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Abstract

State machine replication protocols have reached a crucial juncture in their widespread
deployment. Tokenised state machine replication protocols, which utilise an internal token
for rewarding player participation, have brought about major advances in the areas of
finance, internet of things, supply chain, legal systems, and data storage, to name but
a few. However, the viability of these protocols as replacements for their centralised
alternatives requires guarantees of player actions at all times which at present do not
exist. Current standards for player characterisation in tokenised state machine replication
protocols allow for honest players who will always follow the protocol, regardless of possible
token increases for deviating. Given the ever-increasing market capitalisation of these
tokenised protocols, honesty is becoming more expensive and more unrealistic. As such,
this out-dated player characterisation must be removed to provide true guarantees of
safety and liveness in a major stride towards universal trust in state machine replication
protocols and a new scale of adoption. As all current state machine replication protocols
are built on these legacy standards, it is imperative that a new player model is identified
and utilised to reflect the true nature of players in tokenised protocols, now and into the
future.

To this effect, we propose the ByRa player model for state machine replication pro-
tocols. In the ByRa model, players either attempt to maximise their tokenised rewards,
or behave adversarially. This merges the fields of game theory and distributed systems,
an intersection in which tokenised state machine replication protocols exist, but on which
little formalisation has been carried out. In the ByRa model, we identify the properties of
strong incentive compatibility in expectation and fairness that all protocols must satisfy in
order to achieve state machine replication. We then provide FAIRSICAL, a protocol which
provably satisfies these properties, and by doing so, achieves state machine replication in
the ByRa model.
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1 Introduction

Tokenisation has emerged as one of the most successful tools for instantiating state machine
replication (SMR) protocols. Adding tokenised rewards to SMR protocols explicitly quantifies
the gains and losses of players within protocols based on the actions they take. If a majority of
players seek to maximise their tokens in an SMR protocol, and players maximise their tokens
by following the protocol, then guarantees of SMR can be made.

Unfortunately, current SMR protocols fundamentally assume the existence of some subset
of players who ignore token changes and honestly follow the protocol. If a player can deviate
from a protocol to increase their tokens with no perceived effect on safety and liveness, it must
be assumed that every such individual will choose to do this. In any large-scale usage scenario,
most, if not all players will not consider their deviations as affecting SMR. Therefore, it is
essential that we assume non-Byzantine players will seek to maximise their tokens in tokenised
protocols. As a direct consequence, SMR guarantees can no longer depend on honest-by-
default users in tokenised protocols. We explicitly outline the ByRa model as an updated
player characterisation framework to reflect this weakness in current standards. By moving
to the ByRa model, which we formally define in Definition 4.1, the caveat of honest player
dependencies in current SMR protocols is removed. Furthermore, we demonstrate that it is
possible to achieve SMR in the ByRa model by providing the FAIRSICAL protocol.

To progress towards global adoption, a tokenised SMR protocol must first ensure that all
players will maximise their tokens by following the protocol. Implementing an SMR protocol
that maximises a player’s tokens by following the protocol is known as incentivisation, and is a
fundamental requirement of any SMR protocol. Much of the work on incentivisation in SMR
protocols stems from the seminal work on selfish mining in Nakamoto-consensus [20]. In [20],
it is demonstrated that certain players are incentivised to deviate from the prescribed protocol.
This eventually leads to a scenario where SMR properties are violated, as discussed in [20]. It
is only upon the performing of actions as required by the protocol by some majority that it is
possible to guarantee the SMR properties of safety and liveness. This has remained the case
in the age of tokenisation.

While the concept of incentivisation is elegant, its implementation is fraught with compli-
cations. Tokenisation of SMR protocols came to popular practice as a direct consequence of
Bitcoin and Nakamoto consensus [27]. However, due to the decoupling of on-chain tokens and
the resource necessary to participate in the protocol, hashing power, adverse side-effects such as
the emergence of oligopolies were witnessed [4, 8] and its widespread adoption limited. Making
on-chain tokens and consensus resources interchangeable was a logical progression for SMR,
and varying flavours of such an implementation, under the broad heading of Proof-of-Stake,
have appeared [14, 16, 17, 18, 22, 24].

Despite these, and many other works, there has been no thorough treatment and analysis
of tokenised SMR protocols from a game theoretic standpoint involving rational players, who
want to maximise their net tokenised gains (referred to as utility increases in game theoretic
literature), and an adversary, who can corrupt the owners of some amount of the tokenised
consensus resource and behave arbitrarily. These corrupted players are known as Byzantine.
This characterisation model of players as either Byzantine or Rational, which we refer to
as the ByRa model, was first considered in distributed systems literature in [26], but never
successfully with respect to SMR protocols, although attempts have been made [5, 24]. The
closest semblance to this model which has seen wide-scale adoption with respect to SMRs is the
BAR (Byzantine, Altruistic and Rational) model [3]. The BAR model crucially includes some
portion of altruistic players who disregard tokenised utility, and always follow the protocol.
Examples of authors echoing our desire to move away from altruistic dependencies are numer-
ous, but this from Fairledger [24] puts it concisely: “We have to take into account that every
entity may behave rationally, and deviate from the protocol if doing so increases its benefit”.
Non-adversarial, honest-by-default characters do not exist in competitive games, and cannot
be depended on in tokenised SMR protocols due to their gamified nature. Although many
works state the need to move away from altruistic dependencies, none have proven the critical
nature of this dependency or provided protocols which achieve SMR in the ByRa model. In
this paper, we fulfil both of these essential tasks.
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Without the safety net of altruistic players, any successful instantiation of an SMR protocol
in the ByRa model must guarantee that rational players will always follow the protocol. To
ensure this, rational players must expect to strictly maximise their utility by following the
protocol, a property we define as strong incentive compatible in expectation (SINCE).

Moreover, we must also guarantee that within such an incentive compatible protocol, the
adversary cannot increase their share of tokens to a point where they control enough tokens to
prevent SMR. Despite the existence of strong incentive compatibility in expectation, it may be
possible for an adversary to receive more than their share of the tokens that get distributed,
increasing their share of control. Therefore, we must additionally ensure that an adversary
cannot increase the share of tokens they control in the presence of all other players following
the protocol. The property that an adversary cannot increase their share of tokens in the
presence of correctly participating non-adversarial players is fairness.

1.1 Our Contribution

We define the ByRa player characterisation model, the properties of SINCE and fairness, and
in Definition 4.5, the basic requirements a prospective SMR protocol must meet in order to
guarantee safety and liveness in the ByRa model. If these requirements are met for a protocol
in the ByRa model, the protocol achieves ByRa SMR. Informally, to achieve ByRa SMR we
require that players controlling a majority of tokens follow the protocol at all times. We then
prove that the properties of SINCE and fairness are necessary and together sufficient to achieve
ByRa SMR in the main theorem of the paper.

Theorem 5.8. For an SMR protocol Π, Π achieves ByRa SMR if and only if Π is strong
incentive compatible in expectation and fair.

In addition to this new game theoretical framework, we provide FAIRSICAL as a concrete
instantiation of an SMR protocol that provably achieves SINCE and fairness in the ByRa
model. Using Theorem 5.8, we then prove FAIRSICAL achieves SMR in the ByRa model.

Corollary 7.7. FAIRSICAL achieves ByRa SMR.

1.2 Organisation of the paper

In Section 2 we review related work and present an overview of attempts to implement, and
works in favour of, the ByRa model for SMR protocols. In Section 3 we provide a background
on the SMR and game theory concepts needed to define the ByRa model. Section 4 introduces
a new game theoretic framework for analysing SMR protocols. This new framework defines
the ByRa model, and outlines what we require from SMR protocols in the ByRa model,
introducing the properties of SINCE and fairness. In Section 5 we prove that SINCE and
fairness are necessary for a protocol to achieve ByRa SMR. We then prove that together,
SINCE and fairness are sufficient properties for a protocol to achieve ByRa SMR. In Section 6
we outline the FAIRSICAL protocol as an example, for the first time in literature, of a SINCE
and fair ByRa SMR protocol. In Section 7.1 we prove that FAIRSICAL satisfies the necessary
and sufficient properties of safety and liveness for SMR when players controlling a majority
of the consensus votes follow the protocol in every round. We prove that the FAIRSICAL
protocol is SINCE in Section 7.2, and fair in Section 7.3 which, using Theorem 5.8, implies
FAIRSICAL achieves ByRa SMR. We conclude in Section 8.

