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Abstract

Secure multi-party computation has seen significant performance advances and increasing
use in recent years. Techniques based on secret sharing offer attractive performance and are
a popular choice for privacy-preserving machine learning applications. Traditional techniques
operate over a field, while designing equivalent techniques for a ring can boost performance.
In this work we develop a suit of multi-party techniques for a ring in the honest majority
setting starting from elementary operations to more complex with the goal of supporting general-
purpose computation. We demonstrate through empirical evaluation that our techniques can
be several times faster than their field-based equivalents and up to two orders of magnitudes
faster for certain operations such as matrix multiplication. We also evaluate our techniques on
machine learning applications and show that the resulting performance is on par with that of
most recent custom protocols for these applications.

1 Introduction

Secure multi-party computation has seen notable performance improvements in recent years that
make privacy-preserving computation of increasingly complex functionalities on increasingly large
data sets more practical than ever before. Recent significant interest in privacy-preserving ma-
chine learning (PPML) has brought to light secret sharing techniques which were often previously
overlooked in the literature. Secret sharing offers superior performance for arithmetic operations
such as matrix multiplications and has been extensively used for privacy-preserving neural network
inference and training [41, 12, 34, 36, 11]. Because secret-sharing offers information-theoretic secu-
rity, computation can proceed on short integers, the bitlength of which does not depend on security
parameters, aiding efficiency.

Traditionally performance of secret sharing techniques has been measured in terms of two pa-
rameters: the number of interactive operations and the number of sequential interactive operations,
or rounds. However, for some computations such as matrix multiplication local operations can dom-
inate the overall cost of the secure protocol. Traditional secret sharing techniques such as Shamir
secret sharing [40] carry out computation on protected data over a field, most commonly set up
as Zp with prime p. This makes frequent use of modulo reduction a necessity, increasing the cost
of the computation. To improve performance and directly utilize native instructions of modern
processors, researchers turned to computation over ring Z2k [9, 5, 13, 16]. Unfortunately, Shamir
secret sharing – a popular and efficient choice for computation in the honest majority setting –
cannot be used for computation over Z2k and we must seek other options.
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The honest majority setting, which assumes that only a minority of the parties carrying out the
computation can be corrupt, offers great performance with reasonable trust assumptions, making
a good performance-security trade-off. The techniques we are aware of in this setting which can
perform computation over ring Z2k for some k are limited to a fixed number of parties, most
commonly to 3 (see, e.g., [5, 28, 34, 12, 11]). This means that the techniques cannot generalize to
any other number of participants, should there be a need to change the computation setup. This
is the task we set to address in this work and generalize computation based on replicated secret
sharing to support more than n = 3 computational parties.

Our contributions. Our contributions can be summarized as follows:
• We mimic the set of elementary building blocks used for constructing efficient protocols for

Shamir secret sharing and develop their equivalents for replicated secret sharing defined over
an arbitrary ring in the semi-honest setting. These building blocks include generating shares of
pseudorandom integers and ring elements, multiplication, reconstructing a value from shares
and multiplication followed by reconstruction as a single building block, denoted by MulPub.
We optimize the solutions to lower communication complexity by relying on a pseudo-random
function. This means that the techniques are computationally secure and they also come with
formal security proofs. Our solutions are efficient and, for example, the cost of multiplication
when instantiated with three parties matches the best known custom results which apply to
the three-party setting only [5, 41].
• We build on the techniques of [16] to develop higher-level protocols over Z2k such as for

random bit generation, comparisons, conversion between different ring sizes and more to
enable general-purpose computation in this framework.
• We provide extensive benchmarks to evaluate performance of the developed techniques and

compare them to the state of the art. We observe that when n = 3 our techniques are several
times faster than their field-based counterparts when a sufficient number of operations is
executed in parallel (i.e., computation is not network-bound) and up to 100 times faster for
operation such as matrix multiplication.
• We also evaluate performance of our techniques on machine learning applications, namely,

neural network predictions and support vector machine classification. Our runtimes are also
up to an order of magnitude faster than similar field-based implementation and perform
similarly to recent custom machine learning protocol which can only support three parties.

Because our techniques are based on replicated secret sharing, it is expected that they will be
used with a relatively small number of parties. This is similar to the fastest known secret sharing
techniques based on Shamir secret sharing (e.g., [10, 8]) which also rely on replicated secret sharing
for certain operations.

2 Related Work

Secret sharing [40, 7] is a popular choice for secure multi-party computation, and common options
include Shamir secret sharing [40], additive secret sharing, and more recently replicated secret
sharing [23] for three parties. Computation over rings, and specifically rings Z2k , has recently
gained attention, and publications that use this setting include [9, 5, 28, 13, 17, 16, 20, 2, 25]. We
can distinguish between three-party techniques based on replicated secret sharing such as [9, 5, 28,
17, 20, 2, 25]; multi-party techniques based on additive secret sharing such as [13, 16], typically for
the setting with no honest majority; and ad-hoc techniques for three or four parties that utilize
one or more types of rings with constructions for specific applications such as [24] and others.
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The first category is the closest to this work and includes publications such as Sharemind [9],
a well-developed framework for three-party computation with a single corruption using custom
protocols; Araki et al. [5] who use three-party with a single corruption to support arithmetic
or Boolean circuits; and several compilers from passively secure to actively secure protocols [28,
17, 20, 2]. Dalskov et al. [15] also studies four-party computation with a single corruption. We
are not aware of existing multi-party techniques with honest majority over a ring which extend
beyond three parties or multi-party protocols based on replicated secret sharing over a ring. While
replicated secret sharing is meaningful only for a small number of parties, we still find it desirable
to support more participants and build additional techniques for this setting. For example, if our
matrix multiplication protocol over a ring with three parties is 100 times faster than conventional
field-based computation, it will remain faster even if the work increases when the number of parties
is larger than 3.

We rely on the results of Damgard et al. [16] for some of our protocols. While this work is
for the SPDZ2k framework [13] in the malicious setting with no honest majority, once we develop
elementary building blocks, the structure of higher-level protocols can remain similar.

Literature on privacy-preserving machine learning is also related to this work. We distinguish
between two-party solutions where one party holds the model and the other party holds the input
on which the model is to be evaluated and between multi-party (typically, three-party) solutions.
Publications from the first category include MiniONN [29] which studied neural network evalua-
tion using secret sharing and homomorphic encryption; Gazelle [24] which combined homomorphic
encryption with garbled circuits (GC) and additive secret sharing; DELPHI [33] which improved
upon these techniques; and CrypTFlow2 [37] which also builds upon this work with a focus on
deep neural networks. Chameleon [38] incorporates garbled circuits, the GMW protocol [32], and
additive secret sharing.

Multi-party constructions provide protocols for training and prediction across multiple parties.
SecureML [35] was one of the first publications to provide a two-server architecture for training
neural networks (as wells as several other machine learning applications). ABY3 [34] combines
techniques based on replicated and binary secret sharing with and GCs in the three-party setting
with an honest majority. These techniques are further improved in Trident [12] and extended
to the four-party setting. SecureNN [41] provides three- and four-party protocols for a variety
of neural network functions under the same security assumption as ABY3. Their protocols are
asymmetric, where parties have dedicated roles in a computation. ASTRA [11] is a three-party
framework over the ring Z2k under a linear secret sharing scheme under both semi-honest and
malicious security assumptions. Similar to SecureNN, protocols are asymmetric. They build upon
this work with BLAZE [36]. Abspoel et al. [3] applies the MP-SPDZ [25] framework for secure
outsourced training of decision trees. Their system operates under the three-party, honest-majority
assumption with RSS.

