SEMI-REGULARITY OF PAIRS OF BOOLEAN POLYNOMIALS

TIMOTHY J. HODGES AND HARI R. IYER

Abstract

Semi-regular sequences over \mathbb{F}_{2} are sequences of homogeneous elements of the algebra $B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$, which have a given Hilbert series and can be thought of as having as few relations between them as possible. It is believed that most such systems are semi-regular and this property has important consequences for understanding the complexity of Gröbner basis algorithms such as F4 and F5 for solving such systems. We investigate the case where the sequence has length two and give an almost complete description of the number of semi-regular sequences for each n.

1. Introduction

The concept of \mathbb{F}_{2}-semi-regularity was introduced in $[1,2]$ in order to assess the complexity of certain Gröbner basis algorithms applied to solving systems of equations over the Galois field \mathbb{F}_{2}. For \mathbb{F}_{2}-semi-regular systems one can determine explicitly the highest degree of polynomials that will arise in the application of these Gröbner basis algorithms and this information enables one to predict with some accuracy the length of time taken by such an algorithm to solve a semi-regular system of equations in any given implementation. Systems of polynomial equations over \mathbb{F}_{2} arise naturally in many diverse settings but in particular they have arisen recently in cryptography with respect to the analysis of the Hidden Field Equations cryptosystems and to the solution of the discrete logarithm problem.

Set $B=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$. Let V be an m-dimensional subspace of the space B_{2} of quadratic elements of B. The space V is semiregular if the Hilbert series of the graded quotient ring $B / B V$ is given by the polynomial

$$
T_{n, m}(z)=\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right]
$$

where $\left[\sum_{i=0}^{\infty} a_{i} z^{i}\right]$ denotes the series $\sum_{i=0}^{\infty} a_{i} z^{i}$ truncated at the first i for which $a_{i} \leq 0$.

The question we would like to answer in general is: What proportion of such spaces are semi-regular? The total number of subspaces of dimension

[^0]m is well-known - it is the cardinality of the $\operatorname{Grassmanian} \operatorname{Gr}\left(m, B_{2}\right)$. Let
$$
\operatorname{sr}(n, m)=\mid\left\{V \in \operatorname{Gr}\left(m, B_{2}^{n}\right) \mid V \text { is semi-regular }\right\} \mid
$$
and let
$$
p_{n, m}=\frac{s r(n, m)}{\left|\operatorname{Gr}\left(m, B_{2}^{n}\right)\right|}
$$

It is conjectured that for m sufficiently large compared to n, this proportion tends to 1 as n tends to infinity. Very little is known about this conjecture. In particular, it is not even known whether there are infinitely many n for which $p(n, n) \neq 0$.It was shown in [8] that for any fixed m, we must have that $p_{n, m}=0$ for sufficiently large n. The case when $m=1$ is fairly easy and has been understood for a while. We give a brief review of this case in Section 4.

The purpose of this paper is to describe in detail the case when $m=2$ and to give a fairly exact description of which 2 -dimensional subspaces are semiregular for all possible values of n. The hope is that by understanding the behavior in this situation we will gain insight on the more general problem. In Section 3 we show that no semi-regular two dimensional subspaces exist for $n \geq 9$; and in more generality that no semi-regular two dimensional subspaces exist for $n>4 m+1$. In Section 5 we deal with the easy cases when $n=3,4,5$ and 7 . In the last two sections we consider the more complicated situations when $n=6$ and 8 .

This work complements recent work by Semaev and Tenti which describes the behavior in the overdetermined case when m is sufficiently large compared to n. In the case of a proper subspace $V \subset B_{2}$, of dimension $m>(n-1)(n-2) / 6$, Theorem 1.1 of [10] gives a lower bound for the proportion of such spaces which are semi-regular and the authors show that this bound tends to 1 as n tends to infinity.

2. Background and Basics

Let $\mathbb{F}=\mathbb{F}_{2}$ be the field with two elements. Set

$$
B=B^{n}=\mathbb{F}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)
$$

(we shall drop the superscript when there is no need to emphasize the number n); and let x_{i} denote the image of X_{i} in B. This ring inherits the structure of a strongly graded ring from the polynomial ring $\mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$. That is, if we denote by B_{k}^{n} the span of the monomials $x_{1_{1}} \ldots x_{i_{k}}$ of degree k, then $B^{n}=\bigoplus_{k=0}^{n} B_{k}^{n}$ and $B_{k}^{n} B_{m}^{n}=B_{k+m}^{n}$. It is easy to see that $\operatorname{dim} B_{k}^{n}=\binom{n}{k}$ and that $\operatorname{dim} B^{n}=2^{n}$. The monomials $x_{\mathbf{i}}=x_{1_{1}} \ldots x_{i_{k}}$ form a basis for B^{n} so an arbitrary element of B can be written as $b=\sum_{\mathbf{i}} a_{\mathbf{i}} x_{\mathbf{i}}$. We define the support of b to be

$$
\operatorname{Supp}(b)=\left\{x_{\mathbf{i}} \mid a_{\mathbf{i}} \neq 0\right\}
$$

In [2], the concept of a semi-regular sequence of elements of B was defined in the following iterative fashion.

Definition 2.1. Let $f_{1}, \ldots, f_{m} \in B$ be a sequence of homogeneous polynomials with $\operatorname{deg} f_{i}=d_{i}$. Let

$$
D_{f_{1}, \ldots, f_{m}}=\min \left\{k \mid \sum_{i=1}^{m} B_{k-d_{i}} f_{i}=B_{k}\right\}
$$

The sequence $f_{1}, \ldots, f_{m} \in B$ is semi-regular if for all $i=1,2, \ldots, m$ and homogeneous $g \in B$

$$
g f_{i} \in\left(f_{1}, \ldots, f_{i-1}\right) \quad \text { and } \quad \operatorname{deg}(g)+\operatorname{deg}\left(f_{i}\right)<D_{n, m}
$$

implies $g \in\left(f_{1}, \ldots, f_{i}\right)$.
For any series $\sum_{i} a_{i} z^{i}$, we denote by $\left[\sum_{i} a_{i} z^{i}\right]$ the truncated series $\sum_{i} b_{i} z^{i}$ where $b_{i}=a_{i}$ if $a_{j}>0$ for $j=0, \ldots, i$ and $b_{i}=0$ otherwise.

Proposition 2.2. Let $f_{1}, \ldots, f_{m} \in B$ be a sequence of homogeneous polynomials with $\operatorname{deg} f_{i}=d_{i}$. The sequence f_{1}, \ldots, f_{m} is semi-regular if and only if the Hilbert series of the graded ring $B /\left(f_{1}, \ldots, f_{m}\right)$ is given by

$$
H S_{B /\left(f_{1}, \ldots, f_{m}\right)}(z)=\left[\frac{(1+z)^{n}}{\prod_{i=1}^{m}\left(1+z^{d_{i}}\right)}\right]
$$

This shows that the number $D_{f_{1}, \ldots, f_{m}}$ is the same for any semi-regular sequence of degree d. We call this number the degree of regularity of a semi-regular sequence of degree \mathbf{d}.

We are interested here in the case where all the f_{i} are quadratic (that is $d_{i}=2$ for all i). In this case, Proposition 2.2 implies that if we restrict our attention to linearly independent sequences, then the semi-regularity of the sequence depends only on the subspace V of B_{2} that they generate and not on the choice of f_{i} (note that if the sequence is linearly dependent, then it is never semi-regular so we may disregard this situation). For this reason, we find it more natural to discuss the semi-regularity of subspaces, rather than of sequences. Thus a quadratic subspace V of dimension m is semi-regular if

$$
H S_{B / B V}(z)=\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right]
$$

Set

$$
T_{m, n}(z)=\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right], \text { and } D_{n, m}=\operatorname{deg}\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right]+1
$$

So $D_{n, m}$ is the degree of regularity of an m-dimensional semi-regular space of quadratic elements.

Another way of characterizing semi-regularity is that the only relation between the f_{i} 's are the trivial ones in degrees less than $D_{n, m}$. Consider the linear maps $\phi_{j}: B_{j-2} \otimes V \rightarrow B_{j}$ given by $\phi_{j}\left(\sum_{i} b_{i} \otimes v_{i}\right)=\sum_{i} b_{i} v_{i}$. Let $R_{j}(V)=\operatorname{ker} \phi_{j}$. Inside $R_{j}(V)$ there is a subspace of "trivial relations" $T_{j}(V)$ spanned by the elements
(1) $b(v \otimes w-w \otimes v)$ where $v, w \in V$ and $b \in B_{j-4}$;
(2) $b(v \otimes v)$ where $v \in V$ and $b \in B_{j-4}$.

Theorem 2.3. [7, Theorem 3.8] Let V be an m-dimensional subspace of B_{2} and let $D=D_{n, m}$. Then V is semi-regular if and only if
(1) $R_{j}(V)=T_{j}(V)$ for all $j<D$.
(2) $B_{D-2} V=B_{D}$

If $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis for V, then it can be easily shown that

$$
T_{j}(V)=\sum_{i \neq j} B_{j-4}\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)+\sum_{i} B_{j-4}\left(v_{i} \otimes v_{i}\right)
$$

We are interesting in understanding the proportion of such spaces which are semi-regular. Note that the set of all m-dimensional subspaces is the Grassmannian $\operatorname{Gr}\left(m, B_{2}\right)$ and that the size of this set is well-known to be given by the formula

$$
\left|\operatorname{Gr}\left(m, \mathbb{F}^{t}\right)\right|=\frac{\left(2^{t}-1\right)\left(2^{t}-2\right) \ldots\left(2^{t}-2^{m-1}\right)}{\left(2^{m}-1\right)\left(2^{m}-2\right) \ldots\left(2^{m}-2^{m-1}\right)}
$$

Let

$$
s r(n, m)=\mid\left\{V \in \operatorname{Gr}\left(m, B_{2}^{n}\right) \mid V \text { is semi-regular }\right\}
$$

and let

$$
p_{n, m}=\frac{s r(n, m)}{\left|\operatorname{Gr}\left(m, B_{2}^{n}\right)\right|}
$$

be the proportion of m-dimensional subspaces which are semi-regular. It is generally believed for m sufficiently large relative to n that $\lim _{n \rightarrow \infty} p_{n, m}=0$. For instance, one can conjecture that for c sufficiently large,

$$
\lim _{n \rightarrow \infty} p_{n, c n}=1
$$

We show here that for $c<1 / 4$, this limit is 0 .
The general linear group GL $\left(B_{1}\right)$ acts naturally as graded automorphisms of the algebra B. It therefore acts as permutations of $\operatorname{Gr}\left(m, B_{2}^{n}\right)$. Thus we can decompose the Grassmannian as a union of GL $\left(B_{1}\right)$-orbits and semiregularity is an invariant of these orbits. Under the action of $\mathrm{GL}\left(B_{1}\right)$ every element of B_{2} is equivalent to an element of the form $x_{1} x_{2}+\cdots+x_{m-1} x_{m}$. We call the number m the rank of b. There is an important connection between the rank and failure of semi-regularity due to the following result.

Theorem 2.4. [4, Corollary 2.2] If $\mu \in B_{2}$ has rank k, then

$$
\operatorname{dim} \frac{\operatorname{Ann}(\mu) \cap B_{d}}{B_{d-2} \mu}=\binom{n-k}{d-k / 2} 2^{k / 2}
$$

In particular, $\operatorname{Ann}(\mu) \cap B_{d} \supsetneq B_{d-2} \mu$ when $k / 2 \leq d \leq n-k / 2$.
This immediately yields the following condition on the ranks of elements of a semi-regular space.

Corollary 2.5. If V is a semi-regular subspace of B_{2}^{n}, then V contains no elements of rank k if $k / 2+2<D_{n, m}$. In particular, in order for there to exist semi-regular subspaces of dimension m, we must have $D_{n, m} \leq n / 2+2$.

3. An Upper Bound on n

We begin by giving an explicit bound on n above which there are no m dimensional semi-regular subspaces of B_{2}^{n}. This improves upon the result in [8, Theorem 5.1] which established that such a bound always existed. A version of this result which fully extends [8, Theorem 5.1] is given in the Appendix.

Lemma 3.1. Given any $0 \neq a \in B$, there exists $b \in B$ such that $a b=$ $x_{1} \ldots x_{n}$.
Proof. Take a monomial m of smallest length in $\operatorname{Supp} a$. Say after renumbering, that $m=x_{1} \ldots x_{k}$. Then $m^{\prime}=x_{k+1} \ldots x_{n}$ must annihilate all the other elements of $\operatorname{Supp} a$. So $a m^{\prime}=m m^{\prime}=x_{1} \ldots x_{n}$.
Lemma 3.2. If $t+j \leq n$, then $B_{j} \cap$ Ann $B_{t}=0$. Equivalently, Ann $B_{t} \cap$ $\sum_{i=0}^{n-t} B_{i}=0$.
Proof. Let $a \in B_{j} \cap$ Ann B_{t} where $j \leq n-t$. Then by the lemma there exists an element $b \in B_{n-j}$ such that $a b=x_{1} \ldots x_{n}$. But $b \in B_{n-j}=B_{t} B_{n-j-t}$, so

$$
a b \in a B_{n-j}=a B_{t} B_{n-j-t}=0
$$

contradicting $a b \neq 0$.
Theorem 3.3. Let V be a subspace of B_{2}^{n} of dimension m and let $D=D_{n, m}$. If $n \geq D+2 m$, then $B_{D-2} V \neq B_{D}$; in particular V is not semi-regular.

