
Post-Quantum Hash-Based Signatures for
Secure Boot

Panos Kampanakis, Peter Panburana, Michael Curcio, Chirag Shroff
Security and Trust Organization

Cisco Systems, USA
{pkampana, pepanbur, micurcio, cshroff}@cisco.com

Updates: Initially uploaded to Cryptology ePrint Archive
on Dec 18, 2020 with minor changes in Section III-B from the
originally submitted SVCC 2020 camera-ready manuscript.
Re-uploaded on Dec 21, 2020 with minor updates in Section
III-B for accuracy.

Abstract—The potential development of large-scale quantum
computers is raising concerns among IT and security research
professionals due to their ability to solve (elliptic curve) discrete
logarithm and integer factorization problems in polynomial time.
All currently used, public-key cryptography algorithms would
be deemed insecure in a post-quantum setting. In response,
the United States National Institute of Standards and Tech-
nology has initiated a process to standardize quantum-resistant
cryptographic algorithms, focusing primarily on their security
guarantees. Additionally, the Internet Engineering Task Force has
published two quantum-secure signature schemes and has been
looking into adding quantum-resistant algorithms in protocols. In
this work, we investigate two post-quantum, hash-based signature
schemes published by the Internet Engineering Task Force and
submitted to the National Institute of Standards and Technology
for use in secure boot. We evaluate various parameter sets for the
use-cases in question and we prove that post-quantum signatures
would not have material impact on image signing. We also study
the hierarchical design of these signatures in different scenarios
of hardware secure boot.

Index Terms—HBS signatures, PQ image signing, PQ root of
trust, post-quantum secure boot

I. INTRODUCTION

Digital communications have completely penetrated every-
day life as enablers of numerous critical services including
telemedicine, online banking, massive e-commerce, machine-
to-machine automation, mobile and cloud computing. As part
of guaranteeing that the software on digital devices is genuine,
vendors have implemented several security features that val-
idate the authenticity of software. When starting the booting
process, a device’s firmware is initially booted from a tamper-
resistant ROM or flash memory. Then the boot process is
passed onto a bootloader that is responsible for further loading
the operating system (OS). Software verification takes place at
every step of the process. Before being loaded, a bootloader

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. SVCC 2020, December
17-19, 2020. Copyright 2020@SVCSI

signature is verified by boot 0 code, namely Unified Extensible
Firmware Interface (UEFI) on x86 based systems. The OS
signature is verified by the bootloader before loading the OS.
This verification process is often referred to as secure boot
and ensures that there is a chain of trust that is passed from
the very first step until the operating system comes live [1]. In
virtual environments, vendors often follow a similar paradigm.

The signatures that are validated in each step of the secure
boot process are usually classical RSA signatures. While the
security of these signatures cannot effectively be challenged
by conventional computer systems, this would not be the case
in a post-quantum (PQ) world where a large scale quantum
computer is a reality [2]. Shor’s quantum algorithm [3], [4],
assuming a practical quantum computer (QC) becomes avail-
able, would solve elliptic curve discrete logarithm (ECDL)
and integer factorization (IF) problems in polynomial time
rendering the algorithms insecure. In this scenario a QC-
equipped attacker would be able to sign any specially crafted
malicious software in the secure trust chain and boot non-
genuine, malicious software.

The cryptographic community has been researching
quantum-secure public key algorithms for some time in order
to address the QC threat, and the US National Institute of
Standards and Technology (NIST) has started a public project
to standardize quantum-resistant public key encapsulation and
digital signature algorithms. At the time of this writing,
NIST’s evaluation process has moved to Round 3 with 15 PQ
algorithms remaining. Similarly, the European Telecommuni-
cations Standards Institute (ETSI) has formed a Quantum-
Safe Working Group [5] that aims to make assessments and
recommendations on the various proposals from industry and
academia regarding real-world deployments of quantum-safe
cryptography. In addition, the Internet Engineering Task Force
(IETF) has seen multiple proposals that attempt to introduce
PQ algorithms in protocols like TLS and IKE [6]–[10]. The
integration of PQ algorithms in today’s technologies presents
challenges that pertain to (a) bigger keys, ciphertexts and
signatures, (b) slower performance, (c) backwards compati-
bility, and (d) lack of hardware acceleration. The IETF has
also published two PQ signature algorithms in Informational
RFCs [11], [12].

Our focus for this work is on post-quantum secure boot
signatures. We chose to evaluate two well-established hash-
based signature (HBS) schemes, namely LMS [11] and

SPHINCS+ [13], which are based on mature, quantum-secure
primitives. We compare their verification time against classical
RSA signatures used today. Verification happens every time
booting takes place, thus its performance is important. We also
study the signing time; even though signing takes place once
per image, we still need to maintain relatively fast signing
for high-rate signers. We also investigate the signatures and
public key sizes which would affect the verification process,
especially for resource-constrained verifiers. We finally study
the code footprint and stack used at the verifier in order to
estimate the impact on resource-limited verifiers.

The key contributions of our work are summarized as
follows:

(i) We formalize and propose post-quantum HBS signature
hierarchies for secure boot software signing.

(ii) We establish parameter sets suitable for different soft-
ware signing use-cases for two PQ security levels.

(iii) We analyze the impact of two well-studied HBS
algorithms (one stateful, one stateless) when they are used
for image signing in hardware secure boot and FPGAs, and
compare them to classical RSA.

