
Halo 0.9: A Halo Protocol with Fully-Succinctness

Lira Wang1

1lirawang@yahoo.com

Abstract. Zero-Knowledge Proof is a crucial tool for privacy preserving and
stake proving. It allows the Prover to convince the Verifier about the validity of
some statement without leaking any knowledge of his own. Quantities of zero
knowledge protocols have been proposed by now and one of the state-of-the-art
works is Halo [1], which is brought about by Bowe, Grigg and Hopwood. Even
though nested amortization technique used in Halo, the Verifier still has to com-
pute an O(n) operation ultimately. As a result, Halo is not a fully succinct zero-
knowledge scheme and infeasible to be utilized in some scenarios such as
Ethereum Smart Contract applications.
We propose Halo 0.9, which is an enhanced version of Halo aiming at the issue
above. Specifically, we introduce the SRS in [2] as the substitute for the random
vector in the inner product and thus transform the Pedersen vector commitment
to Kate polynomial commitment [2]. On the premise of original Halo protocol
remained, the computation of Verifier is in logarithmic time.

Keywords: Succinct Proof, Halo, Zero-knowledge

1 Introduction

Zero knowledge proof is a crucial tool for privacy preserving and stake proving, which
was proposed by GoldWasser, Micali and Rackoff [3]. There are two parties engaged
in the protocol, where the Prover is able to convince the Verifier about the validity of
some statement without leaking his own knowledge. At the end of the protocol, the
Verifier acquires nothing more than the statement itself. Blum, Feldman and Micali [4]
further extended the notion to Non-interactive zero-knowledge proof, as known as
NIZK. In 1992, Kilian [5] demonstrated the first sublinear zero-knowledge scheme in
communication that has less proof size than the statement to be proved. Ever since then,
quantities of researches aimed at this area with impressive progress. At present, zero-
knowledge proof is wildly applied to outsourced computation, credential-identity veri-
fication and so on. The emerging technology of blockchain hugely promotes the devel-
opment of zero knowledge proof. In fact, some mature applications such as Zcash [6]
and Ethereum have already deployed zero knowledge proof in their system.
Generally speaking, zero knowledge proof schemes make use of random variants in
order to combine multiple constraints into single one for quick proving. One of the most
efficient method is zero-knowledge succinct non-interactive argument of knowledge
(zkSNARK). By utilizing trusted setup and bilinear pairing, zkSNARK-based protocols
[7][8][9][10] realize succinct proof with fast verification. However, the procedure of

2

trusted setup highly depends on the specific circuits, meaning that minor modification
requires a brand-new common reference string. On the other hand, in order to ensure
security, multi-party computation is usually applied during trusted setup phase. This
process called ceremony [11] is relatively complicated and unsuitable for updating, be-
coming a barrier for those methods to develop. In order to solve this issue, Groth et.al
[12] proposes universal and updatable structured reference string (SRS) that one set of
parameters supports various statements, and is capable of updating when needed.
Though creative, the scheme in [12] still can be promoted in both proof size and veri-
fying time. Sonic [13] as the very first potential practical zero-knowledge protocol with
universal SRS, realizes fast verification with untrusted “helper”. Yet the Verifier still
has to compute an O(n) operation in the end of the protocol, making it not fully-suc-
cinct. Marlin [14] and Plonk [15] were successively proposed in 2019, shortly after
Sonic [13], that both are fully-succinct zero knowledge proof based on SRS. It is rela-
tively back-handed to compare them. [14] adopts R1CS constraint system and is more
adaptable for “fully-dense” circuits. While [15] utilized original linear constraints focus
on constant fan-in circuits, resulting in more gates and bigger size of circuits.
Structured reference string is indeed a solution for trusted setup, it is still a kind of setup
phase to an extent. There are alternatives without this procedure such as zkSTARKs
[16] which uses polynomial interpolation and FRI algorithm [17] that achieves fast
proving and verifying. However, the proof size of [16] is relatively large even for small
circuits. [18] and the enhanced version [19] base on inner product and weaker assump-
tion that acquires logarithmic proof size yet higher verifying time, leading it suitable
for proving of simple relation.