3 Preliminaries

3.1 Secure Multi-Party Computation

We consider the conventional secure multi-party setting with n computational parties, out of which
at most t can be corrupt. We work in the setting with honest majority, i.e., t > n/2 and focus is on
the security against semi-honest participants and simulation-based security, formulated as follows:

Definition 1. Let parties P1, . . ., Pn engage in a protocol Π that computes function f(in1, . . ., inn) =
(out1, . . ., outn), where ini and outi denote the input and output of party Pi, respectively. Let
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VIEWΠ(Pi) denote the view of participant Pi during the execution of protocol Π. More pre-
cisely, Pi’s view is formed by its input and internal random coin tosses ri, as well as messages
m1, . . .,mk passed between the parties during protocol execution: VIEWΠ(Pi) = (ini, ri,m1, . . .,mk).
Let I = {Pi1 , Pi2 , . . ., Pit} denote a subset of the participants for t < n, VIEWΠ(I) denote the com-
bined view of participants in I during the execution of protocol Π (i.e., the union of the views of
the participants in I), and fI(in1, . . . , inn) denote the projection of f(in1, . . . , inn) on the coordi-
nates in I (i.e., fI(in1, . . . , inn) consists of the i1th, . . ., itth element that f(in1, . . . , inn) outputs).
We say that protocol Π is t-private in the presence of semi-honest adversaries if for each coali-
tion of size at most t there exists a probabilistic polynomial time (PPT) simulator SI such that
{SI(inI , fI(in1, . . . , inn)), f(in1, . . ., inn)} ≡ {VIEWΠ(I), (out1, . . . , outn)}, where inI =

⋃
Pi∈I{ini}

and ≡ denotes computational or statistical indistinguishability.

As customary with techniques based on secret sharing, the set of computational parties does not
have to coincide with (and can be formed independently from) the set of parties supplying inputs
in the computation (input providers) and the set of parties receiving output of the computation
(output recipients). Then if a computational party learns no output, the computation should not
reveal any information to that party. Consequentially, if we wish to design a functionality that
takes input in the secret-shared form and produces shares of the output, any computational party
should learn nothing from protocol execution.

3.2 Secret Sharing

A secret sharing scheme allows one to produce shares of secret x such that access to a predefined
number of shares reveals no information about x. In the context of secure multi-party computation,
each of the n participants receives one or more shares xi and in the case of (n, t) threshold secret
sharing schemes, possession of shares stored at any t or fewer parties reveals no information about
x, while access to shares stored at t+1 or more parties allows for reconstruction of x. Of particular
importance to secure multi-party computation are linear secret sharing schemes, which have the
property that a linear combination of secret shared values can be performed locally on the shares.
For example, to add secret shared x and y, each participant can locally compute xi+yi on shares it
possesses. Examples of linear secret sharing schemes include additive secret sharing with x =

∑
i xi

(as used in Sharemind [9] with n = 3 and in SPDZ [18] with any n), Shamir secret sharing which
realizes (n, t) secret sharing with t < n/2 and represents a share as evaluation of a polynomial on
a distinct point, and replicated secret sharing discussed next.

3.3 Replicated Secret Sharing

Our techniques utilize replicated secret sharing (RSS) [23] which has an associated access structure
Γ. An access structure is defined by qualified sets Q ∈ Γ, which are the sets of participants who are
granted access, and the remaining sets of the participants are called unqualified sets. In the context
of this work we only consider threshold structures in which any set of t or fewer participants is not
authorized to learn information about private values (i.e., they form unqualified sets), while any
t+ 1 or more participants are able to jointly reconstruct the secret (and thus form qualified sets).
RSS can be defined for any n ≥ 2 and any t < n. To secret-share private x using RSS, we treat
x as an element of a finite ring R and additively split it into shares xT such that x =

∑
T∈T xT

(in R), where T consists of all maximal unqualified set of Γ (i.e., all sets of t parties in our case).
Then each party p ∈ [1, n] stores shares xT for all T ∈ T subject to p 6∈ T . In the general case
of (n, t)-threshold RSS, the total number of shares is

(
n
t

)
with

(
n−1
t

)
shares stored by each party,
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which can become large as n and t grow. In what follows, we use notation [x] to mean that (private)
x is secret shared among the parties using RSS.

Example. In the (4, 2) setting, T consists of 6 sets T = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
and thus there are 6 corresponding shares for every secret-shared x. Then party 1 stores shares
x{2,3}, x{2,4}, x{3,4}, party 2 stores x{1,3}, x{1,4}, x{3,4}, etc.

The parties will need to perform computation on secret shared values. The first important
property of RSS is that it is linear. For example, to add [a] and [b], party p computes aT +bT (in R)
for each T ∈ T that p stores. A number of other operations, such as multiplications, reconstructing
a value from its shares, etc., are interactive. We consequentially describe in Section 4 the way we
realize these operations for the purposes of this work. An important optimization on which we rely
is non-interactive evaluation of a pseudo-random function (PRF) using RSS in the computational
(as opposed to number-theoretic) setting as proposed in [14]. We detail our use of this functionality
in Section 4.

In what follows, we use the notation ← to denote output of randomized algorithms, while the
notation = refers to deterministic assignment.

4 Basic Protocols

Recall that RSS enjoys the linear property. For example, we can add secret-shared [a] and [b] by
adding aT and bT for each T ∈ T that a party possesses. We also use the ability to add/subtract
known integers to a secret-shared value [a] and multiply a secret-shared value [a] by a known
integer. In the former case, we realize [a] + b by converting b to [b] and performing the addition,
where shares bT use no randomness (e.g., we could set one share to b and the remaining shares to
0 to maintain that

∑
T∈T bT = b). In the latter case, c = [a] · b is realized by setting cT = aT · b (in

R) for each T ∈ T .
For convenience and without loss of generality, we let n = 2t+ 1. In the case when n > 2t+ 1,

2t+ 1 parties can carry out the computation on a reduced set of shares in such a way that there is
no need to involve the remaining parties in the computation.

4.1 Random Number Generation

We will be using two types of random number generation, which we discuss here.

4.1.1 PRG

Invocation of [a1], [a2], . . . ← PRG([s]) is realized by independently executing a PRG algorithm
on each share of s without interaction between the parties. Because the output of PRG([s]) is
private, we expect it to produce a sequence of secret-shared values (represented as ring elements).
Furthermore, in our construction we only call the PRG to obtain random (secret-shared) ring
elements. This means that calling PRG(sT ) to produce pseudo-random aT will result in PRG([s])
generating [a], where a is pseudo-random as well because a =

∑
T∈T aT (in R). This is similar to

evaluating a PRF on a secret-shared key in the RSS setting without interaction in [14].
PRG(sT ) can be realized internally using any suitable algorithm, as long as it is consistent

among the computational parties. For example, because of the speed of AES encryption on modern
processors, one might implement PRG(sT ) = PRF(sT , 0)||PRF(sT , 1)||. . ., where PRF : R×{0, 1}κ →
R is a PRF instantiated with AES.

Let G = PRG([s]). When the output of G is not consumed all at once, we use notation G.next
to retrieve the next (secret-shared) element from G. Similarly, if GT = PRG(sT ), notation GT .next
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refers to the next pseudo-random share output by GT .

4.1.2 PRandR

[a]← PRandR() computes a secret-shared random element of ring R. We implement this function
by executing PRG([k]).next, where k is a system-wide key. The key k is set up at the system
initialization time (in the form of secret shares) and does not change throughout program execution.

4.2 Multiplication

Multiplication [c] ← [a] · [b] can be realized using the fact that a =
∑

T∈T aT and b =
∑

T∈T bT
and thus [a] · [b] =

∑
T1,T2∈T aT1 · bT2 (in R). Note that for any (T1, T2) pair, there will be a party

holding shares T1 and T2, and thus performing this operation involves local multiplication and
addition over different choices of T1, T2. More formally, let mapping ρ : T × T → [1, n] denote a
function that for each pair (T1, T2) ∈ T 2 dedicates a party p ∈ [1, n] responsible for computing the
product aT1 ·bT2 (clearly, p must possess shares T1 and T2). For performance reasons, we also desire
that ρ distributes the load among the parties as fairly as possible.

