
Unifying Compilers for SNARKs, SMT, and More
Alex Ozdemir Fraser Brown Riad S. Wahby

aozdemir@stanford.edu,mlfbrown@stanford.edu,rsw@cs.stanford.edu

Abstract
The programming languages community, the cryptography
community, and others rely on translating programs in high-
level source languages (e.g., C) to logical constraint repre-
sentations. Unfortunately, building compilers for this task
is difficult and time consuming. In this work, we show that
all of these communities can build upon a shared compiler
infrastructure, because they all share a common abstraction:
stateless, non-deterministic computations that we call exis-
tentially quantified circuits, or EQCs.

To make our approach concrete we create CirC, an infras-
tructure for building compilers to EQCs. CirC makes it easy
to add support for new EQCs: we build support for two, one
used by the PL community and one used by the cryptog-
raphy community, in ≈2000 LOC. It’s also easy to extend
CirC to support new source languages: we build a feature-
complete compiler for a cryptographic language in one week
and ≈700 LOC, whereas the reference compiler for the same
language took years to write, comprises ≈24000 LOC, and
produces worse-performing output than our compiler. Fi-
nally, CirC enables novel applications that combine multiple
EQCs. For example, we build the first pipeline that (1) auto-
matically identifies bugs in programs, then (2) automatically
constructs cryptographic proofs of the bugs’ existence.

1 Introduction
The programming languages and formal methods communi-
ties have a long tradition of translating programs to logical
constraints (e.g., Satisfiability Modulo Theories [14] (SMT)
formulas) to verify program properties [11, 26, 43, 83, 106,
120], synthesize new programs [74, 113, 114], and more. The
cryptography community, meanwhile, compiles programs
to boolean circuits, arithmetic constraints, and similar repre-
sentations used by probabilistic proof systems [118, 131, 138]
(which give efficiently verifiable, privacy-preserving proofs)
and multi-party computation [87] (which enables collabora-
tive computation among mutually distrusting parties). Still
other communities compile to integer linear programs [58],
a kind of constraint system used for optimization problems.
Compilers to constraints are crucial in all of these ap-

plications, but they are hard to build—for example, Torlak
and Bodik call this “the most difficult aspect of creating
solver-aided tools,” taking “years to develop” [120]. As a re-
sult, communities that rely on constraint compilers have
poured enormous effort into building them (§2.4), with little
cross-pollination between communities, and duplicated ef-
forts within communities. Thus, our animating question: is it
possible to create shared infrastructure for building constraint

compilers that is useful across such disparate applications? In
this paper, we show that the answer is: Yes!

To start, we observe that shared infrastructure is possible
in principle, because all the constraint representations dis-
cussed above can be viewed as instances of the same abstrac-
tion: a class of non-deterministic execution substrates that
we call existentially quantified circuits, or EQCs.1 EQCs have
two main features that differentiate them from CPUs (the
targets of traditional compilers). First, EQCs are stateless—
they contain no mutable variables, control flow, memory, or
storage. Second, they admit non-determinism in the form
of existentially quantified variables. For example, an SMT
formula is an EQC that is “executed” by an SMT solver. Since
SMT formulas are sets of logical relations, they are stateless
and free of control flow. Moreover, SMT formulas can include
existentially quantified variables, i.e., ∃𝑥 .𝑃 (𝑥) for a predicate
𝑃 .2 An SMT solver executes such formulas by finding an 𝑥

satisfying 𝑃 (𝑥) or determining that no such 𝑥 exists.
By leveraging the EQC abstraction, we show that shared

infrastructure for compiling to constraints is possible—and
useful—in practice, for three reasons. First, the process of
compiling from a high-level language to an EQC is similar,
even for very different EQCs. To compile, say, C to SMT,
there’s a well-known procedure: explore all paths through
the program (unroll loops, consider all branches), guarding
all state modifications by the condition under which the
current path is taken [43]. That same procedure is also nec-
essary when compiling C to boolean circuits for multi-party
computation [89], or to arithmetic constraints for proof sys-
tems [111, 130]. Since this approach is largely independent
of the application, sharing compilation infrastructure avoids
duplicated effort.
Second, EQCs have performance characteristics that are

different from those of processors, but similar to those of
other EQCs. As a result, shared EQC infrastructure can sup-
port shared optimizations, whereas reusing existing infras-
tructure geared towards CPUs wouldn’t make sense. As one
example, while CPUs support load and store instructions
for memory access, simulating memory in EQCs (which are
state-free) is very expensive: there are active lines of research
on memory representations and related optimizations for
both software verification [39, 44, 64, 82, 112, 135] and proof
systems [22, 24, 31, 76, 100, 130]. We show that proof system

1Note that EQCs do not capture digital circuits, which are stateful and
deterministic; thus, we do not consider them in this work. See Section 2.4.
2While some SMT solvers also support universal quantifiers, purely existen-
tial formulas are already quite useful, and thus are our focus in this work.
We hope to explore quantification more broadly in future work.