2 Related Work

There is a growing appreciation that incentivisation is not only important, but necessary, to
ensure the successful instantiation of an SMR protocol. Many papers have argued for the
incentivisation of players in SMR protocols [2, 5, 9, 10, 15, 17, 22, 23, 25, 26, 30, 31, 32] while
many other papers demonstrate the critical need for incentive compatibility in tokenised SMR
protocols [4, 7, 8, 11, 12, 13, 20, 21, 27, 28].
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In-keeping with the distributed nature of SMR protocols we must also account for a meta-
physical adversary who can control some portion of the SMR participants (Byzantine) with
unknown utility. The characterisations of Byzantine and rational, coupled with that of altruis-
tic players who always follow the protocol, segues into the BAR player characterisation model
as introduced in [3]. However, as discussed in Section 1, tokenised SMR protocols cannot de-
pend on altruistic players to ensure the critical properties of safety and liveness. As a result,
we do not consider altruistic actors in this paper.

We amend the player characterisations to only include those of Byzantine and rational
players in what we call the ByRa model. A very similar player model is discussed in [26]. We
extend their basic binary action space for players to allow for complex action profiles in line
with those of SMR protocols. We introduce the necessity for strict maximisation of expected
utility if we are to ensure rational players always follow a protocol. This is opposed to [26],
where it is claimed that equality of utility will suffice to ensure a rational player will choose
one strategy over another. This is logically insufficient. Related to this concept of insufficient
proof mechanisms, a common pitfall of legacy incentive compatible proofs is to prove that
following a protocol is a Nash Equilibrium in the presence of honest players [17, 21, 22, 30]. In
the ByRa model this assumption is not possible, and therefore those proofs are not complete.
We also allow the adversary to behave arbitrarily, as opposed to [26] where the adversary only
tries to minimise the utility of rational players. Although there are buzzwords associated with
this paper such as Price of Malice and Price of Anarchy, no name is attributed to the player
model. We refer to our version of this player model as the ByRa model. The only example of
this player model in SMR literature without an explicit utilisation of an altruistic entity is in
[5].

Critically, the authors of [5] depend on a dominating cost for rational players for increasing
the probability of reaching consensus on an invalid block which is unrelated to change in tokens,
something which is also utilised in [32]. Such a critical cost of accepting an invalid block is
not related to the utility of players trying to maximise their quantity of tokens. By moving
to the ByRa model and removing this perceived cost for rational players, utility assumptions
become sufficiently weak so as to capture the true nature of uncooperative rational players in
the large-scale tokenised protocols of today, and beyond. In [5], it is also implicitly assumed
rewards are paid to all players who reach consensus on a block. This is non-trivial in the ByRa
model as rewards need to be recorded by a proposer at some point in the protocol, and rational
proposers may be incentivised to omit players, as is the case in previous works from subsets of
the same authors [6, 7]. We address this omission in the FAIRSICAL protocol, providing an
explicit solution in the ByRa model.

A purely economic approach to SMR protocols is taken in [32], which focuses on Proof-
of-Stake SMR protocols. Their player model only considers rational players, but they provide
some novel approaches to incentivisation in SMR protocols, and agree that in the tokenised
setting, players must be incentivised to follow the protocol to guarantee SMR. This is extended
in [31] where it is demonstrated that if rewards are distributed in (expected) proportion to
the amount of stake a player owns, and all players follow the protocol, bounds can be placed
on player stake distribution over time. Again, they restrict their player model to only contain
rational players. As their rewards are only paid fairly in expectancy, they cannot guarantee
the fairness that we define in Definition 4.9.

One of the legacy works in relation to fairness and incentive compatibility of SMR protocols
is Fruitchains [30]. The Fruitchains player model consists of an altruistic majority of players
and a cooperative rational minority, despite stating: “Assuming honest participation, however,
is a strong assumption”. Fruitchains crucially relies on an underlying blockchain satisfying an
SMR protocol in order to guarantee fairness of rewards. They fail to consider the incentives of
all parts of the system, relying on an altruistic majority in order to guarantee the underlying
blockchain satisfies the required SMR properties. They then add a small section where claims
of incentive compatibility for non-cooperative rational players are made. The authors claim a
protocol is incentive compatible if fairness of rewards has already been guaranteed. As fairness
in their system is only guaranteed if a majority of players follow the protocol, there is no logical
result which proves that rational players will always follow the protocol, required for incentive
compatibility. This is insufficient to guarantee SMR in the ByRa model. This fatal dependence
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on an underlying correct-by-default SMR protocol/ trusted third-party is also demonstrated
in [15, 23, 24], where claims of incentive compatibility and fairness do not hold in the ByRa
model.

3 Preliminaries

This section covers the concepts and definitions required to reason about SMR protocols from
a game theoretic perspective. First we define SMR and a general notion of a blockchain which
provides some intuition for our SMR definitions, and primes the reader for our description of
the FAIRSICAL protocol in Section 6. We then provide the game theory framework necessary
to formally reason about SMR protocols involving rational and adversarial players, and how
SMR can be achieved in the presence of these types of players.

In this paper, we are interested in a distributed set of n players {P 1, ..., Pn} interacting
with one and other inside a protocol which will produce some output that all players correctly
participating in the protocol can agree on. This output will be a replicated state machine.
First, we define a state machine.

Definition 3.1. A state machine consists of set of variables, and sequence of commands/
updates on those variables, producing some output.

The concept of a state machine alone does not capture the notion that potentially many
players can reconstruct a common view of the same state of a machine, and requires extension.

Definition 3.2. For a set of players {P 1, ..., Pn} and a state machine, state machine replication
(SMR) is a process that allows each player to execute a common sequence of commands acting
on the machine’s state in the same order, thus maintaining a common view of the machine’s
state.

Progressing towards our goal of analysing SMR protocols, we must first define what we
require from an SMR protocol. We take inspiration for our definition from [1], where their
system model is clearly and concisely explained, and is very similar to ours.

Notation 3.3. With respect to protocols and recommended protocol actions, a correct player
is a player who always follows the recommended protocol actions.

Definition 3.4. An SMR protocol Π deciding on a potentially infinite sequence of state ma-
chine updates satisfies the following properties:

• Safety : For any two correct players P i, P j in Π, i 6= j, if P i decides on an SMR update
V i at position k, and P j decides on an SMR update V j at position k in the sequence,
then V i = V j .

• Liveness: For any position k in the sequence, every correct player eventually decides on
an SMR update for position k.

To achieve SMR, we utilise the concept of a blockchain. This is done in a sufficiently generic
manner as to allow for direct comparison with most blockchain instantiations.

Definition 3.5. A block B is a data structure used to communicate changes to the state
machine view of each player. Blocks consist of a pointer(s) to previous block(s), and a set of
instructions with which to update the state. State machine updates in a block are applied to
the state described by the block(s) to which they point. The genesis block B1 describes the
starting state of the system and is a priori agreed upon by all players. The global state at
any point in the system is then described by applying the state machine updates according
to some ordering rule starting from the genesis block. A blockchain C = [B1, ..., BH ] is the
ordered data structure created by traversing the block pointers from the genesis block to all
blocks to be applied to the global state according to the ordering rule. H denotes the height
of the blockchain.
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In our system, an SMR protocol Π consists of n players owning shares of a finite resource,
which we will refer to as stake, and denoted Stake1 at initialisation. Π proceeds in fixed-time
periods, which we refer to as rounds, beginning in round 1. For any height H > 1 of the
blockchain, players participate in Π to decide on a block for that height. Reaching consensus
on a block will involve one or more successful consensus rounds. After a block has been
decided for height H ≥ 1, the total stake in the system is denoted StakeH with player shares
of StakeH denoted s1

H , ...., s
n
H . Without loss of generality, we assume

∑n
i=1 s

i
H = 1, and for all

i ∈ {1, ..., n}, H ≥ 1, siH < 1
2 .

Now we introduce some basic game theory to allow us to properly reason about SMR
protocols in our system as games, taking inspiration for our definitions from [29]. The games we
are concerned with, SMR protocols, are played by players with strict incomplete information,
meaning some subset of players will not know the action choices of other players for certain
rounds when they are required to choose their own actions. As such, we need to be able to
describe what a player knows (and implicitly what they do not), which we call their private
information. Furthermore, we must be able to describe what motivates players in games. This
motivation is provided by a utility function, which attributes a numerical score to each action
a player can take. In games, players choose the action which maximises their utility function.

Definition 3.6. A game, denoted G, progressing in rounds with strict incomplete information
for a set of n players {P 1, ..., Pn} can be described by the following:

• For every P i, a set of actions Xi. We denote by X−i the set of actions that each player
excluding P i can take. For x−i ∈ X−i, x−i is described by a vector of actions of length
n− 1, with each vector position mapping to a unique player.

• For every player P i and round r, a set of private informations T ir . A value tir ∈ T ir
is a private information value that P i can have at round r. We denote the private
informations held by all players excluding P i at round r by t−ir .