(iv) We show that trusted post-quantum signatures are pos-
sible with immaterial impact on the verifier, and an acceptable
impact on the signer.

The rest of the paper is organized as follows: Section II
summarizes related work. Section III lays out the signature
schemes, the proposed hierarchy and parameter sets for our
investigation and Section IV presents our experimental results
and analysis in various platforms. Section V concludes the
paper.

II. RELATED WORK

There has been a large body of research on PQ cryptography
[14]–[17]. Recently, more works are exploring NIST’s PQ
candidate schemes focusing mainly on their security and
computational performance.

More closely related to this work which focuses on PQ
signatures for secure boot, is the potential for using quantum-
secure, HBS schemes on constrained processors that was first
demonstrated in [18]. What is more, a variant of a stateful
HBS scheme, called XMSS [19], was implemented on a
16-bit smart-card in [20] which showed the practicality of
stateful HBS in constrained devices. [21] also demonstrated an
efficient implementation of XMSS in constrained IoT motes.
[22] integrated XMSS in a SoC platform around RISC-V cores
and evaluated on an FPGA to show that it is very efficient.
XMSS shares similarities with LMS investigated in this work,
but with worse performance and a tighter security proof [23].
What’s more, [24] investigated the practicality of stateful
HBS (LDWM, a predecessor of LMS studied here) in TPMs
without studying real time, performance or memory footprint
or stateless HBS schemes and HBS parameters specific to the
secure boot use-case.

Boneh and Gueron proposed stateful HBS signatures using
various one-way functions for signing Intel SGX enclaves
in [25]. They concluded that HBS verification can be faster

than RSA3072 and QVRSA. Additionally, Hülsing et al.
implemented stateless HBS SPHINCS signatures in an ARM
Cortex M3 with only 16KB of memory [26]. They also
compared SPHINCS with stateful XMSS in an ARM Cortex
M3 and showed that stateless HBS verification is acceptable
but its signing is 30 times slower. The authors in [27], [28]
conducted a comparison of NIST Round 2 candidate algorithm
hardware implementations with a focus on algorithm opera-
tions and impact on hardware design. In [29], Kannwischer
et al. benchmarked Round 2 algorithms on ARM Cortex-M4
and evaluated the more suitable ones for embedded devices.
[30] studied the energy consumption of the NIST algorithm
candidates and identified the most expensive ones in terms of
energy. The SPHINCS+ variants were found to be one of the
most energy-intensive ones compared to their competitors at
the same security level.

III. HBS FOR SECURE BOOT

A. Intro to HBS

The HBS family of PQ signature algorithms is considered
mature, well-understood, and significantly reliable. The first
scheme in the family, the Merkle signature scheme (MSS),
was presented in the late 1970s [31]. HBS signatures rely on
Merkle trees and few or one-time-signature (FTS/OTS) used
with secure cryptographic hash functions.

HBS schemes generate keypairs for the FTS/OTS. The
FTS/OTS signs a message and the corresponding public key
is a leaf in the Merkle tree, whose root is the public key that
is expected to be pre-trusted by the verifier. An HBS signature
consists of the OTS/FTS signature and the path to the root of
the tree. The signature is verified using the public key inside
it, and by using the authentication path to construct the root of
the hash tree. Currently, the most mature members of the HBS
family are the stateful LMS [11] and XMSS [12], and stateless
SPHINCS+, one of the NIST signature candidates [13]. Fig. 1a
shows an LMS tree. The message is signed by an OTS (LMS-
OTS or WOTS+) and the OTS public key forms a binary
tree leaf that is aggregated all the way to the Merkle tree
root. The parameters of the tree include the hash function, the
tree height, and the Winternitz parameter of the OTS. Multi-
level tree variants are also available and consist of smaller
subtrees that form a big HBS tree. Readers should note that
stateless XMSS [19], which was also published by IETF [12],
shares similarities with LMS, but with worse performance and
a tighter security proof [23].

Fig. 1b shows a SPHINCS+ tree which consists of an FTS,
namely a FORS tree, that signs a message, and a multi-level
Merkle tree. The FORS tree root is signed by an OTS (i.e.,
WOTS+). The corresponding WOTS+ public key forms the
Merkle tree leaf that is aggregated all the way to the bottom
subtree root. That root is signed by WOTS+ and the WOTS+
public key is aggregated to the root of the subtree above.
Subtree roots are signed by subtrees above until we reach
the top subtree. Going forward we focus only on LMS and
SPHINCS+.

.
OTS PK

OTS. . .

OTS PK

Msg

OTS PK

OTS

Msg

OTS

Msg

. . .

(a) LMS tree

...

...

...

...

Msg

FORS

FORS PK
... ...

...

Msg

FORS

FORS PK

Msg

FORS
...

(b) SPHINCS+ tree

Fig. 1: HBS trees

Excluding their architectural differences, the most signifi-
cant difference between a stateful and stateless HBS is state.
Stateful schemes (i.e., LMS, XMSS) include a four-byte index
value in their signature which represents the state. The state
is used when signing a message and should never be reused
as that could allow for forgeries. The state management
requirement is considered an important disadvantage which
has been often brought up in IETF and NIST fora [32],
[33]. Stateless HBS (i.e., SPHINCS+), on the other hand,
have no state requirement. Hence, messages are signed by
an HBS hypertree without having to keep state with every
signature. While stateless SPHINCS+ eliminates the need
for proper state management, it also leads to a significant
increase in signature size and slower performance because
of the FORS structure. Section IV shows the performance
comparison between LMS and SPHINCS+.

