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Abstract. Zero-Knowledge Proof is a crucial tool for privacy preserving and 
stake proving. It allows the Prover to convince the Verifier about the validity of 
some statement without leaking any knowledge of his own. Quantities of zero 
knowledge protocols have been proposed by now and one of the state-of-the-art 
works is Halo [1], which is brought about by Bowe, Grigg and Hopwood. Even 
though nested amortization technique used in Halo, the Verifier still has to com-
pute an O(n) operation ultimately. As a result, Halo is not a fully succinct zero-
knowledge scheme and infeasible to be utilized in some scenarios such as 
Ethereum Smart Contract applications. 
We propose Halo 0.9, which is an enhanced version of Halo aiming at the issue 
above. Specifically, we introduce the SRS in [2] as the substitute for the random 
vector in the inner product and thus transform the Pedersen vector commitment 
to Kate polynomial commitment [2]. On the premise of original Halo protocol 
remained, the computation of Verifier is in logarithmic time. 
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1 Introduction 

Zero knowledge proof is a crucial tool for privacy preserving and stake proving, which 
was proposed by GoldWasser, Micali and Rackoff [3]. There are two parties engaged 
in the protocol, where the Prover is able to convince the Verifier about the validity of 
some statement without leaking his own knowledge. At the end of the protocol, the 
Verifier acquires nothing more than the statement itself. Blum, Feldman and Micali [4] 
further extended the notion to Non-interactive zero-knowledge proof, as known as 
NIZK. In 1992, Kilian [5] demonstrated the first sublinear zero-knowledge scheme in 
communication that has less proof size than the statement to be proved. Ever since then, 
quantities of researches aimed at this area with impressive progress. At present, zero-
knowledge proof is wildly applied to outsourced computation, credential-identity veri-
fication and so on. The emerging technology of blockchain hugely promotes the devel-
opment of zero knowledge proof. In fact, some mature applications such as Zcash [6] 
and Ethereum have already deployed zero knowledge proof in their system. 
Generally speaking, zero knowledge proof schemes make use of random variants in 
order to combine multiple constraints into single one for quick proving. One of the most 
efficient method is zero-knowledge succinct non-interactive argument of knowledge 
(zkSNARK). By utilizing trusted setup and bilinear pairing, zkSNARK-based protocols 
[7][8][9][10] realize succinct proof with fast verification. However, the procedure of 
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trusted setup highly depends on the specific circuits, meaning that minor modification 
requires a brand-new common reference string. On the other hand, in order to ensure 
security, multi-party computation is usually applied during trusted setup phase. This 
process called ceremony [11] is relatively complicated and unsuitable for updating, be-
coming a barrier for those methods to develop. In order to solve this issue, Groth et.al 
[12] proposes universal and updatable structured reference string (SRS) that one set of 
parameters supports various statements, and is capable of updating when needed. 
Though creative, the scheme in [12] still can be promoted in both proof size and veri-
fying time. Sonic [13] as the very first potential practical zero-knowledge protocol with 
universal SRS, realizes fast verification with untrusted “helper”. Yet the Verifier still 
has to compute an O(n) operation in the end of the protocol, making it not fully-suc-
cinct. Marlin [14] and Plonk [15] were successively proposed in 2019, shortly after 
Sonic [13], that both are fully-succinct zero knowledge proof based on SRS. It is rela-
tively back-handed to compare them. [14] adopts R1CS constraint system and is more 
adaptable for “fully-dense” circuits. While [15] utilized original linear constraints focus 
on constant fan-in circuits, resulting in more gates and bigger size of circuits.  
Structured reference string is indeed a solution for trusted setup, it is still a kind of setup 
phase to an extent. There are alternatives without this procedure such as zkSTARKs 
[16] which uses polynomial interpolation and FRI algorithm [17] that achieves fast 
proving and verifying. However, the proof size of [16] is relatively large even for small 
circuits. [18] and the enhanced version [19] base on inner product and weaker assump-
tion that acquires logarithmic proof size yet higher verifying time, leading it suitable 
for proving of simple relation. 