Proof. Let $B=\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be a basis for V. Choose a subset $\left\{\mu_{i_{1}}, \ldots, \mu_{i_{s}}\right\}$ which is maximal with respect to

$$
\mu_{i_{1}} \ldots \mu_{i_{s}} \neq 0
$$

Then for any $i=1, \ldots, m, \mu_{i_{1}} \ldots \mu_{i_{s}} \mu_{i}=0$, so $\mu_{i_{1}} \ldots \mu_{i_{s}} V=0$. Suppose that $B_{D-2} V=B_{D}$. Then

$$
\mu_{i_{1}} \ldots \ldots \mu_{i_{s}} B_{D}=\mu_{i_{1}} \ldots \mu_{i_{s}} B_{D-2} V=B_{D-2} \mu_{i_{1}} \ldots \mu_{i_{s}} V=0
$$

This implies that $\mu_{i_{1}} \ldots \mu_{i_{s}} \in B_{2 s} \cap$ Ann $B_{D}=0$. So Lemma 3.2 implies that $n<D+2 s \leq D+2 m$. Thus if $n \geq D+2 m$, then $B_{D-2} V \neq B_{D}$ and V is not semi-regular.

Unfortunately the behavior of $D_{n, m}$ is too erratic for this result to give us an upper bound (for instance, even though $D_{n, m}$ grows slower than n for any fixed m, the difference $n-D_{n, m}$ is not an increasing function). This can be rectified somewhat using the following result.

Theorem 3.4. There are no semi-regular m-dimensional subspaces of B_{2}^{n} when $n \geq 4(m+1)$

Proof. Suppose that $n \geq 4(m+1)$; this implies that $n / 2+2 \leq n-2 m$. Suppose that there exist semi-regular subspaces of dimension m. By Corollary 2.5, we must have that $D_{n, m} \leq n / 2+2$. So $D_{n, m} \leq n-2 m$ contradicting Theorem 3.3.

For small n one can always backfill the difference to get more exact answers.

Corollary 3.5. There are no semi-regular subspaces of B_{2}^{n} :

- of dimension one for $n \geq 7$
- of dimension two for $n \geq 9$
- of dimension three for $n \geq 12$
- of dimension four for $n \geq 14$

Proof. For instance when $m=2$, Theorem 3.4 tells us that there are no semiregular 2 -dimensional subspaces for $n \geq 12$. For the cases $n=9,10,11$, one can directly check that $D_{n, 2} \leq n-4$ so there are no 2-dimensional semiregular subspaces in these cases.

This leads to the following interesting conjecture:
Conjecture 3.6. For $m \neq 2$, there exist m-dimensional semi-regular subspaces of B_{2}^{n} if and only if $n \leq D_{n, m}+2 m$.

As we shall see, this conjecture is not true for $m=2$. However, this would seem to be an exceptional case.

Theorem 3.4 also confirms the need for the condition on c in the Conjecture that $\lim _{n \rightarrow \infty} p_{n, c n}=1$.

Corollary 3.7. If $c<1 / 4$, then $\lim _{n \rightarrow \infty} p_{n, c n}=0$.
Proof. If $c<1 / 4$ then there exists an N such that for $n>N, c n \leq n / 4-1$. So Theorem 3.4 implies that $p_{n, c n}=0$ for $n>N$.

4. The Case $m=1$

Let us start by briefly reviewing the case when $m=1$. In this case the Hilbert series and degree of regularity of a semi-regular space for small n are given by the following table

n	$T_{n, 1}(z)$	$D_{n, 1}$
3	$1+3 z+2 z^{2}$	3
4	$1+4 z+5 z^{2}$	3
5	$1+5 z+9 z^{2}+5 z^{3}$	4
6	$1+6 z+14 z^{2}+14 z^{3}+z^{4}$	5
7	$1+7 z+20 z^{2}+28 z^{3}+15 z^{4}$	5

Table 1. The Hilbert series and degree of regularity of a semi-regular 1-dimensional subspace

Lemma 4.1. Suppose $n \geq 2$ and let $\mu \in B_{2}$. Then

$$
\operatorname{dim} B_{1} \mu= \begin{cases}n-2 & \text { if } \mathrm{rk} \mu=2 \\ n & \text { if } \mathrm{rk} \mu \geq 4\end{cases}
$$

and

$$
\operatorname{dim} B_{2} \mu= \begin{cases}\binom{n-2}{2} & \text { if } \mathrm{rk} \mu=2 \\ \binom{n}{2}-5 & \text { if } \mathrm{rk} \mu=4 \\ \binom{n}{2}-1 & \text { if } \mathrm{rk} \mu \geq 6\end{cases}
$$

Proof. Note that $\operatorname{dim} B_{k} \mu=\operatorname{dim} B_{k}-\operatorname{dim} \operatorname{Ann}(\mu) \cap B_{k}$. The result then follows directly from Theorem 2.4.

Whether or not $V=\{0, \mu\}$ is semi-regular depends purely on the rank of μ.

Theorem 4.2. Let $V=\{0, \mu\}$ be a one dimensional subspace of B_{2}.
(1) When $n=3$, all one dimensional spaces are semi-regular. So $p_{3,1}=$ 1.
(2) When $n=4$, V is semi-regular if and only if $\operatorname{rk} \mu=4$. So $p_{4,1}=$ $28 / 63 \approx 0.44$.
(3) When $n=5$, V is semi-regular if and only if $\operatorname{rk} \mu=4$. So $p_{5,1}=$ $868 / 1023 \approx 0.85$
(4) When $n=6$, V is semi-regular if and only if $\operatorname{rk} \mu=6$. So $p_{6,1}=$ $13888 / 32767 \approx 0.42$
(5) When $n \geq 7$, no one dimensional spaces is semi-regular. Thus $p_{n, 1}=$ 0 for $n \geq 7$.

Proof. In the cases $n=3,4$, we have $D_{n, 1}=3$, so it suffices to verify the equality $B_{1} V=B_{3}$. Since $\operatorname{dim} B_{3}^{3}=1$ and $\operatorname{dim} B_{3}^{4}=4$, the result follows immediately from Lemma 4.1. In the case $n=5$, we have $D_{5,1}=4$, so we need to verify that the map $\phi_{5}: B_{1}^{5} \otimes V \rightarrow B_{3}^{5}$ is injective and the map $\phi_{4}: B_{2}^{5} \otimes V \rightarrow B_{4}^{5}$ is surjective. Lemma 4.1 implies that these conditions hold precisely when $\mathrm{rk} \mu=4$. Finally, for $n=6$, we need that $\operatorname{dim} B_{1}^{6} V=6$, $\operatorname{dim} B_{2}^{6} V=14$ and $B_{3}^{6} V=B_{5}^{3}$. Lemma 4.1 implies that first two conditions hold only when $\mathrm{rk} \mu=6$. The last condition is easily verified directly when rk $\mu=6$.

The figures for the proportions follow from the numbers of elements of each rank given in the following table

$r \backslash n$	3	4	5	6
2	7	35	155	651
4	0	28	868	18228
6	0	0	0	13888

Table 2. The number of elements of rank r in B_{2}^{n}

5. The Case $m=2$ - Preliminaries

5.1. Background and Notation. We now consider two dimensional spaces. If $\operatorname{dim} V=2$, then $V=\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ for some $\mu . \mu^{\prime} \in B_{2}^{n}$. An important invariant of this space is the triple

$$
\operatorname{Rk}(V)=\left[\operatorname{rk} \mu, \operatorname{rk} \mu^{\prime}, \operatorname{rk} \mu+\mu^{\prime}\right] \in \mathbb{N}^{3} / \Sigma_{3}
$$

(that is, the equivalence class of the triple under the action of the symmetric group S_{3}). The number of spaces of the different rank types is given by a formula of Pott, Schmidt, and Zhou [9, Theorem 5]. Unfortunately the rank type of a space V does not determine its equivalence class under the action of $\mathrm{GL}\left(B_{1}\right)$. However it does provide an important and useful decomposition of the Grassmanian $\operatorname{Gr}\left(2, B_{2}\right)$.
5.2. The cases $n=3,4,5$ and 7 . From the table below we see that for $n=3,4$, and 5 the degree of regularity is 3 .

n	$T_{n, 2}(z)$	$D_{n, 2}$
3	$1+3 z+z^{2}$	3
4	$1+4 z+4 z^{2}$	3
5	$1+5 z+8 z^{2}$	3
6	$1+6 z+13 z^{2}+8 z^{3}$	4
7	$1+7 z+19 z^{2}+21 z^{3}$	4
8	$1+8 z+26 z^{2}+40 z^{3}+17 z^{4}$	5
9	$1+9 z+34 z^{2}+66 z^{3}+57 z^{4}$	5

Table 3. The Hilbert series and degree of regularity of a semi-regular 2-dimensional subspace

Thus, in these cases, if V is a two dimensional subspace of B_{2}, then V is semi-regular if and only if the map $\phi_{3}: B_{1} \otimes V \rightarrow B_{3}$ is surjective; that is, if and only if $B_{3}=B_{1} V$.

Theorem 5.1. If $n=3$, then all two dimensional subspaces are semiregular.

Proof. In this case $\operatorname{dim} B_{3}=1$ and $B_{1} V \neq 0$, so we must always have $B_{3}=B_{1} V$.

Theorem 5.2. Let $n=4$ and let $V \subset B_{2}$ be a two dimensional subspace. Then V is semi-regular if and only if V contains an element of rank 4.

Proof. Note that in this case $\operatorname{dim} B_{3}=4$. If $\operatorname{rk} \mu=4$, then by Lemma 4.1, $\operatorname{dim} B_{1} \mu=4$, so if V contains an element of rank 4 , we must have $B_{1} V=B_{3}$. On the other hand, suppose that V is of type $[2,2,2]$ and let μ, μ^{\prime} be a basis for V. Then $\mu=\lambda_{1} \lambda_{2}$ and $\mu^{\prime}=\lambda_{1}^{\prime} \lambda_{2}^{\prime}$ for some $\lambda_{1}, \lambda_{2}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime} \in B_{1}$. Let $\Lambda=\operatorname{Span}\left(\lambda_{1}, \lambda_{2}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$. If $\operatorname{dim} \Lambda=4$, then the λ 's are linearly independent and $\mu+\mu^{\prime}$ would have rank 4 ; on the other hand, if $\operatorname{dim} \Lambda=2$, then $\operatorname{dim} \Lambda^{2}=1$ and $V \subset \Lambda^{2}$, a contradiction. Therefore we must have $\operatorname{dim} \Lambda=3$. Hence we can find a subspace $V_{0} \subset B_{1}$ such that $B_{1}=\Lambda \oplus V_{0}$ and $\operatorname{dim} V_{0}=1$. But then

$$
B_{1} V=\Lambda V+V_{0} V \subset \Lambda^{3}+V_{0} V
$$

Hence $\operatorname{dim} B_{1} V \leq \operatorname{dim} \Lambda^{3}+\operatorname{dim} V_{0} V \leq 1+2=3$ and therefore $B_{1} V \neq$ B_{3}.

Corollary 5.3. In the case $n=4$, the proportion of subspaces of B_{2}^{4} that are semi-regular is $p_{4,2}=546 / 651 \approx 0.84$.

Proof. The total number of two-dimensional subspaces is $\left|\operatorname{Gr}\left(m, B_{2}^{4}\right)\right|=651$. From [9, Theorem 5], we have the number of subspaces of type [2,2,2] is 105. So $p_{4,2}=(651-105) / 651$.

Now consider the case when $n=5$. Note that $\operatorname{dim} B_{3}^{5}=10$ so $B_{1} V=B_{3}$ if and only if the map $\phi_{3}: B_{1}^{5} \otimes V \rightarrow B_{3}^{5}$ is an isomorphism.

Theorem 5.4. The map $\phi_{3}: B_{1}^{5} \otimes V \rightarrow B_{3}^{5}$ is not surjective for any two dimensional subspace $V \subset B_{2}^{5}$. Hence there are no semi-regular two dimensional subspaces of B_{2}^{5}.

Proof. We may assume, after appropriate change of variables, that $V=$ $\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ where $\mu \in B_{2}^{4}$ and $\mu^{\prime}=\mu_{0}+\lambda x_{5}$ for $\mu_{0} \in B_{2}^{4}$ and $\lambda \in B_{1}^{4}$. Then

$$
\begin{aligned}
B_{1} V & =B_{1} \mu+B_{1} \mu^{\prime}=\left(B_{1}^{4}+\mathbb{F} x_{5}\right) \mu+\left(B_{1}^{4}+\mathbb{F} x_{5}\right)\left(\mu_{0}+\lambda x_{5}\right) \\
& =\left(B_{1}^{4} \mu+B_{1}^{4} \mu_{0}\right)+\left(\mathbb{F} \mu+\mathbb{F} \mu_{0}+B_{1}^{4} \lambda\right) x_{5}
\end{aligned}
$$

Now $B_{3}^{5}=B_{3}^{4}+B_{2}^{4} x_{5}$, so for this map to be surjective we must have $B_{1}^{4} \mu+$ $B_{1}^{4} \mu_{0}=B_{3}^{4}$ and $\mathbb{F} \mu+\mathbb{F} \mu_{0}+B_{1}^{4} \lambda=B_{2}^{4}$. However $\operatorname{dim} B_{1}^{4} \lambda \leq 3$, so

$$
\operatorname{dim} \mathbb{F} \mu+\mathbb{F} \mu^{\prime}+B_{1}^{4} \lambda \leq 5<6=\operatorname{dim} B_{2}^{4}
$$

Thus $B_{1} V \neq B_{3}^{5}$ and V is not semi-regular.
Next we jump ahead to consider the case when $n=7$. Here the degree of regularity is four. So in order for the space V to be semi-regular we need the map $\phi_{4}: B_{2}^{7} \otimes V \rightarrow B_{4}^{7}$ to be surjective.

