [PS20]) could
have been already sent to P0 in the gates having x and y as output wires. Hence,
when processing the multiplication gate with inputs x and y, m?

z is sent to P0.
This lowers the communication of the consistency check by half since instead of
sending two values to P0, namely m?

x and m?
y, only one value m?

z must be sent.

7 Security Proofs

We consider a standard ideal functionality for secure function evaluation of a
function f . This functionality, denoted FfSFE, is shown below.

FfSFE

Let n be the number of parties, f : Rn → R the function to be computed,
and S the ideal world adversary.
Init: Initialize a set I as ∅ as well as z = ⊥.
Input: On (input, Pi, xi) from Pi and if (i, ·) 6∈ I, set I ← I ∪ {(i, xi)}.
Eval: On (eval) from S and if (i, ·) ∈ I for all i = 1, . . . , n; Compute and
set z = f(xi, . . . , xn) and give z to S.
Output: On (output, a) from S and if z 6= ⊥. If a = 1, output ⊥ to all
parties and halt. Otherwise output z to all parties and halt.

For simplicity this functionality only considers functions of arity n and with 1
output. Extending FfSFE to handle functions of different arity or with more than



one output is a straightforward extension and is therefore left out for the sake of
simplifying the below proofs.

7.1 Security of ΠMPCLowOnline

Theorem 3. Protocol ΠMPCLowOnline securely realizes FfSFE for any f : Fn →
F against a static malicious adversary corrupting t = (n − 1)/2 parties in a
(FRand,FCorrectMult,FCoin)-hybrid model, unless with probability 1/|F|.

Proof. Let A be the real world adversary and Z the environment. Let C denote
the set of corrupted parties and H its complement. The ideal adversary S has
control over the t = (n − 1)/2 parties in C that Z corrupts in the ideal world
and emulates the remaining t+ 1 = (n− 1)/2 + 1 honest parties. The simulator
S in addition emulates all calls to FRand, FCorrectMult and FCoin.

If at any point during the simulated run of ΠMPCLowOnline an abort happens,
the simulator invokes (input, Pi, 0) on FfSFE for all Pi ∈ C, followed by (eval)
and finally (output, 1), after which S halts. When we say that the simulator
aborts, it is implied that it first takes these actions before stopping.

Moving on, the simulator performs the following actions when simulating the
execution of ΠMPCLowOnline:

1. Offline phase.
– For every wire on the circuit, emulate the calls to FRand by sampling λx

and secret-sharing these.
– For every input gate x corresponding to a corrupt party emulate the

reconstruction of [λx] to this party.
– For multiplication gates with wires u and v, the simulator receives shares

[λv]
C and [λu]

C from the corrupt parties. Then, S emulates FCorrectMult

by checking if these are the same shares than the ones S sent above. If
not, then S aborts. Else, S computes λw = λvλu, and distributes [λw].

2. Input phase.
– For a wire v owned by an honest party, the simulator samples a uniformly

random µx and broadcasts this value to all parties.
– For a wire v owned by a corrupt party Pi, the simulator waits to receive
µv after which it computes xi = µv + λv. Finally, the simulator invokes
(input, Pi, xi) on FfSFE.

3. Computation phase.
– When all parties have given their input (and in particular, when S have

extracted all the inputs of corrupt parties), the simulator invokes (eval)
on FfSFE. Let z denote the output.

– The simulator now runs the computation phase as in ΠMPCLowOnline:
Addition gates require no interaction, and for multiplication gates, S
runs ΠLooseRec as in the real execution.

4. Checking phase. Let [η1] , . . . , [ηM ] be shares of values that were loosely
opened to η′1, . . . , η′M during the computation phase.
– S distributes αi for i = 1, . . . ,M to all parties, as part of the emulation

of FCoin.



– Compute [η] =
∑M
i=1 αi [ηi], η

′ =
∑M
i=1 αiη

′
i and reconstruct w =

ΠRec [η
′ − η] towards all corrupt parties. If reconstruction fails, or if

w 6= 0, abort.
5. Output phase. Let v be the output wire and ([λv] , νv) the associated mask.