1.1 Halo Protocol

Based on the outcome of [19] and [13], Bowe, Grigg and Hopwood proposed Halo
protocol in 2019 [1]. Aiming at incrementally verifiable computation, Halo realizes
batched-verification via modified inner product argument and vector commitment. By
compositing multiple proofs together, the Verifier’ work load is greatly alleviated. Spe-
cifically, Halo fixes the second vector 𝒃 with bisected representation in inner product
argument and proves satisfaction of arithmetic circuits by demonstrating the constant
term of a bivariate polynomial equals to zero. Moreover, it also uses the helper mode
in [13] therefore delays the verification of a stream of arguments to the last one. There
are several amortizing strategies used in Halo which efficiently reduce verifier’s work
to almost logarithmic.
Unfortunately, even though the nested amortization is utilized, the Verifier of Halo still
has to compute an inner product 〈𝒔, 𝑮〉 ultimately in the last argument, where 𝒔 is a sca-
lar vector and 𝑮 is a random vector in cyclic group. This operation is of O(n) sized that
makes Halo not fully succinct. Due to this circumstance, scheme in [1] is not compatible
for scenarios where the Verifier’s work is strictly restricted. As a concrete motivation,
the Ethereum Smart Contract demands 6,000 gas fees for every multiplication on ellip-
tic curve [21]. If we employ Halo as the zero-knowledge proof protocol, considering
the upper bound of gas limit of Ethereum smart contract is 12 million [20], then the
circuits would only allow 2,000 gates because the expensive gas fee when executing

3

linear time operation. Therefore, the original Halo protocol in [1] is inefficient and im-
practical. In all, those scenarios present a rigorous challenge to the workload of the
Verifier so that it is significant if we could reduce the 𝑂(𝑛)	operation in [1].

1.2 Our Halo 0.9 Scheme

Based on the analysis above, we propose an enhanced version of [1] as Halo 0.9. We
compare the merits and demerits of Pedersen vector commitment and Kate polynomial
commitment [2]. By introducing CRS used in [2] to take over from the random group
vector used in [1], therefore tactfully transform the Pedersen commitment to Kate com-
mitment. The Verifier merely need to take 	 𝑙𝑜𝑔(𝑛) multiplications in finite field in-
stead of linear time operation. This modification makes Halo fully succinct. Specifi-
cally, in the original scheme, the Verifier has to compute an inner product 〈𝒔, 𝑮〉 at last,
where 𝒔 ∈ 𝐹! is a scalar vector and 𝑮 ∈ 𝔾! is a random group vector. This inner prod-
uct can be viewed as the Pedersen vector commitment of 𝒔 without referring to blind
factor. Therefore, we replace 𝑮 with the CRS used in [2] and the Pedersen commitment
can be transformed to the Kate commitment of 𝒔2, where 𝒔2 is the dual vector of 𝒔. The
verifier could compute this modified formula via Open operation, which is far more
efficient than naïve calculation. For more details and full protocol, see Section 3.

1.3 Comparison with Marlin and Plonk

We compare Halo 0.9 with recently proposed zero knowledge proof schemes [14] [15]
that are also fully succinct. The result is shown in Table 1. For an arbitrary statement,
[14] utilizes R1CS as their constraint system. Halo 0.9 adopts constraint system that is
similar to that used in [13]. This constraint system composed of multiplication con-
straints and linear constraints which we call it as Bootle-Constraint System. On the
other hand, [15] puts forward an original constraint system aiming at constant fan-in
circuits that can be reduced to a permutation check. We call it as Plonk-Constraint Sys-
tem. Roughly speaking, Plonk-Constraint System has more gates in circuits than Bootle
and R1CS, leading it more expensive when computing multiplication on both elliptic
curves and finite field.