• For every player P i, current round r ≥ 1, and some round r′ ≥ r, the utility function
for P i with respect to round r′ is defined as :

uir′ : T ir ×Xi × ...×Xi︸ ︷︷ ︸
r′+1−r

×X−i × ...×X−i︸ ︷︷ ︸
r′+1−r

→ R (1)

where uir′(t
i
r, x

i
r, ..., x

i
r′ , x

−i
r , ..., x−ir′ ) is the utility achieved by P i in round r′ with private

information tir, if player P i takes the actions xir, ..., x
i
r′ in rounds r, ..., r′ respectively, and

the actions of all other players are described by x−ir , ..., x−ir′ in rounds r, ..., r′ respectively.

Although utility functions evaluate actions given the actions of all other players, the actions
of the other players may not be known in advance. Therefore, players will need to be able
to choose their actions solely based on their private informations. The actions a player takes
given some private information is computed through a strategy, which is defined in Definition
3.7.

Definition 3.7. A strategy of a player P i is a function stri : T ir → Xi, r ≥ 1, which defines the
actions to be taken by P i given some private information value. A strategy stri is mixed if for
a player P i with mi possible strategies Stri = {stri1, ..., strimi

}, they select a strategy to follow

from Stri according to some probability distribution. For every player P i, str−i describes the
mixed strategies taken by all players excluding P i.

Notation 3.8. For an SMR protocol Π, the recommended strategy, denoted strΠ, is the strategy
that Π requires players to follow in order to successfully achieve SMR.

4 A Game Theoretic Framework for SMR

As reasoned in the earlier sections, we only consider adversarial or rationally motivated partic-
ipants in SMR protocols. This reflects the fact that SMR protocols can be described as games
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with strict incomplete information as defined in Definition 3.6. This is a crucial progression
from existing standards in distributed systems literature where some number of players are
honest-by-default. Due to the distributed nature of SMR protocols, as a baseline we must ac-
count for some portion of adversarial players who can behave arbitrarily with unknown utility
functions. With SMR protocols considered as games, the remaining non-adversarial players
must follow some known utility function, and attempt to choose the actions which maximise
it. To ensure the honest behaviour of rational players in this setting, following the protocol
strategy must maximise the utility of rational players. We define these player characterisations
here formally as the ByRa model.

Definition 4.1. The ByRa model consists of Byzantine and Rational players. A player is:

• Byzantine if they deviate arbitrarily from the recommended strategy within a game with
unknown utility function. Byzantine players are chosen and controlled by an adversary
A.

• Rational if they choose uniformly at random from all mixed strategies which maximise
their known utility function.

How the adversarial choices are made, and to what extent the adversary can control Byzan-
tine players must be outlined in the threat model. After deciding on a block at height H ≥ 1,
we denote the adversarial of stake by sAH . This is the share of stake Byzantine players control
at height H.

Remark 4.2. Our definition of rational players represents the weakest assumption possible
about rational players. We omit tie-breaking assumptions that bias a rational player to certain
strategies over others with equal utility. For example, if we have a fair coin tossing game that
costs 1 token to play and correct guesses gain 2 tokens, a rational player in our system will
choose heads with probability 0.5. If we have a protocol that requires rational players to always
choose heads, it is necessary to make the payoff for heads strictly greater than that of tails.

In the ByRa model, it is necessary to have a notion of an adversarial control of stake
threshold, below which SMR can be achieved if all non-adversarial players follow the protocol.

Notation 4.3. For an SMR protocol Π, we denote by b the maximal share of stake such that
for players controlling greater than 1 − b of the stake following the SMR protocol, safety and
liveness are achieved. The exact value of b will depend on the network distribution assumptions,
in line with the results of [19], which must be contained in the threat model.

For some κ ∈ N, our goal is to guarantee that SMR can be achieved (that is, both safety
and liveness are satisfied) in the ByRa model with probability greater than 1 − e−κ over any
polynomial in κ rounds.

We first need to introduce an equivalence relation for mixed strategies over finite rounds.
When we state the protocol strategy which needs to be followed to achieve SMR, although
there is an infinite number of strategy encodings, we only require players to follow strategies
which result in actions as outlined by the protocol. We are indifferent to how this is achieved.
If a strategy is encoded differently to the recommended protocol strategy, but results in actions
as prescribed by the protocol with probability greater than 1− e−κ over any polynomial in κ
rounds, we see this as equivalent to the recommended protocol strategy.

Definition 4.4. For a player P i at initialisation, and round r′ ≥ 1, two mixed strategies stri1
and stri2 are equivalent with respect to round r′ if for all rounds r, 1 ≤ r ≤ r′, and private
informations tir ∈ T ir , it is the case that stri1(tir) = stri2(tir). We use stri1 ≡r′ stri2 to denote
this equivalence relation. If stri1 ≡r′ stri2 for all rounds r′ polynomial in κ, stri1 and stri2 are
equivalent, with this denoted by stri1 ≡ stri2.

With this equivalence relation, we can now define what it means for a protocol to achieve
SMR in the ByRa model.
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Definition 4.5. For an SMR protocol Π, let the probability that players controlling more
than 1 − b of the total stake follow a mixed strategy str ≡r strΠ up to and including round r
for any sA1 < b be denoted pΠ

r . If for all rounds r′ polynomial in κ it holds that pΠ
r′ is greater

than or equal to 1− e−κ, then Π achieves ByRa SMR. Otherwise, Π fails in the ByRa model.

To consider rational players in any game, it is necessary to explicitly define what their
utility functions are. Inkeeping with the tokenised assumptions of our model, we let rational
player utility be measured in stake. By their nature, tokenised SMR protocols require it to be
expensive to deviate from the protocol actions, encouraging honest behaviour through stake
rewards, and/or stake punishments for dishonest behaviour. Given the unprecedented levels
of SMR protocol usage as a result of tokenisation, we see stake as the driving utility measure
for the players who participate in these protocols.

As total stake is only meaningful with respect to a particular time-point, and SMR protocols
are played indefinitely, rational players will seek to maximise their total stake at all possible
rounds sufficiently far into the future. Therefore, when discussing incentivisation and player
utility, it is necessary to refer to stake/share/total stake with respect to rounds. As we are using
the round variable as a counter, and some consensus rounds may be unsuccessful, it cannot
be independently used to determine the height, and vice versa. Rather than add notation
to relate the two, we treat them separately, and make it clear from context which is being
used. When referring to stake/share/total stake with respect to particular rounds, we use
subscripts involving r, whereas when discussing these variables with respect to the height of
the blockchain, we use subscripts involving H.

For a rational player P i with private information tir and round r′ ≥ r, we have:

uir′(t
i
r, x

i
r, ..., x

i
r′ , x

−i
r , ..., x−ir′ ) = sir′ · Staker′ . (2)

However, in a game with strict incomplete information as is the case in an SMR protocol, a
rational player P i with private information tir will not know their own future private informa-
tion values (required to choose their actions), the private informations of the other players, or
str−i, before choosing stri. Therefore, P i must choose the mixed strategy which maximises P i’s
expected stake at round r′, denoted E(sir′ · Staker′), according to the probability distribution
that P i attributes to possible values for these unknowns. This distribution will be contained
in tir.

Thus, knowing tir is sufficient to calculate P i’s expected utility of a particular strategy at
round r′, which we express mathematically by E(sir′ · Staker′ |tir, stri). We state this formally
in Definition 4.6.

Definition 4.6. For a rational player P i, with private information tir, mixed strategy stri, and
a particular round r′ ≥ r, the expected utility of stri for P i at round r′ is denoted uir′(t

i
r, str

i)
and is described by uir′(t

i
r, str

i) = E(sir′ · Staker′ |tir, stri).

As such, for a rational P i in an SMR protocol Π with private information tir, P
i will choose

the mixed strategy stri which maximises uir′(t
i
r, str

i). To establish the existence, or not, of
such a mixed strategy, we introduce an inequality in Definition 4.7 which allows us to pairwise
rank mixed strategies by expected utility.

Definition 4.7. For a rational player P i and two mixed strategies stri1, stri2, if there exists
r′′ ≥ r, r′′ = polynomial in κ , such that for all r′ > r′′, uir′(t

i
r, str

i
1) > uir′(t

i
r, str

i
2) then we

say stri1 strictly dominates stri2 in expectation. If stri1 strictly dominates stri2 in expectation,
we denote this relationship by stri1 >u stri2.

Using the strict dominance in expectancy relationship, we can formally define what we
require from an SMR protocol in order for rational players to follow the recommended protocol
strategy. This requirement is strong incentive compatibility in expectation, and is defined in
Definition 4.8.

Definition 4.8. An SMR protocol Π is Strong INcentive Compatible in Expectation (SINCE)
if for any rational player P i with set of mixed strategies Stri, for all mixed strategies stri ∈ Stri

such that stri�≡ strΠ, it is the case that strΠ >u stri.