Theorem 5.5. The map $\phi_{4}: B_{2}^{7} \otimes V \rightarrow B_{4}^{7}$ is not surjective for any 2dimensional subspace $V \subset B_{2}^{7}$. Hence there are no semi-regular two dimensional subspaces of B_{2}^{7}.

Proof. Pick a basis for V, say $\left\{\mu, \mu^{\prime}\right\}$. After a suitable choice of generators we can assume that

$$
\mu \in B_{2}^{6}, \quad \mu^{\prime}=\mu_{0}+\lambda x_{7}, \text { where } \mu_{0} \in B_{2}^{6}, \lambda \in B_{1}^{6}
$$

Then

$$
\begin{aligned}
B_{2}^{7} V & =B_{2}^{7} \mu+B_{2}^{7} \mu^{\prime} \\
& =\left(B_{2}^{6}+B_{1}^{6} x_{7}\right) \mu+\left(B_{2}^{6}+B_{1}^{6} x_{7}\right)\left(\mu_{0}+\lambda x_{7}\right) \\
& =\left(B_{2}^{6} \mu+B_{2}^{6} \mu_{0}\right)+\left(B_{1}^{6} \mu+B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda\right) x_{7}
\end{aligned}
$$

In order for ϕ_{4} to be surjective we must have

$$
B_{1}^{6} \mu+B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda=B_{3}^{6}
$$

If $\lambda=0$, then we would have $B_{1}^{6} \mu+B_{1}^{6} \mu_{0}=B_{3}^{6}$ which is impossible because the left hand side has dimension at most 12 and $\operatorname{dim} B_{3}^{6}=20$. So $\lambda \neq 0$. Consider the map $B^{6} \rightarrow \tilde{B}=B^{6} /(\lambda) \cong B^{5}$. Denote the images of μ and μ_{0} by $\tilde{\mu}$ and $\tilde{\mu}_{0}$. Then we would have

$$
\tilde{B}_{1} \tilde{\mu}+\tilde{B}_{1} \tilde{\mu}_{0}=\tilde{B}_{3}
$$

But this contradicts Theorem 5.4.
This yields an exact value for $p_{n, 2}$ in all cases except $n=6$ or 8 . In the next two sections we consider these two remaining cases which are considerably more complicated.

$$
\text { 6. The Case } m=2, n=6
$$

6.1. Introduction. Since $D_{6,2}=4$, a two-dimensional space $V \subset B_{2}^{6}$ is semi-regular if
(1) the map $\phi_{3}: B_{1}^{6} \otimes V \rightarrow B_{3}^{6}$ is injective; and
(2) the map $\phi_{4}: B_{2}^{6} \otimes V \rightarrow B_{4}^{6}$ is surjective

Note that $\operatorname{dim} B_{1}^{6}=6, \operatorname{dim} B_{2}^{6}=15, \operatorname{dim} B_{3}^{6}=20$, and $\operatorname{dim} B_{4}^{6}=15$.
Proposition 6.1. If V contains an element of rank 2, then V is not semiregular. In particular if V has rank type $[2,2,2],[2,2,4],[2,4,4]$ or $[2,4,6]$, then V is not semi-regular.
Proof. Corollary 2.5.
This leaves the cases where V has rank type $[4,4,4],[4,4,6],[4,6,6]$ and $[6,6,6]$. In the case where V contains an element of rank 6 the surjectivity condition is easily established.

Lemma 6.2. If V contains an element of rank 6 , then the map $\phi_{4}: B_{2}^{6} \otimes$ $V \rightarrow B_{4}^{6}$ is surjective.

Proof. We may assume that the element of rank 6 is $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Then $B_{2}^{6} \mu$ contains all the monomials of B_{4}^{6} except

$$
x_{1} x_{2} x_{3} x_{4}, x_{1} x_{2} x_{5} x_{6}, x_{3} x_{4} x_{5} x_{6}
$$

In addition it contains

$$
\left(x_{1} x_{2}+x_{3} x_{4}\right) x_{5} x_{6},\left(x_{1} x_{2}+x_{5} x_{6}\right) x_{3} x_{4},\left(x_{3} x_{4}+x_{5} x_{6}\right) x_{1} x_{2}
$$

Let μ^{\prime} be another non-zero element of V. Suppose that we have a monomial $x_{i} x_{j} \in \operatorname{Supp}\left(\mu^{\prime}\right)$ which is not one of $x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}$. Without loss of generality suppose it is $x_{1} x_{3}$. Then $x_{1} x_{2} x_{3} x_{4} \in \operatorname{Supp}\left(x_{2} x_{4} \mu^{\prime}\right)$. Since $B_{2}^{6} \mu$ contains all the other monomials involving $x_{2} x_{4}, B_{2}^{6} V$ must contain $x_{1} x_{2} x_{3} x_{4}$ and so $B_{2}^{6} V=B_{4}^{6}$. Now suppose that $\operatorname{Supp}\left(\mu^{\prime}\right) \subset\left\{x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}\right\}$ and $\mu^{\prime} \neq \mu$ so μ^{\prime} is the sum of one or two of these terms. It is easily verified that in this case again $B_{2}^{6} V=B_{4}^{6}$.
Lemma 6.3. Suppose that $n \geq 6$ and let V be a 2-dimensional subspace of B_{2}^{n}. If V contains an element of rank at least 6 , then $\operatorname{Ann} V \cap B_{2}^{n}=0$. If, in addition, V has no elements of rank 2, then the map $\phi_{3}: B_{1}^{n} \otimes V \rightarrow B_{3}^{n}$ is injective.

Proof. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\operatorname{rk} \mu \geq 6$ and $\mu^{\prime} \neq \mu$. Since $\operatorname{rk} \mu \geq 6$, we know from Lemma 4.1 that Ann $\mu \cap B_{2}=\{0, \mu\}$. Therefore $\mu^{\prime} \mu \neq 0$ and $\mu \notin \operatorname{Ann} \mu^{\prime} \cap B_{2}$. Hence

$$
\begin{aligned}
\operatorname{Ann} V \cap B_{2} & =\left(\operatorname{Ann} \mu \cap B_{2}\right) \cap\left(\operatorname{Ann} \mu^{\prime} \cap B_{2}\right) \\
& =\{0, \mu\} \cap\left(\operatorname{Ann} \mu^{\prime} \cap B_{2}\right)=\{0\}
\end{aligned}
$$

Now assume that $\operatorname{rk} \mu^{\prime}$ and $\operatorname{rk}\left(\mu+\mu^{\prime}\right)$ are both at least 4. An element of Ker ϕ_{3} is of the form $a \otimes \mu+b \otimes \mu^{\prime}$ where $a, b \in B_{1}$ and

$$
a \mu+b \mu^{\prime}=0
$$

But then $a b \mu=0$ and $a b \mu^{\prime}=0$ so $a b \in$ Ann $V \cap B_{2}=\{0\}$. Hence $a \in$ Ann $b \cap B_{1}=\{0, b\}$. If $a=0$, then $b \mu^{\prime}=0$, so $b=0$ since $\operatorname{rk} \mu^{\prime} \geq 4$. If $a=b$ then $a\left(\mu+\mu^{\prime}\right)=0$, so $a=b=0$ since $\operatorname{rk}\left(\mu+\mu^{\prime}\right) \geq 4$. Thus Ker $\phi_{3}=0$.

Theorem 6.4. If V is a a 2-dimensional subspace of B_{2}^{6} of rank type $[4,4,6],[4,6,6]$ or $[6,6,6]$ then V is semi-regular.
Proof. The injectivity condition follows from Lemma 6.3. The surjectivity condition follows from Lemma 6.2.
6.2. Spaces of rank type $[4,4,4]$. If V contains a rank four element we can assume this element is of the form $\mu=x_{1} x_{2}+x_{3} x_{4}$. Thus we may assume that $V=\left\langle\mu, \mu^{\prime}\right\rangle=\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ where

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =\mu_{0}+\lambda_{1} x_{5}+\lambda_{2} x_{6}+\epsilon x_{5} x_{6}
\end{aligned}
$$

and $\mu_{0} \in B_{2}^{4}, \lambda_{1}, \lambda_{2} \in B_{1}^{4}$ and $\epsilon \in\{0,1\}$.

Example 1. If $\epsilon=\mu_{0}=0, \lambda_{1}=x_{1}, \lambda_{2}=x_{3}$, we get

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =x_{1} x_{5}+x_{3} x_{6} \\
\mu+\mu^{\prime} & =x_{1}\left(x_{2}+x_{5}\right)+x_{3}\left(x_{4}+x_{6}\right)
\end{aligned}
$$

One can easily verify that in this case V is not semi-regular because $B_{2} V$ does not contain $x_{2} x_{4} x_{5} x_{6}$. Note that in this example $V \subset\left\langle x_{1}, x_{3}\right\rangle B_{1}$.

Example 2. If $\mu_{0}=x_{1} x_{2}, \lambda_{1}=\lambda_{2}=0$, we get

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =x_{1} x_{2}+x_{5} x_{6} \\
\mu+\mu^{\prime} & =x_{3} x_{4}+x_{5} x_{6}
\end{aligned}
$$

One can verify directly in this case that V is semi-regular.
Lemma 6.5. Let V be a two-dimensional subspace of rank type $[4,4,4]$. If either
(1) V is induced (there is a proper subspace $W \subset B_{1}$ such that $V \subset W^{2}$); or
(2) there is a two-dimensional subspace $\Lambda \subset B_{1}$ such that $V \subset B_{1} \Lambda$, then V is not semi-regular.

Proof. (1) Without loss of generality, we can assume that $V \subset B_{2}^{5}$. In this case,

$$
B_{2}^{6} V=\left(B_{2}^{5}+B_{1}^{5} x_{6}\right) V \subset B_{2}^{5} V+B_{1}^{5} V x_{6} \subset B_{4}^{5}+B_{1}^{5} V x_{6}
$$

Since $B_{4}^{6}=B_{4}^{5}+B_{3}^{5} x_{6}$ and $B_{1}^{5} V \subsetneq B_{3}^{5}$ by Theorem 5.4, we cannot have $B_{2}^{6} V=B_{4}^{6}$.
(2) In this case, as in Example 1, $B_{2} V \subset B_{3} \Lambda \subsetneq B_{4}$ so V is not semiregular.

Theorem 6.6. Let V be a two-dimensional subspace of rank type $[4,4,4]$. Then V is semi-regular if an only if it is equivalent to a space of the form given in Example 2

Proof. Suppose that V is not of the sort described in Lemma 6.5. We may assume that V is generated by μ and μ^{\prime} of the form

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =\mu_{0}+\lambda_{1} x_{5}+\lambda_{2} x_{6}+\epsilon x_{5} x_{6}
\end{aligned}
$$

where $\mu, \mu_{0} \in B_{2}^{4}, \lambda_{1}, \lambda_{2} \in B_{1}^{4}$ and $\epsilon \in\{0,1\}$. Let $\Lambda=\left\langle\lambda_{1}, \lambda_{2}\right\rangle$
First consider the case where $\epsilon=0$. In this case we must have $\operatorname{dim} \Lambda=2$, otherwise we would be in case (1) of Lemma 6.5. Extend $\left\{\lambda_{1}, \lambda_{2}\right\}$ to a basis $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ for B_{1}^{4}. Note that $B_{2}^{4}=\lambda_{1} B_{1}^{4}+\lambda_{2} B_{1}^{4}+\mathbb{F} \lambda_{3} \lambda_{4}$. Therefore, since $V \not \subset \Lambda B_{1}$, we must have that either μ_{0} or $\mu_{0}+\mu$ is of the form
$\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} \lambda_{4}$ for some $a_{1}, a_{2} \in B_{1}^{4}$. Assuming without loss of generality that it is μ_{0}, we have that

$$
\begin{aligned}
\mu^{\prime} & =\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} \lambda_{4}+\lambda_{1} x_{5}+\lambda_{2} x_{6} \\
& =\lambda_{1}\left(x_{5}+a_{1}\right)+\lambda_{2}\left(x_{6}+a_{2}\right)+\lambda_{3} \lambda_{4}
\end{aligned}
$$

which is of rank 6 because $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4},\left(x_{5}+a_{1}\right),\left(x_{6}+a_{2}\right)$ form a basis for B_{1}^{4}. This contradicts the assumption that $\mathrm{rk} \mu^{\prime}=4$.

Thus we must have $\epsilon \neq 0$. In this case after an appropriate change of basis, we may assume that $\lambda_{1}=\lambda_{2}=0$ and $\mu^{\prime}=\mu_{0}+x_{5} x_{6}$. In this case $\operatorname{rk} \mu^{\prime}=\operatorname{rk} \mu_{0}+2$, so rk $\mu_{0}=2$; similarly $\operatorname{rk}\left(\mu+\mu_{0}\right)=2$. Thus $\mu=\mu_{0}+\left(\mu+\mu_{0}\right)$ and up to a linear change of variables we are in the case of Example 2.
6.3. The Number of Semi-Regular Subspaces. The table below gives the numbers of subspaces of the different rank types using the results of $[9$, Theorem 5]

Type	Number
$[2,2,2]$	9,765
$[2,2,4]$	182,280
$[2,4,4]$	$3,417,750$
$[2,4,6]$	$4,666,368$
$[2,6,6]$	$2,187,360$
$[4,4,4]$	$30,902,536$
$[4,4,6]$	$69,995,520$
$[4,6,6]$	$54,246,528$
$[6,6,6]$	$13,332,480$
Total	$178,940,587$

Table 4. Decomposition of the Grassmanian $\operatorname{Gr}\left(2, B_{2}^{6}\right)$ by Rank Type

Theorem 6.7. There are 153, 129, 088 semi-regular 2-dimensional subspaces of B_{2}^{6}. Thus the proportion of such subspaces that are semi-regular is

$$
p_{6,2}=\frac{153,129,088}{178,940,587} \approx 86 \%
$$

Proof. From Proposition 6.1 and Theorem 6.4 it suffices to calculate the number of spaces of rank type $[4,4,4]$ that are semi-regular. By Theorem 6.6, such spaces are precisely the orbit of the space given in Example 2. The stabilizer of this space in $G L_{6}(\mathbb{F})$ is isomorphic to $\left(G L_{2}(\mathbb{F}) \times G L_{2}(\mathbb{F}) \times\right.$ $\left.G L_{2}(\mathbb{F})\right) \rtimes \Sigma_{3}$ which has order 6^{4}. Hence the size of the orbit is

$$
\frac{20,158,709,760}{1,296}=15,554,560
$$

Adding this number to the total number of subspaces of type $[4,4,6],[4,6,6]$ or $[6,6,6]$ given in the table, yields the claimed conclusion.