Table 1. Comparison with Marlin and Plonk

Method Constraint System Verifier Work

Marlin R1CS 18 EC MUL + 2 pairing

Plonk PLONK-Constraint System 18 EC MUL + 2 pairing

Halo 0.9 (Ours) Bootle-Constraint System 11 EC MUL + 2 pairing + log(n) FP
MUL

As described above, original Halo protocol is not suitable for scenarios such as
Ethereum smart contract because its high workload for the Verifier. Aiming at this
shortcoming, we propose the enhanced version of it and compare our Halo 0.9 with

4

Marlin and Plonk about the amount of work of the Verifier. The result is shown in Table
1, where EC MUL and FP MUL represent the multiplicate operation on the elliptic
curve and in finite field respectively. By applying our improvement, Halo 0.9 only need
11 EC MUL, 2 pairing and log(𝑛) FP MUL. It can be concluded that among the state-
of-art zero-knowledge protocols with universal SRS, Halo 0.9 is the most gas-cost sav-
ing one for Ethereum smart contract applications considering FP MUL costs less gas
fee than EC MUL.

2 Preliminaries

Before we present our Halo 0.9 scheme, we will first review some underlying tools and
cryptographic primitives. We denote by 𝜆 the security parameter, and assume all algo-
rithms and adversaries are probabilistic interactive Turing machine with respect to this
security parameter. Sometimes we will leave the security parameter implicitly without
ambiguity. We denote by 𝜀(𝜆) an unspecified function that is negligible in 𝜆, which
means that this function vanishes faster than the inverse of any polynomial in 𝜆. We
write PPT/DPT for algorithms running in probabilistic polynomial time and determin-
istic polynomial time in the size of their inputs respectively.

2.1 Terminology

Let 𝔾 denotes a cyclic group of prime order 𝑝, and we assume our field 𝔽 is of prime
order 𝑝 and denote by 𝔽" for brevity. Let 𝔾! and 𝔽"! represent vector spaces of dimen-
sion 𝑛 over 𝔾 and 𝔽" respectively. Normally the generators of cyclic group are denoted
by 𝑔, ℎ ∈ 𝔾. We use the notation 𝑒:	𝔾 × 𝔾 → 𝔾# to denote a type I bilinear pairing in
𝔾. In our paper, we use bold fonts denote vectors, e.g., 𝒗 is a vector of scalars and 𝑮 is
a vector of group elements with their 𝑖th entry is 𝑣$ and 𝐺$ respectively. For scalars in
finite field, lower letters are used and scalar multiplication is denoted by [𝑎]𝐺 = 𝐺% for
𝑎 ∈ 𝔽" and 𝐺 ∈ 𝔾. We write 〈𝒂, 𝒃〉 = 𝑎&𝑏& + 𝑎'𝑏' +⋯+ 𝑎!('𝑏!(' for inner product
of two scalars 𝒂, 𝒃 ∈ 𝔽"! and denote the inner product of multi-scalar with group vector
by 〈𝑮, 𝒂〉 = ∏ 𝑔$%!!('

$)& , where 𝒂 ∈ 𝔽"! and 𝑮 ∈ 𝔾!.
Finally, we write 𝑦 ← 𝐴(𝑥; 𝑟) when algorithm 𝐴 outputs 𝑦 on inputs 𝑥 and random-
ness 𝑟. For the sake of simplicity, we sometimes omit randomness 𝑟 thus denote as 𝑦 ←
𝐴(𝑥). We write 𝑟

$
← 𝔽" represents uniformly sampling 𝑟 from	𝔽". 𝑥, 𝑦, 𝑧 ∈ 𝔽" repre-

sents random challenge if not explicitly noted.