9
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For a protocol to be SINCE in the ByRa model ensures that all rational players will follow
the recommended protocol strategy. However, SINCE is not on its own sufficient to ensure the
safety and liveness of an SMR protocol in ByRa model. It is still possible for an adversary to
gain more than their fair share of rewards, and as such, increase their total share above the
critical threshold of b. Towards achieving SMR in the ByRa model, it must be ensured that
the adversarial share remains strictly bounded by the threshold b required to achieve SMR if
all non-adversarial players follow the protocol. We explicitly define what we mean by fairness
in the ByRa model in Definition 4.9.

Definition 4.9. An SMR protocol Π is fair in the ByRa model if given an adversary A, for
any round r ≥ 1 in Π, P (sAr ≤ sA1 ) ≥ 1− e−κ.

With SINCE and fairness, we have two intuitive properties which turn out to be crucial
in achieving ByRa SMR. In Section 5, we show that it is impossible to guarantee the actions
of players controlling more than 1 − b of the stake if these properties do not hold. Explicitly,
we prove that the properties of SINCE and fairness are necessary, and together sufficient, to
achieve ByRa SMR.

5 Achieving SMR in the ByRa Model

Towards our final goal of proving that the properties of SINCE and fairness are necessary,
and together sufficient, to achieve ByRa SMR, the first step is to prove in Lemma 5.6 that
SINCE is necessary. To allow us to prove this result, we introduce notation which allows us to
consider, for a potential SMR protocol, the strategies from which rational players choose.

Definition 5.1. For a rational player P i with a set of mixed strategies Stri, let StriNSD ⊆ Stri

be such that for all stri ∈ StriNSD, there does not exist a striu ∈ Stri, such that striu >u stri.

That is, if a mixed strategy str ∈ Stri is in the set StriNSD, there is No strategy for P i which
Strictly Dominates str in expectancy. We provide the following Lemmas towards establishing
that rational players will choose strategies exclusively from StriNSD.

Lemma 5.2. For an SMR protocol Π, a rational player P i, any strategy stri1 ∈ Stri , and
|Stri| ≥ 2, either stri1 ∈ StriNSD or there is some stri2 ∈ StriNSD such that stri2 >u stri1.

Proof. We will do this by induction over the cardinalities of Stri. First we check |Stri| = 2.
If stri1 is in StriNSD, we are finished. Assume otherwise. That is, stri2 >u stri1, which implies
stri1 6>u stri2, and as such, stri2 ∈ StriNSD as required.

Assume the inductive hypothesis for |Stri| = k.
Now, given this assumption, we must prove our hypothesis holds for |Stri| = k+1. Consider

a strategy stri3 ∈ Stri. We need to prove either stri3 ∈ StriNSD, or there exists str ∈ StriNSD with
str >u stri3. If stri3 is not strictly dominated by any strategy str ∈ Stri, then stri3 ∈ StriNSD.

Assume instead there exists some strategy stri1 ∈ Stri, stri1 >u stri3. Consider Zi =
Stri\{stri3}. By the inductive assumption, either stri1 ∈ ZiNSD, or there exists stri2 ∈ ZiNSD such
that stri2 >u stri1. If stri1 ∈ ZiNSD, then stri1 ∈ StriNSD, which implies there exists str ∈ StriNSD

such that str >u stri3. Otherwise, if stri1 6∈ ZiNSD, there exists stri2 ∈ ZiNSD, with stri2 >u stri1.
As stri2 >u stri1, and stri1 >u stri3, this implies stri2 >u stri3. As stri2 ∈ ZiNSD, and stri2 >u stri3,
this implies stri2 ∈ StriNSD. Therefore, there exists str ∈ StriNSD such that str >u stri3.

�

As rational players choose uniformly at random from all mixed strategies which maximise
utility, from Lemma 5.2 for a rational player P i these mixed strategies will be contained in
StriNSD. Moreover, Definition 4.1 states P i chooses from these mixed strategies in StriNSD with
uniform probability. Therefore, to ensure rational players follow strΠ with probability at least
1 − e−κ, we must identify the conditions where for any rational player P i, StriNSD = {strΠ}.
We state this explicitly in Observation 5.3.

Observation 5.3. A rational player P i follows strΠ with probability at least 1− e−κ, if and
only if StriNSD = {strΠ}.

10
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The precise conditions where StriNSD = {strΠ} for a rational player P i are identified in
Lemma 5.4.

Lemma 5.4. For an SMR protocol Π and a rational player P i, StriNSD = {strΠ} if and only
if Π is strong incentive compatible in expectation.

Proof. If an SMR protocol Π is SINCE, then for any rational player P i, strΠ strictly dominates
all other strategies in expectation. This implies StriNSD = {strΠ}.

Now we need to show if StriNSD = {strΠ}, then Π is SINCE. From Lemma 5.2, we know for
any strategy stri1, either stri1 ∈ StriNSD or there is some stri2 ∈ StriNSD such that stri2 >u stri1.
As the only strategy in StriNSD is strΠ, this implies for any strategy stri1�≡ strΠ, strΠ >u stri1.
This implies Π is SINCE, as required. �

Corollary 5.5. For an SMR protocol Π and a rational player P i, P (P i chooses strΠ) ≥ 1−e−κ
if and only if Π is strong incentive compatible in expectation.

Proof. Follows from Observation 5.3 and Lemma 5.4. �

This allows us to prove SINCE is a necessary property to achieve ByRa SMR.

Lemma 5.6. For an SMR protocol Π, if Π is not strong incentive compatible in expectation,
then Π fails in the ByRa model.

Proof. Consider such a protocol Π. As a consequence of not SINCE, for a rational player P i,
this means P (P i chooses strΠ) < 1 − e−κ, applying Corollary 5.5. From Definition 4.5 we are
required to consider sA1 maximal. Given this rational P i and a maximal adversary, there is now
players controlling greater than or equal to b of the total stake who will not choose a strategy
equivalent to strΠ with probability greater than e−κ. Using the notation of Definition 4.5, this
means pΠ

r′ < 1− e−κ for some r′ ≥ 1, which implies Π fails in the ByRa model. �

Using similar arguments, we are able to prove fairness is also necessary for a protocol to
achieve ByRa SMR.

Lemma 5.7. For an SMR protocol Π, if Π is not fair then Π fails in the ByRa model.

Proof. If Π is not fair, there exists r′ ≥ 1 such that P (sAr′ > sA1 ) > e−κ. From Definition
4.5, we are required to consider the case where sA1 is maximal. In this case, the probability
that the adversary controls greater than or equal to b of the stake at round r′ is greater than
e−κ given P (sAr′ > sA1 ) > e−κ. Given the uniform strategy selection probability of Byzantine
players across all possible strategies, this implies that pΠ

r′ < 1− e−κ. Therefore, Π fails in the
ByRa model. �

Collecting the results of this section, with some additional proof-work, we are equipped to
prove the main theorem of the paper, Theorem 5.8.

Theorem 5.8. For an SMR protocol Π, Π achieves ByRa SMR if and only if Π is strong
incentive compatible in expectation and fair.

Proof. For an SMR protocol Π, we will first prove that if Π achieves ByRa SMR then Π is
SINCE and fair. Using the contrapositive of Lemma 5.6, we have that if Π achieves ByRa SMR
(does not fail in the ByRa model), then Π is SINCE. Similarly, using the contrapositive of
Lemma 5.7, we have that if Π achieves ByRa SMR, then Π is fair.

We now need to prove if Π is SINCE and fair then Π achieves ByRa SMR. By SINCE and
Corollary 5.5, this implies all rational players will always choose strΠ. Furthermore, as Π is
fair, from Definition 4.9, we know rational players will maintain greater than 1− b of the stake
in every round with probability greater than 1 − e−κ. Therefore, we have players controlling
greater than 1−b of the stake who will follow strΠ with probability greater than 1−e−κ, which
is precisely the definition of Π achieving ByRa SMR from Definition 4.5. �

This crucial theorem completes the first part of the paper, identifying the properties
of SINCE and fairness as both necessary, and together sufficient, for a protocol to achieve
ByRa SMR, independently of network assumptions and adversarial capabilities. We now pro-
ceed to outline the FAIRSICAL protocol, demonstrating that it is possible to satisfy SINCE
and fairness in the ByRa model.
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6 The FAIRSICAL Protocol

Having demonstrated the vital nature of SINCE and fairness for SMR protocols in the ByRa
model, we now describe FAIRSICAL, a FAIR, Strong Incentive Compatible in expectation
ALgorithm for achieving ByRa SMR. FAIRSICAL demonstrates that is possible to achieve
SINCE and fairness in SMR protocols. Furthermore, the detailed algorithmic description in our
generic blockchain framework serves as a template for any SMR protocol to progress towards
SINCE and fairness.