B. Hierarchy

An HBS hierarchy would be needed to provide signatures
for multiple platforms or chips and firmware / software
versions, and comply with existing secure boot standards.
Typically, these hierarchies would include multiple tree levels.
Each multi-level tree would serve as a different UEFI signing
structure, namely the PK, Firmware Update Key or KEK. The
root of each tree would become the key included in the UEFI
db/dbx databases pre-trusted by the verifier. Each tree would
be responsible for signing firmware, firmware packages, PK
updates, or software images. Fig. 2 shows such a hierarchy

...

...

...

...

Msg Msg MsgMsg
......

Fig. 2: HBS hierarchy

with a three-level tree architecture. The hypertree structurally
consists of smaller trees in order to limit the key generation
and signing times.

In such architectures, the height of the trees should be
chosen so they can provide enough signatures for the use-
case. A typical top tree could sign 215 bottom trees. A bottom
tree that can sign one million images (220) would probably
suffice for most use-cases. Most vendors’ portfolio would
never exceed 235 total images. As an example, in 2020, major
IT vendors with thousands of products in their portfolio were
signing less than 250 million (∼ 228) images annually which
would lead to ∼ 233 signatures over a 30 year signing root’s
lifetime.

Key Revocation is an important concept for HBS multi-
level tree hierarchies. Revoking a tree root, a signature or any
of the lower level trees is essential to providing a way to
eliminate trust in roots that have been compromised, broken
or replaced. In secure boot, the trusted certificate/key and
revocation list exist in the UEFI db and dbx respectively [34].
Often the UEFI db/dbx is stored in a Trust Anchor module.
Updating these lists takes place with messages authenticated
by a KEK tree. The KEK HBS tree would be used to sign
UEFI db/dbx updates or sign revocation images.

C. Parameters

In the process of evaluating HBS for secure boot and
image signing, we had to come up with parameters that
would satisfy most use-cases. We experimented with many
parameters in order to find the most suitable ones. LMS offers
many options up to 225 signed messages which would suffice
for the multi-level architecture described in Section III-B. The
PQ security level of all LMS parameters is 128 bits. Note
that all LMS/HSS parameters could be adjusted to provide
96-bit PQ security by truncating the SHA256 outputs to 192
bits [35]. On the other hand, SPHINCS+, as proposed to NIST,
offers three PQ security levels of 64, 96 and 128 bits. For
our evaluation we chose to be conservative and use the latter
two. The SPHINCS+ variants submitted to NIST can sign
up to 264 messages, as required by NIST. We generated new
parameters for our maximum signature count which does not

Parameter name HBS Scheme Parameters PQ Security Level

LMS256H5W4 LMS LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W4 128-bits
LMS256H5W8 LMS LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W8 128-bits
LMS256H10W4 LMS LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W4 128-bits
LMS256H10W8 LMS LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W8 128-bits
LMS256H15W4 LMS LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W4 128-bits
LMS256H15W8 LMS LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W8 128-bits
LMS256H20W4 LMS LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W4 128-bits
LMS256H20W8 LMS LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W8 128-bits
HSS256L2W4 HSS L = 2 with top LMS256H20W4 and bottom LMS256H15W4 128-bits
HSS256L2W8 HSS L = 2 with top LMS256H20W8 and bottom LMS256H15W8 128-bits
HSS256L3oW4 HSS L = 3 with LMS256H15W4, LMS256H10W4 and bottom LMS256H10W4 128-bits
HSS256L3oW8 HSS L = 3 with LMS256H15W8, LMS256H10W8 and bottom LMS256H10W8 128-bits

SPX192H15w16 SPHINCS+ n = 24, H = 15, d = 3, k = 18, a = 13 w = 16 96-bits
SPX192H15w256 SPHINCS+ n = 24, H = 15, d = 3, k = 18, a = 13 w = 256 96-bits
SPX192H20w16 SPHINCS+ n = 24, H = 20, d = 4, k = 18, a = 13 w = 16 96-bits
SPX192H20w256 SPHINCS+ n = 24, H = 20, d = 4, k = 18, a = 13 w = 256 96-bits
SPX192H35w16 SPHINCS+ n = 24, H = 35, d = 5, k = 20, a = 12 w = 16 96-bits
SPX192H35w256 SPHINCS+ n = 24, H = 35, d = 5, k = 20, a = 12 w = 256 96-bits
SPX256H15w16 SPHINCS+ n = 32, H = 15, d = 3, k = 19, a = 16 w = 16 128-bits
SPX256H15w256 SPHINCS+ n = 32, H = 15, d = 3, k = 19, a = 16 w = 256 128-bits
SPX256H20w16 SPHINCS+ n = 32, H = 20, d = 4, k = 19, a = 16 w = 16 128-bits
SPX256H20w256 SPHINCS+ n = 32, H = 20, d = 4, k = 19, a = 16 w = 256 128-bits
SPX256H35w16 SPHINCS+ n = 32, H = 35, d = 5, k = 21, a = 15 w = 16 128-bits
SPX256H35w256 SPHINCS+ n = 32, H = 35, d = 5, k = 21, a = 15 w = 256 128-bits

TABLE I: HBS Parameters

exceed a total of 34 trillion (235) signatures. In preliminary
investigations, we found that the equivalent NIST-submitted
SPHINCS+ parameter sets (264 signatures) would perform
much slower verification which would lead to significant
delays in the booting process. We also chose to only evaluate
the ’simple’ variants of SPHINCS+ because of their superior
performance. What’s more, we only used SHA256 SPHINCS+

variants because of its superiority in SPHINCS+ benchmarks
and its prevalence in hardware implementations.