1

Alex Ozdemir Fraser Brown Riad S. Wahby

C

Rust

LLVM IR:
random-access machine

x86

ARM

C

ZoKrates

CirC IR:
state-free, non-uniform,

non-deterministic
computation

SMT Solver

Proof System

Figure 1. LLVM uses a random-access machine abstraction
to make it easy for new front-ends to target CPUs. CirC uses
a non-uniform non-deterministic state-free abstraction to
make it easy to target EQCs.

and software verifier performance both improve under the
same memory optimizations (and more) in Section 6.

Finally, we show that shared compiler infrastructure yields
benefits with few analogs in traditional compilers. In a tradi-
tional compiler, each target CPU supported by the compiler
does the same thing—it executes code. EQCs, in contrast,
often have very different purposes—and shared infrastruc-
ture makes it easy to combine those purposes in ways that
enable new applications. For example, verification allows
users to prove that a program has some property (e.g., “con-
tains no undefined behavior”), while proof systems allow
users to prove facts to one another in spite of mutual distrust
(e.g., proving “I know my password” without revealing it).
Combining these functionalities, we show in Section 7 that
our work can automatically identify a bug using a verifica-
tion pipeline, then prove the existence of that bug without
revealing how to trigger it, using a proof pipeline.

To make these benefits concrete, we implement an infras-
tructure for building compilers to EQCs, which we call CirC.
CirC is analogous to—and inspired by—LLVM [80], an infras-
tructure for compiling programs to machine code. LLVM’s
key abstraction is its intermediate representation (LLVM IR),
which captures the computational model of CPUs: conceptu-
ally, LLVM IR is an abstraction of a random-access machine.
CirC builds on a different abstraction (Fig. 1): state-free, non-
deterministic, non-uniform computation, which captures the
computational model of EQCs (§2.1). As in LLVM, language
designers can add new front-ends that compile to CirC-IR,
where CirC performs optimization passes; and they can add
back-ends that compile from CirC-IR to a given EQC (e.g.,
SMT constraints), allowing them to “run” the resulting exe-
cutable (e.g., feed the constraints to an SMT solver).
We evaluate CirC for two radically different use cases—

automated verification and cryptographic proof systems—
and show that it allows compiler implementors to:

• Easily support new front-end languages (§4). CirC
currently supports a rich subset of C (≈2000 LOC);
Circom [15], a domain-specific language for proof
systems (≈1200 LOC); and ZoKrates [139], a language

for embedding proofs in smart contracts (≈700 LOC).
For example, our ZoKrates compiler implements the
full language specification, is an order of magnitude
smaller than the language’s reference compiler (24000
LOC), and was much easier to build (one person in
one week vs. 36 contributors over three years).

• Easily support new EQC back-ends (§4). CirC cur-
rently supports both SMT constraints (≈400 LOC) and
constraints for proofs (called R1CS [22]; ≈1600 LOC).

• Create correct, efficient EQCs (§5). For example, CirC
outperforms the ZoKrates reference compiler.

• Write optimizations that help multiple targets (§6).
• Easily combine back-end functionalities (§7). We are

the first to use an SMT solver to optimize R1CS (§7.2),
and the first to combine SMT and R1CS to automati-
cally find bugs and then prove their existence (§7.1).

Summarizing our key insights: (1) many subfields rely
on the same abstraction, the EQC; (2) compiling to different
EQCs uses similar steps, and EQCs have similar performance
characteristics, so shared infrastructure makes sense; and
(3) with shared infrastructure, different EQCs can be com-
bined in service of new applications. We begin with back-
ground on EQCs, our use cases, and related work (§2), then
illustrate the compiler’s design (§3), evaluate CirC (§4–§7),
and discuss limitations and next steps (§8).

2 Background and related work
In this section, we start with a slightly more formal definition
of EQCs. Then, to set the stage for our evaluation (§4–§7), we
discuss our two example use cases: automated verification
(§2.2) and cryptographic proof systems (§2.3). Finally, we
describe related work (§2.4).

2.1 Existentially quantified circuits
We refer to the broad class of non-deterministic execution
substrates that this work targets as existentially quantified
circuits (EQCs). EQCs share three key properties. First, they
are circuit-like: they comprise sets ofwires taking values from
some domain (e.g., bits for a boolean circuit) and constraints
that express relationships among wire values (e.g., an AND
gate represents the constraint 𝐶 = 𝐴 ∧ 𝐵).

Second, EQCs are state free: unlike variables in a computer
program or registers in a CPU, wire values in an EQC do not
change during execution. In a boolean circuit, for example,
each gate’s output is determined by its inputs, which are
either the outputs of other gates or input wires.