6.1 Threat Model

We assume the existence of a functionality Broadcast for delivering all messages, including those
sent by the adversary. Messages sent through Broadcast are authenticated using an unforgeable
signature scheme so that only P i can convince any other player P j that a message signed by
P i was sent by P i. Messages sent through Broadcast during some round are guaranteed to be
delivered to all players at the beginning of the following round.

In our model, we consider an adversary A with the following properties:

1. The adversary A can read all messages sent during a particular round before deciding on
the Byzantine player actions for that round.

2. The adversary A can control and coordinate all Byzantine players in any way, with
unknown utility function.

3. At initialisation we have 1
2 − δ < sA1 < 1

2 = b, for δ > 0, in line with the synchronous
network distribution [19] enforced by the Broadcast functionality.

4. After deciding on a block for height H ≥ 1, the adversary A chooses any f players, say
P 1, ..., P f , to become Byzantine before beginning consensus on a block for height H + 1
with 1 ≤ f < n− 1, such that

∑f
i=1 s

i
H = sAH .

5. Given the adversary chooses players P 1, ..., P f as Byzantine for consensus on a block at
height H with shares [s1

H−1, ..., s
f
H−1], the adversarial share for the proceeding consensus

height is calculated as sAH =
∑f
i=1 s

i
H .

Remark 6.1. As Byzantine players have unknown utility functions, rational players a priori
assume Byzantine players will choose from all possible strategies with uniform probability.

6.2 Protocol Description

As mentioned in Section 3, the protocol proceeds in rounds. In the FAIRSICAL protocol, there
are 4 rounds which need to be successfully completed in order to decide on a block to be added
to the blockchain. These are Propose, Validate, Commit, and Decide, formally described at
the end of this section, but which we describe informally here for reader intuition:

• Propose: Players propose a block to be added to the blockchain.

• Validate: Players select a valid block to be added to the blockchain from the set of
proposed blocks based on a protocol-defined selection rule.

• Commit: Players agree on (commit to) a block if it was validated by players controlling
more than b of the stake.

• Decide: If players controlling more than b of the stake committed to a block, then it is
added to the blockchain.

Blocks will only get added to the blockchain after a successful Decide round. Each round
consists of 3 phases for each player P i:

• Phase 1. Receive: All messages sent via Broadcast during previous rounds are received
and available to read by P i.

12
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• Phase 2. Compute: Players perform polynomial in κ binary operations, with the pre-
scribed protocol requiring polynomial in κ binary operations in each round.

• Phase 3. Send: Messages are sent.

In FAIRSICAL, following a successful Decide round, rewards in the form of newly minted
stake are distributed to players who followed the protocol, while the stake of players decided
to have deviated are deleted. Stake changes are computed during the Decide round, so will be
received by the network at the beginning of the proceeding Propose round.

Each player P i owns a public key, secret key pair (pubKeyi, privKeyi). At initialisation,
there is Stake1 stake in the system, with P i owning si1 · Stake1 total stake. To participate in
consensus for a block at height H > 1, a player P i must own stake as decided in the block
at height H − 1. As FAIRSICAL is intended as a template for SMR between players with
pre-existing communication channels and some known distribution of stake between them, we
omit any further setup implementation from this paper.

For H ≥ 1, blocks are described by the tuple (h(C[H−1]), V, ξ), where h : {0, 1}∗ → {0, 1}κ
is a cryptographically secure hash function, C = [B1, ..., BH ] is a vector representation of a
blockchain with indices corresponding to block heights in the blockchain, V contains state
machine updates, and ξ ∈ {0, 1}κ is a shared randomness value for the current block.

Each non-Byzantine player maintains a set of variables {H,Stake, R, S, C, ξ}. At initiali-
sation, these variables are set to {H,Stake, R, S, C, ξ} ← {1,Stake1, c, [s1

1, ..., s
n
1 ], [B1], {1}κ},

for some Stake1, c > 0 amounts of stake, with the genesis block B1 = (0, (Stake1, S), ξ), .
For each height H > 1, we use Jtemp ⊂ {1, ...n} to track the indices of players that are

observed to behave incorrectly during consensus for a block at height H. The total reward
available for height H > 1 is R = c · dH−1 (algorithm: 5, line: 14), with dH = dH−1(1 −∑
j∈Jtemp

sjH−1), d1 = 1.
Note that any player not in Jtemp implicitly follows the protocol. However, we impose the

requirement that for all players not included in the Jtemp of P i, there must be accompanying
proofs that these players correctly followed the protocol with respect to P i’s state. The precise
nature of these proofs are beyond the scope of this paper.

For P i behaving correctly up to and including height H, they will receive c · dH−1 · siH−1

stake (algorithm: 5, line: 20) for deciding on the block at height H. As we discount R after
every successful block decision by the incorrect share of stake, (

∑
j∈Jtemp

sjH−1) (algorithm: 5,

line: 14), this has the same effect as recursively calculating the discount dH , and applying it
to c as described. During the Validate, Commit and Decide rounds for some height H in the
protocol, if deviation by a player P j is identified, j is added to Jtemp, which happens at line 4
in each of the corresponding algorithms. If a majority of players identify deviation from P j ,
P j ’s stake is destroyed (algorithm: 5, line: 18). Note, sig() is an unforgeable signature scheme,
with sig(privKeyi, ...) encrypting using the secret key of P i, and can only be decrypted using
the public key of P i, while sig(pubKeyi, ...) encrypts using the public key of P i, and can only
be decrypted using the private key of P i. We also assume at all times it is possible to generate
a valid SMR update. The function validSMRUpdate() takes as input an SMR update V and
blockchain C as described previously, returning TRUE if V is valid with respect to the state
described by applying the state updates contained in C.

We now describe in detail the recommended protocol strategy of FAIRSICAL for a player
P i attempting to decide on a block at height H + 1, with H ≥ 1.

Propose: P i chooses a valid state machine update V with respect to the state described
by the current chain C (algorithm: 2, line: 1) to generate a block Btemp = (h(C[H]), V, ξ) to
be proposed for height H + 1, then generates a randomness value ξtemp (algorithm: 2, line:
2), and submits the vector [Btemp, sig(privKeyi, ξ), sig(pubKeyi, ξtemp)] to Broadcast. The
second value in this vector is P i’s private key encryption of the randomness ξ decided upon
for height H + 1. This will be used to determine the unique block to be added to C in the
Validate round. As it is encrypted using the private key, anyone knowing the public key can
verify that it is indeed P i who encrypted the value. The third entry is P i’s commitment to a
randomness share ξtemp using public key encryption. ξtemp will be used to generate the final
randomness value for height H + 2 during the Commit round.
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Algorithm 1 FAIRSICAL

1: Stake = Stake1 # total stake
2: S ← [s1

1, ..., s
n
1 ] # vector of player shares

3: pubKeyArray← getPublicKeys() # vector of public keys, accessible by P i

4: pubKey← pubKeyArray[i] # P i’s public key
5: privKey← getPrivateKey(i) # retrieve P i’s private key
6: ξ ← {1}κ # initialise κ-bit randomness
7: H ← 1 # blockchain height
8: R← c # total reward for block decision
9: C ← [(0, (Stake, S), ξ)] # vector representation of blockchain

10: while H ≥ 1 do # Run Protocol
11: Jtemp ← ∅ # temporary set of deviating players for height H
12: Btemp ← () # prospective block for height H
13: ξshares ← [{0}κ for i ∈ {1, ..., n}] # initialise array for randomness shares
14: ξtemp ← {0}κ # temporary variable for height H + 1 randomness
15: Propose(H, C, ξ, ξtemp, privKey)
16: Validate(S, Btemp, Jtemp, ξ, ξtemp, ξshares)
17: Commit(S, Btemp Jtemp, ξtemp, ξshares, pubKeyArray)
18: Decide(H, Stake, R, S, C, Btemp Jtemp, ξ, ξtemp)
19: end while

Algorithm 2 Propose(H, C, ξ, ξtemp, privKey)

1: V ← v where validSMRUpdate(v, C) == TRUE
2: ξtemp ← genRandomBitString(length = κ) # P i’s randomness share for ξtemp

3: Btemp ← (h(C[H]), V, ξ) # P i’s block proposal for H
4: Broadcast.send([Btemp, sig(privKey, ξ), sig(pubKey, ξtemp)])

Algorithm 3 Validate(S, C, Btemp, Jtemp, ξ, ξtemp, ξshares)

1: M ← Broadcast.receive() # Read all Propose messages
2: for m ∈M do
3: if isValid([Validate,m, S, ξ, pubKeyArray, C ]) == FALSE then
4: Jtemp.append(m.sender()) # Identify deviators
5: M.remove(m) # remove invalid messages from consideration in block selection
6: else
7: ξshares[m.sender()]← m[3] # record randomness share commitments
8: end if
9: end for

10: d ← 1−
∑
j∈Jtemp

S[j] # Calculate remaining share of correct stake

11: if d ≤ 1
2 then # Check if no majority in consensus on valid values

12: continue # Ends current iteration of while loop in algorithm 2
13: end if
14: selectedBlockHash = minimum([m[2] form ∈M ]) # Criterion for block selection
15: for m ∈M do # Extract block to be validated based on selectedBlockHash criterion
16: if m[2] == selectedBlockHash then # Checks if message
17: # corresponds to selectedBlockHash
18: Btemp ← m[1] # Update Btemp to selected block
19: end if
20: end for
21: Broadcast.send([Btemp, Jtemp, ξtemp])
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Validate: P i retrieves all messages from players sent through Broadcast in the Propose round
for height H + 1 from Broadcast. For all invalid Propose messages, P i adds the index of the
sender to Jtemp (algorithm: 3, line: 4). If the sum of shares owned by players included in Jtemp

is greater than or equal to 1
2 , consensus cannot be reached for this set of Propose messages.