– Using knowledge of [λv]
C , the simulator computes a sharing [λv′ ] such

that (1) [λv′ ]
C

= [λv]
C and (2) λv′ = z − νv. (Recall that z was the

output of the computation.) λv′ is then reconstructed towards the corrupt
parties.

– Finally, S outputs whatever A outputs and halts.

We now argue that Z cannot distinguish between EXEC
FRand,FCorrectMult,FCoin

Z,A,ΠMPCLowOnline
and

EXECZ,S,FfSFE
. As a first observation, notice that up until the checking phase,

the simulator is perfectly simulating the execution of ΠMPCLowOnline and so no
advantage can be gained. The only avenue for distinguishing is if the adversary can
cheat in the checking phase. Indeed, at step 4 (checking phase) in the simulation,
the ideal functionality FfSFE have already performed the computation of f , and
so, if the adversary can cheat in this step, the resulting output of the hybrid
execution would be potentially different from the one of the ideal execution.
However, cheating in step 4 is not possible unless with negligible probability, as
we will now argue:

Observe that passing the check in step (4) corresponds to satisfying the
equation 0 =

∑M
i=1 αi(ηi − η′i) =

∑M
i=1 αiδi, where η

′
i = ηi + δi and δi is an

error introduced by A when ηi was loosely reconstructed. Cheating implies that
some δi are non-zero, and thus that the above equation can be rewritten as
αiδi = −

∑
j 6=i αjδj . However, this implies that αi = −δ−1i

∑
j 6=i αjδj which

clearly cannot be the case except with negligible probability as the αi’s were
chosen uniformly at random from F. In particular, this holds with probability
1/|F|. ut

7.2 Security of ΠMPCLowChannels

For the following security proof, we will make use of the following ideal commit-
ment functionality

FCommit

Commit. On (commit, Pi, Pj , x) from Pi, record (Pi, Pj , x) if no such
tuple was recorded before.
Open. On (open, Pi, Pj) from Pi and if a tuple (Pi, Pj , x) was previously
recorded, send x to Pj .

Theorem 4. Protocol ΠMPCLowChannels securely realizes FfSFE for any f : Fn →
F against a static malicious adversary corrupting t = (n − 1)/2 parties in a
(FRand,FCorrectMult,FCoin,FCommit)-hybrid model, unless with probability 1/|F|.



Proof. Let A be the real world adversary and Z the environment. Let C denote
the set of corrupted parties and H its complement. The ideal adversary S runs
A internally, giving it control over the t = (n− 1)/2 parties in C that Z corrupts
and simulates the remaining t+ 1 = (n− 1)/2 + 1 parties. The simulator S in
addition emulates all calls to FRand, FCorrectMult, FCoin and FCommit. For the sake
of simplicity, assume parties P1, . . . , Pt are corrupt. Similar to above, an abort of
S implies that FfSFE is invoked with 0 inputs, then evaluated and finally aborted
before S itself halts.

Simulation proceeds much as in the previous proof, and as follows:

1. Offline phase.
– As in the protocol from the previous section, the simulator emulates
FRand and FCorrectMult as in the real execution. Also, for an input wire x
owned by Pi, private reconstruct a random value λx to Pi, and abort if
this this fails for an honest receiver.

2. Input phase.
– For wires owned by an honest party Pi, the simulator broadcasts a random

value µx to all parties.
– For wires owned by a corrupt party Pi, the simulator waits to receive µx

from Pi (aborting if the broadcast is inconsistent) after which S invokes
(input, Pi, µx + λx) on FfSFE.

3. Computation phase. At this point, only parties P1, . . . , Pt+1 are partici-
pating in the protocol, and all broadcasts happen with this subset in mind.
– The simulator invokes (eval) on FfSFE. Let z be the output of the com-

putation.
– Run ΠMPCLowChannels where S plays the role of the single remaining honest

party Pt+1. When handling multiplication gates, Pt+1 uses a random
share for the loose opening.