Third, EQCs have two kinds of inputs: explicit inputs, i.e.,
arguments supplied at the start of execution, and existentially-
quantified inputs, which may take any value consistent with
the explicit input values and the set of constraints. Consider
the trivial EQC ∃𝐵.𝐴 ⊕ 𝐵 = 0, where 𝐴 is an explicit input
and ⊕ is bitwise XOR: when 𝐴 = 1, 𝐵 must take the value 1.

2

Unifying Compilers for SNARKs, SMT, and More

In complexity-theoretic terms, we say that EQCs capture
non-deterministic, non-uniform computation [5, Ch. 6]. Their
non-determinism stems from the existentially quantified
inputs whose values are, in principle, “guessed” by the exe-
cution substrate. Their non-uniformity reflects the fact that a
circuit of a given size encodes a computation for a fixed-size
input; thus, for a given computation, different input lengths
entail distinct circuits.

2.2 SMT-based verification
In this section we discuss SMT and SMT-LIB, then explain
how verifiers use these tools to prove properties of programs.

SMT solvers are tools that determine whether logical for-
mulas are unsatisfiable (i.e., can never evaluate to true) or
satisfiable (i.e., can evaluate to true); if satisfiable, the SMT
solver provides a satisfying assignment to the variables in
the formula. For example, given the formula 𝑥 ∨ 𝑦, an SMT
solver may return a satisfying assignment of 𝑥 to true and
𝑦 to false (or any other valid assignment). Free variables in
SMT formulas thus have existential semantics, which means
that SMT formulas are EQCs (§2.1).

In addition to booleans, SMT formulas can include terms
from various theories, including bit-vectors, arrays, unin-
terpreted functions, real and integer arithmetic, etc. Since
theories are higher level than logical formulas, they make
it easier for developers to use solvers, roughly analogous to
writing code in a high-level language compared to writing
code in assembly.3 The SMT-LIB [14] standard specifies the
semantics of each theory.
Compiling fromhigh-level languages to SMT. SMT solvers
are often applied in service of program correctness—everything
from test case generation to bug finding to verification. Typ-
ically, a verifier translates a program and assertions about
that program (e.g., index is within bounds of array) into
SMT formulas (or similar). The verifier then asks the solver
if the assertions make the program’s formula satisfiable or
not, either finding bugs or verifying their absence.
Translating (or compiling) source code into SMT formu-

las is a non-trivial task [43, 120, 133]. Since SMT does not
support mutable variables, the verifier must transform high-
level code to static single assignment (SSA) form. Since SMT
doesn’t support control flow constructs, it must unroll all
loops (up to a bound) and replace mutations inside condi-
tional branches with if-then-else terms that apply the muta-
tion when the corresponding branch in the source program
would have been taken. For example, consider this code snip-
pet and its SMT-compatible representation:
// input program (assume x, y, z previously defined)
if (x < 20) { x = 2; }
else { y += z; }

3Theories have other benefits too: they allow solvers to use theory-specific
algorithms for faster solving, and they allow users to specify formulas over
infinite domains (e.g., the integers), which booleans cannot represent.

// SMT-compatible program
x_1 = x_0 < 20 ? 2 : x_0;
y_1 = !(x_0 < 20) ? (y_0 + z_0) : y_0;

For this snippet, the verifier transforms the conditional into
assignments guarded by the branch condition or its negation.
x is set to 2 when the condition evaluates to true; otherwise,
z is added to y. The result uses no mutation or conditionals.

2.3 Cryptographic proof systems
Probabilistic proof systems are powerful cryptographic tools
whose applications include verifying that outsourced compu-
tations are executed correctly [100, 102, 136], implementing
private cryptocurrency transactions [21, 51], and defending
against hardware back-doors [128, 129]. In this section, we
describe the class of probabilistic proof systems CirC tar-
gets, focusing on their computational model. Readers should
consult surveys [118, 131] for additional details.
At a high level, a probabilistic proof system is a cryp-

tographic protocol between two parties, a prover P and a
verifier V , whereby P produces a short proof that convinces
V that ∃𝑤.𝑦 = Ψ(𝑥,𝑤), for Ψ a computation that takes in-
put 𝑥 and witness 𝑤 and returns output 𝑦. Several lines of
work [22–24, 31, 47, 59, 76, 102] instantiate end-to-end built
systems. Two key features of these systems are succinct-
ness—P’s proof is small, as is V’s work checking it—and
zero knowledge—an accepting proof reveals nothing about
the witness𝑤 other than the truth of 𝑦 = Ψ(𝑥,𝑤).