7. The Case $n=8$

In this case $D_{8,2}=5$, so semi-regularity of a two-dimensional quadratic subspace V is equivalent to the following properties

- The map $\phi_{3}: B_{1} \otimes V \rightarrow B_{3}$ is injective
- The kernel of $\phi_{4}: B_{2} \otimes V \rightarrow B_{4}$ is the trivial kernel $T_{4}(V)$.
- The map $\phi_{5}: B_{3} \otimes V \rightarrow B_{5}$ is surjective.

Note that $\operatorname{dim} B_{2}=28, \operatorname{dim} B_{3}=56, \operatorname{dim} B_{4}=70$, and $\operatorname{dim} B_{5}=56$.
Throughout this section, unless stated otherwise, V will denote a twodimensional subspace of B_{2}^{8}.

Lemma 7.1. Let V be a semi-regular two-dimensional subspace of B_{2}^{8} Then V contains no non-zero elements of rank less than or equal to 4.

Proof. Corollary 2.5
Thus it remains to investigate semi-regularity when the rank of V is $[6,6,6],[6,6,8],[6,8,8]$ or $[8,8,8]$. Note that the injectivity of the map $\phi_{3}: B_{1} \otimes V \rightarrow B_{3}$ holds in all such cases by Lemma 6.3 . We can easily eliminate the following special case.

Theorem 7.2. Suppose that there exists a proper subspace $W \subset B_{1}$ such that $V \subset W^{2}$. Then the map $\phi_{5}: B_{3} \otimes V \rightarrow B_{5}$ is not surjective. Hence V is not semi-regular.
Proof. Without loss of generality, we may assume $W=B_{1}^{7}$ and $V \subset W^{2}$. Now $B_{3}=B_{3}^{7} \oplus B_{2}^{7} x_{8}$, so

$$
B_{3} V=B_{3}^{7} V+B_{2}^{7} V x_{8}
$$

By Theorem 5.5, $B_{2}^{7} V \subsetneq B_{4}^{7}$. Since $B_{5}=B_{5}^{7} \oplus B_{4}^{7} x_{8}$ we must have $B_{3} V \subsetneq B_{5}$ and the map is not surjective.

In this situation (there exists a proper subspace $W \subset B_{1}$ such that $V \subset$ W^{2}), we shall say that the space V is induced from W (or just induced if W is not specified).
Lemma 7.3. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$. The map $\phi_{4}: B_{2} \otimes V \rightarrow B_{4}$ has trivial kernel if and only if $\mathrm{rk} \mu$ and $\mathrm{rk} \mu^{\prime}$ are at least 6 and

$$
B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}
$$

Proof. The trivial kernel of the map $m: B_{2} \otimes V \rightarrow B_{4}$ is three dimensional with basis $\left\{\mu \otimes \mu, \mu^{\prime} \otimes \mu-\mu \otimes \mu^{\prime}, \mu^{\prime} \otimes \mu^{\prime}\right\}$. Thus the kernel is trivial if and only if $\operatorname{dim} B_{2} V=\operatorname{dim} B_{2} \otimes V-3=53$.

If rk $\mu \leq 4$, then by Lemma 4.1 the kernel of the map $B_{2} \otimes \mathbb{F} \mu \rightarrow B_{2} \mu$ has dimension at least 5 and so ker m cannot be trivial. So suppose that μ and μ^{\prime} both have rank at least 6 . Then $\operatorname{dim} B_{2} \mu=\operatorname{dim} B_{2} \mu^{\prime}=27$ by Lemma 4.1. On the other hand $B_{2} V=B_{2} \mu+B_{2} \mu^{\prime}$ so the kernel is trivial if and only if $\operatorname{dim} B_{2} V=54-\operatorname{dim} B_{2} \mu \cap B_{2} \mu^{\prime}=53$; that is, $\operatorname{dim} B_{2} \mu \cap B_{2} \mu^{\prime}=1$. Since $\mu \mu^{\prime} \neq 0$ (by Lemma 4.1 again), this is equivalent to $B_{2} \mu \cap B_{2} \mu^{\prime}=$ $\left\{0, \mu \mu^{\prime}\right\}$.

We now look in detail at the situation where V contains an element of rank 6 .

Lemma 7.4. Let $\mu=y_{1} y_{2}+\cdots+y_{m-1} y_{m}$ be an element of rank m in B_{2}^{n}. Then the space $U(\mu)=\operatorname{Span}\left(y_{1}, \ldots, y_{m}\right)$ is independent of the choice of $y_{1}, \ldots y_{m}$.

Proof. Suppose that

$$
\mu=y_{1} y_{2}+\cdots+y_{m-1} y_{m}=y_{1}^{\prime} y_{2}^{\prime}+\cdots+y_{m-1}^{\prime} y_{m}^{\prime}
$$

for some y_{1}, \ldots, y_{m} and $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ in B_{1}. Since $\operatorname{rk} \mu=m$, the y_{1}, \ldots, y_{m} and $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ must be linearly independent; hence it suffices to show that $y_{1}, \ldots, y_{m} \in \operatorname{Span}\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$.

Without loss of generality, we can assume that $n=m+1$. Extend $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ to a basis $y_{1}^{\prime}, \ldots, y_{m}^{\prime}, y_{n}^{\prime}$ for B_{1}^{n}. Write

$$
y_{i}=\sum_{j=1}^{n} a_{i j} y_{j}^{\prime}
$$

for some $a_{i j} \in \mathbb{F}$. The coefficient of the monomial $y_{j}^{\prime} y_{n}^{\prime}$ in $y_{1} y_{2}+\cdots+y_{m-1} y_{m}$ is

$$
0=a_{1 j} a_{2 n}+a_{1 n} a_{2 j}+\cdots+a_{m-1, j} a_{m n}+a_{m-1, n} a_{m j}
$$

If the conclusion is false there exists a k such that $y_{k} \notin \operatorname{Span}\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$; that is, $a_{k n} \neq 0$. After renumbering the y_{i} we may assume $k=1$. Thus $a_{1 n}=1$ and

$$
a_{2 j}=a_{1 j} a_{2 n}+\sum_{k=2}^{m / 2}\left(a_{2 k-1, j} a_{2 k, n}+a_{2 k-1, n} a_{2 k, j}\right)
$$

Hence

$$
\begin{aligned}
y_{2} & =\sum_{j=1}^{n} a_{2 j} y_{j}^{\prime} \\
& =\sum_{j=1}^{n}\left(a_{1 j} a_{2 n}+\sum_{k=2}^{m / 2}\left(a_{2 k-1, j} a_{2 k, n}+a_{2 k-1, n} a_{2 k, j}\right)\right) y_{j}^{\prime} \\
& =\sum_{j=1}^{n} a_{1 j} a_{2 n} y_{j}^{\prime}+\sum_{k=2}^{m / 2}\left(\sum_{j=1}^{n} a_{2 k-1, j} a_{2 k, n} y_{j}^{\prime}+\sum_{j=1}^{n} a_{2 k-1, n} a_{2 k, j} y_{j}^{\prime}\right) \\
& =a_{2 n} y_{1}+\sum_{k=2}^{m / 2} a_{2 k, n} y_{2 k-1}+\sum_{k=2}^{m / 2} a_{2 k-1, n} y_{2 k}
\end{aligned}
$$

contradicting the linear independence of the y_{i}. Hence we must have all $y_{1}, \ldots, y_{m} \in \operatorname{Span}\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$, as required.

Definition 7.5. Let V be a non-induced 2-dimensional subspace of B_{2}^{8} containing an element μ of rank 6 . We say that V is of
(A) Type A with respect to μ if $V \not \subset U(\mu) B_{1}$.
(B) Type B with respect to μ if $V \subset U(\mu) B_{1}$

Proposition 7.6. Let V be a non-induced two dimensional subspace of B_{2} containing an element μ of rank six.
(1) If V is of Type A with respect to μ then there exists a basis $\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$ of B_{1} such that $V=\operatorname{Span}\left(\mu, \mu^{\prime}\right)$ where $\mu=y_{1} y_{2}+y_{3} y_{4}+y_{5} y_{6}$ and $\mu^{\prime}=\mu_{0}+y_{7} y_{8}$ for some $\mu_{0} \in B_{2}^{6}$.
(2) If V is of Type B with respect to μ then there exists a basis $\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$ of B_{1} such that $V=\operatorname{Span}\left(\mu, \mu^{\prime}\right)$ where $\mu=y_{1} y_{2}+y_{3} y_{4}+y_{5} y_{6}$ and $\mu^{\prime}=\mu_{0}+\lambda y_{7}+\lambda^{\prime} y_{8}$ for some $\mu_{0} \in B_{2}^{6}$ and some linearly independent $\lambda, \lambda^{\prime} \in B_{1}^{6}$.

Proof. Since μ has rank six we may choose y_{1}, \ldots, y_{6} such that $\mu=y_{1} y_{2}+$ $y_{3} y_{4}+y_{5} y_{6}$ and the y_{i} are linearly independent. Extend $\left\{y_{1}, \ldots, y_{6}\right\}$ to a basis $\left\{y_{1}, \ldots, y_{8}\right\}$ for B_{1}. Pick $\mu^{\prime} \in V \backslash\{0, \mu\}$. Then $\mu^{\prime}=\mu_{0}+\lambda y_{7}+\lambda^{\prime} y_{8}+\eta y_{7} y_{8}$ where $\mu_{0} \in B_{2}^{6}, \lambda, \lambda^{\prime} \in B_{1}^{6}$ and $\eta \in \mathbb{F}$. If $\eta=1$, then

$$
\mu^{\prime}=\left(\mu_{0}+\lambda \lambda^{\prime}\right)+\left(\lambda^{\prime}+y_{7}\right)\left(\lambda+y_{8}\right)
$$

So replacing y_{7} with $\lambda^{\prime}+y_{7}$ and y_{8} with $\lambda^{\prime}+y_{8}$ yields the required form. If $\eta=0$ and $\operatorname{dim}\left\langle\lambda, \lambda^{\prime}\right\rangle \leq 1$, then V is induced. So if V is non-induced and of type B we must have $\operatorname{dim}\left\langle\lambda, \lambda^{\prime}\right\rangle=2$.

Notes that if V is a Type A space, V has rank type $\left[6, \operatorname{rk}\left(\mu_{0}\right)+2, \operatorname{rk}(\mu+\right.$ $\left.\left.\mu_{0}\right)+2\right]$.

Theorem 7.7. Let V be a Type A subspace of rank type $[6,6,6],[6,6,8]$ or $[6,8,8]$. Then V is semi-regular.

Proof. By Proposition 7.6 we can assume that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where

$$
\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \text { and } \mu^{\prime}=\mu_{0}+x_{7} x_{8}
$$

for some $\mu_{0} \in B_{2}^{6}$; the assumption on the rank type of V implies that the rank of μ_{0} and $\mu+\mu_{0}$ are both at least 4. We need to prove (i) $B_{2} \mu \cap B_{2} \mu^{\prime}=$ $\left\{0, \mu \mu^{\prime}\right\}$ and (ii) $B_{3} V=B_{5}$.
(i) $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$. Suppose that $a \mu=b \mu^{\prime} \in B_{2} \mu \cap B_{2} \mu^{\prime}$, for some $a, b \in B_{2}$. Let

$$
b=\mu_{1}+\lambda_{1} x_{7}+\lambda_{2} x_{8}+\epsilon x_{7} x_{8}, \quad a=\mu_{2}+\lambda_{3} x_{7}+\lambda_{4} x_{8}+\epsilon^{\prime} x_{7} x_{8}
$$

where $\mu_{1}, \mu_{2} \in B_{2}^{6}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in B_{1}^{6}$ and $\epsilon, \epsilon^{\prime} \in \mathbb{F}$. Then

$$
\begin{aligned}
0= & a \mu+b \mu^{\prime} \\
= & \left(\mu_{0} \mu_{1}+\mu_{2} \mu\right)+x_{7}\left(\mu_{0} \lambda_{1}+\lambda_{3} \mu\right) \\
& +x_{8}\left(\mu_{0} \lambda_{2}+\lambda_{4} \mu\right)+x_{7} x_{8}\left(\mu_{0} \epsilon+\mu_{1}+\epsilon^{\prime} \mu\right)
\end{aligned}
$$

So

$$
\epsilon \mu_{0}+\mu_{1}=\epsilon^{\prime} \mu, \quad \mu_{0} \mu_{1}=\mu_{2} \mu, \quad \lambda_{3} \mu=\lambda_{1} \mu_{0}, \quad \lambda_{4} \mu=\lambda_{2} \mu_{0}
$$

Then $\lambda_{1} \lambda_{3} \mu=\lambda_{1}^{2} \mu_{0}=0$. Therefore $\lambda_{1} \lambda_{3} \in \operatorname{Ann}(\mu) \cap B_{2}=\{0, \mu\}$. But $\mu \neq \lambda_{1} \lambda_{3}$ since $\operatorname{rk} \mu=6$, so $\lambda_{1} \lambda_{3}=0$. Suppose $\lambda_{1}=\lambda_{3} \neq 0$. Then
$\lambda_{1}\left(\mu+\mu_{0}\right)=0$; but this is impossible since $\operatorname{rk}\left(\mu+\mu_{0}\right) \geq 4$. If $\lambda_{1} \neq 0$ and $\lambda_{3}=0$ then we would have $\lambda_{1} \mu_{0}=0$ which is again impossible because $\operatorname{rk}\left(\mu_{0}\right) \geq 4$. A similar argument works for the case $\lambda_{1}=0$ and $\lambda_{3} \neq 0$. Thus we must have $\lambda_{1}=\lambda_{3}=0$. An analogous argument shows that $\lambda_{2}=\lambda_{4}=0$ also. Therefore, $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0$.