 
1.1 Halo Protocol 

Based on the outcome of [19] and [13], Bowe, Grigg and Hopwood proposed Halo 
protocol in 2019 [1]. Aiming at incrementally verifiable computation, Halo realizes 
batched-verification via modified inner product argument and vector commitment. By 
compositing multiple proofs together, the Verifier’ work load is greatly alleviated. Spe-
cifically, Halo fixes the second vector 𝒃 with bisected representation in inner product 
argument and proves satisfaction of arithmetic circuits by demonstrating the constant 
term of a bivariate polynomial equals to zero. Moreover, it also uses the helper mode 
in [13] therefore delays the verification of a stream of arguments to the last one. There 
are several amortizing strategies used in Halo which efficiently reduce verifier’s work 
to almost logarithmic.  
Unfortunately, even though the nested amortization is utilized, the Verifier of Halo still 
has to compute an inner product 〈𝒔, 𝑮〉 ultimately in the last argument, where 𝒔 is a sca-
lar vector and 𝑮 is a random vector in cyclic group. This operation is of O(n) sized that 
makes Halo not fully succinct. Due to this circumstance, scheme in [1] is not compatible 
for scenarios where the Verifier’s work is strictly restricted. As a concrete motivation, 
the Ethereum Smart Contract demands 6,000 gas fees for every multiplication on ellip-
tic curve [21]. If we employ Halo as the zero-knowledge proof protocol, considering 
the upper bound of gas limit of Ethereum smart contract is 12 million [20], then the 
circuits would only allow 2,000 gates because the expensive gas fee when executing 
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linear time operation. Therefore, the original Halo protocol in [1] is inefficient and im-
practical. In all, those scenarios present a rigorous challenge to the workload of the 
Verifier so that it is significant if we could reduce the 𝑂(𝑛)	operation in [1]. 

1.2 Our Halo 0.9 Scheme 

Based on the analysis above, we propose an enhanced version of [1] as Halo 0.9. We 
compare the merits and demerits of Pedersen vector commitment and Kate polynomial 
commitment [2]. By introducing CRS used in [2] to take over from the random group 
vector used in [1], therefore tactfully transform the Pedersen commitment to Kate com-
mitment. The Verifier merely need to take 	 𝑙𝑜𝑔(𝑛) multiplications in finite field in-
stead of linear time operation. This modification makes Halo fully succinct. Specifi-
cally, in the original scheme, the Verifier has to compute an inner product 〈𝒔, 𝑮〉 at last, 
where 𝒔 ∈ 𝐹! is a scalar vector and 𝑮 ∈ 𝔾! is a random group vector. This inner prod-
uct can be viewed as the Pedersen vector commitment of 𝒔 without referring to blind 
factor. Therefore, we replace 𝑮 with the CRS used in [2] and the Pedersen commitment 
can be transformed to the Kate commitment of 𝒔2, where 𝒔2 is the dual vector of 𝒔. The 
verifier could compute this modified formula via Open operation, which is far more 
efficient than naïve calculation. For more details and full protocol, see Section 3. 

1.3 Comparison with Marlin and Plonk 

We compare Halo 0.9 with recently proposed zero knowledge proof schemes [14] [15] 
that are also fully succinct. The result is shown in Table 1. For an arbitrary statement, 
[14] utilizes R1CS as their constraint system. Halo 0.9 adopts constraint system that is 
similar to that used in [13]. This constraint system composed of multiplication con-
straints and linear constraints which we call it as Bootle-Constraint System. On the 
other hand, [15] puts forward an original constraint system aiming at constant fan-in 
circuits that can be reduced to a permutation check. We call it as Plonk-Constraint Sys-
tem. Roughly speaking, Plonk-Constraint System has more gates in circuits than Bootle 
and R1CS, leading it more expensive when computing multiplication on both elliptic 
curves and finite field.  