These systems comprise a compilation stage and a proving
stage. The proving stage applies complexity-theoretic and
cryptographic machinery to the compilation stage’s output,
allowing P to generate a proof andV to verify it. The compi-
lation stage, our focus in this work, takes a source program Ψ
(written, say, in C) and transforms it into a system of arith-
metic constraints C in vectors of formal variables𝑊,𝑋,𝑌 ,
such that ∃𝑤.𝑦 = Ψ(𝑥,𝑤) ⇐⇒ ∃𝑊 .C(𝑊,𝑋,𝑌) for 𝑋 = 𝑥 ,
𝑌 = 𝑦. (Note that ∃𝑊 .C(𝑊,𝑋,𝑌) is an EQC; §2.1.) The pri-
mary figure of merit for a compiler is the size of C: fewer
constraints means less work for P to generate a proof, and
in some cases a shorter proof that is easier for V to verify.

The constraint formalism. The formalism used by most
proof systems is called a rank-1 constraint system (R1CS). An
R1CS instance C comprises a set of constraints over a finite
field F (usually the integers modulo a prime 𝑝) of the form
⟨𝐴𝑖 , 𝑍 ⟩ · ⟨𝐵𝑖 , 𝑍 ⟩ = ⟨𝐶𝑖 , 𝑍 ⟩, where ⟨·, ·⟩ is an inner product, 𝑍
is the concatenation (𝑊,𝑋,𝑌, 1) ∈ F𝑛 , and 𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 ∈ F𝑛
are constants. In other words, each constraint asserts that
the product of two weighted sums of the wires in C equals a
third weighted sum, which generalizes arithmetic circuits. C
is satisfied when the values𝑊,𝑋,𝑌 satisfy all constraints. To
generate a proof, P first computes a satisfying assignment
and then executes the cryptographic proving machinery.
Compiling programs from languages like C to R1CS in-

stances is tricky: as with SMT formulas, constraints cannot
3

Alex Ozdemir Fraser Brown Riad S. Wahby

directly encode mutation, control flow, etc., so the compiler
must transform the program as described in Section 2.2.
What’s more, all computations must be written in terms
of arithmetic in F, which can be awkward. For example, the
assertion 𝑥 ≠ 0 has no direct encoding as a rank-1 constraint.
When F is the integers mod 𝑝 , by Fermat’s little theorem this
can be rewritten as 𝑋𝑝−1 = 1, but this costs O(log𝑝) con-
straints; 𝑝 ≈ 2256 is common for security of the proof system,
so this is very costly. In this and similar cases, an important
optimization is to introduce advice in the form of entries in
the (existentially quantified) vector𝑊 . In our example, 𝑥 ≠ 0
becomes ∃𝑊 .𝑊 · 𝑋 = 1: since every nonzero element of F
has a multiplicative inverse, this constraint is satisfiable iff
𝑋 ≠ 0 ∈ F. For other examples see, e.g., [76, 100, 111, 130].

2.4 Related work
CirC is related to and inspired by LLVM [80] and SUIF [67],
but CirC targets EQCs instead of CPUs. MLIR [81] aims to
enhance LLVM with a toolkit for constructing and manipu-
lating interlocking IRs; in other words, MLIR is infrastructure
for constructing compiler infrastructure. This work is orthog-
onal to CirC, which is compiler infrastructure for a specific
family of non-deterministic computational models.

High-level synthesis (HLS) turns programs (say, in C) into
digital circuits ([52] surveys). While digital circuits appear
superficially similar to EQCs, there are two key differences:
first, digital circuits do not allow existential quantification,
which is very important for efficiently compiling to EQCs.
Second, digital circuits are stateful; indeed, efficient use of
stateful elements like flip-flops is a key focus of HLS.

Many compilers to specific EQCs exist; we discuss closely
related work below. The main difference between CirC and
these compilers is that CirC is infrastructure for compiling
to EQCs generally, not just SMT, proofs, etc. Generalizing
existing compilers to support a wide range of EQCs would
require essentially duplicating the work of building CirC.
The other difference between CirC and existing work is

that most other work combines compilation with front-end–
based optimization strategies. As examples: KLEE [39] com-
bines a core constraint compilation engine with a path explo-
ration front-end that forks at every branch; and Giraffe [129]
uses program analysis to “slice” programs, then compiles a
subset of these slices to proof system constraints. CirC could
take the place of the respective compilation phases if paired
with an exploration or slicing phase (§8).

Compilers for SMT. Many projects compile high-level pro-
grams or parts of programs to SMT in order to prove pro-
gram properties [8, 9, 43, 45, 46, 48, 71, 73, 77, 84, 116, 125,
126, 133] (e.g., using bounded model checking). For example,
the CBMC verifier [43, 77] translates C programs and asser-
tions about their correctness into SMT, unrolling loops up
to a given bound. Then, it uses a solver to prove or refute
verification assertions. Other program analyzers verify code

written in verification-specific domain specific languages
(DSLs) [88, 90, 98, 123]. For example, Alive [88] presents a
DSL for peephole optimizations: programmers write opti-
mizations in the DSL and Alive automatically verifies them.
Some projects even allow users to manipulate constraints
from within a higher-level language [56, 75, 91, 122]. For ex-
ample, the Kaplan language [75] allows users to manipulate
constraints directly from within the Scala language (e.g., in
order to branch on the satisfiability of a formula).