As a result of this (local) computation, the parties hold additive shares of the product a · b = c,
which needs to be converted to RSS for consecutive computation. This conversion was realized in
early publications [31, 6] by having each party create replicated secret shares of their result and
distribute each share to the parties entitled to knowing it (i.e., party p receives shares from each
party for each T ∈ T subject to p 6∈ T ). This results in each participant creating

(
n
t

)
shares and

sending
(
n−1
t

)
of them to each party. Consequentially, each participant adds the values received for

share T and stores the sum as cT , for each T in its possession.
More recent work such as [5] and others traded information-theoretic security (in the presence

of secure channels) for communication efficiency by having the parties generate shared (pseudo-
)random values. We pursue this direction in this work as well. However, if this idea is applied
naively, it still results in unnecessarily high overhead. In particular, if we instruct each party p to
choose

(
n
t

)
−1 pseudo-random shares, compute the last share as a function of these pseudo-random

shares and the computed value, and send the computed share to each of the parties entitled to
having it, the inefficiency stems from the fact that p generates all possible shares, even those to
which it is not entitled to have access. This results in many shares not contributing to secrecy.

To improve efficiency, our solution is to eliminate shares that do not contribute to secrecy and
the corresponding key material for generating pseudo-random shares. Instead, our construction
utilizes key material consistent with the setup of the RSS scheme. In particular, we use the same
key setup as in PRSS, where kT is known by all p 6∈ T . Then when a party needs to generate
a pseudo-random share associated of its value for share T , the party will draw it from the PRG
seeded with kT .

We, however, note that multiple participants may need to draw from the PRG seeded with kT
to produce shares of their values, and it is generally not safe to use the same secret to protect
multiple values, which is also the case in our application. Instead, multiple elements might be
drawn from the PRG (seeded with kT ) to protect different values, and consistent use of the PRG
with each seed can be setup by the participants ahead of time so that that information is public
knowledge.

In addition to mapping ρ, our multiplication protocol uses another mapping χ : [1, n] → T ,
which for each party p specifies the share T (subject to p 6∈ T ) that p communicates (with all other
shares of p’s value being produced as pseudo-random elements). As before, we desire to choose the
values of χ(p) as to evenly distribute the load and communication.
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Protocol 1 [c]← [a] · [b]
// pre-distributed values are [k] and public maps ρ and χ
// define GT = PRG(kT )

1: each p ∈ [1, n] does the following
2: let Sp = {T ∈ T | p 6∈ T}
3: v(p) =

∑
T1,T2∈T ,ρ(T1,T2)=p aT1bT2 (in R)

4: for T ∈ Sp do
5: cT = 0
6: v

(p)
χ(p) = v(p)

7: end for
8: for p′ ∈ [1, n] in order do
9: for T ∈ Sp do

10: if (p′ 6= p) ∧ (p′ 6∈ T ) ∧ (χ(p′) 6= T ) then
11: cT = cT + GT .next (in R)
12: else if (p′ = p) ∧ (χ(p) 6= T ) then
13: z = GT .next
14: cT = cT + z (in R)

15: v
(p)
χ(p) = v

(p)
χ(p) − z (in R).

16: end if
17: end for
18: end for
19: send v

(p)
χ(p) to each p′ 6∈ χ(p) (other than itself)

20: for p′ ∈ [1, n] such that p 6∈ χ(p′) do

21: after receiving v
(p′)
χ(p′) from p′, set cχ(p′) = cχ(p′) + v

(p′)
χ(p′) (in R)

22: end for
23: cχ(p) = cχ(p) + v

(p)
χ(p) (in R)

24: return [c]

The above intuition leads us to the optimized n-party multiplication protocol given as Proto-
col 1. After computing its private value v(p) according to ρ, each party p distributes it into

(
n−1
t

)
additive shares (one of which is communicated while others are computed using PRGs). After-
wards, each party sets its cT as a sum of t+ 1 shares (computed or received) of values v(p′) for each
party p′ entitled to shares cT . This matches the fact that each share aT of secret a is maintained
by t + 1 parties. Correctness is achieved by ensuring that in Protocol 1 two different participants
p and p′ with access to shares T consistently associate the values that they draw from GT with
shares belonging to different parties by always processing the values in the increasing order of par-
ticipants’ IDs. Preparation of the shares in Protocol 1 is done on lines 10–16, where a participant
either masks its share with a pseudo-random value because it is used by another party or forms its
own shares and the value to be transmitted.

In this protocol, each party on average communicates t ring elements and draws
(
n−1
t

)
−1+(n−

1)
(
n−2
t

)
− t pseudo-random ring elements (which is equal to (t+ 1)(

(
n−1
t

)
− 1) when n = 2t+ 1).1

The latter can be explained by using
(
n−1
t

)
− 1 pseudo-random shares for its value being re-shared

and
(
n−2
t

)
shares that it has in common with any other party except the t values that it receives

with a symmetric communication pattern. (Recall that each party maintains
(
n−1
t

)
shares of a

1It is possible to distribute the load evenly among the parties by appropriately setting the χ function.
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mappings:

1

3

2

u = a{3}b{3} + a{1}b{3} + a{3}b{1}

2→ {3}
3→ {1}{1}, {3} → 2

{2}, {1} → 3

{3}, {1} → 2

{1}, {2} → 3

{2}, {2} → 1
{2}, {3} → 1

{3}, {2} → 1
{3}, {3} → 2

ρ : {1}, {1} → 3

v{2}

u{3}

w{1}

output:
c{2} = v{2} + G2.next
c{3} = v{3} + u{3}

v{3} = G3.next, v{2} = v − v{3}
v = a{2}b{2} + a{2}b{3} + a{3}b{2}

computation:
G2 = PRG(k{2}),G3 = PRG(k{3})
a{2}, a{3}, b{2}, b{3}

input:

G1 = PRG(k{1}),G2 = PRG(k{2})
a{1}, a{2}, b{1}, b{2}

computation:
w = a{1}b{1} + a{1}b{2} + a{2}b{1}
w{2} = G2.next, w{1} = w − w{2}
output:
c{1} = G1.next+ w{1}
c{2} = v{2} + w{2}

input:

G1 = PRG(k{1}),G3 = PRG(k{3})

input:
a{1}, a{3}, b{1}, b{3}

computation:

u{1} = G1.next, u{3} = u− u{1}
output:
c{1} = u{1} + w{1}
c{3} = u{3} + G3.next

γ : 1→ {2}

Figure 1: Illustration of three-party multiplication [a] · [b]. All arithmetic is in R.

secret and has
(
n−2
t

)
shares in common with any other party). When the communication pattern

is not symmetric, the overall amount of work and communication remains unchanged, but it may
be distributed differently. Thus, we refer to the average work and communication in that case.

Compared to other multiplication protocols in the literature, the three-party version of our
protocol matches communication of recent multiplication from [5], which (unlike this work) is
available only for three parties. This also improves on communication of standard multiplication
using Shamir secret sharing from [21] (information-theoretically secure in the presence of secure
channels) by a factor of 2 and improves on communication of Sharemind’s multiplication from [26]
by a factor of 2.

Example. With three parties, we could have party 1 (in possession of shares {2} and {3})
compute (and add) products a{2}b{2}, a{2}b{3}, and a{3}b{2}, party 2 (in possession of shares {1}
and {3}) compute products a{3}b{3}, a{1}b{3}, and a{3}b{1}, and party 3 (in possession of shares
{1} and {3}) compute products a{1}b{1}, a{1}b{2}, and a{2}b{1}. This defines mapping ρ. Also let
χ(1) = {2}, χ(2) = {3}, and χ(3) = {1}. This, for example, means that when party 1 divides

its computed value v(1) into shares v
(1)
{2} and v

(1)
{3}, the latter is computed using a PRG, while the

former is being sent to party 3 (i.e., the other party entitled to have that share). An illustration of
the multiplication protocol with these mappings in the three-party setting is given in Figure 1.

We state security of multiplication as follows:

Theorem 1. Multiplication [c]← [a] · [b] is secure in the (n, t) setting with t = (n− 1)/2 according
to definition 1.

Proof. Let I denote the set of corrupt parties. We consider the maximal amount of corruption
with |I| = t. Because the computation proceeds on secret shares and the parties do not learn
the result, no information should be revealed to the computational parties as a result of protocol
execution.