Now consider the first two constraints: $\epsilon \mu_{0}+\mu_{1}=\epsilon^{\prime} \mu, \mu_{0} \mu_{1}=\mu_{2} \mu$. Consider the two cases:
$\epsilon^{\prime}=1$: Then $\epsilon \mu_{0}+\mu_{1}=\mu$. So $\mu_{2} \mu=\mu_{0} \mu_{1}=\mu_{0} \mu$. Hence $\mu\left(\mu_{0}+\mu_{2}\right)=0$ and so $\mu_{0}+\mu_{2} \in \operatorname{Ann}(\mu) \cap B_{2}=\{0, \mu\} ;$ that is, $\mu_{2} \in\left\{\mu_{0}, \mu_{0}+\mu\right\}$. So $a \in\left\{\mu^{\prime}, \mu^{\prime}+\mu\right\}$ and $a \mu=\mu^{\prime} \mu$ as required.
$\epsilon^{\prime}=0$: Then $\mu_{1}=\epsilon \mu_{0}$, so $\mu_{2} \mu=\mu_{0} \mu_{1}=0$. Hence $\mu_{2} \in\{0, \mu\}$ and $a \mu=0$.

This proves that $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$.
(ii) $B_{3} V=B_{5}$. Recall that $B_{3}=B_{3}^{6} \oplus B_{2}^{6} x_{7} \oplus B_{2}^{6} x_{8} \oplus B_{1}^{6} x_{7} x_{8}$ so

$$
B_{3} \mu=B_{3}^{6} \mu \oplus B_{2}^{6} \mu x_{7} \oplus B_{2}^{6} \mu x_{8} \oplus B_{1}^{6} \mu x_{7} x_{8}
$$

Also

$$
B_{5}=B_{5}^{6} \oplus B_{4}^{6} x_{7} \oplus B_{4}^{6} x_{8} \oplus B_{3}^{6} x_{7} x_{8}
$$

It is easily verified directly that $B_{3}^{6} \mu=B_{5}^{6}$ (all degree 5 monomials can easily be realized as multiples of $\mu)$. Since $x_{7} \mu^{\prime}=x_{7} \mu_{0}$,

$$
B_{3} V \supset x_{7} B_{2}^{6} \mu+x_{7} B_{2}^{6} \mu^{\prime}=\left(B_{2}^{6} \mu+B_{2}^{6} \mu_{0}\right) x_{7}=B_{4}^{6} x_{7}
$$

by Lemma 6.2. Similarly $B_{3} V \supset B_{4}^{6} x_{8}$.
Finally, if $a \in B_{3}^{6}$ then $a \mu^{\prime}=a \mu_{0}+a x_{7} x_{8} \in B_{3} V$. But $a \mu_{0} \in B_{5}^{6} \subset B_{3} V$, so $a x_{7} x_{8} \in B_{3} V$ also. Hence $B_{3}^{6} x_{7} x_{8} \subset B_{3} V$. Putting all this together yields $B_{5}=B_{5}^{6} \oplus B_{4}^{6} x_{7} \oplus B_{4}^{6} x_{8} \oplus B_{3}^{6} x_{7} x_{8} \subset B_{3} \otimes V$, so $B_{3} V=B_{5}$ as claimed. Hence, all such Type A spaces are semi-regular.

Theorem 7.8. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Then
(1) There are 11, 796, 480 Type A semi-regular subspaces of B_{2}^{8} containing μ which are of type $[6,8,8]$.
(2) There are 31, 997, 952 Type A semi-regular subspaces of B_{2}^{8} containing μ which are of type $[6,8,6]$.
(3) There are 20, 643, 840 Type A semi-regular subspaces of B_{2}^{8} containing μ which are of type $[6,6,6]$.

Proof. (1) If $V \ni \mu$ is of Type A, then there exist $\lambda, \lambda^{\prime} \in\left\langle x_{1}, \ldots, x_{6}\right\rangle$ such that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ and

$$
\mu^{\prime}=\mu_{0}+\left(\lambda^{\prime}+x_{7}\right)\left(\lambda+x_{8}\right)
$$

for some $\mu_{0} \in\left\langle x_{1}, \ldots, x_{6}\right\rangle$. If V is of rank type $[6,8,8]$, then $\left\langle\mu, \mu_{0}\right\rangle$ must be of rank type $[6,6,6]$. The number of $[6,6,6]$ subspaces of B_{2}^{6} is $13,332,480$; the number of elements of B_{2}^{6} of rank 6 is 13,880 . So the number of $[6,6,6]$ subspaces of B_{2}^{6} containing μ is

$$
3 * 13,332,480 / 13,888=2,880
$$

For each such subspace there are 2^{12} choices for λ_{1} and λ_{2}, yielding a total of

$$
2,880 * 2^{12}=11,796,480
$$

$[6,6,6]$ subspaces of Type A containing μ. The numbers in (2) and (3) are found by a similar calculation using the number of $[6,4,6]$ and $[6,4,4]$ subspaces ($54,246,528$ and $69,995,520$ respectively).

This completes our analysis of the Type A case. We now move to the Type B case, which requires a little more work.

Lemma 7.9. Suppose $\lambda, \lambda^{\prime}, \kappa, \kappa^{\prime} \in B_{1}$ and λ and λ^{\prime} are linearly independent. If $\lambda \kappa+\lambda^{\prime} \kappa^{\prime}=0$, then $\kappa, \kappa^{\prime} \in\left\langle\lambda, \lambda^{\prime}\right\rangle$.

Proof. We may assume that $\lambda=x_{1}$ and $\lambda^{\prime}=x_{2}$. The result is then clear by considering the support of $x_{1} \kappa+x_{2} \kappa^{\prime}$.

Lemma 7.10. Suppose that $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ for some $0 \neq \mu_{0} \in B_{2}^{6}$ and some linearly independent $\lambda, \lambda^{\prime} \in B_{1}^{6}$. Then $\mathrm{rk} \mu^{\prime} \geq 6$ if and only if $\mu_{0} \notin B_{1}^{6} \lambda+B_{1}^{6} \lambda^{\prime}$.

Proof. Choose a complementary subspace W such that $B_{1}^{6}=W \oplus\left\langle\lambda, \lambda^{\prime}\right\rangle$ and write $\mu_{0}=\alpha \lambda+\alpha^{\prime} \lambda^{\prime}+\nu$ where $\alpha, \alpha^{\prime} \in B_{1}^{6}$ and $\nu \in W^{2}$. Then

$$
\mu^{\prime}=\nu+\lambda\left(\alpha+x_{7}\right)+\lambda\left(\alpha^{\prime}+^{\prime} x_{8}\right)
$$

Let $W^{\prime}=\left\langle\lambda, \lambda^{\prime}, \alpha+x_{7}, \alpha^{\prime}+x_{8}\right\rangle$. Since $B_{1}^{8}=W \oplus W^{\prime}, \operatorname{rk} \mu^{\prime}=\operatorname{rk} \nu+4$. Hence $\operatorname{rk} \mu^{\prime} \geq 6$ if and only if $\mathrm{rk} \nu>0$; that is, if and only if $\mu_{0} \notin B_{1}^{6} \lambda+B_{1}^{6} \lambda^{\prime}$.

Theorem 7.11. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where

$$
\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \text { and } \mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}
$$

for some $0 \neq \mu_{0} \in B_{2}^{6}$ and some linearly independent $\lambda, \lambda^{\prime} \in B_{1}^{6}$. Then V is semi-regular if and only if $\lambda \lambda^{\prime} \mu_{0} \notin B_{2}^{6} \mu$.

Proof. Suppose that $\lambda \lambda^{\prime} \mu_{0} \in B_{2} \mu$. We want to show that V is not semiregular. We may assume that μ and μ^{\prime} have rank at least 6 because otherwise V is not semi-regular by Theorem 7.1. Clearly $\lambda \lambda^{\prime} \mu^{\prime} \in B_{2} \mu \cap B_{2} \mu^{\prime}$. We want to show that $\lambda \lambda^{\prime} \mu^{\prime} \notin\left\{0, \mu \mu^{\prime}\right\}$. Suppose that $\lambda \lambda^{\prime} \mu^{\prime}=\mu \mu^{\prime}$. Then $\lambda \lambda^{\prime}+\mu \in \operatorname{Ann}\left(\mu^{\prime}\right) \cap B_{2}^{6}=\left\{0, \mu^{\prime}\right\}$ by Lemma 4.1. Hence $\lambda \lambda^{\prime} \in\left\{\mu, \mu+\mu^{\prime}\right\}$, contradicting the fact that both μ and $\mu+\mu^{\prime}$ have rank at least 6 . If $\lambda \lambda^{\prime} \mu^{\prime}=0$, then $\lambda \lambda^{\prime} \in \operatorname{Ann}\left(\mu^{\prime}\right) \cap B_{2}^{6}=\left\{0, \mu^{\prime}\right\}$, again yielding a contradiction because the linear independence property of λ and λ^{\prime} implies that $\lambda \lambda^{\prime} \neq 0$. So $B_{2} \mu \cap B_{2} \mu^{\prime} \supsetneq\left\{0, \mu \mu^{\prime}\right\}$ and V is not semi-regular by Lemma 7.3.

Now assume that $\lambda \lambda^{\prime} \mu_{0} \notin B_{2} \mu$. This implies that $\mu_{0}, \mu+\mu_{0} \notin B_{1}^{6} \lambda+B_{1}^{6} \lambda^{\prime}$, and hence, by Lemma 7.10 , the ranks of μ^{\prime} and $\mu^{\prime}+\mu$ are at least 6 . As before, we need to prove (i) $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$ and (ii) $B_{3} V=B_{5}$. Set $\Lambda=\left\langle\lambda, \lambda^{\prime}\right\rangle$.
(i) $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$: Suppose $a \mu=b \mu^{\prime} \neq 0$ where

$$
a=\mu_{2}+\lambda_{1} x_{7}+\lambda_{2} x_{8}+\epsilon^{\prime} x_{7} x_{8}, \quad b=\mu_{1}+\lambda_{7} x_{7}+\lambda_{8} x_{8}+\epsilon x_{7} x_{8},
$$

and $\mu_{2}, \mu_{1} \in B_{2}^{6}, \lambda_{1}, \lambda_{2}, \lambda_{7}, \lambda_{8} \in B_{1}^{6}, \epsilon, \epsilon^{\prime} \in \mathbb{F}$. Equating the coefficients of $x_{7} x_{8}$ on both sides of $a \mu=b \mu^{\prime}$, yields

$$
\epsilon^{\prime} \mu=\epsilon \mu_{0}+\lambda \lambda_{8}+\lambda^{\prime} \lambda_{7} .
$$

So

$$
\epsilon^{\prime} \mu+\epsilon \mu^{\prime}=\lambda\left(\epsilon x_{7}+\lambda_{8}\right)+\lambda^{\prime}\left(\epsilon x_{8}+\lambda_{7}\right) .
$$

Since the right hand side has rank at most 4 and the rank of μ, μ^{\prime} and $\mu+\mu^{\prime}$ are all at least 6 , this implies that $\epsilon=\epsilon^{\prime}=0$. Hence $\lambda \lambda_{8}+\lambda^{\prime} \lambda_{7}=0$, so by Lemma 7.9, $\lambda_{7}, \lambda_{8} \in \Lambda$.

Thus

$$
a=\mu_{2}+\lambda_{1} x_{7}+\lambda_{2} x_{8}, \quad b=\mu_{1}+\lambda_{7} x_{7}+\lambda_{8} x_{8},
$$

Comparing the coefficients of x_{7}, x_{8} and the term that is purely contained in B_{4}^{6} yields

$$
\begin{gathered}
\mu \lambda_{1}=\mu_{0} \lambda_{7}+\mu_{1} \lambda \\
\mu \lambda_{2}=\mu_{0} \lambda_{8}+\mu_{1} \lambda^{\prime} \\
\mu_{0} \mu_{1}=\mu \mu_{2}
\end{gathered}
$$

Since $\lambda_{7} \in \Lambda, \lambda_{7} \lambda \in \Lambda^{2}=\left\{0, \lambda \lambda^{\prime}\right\}$. If $\lambda_{7} \lambda=\lambda^{\prime} \lambda$, then

$$
\mu \lambda_{1} \lambda=\mu_{0} \lambda_{7} \lambda=\mu_{0} \lambda^{\prime} \lambda
$$

contradicting our assumption that $\mu_{0} \lambda \lambda^{\prime} \notin B_{2}^{6} \mu$. Therefore $\lambda_{7} \lambda=0$ and so $\lambda_{7} \in\{0, \lambda\}$. Similarly we obtain $\lambda_{8} \in\left\{0, \lambda^{\prime}\right\}$ and $\lambda_{7}+\lambda_{8} \in\left\{0, \lambda+\lambda^{\prime}\right\}$. Therefore

$$
\left(\lambda_{7}, \lambda_{8}\right)=(0,0) \text { or }\left(\lambda, \lambda^{\prime}\right)
$$

Since $\lambda_{7} \lambda=0$, we also have $\mu \lambda_{1} \lambda=0$. Since $\operatorname{rk} \mu=6$, this implies $\lambda_{1} \lambda=0$, and so $\lambda_{1} \in\{0, \lambda\}$. Similarly we obtain $\lambda_{2} \in\left\{0, \lambda^{\prime}\right\}$ and $\lambda_{1}+\lambda_{2} \in$ $\left\{0, \lambda+\lambda^{\prime}\right\}$. Thus

$$
\left(\lambda_{1}, \lambda_{2}\right)=(0,0) \text { or }\left(\lambda, \lambda^{\prime}\right)
$$

Suppose $\lambda_{1}=\lambda_{2}=0$. If $\lambda_{7}=\lambda_{8}=0$, then $\lambda, \lambda^{\prime} \in \operatorname{Ann}\left(\mu_{1}\right)$, so $\mu_{1} \in$ $\left\{0, \lambda \lambda^{\prime}\right\}$. Since $b \neq 0$, we must have $\mu_{1} \neq 0$, so $\lambda \lambda^{\prime} \mu_{0}=\mu_{1} \mu_{0}=\mu \mu_{2} \in B_{2}^{6} \mu$, a contradiction.