All of the projects listed above handle their own compila-
tion from a high-level language to SMT, but that is not always
the case: there are many projects that present infrastructure
for building verifiers [11, 57, 83, 94, 106, 119, 120]—often by
handling the details of SMT compilation—and many verifiers
that depend on them [10, 66, 95, 96]. Intermediate Verifica-
tion Languages [11, 57, 94, 117] (IVLs), for example, decouple
language details from verifier details; the Boogie IVL [11]
targets SMT-like back-ends, and building a new verifier just
requires translating a source language to the IVL. CirC has
a similar but broader goal: it aims to decouple source lan-
guages from all EQC targets, not just verifiers—and therefore
must generalize lessons from IVLs to a more diverse range
of constraint systems.
Symbolic execution (symex) tools [7, 40] combine SMT

compilation of a single program path with, typically, ei-
ther concrete execution or forking strategies [34, 39, 42, 61,
62, 105, 107, 109, 115, 135]; some systems use a hybrid of
symex and model checking [120]. After SMT compilation,
different tools proceed differently: many [39] fork execution
at each conditional jump, some use a mixture of concrete
and symbolic (concolic) execution [109, 135], some combine
static analysis and symex [34], some combine symex and
fuzzing [115, 135], and more. In each case, the symbolic tool
relies on a core component that compiles programs to SMT.

Compilers for cryptography. A long line of prior work de-
velops techniques for compiling to R1CS constraints. Gin-
ger [111], Zaatar [110], Pantry [31], and Buffet [130] com-
pile a subset of C and support proof-specific optimizations
for rational numbers, memory, key-value stores, complex
control flow, etc. Pinocchio [102] also compiles a subset of
C with techniques similar to Ginger’s. Geppetto [47] con-
sumes LLVM IR and provides efficient cryptographic prim-
itives. xJsnark [76] consumes a Java-like language and re-
fines techniques from Buffet and Geppetto. Zinc [137] and
ZoKrates [139] compile from eponymous DSLs to R1CS us-
ing existing techniques. Finally, Circom [15] is essentially a
hardware description language that relies on the program-
mer to write constraints. We build Circom and ZoKrates
support for CirC in Section 4.

Another line ofwork [22, 24] uses hand-crafted constraints
that simulate a simple CPU, then modifies GCC to emit code
for that CPU; while conceptually simple, this comes at enor-
mous cost [130, §5]. Yet another approach, embodied by

4

Unifying Compilers for SNARKs, SMT, and More

C

ZoKrates

Circom

SMT R1CS
Proof
System

Solver
Circify
Library

C fron
t-en

d

ZoKrates
front-end

Lowering

Opt. Opt.

Figure 2. CirC’s architecture, with extensions (§3).

libsnark [86], ZEXE [29], and Bellman [18], uses a “macro
assembler” to compose hand-crafted R1CS “gadgets.”
Fairplay [89] is the earliest example of a compiler to cir-

cuits for two-party computation (2PC); FairplayMP [19] tar-
gets multi-party computation. Later works like Tasty [68]
and HyCC [38] optimize by matching pieces of the source
program to suitable cryptographic protocols.
CBMC-GC [69] adapts the CBMC [43] model checker to

emit boolean circuits for 2PC, implicitly leveraging the simi-
larities between compiling for model checking and for 2PC.
Unlike CirC, however, CBMC-GC applies only to the case
of boolean circuits optimized to 2PC, rather than to EQCs
generally. Because of this, it cannot be used to compile to,
say, arithmetic constraints for proof systems, nor does it
enable the crossover applications that CirC does (§7).

3 Design
CirC’s main goal is extensibility: it should be easy for design-
ers to add support for new source languages and target EQCs.
In CirC (as in LLVM), designers do so with new front-ends
(e.g., for C) and new back-ends (e.g., for R1CS). Front-ends
target CirC’s IR, which is similar to SMT-LIB (§2.2), and
back-ends lower from IR to a target representation. Figure 2
shows how CirC is extensible at each stage of the compila-
tion pipeline. For example, even though the hardware design
language Circom is essentially already an EQC, it can still
plug in to CirC’s R1CS back-end and take advantage of target-
specific optimizations. In the rest of this section, we describe
the CirC compilation pipeline and how language designers
can use it to easily create new compilers.
Compiling to CirC’s IR. To add support for a new language
with stateful semantics, designers create a front-end that
translates their language to CirC’s IR. The IR is based on the
SMT-LIB standard (§2.2), limited to formulas over booleans,
floating-point numbers, bit-vectors, and arrays. These theo-
ries cover common primitive types in high-level languages,
but one could extend the IR with other theories. In service of
languages geared towards proof systems (§4), we extend the
IR with a notion of finite fields, which underly R1CS (§2.3).