We build a simulator SI that interacts with the parties in I as follows: when a party p ∈ I
expects to receive a value from another party p′ 6∈ I in step 5 of the computation according to
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Operation Rounds
(3, 1) setting (n, t) setting

Comm Crypto ops Comm Crypto ops

PRG([s]).next and PRandR() 0 0 2 0
(
n−1
t

)
Mul([a], [b]) 1 1 2 t (t+ 1)

((
n−1
t

)
− 1
)

Open([a]) 1 1 0 t 0

MulPub([a], [b]) 1 2 2 n− 1 t
(
n−1
t

)
DotProd(〈[a1], . . . , [aN ]〉, 〈[b1], . . . , [bN ]〉) 1 1 2 t (t+ 1)

((
n−1
t

)
− 1
)

Table 1: Performance of RSS operations.

function χ, SI chooses a random element of R and sends it to p. SI preserves consistency of the
view and ensures that when the same value is to be sent by p′ to multiple parties in I, all of them
receive the same random value. This is the only portion of the protocol where corrupt parties can
receive values (that the simulator produces), and the only portion of the protocol when a corrupt
party p may send a value to an honest party p′ is step 4, which SI receives on behalf of p′. All
other computation is local, in which SI does not participate.

We next argue that the simulated view is computationally indistinguishable from the real view.
First, note that the corrupt parties in I collectively hold shares aT , bT and keys kT (and thus can
compute values GT .next) for each T ∈ T such that ∃p ∈ I and p 6∈ T . This entitles the corrupt
parties to computing the corresponding shares cT , but the rest of the shares must remain unknown,
so that they are unable to compute c. Next, notice that when |I| = t, there is only one share
T ∗ = I such that all parties p ∈ I have no access to kT∗ and cT ∗ , while all parties p′ 6∈ I store
those values. Then there are two cases to consider: (1) If one or more parties p ∈ I receive χ(p′)’s
share of vp

′
from another party p′ 6∈ I (it must be the case that χ(p′) 6= T ∗), the received share

has been masked by a fresh pseudo-random element from GT ∗ , is therefore pseudo-random and
indistinguishable from random by any p ∈ I. (2) If no party p ∈ I receives a value from any given
p′ 6∈ I, indistinguishability is trivially maintained. �

The computation associated with multiplication can be generalized to compute the dot-product
of two secret-shared vectors DotProd(〈[a1], . . . , [aN ]〉, 〈[b1], . . . , [bN ]〉), or evaluate any other multi-
variate polynomial of degree 2, using the same communication and the same number of crypto-
graphic operations as in multiplication. For that purpose, we only need to change the computation
in step 3 of the multiplication protocol. For example, for DotProd, we modify step 3 to compute
v(p) =

∑
T1,T2∈T ,ρ(T1,T2)=p

∑N
i=1 a

i
T1
biT2 (in R), while the rest of the steps remain unchanged.

4.3 Revealing Private Values

4.3.1 Open

Reconstruction of a secret shared value a = Open([a]) amounts to communicating missing shares
to each party so that the value could be reconstructed locally from all shares. Recall that there are(
n
t

)
total shares and each party holds

(
n−1
t

)
of them. Thus, during this operation each party is to

receive d =
(
n
t

)
−
(
n−1
t

)
missing shares.

Our next observation is that when n is not small, the value of d will exceed n and transmitting
d messages to each party is not needed. Because the value is reconstructed as the sum of all shares,
it is sufficient to communicate sums of shares instead of the individual shares themselves. Recall
that [a] can be reconstructed by t+ 1 parties. This means that it is sufficient for a participant to
receive one element (i.e., a sum of the necessary shares) from t other parties.

As before, we would like to balance the load between the parties and ideally have each party
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1

3

mappings:

2

a = a{1} + a{2} + a{3}

2→ ({1}, 1)
3→ ({2}, 2)

a{3}

a{2}

output:

input:
a{2}, a{3}

a = a{1} + a{2} + a{3}

a{1}, a{2}
output:

input:

output:
a = a{1} + a{2} + a{3}

input:a{1}, a{3}

a{1}

ν : 1→ ({3}, 3)

Figure 2: Illustration of three-party Open([a]). All arithmetic is in R.

transmit the same amount of data. This means that we instruct each party to send information to
t other parties according to another agreed upon mapping ν : [1, n] → (T , [1, n])d. For each party
p, this mapping will specify which of p’s shares should be communicated to which other party.
The mapping ν will then define computation associated with this operation: each p computes∑

T,ν(p)=T,p′ aT (in R) for each p′ 6= p present in the mapping and sends the result to p′.
Similar to other secret sharing frameworks, simply opening the shares of a maintains security

of the computation (in the sense that no information about private values is revealed beyond the
opened value a). This is because we maintain that at the end of each operation secret-shared values
are represented using random shares. In particular, it is clear that the result of PRG([s]).next and
PRandR() produces random shares; shares are properly re-randomized during multiplication of [a]
and [b], and shares of [a] + [b] and [a] − [b] are random if the shares of [a] and [b] are random
themselves.

Example. With n = 3, we could have ν(1) = ({3}, 3), ν(2) = ({1}, 1), and ν(3) = ({2}, 2),
which corresponds to ν(p) = ({p− 1}, p− 1) (where p− 1 = 3 for p = 1), which corresponds to the
communication pattern in Figure 2.

4.3.2 MulPub

Functionality c = MulPub([a], [b]) refers to multiplying two secret-shared [a] and [b] and opening
their product c. It can be invoked multiple times in our Gen algorithm, e.g., on line 5, where the
computation of [sj,αj ] involves multiplication. The reason why we are discussing this functionality
is because in the past this operation could be implemented more efficiently than multiplication fol-
lowed by an opening in alternative SS frameworks (e.g., see [10]), and we pursue a similar direction
here. In the protocol we present here, MulPub is realized using a single round without increas-
ing communication cost. Executing multiplication followed by Open would double the number of
rounds.

In multiplication, after computing a product, each locally computed value is no longer random
and needs to be re-randomized prior to opening it. In our RSS setting, we realize this by relying
on pseudo-random values locally computed by the parties. In particular, similar to other building
blocks, we associate a secret key kT with each T ∈ T (i.e., this is the same key shares used with
PRandR() and multiplication) and use pseudo-random values GT .next to protect the share of the
product that each party locally computes, prior to that party revealing its randomized value to all
others. To ensure that the product reconstructed by the parties is correct, we need to make sure
that the sum of all blinding pseudo-random values equals to 0. In the three-party case, this can
be accomplished by adding some pseudo-random values and subtracting others, as illustrated in

10



mappings:

1

3

2

c = c(1) + c(2) + c(3)

input:
a{1}, a{3}, b{1}, b{3}

computation:
v(2) = a{3}b{3} + a{1}b{3} + a{3}b{1}
c(2) = v(2) + G1.next− G3.next
output:
c = c(1) + c(2) + c(3)

{1}, {3} → 2
{2}, {1} → 3

{3}, {1} → 2

{1}, {2} → 3

{2}, {2} → 1
{2}, {3} → 1

{3}, {2} → 1
{3}, {3} → 2

ρ : {1}, {1} → 3

c(1)

c(2)

c(2)

c(1)

c(3)

c(3)

v(1) = a{2}b{2} + a{2}b{3} + a{3}b{2}

computation:

c(1) = v(1) + G2.next+ G3.next
output:
c = c(1) + c(2) + c(3)

a{2}, a{3}, b{2}, b{3},G2,G3

input:

input:
a{1}, a{2}, b{1}, b{2},G1,G2

computation:
v(3) = a{1}b{1} + a{1}b{2} + a{2}b{1}
c(3) = v(3) − G1.next− G2.next
output:

G1,G3

Figure 3: Illustration of three-party MulPub([a], [b]). All arithmetic is in R.

Figure 3.
With larger n and t we must be careful to draw new elements from each PRG to ensure that

values released by different parties are protected using proper randomness without reusing them.
This is similar to the logic used in multiplication. Then to realize this logic and ensure that all
blinding factors add to 0, when multiple values are sampled from GT , the last blinding value is
set to the sum of all previously drawn elements multiplied by −1 (in R). We provide a detailed
description of MulPub in Protocol 2. GT and Sp are defined as in multiplication.