Now suppose that $\left(\lambda_{7}, \lambda_{8}\right)=\left(\lambda, \lambda^{\prime}\right)$. Then

$$
\left(\mu_{0}+\mu_{1}\right) \lambda=\mu_{0} \lambda_{7}+\mu_{1} \lambda=0 \text { and }\left(\mu_{0}+\mu_{1}\right) \lambda^{\prime}=\mu_{0} \lambda_{8}+\mu_{1} \lambda^{\prime}=0
$$

so $\lambda, \lambda^{\prime} \in \operatorname{Ann}\left(\mu_{0}+\mu_{1}\right)$ and $\mu_{0}+\mu_{1} \in\left\{0, \lambda \lambda^{\prime}\right\}$. If $\mu_{0}+\mu_{1}=0$, then $b=\mu^{\prime}$ and $b \mu^{\prime}=0$, contradicting our assumption. Thus $\mu_{0}+\mu_{1}=\lambda \lambda^{\prime}$ so $b=\mu^{\prime}+\lambda \lambda^{\prime}$ and $\lambda \lambda^{\prime} \mu_{0}=\left(b+\mu^{\prime}\right) \mu^{\prime}=a \mu \in B_{2}^{6} \mu$, again a contradiction.

Hence we must have $\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda, \lambda^{\prime}\right)$. In this case

$$
\begin{aligned}
\mu \lambda & =\mu_{0} \lambda_{7}+\mu_{1} \lambda \\
\mu \lambda^{\prime} & =\mu_{0} \lambda_{8}+\mu_{1} \lambda^{\prime}
\end{aligned}
$$

If $\left(\lambda_{7}, \lambda_{8}\right)=(0,0)$, then $\operatorname{Ann}\left(\mu+\mu_{1}\right)$ contains Λ and therefore $\mu+\mu_{1} \in$ $\left\{0, \lambda \lambda^{\prime}\right\}$. If $\mu+\mu_{1}=\lambda \lambda^{\prime}$, then $\mu_{1}=\mu+\lambda \lambda^{\prime}$ and so $\mu \mu_{2}=\mu_{0}\left(\mu+\lambda \lambda^{\prime}\right)$ which
would imply $\lambda \lambda^{\prime} \mu_{o} \in B_{2}^{6} \mu$, a contradiction. So $\mu+\mu_{1}=0$, in which case $b=\mu$ and $b \mu=\mu \mu^{\prime}$ as required.

If $\lambda_{7}=\lambda$ and $\lambda_{8}=\lambda^{\prime}$, then $\operatorname{Ann}\left(\mu+\mu_{1}+\mu_{0}\right)$ contains Λ and therefore $\mu+\mu_{1}+\mu_{0} \in\left\{0, \lambda \lambda^{\prime}\right\}$. If $\mu+\mu_{1}+\mu_{0}=\lambda \lambda^{\prime}$, then $\mu_{1}=\mu+\mu_{0}+\lambda \lambda^{\prime}$ and so $\mu \mu_{2}=\mu_{0}\left(\mu+\mu_{0}+\lambda \lambda^{\prime}\right)$ which again implies $\lambda \lambda^{\prime} \mu_{o} \in B_{2}^{6} \mu$, a contradiction. So $\mu+\mu_{1}+\mu_{0}=0$, or $\mu=\mu_{0}+\mu_{1}$. Hence

$$
\begin{aligned}
b \mu^{\prime} & =\left(\mu_{1}+\lambda x_{7}+\lambda^{\prime} x_{8}\right)\left(\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}\right) \\
& =\mu_{1} \mu_{0}+\lambda\left(\mu_{0}+\mu_{1}\right) x_{7}+\lambda^{\prime}\left(\mu_{0}+\mu_{1}\right) x_{8} \\
& =\left(\mu_{0}+\mu_{1}\right)\left(\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}\right) \\
& =\mu \mu^{\prime}
\end{aligned}
$$

Thus we have proved that $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$
In this case $\left\{\lambda, \lambda^{\prime}\right\}$ is linearly independent so we may extend $\left\{\lambda, \lambda^{\prime}\right\}$ to a basis $\left\{\lambda, \lambda^{\prime}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$ for B_{2}^{6}. Let $Y=\operatorname{Span}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. Then we have that after a possible change of the x_{i} basis, $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ where $\mu_{0} \in Y$.
(ii) $B_{3} V=B_{5}$: Recall, as in the previous proof, that $B_{3}=B_{3}^{6} \oplus x_{7} B_{2}^{6} \oplus$ $x_{8} B_{2}^{6} \oplus x_{7} x_{8} B_{1}^{6}$; that

$$
B_{5}=B_{5}^{6} \oplus B_{4}^{6} x_{7} \oplus B_{4}^{6} x_{8} \oplus B_{3}^{6} x_{7} x_{8}
$$

and that $B_{5}^{6}=B_{3}^{6} \mu \subset B_{3} V$. Now $\operatorname{dim} B_{2}^{6} \mu=14=\operatorname{dim} B_{4}^{6}-1$, so the assumption that $\lambda \lambda^{\prime} \mu^{\prime}=\lambda \lambda^{\prime} \mu_{0} \notin B_{2}^{6} \mu$ implies that $B_{2}^{6} V \supset B_{4}^{6}$. So

$$
B_{3} V \supset\left(B_{2}^{6} x_{7}+B_{2}^{6} x_{8}\right) V=B_{2}^{6} V x_{7}+B_{2}^{6} V x_{8} \supset B_{4}^{6} x_{7}+B_{4}^{6} x_{8}
$$

Thus it remains to show that $B_{3} V \supset B_{3}^{6} x_{7} x_{8}$. For $b \in B_{2}^{6}$ we have that

$$
b x_{7} \mu^{\prime}=b \mu_{0} x_{7}+b \lambda^{\prime} x_{7} x_{8}
$$

Since $b \mu_{0} x_{7} \in B_{4} x_{7} \subset B_{3} V$, this implies that $b \lambda^{\prime} x_{7} x_{8} \in B_{3} V$. A similar argument for λ yields that $B_{3} V \supset\left(B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}\right) x_{7} x_{8}$. Also $B_{3} V \supset B_{1}^{6} x_{7} x_{8} \mu^{\prime}=$ $B_{1}^{6} \mu_{0} x_{7} x_{8}$, and $B_{3} V \supset B_{1}^{6} x_{7} x_{8} \mu$. Hence

$$
B_{3} V \supset\left(B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}+B_{1}^{6} \mu\right) x_{7} x_{8}
$$

Thus it suffices to show that $B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}+B_{1}^{6} \mu=B_{3}^{6}$. Then we may write $\mu=\nu+\lambda a+\lambda a^{\prime}$ where $\nu \in Y$ and $a, a^{\prime} \in B_{1}^{6}$. Then $B_{1}^{6} \mu_{0}+$ $B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}+B_{1}^{6} \mu=B_{3}^{6}$ is equivalent to $Y \mu_{0}+Y \nu=Y^{3}$. Suppose that $Y \mu_{0}+Y \nu \neq Y^{3}$. Then μ_{0}, ν and $\mu_{0}+\nu$ all have rank 2 , so we may assume that, after an appropriate change of basis, that $\mu_{0}=y_{1} y_{2}$ and $\nu=y_{1} y_{3}$. In this case

$$
\mu=y_{1} y_{3}+\lambda a+\lambda^{\prime} a^{\prime}
$$

and since μ has rank $6, y_{1}, y_{3}, \lambda, a, \lambda^{\prime}, a^{\prime}$ must form a basis for B_{1}^{6}. Let $A=\operatorname{Span}\left(a, a^{\prime}\right)$. Then

$$
\Lambda y_{1} \mu=\Lambda y_{1}\left(\lambda a+\lambda^{\prime} a^{\prime}\right)=y_{1} \lambda \lambda^{\prime} A
$$

Since $\lambda \lambda^{\prime} \mu=y_{1} \lambda \lambda^{\prime} y_{3}$, this yields that

$$
B_{2}^{6} \mu \supset \Lambda y_{1} \mu+\mathbb{F} \lambda \lambda^{\prime} \mu=y_{1} \lambda \lambda^{\prime}\left(A+\mathbb{F} y_{3}\right)=y_{1} \lambda \lambda^{\prime} B_{1}^{6}=\left(y_{1} B_{1}^{6}\right) \lambda \lambda^{\prime}
$$

Hence $\mu_{0} \lambda \lambda^{\prime}=y_{1} y_{2} \lambda \lambda^{\prime} \in B_{2}^{6} \mu$, contrary to assumption.
Lemma 7.12. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \in B_{2}^{6}$ and let $\lambda, \lambda^{\prime}$ be linearly independent elements of B_{1}^{6}. Then there exists a $\mu_{1} \in B_{2}^{6}$ such that $\lambda \lambda^{\prime} \mu_{1} \notin$ $B_{2} \mu$.

Proof. Note first that $\operatorname{dim} B_{2}^{6} \mu=15-1=14$ by Lemma 4.1 and $\operatorname{dim} B_{4}^{6}=$ 15 , so $B_{2}^{6} \mu \subsetneq B_{4}^{6}$. On the other hand if $V=\left\langle\mu, \lambda \lambda^{\prime}\right\rangle$, then by Lemma 6.2 we have that $B_{2}^{6} V=B_{4}^{6}$. Hence there must exist a $\mu_{1} \in B_{2}^{6}$ with $\mu_{1} \lambda \lambda^{\prime} \notin B_{2}^{6} \mu$.

Theorem 7.13. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \in B_{2}^{6}$. Let \mathcal{T}_{B} be the set of all non-induced two dimensional subspaces of B_{2}^{8} that are Type B with respect to μ. For each pair of linearly independent elements $\lambda, \lambda^{\prime} \in B_{1}^{6}$ choose a $\mu_{1} \in B_{2}^{6}$ such that $\lambda \lambda^{\prime} \mu_{1} \notin B_{2} \mu$. Define $\Phi: \mathcal{T}_{B} \rightarrow \mathcal{T}_{B}$ by

$$
\begin{aligned}
& \Phi\left(\left\{0, \mu, \mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}, \mu+\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}\right\}\right) \\
& \quad=\left\{0, \mu, \mu_{0}+\mu_{1}+\lambda x_{7}+\lambda^{\prime} x_{8}, \mu+\mu_{0}+\mu_{1}+\lambda x_{7}+\lambda^{\prime} x_{8}\right\}
\end{aligned}
$$

Then $\Phi^{2}=I$ and $\Phi(V)$ is semi-regular if and only if V is not semi-regular. Hence there is the same number of semi-regular and non-semi-regular spaces of Type B with respect to μ. In particular, there are $63 * 62 * 2^{13}=31,997,952$ semi-regular subspaces of Type B.

Proof. Since $\operatorname{dim} B_{4}^{6} / B_{2}^{6} \mu=1$, we have that $\lambda \lambda^{\prime} \mu_{0} \in B_{2}^{6} \mu$ if and only if $\lambda \lambda^{\prime}\left(\mu_{0}+\mu_{1}\right) \notin B_{2}^{6} \mu$. In particular there are $31,997,952$ semi-regular subspaces of type B with respect to μ. The number of choices for λ and λ^{\prime} is $63 * 62$; the number of choices for μ_{0} is 2^{15} and these come in pairs, $\left\{\mu_{0}, \mu_{0}+\mu\right\}$ which generate the same subspace. So the total number of type B subspaces is $63 * 62 * 2^{14}$, and half of these are semi-regular.

Theorem 7.14. Let $\lambda, \lambda^{\prime}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}, x_{7}, x_{8}$ be a basis for B_{1}^{8} and let $W=$ $\left\langle\lambda, \lambda^{\prime}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$. Let $\mu^{\prime}=\epsilon_{3} \epsilon_{4}+\epsilon_{5} \epsilon_{6}+\lambda x_{7}+\lambda^{\prime} x_{8}$ and let $\mu=\nu+a \lambda+$ $b \lambda^{\prime}+\eta \lambda \lambda^{\prime} \in W^{2}$ be an element of rank 6 for some $a, b \in\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$ and $\nu \in\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle^{2}$. Then the two dimensional vector space $V=\left\langle\mu, \mu^{\prime}\right\rangle$ is semi-regular if and only if $\nu\left(\epsilon_{3} \epsilon_{4}+\epsilon_{5} \epsilon_{6}\right) \neq 0$.