To help designers compile from high-level languages to IR,
CirC exposes Circify, a library for managing IR-embedded
state and control flow. Designers write (essentially) inter-
preters for their language (somewhat similar to Serval [96]);

1 data Val = Bool IR.Bool
2 | Pair Val Val
3

4 instance Circify.Embeddable Val where
5 -- assign :: String -> Val -> Circify.Circify Val
6 assign name t = case t of
7 Bool b -> do var <- Circify.var name IR.SortBool
8 Circify.assert $ IR.Eq var b
9 return $ Bool var
10 Pair a b -> do a' <- assign (name ++ ".1") a
11 b' <- assign (name ++ ".2") b
12 return $ Pair a' b'
13

14 -- ite :: IR.Bool -> Val -> Val -> Circify.Circify Val
15 ite c t f = case (t, f) of
16 (Bool tb, Bool tf) -> return $ Bool $ IR.Ite c tb tf
17 (Pair t1 t2, Pair f1 f2) ->
18 liftM2 Pair (ite c t1 f1) (ite c t2 f2)
19 _ -> error "Cannot ITE different term types"

Figure 3. Circify’s required type and functions for Bool-
Pair, a language with only booleans and pairs (§3).

when the interpreter must handle control flow (e.g., branches
or breaks) or the environment (e.g., variable mutations), de-
signers invoke Circify functions. Circify handles the com-
plexity of translating mutable state and control flow to IR,
using standard techniques like path guarding, versioning
variables, guarding mutations, and transforming memory to
SMT array operations (§2.2). Using Circify requires design-
ers to define a few features of their language; we describe
these features and walk through their instantiation for a
language with booleans and pairs (BoolPair, Fig. 3).
First, designers define an IR representation of symbolic

values for their language. In BoolPair, a value is either a
boolean or a pair of values (implemented in the Val data
type in Figure 3). Circify’s internal state stores a mapping
of variables to symbolic values. The mapping is generic over
value type, so Circify can automatically track program state
regardless of the language’s underlying value representation.
While BoolPair only includes booleans, Circify supports
any value type that can be embedded in CirC-IR.

Next, Circify requires designers to specify two functions,
ite and assign (Fig. 3). Since Circify automatically trans-
forms mutable variables into SSA form, it must be able to
create fresh variables and assign existing values to them; it
does this using assign. In BoolPair, assign creates a fresh
boolean variable, then asserts its equality to an existing value
(lines 7–9). For a pair, the assignment is recursive (lines 10–
12), appending an index number to the names for the first
and second values.

Circify uses ite to construct values that depend on
the current path condition. This is necessary for compil-
ing control flow (e.g., turning “if (x) { y = z; }” into
“y_1 = if x_0 then z_0 else y_0”). BoolPair’s ite defi-
nition appears on lines 15–19.

5

Alex Ozdemir Fraser Brown Riad S. Wahby

1 evalStmt :: AST.Stmt -> BoolPair ()
2 evalStmt s = case s of
3 AST.Assign var expr -> do
4 e <- evalExpr expr
5 Circify.ssaAssign var e
6 AST.If cond true false -> do
7 c <- asIrBool <$> evalExpr cond
8 Circify.guarded c $ Circify.scoped $ evalStmt true
9 Circify.guarded (IR.Not c) $
10 Circify.scoped $ evalStmt false
11 ...
12

13 evalExpr :: AST.Expr -> BoolPair Val
14 evalExpr = ...

Figure 4.A part of the interpreter for BoolPair (§3). Circify
makes it easy to handle control flow and mutations.

Given these three pieces of information—an IR represen-
tation of values, assign, and ite—Circify automatically
handles the key pieces of compiling to EQCs, like mutation
and branching. To illustrate this, we walk through how an
interpreter for BoolPair’s AST handles assignments and if-
statements in Figure 4. For an assignment, the interpreter
evaluates the right-hand side (line 4) and uses Circify’s
ssaAssign function to bind it to the variable; ssaAssign
uses the user-defined ite and assign functions to automat-
ically handle path condition. If-statements (line 6) are also
simple: on line 7, the interpreter evaluates the condition as
a boolean. On line 8, the interpreter uses the guarded and
scoped Circify functions to create an environment guarded
by the condition and with a new lexical scope, then evaluates
the true case in this environment. The false case is similar
(lines 9–10).
Optimizing CirC-IR. Once the designer has built a front-
end for their language, they can take advantage of CirC’s
existing IR optimization passes or write their own. CirC
provides IR traversal and variable tracking tools that make
it easy to build optimizations as modular passes over the
IR. With these tools, we implement standard optimizations
from the compilers and SMT literature, e.g., constant folding,
n-ary operator flattening, and inlining.
We also optimize specifically for proof systems. For ex-

ample, CirC can replace operations over bit-vector arrays
with operations over bit-vectors, via memory-checking tech-
niques [22, 24, 27, 31, 76, 130]. This is essential for proof sys-
tems, which do not support arrays, but some array-eliminating
transformations also help the SMT pipeline (§6).
Lowering to an EQC. To support a new EQC back-end, de-
signers lower CirC-IR to their chosen representation. So far,
CirC can lower to two EQC representations: SMT—which is
trivial, since CirC-IR is based on SMT-LIB—and R1CS.