4. Checking phase. Let [η1] , . . . , [ηM ] be shares of values that were loosely
opened to η′1, . . . , η′M during the previous step. Recall that each party also
holds [r · ηi] for i = 1, . . . ,M . S proceeds as follows.
– Emulate FCoin by selecting uniformly at random values αi for i = 1, . . . ,M ,

and send these to all parties.
– Compute [r · η] =

∑M
i=1 αi [r · ηi], η′ =

∑M
i=1 αiη

′
i and [β] = [r · η]− η′ [r].

Wait for all parties to commit to their share of β.
– When all parties have committed as well as opened their shares, compute
β′ = rec([β]) and abort if β′ 6= 0.

5. Output phase.
– For the output wire z, the simulator waits for all parties to commit to

their share of λz.
– The simulator changes the shares of [λz] and [r · λz] corresponding to
Pt+1 so that they reconstruct to [λ′z] and [r · λ′z] respectively, where
λ′z = z − µz.

– S participates in the opening of λ′z, emulating FCommit. The simulator
waits for all parties to be committed to their share of λ′z, and then their
openings are broadcast. The resulting opened value is equal to λ′′z , which
may be different to λ′z.



– Compute [ρ] = [r · λ′z]− λ′′z [r] and wait for all parties to commit to their
share of ρ.

– When all parties are committed to their share of ρ, their openings are
broadcast. If the reconstructed value is not 0, the parties abort.

– Finally, and if no aborts happened in the previous steps, the simulator
invokes (output, 0) on FfSFE and then halts.

We now argue indistinguishability between EXEC
FRand,FCorrectMult,FCoin,FCommit

Z,A,ΠMPCLowChannels
and

EXECZ,S,FfSFE
.

As in the proof for ΠMPCLowOnline, simulation proceeds perfectly up until the
checking phase, and we have to argue that errors introduced during computation
will be caught in the output phase. Towards this goal, suppose that errors were
introduced, i.e., η′i = ηi + δi with δi0 6= 0 for some i0. Let β + ε be the value that
was opened. Successfully cheating implies that 0 = β + ε and thus that:

ε = −β = −r
M∑
i=1

αi(ηi − η′i) = −r
M∑
i=1

αiδi =⇒ r = −ε

(
M∑
i=1

αiδi

)−1
,

assuming that
∑M
i=1 αiδi is not zero. This is the case indeed with overwhelm-

ing probability given that this is the inner product between a non-zero vector
(δ1, . . . , δM ) and a random vector. Furthermore, the equation above cannot be
satisfied with high probability since r was picked uniformly at random and not
revealed to A. Note that this argument relies on ε being independent of β (indeed,
if the adversary could pick ε dependent on β, then 0 = β + ε would be trivial to
satisfy). This is achieved thanks to the FCommit functionality.

This takes care of the checking phase, which leaves us with the output phase.
First notice that the equivocation of the honest party’s share guarantees that
µz + λ′z results in the same output as the ideal execution. Furthermore, this is
acceptable since the adversary only controls t shares, which carry no information
about the underlying secrets.

Now, suppose that λ′′z = λ′z + δ, where δ 6= 0. Furthermore, the adversary
can add an error in the opening of ρ, resulting in ρ+ γ. If the final check passes,
then ρ+ γ = 0, which means that r · λ′z − r · (λ′z + δ) + γ = 0, or r = γ/δ, which
as before cannot happen with high probability since r is chosen at random and
independently of γ and δ. This concludes the proof.

8 Conclusion

We presented two conceptually simple, yet novel, actively secure protocols that
both perform very well in terms of amortized communication complexity. Both
protocols achieve an asymptotic complexity of only 1.5 shares per party, which
for a popular instantiation like Shamir secret-sharing translates to only 1.5
field elements per multiplication per party. In addition, our second protocol
ΠMPCLowChannels shows how techniques used in ΠMPCLowOnline together with tech-
niques from dishonest majority MPC can be used to obtain a protocol where



n− t parties do not even have to be online in during the computation phase of
the protocol. Finally, we show how the framework that we establish along the
way, can be used to frame several recent and highly efficient protocols in a clear
and unified manner.
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