Proof. Let $\mu_{0}=\epsilon_{3} \epsilon_{4}+\epsilon_{5} \epsilon_{6}$. Suppose that V is not semi-regular. then by an earlier result, we know that $\lambda \lambda^{\prime} \mu_{0}=\gamma \mu$ for some $\gamma=e+c \lambda+d \lambda^{\prime}+\eta^{\prime} \lambda \lambda^{\prime} \in W$. Now

$$
\begin{aligned}
\gamma \mu & =\left(\nu+a \lambda+b \lambda^{\prime}+\eta \lambda \lambda^{\prime}\right)\left(e+c \lambda+d \lambda^{\prime}+\eta^{\prime} \lambda \lambda^{\prime}\right) \\
& =\nu e+(a e+\nu c) \lambda+(d \nu+e b) \lambda^{\prime}+\left(\eta^{\prime} \nu+\eta e+c b+a d\right) \lambda \lambda^{\prime}
\end{aligned}
$$

Comparing coefficients yields

$$
\begin{aligned}
\mu_{0} & =\eta^{\prime} \nu+\eta e+c b+a d \\
0 & =\nu e \\
0 & =a e+c \nu \\
0 & =b e+d \nu
\end{aligned}
$$

So

$$
\begin{aligned}
\nu \mu_{0} & =\left(\eta^{\prime} \nu+\eta e+c b+a d\right) \nu \\
& =b c \nu+a d \nu=b(a e)+a(b e)=0
\end{aligned}
$$

Conversely assume that $\nu \mu_{0}=0$. Suppose first that $\eta=1$. Then $\lambda \lambda^{\prime}=$ $\mu+\nu+a \lambda+b \lambda^{\prime}$ and so

$$
\lambda \lambda^{\prime} \mu_{0}=\left(\mu+\nu+a \lambda+b \lambda^{\prime}\right) \mu_{0}=\mu_{0} \mu+\left(a \lambda+b \lambda^{\prime}\right) \mu_{0}
$$

Now $\mu=(\nu+a b)+(\lambda+b)\left(\lambda^{\prime}+a\right)$ and so $\operatorname{rk}(\nu+a b)=4$, since $\mathrm{rk} \mu=6$. Let $U=\left\langle\epsilon_{3}, \ldots, \epsilon_{6}\right\rangle$. Since $\operatorname{rk} \mu_{0}=4$ also we have $U(\nu+a b)=U \mu_{0}$. So there exist $c, d \in U$ such that $a \mu_{0}=c(\nu+a b)$ and $b \mu_{0}=d(\nu+a b)$. But then

$$
\begin{aligned}
{\left[(\lambda+b) c+\left(\lambda^{\prime}+a\right) d\right] \mu } & =(\lambda+b) c(\nu+a b)+\left(\lambda^{\prime}+a\right) d(\nu+a b) \\
& =(\lambda+b) a \mu_{0}+\left(\lambda^{\prime}+a\right) b \mu_{0} \\
& =\left(a \lambda+b \lambda^{\prime}\right) \mu_{0}
\end{aligned}
$$

So $\lambda \lambda^{\prime} \mu_{0} \in B_{2} \mu$ and V is not semi-regular.
Now suppose $\eta=0$. Then, $\mu=\nu+a \lambda+b \lambda^{\prime}$. If $a=b, \mu=\nu+a\left(\lambda+\lambda^{\prime}\right)$ is expressible in five variables, but $\operatorname{rk}(\mu)=6$, so $a \neq b$. Then we can extend a, b to a basis a, b, c, d for $\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$. Since μ is rank 6 , it must have a term not divisible by a or b, so $c d \in \operatorname{Supp}(\nu) \subset \operatorname{Supp}(\mu)$ in the a, b, c, d basis. Depending on if $a c, a d, b c, b d, a b$ are in $\operatorname{Supp}(\nu)$, we have $\mu=\nu+a \lambda+b \lambda^{\prime}=$ $\left(c+\epsilon_{1} a+\epsilon_{1}^{\prime} b\right)\left(d+\epsilon_{2} a+\epsilon_{2}^{\prime} b\right)+\epsilon a b+a \lambda+b \lambda^{\prime}$, for some $\epsilon_{1}, \epsilon_{1}^{\prime}, \epsilon_{2}, \epsilon_{2}^{\prime}, \epsilon \in \mathbb{F}$. Making a coordinate transformation $c \rightarrow c+\epsilon_{1} a+\epsilon_{1}^{\prime} b, d \rightarrow d+\epsilon_{2} a+\epsilon_{2}^{\prime} b$, we get $\mu=c d+\epsilon a b+a \lambda+b \lambda^{\prime}$, where $\langle a, b, c, d\rangle=\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$ and $\epsilon \in\{0,1\}$ with $\nu=c d+\epsilon a b$. Note that

$$
\left(\lambda^{\prime}+\epsilon a\right) c \mu=\lambda \lambda^{\prime} a c \in B_{2} \mu
$$

Likewise,

$$
\lambda \lambda^{\prime}\langle a c, a d, b c, b d\rangle \in B_{2} \mu
$$

Also,

$$
\lambda \lambda^{\prime} \mu=\lambda \lambda^{\prime}(\epsilon a b+c d) \in B_{2} \mu
$$

In both cases, whether $\epsilon=0$ or 1 , we see therefore that
$B_{2} \mu \supseteq \lambda \lambda^{\prime}\langle a c, a d, b c, b d, \epsilon a b+c d\rangle=\lambda \lambda^{\prime} \operatorname{Ann}(\epsilon a b+c d)=\lambda \lambda^{\prime} \operatorname{Ann}(\nu) \ni \lambda \lambda^{\prime} \mu_{0}$
The last inclusion is because $\nu \mu_{0}=0$ implies $\mu_{0} \in \operatorname{Ann}(\nu)$. Hence, $\lambda \lambda^{\prime} \mu_{0} \in$ $B_{2} \mu$, and V is not semi-regular.
Lemma 7.15. Let $a, b \in B_{1}^{4}$. Then the following are equivalent
(1) $\operatorname{rk}\left(x_{1} x_{2}+a x_{5}+b x_{6}\right)=6$
(2) $x_{1}, x_{2}, a, b, x_{5}, x_{6}$ are a basis for B_{2}^{6}
(3) x_{1}, x_{2}, a, b are a basis for B_{2}^{4}
(4) $\operatorname{rk}\left(x_{1} x_{2}+a b\right)=4$
(5) $\operatorname{rk}\left(x_{1} x_{2}+a x_{5}+b x_{6}+x_{5} x_{6}\right)=6$

Moreover there are 96 possible such choices for the pair a, b.
Proof. The equivalence of the first four conditions is straightforward. For the last equivalence we note that

$$
x_{1} x_{2}+a x_{5}+b x_{6}+x_{5} x_{6}=x_{1} x_{2}+a b+\left(a+x_{6}\right)\left(b+x_{5}\right)
$$

Clearly the number of choices of a and b satisfying (3) is $\left(2^{4}-4\right)\left(2^{4}-8\right)=$ 96.

Lemma 7.16. Let $\mu \in B_{2}^{4}$ be an element of rank 4 and let $N=\left\{\nu \in B_{2}^{4} \mid\right.$ $\nu \mu \neq 0\}$. Then $|N|=32$ and N contains 12 elements of rank 4 and 20 elements of rank 2. Moreover, if $\nu \in N$, then $\mathrm{rk} \nu=\mathrm{rk} \nu+\mu$.
Proof. Let $V=\langle\mu, \nu\rangle$. Then $\nu \in N$ if and only if $V^{2} \neq 0$. The two dimensional subspaces of B_{2}^{4} of types $[4,4,4],[4,4,2]$ and $[4,2,2]$ are equivalent up to change of basis to the spaces

$$
\begin{array}{ll}
{[4,4,4]:} & \left\{0, x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{4}, x_{3} x_{4}+x_{1} x_{3}+x_{2} x_{4}\right\} \\
{[4,4,2]:} & \left\{0, x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{3}, x_{1} x_{3}+x_{1} x_{2}+x_{3} x_{4}\right\} \\
{[4,2,2]:} & \left\{0, x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{2}, x_{3} x_{4}\right\}
\end{array}
$$

Thus $V^{2} \neq 0$ if and only if V is of type $[4,4,4]$ or $[4,2,2]$. It follows immediately that $\mathrm{rk} \nu=\mathrm{rk} \nu+\mu$. There are 6 subspaces of type $[4,4,4]$ containing a given μ and 10 of type [4,2,2]. Thus N contains 12 elements of rank 4 and 20 elements of rank 2 .

Lemma 7.17. Let $\mu \in B_{2}^{8}$ have rank 6. Then there are $63 * 62 * 2^{9} * 28$ elements μ^{\prime} of rank 8 such that $\left\langle\mu, \mu^{\prime}\right\rangle$ is of Type B with respect to μ.

Proof. We may suppose that μ has the usual form and that

$$
\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}
$$

where $\lambda, \lambda^{\prime}$ are linearly independent. Now choose a subspace $W \subset B_{1}^{6}$ such that $B_{1}^{6}=W \oplus\left(\mathbb{F} \lambda+\mathbb{F} \lambda^{\prime}\right)$. In this case we can write $\mu_{0}=\nu_{0}+\kappa \lambda+\kappa^{\prime} \lambda^{\prime}+\epsilon \lambda \lambda^{\prime}$ where $\nu_{0} \in W^{2}$ and $\kappa, \kappa^{\prime} \in W$. If $\epsilon=0$, then

$$
\mu^{\prime}=\nu_{0}+\lambda\left(x_{7}+\kappa\right)+\lambda^{\prime}\left(x_{8}+\kappa^{\prime}\right)
$$

and this element has rank 8 if and only if ν_{0} has $\operatorname{rank} 4$. If $\epsilon=1$,

$$
\mu^{\prime}=\nu_{0}+\lambda\left(x_{7}+\kappa+\lambda^{\prime}\right)+\lambda^{\prime}\left(x_{8}+\kappa^{\prime}\right)
$$

Again this has rank 8 if and only if ν_{0} has rank 4 . In each case there are $63 * 62$ choices for $\lambda, \lambda^{\prime}, 2^{8}$ choices for κ and κ^{\prime} and 28 choices for ν_{0} yielding a total of $63 * 62 * 2^{9} * 28$ choices for μ^{\prime}.

Lemma 7.18. Let ν be a rank 4 element of B_{2}^{4} such that $\nu \notin B_{1}^{4} x_{1}+B_{1}^{4} x_{2}$. Then there exists a basis $x_{1}, x_{2}, y_{3}, y_{4}$ of B_{1}^{4} such that $\nu=x_{1} x_{2}+y_{3} y_{4}$.

Theorem 7.19. Consider two dimensional subspaces of the form $V=$ $\left\langle\mu, \mu^{\prime}\right\rangle$ where $\mu \in B_{2}^{6}$ has rank 6; $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ for some $\mu_{0} \in B_{2}^{6}$ and linearly independent $\lambda, \lambda^{\prime} \in B_{1}^{6}$ and $\operatorname{rk} \mu^{\prime}=8$. Then there are
(1) $63 * 62 * 2^{9} * 28 * 12 * 256 / 2$ such subspaces of type $[6,8,8]$.
(2) $63 * 62 * 2^{9} * 28 * 20 * 192$ such subspaces of type $[6,6,8]$;

Proof. As in the proof of Lemma 7.17, after applying an automorphism that fixes B_{1}^{6} we may assume that there is a subspace $W \subset B_{1}^{6}$ such that $B_{1}^{6}=W \oplus\left(\mathbb{F} \lambda+\mathbb{F} \lambda^{\prime}\right)$ and $\mu_{0} \in W^{2} ; \operatorname{so} \operatorname{rk}\left(\mu_{0}\right)=4$. In this case $\mu=$ $\nu+a \lambda+b \lambda^{\prime}+\epsilon \lambda \lambda^{\prime}$ where $\nu \in W^{2}, a, b \in W$ and $\epsilon \in \mathbb{F}$. By Theorem 7.14, V is semi-regular if and only if $\nu \mu_{0} \neq 0$. By Lemma 7.16, there are 12 options for ν of rank 4 and 20 options of rank 2. Again by Lemma 7.16, we see that if $\mathrm{rk} \nu=4$, then V is of type $[6,8,8]$ and if $\mathrm{rk} \nu=2$. then V is of type $[6,6,8]$. Now we use Lemma 7.15 to count the number of possible μ for which V is semi-regular of each type for our fixed μ^{\prime}. We consider 4 cases
(i) $\operatorname{rk} \nu=2, \epsilon=0$. Thus $\mu=\nu+a \lambda+b \lambda^{\prime}$ and by Lemma 7.15 there are 96 choices for a and b which yield $\operatorname{rk} \mu=6$.
(ii) $\operatorname{rk} \nu=2, \epsilon=1$. Thus $\mu=\nu+a \lambda+b \lambda^{\prime}+\lambda \lambda^{\prime}=\nu+a b+(\lambda+b)\left(\lambda^{\prime}+a\right)$. In this case $\mathrm{rk} \mu=6$ if and only if $\mathrm{rk} \nu+a b=4$. Again by the Lemma there are 96 choices for this.

Thus in the $[6,6,8]$ case, for any given μ^{\prime} there are 20 choices for ν and 192 choice for a, b and ϵ, proving (2).
(iii) $\mathrm{rk} \nu=4, \epsilon=0$. Again $\mu=\nu+a \lambda+b \lambda^{\prime}$. Note that a and b must be linearly independent or μ is not of rank 6 . Also $\nu \notin\langle a, b\rangle B_{1}^{4}$, otherwise rk $\mu<6$. So by Lemma $7.18 \nu=a b+y_{3} y_{4}$ where a, b, y_{3}, y_{4} is a basis for W. Thus $\langle\nu, a b\rangle$ is a $[4,2,2]$ space containing ν. There are ten such subspaces for each ν and 12 choices for ν yielding a total of 120 choices for μ.
(iv) $\operatorname{rk} \nu=4, \epsilon=1$. Here $\mu=\nu+a b+(\lambda+b)\left(\lambda^{\prime}+a\right)$. In this case rk $\mu=6$ if and only if $\operatorname{rk} \nu+a b=4$. If $a b=0$, this is always true and there are 46 ways to choose a and b such that $a b=0$. If $a b \neq 0$, this holds if and only if $\langle\nu, a b\rangle$ is of type $[4,4,2]$. There are 15 such spaces containing a given rank for element, so 15 choices for $a b$, for which there are 6 different ways of choosing a and b. This yields 136 possibilities for μ in this case.