Table 1. Comparison with Marlin and Plonk 

Method Constraint System Verifier Work 

Marlin R1CS 18 EC MUL + 2 pairing 

Plonk PLONK-Constraint System 18 EC MUL + 2 pairing 

Halo 0.9 (Ours) Bootle-Constraint System 11 EC MUL + 2 pairing + log(n) FP 
MUL 

 
As described above, original Halo protocol is not suitable for scenarios such as 
Ethereum smart contract because its high workload for the Verifier. Aiming at this 
shortcoming, we propose the enhanced version of it and compare our Halo 0.9 with 
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Marlin and Plonk about the amount of work of the Verifier. The result is shown in Table 
1, where EC MUL and FP MUL represent the multiplicate operation on the elliptic 
curve and in finite field respectively. By applying our improvement, Halo 0.9 only need 
11 EC MUL, 2 pairing and log(𝑛) FP MUL. It can be concluded that among the state-
of-art zero-knowledge protocols with universal SRS, Halo 0.9 is the most gas-cost sav-
ing one for Ethereum smart contract applications considering FP MUL costs less gas 
fee than EC MUL. 

2 Preliminaries 

Before we present our Halo 0.9 scheme, we will first review some underlying tools and 
cryptographic primitives. We denote by 𝜆 the security parameter, and assume all algo-
rithms and adversaries are probabilistic interactive Turing machine with respect to this 
security parameter. Sometimes we will leave the security parameter implicitly without 
ambiguity. We denote by 𝜀(𝜆) an unspecified function that is negligible in 𝜆, which 
means that this function vanishes faster than the inverse of any polynomial in 𝜆. We 
write PPT/DPT for algorithms running in probabilistic polynomial time and determin-
istic polynomial time in the size of their inputs respectively. 

2.1 Terminology 

Let 𝔾 denotes a cyclic group of prime order 𝑝, and we assume our field 𝔽 is of prime 
order 𝑝  and denote by 𝔽" for brevity. Let 𝔾! and 𝔽"! represent vector spaces of dimen-
sion 𝑛 over 𝔾 and 𝔽" respectively. Normally the generators of cyclic group are denoted 
by 𝑔, ℎ ∈ 𝔾. We use the notation 𝑒:	𝔾 × 𝔾 → 𝔾# to denote a type I bilinear pairing in 
𝔾. In our paper, we use bold fonts denote vectors, e.g., 𝒗 is a vector of scalars and 𝑮 is 
a vector of group elements with their 𝑖th entry is 𝑣$ and 𝐺$ respectively. For scalars in 
finite field, lower letters are used and scalar multiplication is denoted by [𝑎]𝐺 = 𝐺% for 
𝑎 ∈ 𝔽" and 𝐺 ∈ 𝔾. We write 〈𝒂, 𝒃〉 = 𝑎&𝑏& + 𝑎'𝑏' +⋯+ 𝑎!('𝑏!(' for inner product 
of two scalars 𝒂, 𝒃 ∈ 𝔽"! and denote the inner product of multi-scalar with group vector 
by 〈𝑮, 𝒂〉 = ∏ 𝑔$%!!('

$)& , where 𝒂 ∈ 𝔽"! and 𝑮 ∈ 𝔾!. 
Finally, we write 𝑦 ← 𝐴(𝑥; 𝑟) when algorithm 𝐴 outputs 𝑦 on inputs 𝑥 and random-
ness 𝑟. For the sake of simplicity, we sometimes omit randomness 𝑟 thus denote as 𝑦 ←
𝐴(𝑥). We write 𝑟

$
← 𝔽" represents uniformly sampling 𝑟 from	𝔽". 𝑥, 𝑦, 𝑧 ∈ 𝔽" repre-

sents random challenge if not explicitly noted. 

2.2 Commitment 

Definition 1 (Commitment). A non-interactive commitment scheme consists of a pair 
of probabilistic polynomial time algorithms (Setup, Com). The Setup algorithm 
(𝑝𝑘, 𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝(1+) generates public and private key corresponding to the security 
parameter. The Com algorithm 𝐶 ← 𝐶𝑜𝑚𝑚𝑖𝑡(𝑝𝑘, 𝑏; 	𝑟) takes public key 𝑝𝑘, message 
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𝑏 ∈ 𝑀, and randomness 𝑟 ∈ 𝑅 as inputs and outputs a commitment to that specific mes-
sage, where 𝑀 is the message space and 𝑅 is the randomness space. For ease of nota-
tion, we write 𝐶𝑜𝑚(𝑏; 𝑟) = 𝐶𝑜𝑚𝑚𝑖𝑡(𝑝𝑘, 𝑏; 𝑟). 
Definition 2 (Hiding Commitment). A commitment scheme is said to be hiding if for 
all PPT adversaries 𝒜, there exists a negligible function 𝜀(𝜆) such that 