Table I summarizes all the LMS and SPHINCS+ parameter
sets we used in our evaluation. LMS256H5W4, LMS256H5W8,
LMS256H10W4 and LMS256H10W8 are not included as
single tree LMS variants in our analysis. We just list them
because they are used in multi-level HSS variants. Addition-
ally, LMS256H20W4 and LMS256H20W8 could be tested as
an HSS with two levels of height 10, which would speed up
key generation and key loading, at the expense of increased
signature sizes. Key generation and loading can be considered
offline operations for the secure boot use-cases and thus
we chose to use height 20 LMS trees. HSS256L3oW4 and
HSS256L3oW8 offer a balance between key generation and
key load time.

IV. EXPERIMENTS

A. RSA vs LMS vs SPHINCS+

In order to compare our options. we initially experimented
and measured the performance of RSA and all the LMS and
SPHINCS+ parameters of interest. We ran all these tests in
a Google Cloud instance with an Intel Xeon CPU 2.20GHz

with 2 cores and 7.68GB RAM. To compile our code we used
gcc version 7.4.0. The tests were run 1000 times for each
parameter set.

To measure RSA performance, we used OpenSSL 1.1.1c
with OPENSSL_BN_ASM_MONT enabled. Our LMS testing
code was based on [36], dynamically linked to OpenSSL’s
SHA256 implementation and properly instrumented with var-
ious performance optimizations and memory speed trade-offs.
Our SPHINCS+ testing code was based on [37] which is a fork
of the original code [38] from the SPHINCS+ NIST submis-
sion. The SPHINCS+ verification was dynamically linked to
the OpenSSL 1.1.1c library for its SHA256 implementation
which proved to provide the best verification performance.
For SPHINCS+ signing, we found that the AVX2 optimized
code in [38] provided the best results possible and thus we
didn’t link SPHINCS+ signing to OpenSSL. Multi-threading
was disabled for both implementations. We also measured
the memory footprint (code and stack) of LMS/HSS and
SPHINCS+ verification in order to assess their practicality
in constrained verifier chips. Both verifiers used OpenSSL’s
SHA256 implementation which was not counted against the
reported code size. As in [29], we measured the stack usage
by writing a random canary to a big chunk of the available
stack space, then running the verification, and finally checking
which parts of the memory have been overwritten.

Table II shows the results from our testing. We can see that
all the private and public keys are of negligible size. It is also
clear that the verifier code and stack size of a few KB would
not practically impact most secure boot verifiers. The heap

Parameter
Keys (B) Verifier (KB)

Keygen
Sign (Mcycles) Verify (Mcycles)

Priv Pub Code Stack (s) Mean Stdv Mean Stdv

LMS256H15W4 48 60 2.57 1.81 2.519 1.145 0.051 0.370 0.033
LMS256H15W8 48 60 2.15 1.81 13.720 6.237 0.302 2.855 0.290
LMS256H20W4 48 60 2.57 1.81 3.222 1.465 0.037 0.373 0.026
LMS256H20W8 48 60 2.15 1.81 19.373 8.807 0.555 2.857 0.274
HSS256L2W4 48 60 3.15 1.81 350.2 3.945 0.041 0.716 0.026
HSS256L2W8 48 60 2.51 1.81 2712 19.351 0.288 5.771 0.271
HSS256L3oW4 48 60 3.15 1.81 10.86 3.771 0.024 1.050 0.022
HSS256L3oW8 48 60 2.51 1.81 84.5 13.084 0.261 8.187 0.254

SPX192H15w16 96 48 4.46 4.98 0.003 176.049 1.170 1.022 0.020
SPX192H15w256 96 48 4.41 2.87 0.026 332.180 1.860 7.045 0.094
SPX192H20w16 96 48 4.46 4.39 0.003 183.444 1.154 1.382 0.024
SPX192H20w256 96 48 4.41 3.24 0.026 391.554 2.219 10.193 0.189
SPX192H35w16 96 48 4.50 4.97 0.012 212.532 1.374 1.591 0.027
SPX192H35w256 96 48 4.43 2.87 0.103 1,218.257 4.139 11.711 0.151
SPX256H15w16 128 64 4.54 6.14 0.004 1,297.180 5.589 1.385 0.024
SPX256H15w256 128 64 4.47 4.68 0.032 1,491.183 5.405 9.219 0.163
SPX256H20w16 128 64 4.54 6.70 0.004 1,310.393 5.480 1.768 0.046
SPX256H20w256 128 64 4.47 4.25 0.032 1,566.816 4.856 11.599 0.139
SPX256H35w16 128 64 4.53 6.58 0.016 814.356 3.697 2.080 0.031
SPX256H35w256 128 64 4.46 4.52 0.128 2,057.650 6.223 15.341 0.214