2.2 Commitment

Definition 1 (Commitment). A non-interactive commitment scheme consists of a pair
of probabilistic polynomial time algorithms (Setup, Com). The Setup algorithm
(𝑝𝑘, 𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝(1+) generates public and private key corresponding to the security
parameter. The Com algorithm 𝐶 ← 𝐶𝑜𝑚𝑚𝑖𝑡(𝑝𝑘, 𝑏; 	𝑟) takes public key 𝑝𝑘, message

5

𝑏 ∈ 𝑀, and randomness 𝑟 ∈ 𝑅 as inputs and outputs a commitment to that specific mes-
sage, where 𝑀 is the message space and 𝑅 is the randomness space. For ease of nota-
tion, we write 𝐶𝑜𝑚(𝑏; 𝑟) = 𝐶𝑜𝑚𝑚𝑖𝑡(𝑝𝑘, 𝑏; 𝑟).
Definition 2 (Hiding Commitment). A commitment scheme is said to be hiding if for
all PPT adversaries 𝒜, there exists a negligible function 𝜀(𝜆) such that

^𝑃 `𝑏 = 𝑏, ^
(𝑝𝑘, 𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝a1+b;

(𝑥&, 𝑥') ∈ 𝑀- ← 𝒜(𝑝𝑘), 𝑏
$
←{0, 1}, 𝑟

$
←𝑅,

𝐶 = 𝐶𝑜𝑚(𝑥.; 	𝑟), 𝑏′ ← (𝑝𝑘, 𝐶)	
g −

1
2^ ≤ 𝜀(𝜆)

Which means that the adversaries 𝒜 has negligible advantage given the result of com-
mitment. If 𝜀(𝜆) = 0, we say the commitment scheme is perfectly hiding.
Definition 3 (Binding Commitment). A commitment scheme is said to be binding if for
all PPT adversaries 𝒜, there exists a negligible function 𝜀(𝜆) such that

𝑃 k|𝐶𝑜𝑚(𝑥&; 𝑟&) =𝐶𝑜𝑚(𝑥'; 𝑟') ∧	𝑥& ≠ 𝑥' o
(𝑝𝑘, 𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝a1+b,
𝑥&, 𝑥', 𝑟&, 𝑟' ← 	𝒜(𝑝𝑘)

p ≤ 𝜀(𝜆)

If 𝜀(𝜆) = 0, we say the commitment scheme is perfectly binding.
Definition 4 (Pedersen Commitment). 𝑥, 𝑟 ∈ 𝔽", such that

Setup: 𝑔, ℎ
$
← 	𝔾

𝐶𝑜𝑚(𝑥; 𝑟) = (𝑔/ℎ0)
Definition 5 (Pedersen Polynomial Commitment). For polynomial 𝑝(𝑥) with degree
lower than 𝑑, suppose its coefficients is 𝒂 such that 𝑝(𝑥) = ∑ 𝑎$𝑥$1('

$)& . The Pedersen
polynomial commitment is defined as

Setup: 𝑮
$
←	𝔾!, 𝐻

$
←𝔾

𝐶𝑜𝑚(𝒂; 𝑟) = 〈𝒂, 𝑮〉 ∙ [𝑟]𝐻
Pedersen polynomial commitment is perfectly hiding.
Definition 6 (Kate Polynomial Commitment). For polynomial 𝑝(𝑥) with degree lower
than 𝑑, suppose its coefficients is 𝒂 such that 𝑝(𝑥) = ∑ 𝑎$𝑥$1('

$)& . The Setup and Com-
mitment phase of Kate Commitment is defined as

Setup: 𝑒, 𝛼
$
← 𝔽", 𝑔

$
← 	𝔾, v𝑔, 𝑔2 , … , 𝑔2"#$x

𝐶𝑜𝑚(𝒂; 𝑟) = ∏ v𝑔2!x
%!1('

$)&
For the sake of brevity, we call Pedersen Commitment as PedCom and Kate Commit-
ment as KateCom in our paper.

3 Our Scheme

Now in this section, we first give some observations about PedCom and KateCom.
Then we bring about our Halo 0.9 Scheme.