^𝑃 `𝑏 = 𝑏, ^
(𝑝𝑘, 𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝a1+b;

(𝑥&, 𝑥') ∈ 𝑀- ← 𝒜(𝑝𝑘), 𝑏
$
←{0, 1}, 𝑟

$
←𝑅,

𝐶 = 𝐶𝑜𝑚(	𝑥.; 	𝑟), 𝑏′ ← (𝑝𝑘, 𝐶)	
g −

1
2^ ≤ 𝜀(𝜆) 

Which means that the adversaries 𝒜 has negligible advantage given the result of com-
mitment. If 𝜀(𝜆) = 0, we say the commitment scheme is perfectly hiding. 
Definition 3 (Binding Commitment). A commitment scheme is said to be binding if for 
all PPT adversaries 𝒜, there exists a negligible function 𝜀(𝜆) such that  

𝑃 k|𝐶𝑜𝑚(𝑥&; 𝑟&) =𝐶𝑜𝑚(𝑥'; 𝑟') ∧	𝑥& ≠ 𝑥' o
(𝑝𝑘, 𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝a1+b,
𝑥&, 𝑥', 𝑟&, 𝑟' ← 	𝒜(𝑝𝑘)

p ≤ 𝜀(𝜆) 

If 𝜀(𝜆) = 0, we say the commitment scheme is perfectly binding. 
Definition 4 (Pedersen Commitment). 𝑥, 𝑟 ∈ 𝔽", such that 

Setup: 𝑔, ℎ
$
← 	𝔾 

𝐶𝑜𝑚(𝑥; 𝑟) = (𝑔/ℎ0) 
Definition 5 (Pedersen Polynomial Commitment). For polynomial 𝑝(𝑥) with degree 
lower than 𝑑, suppose its coefficients is 𝒂 such that 𝑝(𝑥) = ∑ 𝑎$𝑥$1('

$)& . The Pedersen 
polynomial commitment is defined as 

Setup: 𝑮
$
←	𝔾!, 𝐻

$
←𝔾 

𝐶𝑜𝑚(𝒂; 𝑟) = 〈𝒂, 𝑮〉 ∙ [𝑟]𝐻  
Pedersen polynomial commitment is perfectly hiding. 
Definition 6 (Kate Polynomial Commitment). For polynomial 𝑝(𝑥) with degree lower 
than 𝑑, suppose its coefficients is 𝒂 such that 𝑝(𝑥) = ∑ 𝑎$𝑥$1('

$)& . The Setup and Com-
mitment phase of Kate Commitment is defined as 

Setup: 𝑒, 𝛼
$
← 𝔽", 𝑔

$
← 	𝔾, v𝑔, 𝑔2 , … , 𝑔2"#$x 

𝐶𝑜𝑚(𝒂; 𝑟) = ∏ v𝑔2!x
%!1('

$)&   
For the sake of brevity, we call Pedersen Commitment as PedCom and Kate Commit-
ment as KateCom in our paper. 

3 Our Scheme 

Now in this section, we first give some observations about PedCom and KateCom. 
Then we bring about our Halo 0.9 Scheme. 
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3.1 Commitment Observation 

As defined in Section 2, PedCom and KateCom can both commit to a certain polyno-
mial. The main difference between them is the opening size and workload of the Veri-
fier. Concretely speaking, comparison when committing to 𝑛-degree polynomial be-
tween PedCom and KateCom is shown in Table 2 below. 

Table 2. Table captions should be placed above the tables. 

Commitment scheme Zero-knowledge Verify Size Prover Work Verifier Work 
PedCom Yes 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 
KateCom No 𝑂(1) 𝑂(𝑛) 𝑂(1) 

 
It is clear that KateCom is more efficient than PedCom with half of the workload and 
less verifying size. However, KateCom doesn’t support zero-knowledge open, even by 
making use of random polynomial mask, it can only perform limited zero-knowledge 
opening. This characteristic restricts KateCom from being exerted on various applica-
tions. However, we observe that the inner product computed in [1] is of the form 
〈𝒔, 𝑮〉 = ∏ 𝑔$ 3!!('

$)& , which can be viewed as the PedCom of vector 𝒔 without blinding 
factor. By taking advantage of this trait, we can tactfully circumvent the zero-
knowledge issue and therefore transform the PedCom to KateCom for efficiency. 