TABLE II: HBS Key, Signature Sizes, Memory footprint and Performance

2.67
1.62

2.83
1.78

5.56

3.44

7.80

4.63

7.80

4.63

10.10

8.30

11.45

9.05

13.22

10.22

17.28

14.11

19.58

15.36

22.62

17.34

0

5

10

15

20

25

Fig. 3: HBS Signature Size (KB)

used by the verifier was always zero. What’s more, LMS/HSS
signing was less costly in CPU cycles than SPHINCS+.
SPHINCS+ verification was worse than LMS/HSS but not
as significantly as signing. The standard deviation for both
signing and verification CPU cycles was insignificant. Our
results are in agreement with the ARM Cortex M3 results
in [26]. In terms of key generation, LMS/HSS took much
longer mainly because LMS generates trees at every level
which is counted against key generation; in SPHINCS+ only
the top tree is counted as part of the key generation and all
the other tree generations are part of the signature operation.
Thus, LMS is optimized by taking longer to generate keys but
performs signing faster by using auxiliary data and pre-loaded
private keys, whereas SPHINCS+ includes part of this work
in the signature generation itself.

Fig. 3 demonstrates the signature sizes of all parameter
sets. As expected, parameter sets with W = 8 and w = 256
have smaller signatures. We also see that LMS/HSS offers
signatures that stay below 8KB. Note that all LMS/HSS
parameters could be adjusted to provide 96-bit PQ security by

1.15

6.24

1.46

8.81

1.79

8.80

3.42

13.76

1.71

5.95

80.02

150.99

83.38

177.98

96.60

553.74

589.61
677.79

595.63
712.17

370.16

935.29

1

10

100

1000

Fig. 4: HBS Signing Time (log-scale in ms)

truncating the SHA256 outputs to 192 bits [35] which would
shrink all reported LMS/HSS signatures by 25%. SPHINCS+

signatures exceed 10KB and grow to almost 23KB for 128-bit
PQ security level parameters with w = 16. 23KB signatures
are small enough for most secure boot use-cases. In rare sce-
narios where small signatures are required, LMS/HSS would
be preferable.

Fig. 4 shows the absolute signing times for all parameter
sets measured on our testing platform. We can see that all
signatures take less than one second which would suffice for
almost all software signing use-cases where signing does not
take place live. Signing is performed offline, only once and
thus is immaterial to the booting process. The standard devia-
tion was insignificant. LMS/HSS and SPHINCS+ with W = 8
and w = 256 perform worse than with W = 4 and w = 16
respectively, but their time is still acceptable. SPHINCS+

performs orders of magnitude worse than LMS/HSS, but still
at an acceptable level. Note that signing performance would
increase even further if multi-threading was enabled.

Fig. 5 shows the HBS verification times. None of the

0.17

1.30

0.17

1.30

0.33

2.62

0.48

3.89

0.48

3.72

0.47

3.20

0.63

4.63

0.72

5.32

0.63

4.19

0.80

5.27

0.95

6.97

0

1

2

3

4

5

6

7

Fig. 5: HBS Verification Time (ms)

proposed parameter sets perform verification slower than 7ms
which is satisfactory. Verification times would still be accept-
able even at 100 or 200ms with slower processors than in our
testbed. The standard deviation was insignificant. Parameters
with W = 4 (LMS) or w = 16 (SPHINCS+) verify signatures
significantly faster than with W = 8 or w = 256 respectively.

To give some perspective, today’s status-quo with secure
boot and image signing is classical RSA2048. An RSA2048
signature offers 112 bits of classical security, 0.26KB private,
public key and signature, and was measured to take 1.657Mcy-
cles/0.753ms per signature and 0.049Mcycles/0.022ms per
verification in our testbed. RSA4096 offers over 128-bits of
classical security, 0.52KB private, public key and signature,
and was measured to take 11.241Mcycles/5.11ms per signature
and 0.173Mcycles/0.078ms per verification. Thus, RSA has
smaller signatures and performs faster than HBS, but within
the same order of magnitude which makes HBS appealing.
Note that all RSA variants are considered to offer ∼0 bits of
PQ security.

By combining all of the collected data, we can conclude
that the best LMS parameters are with W = 8 where verifi-
cation takes immaterially longer but signature sizes are a few
Kilobytes smaller. The best HSS parameter is HSS256L3oW4
which offers a balance of fast signing and verification with
slightly bigger signature sizes. Regarding SPHINCS+, pa-
rameters with w = 256 seem more favorable as they keep
signature sizes smaller with acceptable signing and verification
performance. Adopters could of course make different signa-
ture, signing and verification performance trade-off decisions
and pick different parameters.

B. FPGA-based signature verification

Modern embedded systems, use FPGAs to perform variety
of functions. While this can be facilitated by custom ASICs,
FPGAs can also be used. FPGA configuration bitstreams exist
at the lowest level of user-programmable functionality in the
system. FPGAs provide greater logic density than circuits
composed of discrete gates or most CPLDs, and they do so
at a lower development cost than a custom ASIC. Custom
ASICs also do not provide the same degree of flexibility and
upgradability. An FPGA device often plays a fundamental role
in the functioning of the system, capable of implementing
basic ”glue logic” that manages separate design domains and
their components. In more advanced applications, FPGAs
may also be customizable hardware acceleration resources.