Prior work [28, 30, 31, 76, 110, 111] embeds booleans and
fixed-width integers in R1CS; we adapt these techniques
to lower booleans and bit-vectors in CirC-IR to R1CS. Our

lowering pass also optimizes the translation of certain com-
pound CirC-IR terms. For example, the bit-vector term “(c
& t) | ((not c) & f)” is better translated as a bitwise
if-then-else than as two ANDs and an OR.

While thus far we’ve only implemented back-ends for SMT
and R1CS, the same process applies for other EQC back-ends;
we discuss further in Section 8.
Adding target-specific optimizations. Designers can also
write optimization passes over their target EQCs. This is
relatively standard: many compilers support target-specific
optimizations [93]. Following prior work on proof system
compilers [15, 76], we implement one simple but powerful
R1CS-specific optimization in CirC: linearity reduction. This
optimization looks for linear constraints, e.g., 0 = 𝑐 +∑

𝑖 𝑐𝑖𝑥𝑖 .
It solves for one of the variables in the constraint, then elim-
inates that variable using substitution.
Discussion. Not every compilation task uses CirC’s entire
pipeline. Compiling C programs to SMT, for example, re-
quires only a front-end and IR optimizations; compiling Cir-
com designs to R1CS requires only R1CS optimizations; com-
piling C to R1CS uses the whole pipeline. Because CirC is
modular, it serves languages and targets at different levels
of abstraction, sharing infrastructure when possible.
Implementation. CirC’s entire source tree comprises≈14000
lines of Haskell. Tests are ≈2000 lines of Haskell (plus tests
in source languages), the infrastructure’s core (Circify, IR
optimizations, utilities) is ≈5700 lines, and extensions are the
rest. We plan to release our implementation as open source.
CirC’s ZoKrates and Circom front-ends (§4) support the

full semantics of their respective languages. CirC supports
a subset of C: floats and doubles in the SMT pipeline,4 and
in both pipelines booleans, fixed-width integers, structures,
stack arrays, and pointers to a statically known variable or
array. CirC does not support recursion, goto, or continue.5

4 Extensibility
As we discussed in the last section, CirC’s main goal is exten-
sibility to new source languages and target EQCs. Its design
made it easy to implement three front-ends—for C, Circom,
and ZoKrates—as well as two back-ends—to SMT and R1CS.
Figure 5 shows the number of lines of code in each extension.
To detail the process of supporting a new front-end lan-

guage, we present the ZoKrates [55, 139] extension as a
case study. Our ZoKrates front-end is an order of magnitude
smaller than the language’s reference compiler (700 lines
of Haskell vs. 24000 lines of Rust, excluding ASTs and pars-
ing), and we built it in substantially less time (one person in
one week vs. 36 contributors over three years). Yet, CirC is

4CirC does not currently lower floating-point arithmetic to R1CS. Although
prior work supports a rudimentary floating-point representation [111],
embedding IEEE 754–compatible floats in R1CS remains an open problem.
5Prior work [43, 130] shows how to support some of these constructs.

6

Unifying Compilers for SNARKs, SMT, and More

Extension Line count

C 1885
Circom 1239
ZoKrates 656
SMT (Z3 API) 407
R1CS 1570

Figure 5. Lines of code in each CirC extension (§4). We
exclude ASTs and parsers from the line count since they are
orthogonal to this work and sometimes come from libraries.

competitive with—and often better than—the ZoKrates refer-
ence compiler (§5). In this section, we describe the ZoKrates
language and the process of writing a CirC front-end for it.
ZoKrates. ZoKrates is a new (2018) language for program-
ming cryptographic proof systems. Developerswrite ZoKrates
programs that check properties (e.g., “account balance is pos-
itive”), and the ZoKrates compiler converts those programs
into equivalent R1CS. ZoKrates is a mature project: 36 con-
tributors have authored over 2400 commits over the past
several years, and, for example, the financial company De-
loitte has used the language to prove statements about tax
obligations [65]. ZoKrates includes both an optimizing com-
piler targeting R1CS and tooling for embedding the resulting
proofs in Ethereum smart contracts.
ZoKrates’s types are fixed-width integers, finite field el-