3.2 Main Idea 

In Halo [1], the verifier still must ultimately perform a linear-time operation 𝐺 = 〈𝒔, 𝑮〉 
with a scalar vector 𝒔 ∈ 𝐹! and a vector of group elements 𝑮 ∈ 𝔾!. The vector s has a 
special structure by defining a polynomial 

𝑓(𝑥) = 	z (𝑢$ + 𝑢$('𝑋-
!#$)

4

$)'
 

such that the vector s is the coefficients of 𝑓(𝑥). Since 𝑢$ is public knowledge, verifier 
could compute 𝑠$ in logarithmic time, e.g., assuming 𝑛 = 24 for 𝑘 > 0, we have 𝑠& =
∏ 𝑢$4
$)' , 𝑠!(' = ∏ 𝑢$('4

$)'  etc. 
One of our novel observation is to apply the SRS in [2] as a substitute for the original 
vector 𝑮, therefore transform 〈𝒔, 𝑮〉 to Kate polynomial commitment [2] which can be 
proved by the prover and verified by the verifier in logarithm time. The detail of our 
method is as following. 
Let 𝑃5(𝑋) denotes the Lagrange interpolating polynomial of vector 𝑣. For any vector 
𝒔 , there exists a vector 𝒔2 ≔ (�̃�', �̃�-, … , �̃�!)  satisfying that the 𝑖 th degree term of 
𝑃3̃(𝑋)	equals to the ith entry of 𝒔, e.g. 

𝑃𝒔8(𝑋) = � �̃�$ ∙ 𝐿$(𝑋)
!('

$)&

=�𝑠$𝑋$
!('

$)&

 

where 𝐿$(𝑋) is the ith Lagrange basis, �̃�$ (resp. 𝑠$) is the 𝑖th entry of 𝒔2	(resp. 𝒔). There 

is 𝐾𝑎𝑡𝑒𝐶𝑜𝑚(𝒔2) = 𝑔'
3%𝑔'

3$2𝑔'
3&2& …𝑔'

3'#$2'#$, where 𝛼 is the SRS secret defined in [2]. 
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To avoid the computation of 〈𝒔, 𝑮〉, the verifier asks the prover to compute 〈𝒔, 𝑮〉 and 
prove it. To prove 𝐺 = 〈𝒔, 𝑮〉 , the Prover first computes the vector 𝒔2 . Note that 
G=〈𝒔, 𝑮〉=𝐾𝑎𝑡𝑒𝐶𝑜𝑚(𝒔2). The Verifier chooses a random challenge 𝑟 and sends it to the 
Prover. The Prover now opens commitment 𝐾𝑎𝑡𝑒𝐶𝑜𝑚(𝒔2) at 𝑟 to 𝑧, such that 

𝑧 = 〈𝒔, 𝒓〉 
where 𝐫:= (1, 𝑟, 𝑟-, … , 𝑟!('). Verifier can compute 〈𝒔, 𝒓〉	by 

〈𝒔, 𝒓〉 =z v𝑢$ + 𝑢$('𝑟-
!#$x

4

$)'
 

and thus verifies the validity of z with log(n) multiplications in finite field. 

3.3 Full Protocol 

As described in previous section, the full protocol of Halo 0.9 is showed in Figure.1. 

 
Fig. 1. Computation of 〈𝒔, 𝑮〉 in Halo 0.9 Protocol 

4 Conclusion and Future Work 

We propose Halo 0.9, which is an enhanced version of [1] aiming at the issue that the 
Verifier still must compute an O(n) operation ultimately. By utilizing SRS in [2], we 
cleverly transform the PedCom in the original inner product to KateCom, acquiring 
more efficient verification and fully-succinct zero knowledge proof scheme. The com-
parison between Halo 0.9 and other state-of-the-art protocols illustrates that our method 
is the most gas-cost saving SRS-based zero-knowledge proof scheme on Ethereum 
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smart contract with the lowest workload for the Verifier. In the future, we will further 
integrate Halo 0.9 with more scenarios that has high restrictions on the workload of the 
Verifier. 
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