6

3.1 Commitment Observation

As defined in Section 2, PedCom and KateCom can both commit to a certain polyno-
mial. The main difference between them is the opening size and workload of the Veri-
fier. Concretely speaking, comparison when committing to 𝑛-degree polynomial be-
tween PedCom and KateCom is shown in Table 2 below.

Table 2. Table captions should be placed above the tables.

Commitment scheme Zero-knowledge Verify Size Prover Work Verifier Work
PedCom Yes 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)
KateCom No 𝑂(1) 𝑂(𝑛) 𝑂(1)

It is clear that KateCom is more efficient than PedCom with half of the workload and
less verifying size. However, KateCom doesn’t support zero-knowledge open, even by
making use of random polynomial mask, it can only perform limited zero-knowledge
opening. This characteristic restricts KateCom from being exerted on various applica-
tions. However, we observe that the inner product computed in [1] is of the form
〈𝒔, 𝑮〉 = ∏ 𝑔$ 3!!('

$)& , which can be viewed as the PedCom of vector 𝒔 without blinding
factor. By taking advantage of this trait, we can tactfully circumvent the zero-
knowledge issue and therefore transform the PedCom to KateCom for efficiency.

3.2 Main Idea

In Halo [1], the verifier still must ultimately perform a linear-time operation 𝐺 = 〈𝒔, 𝑮〉
with a scalar vector 𝒔 ∈ 𝐹! and a vector of group elements 𝑮 ∈ 𝔾!. The vector s has a
special structure by defining a polynomial

𝑓(𝑥) = 	z (𝑢$ + 𝑢$('𝑋-
!#$)

4

$)'

such that the vector s is the coefficients of 𝑓(𝑥). Since 𝑢$ is public knowledge, verifier
could compute 𝑠$ in logarithmic time, e.g., assuming 𝑛 = 24 for 𝑘 > 0, we have 𝑠& =
∏ 𝑢$4
$)' , 𝑠!(' = ∏ 𝑢$('4

$)' etc.
One of our novel observation is to apply the SRS in [2] as a substitute for the original
vector 𝑮, therefore transform 〈𝒔, 𝑮〉 to Kate polynomial commitment [2] which can be
proved by the prover and verified by the verifier in logarithm time. The detail of our
method is as following.
Let 𝑃5(𝑋) denotes the Lagrange interpolating polynomial of vector 𝑣. For any vector
𝒔 , there exists a vector 𝒔2 ≔ (�̃�', �̃�-, … , �̃�!) satisfying that the 𝑖 th degree term of
𝑃3̃(𝑋)	equals to the ith entry of 𝒔, e.g.

𝑃𝒔8(𝑋) = � �̃�$ ∙ 𝐿$(𝑋)
!('

$)&

=�𝑠$𝑋$
!('

$)&

where 𝐿$(𝑋) is the ith Lagrange basis, �̃�$ (resp. 𝑠$) is the 𝑖th entry of 𝒔2	(resp. 𝒔). There

is 𝐾𝑎𝑡𝑒𝐶𝑜𝑚(𝒔2) = 𝑔'
3%𝑔'

3$2𝑔'
3&2& …𝑔'

3'#$2'#$, where 𝛼 is the SRS secret defined in [2].

7

To avoid the computation of 〈𝒔, 𝑮〉, the verifier asks the prover to compute 〈𝒔, 𝑮〉 and
prove it. To prove 𝐺 = 〈𝒔, 𝑮〉 , the Prover first computes the vector 𝒔2 . Note that
G=〈𝒔, 𝑮〉=𝐾𝑎𝑡𝑒𝐶𝑜𝑚(𝒔2). The Verifier chooses a random challenge 𝑟 and sends it to the
Prover. The Prover now opens commitment 𝐾𝑎𝑡𝑒𝐶𝑜𝑚(𝒔2) at 𝑟 to 𝑧, such that

𝑧 = 〈𝒔, 𝒓〉
where 𝐫:= (1, 𝑟, 𝑟-, … , 𝑟!('). Verifier can compute 〈𝒔, 𝒓〉	by

〈𝒔, 𝒓〉 =z v𝑢$ + 𝑢$('𝑟-
!#$x

4

$)'

and thus verifies the validity of z with log(n) multiplications in finite field.