Corollary 7.20. Let $\mu \in B_{2}^{8}$ have rank 6. Then
(1) There are $6,193,152$ 2D semi-regular subspaces of B_{2}^{8} of type $[6,8,8]$ which are Type B with respect to μ.
(2) There are 15, 482, 880 2D semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ which are Type B with respect to μ.
(3) There are 10, 321, 920 2D semi-regular subspaces of B_{2}^{8} of type $[6,6,6]$ which are Type B with respect to μ.

Proof. (1) Let \mathcal{V} be the set of two dimensional subspaces of the form in the Theorem which are of rank type $[6,8,8]$; that is, $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\mu \in B_{2}^{6}$ and $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ for some $\mu_{0} \in B_{2}^{6}$ and linearly independent
$\lambda, \lambda^{\prime} \in B_{1}^{6}$. Let \mathcal{V}_{μ} be the subset of \mathcal{V} consisting of spaces containing μ. Since $G L\left(B_{1}^{6}\right)$ acts transitively on the set of all rank 6 elements of B_{2}^{6}, we have that $\mathcal{V}=\bigsqcup \mathcal{V}_{\sigma(\mu)}$. Thus $\left|\mathcal{V}_{\mu}\right|=|\mathcal{V}| / 13888$, yielding the claimed number. Similarly for part (2). For part (3), notice that the number of semi-regular subspaces of Type B is $31,997,952$ by Theorem 7.13. Since these have either rank type $[6,8,8],[6,6,8]$ or $[6,6,6]$, the number of the latter type is

$$
31,997,952-6,193,152-15,482,880=10,321,920
$$

Corollary 7.21. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Then
(1) There are 17, 989, 632 two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,8]$ containing μ.
(2) There are $47,480,832$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ containing μ.
(3) There are 30, 965, 760 two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,6,6]$ containing μ.

Proof. The number of such spaces is just the sum of the numbers in Theorem 7.8, and Corollary 7.20.

Corollary 7.22. There are
(1) $2,697,022,899,486,720$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,8]$
(2) $3,559,185,957,519,360$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$
(3) $1,547,472,155,442,200$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,6,6]$

Proof. For any element of B_{2}^{8} of rank 6 , there is an automorphism $\sigma \in$ $\mathrm{GL}\left(B_{1}^{8}\right)$ such that $\sigma(\tilde{\mu})=\mu$. This automorphism then induces a bijection between the set of semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ containing $\tilde{\mu}$ and the set of semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ containing μ. Since there are $149,920,960$ elements of B_{2}^{8} of rank 6 , the total number of semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ is

$$
\frac{47,480,832 * 149,920,960}{2}=3,559,185,957,519,360
$$

The other cases are handled similarly.
7.1. Approximation of $p_{8,2}$. The case when $\operatorname{Rk} V=[8,8,8]$ seems to be even more complex than the Type B case above. Thus we content ourselves with an approximation of $p_{8,2}$ in this case.

Theorem 7.23. Let $p_{8,2}$ be the proportion of two dimensional subspaces of B_{2}^{8} which are semi-regular. Then

$$
0.65 \leq p_{8,2} \leq 0.72
$$

Proof. We are able to determine the semi-regularity of all but the $888,431,072,772,096$ spaces of rank type [8, 8, 8]. Using Corollary 7.22 we obtain that the number $\operatorname{sr}(8,2)$ of semi-regular 2 dimensional suspaces satisfies
$7,803,681,012,449,280 \leq \operatorname{sr}(8,2) \leq 8,692,112,085,221,376$
Dividing by the total number of 2 dimensional subspaces, $12,009,598,872,103,595$ yields the claimed bounds.

8. Hilbert Polynomials

An even more fine-grained understanding can be obtained by looking at the possible Hilbert polynomials that can arise for $B / B V$. We list here (without proof) a complete description of the Hilbert polynomials that can arise in the cases $n=4,5$ and 6 . The main determining factor is the ranktype and whether or not the space is induced.

Type	Number	$H_{V}(z)$
$[2,2,2]$	105	$1+4 z+4 z^{2}+z^{3}$
$[2,2,4]$	280	$1+4 z+4 z^{2}$
$[2,4,4]$	210	$1+4 z+4 z^{2}$
$[4,4,4]$	56	$1+4 z+4 z^{2}$
Total	651	

Table 5 . Hilbert polynomials of $B / B V$ by rank type when $n=4$

Rank	Type	Number	$H_{V}(z)$
$[2,2,2]$		1,085	$1+5 z+8 z^{2}+5 z^{3}+z^{4}$
$[2,2,4]$		8,680	$1+5 z+8 z^{2}+4 z^{3}$
$[2,4,4]$	i	6,510	$1+5 z+8 z^{2}+4 z^{3}$
$[2,4,4]$	ni	52,080	$1+5 z+8 z^{2}+2 z^{3}$
$[4,4,4]$	i	1,736	$1+5 z+8 z^{2}+4 z^{3}$
$[4,4,4]$	ni	104,160	$1+5 z+8 z^{2}+z^{3}$
Total		174,251	

Table 6. Decomposition of the Grassmanian by Rank Type for $n=5$

When $n=4$ the situation is simple. When $n=5$ we begin to see the distinction between the induced and non-induced cases. When $n=6$, more subtle distinctions begin to appear. In the types column we have

- i4: V is induced from a 4 dimensional subspace
- i5: V is induced from a 5 dimensional subspace
- nin: V is not induced but not semi-regular
- nis: V is not induced and is semi-regular

Rank	Type	Number	$H_{V}(z)$
$[2,2,2]$		9,765	$1+6 t+13 t^{2}+13 t^{3}+6 t^{4}+t^{5}$
$[2,2,4]$		182,280	$1+6 t+13 t^{2}+13 t^{3}+4 t^{4}$
$[2,4,4]$	i4	136,710	$1+6 t+13 t^{2}+13 t^{3}+4 t^{4}$
$[2,4,4]$	i 5	$3,281,040$	$1+6 t+13 t^{2}+10 t^{3}+2 t^{4}$
$[2,4,6]$		$4,666,368$	$1+6 t+13 t^{2}+10 t^{3}$
$[2,6,6]$		$2,187,360$	$1+6 t+13 t^{2}+10 t^{3}$
$[4,4,4]$	i4	36,456	$1+6 t+13 t^{2}+13 t^{3}+4 t^{4}$
$[4,4,4]$	i5	$6,562,080$	$1+6 t+13 t^{2}+9 t^{3}+t^{4}$
$[4,4,4]$	nin	$8,749,440$	$1+6 t+13 t^{2}+8 t^{3}+t^{4}$
$[4,4,4]$	nis	$15,554,560$	$1+6 t+13 t^{2}+8 t^{3}$
$[4,4,6]$		$69,995,520$	$1+6 t+13 t^{2}+8 t^{3}$
$[4,6,6]$		$54,246,528$	$1+6 t+13 t^{2}+8 t^{3}$
$[6,6,6]$		$13,332,480$	$1+6 t+13 t^{2}+8 t^{3}$
Total		$178,940,587$	

Table 7. Hilbert Series by Rank and Type when $n=6$

9. Conclusion

We conducted a detailed study of the semi-regularity of two dimensional quadratic spaces. We found the following values for $p_{n, 2}$, the proportion of quadratic subspaces that were semi-regular.

n	3	4	5	6	7	8	≥ 9
$p_{n, 2}$	1.00	0.84	0.00	0.86	0.00	$[0.65,0.72]$	0.00

Table 8. The proportion $p_{n, 2}$ of 2 -dimensiion subspaces of B_{2} that are semi-regular

Our hope was that this study would shed some light which would enable progress towards two of the most glaring open questions concerning semiregularity: a) do there exist semi-regular sequences of quadratic element for all n ? and b) is $\lim _{n \rightarrow \infty} p_{n, n}=1$; i.e., are most sequences of n quadratic elements in n variables semi-regular? On the positive side, the rank type is an invariant whihc can be used to establish certain results easily. It seems possible that the answer to a) can be found by considering speciifc spaces of high rank type. On the other hand the table of Hilbert series in the case $n=6$ suggest that getting the Hilbert series exactly right is a hard thing to control. While most spaces seem to be close to being semi-regular (in the sense that their Hilbert series are close to $T_{n, m}(z)$), it appears that it will be a highly non-trivial problem to prove the exact match of dimensions in each degree.

For most applications, it is sufficient to show that the degree of the Hilbert polynomial is the same as that of a semi-regular system. Proving this should
be significantly easier and would give a more useful result from the point of view of applications. Thus a weaker but more accessible conjecture would be that for "most" m-dimensional subspaces $B_{D-2} V=B_{V}$ for $D=D_{n, m}$. For instance we are able to prove this result in the one case that we were not able to establish semi-regularity - spaces of rank type $[8,8,8]$ when $n=8$.

References

[1] M. Bardet, Étude des systèmes algébriques surdéterminés. Applications aux codes correctuers et la cryptographie. PhD thesis, Université Paris VI, Décembre 2004.
[2] M. Bardet, J.-C. Faugère, B. Salvy and B.-Y. Yang, Asymptotic Expansion of the Degree of Regularity for Semi-Regular Systems of Equations, MEGA 2005, Sardinia, Italy
[3] J. Ding, T. J. Hodges, Inverting the HFE systems is quasipolynomial for all fields. In: Advances in Cryptology - Crypto 2011, Lecture Notes in Computer Science 6841, pp 724-742, Springer, Berlin 2011.
[4] J. Ding, T. J. Hodges, V. Kruglov, D. Schmidt, S. Tohaneanu, Growth of the ideal generated by a multivariate quadratic function over $G F(3)$, J. of Algebra and Its Applications, 12 (2013), 1250219-1 to 23.
[5] V. Dubois, N. Gama, The degree of regularity of HFE systems. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010-16th International Conference on the Theory and Application of Cryptology and Information Security. LNCS, vol. 6477, pp. 557-576. Springer, Berlin (2010)
[6] T. J. Hodges, C. Petit and J. Schlather, First Fall Degree and Weil Descent, Finite Fields and Their Applications 30 (2014), 155-177.
[7] T. J. Hodges and S. D. Molina, Homological Characterization of bounded \mathbb{F}_{2} regularity, Cryptology ePrint Archive, Report ${ }^{* * * *} / * * *$
[8] T. J. Hodges, S. D. Molina and J. Schlather, On the existence of homogeneous semi-regular sequences in $\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$, Journal of Algebra 476 (2017): 519-547.
[9] A. Pott, K-U. Schmidt, Y. Zhou, Pairs of quadratic forms over Finite Fields, Elec. J. Combin 23(2) (2016), \#P2.8
[10] I. Semaev and A. Tenti, Probabilistic analysis on Macaulay matrices over finite fields and complexity of constructing Gröbner bases, J. Algebra 565, 2021, pp 651-674

Appendix A. The General Upper Bound

Let V be an m-dimensional graded subspace of B. Let $\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be a homogeneous basis for V and set $d_{i}=\mu_{i}$. If we assume that $d_{1} \leq \cdots \leq d_{m}$ then the vector $\underline{d}=\left(d_{1}, \ldots, d_{m}\right)$ is independent of the choice of homogeneous basis. For such a vector $\underline{d}=\left(d_{1}, \ldots, d_{m}\right)$ we define

$$
T_{n, \underline{d}}(z)=\left[\frac{(1+z)^{n}}{\prod_{i}\left(1+z^{d_{i}}\right)}\right]
$$

and

$$
D_{n, \underline{d}}:=\operatorname{deg} T_{n, \underline{d}}(z)
$$

Denote the Hilbert series of the quotient ring $B / B V$ by $H S_{V}(z)$. We say the space V is semi-regular if $H S_{V}(z)=T_{n, \underline{d}}(z)$.

Theorem A.1. Let V be a graded subspace of B^{n} with degree vector \underline{d} and let $d=\sum_{i} d_{i}$. If $n \geq D_{n, \underline{d}}+d$, then V is not semi-regular.

Proof. Let $B=\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be a basis for V. Choose an element ξ of $B V$ of maximal degree. Clearly $\operatorname{deg} \xi \leq d$ and $\xi \mu_{i}=0$ for all i. Let $D=D_{n, \underline{d}}$. If V is semi-regular, then

$$
B_{D}=\sum_{i} B_{D-d_{i}} \mu_{i}
$$

But then

$$
\xi B_{d}=\xi \sum_{i} B_{D-d_{i}} \mu_{i}=\sum_{i} B_{D-d_{i}} \xi \mu_{i}=0
$$

This implies that $\xi \in B_{\operatorname{deg} \xi} \cap \operatorname{Ann} B_{D}=0$. So Lemma 3.2 implies that $n<D+\operatorname{deg} \xi \leq D+d$. Thus if $n \geq D+d, V$ can not be semi-regular.

Email address, Tim Hodges: timothy.hodges@uc.edu
University of Cincinnati, Cincinnati, OH 45221-0025, USA
Email address, Hari Iyer: hiyer@college.harvard.edu
Harvard College, Cambridge, MA 02138

[^0]: Key words and phrases. Semi-regularity, finite field.
 Corresponding author: Timothy Hodges, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA, email:timothy.hodges@uc.edu.