In this algorithm, each party draws the same number of elements from each GT in its possession
to ensure that after single execution of this algorithm all parties are in the same state (by any given
party may discard some of the computed values). Similar to the computation in multiplication, we
order the parties based on the values of their IDs. Because any given share T is stored at t + 1
parties, there are t calls to each GT per invocation of this operation. Then the participant with
the lowest ID among the parties with access to T (j = 0) uses the first element of GT to protect
its value v(p) and disregards the t− 1 other elements, the participant with the next lowest ID uses
the second element, etc. The participant with the highest ID among those with access to T (j = t)
computes the sum of all t elements drawn from GT and subtracts the sum from its v(p). Correctness
follows from the fact that the sum of all blinding values over all parties and all shares is equal to
0, i.e., c =

∑
p c

(p) =
∑

p v
(p) (in R).

To show security, we prove the following result:

Theorem 2. The protocol c = MulPub([a], [b]) is secure in the (n, t) setting with t = (n − 1)/2
according to definition 1.

Before proceeding with the proof, we demonstrate intuition behind it on the three-party example
in Figure 3. Let zT denote the output of GT .next. Then party 1 transmits c(1) = v(1) + z{2} + z{3},

party 2 transmits c(2) = v(2) + z{1} − z{3}, and party 3 transmits c(p) = v(3) − z{1} − z{2}, where

c = v(1) + v(2) + v(3) and each v(i) needs to be protected (all arithmetic is in R). Without loss
of generality, let party 3 be corrupt. Then party 3 (with access to z{1} and z{2}) can compute

11



Protocol 2 c = MulPub([a], [b])

// pre-distributed values are [k] and public map ρ

1: each p ∈ [1, n] does the following
2: v(p) = c(p) =

∑
T1,T2∈T ,ρ(T1,T2)=p aT1bT2 (in R)

3: for T ∈ Sp do
4: let j be the number of parties p′ < p such that p′ 6∈ T
5: for i = 0 to t− 1 do
6: z = GT .next
7: if j = t then
8: c(p) = c(p) − z (in R)
9: else if i = j then

10: c(p) = c(p) + z (in R)
11: end if
12: end for
13: end for
14: send c(p) to all other parties
15: c = c(p)

16: for i = 1 to n− 1 do
17: upon receiving c(p′) from distinct p′, set c = c+ c(p′) (in R)
18: end for
19: return c

v(1) + z{3}, v
(2) − z{3}, and the output of the computation c, but no information about v(1) or v(2)

(assuming security of the PRG) other than their sum v(1) + v(2). The latter, however, is already
computable by party 3 using the output c and its share v(3), which reveals no extra information
about a and b beyond their product.

Proof. As before, let I denote the set of corrupt parties with |I| = t. We build a simulator SI
that interacts with the parties in I as follows: after SI extracts shares aT , bT , kT (T ∈ T such
that ∃p ∈ I and p 6∈ T ) from the corrupt parties and receives the output c from the trusted party,
SI computes v(p) as prescribed by the protocol for each p ∈ I and also their sum vI =

∑
p∈I v

(p)

(in R). SI sets v(p) values for the remaining n − t parties to random elements of R subject to∑
p 6∈I v

(p) = c− vI (in R). SI , acting on behalf of party p 6∈ I, sends the corresponding v(p) to each
party in I.

To show that this simulation is indistinguishable from the real protocol execution, recall that
there will be at least one T , denoted by T ∗ = I, to which the parties in I have no access (and thus
correspondingly cannot distinguish the output GT ∗ from random elements of the ring). During real
protocol execution the parties in I receive t + 1 values c(p), one per p 6∈ I. With the knowledge
that the corrupt parties collectively have, they can remove the effect of all randomization except
the use of the output of GT ∗ . If we let zi,T ∗ denote the ith call to GT ∗ .next during the execution
of MulPub in Protocol 2, then the corrupt parties can recover t values of the form v(p) + zi,T ∗

with unique p and i and one value of the form v(p) −
∑t

i=1 zi,T ∗ for another p. The next thing
to notice is that any t (out of t + 1) of these values are pseudo-random and computationally
protect the corresponding v(p) values. The introduction of the remaining value reveals the sum of
all v(p)s, but not other information (i.e., the last value corresponds to the difference to make the
sum equal to c− vI). This means that substituting these values with random elements subject to∑

p 6∈I v
(p) = c−vI provides the same information to the corrupt parties and achieves computational
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Protocol 3 [b]← RandBit()

1: [u]k+2 ← PRandR(k + 2);
2: [a]k+2 = 2[u]k+2 + 1;
3: e = MulPub([a]k+2, [a]k+2);
4: compute the smallest root of e modulo 2k+2 and denote it by c; compute the inverse of c modulo

2k+2 and denote it by c−1;
5: [d]k+2 = c−1[a]k+2 + 1;
6: for each T ∈ T , let share bT = dT /2;
7: return k least significant bits of each bT as [b]k;

indistinguishability of the views. �
Similar to multiplication, MulPub can be generalized to evaluate any (multi-variate) polynomial

of degree 2 and open the result. For example, in Gen we compute and open sj,αj = sj,1+αj(s
j,0−sj,1)

using this operation.

5 Composite Protocols

While the previous operations can be instantiated to work with any finite ring, the techniques in
this section work only in a ring Z2k for some k. Ring Z2k (for an appropriate choice of k) is the
primary reason for supporting secure computation over rings because it allows us to utilize native
CPU instructions for ring operations.

Because the goal of this work is to enable efficient general-purpose computation over rings Z2k ,
we focus on major building blocks which can be consequentially used to compose a protocol for
arbitrary functionalities including machine learning tasks. Of central importance to this effort
is the development of comparison protocols (for both less-than comparison and equality testing
functionalities), which are known to be difficult to design in a framework where the elementary
techniques are based on arithmetic gates. Others include bit decomposition and truncation (i.e.,
division by a known power of 2). Combined together, these techniques can enable Boolean, integer,
fixed-point, and even floating-point arithmetic as well as array and related operations, giving the
ability to compose general-purpose protocols.

5.1 Random Bit Generation

Random bit generation, denoted RandBit, is a crucial building block used in a large variety of
protocols including different types of comparisons, bit decomposition, division, etc. Therefore, it is
of central importance to support this functionality for general-purpose computation. Our starting
point for RandBit over a ring Z2k was the random bit generation protocol from [16] which modified
field-based random bit generation from [10] to work in a ring Z2k . We use the logic of [16] and
adjust the algorithm to work in our setting. The resulting protocol is shown as Protocol 3.

To achieve 50% probability of each outcome of this operation, the computation has to proceed
over a larger ring Z2k+2 for most steps of the RandBit protocol, where the original computation was
set up over ring Z2k . Consequentially, we use notation [x]` with variable ` to denote that shares
and computation are over ring Z2` . We also parameterize function PRandR by the desired bitlength
and PRandR(`) denotes that the function returns a random ring element from Z2` .

Correctness of our construction follows from [16] and security also follows from the logic. That
is, because we only disclose a random value e in the protocol and otherwise use secure building

13



Protocol 4 [ak−1]← MSB([a]), where a =
∑k−1

i=0 ai2
i ∈ Z2k

1: [b], [r0], . . . , [rk−1]← RandBit();
2: [r′] =

∑k−2
i=0 [ri]2

i;

3: [r] =
∑k−1

i=0 [ri]2
i;

4: c = Open([a] + [r]);
5: c′ = c mod 2k−1;
6: for i = 0 to k − 2 in parallel [ri]1 ← A2B([ri]);
7: [u]1 ← BitLT(c′, [r0]1, . . . , [rk−2]1);
8: [a′] = c′ − [r′] + 2k−1[u]1;
9: [d] = [a]− [a′];

10: e = Open([d] + 2k−1[b]) and let ek−1 be the most significant bit of e;
11: [ak−1] = ek−1 + [b]− 2ek−1[b];
12: return [ak−1];

blocks, no information about private values can be leaked. The protocol runs in a single round using
the same communication as MulPub over Z2k+2 . To improve performance, in our implementation
the square root and inverse operations are carried out simultaneously in step 4.

5.2 Comparisons

Less-than (or greater-than) comparisons and equality tests can also be realized in this setting, using
the results of [16]. We briefly describe the comparison protocol here. Traditionally, to compute
a < b, we first compute the difference a − b and then compute the most significant bit of the
difference, i.e., negative or positive, which informs the result. The protocol for out setting adapted
from MSB from [16] is given as Protocol 4.