When implementing signature verification functions or system
critical functions, it is essential that the system only use
authentic FPGA images.

Vendors of FPGAs have included various technologies in
their devices to protect the confidentiality of bitstream configu-
ration data and integrity assurances to ensure correct hardware
functionality. However, these technologies are not equivalent
among all vendors, nor are the same levels of security shared
among different device families from the same vendor. Of-
ten times, the built-in bitstream integrity functions are not
available to user logic. Furthermore, it is not uncommon for
an FPGA design to implement user logic that emulates a
microcontroller or even a full-fledged ”soft” CPU core that
itself runs user-defined microcode or firmware. Using post-
quantum signatures in upgrade images, microcontroller code or
code for other parts of the system would improve the security
of the system in a quantum computing future.

To evaluate the practicality of HBS verification in FPGAs,
we developed an FPGA core capable of verifying a subset
of the LMS parameters. We implemented verifiers for HSS
with two (L=2) LMS256H5W8 subtrees. We also implemented
single-level LMS LMS256H20W4 and LMS256H20W8 veri-
fiers. We tested these parameters through functional simula-
tion. We chose to focus on the LMS algorithms for this eval-
uation as their smaller signature size relative to SPHINCS+

requires fewer Block RAM resources to store a signature on-
chip for verification. This concern is particularly relevant to
lower power, lower density, and less costly devices that are
more likely to be used in embedded and IoT-type applications.
We did not implement SPHINCS+ verification in FPGAs.
We expect their required resources to be higher but in-line
with the resources observed in our FPGA-based LMS verifier.
To support this claim, [27] evaluated SPHINCS+ verification
with Xilinx Vivado HLS and Xilinx Virtex-7 FPGA as the
target devices and showed that SPHINCS+ verification would
perform acceptably even in constrained devices.

To provide a more direct comparison of LMS with an RSA
implementation, we implemented our design in an FPGA from
the Xilinx UltraScale architecture family. Testing assumed that
a short message and its signature were preloaded into a known
location of FPGA Block RAM dedicated to the LMS verifier
logic. The LMS algorithm would run to completion and
provide a pass/fail indication via a top-level interface port. The
messages were very short (less than 256 bytes) to ensure time
measurements also predominantly represented signature verifi-
cation time. Table III shows our results. The stateful HBS data
points were collected from Xilinx Vivado 2018.2, targeting
a mid-speed, industrial temperature grade Kintex UltraScale
device (xcku025-ffva1156-2-i). Vivado was set to use
the default options for the Flow_PerfOptimized_high
Synthesis Strategy and the Performance_Explore Imple-
mentation Strategy. Timing constraints defining a 4ns logic
clock period were successfully met. The RSA4096 results
were kindly provided by Xilinx from an example design that
was optimized for low logic area or high clock rate. The
RSA2048 results were taken from [39]. The latter design

Parameter Time (ms)
Clock
(MHz) FFs LUTs BRAM DSP CLB

RSA2048 [39] - ∼300 94455 28668 0 128 3428
RSA4096-Verilog * ∼60 200 316 818 1 1 -
RSA4096-VHDL † ∼10 200 484 346 1 3 -

LMS256H5W8 (HSS L=2) # ∼10
LMS256H20W4# ∼0.8 250 468 # 811 # 1 1 97 #

LMS256H20W8 # ∼5

TABLE III: Verification in Xilinx UltraScale chips
* Measurements from example Verilog design provided by Xilinx.
† Measurements from example VHDL design provided by Xilinx.
SHA256 logic excluded. SHA256 accounted for 1117 FFs, 1852 LUTs and 374 CLBs. The hashing of

the image is limited by the Serial Peripheral Interface (SPI) speed when reading the image from flash
at just a few MiB/s. Our SHA256 implementation was hashing data ∼184MiB/s. The Xilinx Vitis
Libraries documentation reports 296 MiB/s respectively (64 bytes per 68 cycles at 330.25 MHz). Thus,
the image hash calculation was excluded from our evaluation so that our results are not dominated by
the amount of time it takes to read the signature into on-chip memory.

is optimized for speed and compatibility with the new Vitis
development platform and therefore has a significantly higher
logic footprint. All RSA data points exclude the image hash
calculations that would precede an image verification, which
would increase the footprint significantly.

Given this approach, we observe that the performance of
our LMS implementation, in terms of clock rate, exceeds
that of comparative cores implementing RSA4096 signature
verification. It does not attain the speed of the Vitis library
module (RSA2048) though. Total verification time between
the classical and PQ signature algorithms is on the same order
of magnitude. In terms of area, LMS, while not nearly as large
as the the Vitis design (RSA2048), is larger than the VHDL-
optimized RSA4096 module and similar to the RSA4096-
Verilog one. Note that, even though it is not included in the
RSA rows in Table III, extra SHA256 footprint will still exist
in an RSA verification scenario to calculate the digest of the
image, which we expect to be similar to the additional LMS
SHA256 logic reported in Table III-footnote #.

It still remains feasible to further optimize an LMS verifier
to fit into almost the smallest of recent-generation FPGAs. We
expect that the footprint of verifier logic for other LMS/HSS
and SPHINCS+ parameters will be higher, but easily sup-
ported by most modern FPGAs.