As such, P i returns to the Propose round for height H+ 1 (algorithm: 3, line: 12). Otherwise,
P i selects the block to be decided upon for height H + 1 (algorithm: 3, line: 15) based on a
selection rule (algorithm: 3, line: 14) that will select a unique block. In FAIRSICAL, we select
the block that corresponds to the the smallest encrypted randomness value from the Propose
round (the second entry in the tuple sent in the Propose round) received from a player P k,
k ∈ {1, ..., n}\Jtemp . Given P k’s block is selected, P i sets Btemp equal to P k’s proposal for
Btemp (algorithm: 3, line: 18). P i submits the vector [Btemp, Jtemp, ξtemp] to Broadcast. By
doing so, P i reveals their randomness share ξtemp, which will be used to generate the shared
randomness for height H + 2.

Algorithm 4 Commit(S, Btemp Jtemp, ξtemp, ξshares, pubKeyArray)

1: M ← Broadcast.receive()
2: J ← Jtemp.copy() # make a distinct record of deviators observed so far,
3: # allows Jtemp to remain updatable during isValid() checks
4: for m ∈ M do
5: if isValid([Commit, m, S, pubKeyArray, ξshares, J ]) == FALSE then
6: Jtemp.append(m.sender())
7: else
8: ξshares[m.sender()]← m[3] # record valid randomness shares
9: end if

10: end for
11: d ← 1−

∑
j∈Jtemp

S[j] # Calculate remaining share of correct stake

12: if d ≤ 1
2 then

13: continue # Ends current iteration of while loop in algorithm 2
14: end if
15: ξtemp ← {0}κ
16: for x ∈ ξshares do # Calculate ξtemp as XOR sum of valid randomness shares
17: ξtemp ← ξtemp ⊕ x
18: end for
19: Broadcast.send([Btemp, Jtemp, ξtemp])

Commit: P i retrieves all messages from players sent through Broadcast in the Validate round
for height H+1 from Broadcast. For all invalid Validate messages with respect to the isValid()
function, P i adds the index of the sender to Jtemp. If a message satisfies isValid() == TRUE,
P i adds the corresponding randomness share to the set ξshares (algorithm: 4, line: 8) for
consideration when calculating the proposed global randomness for height H + 2. If the sum
of shares owned by players included in Jtemp is greater than or equal to 1

2 , P i returns to the
Propose round for height H + 1 as no consensus can be reached for the current set of Validate
messages. Otherwise, P i computes the prospective randomness value, setting ξtemp equal to
the XOR sum of all valid randomness shares received during this Commit round (algorithm:
4, lines: 16-17). P i submits the vector [Btemp, Jtemp, ξtemp] to Broadcast.

Decide: P i retrieves all messages from players sent through Broadcast in the Commit round
for height H + 1 from Broadcast. For all invalid Commit messages, P i adds the index of the
sender to Jtemp. If the sum of shares owned by players included in Jtemp is greater than or
equal to 1

2 , P i returns to the Propose round for height H + 1. Otherwise, given the remaining
correct share of stake d, P i sets the total stake in the system Stake ← d · Stake (algorithm:
5, line: 13), and reward R ← d · R (algorithm: 5, line: 14). This discounts both the total
stake in the system and the total reward to be paid out for the current block to reflect the
removal of the malicious stake in line with our recursive formulae for dH . P i updates the
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Algorithm 5 Decide(H, Stake, R, S, C, Btemp Jtemp, ξ, ξtemp)

1: M ← Broadcast.receive()
2: J ← Jtemp.copy() # make a distinct record of deviators observed so far,
3: # allows Jtemp to remain updatable during isValid() checks
4: for m ∈ M do
5: if isValid([Decide, m, S, ξtemp, J ]) == FALSE then
6: Jtemp.append(m.sender())
7: end if
8: end for
9: d ← 1−

∑
j∈Jtemp

S[j] # Calculate remaining share of correct stake

10: if d ≤ 1
2 then

11: continue # Ends current iteration of while loop in algorithm 2
12: end if
13: Stake← d · Stake # Delete deviator stake
14: R← d ·R # Discount total rewards by deviator stake
15: Stake← Stake +R # Add rewards to the system
16: for i ∈ {1, ..., n} do
17: if i ∈ Jtemp then
18: S[i]← 0
19: else if i /∈ Jtemp then
20: S[i]← S[i]/d # Adjust honest shares to reflect deletion of deviator shares
21: end if
22: end for
23: ξ ← ξtemp # Update global randomness now that block decided
24: C.append(Btemp) # Add block to blockchain, applying the state machine update
25: # in Btemp to P i’s view of the SMR
26: H ← H + 1

total stake Stake ← Stake + R (algorithm: 5, line: 15) to include the reward for this round.
Then, P i adjusts the stakes in the system to reflect the removal of deviating players from the
protocol (algorithm: 5, line: 16). First, for all j ∈ Jtemp, P i sets S[j] ← 0, deleting the stake
of deviating players (algorithm: 5, line: 18). Secondly, for all i ∈ {1, ..., n}\Jtemp, P

i sets

S[i] ← S[i]
d to normalise the remaining non-deviating stake in the system to 1 (algorithm: 5,

line: 20). P i sets ξ ← ξtemp to reflect the consensus on ξtemp as the randomness for height
H + 2 (algorithm: 5, line: 23), and appends Btemp to C (algorithm: 5, line: 24). Once Btemp

is added to C, the state machine update contained in Btemp is applied to the state described
by C[H]. P i increments H, and proceeds to the Propose round for the next block.

7 Proving FAIRSICAL achieves ByRa SMR

To ensure FAIRSICAL achieves ByRa SMR, we first prove that the FAIRSICAL protocol
achieves SMR in the legacy honest players controlling a majority of stake setting (Section
7.1). Given this result, we then prove that FAIRSICAL satisfies the properties of SINCE
(Section 7.2) and fairness (Section 7.3) in the ByRa model, and as such, using Theorem 5.8,
that FAIRSICAL achieves ByRa SMR.

7.1 Safety and Liveness when Correct Players Control a Majority of
Stake

Before it is possible to prove a protocol can achieve SMR in the ByRa model, we must prove
that it achieves SMR in the presence of correct players controlling a majority of the stake. This
is the minimum requirement a protocol must satisfy to be considered an SMR protocol. In this
section, we prove that FAIRSICAL satisfies safety and liveness when correct players control
a majority of stake in each round. To prove safety, we first identify an important implicit
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Algorithm 6 isValid(input)

1: step ← input [1]
2: m ← input [2] # message vector
3: S ← input [3] # shares vector
4: j = m.sender() # sender’s player index
5: if S[j] == 0 then # check if sender has non-zero share
6: return FALSE
7: end if
8: if step == Validate then # m = [Btemp, sig(privKey, ξ), sig(pubKey, ξtemp)]
9: ξ ← input [4] # global randomness for current height

10: pubKeyArray← input [5]
11: C ← input [6]
12: if validSMRUpdate(m[1], C) == FALSE then # check SMR update validity
13: return FALSE
14: end if
15: if sig(pubKeyArray[j],m[2]) == ξ then # check sender’s encryption of global
16: # randomness is correct
17: return TRUE
18: else
19: return FALSE
20: end if
21: else if step == Commit then # m = [Btemp, Jtemp, ξtemp]
22: Jtemp ← m[2] # sender’s suggestion for Jtemp

23: ξtemp ← m[3] # sender’s randomness share
24: pubKeyArray← input [4]
25: ξshares ← input [5] # vector of randomness share encryptions
26: J ← input [6] # P i’s version of Jtemp

27: if sig(pubKeyArray[j], ξtemp) 6= ξshares[j] then # check share matches commitment
28: return FALSE
29: end if
30: if J 6= Jtemp then # check P i’s deviator set matches sender’s
31: return FALSE
32: else
33: return TRUE
34: end if
35: else if step == Decide then # m = [Btemp, Jtemp, ξtemp]
36: Jtemp ← m[2] # sender’s suggestion for Jtemp

37: ξtemp ← m[3] # sender’s proposed new height randomness
38: ξ ← input [4] # P i’s proposed new height randomness
39: J ← input [5] # P i’s version of Jtemp

40: if ξ 6= ξtemp then # check P i’s randomness matches sender’s
41: return FALSE
42: end if
43: if J 6= Jtemp then # check P i’s deviator set matches sender’s
44: return FALSE
45: else
46: return TRUE
47: end if
48: end if
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property of deviator sets and their complements within the FAIRSICAL protocol. If a player
P i never appears in the deviator set of some other correct player P j , this implicitly means
P i always provably agrees with P j . Specifically, P i always provably agrees with P j ’s SMR
updates. This is stated formally in Lemma 7.1.