It relies on two additional building blocks, namely arithmetic to binary conversion A2B and
comparisons on bit-decomposed values BitLT from [39]. A2B locally converts shares over Zk into
shares over Z2 so that BitLT (which works with bits) could be implemented more efficiently.

Security of the algorithm follows from prior work and the fact that we use a composition of
secure building blocks. In particular, the only values revealed in the protocol (in steps 4 and 10)
are information-theoretically protected using freshly generated randomness. The round complexity
of this protocol is log(k − 1) + 3 (where log(k − 1) is due to BitLT) and the first round can be
precomputed. Communication involves sending elements of Z2k , Z2k+2 , and Z2. If we convert the
communication to the number of elements in Z2k+2 and use the cost of the multiplication protocol
as a unit of interactive operation, this protocol has communication cost < 2k + 6.

To correctly implement the comparison operation of two k-bit integers over ring Z2k , one would
need to invoke the MSB protocol 3 times. However, correctness is also guaranteed if we compare
two (k− 1)-bit integers over ring Z2k using a single call to MSB. We use the latter approach in our
implementation of machine learning algorithms.

There are noteworthy differences in the design of protocols developed for a ring as opposed to
original protocols for a field. Certain operations such as prefix multiplication are not available in a
ring and we resort to logarithmic round building blocks when protocols over a field achieve constant
round complexity. In the context of comparison, a typical tool for realizing them was truncation
(i.e., right shift), the cost of which was linear in the number of bits truncated, but the modulus
had to be increased by a statistical security analysis to support such operations. In a ring, on the
other hand, there is no significant increase in the ring size, but the communication cost is linear in
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Protocol 5 [a]k′ ← Convert([a]k, k, k
′), where k′ > k

1: [r0]k, . . . , [rk−1]k ← RandBit();
2: [r]k =

∑k−1
i=0 [ri]k2

i;
3: c = Open([a]k − [r]k);
4: for i = 0 to k − 1 in parallel [ri]1 ← A2B([ri]k);
5: [a0]1, . . . , [ak−1]1 ← AddBitwise(c, [r0]1, . . . , [rk−1]1);
6: for i = 0 to k − 1 in parallel [ai]k′ ← B2A([ai]1, k

′);
7: return [a]k′ =

∑k−1
i=0 [ai]k′2

i;

Protocol Rounds Communication
RandBit() 1 2
MSB([a]) log(k − 1) + 3 2k + 6
Convert([a]k, k, k

′) log k + 4 2(k + k′) + log k + 7

Table 2: Performance of composite protocols with communication measured in elementary interac-
tive operations over Z2k+2 .

the bitlength of the ring and not in the bitlength of the truncated portion. This brings different
trade-offs, but the availability of faster arithmetic in a ring will still lead to significant savings.

5.3 Share Conversion

In certain applications, such as neural network evaluation implemented over integers, the bitlength
of the intermediate results grows during the computation. Combined with the fact the computation
over shorter integers is of larger size, it would be beneficial to initially perform computation using
a smaller ring size and consequentially convert it to a larger ring. For that reason, we discuss a
procedure for converting a secret-shared value [a]k over Z2k to a different representation [a]k′ over
Z2k′ for k′ > k. We know how to do conversion between different field sizes in certain cases [19].

If we simply cast k-bit shares to k′-bit shares for k′ > k, the overflow due to share addition in
the absence of reduction modulo 2k will affect the reconstructed value modulo 2k

′
. Thus, the task

is to leave k least significant bits of a secret shared value and erase the remaining bits in a longer
share representation. One way to achieve this is to invoke a truncation protocol [a] � `, e.g., as
([a] · 2k′−k) � 2k

′−k or [a] − ([a] � k)2k. However, because computing precise truncation over
a ring is costlier compared to the field algorithm, we design a more efficient version based on bit
decomposition. In particular, we perform bit decomposition of [a]k into shares of bits in Z2, convert
the bit shares to Z2k′ , and reassemble [a]k′ . This procedure is denoted by Convert and given as
Protocol 5. It is based on the bit decomposition from [16] and invokes two additional sub-protocols:
B2A, which converts shares of a bit from Z2 to Z2k′ and AddBitwise, which adds two integers in a
bit-decomposed form.

Security of Protocol 5 follows from the same argument as before: it invokes only secure building
blocks and the disclosed value c is independent of private inputs. The round complexity is log k +
4 and communication consists of elements of Z2k+2 , Z2k , Z2, and Z2k′+2 . When converted to
elementary interactive operations, we obtain < 2(k + k′) + log k + 7. A summary of the protocols
discussed in this section is given in Table 2.
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Protocol
Batch Size

1 10 102 103 104 105 106

LAN

Shamir [43] (30 bits) 0.119 0.162 0.484 1.82 17.4 190 1,978
Shamir [43] (60 bits) 0.121 0.164 0.509 1.94 20.3 208 2,190
Shamir [8] (30 bits) 0.118 0.143 0.436 1.39 13.5 141 1,428
Shamir [8] (60 bits) 0.121 0.145 0.459 1.51 15.2 160 1,639
RSS (30 bits) 0.114 0.116 0.129 0.33 2.51 19.9 158
RSS (60 bits) 0.109 0.117 0.144 0.495 4.31 30.0 268

WAN

Shamir [43] (30 bits) 20.9 20.9 21.3 25.3 51.0 529 4,637
Shamir [43] (60 bits) 20.9 20.9 21.4 25.5 128 948 5,854
Shamir [8] (30 bits) 14.0 14.1 14.3 17.3 34.7 304 2,526
Shamir [8] (60 bits) 14.0 14.1 14.4 17.6 51.3 557 4,152
RSS (30 bits) 13.9 14.0 14.0 14.2 16.8 172 1,817
RSS (60 bits) 14.0 14.0 14.0 14.4 32.5 277 3,389

Table 3: Performance of multiplication protocols in milliseconds.

Protocol
Matrix Size

10× 10 100× 100 500× 500 1000× 1000

LAN

Shamir [43] (30 bits) 0.446 178 19,600 1.69 · 106

Shamir [43] (60 bits) 0.467 184 20,172 1.72 · 106

RSS (30 bits) 0.151 9.70 1,230 12,200
RSS (60 bits) 0.165 11.0 1,460 14,897

WAN

Shamir [43] (30 bits) 21.8 285 20,610 killed
Shamir [43] (60 bits) 21.8 368 21,085 killed
RSS (30 bits) 14.0 32 2,347 29,652
RSS (60 bits) 14.0 49.9 2,862 30,131

Table 4: Performance of matrix multiplication in milliseconds.

6 Performance Evaluation

We implemented the protocols described in this work and evaluate their performance. We run
both micro-benchmarks to evaluate the individual protocols as well as offer evaluation of machine
learning applications.

The implementation was done in C++. We use AES from the OpenSSL cryptographic library [1]
to instantiate the PRF and also to implement secure communication channels between each pair of
the computational parties. We report the average execution time of 1000 executions for the micro-
benchmark experiments and the average time of 5 executions for the application experiments. The
runtimes are also averaged across the computational parties.

All experiments were run in a three-party setting. For LAN experiments, we used three 8-
core 2.1GHz machines with 64GB of RAM. They were connected via a 1 Gbps Ethernet link
with one-way latency of 0.15ms. For WAN benchmarks, we used two of the machines above and
one remote 2.4HGz machine. One-way latency between the remote and local machines was 23ms.
Although the machine configurations are slightly different, this should not introduce inconsistencies
in the experiments because our protocols are interactive and symmetric, and the computation time
depends on the communication links and performance of the slowest machine. All experiments use
a single core.
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Protocol
Batch Size

1 10 102 103 104 105

LAN

Shamir [43] (30 bits) 0.178 0.396 1.08 9.71 95.3 986
Shamir [43] (60 bits) 0.199 0.455 1.31 12.1 119 1,241
RSS (30 bits) 0.103 0.120 0.213 0.515 4.47 54.0
RSS (60 bits) 0.104 0.133 0.296 0.897 11.2 98.6

WAN

Shamir [43] (30 bits) 21.4 21.6 23.6 35.9 160 1,591
Shamir [43] (60 bits) 21.4 21.6 24.1 38.7 178 1,935
RSS (30 bits) 20.9 20.9 21.0 21.9 30.4 301
RSS (60 bits) 20.9 20.9 21.9 22.8 143 853

Table 5: Performance of RandBit protocols in milliseconds.