In terms of total impact to the booting process if we assume
the boot chain starts from a Xilinx verifier, it is clear that
∼10ms will be unnoticeable even in use-cases where booting
up takes just a few seconds. In any case, booting from a
HBS-signed Xilinx bitstream will not affect the total boot time
more than a few milliseconds which is the case for classical
signatures as well.

V. CONCLUSION

In conclusion, in this work we evaluated the impact of
using post-quantum hash-based signatures for secure boot and
software signing. We proposed parameter sets at different
security levels that would be useful for different software
signing use-cases and introduced an architecture that would

work for most vendors. We experimentally showed that the
impact of switching to such signatures will be insignificant
for the verifier compared to conventional RSA used today
in various use-cases (i.e. hardware secure boot, FPGA). We
also showed that the signer will be more impacted, but still at
an acceptable level. Finally, we discussed practical issues and
concerns of migrating to HBS signatures and their alternatives.

ACKNOWLEDGMENTS

We would like to thank Scott Fluhrer for his LMS code,
his optimizations and his valuable guidance and feedback.
The authors would also like to thank Jason Moore and Jim
Wesselkamper from Xilinx for their sample Xilinx design data
points included in this work. The LMS FPGA logic measure-
ments were based on code developed by Md Mahbub Alam,
a Ph.D. Candidate at the University of Florida at the time.
Thanks to Bruno Couillard and Jim Goodman from Crypto4A
for the interesting discussions about HBS and their feedback.
Finally, we would like to acknowledge Joost Rijneveld for his
feedback and comments regarding SPHINCS+ parameters and
the SPHINCS+ implementation and Dimitrios Sikeridis for his
help with the experiments.

REFERENCES

[1] Cisco, “Cisco Secure Boot and Trust Anchor Module differentia-
tion solution overview,” 2017, https://www.cisco.com/c/en/us/products/
collateral/security/cloud-access-security/secure-boot-trust.html.

[2] M. Mosca, “Cybersecurity in an era with quantum computers: will we
be ready?” IEEE Security & Privacy, vol. 16, no. 5, pp. 38–41, 2018.

[3] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM J. on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[4] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm
for elliptic curves,” Quantum Info. Comput., vol. 3, no. 4, pp.
317–344, Jul. 2003. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2011528.2011531

[5] ETSI, “ETSI TC Cyber Working Group for Quantum-Safe Cryptogra-
phy,” https://portal.etsi.org/TBSiteMap/CYBER/CYBERQSCToR.aspx,
2017, Web page. Accessed 2019-07-25.

[6] S. Fluhrer, D. McGrew, P. Kampanakis, and V. Smyslov,
“Postquantum Preshared Keys for IKEv2,” Internet Engineering
Task Force, Internet-Draft draft-ietf-ipsecme-qr-ikev2-08, Mar. 2019,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-ipsecme-qr-ikev2-08

[7] M. Ounsworth and M. Pala, “Composite Keys and Signatures
For Use In Internet PKI,” Internet Engineering Task Force,
Internet-Draft draft-ounsworth-pq-composite-sigs-01, Jul. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ounsworth-pq-composite-sigs-01

[8] D. Steblia, S. Fluhrer, and S. Gueron, “Design issues for
hybrid key exchange in TLS 1.3,” Internet Engineering Task
Force, Internet-Draft draft-stebila-tls-hybrid-design-01, Jul. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-stebila-tls-hybrid-design-01

[9] C. Tjhai, M. Tomlinson, grbartle@cisco.com, S. Fluhrer, D. V.
Geest, O. Garcia-Morchon, and V. Smyslov, “Framework
to Integrate Post-quantum Key Exchanges into Internet Key
Exchange Protocol Version 2 (IKEv2),” Internet Engineering
Task Force, Internet-Draft draft-tjhai-ipsecme-hybrid-qske-ikev2-
04, Jul. 2019, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04

[10] P. E. Hoffman, “The Transition from Classical to Post-Quantum
Cryptography,” Internet Engineering Task Force, Internet-Draft draft-
hoffman-c2pq-05, May 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-05

[11] D. McGrew, M. Curcio, and S. Fluhrer, “Leighton-Micali Hash-
Based Signatures,” RFC 8554, Apr. 2019. [Online]. Available:
https://rfc-editor.org/rfc/rfc8554.txt

[12] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: eXtended Merkle Signature Scheme,” RFC 8391, May 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8391.txt

[13] J.-P. Aumasson, D. J. Bernstein, C. Dobraunig, M. Eichlseder,
S. Fluhrer, S.-L. Gazdag, A. Hülsing, P. Kampanakis, S. Kölbl,
T. Lange et al., “SPHINCS+ - Submission to the 2nd round
of the NIST post-quantum project,” https://sphincs.org/data/sphincs+
-round2-specification.pdf, 2019, Specification document (part of the
submission package).

[14] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederha-
gen, L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, “SPHINCS: Practical Stateless Hash-Based Signatures,” in
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 2015, pp. 368–397.

[15] A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe, “From 5-
pass MQ-based identification to MQ-based signatures.” IACR Cryptology
ePrint Archive, vol. 2016, p. 708, 2016.

[16] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger, “Haraka
v2-efficient short-input hashing for post-quantum applications,” IACR
Transactions on Symmetric Cryptology, pp. 1–29, 2016.

[17] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “A Post-
Quantum Digital Signature Scheme Based on Supersingular Isogenies,”
Cryptology ePrint Archive, Report 2017/186, 2017, http://eprint.iacr.org/
2017/186.