3.3 Full Protocol

As described in previous section, the full protocol of Halo 0.9 is showed in Figure.1.

Fig. 1. Computation of 〈𝒔, 𝑮〉 in Halo 0.9 Protocol

4 Conclusion and Future Work

We propose Halo 0.9, which is an enhanced version of [1] aiming at the issue that the
Verifier still must compute an O(n) operation ultimately. By utilizing SRS in [2], we
cleverly transform the PedCom in the original inner product to KateCom, acquiring
more efficient verification and fully-succinct zero knowledge proof scheme. The com-
parison between Halo 0.9 and other state-of-the-art protocols illustrates that our method
is the most gas-cost saving SRS-based zero-knowledge proof scheme on Ethereum

8

smart contract with the lowest workload for the Verifier. In the future, we will further
integrate Halo 0.9 with more scenarios that has high restrictions on the workload of the
Verifier.

9

References

[1] S. Bowe, J. Grigg, D. Hopwood, Recursive proof composition without a trusted
setup, Cryptology ePrint Archive, Report 2019/1021, https://eprint.iacr. org/2019/1021
(2019).
[2] Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomi-
als and their applications. In Advances in Cryptology - ASIACRYPT 2010 - 16th In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings, pages 177–194. Springer,
2010.
[3] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proofs. SIAM Journal on Computing, 18(1):186–208, 1989.
[4] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In STOC, pages 103–112, 1988.
[5] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Sympo-
sium on Theory of Computing Conference – TCC 1992, pages 723–732, 1992.
[6] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza,
Zerocash: Decentralized anonymous payments from bitcoin, Cryptology ePrint Ar-
chive, Report 2014/349, https://eprint.iacr.org/2014/349 (2014).
[7] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Ad-
vances in Cryptology - ASIACRYPT 2010, pages 321–340, 2010.
[8] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology - EUROCRYPT 2016, pages 305–326, 2016.
[9] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct nizks without pcps. In Advances in Cryptology - EU-
ROCRYPT 2013, pages 626–645, 2013.
[10] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly
practical verifiable computation. Commun. ACM, 59(2):103–112, 2016.
[11] Zooko Wilcox. The Design of the Ceremony. 2016. url: https://z.cash/blog/ the-
design-of-the-ceremony/ (visited on 2018-05-01).
[12] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and
universal common reference strings with applications to zk-snarks. In Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III, pages 698–728, 2018.
[13] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero- knowledge
snarks from linear-size universal and updateable structured ref- erence strings. IACR
Cryptology ePrint Archive, 2019:99, 2019.
[14] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Pre-
processing zksnarks with universal and updatable SRS. IACR Cryptology ePrint Ar-
chive, 2019:1047, 2019.
[15] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over la-
grange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol-
ogy ePrint Archive, 2019:953, 2019.

10

[16] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint Ar-
chive, Report 2018/046. https://eprint.iacr.org/2018/046. 2018.
[17] E. Ben-Sasson, I. Bentov, Y. Horesh, M. Riabzev, Fast reed-solomon interactive
oracle proofs of proximity, Vol. 107, Prague, Czech republic, 2018, pp. Avast; RSJ.
URL http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.14.
[18] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT, 2016.
[19] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, and G. Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In Proceedings of the IEEE Sympo- sium
on Security & Privacy, 2018.
[20] Wood, G. (2014). Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 1–32.
[21] Antonio Salazar Cardozo, Zachary Williamson, "EIP-1108: Reduce alt_bn128 pre-
compile gas costs," Ethereum Improvement Proposals, no. 1108, May 2018. [Online
serial]. Available: https://eips.ethereum.org/EIPS/eip-1108.