Protocol
Batch Size

1 10 102 103 104 105

LAN

Shamir [43] (30 bits) 3.11 5.07 39.8 394 4,064 40,339
Shamir [43] (60 bits) 4.01 11.0 96.2 947 9,614 96,019
RSS (30 bits) 0.842 1.233 4.826 20.65 192.4 1,873
RSS (60 bits) 1.032 2.256 12.20 73.69 627.1 6,273

WAN

Shamir [43] (30 bits) 148 156 215 1086 7,364 67,497
Shamir [43] (60 bits) 151 166 412 2,198 18,223 175,995
RSS (30 bits) 125 126 129 199 909 8,059
RSS (60 bits) 125 127 139 497 3,034 34,041

Table 6: Performance of most significant bit MSB protocols in milliseconds.

6.1 Micro-benchmarks

In this section we report on the results of our micro-benchmark experiments for the following
operations: multiplication, matrix multiplication, random bit generation (RandBit) and comparison
(MSB). The experiments were set up to use two bitlengths: k = 30 and k = 60. Internally, this
allows us to use the unsigned and unsigned long integer types, respectively, to implement ring
operations.

Tables 3 and 4 report on performance of multiplication and matrix multiplication operations,
respectively. Because the most meaningful comparison of our results is to those in a comparable
setting – i.e., semi-honest security with honest majority – over a field, we report performance of
these protocols using implementation of Shamir secret sharing from PICCO [43]. Also, because [8]
recently improved the multiplication protocol that [43] uses, we additionally include the results
of evaluating the multiplication protocol from [8]. Since the techniques from [43] and [8] perform
computation over a field, in order to represent all k-bit integers (for k = 30 and k = 60 in our
experiments), we use field Zp with a (k+1)-bit prime p. Batch size in the tables denotes how many
operations were executed at the same time in a single batch.

Interestingly, we note from Table 3 that RSS-based realization of multiplication is up to 12.5
times faster on the LAN for a sufficiently large number of parallel invocations than the multipli-
cation protocol used in PICCO. Furthermore, the communication of the multiplication protocol
from [8] matches the communication of our multiplication for 3 parties (i.e., one ring or field ele-
ment transmitted per party), but our performance is still 9 times faster for large batch sizes than
the performance of [8], despite the fact that with RSS each party has to perform local computa-
tion twice (once for each share). This informs us that the performance advantage must stem from
the use of faster arithmetic and avoiding repeated use of modulo reduction. In the WAN setting,

17



102 104 106

Operations

10−3

10−2
T
im

e
/
O
p
e
ra

ti
o
n
s
(m

s)

RSS k = 30

[43] k = 30

[8] k = 30

RSS k = 60

[43] k = 60

[8] k = 60

(a) Mult([a], [b])

102 104

Operations

10−3

10−2

T
im

e
/
O
p
e
ra

ti
o
n
s
(m

s)

RSS k = 30

[43] k = 30

RSS k = 60

[43] k = 60

(b) RandBit()

102 104

Operations

10−1

100

T
im

e
/
O
p
e
ra

ti
o
n
s
(m

s)

RSS k = 30

[43] k = 30

RSS k = 60

[43] k = 60

(c) MSB([a])

Figure 4: Microbenchmarks results.

performance is heavily dominated by the network latency for batches of smaller sizes, but we see
that our techniques can still be up to 3.9 times faster than those in [43] and up to 2.1 times faster
than those in [8] for larger batch sizes.

Table 4 reports on matrix multiplication results, where we multiply two matrices of the same
size specified in the table by simultaneously invoking the necessary number of dot-product proto-
cols. We can see from the table that ring-based performance can be more than 100 times faster
for large matrices compared to PICCO’s field-based computation. This is expected because matrix
multiplication performance is dominated by local work for matrices of large size (i.e., to multiply
two m × m matrices, the local work is O(m3), while communication is O(m2)). This is where
the use of ring-based computation over Z2k is most beneficial and directly represents performance
improvement due to faster underlying arithmetic. Furthermore, performance improvement is also
well-pronounced for matrices of small size, as we have a 3-fold performance improvement for ma-
trices as small as 10× 10 on the LAN.

Tables 5 and 6 provide results of our random bit generation RandBit and most significant bit
MSB protocols. To support k-bit computation, both protocols require that we use ring Z2k+2 during
a portion of the computation (while the remaining portion uses Z2k . The equivalent protocols
for Shamir secret sharing – namely, RRandBit and LTZ from [10] – require statistical hiding and
therefore increase the modulus size by a security parameter κ. PICCO sets κ = 48 and therefore
our Shamir secret sharing experiments use prime modulus of size 79 and 109 bits for k = 30 and
k = 60 settings, respectively.

RandBit is a relatively simple protocol and both ours and the protocol from [10] implemented
in PICCO communicate the same number of ring or field elements in the 3-party setting. Table 5,
however, demonstrates that our ring-based solution is faster and the difference increases as we
increase the batch size, reaching up to 21-fold improvement for large batch sizes. This indicates
that local computation of field-based RandBit is its bottleneck. In particular, the square root
computation in RandBit from [10] is implemented as a modulo exponentiation. While the modulus
size is not very large, the cost of that operation still dominates performance of field-based RandBit.

The gap between PICCO’s LTZ and our MSB is even slightly larger than the gap of RandBit
protocols, as evidenced by Table 6. Both field- and ring-based implementations make a linear in
k number of calls to RandBit, which contributes to the difference, but our implementation also
executes BitLT over Z2, while PICCO’s implementation uses a fixed field for all operations. As a
result, our MSB is up to 21.5 times faster for large batch sizes.

It is also informative to compare our field vs. ring results with those of SPDZ. While SPDZ [18]

18



MiniONN [29] Gazelle [24] SecureNN [41] Shamir [8, 43] RSS
Batch Size 1 1 1 1 1 5 10 50 100
Latency 3580 + 5740 810 220 2581 341 313 303 304 309

Table 7: Performance of MNIST neural network prediction in milliseconds.

and its ring version SPDZ2k [13, 16] use a different adversarial model and different underlying
techniques (although also based on secret sharing), we would like to know whether similar savings
are achievable in different settings. Recalls that our composite protocols were influences by those
developed for SPDZ2k and thus share a similar structure. [16] reports that performance of multipli-
cation improved by a factor of 4.6–4.9 for multiplication and by a factor of 5.2–6.0 for MSB-based
comparison on a 1Gbps LAN. The results are only provided as throughput improvement and do
not report different batch sizes. In our experiments we observed greater improvements, up to 9
times for multiplication and up to 21.5 improvement for MSB. This may be explained by the fact
that our techniques are more lightweight and perhaps switching to faster arithmetic make less of
an impact in the SPDZ setting.

The last results that would like to mention is depicting timings per operation when executing
a number of operations in parallel. Figure 4 provides these results. As the figures suggest, Shamir
secret sharing-based multiplication protocols reach the bottleneck of computation at a batch size
of 103, while our multiplication could benefit from parallel operation until the batch size reaches
106. We believe this is because the computation components in our protocol are fast, and the
communication dominates the cost of entire procedure. This explains why the gap between our
protocol and the others in WAN is smaller than the gap in LAN. Similar phenomena are also
observed in benchmarks of MSB and RandBit. We can also see in Figure 4c that PICCO’s MSB
barely benefits from the parallel operation, while our protocol achieves a 40 times speed-up by
increasing the batch size to 104. This illustrates that our protocol has a better potential to facilitate
applications that requires batch operations.

6.2 Machine Learning Applications

We also evaluate our protocols on machine learning applications and show that they exhibit good
performance. We consider neural network inference and support vector machine (SVM) evaluation,
in part to facilitate comparison to prior work.