[18] S. Rohde, T. Eisenbarth, E. Dahmen, J. Buchmann, and C. Paar, “Fast
hash-based signatures on constrained devices,” in Smart Card Research
and Advanced Applications, G. Grimaud and F.-X. Standaert, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 104–117.

[19] J. Buchmann, E. Dahmen, and A. Hülsing, XMSS - A Practical Forward
Secure Signature Scheme Based on Minimal Security Assumptions.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 117–129.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-25405-5 8

[20] A. Hülsing, C. Busold, and J. Buchmann, “Forward secure signatures
on smart cards,” in Selected Areas in Cryptography, L. R. Knudsen and
H. Wu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
66–80.

[21] S. Ghosh, R. Misoczki, and M. R. Sastry, “Lightweight post-quantum-
secure digital signature approach for iot motes,” Cryptology ePrint
Archive, Report 2019/122, 2019, https://eprint.iacr.org/2019/122.

[22] V. B. Y. Kumar, N. Gupta, A. Chattopadhyay, M. Kaspert, C. Krauß,
and R. Niederhagen, “Post-quantum secure boot,” in Proceedings of the
23rd Conference on Design, Automation and Test in Europe, ser. DATE
’20. San Jose, CA, USA: EDA Consortium, 2020, p. 15821585.

[23] S. F. Panos Kampanakis, “LMS vs XMSS: A comparison of the Stateful
Hash-Based Signature Proposed Standards,” Cryptology ePrint Archive,
Report 2017/349, 2017, http://eprint.iacr.org/2017/349.

[24] M. Ando, J. D. Guttman, A. R. Papaleo, and J. Scire, “Hash-based
tpm signatures for the quantum world,” in Applied Cryptography and

Network Security, M. Manulis, A.-R. Sadeghi, and S. Schneider, Eds.
Cham: Springer International Publishing, 2016, pp. 77–94.

[25] D. Boneh and S. Gueron, “Surnaming schemes, fast verification, and
applications to SGX technology,” in Topics in Cryptology – CT-RSA
2017, H. Handschuh, Ed. Cham: Springer International Publishing,
2017, pp. 149–164.

[26] A. Hlsing, J. Rijneveld, and P. Schwabe, “Armed sphincs – computing
a 41kb signature in 16kb of ram,” Cryptology ePrint Archive, Report
2015/1042, 2015, https://eprint.iacr.org/2015/1042.

[27] K. Basu, D. Soni, M. Nabeel, and R. Karri, “Nist post-quantum
cryptography- a hardware evaluation study,” Cryptology ePrint Archive,
Report 2019/047, 2019, https://eprint.iacr.org/2019/047.

[28] D. Soni, K. Basu, M. Nabeel, and R. Karri1, “A Hardware Evaluation
Study of NIST Post-Quantum Cryptographic Signature schemes,” Sec-
ond PQC Standardization Conference, Aug 2019.

[29] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4:
Testing and Benchmarking NIST PQC on ARM Cortex-M4,” Cryptology
ePrint Archive, Report 2019/844, 2019, https://eprint.iacr.org/2019/844.

[30] C. Roma, C.-E. A. Tai, and M. A. Hasan, “Energy Consumption of
Round 2 submissions for NIST PQC Standards,” Second PQC Stan-
dardization Conference, Aug 2019.

[31] J. A. Buchmann, D. Butin, F. Göpfert, and A. Petzoldt, “Post-quantum
cryptography: state of the art,” in The New Codebreakers. Springer,
2016, pp. 88–108.

[32] A. Langley, “Email thread: Proposed addition of hash-
based signature algorithms for certificates to the LAMPS
charter,” 2018, https://mailarchive.ietf.org/arch/msg/spasm/
PgzLjPcg-jfywQFQs9gMLFcgRd8.

[33] “Stateful Hash-Based Signatures - public comments
on misuse resistance,” 2019, https://csrc.nist.gov/CSRC/
media/Projects/Stateful-Hash-Based-Signatures/documents/
stateful-HBS-misuse-resistance-public-comments-April2019.pdf.

[34] Microsoft, “Windows Secure Boot Key Creation and
Management Guidance,” 2017, https://docs.microsoft.
com/en-us/windows-hardware/manufacture/desktop/
windows-secure-boot-key-creation-and-management-guidance.

[35] S. Fluhrer and Q. Dang, “Additional Parameter sets for
LMS Hash-Based Signatures,” Internet Engineering Task Force,
Internet-Draft draft-fluhrer-lms-more-parm-sets-00, Sep. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-fluhrer-lms-more-parm-sets-00

[36] S. Fluhrer, “Lms hash based signature open-source implementation,”
2019, https://github.com/cisco/hash-sigs.

[37] P. Kampanakis, “Slim SPHINCS+ open-source implementation,” 2019,
https://github.com/csosto-pk/slim sphincsplus/tree/master/ref.

[38] SPHINCS+ team, “SPHINCS+ open-source implementation,” 2019,
https://github.com/sphincs/sphincsplus.

[39] Xilinx, “Vitis Security Library,” 2019, https://github.com/Xilinx/Vitis
Libraries/blob/8ee9037aeb2bdf44096c256ec6779973387e0c0f/security/
docs/guide L1/internals/rsa.rst.