Lemma 7.1. For any two correct players P i and P j , i 6= j, if P i is never included in P j ’s
deviator set, and P j decides on an SMR update V j for some round r, P i also decides on V j

for round r.

Proof. As P j is correct, and decides on an SMR update V j in round r, that must mean P j

also decides on a deviator set corresponding to round r. We know P i is never added to P j ’s
deviator set, meaning P j must observe P i as following the protocol in all rounds up to, and
including, round r. This means P i submits a valid commit message including V j in round
r − 1. As P j decides on V j , P i is correct, and P i receives the same messages as P j due to
the Broadcast functionality in the Threat Model (Section 6.1), P i also decides on V j in round
r. �

We are now equipped to prove the safety of FAIRSICAL given correct players control a
majority of stake.

Lemma 7.2. Given correct players control a majority of stake, FAIRSICAL satisfies safety.

Proof. For safety, we require for any two correct players P i and P j , i 6= j, if P j decides on
an SMR update V j at height H, and P i decides on an SMR update V i at height H, then
V i = V j .

From Lemma 7.1, this is equivalent to proving P i will never appear in P j ’s deviator set at
any point in FAIRSICAL, and vice versa. Without loss of generality, we prove that P j never
adds P i to their deviator set, with the proof that P i never adds P j analogous. To do this, we
will assume otherwise and reach a contradiction. Therefore, let us assume at some round in
the protocol, P i is added to P j ’s deviator set.

Assume P i is added to P j ’s deviator set during a Validate round (algorithm: 3, line: 4).
Therefore, either P i did not submit a valid SMR update (algorithm: 6, line: 12), or P i sent
an incorrect encryption of the height randomness (algorithm: 6, line: 15). As P i is correct,
neither of these occur. Therefore, P i is not added to P j ’s deviator set during a Validate round.

Assume P i is added to P j ’s deviator set during a Commit round (algorithm: 4, line: 6).
Therefore, either P i sent a different deviator set to that of P j (algorithm: 6, line: 30), or
P i sent an incorrect encryption of their randomness share (algorithm: 6, line: 27). We have
already seen that no correct player will add a player to a deviator set who sends a message
satisfying the isValid() conditions of a Propose round. Let P k be a player sending a Propose
message not satisfying the isValid() conditions of a correct player, i 6= k 6= j. Due to the
Broadcast functionality, all players observe P k’s deviation. By the correctness of P i and P j ,
both will add P k to their deviator sets. Therefore, P i and P j must have the same deviator
set at the end of the preceding Validate round. Furthermore, as P i is correct, P i will send the
correct randomness share encryption. This contradicts the assumption. Therefore, P i is not
added to P j ’s deviator set during a Commit round.

Assume P i is added to P j ’s deviator set during a Decide round (algorithm: 5, line: 6).
Analogously to a Commit round, for a Decide round, P i and P j will have the same deviator set
at the end of the preceding Commit round. Therefore, P i must have submitted an incorrect
randomness share (algorithm: 6, line: 40). As P i is correct, this is not the case, meaning P i

will not appear in P j ’s deviator set during a Decide round.
Therefore, P i is never added to P j ’s deviator set, as required. �

Next, we prove that FAIRSICAL satisfies liveness given correct players control a majority
of stake.

Lemma 7.3. Given correct players control a majority of stake, FAIRSICAL satisfies liveness.

Proof. To prove liveness, we require for any height H in the blockchain, every correct player
eventually decides on an SMR update for height H.
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To do this, we will prove that for any correct player P i in the presence of correct players
controlling a majority of stake decides on an SMR update in exactly 4 rounds, meaning an
SMR update will be decided for height H in exactly 4(H − 1) rounds.

As P i is correct, they will complete the Propose round and progress to the Validate round.
P i receives valid Propose messages from at least the correct players controlling a majority of
stake. This means the share of correctly participating stake for the Propose round is strictly
greater than 1

2 , which implies P i will progress to the Commit round. Again, we know that
at least the correct players controlling a majority of stake will have submitted valid Validate
messages. This means the share of correctly participating stake in the Validate round is strictly
greater than 1

2 , sufficient for P i to progress to the Decide round. Consequently, due to the
correct players controlling a majority of stake, there will be valid Commit votes from players
controlling more than 1

2 of the total stake. This results in P i successfully completing the Decide
round, and as such, deciding on the SMR update contained in the block they append to their
blockchain.

�

Now that we have proved FAIRSICAL achieves SMR when correct players control a majority
of stake, we can advance to proving it achieves ByRa SMR.

7.2 Proving FAIRSICAL is Strong Incentive Compatible in Expec-
tation

To prove the FAIRSICAL protocol is SINCE, we show that following the protocol is the strategy
which strictly maximises rewards. Recall, rewards for height H are paid to players not in Jtemp,
for Jtemp decided upon by the protocol.

We first show that the reward for a player P k who decides on a block at height H is equal to
c · sk1 , for all H > 1, where c is the total reward to be shared by all players for a block decision
at initialisation, and sk1 is P k’s share of stake at initialisation. This means the per-block reward
received by any rewarded player is constant.

Lemma 7.4. In FAIRSICAL, for any player P k who decides on a block at height H > 1, they
receive a reward of RkH = c · sk1 for height H.

Proof. From Section 6, we know RH = c · dH−1, dH = dH−1(1−
∑
j∈Jtemp

sjH−1) for Jtemp the

decided on deviator set for height H, ∀H > 1 , d1 = 1, with RkH = RHs
k
H−1 (algorithm: 5,

line: 14). We want RkH = c · sk1 , ∀H > 1. We will prove this by induction. In the following,

we will let YH = (1−
∑
j∈Jtemp

sjH−1).

First we check H = 2. As d1 = 1, this gives R2 = c (algorithm: 1, line: 8). Therefore,
Rk2 = R2s

k
1 = c · sk1 .

Assume the inductive hypothesis for H = h. That is, Rkh = c · sk1 . This means Rh = c
sk1
skh−1

,

which implies dh−1 =
sk1
skh−1

(as RH = c · dH−1). Looking ahead to H = h + 1, we want an

expression for dh in terms of
sk1
skh

. We know dh = dh−1Yh. Observe that Yh(Nh−1 + Rh) = Nh

(algorithm: 5, lines: 13-15), and also that for a player P k who decides on a block at height

h, that skh =
skh−1(Nh−1+Rh)

Nh
. We can rewrite the former as Nh−1+Rh

Nh
= 1

Yh
. This implies skh =

skh−1
Nh−1+Rh

Nh
= skh−1

1
Yh

, which gives Yh =
skh−1

skh
. Therefore, as dh−1 =

sk1
skh−1

and Yh =
skh−1

skh
,

we have dh = dh−1Yh =
sk1
skh−1

skh−1

skh
=

sk1
skh

.

Now, given this assumption, we must prove our hypothesis holds for H = h+ 1. We know

Rkh+1 = Rh+1s
k
h, and Rh+1 = c · dh. From the previous point, we have dh =

sk1
skh

, which implies

Rh+1 = c
sk1
skh

. Therefore Rkh+1 = c
sk1
skh
skh = c · sk1 as required.

�
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Now we show that for a rational player P i, P i is strongly incentivised in expectation to
follow the protocol.

Theorem 7.5. FAIRSICAL is strong incentive compatible in expectation in the ByRa model.

Proof. For FAIRSICAL to be SINCE, we require that for a rational P i, their expected utility
is maximised by following the protocol. For a player to be rewarded at height H, they must
not be included in the decided deviator set Jtemp for that height (algorithm: 5, line: 19), which
means no player will ever submit a Jtemp set containing themselves. To incorrectly abort a
block at a Decide round foregoes the chance to earn a reward for a decided block by entering
the Propose round of an incorrect height, which no rational player will do. Therefore, we only
need to examine strategies for rounds where messages are sent.