6.2.1 Neural Networks

A neural network is a series of interconnected layers consisting of neurons. Each neuron has
an associated weight and bias that is used for computation on some input data, and outputs a
prediction based on the data. There is a large variety of different types of neural networks, and
for our benchmarking we chose the neural network from MiniONN [29] for the MNIST dataset [27]
(Figure 12 in [29]) because it is a popular choice for evaluating privacy-preserving neural network
inference.

The MNIST neural network evaluation (also given as Protocol 6 in Appendix A) uses con-
volution and fully-connected layers, which are implemented using matrix multiplication. It also
uses Rectified Linear Units (ReLU) as the activation function, which for a vector y is defined as
f(y) = [max(0, yi)]. Lastly, it invokes max pooling of a window 2 × 2, which computes the max-
imum value of the elements in that window. ReLU and max pooling operations are implemented
using MSB and multiplication operations and are designed to minimize the number of rounds (i.e.,
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Protocol
Integer Batch Size

size 1 5 10 50 100

RSS
30 29.8 14.4 13.1 10.4 10.1
60 58.9 39.0 35.3 33.9 30.9

SPDZ2k [16]
32 242 + 3055 162 + 3055 – – –
64 362 + 10006 244 + 10006 – – –

Shamir [8, 43]
30 311 313 – – –
60 705 689 – – –

Table 8: Performance of ALOI SVM classification in milliseconds.

computation of maximum uses hierarchical structure).
We use MiniONN’s implementation choices and, in particular, run the computation on integer

inputs. Because the inputs were originally floating-point values, they are scaled by a factor of
1000 and rounded to the nearest integer, including both positive and negative values. Because the
bitlength of the intermediate results grows with each multiplication, [29]’s implementation ran the
computation using a 37-bit modulus and avoided the use of truncation. However, we determined
that this modulus is too small and 49 bits are necessary to correctly evaluate the model, which we
consequentially use. Our implementation achieves the same 99.0% precision as reported for this
model in [30] (corrected version of [29]).

While it is possible to perform the entire computation in Z249 , we observe that the initial steps
are of the largest size and uses significantly shorter integers than 49 bits. Because the cost of
comparisons is linear in the bitlength of the ring elements, we can improve performance by several
times if we start computation on shorter values and convert the intermediate results to a larger
ring prior to multiplication that increases the size of the intermediate results. Therefore, we start
computation with 20-bit integers and increase the ring size by 10 bits at different points of the
computation as illustrated in Protocol 6.

The results of our experiments for the MNIST neural network model with three computational
parties are presented in Table 7. In addition to listing MiniONN’s performance (online and offline),
we also include performance of Gazelle’s two party construction [24] and SecureNN’s custom 3-
party solution from [41] for the same model. Lastly, we also provide performance of PICCO’s
program for the same functionality with improved multiplication from [8]. In order to do as close
of a comparison as possible, our PICCO program is written to compute on integers of increasing
sizes, which means that the cost of comparisons is linear in 20 in the first round of ReLU and max
pooling operations just like in our ring-based implementation and gradually increases throughout
the computation. PICCO determines the optimal modulus size for the computation, which in this
case was computed to be 89 bits, and runs the entire computation using the same field size, but
the cost of comparison operations is aligned with our ring-based implementation.

MiniONN represents somewhat outdated now performance in the two-party setting and our
solution is significantly faster; similarly, it is about 2.4 times faster than Gazelle’s performance.
PICCO’s field-based computation with three computational parties is 7.5 times slower, which is
in line with the micro-benchmark results. Our solution also performs on par with custom 3-party
SecureNN’s solution. In particular, SecureNN builds protocols for PPML tasks using custom arith-
metic for three parties, runs the experiments using more powerful hardware (specifically, Amazon
EC2 c4.8xlarge instances), and does not specify how multi-threading may have been used. We con-
sider achieving similar performance to be a significant achievement for a general-purpose framework
that supports a varying number of participants.

Several other publications benchmarked neural network predictions [34, 38, 4, 12, 11, 36, 33,
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37]. However, because they either do not support or do not run the computation associated with
MiniONN’s MNIST neural network evaluation, we cannot directly compare our performance. For
example, while ABY3 [34] is said to use MiniONN’s MNIST neural network, their experiments are
actually based on a different, simpler model used in Chameleon [38].

6.2.2 Support Vector Machines

A support vector machine (SVM) is a type of a supervised learning classifier, where the computation
is parameterized by the number of classes q and features m. We choose to do SVM classification
and specifically run the computation for the ALOI dataset [22] to be able to compare performance
of our framework to that of SPDZ2k reported in [16]. In particular, SPDZ2k achieves security in
the malicious model with no honest majority over a ring – a much stronger security model than
ours – and we are interested in knowing the computational price of the differences in the security
assumptions.

SVM computation consists of a series of dot products of the feature vector and support matrix,
all of which can be computed at the same time, followed by argmax computation of the resulting
values. This computation is given as Protocol 7 in Appendix A, where argmax (similar to max)
can be computed in a hierarchical manner. The results of our experiments for the ALOI dataset
with 463 classes and 128 features are presented in Table 8.

We see that SPDZ2k ’s performance (combined offline and online) in the two-party setting is
about 200 times slower due to their significantly stronger security model. We also see that PICCO’s
implementation is an order of magnitude slower and the times do not reduce as significantly with
the increased batch size as in our ring-based setting. This tells us that a single invocation of SVM
evaluation is network-bound over a ring, but this is not the case with field-based computation.

7 Conclusions

In this work we study multi-party threshold secret sharing over a ring in the semi-honest model with
honest majority with the goal of improving performance compared to its field-based counterparts.
We design low-level operations for n-party replicated secret sharing over an arbitrary ring and
consequentially build on them to enable general-purpose protocols in this setting over ring Z2k

for some k. Our implementation results demonstrate that ring-based implementations of different
operations are several times faster than their field-based equivalents with n = 3. This allows us to
improve performance of different applications including privacy-preserving machine learning tasks.
We specifically test performance of neural network and support vector machine classification and
find that performance of our techniques is on par with the best custom three-party protocols for
those functions.
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A Additional Protocols

Protocol 6 shows the computation associated with evaluating the MNIST neural network model
from [29]. Protocol 7 provides computation associated with support vector machine evaluation on
q classes and m features. For the ALOI SVM from [16], we use q = 463 and m = 128.
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Protocol 6 MNIST neural network evaluation

1: (Convolution) 28 × 28 input image, 5 × 5 window size, (1, 1) stride, 16 output channels:
Z16×576

220
← MatMult(Z16×25

220
,Z25×576

220
);

2: (ReLU) calculates ReLU for each entry of Z16×576
220

;

3: (Max Pooling) input Z16×576
220

and 1× 2× 2 window size, outputs Z16×12×12
220

;

4: (Conversion) Z16×144
230

← Convert(Z16×144
220

, 20, 30);

5: (Convolution) 5 × 5 window size, (1, 1) stride, 16 output channels: Z16×64
230

←
MatMult(Z16×400

230
,Z400×64

230
);

6: (ReLU) calculates ReLU for each entry of Z16×64
230

;

7: (Max Pooling) input Z16×64
230

and 1× 2× 2 window size, outputs Z16×4×4
230

;

8: (Conversion) Z16×16
240

← Convert(Z16×16
230

, 30, 40);

9: (Fully Connected) Connects 256 incoming nodes to 100 outgoing nodes : Z100×1
240

←
MatMult(Z100×256

240
,Z256×1

240
);

10: (ReLU) calculates ReLU for each entry of Z100×1
240

;

11: (Conversion) Z100×1
249

← Convert(Z100×1
240

, 40, 49);

12: (Fully Connected) Connects 100 incoming nodes to 10 outgoing nodes : Z10×1
249

←
MatMult(Z10×100

249
,Z100×1

249
);

13: return Z10×1
249

;

Protocol 7 SVM classification, where q is the number of classes, m is the number of features, fi,j
is the feature vector, and bj are the biases

1: for each j = 1 to q in parallel do [cj ]← [bj ] +
∑m

i=1 DotProd([fi,j ], [xi]);
2: return ([aind], [ind])← ArgMax([c1], . . . , [cq]);
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