From Lemma 7.4, if a player P i decides on a block, they will always receive c · si1, so all
strategies which result in deciding on a block have the same positive reward for players who
reach a decision on the block.

As stake change only occurs after successful Decide rounds (algorithm: 5, lines: 13-19), the

maximum possible stake gain at round r′ for P i given the current round is r is d r
′+1−r

4 ec · si1.
To maximise the expected stake at some round r′, this is equivalent to successfully completing
as many Decide rounds as possible in expectation, then finishing as close as possible to a Decide
round, while also maximising the probability of remaining in the protocol at round r′. We will
show these conditions are uniquely achieved by following the protocol.

We can represent any deviator set Jtemp as a binary string of length n, with 1 in position
j representing the statement ‘P j has deviated’. For P i, an invalid message from P j will be
identified by the isValid() algorithm (algorithm 6). An invalid message from P j therefore is
equivalent to at least one of the following:

• Violating the validSMRUpdate() predicate (algorithm: 6, line: 12).

• Sending an incorrect randomness derivative (algorithm: 6, lines: 15, 27, 40).

• Submitting an incorrect Jtemp (algorithm: 6, lines: 30, 43).

Based on the unforgeability of messages in our protocol, it is impossible for P i to claim correct
behaviour of a deviating player P j if no such behaviour was observed with respect to P i’s state
(noted in Section 6.2). Therefore, for all players submitting a binary string representation
of the Jtemp set, the indices of players who violate the validSMRUpdate() predicate or send
an incorrect randomness derivative are set to 1. Due to the Broadcast functionality, these
identified deviators will be consistent for all players. We already know a rational player P i

always sets position i in their own deviator string to 0, which means they will never violate the
validSMRUpdate() predicate or send an incorrect randomness derivative. Therefore, to prove
SINCE, we need to show that submitting the correct Jtemp in every round simultaneously
maximises the expected positive payoff of a player while minimising the probability of being
removed from the protocol.

We first prove that submitting the correct Jtemp in every possible round has the unique
highest probability of being agreed upon, which is equivalent to maximising the expected
number of successful (Decide) rounds. Every message sent by a player P i must, for every
other P j , j ∈ {1, ..., n}\{i}, either prove P j honestly followed the protocol up until that point
in the protocol, or claim they deviated. We know for any j 6= i, P j will set position j of
their own string to 0. Furthermore, in the worst case scenario for agreement, P j will set all
other positions of non-deviating players, in P j ’s view, to 0 with probability 0.5. As such, for
m players following the protocol up to a particular round according to P i, P i rational, the
correct deviator set will match that of any other player P j with probability greater than or
equal to 0.5m−1.

Consider a player P j , j 6= i, such that P j ’s share is δ > 0. For an incorrect deviator set from
P i accusing P j of deviating, the probability of choosing the same deviator string as another
player, sampling in proportion to player shares, reduces by at least 0.5m−1δ. This is because
for an incorrectly assigned 1 in position j of P i’s deviator string, the respective deviator strings
of P i and P j will be different. This is opposed to a probability of matching of at least 0.5m−1
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if position j was 0. The probability of having a matching deviator string with any other player
P k, j 6= k 6= i, does not change in expectancy in this worst-case assignment of 0s and 1s. This
means the most probable submitted deviator set is the correct one, which implies following the
protocol strictly maximises the number of Decide rounds that can be reached.

As following the protocol strictly maximises the expected positive payoff, to prove that
following the protocol maximises expected utility, we only have to show that no other strategy
increases the probability of remaining in the protocol at round r′. Any other strategy involves
choosing some incorrect Jtemp to submit during some round r′′ ≤ r′.

P i is only removed from the protocol (algorithm: 5, line: 18) if the players remaining in
the protocol at round r′ submit a Jtemp set in a previous round r′′ not matching that of P i.
Therefore, to maximise their probability of remaining in the protocol, P i must choose the most
probable Jtemp. We have already seen that this is achieved by submitting the correct Jtemp.

As such, a rational player submits the correct Jtemp to maximise their expected utility.
This corresponds to SINCE.

�

7.3 Proving FAIRSICAL is Fair

As we have shown FAIRSICAL is strong incentive compatible in expectation, we now need to
show that there will always exist a majority of rational players. To ensure such a majority
always exists, it is required that the adversary is unable to increase their share in any round
of the protocol. For this, we require fairness.

Theorem 7.6. FAIRSICAL is fair in the ByRa model.

Proof. From Theorem 7.5, we have that in the presence of rational players controlling a major-
ity of stake, this majority will always follow the protocol. If the adversary follows the protocol
given this majority, they will always be rewarded, and thus for a starting share sA1 , receive
c · sA1 out of a total reward of c at each height H > 1 (from Lemma 7.4), and thus sAH = sA1 .

If the adversary deviates from the protocol with one or more of the Byzantine players given
rational players control a majority of stake, it will be identified by the rational players and thus
these Byzantine players will be added to the corresponding Jtemp set, destroying the offending
players’ stake, resulting in an overall loss in adversarial share. Therefore, as the adversarial
share is decreasing, with equality if and only if the adversary follows the protocol, the protocol
is fair. �

Corollary 7.7. FAIRSICAL achieves ByRa SMR.

Proof. The result follows by applying Theorems 7.5 and 7.6 to Theorem 5.8. �

8 Conclusion

We provide a game theoretic framework for analysing SMR protocols. Although many previ-
ous attempts have been made, we are, to the best of our knowledge, the first to formally treat
SMR protocols as games involving only rational and adversarial players. We detail the ByRa
model for player characterisation in SMR protocols, an update to the legacy BAR model, re-
moving the dependency on altruistic players in an era of unprecedented market capitalisation
of tokenised SMR protocols. We demonstrate that the properties of strong incentive compati-
bility in expectation and fairness as described in this paper, are both necessary, and together
sufficient to achieve SMR in the ByRa model. We then provide the FAIRSICAL protocol as
an example of a protocol that achieves ByRa SMR, which is of independent interest both as a
strong incentive compatible in expectation and fair protocol in the ByRa model, but also as an
easy-to-understand standard for addressing the shortcomings of current protocol guarantees in
the ByRa model. The proof techniques we use provide accessible methodologies with which
SMR protocols can be analysed in this new game theoretic framework.

Although we provide FAIRSICAL as an example of a protocol which achieves ByRa SMR
under weak adversarial assumptions, weaker communication assumptions will be required to
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successfully instantiate protocols that achieve ByRa SMR in certain real-world settings. Our
development and thorough detailing of FAIRSICAL stands as a template for this important
future work.

9 Acknowledgements

Thanks to Bruno Mazorra for his helpful feedback and discussions throughout the development
of this paper.

References

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Effi-
cient synchronous byzantine consensus. https://eprint.iacr.org/2017/307, 2017. Re-
trieved: 07/12/2020. 6

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman.
Solida: A blockchain protocol based on reconfigurable byzantine consensus. https:

//arxiv.org/abs/1811.08572, 2016. Retrieved: 05/12/2020. 4

[3] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin,
and Carl Porth. Bar fault tolerance for cooperative services. SIGOPS Oper. Syst. Rev.,
39(5):45–58, October 2005. 3, 5

[4] Humoud Alsabah and Agostino Capponi. Pitfalls of bitcoin’s proof-of-work: R&d arms
race and mining centralization. https://ssrn.com/abstract=3273982, 2020. Retrieved:
07/12/2020. 3, 4

[5] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Rational behavior in committee-based blockchains. https://eprint.iacr.
org/2020/710, 2020. Retrieved: 06/12/2020. 3, 4, 5

[6] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. Correctness and fairness of tendermint-core blockchains. https:

//arxiv.org/pdf/1805.08429, 2018. Retrieved: 06/12/2020. 5

[7] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. On fairness in committee-based blockchains. https://arxiv.org/

pdf/1910.09786, 2019. Retrieved: 06/12/2020. 4, 5

[8] Nick Arnosti and S. Matthew Weinberg. Bitcoin: A natural oligopoly. https://arxiv.

org/abs/1811.08572, 2018. Retrieved: 08/12/2020. 3, 4

[9] Sarah Azouvi and Alexander Hicks. Sok: Tools for game theoretic models of security for
cryptocurrencies. https://arxiv.org/abs/1905.08595, 2020. Retrieved: 25/11/2020. 4

[10] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry,
Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of blockchains. In
Proceedings of the 1st ACM Conference on Advances in Financial Technologies, AFT ’19,
pages 183–198, New York, NY, USA, 2019. Association for Computing Machinery. 4

[11] Bruno Biais, Christophe Bisière, Matthieu Bouvard, and Catherine Casamatta. The
blockchain folk theorem. IDEI Working Papers 873, Institut d’Économie Industrielle
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