ements, booleans, field element–indexed arrays, and struc-
tures; the language supports mutable variables, conditional
expressions, and statically bounded loops, but no form of
data-dependent control flow (e.g., no if-statements). Finally,
ZoKrates has a sophisticated module system, including sup-
port for renaming imports (e.g., from-import-as directives).
Parsing and lexing. To support a new language in CirC,
the first step is to build (or acquire) a parser. Since there is no
existing Haskell library for parsing ZoKrates, we implement
our own. We define an AST (145 LOC), generate a span-
tracking lexer using Alex [3] (201 LOC), and generate a span-
tracking parser using Happy [60] (253 LOC). We also write
a file loader which recursively loads imported files (53 LOC),
using existing machinery from our Circom front-end.
Setting up Circify. In order to use Circify for easy com-
pilation to CirC-IR, designers must define a value type, an
assign function, and an ite function (§3). ZoKrates’s prim-
itive types are straightforward: booleans become SMT-LIB
booleans, bounded integers become bit-vectors, and field
elements are directly supported by CirC-IR. Arrays become
lists of values and structures become maps from structure
field names to values. The assign and ite functions have
straightforward recursive definitions, similar to Figure 3.
Compiling ZoKrates to CirC IR. The next step is compil-
ing from the ZoKrates AST, which has stateful semantics,

into CirC-IR. Circify handles the hard parts—e.g., the trans-
formation from stateful to stateless semantics—for us; all we
need is to write an interpreter. To do so, we first write func-
tions that translate basic ZoKrates operations (e.g., binary
operators or array accesses) into IR. We then use Circify-
provided functions to handle control flow and assignment,
as described in Section 3.

The main complexity is handling ZoKrates’s module and
import system: since import directives can rename imported
identifiers, function and structure names depend on the
current module. For example, a structure might be called
S in its defining module and be imported into another mod-
ule as S′. To handle this, the interpreter modifies function
and structure lookups based on the current module (≈50
LOC). The interpreter handles other small complexities, too:
it special-cases built-in functions (≈40 LOC) and attaches
source-code spans to errors (≈20 LOC). Finally, the inter-
preter must embed the ZoKrates main function in CirC-IR,
marking ZoKrates’s “private” inputs as existentially quanti-
fied (§2.1) in the resulting EQC (≈20 LOC). In total, compiling
from ZoKrates AST to CirC-IR requires 656 LOC.
Optimizing. While our compiler is now functional, recall
that, for performance reasons, it should generate as few
constraints as possible (§2.3). To this end, we implement
additional optimizations over IR and in IR-to-R1CS lowering.
One example is constant folding for bit-shifts: while our

constant folding optimization previously folded constants
shifted by constants, it ignored terms (i.e., non-constants)
shifted by constants. We modify our optimization pass to re-
place such shifts with a combination of bit-vector extractions
and concatenations. This is a well-known SMT rewrite [49],
and it also improves the generated R1CS.
While the proximate motivation for this and other im-

provements was the ZoKrates pipeline, we emphasize two
key points: first, each change is modular and is not particu-
lar to one front-end or back-end. Second, each change also
results in an immediate benefit for the C-to-R1CS pipeline—
and each is likely to help future pipelines, too.
Discussion. Because Circify handles the details, our front-
end is much simpler than the ZoKrates reference compiler.
Furthermore, our front-end is more extensible: with Circify,
adding data-dependent control-flow is easy—we did so in
four lines of code, similar to lines 6–10 of Figure 4 (§3). In
contrast, extending the reference compiler in a similar way
appears to require a substantial redesign.

5 Output performance and correctness
Language designers should be able to use CirC to create
correct, efficient circuits. In this section, we evaluate both
performance—does CirC produce circuits that perform well
with respect to a given target—and correctness—can CirC
accurately model input language semantics? We measure
performance by comparing CirC’s proof system pipelines

7

Alex Ozdemir Fraser Brown Riad S. Wahby

Figure 6. Comparison between CirC and Pequin (§5.1). Rel-
ative performance depends on the benchmark, with neither
compiler dominating the other.

to state-of-the-art, dedicated R1CS compilers. We measure
correctness by running CirC’s SMT pipeline on two stan-
dard verification benchmarks. Ultimately, we answer two
questions. Does CirC:

• Emit R1CS outputs competitive in size with those emit-
ted by state-of-the-art proof-system compilers? (§5.1)

• Emit SMT circuits that capture C program semantics
with enough fidelity to find simple bugs? (§5.2)

We find that CirC’s R1CS outputs perform exactly the
same as the Circom compiler’s, roughly the same as Pequin’s,
and slightly better than the ZoKrates compiler’s. We also
find that CirC’s SMT formulas are correct on two benchmark
suites from the sv-comp [25] verifier competition.

5.1 Performance
We consider three compilation pipelines when evaluating
the performance of CirC’s output: C-to-R1CS, ZoKrates-to-
R1CS, and Circom-to-R1CS. We find that CirC is competitive
with the state of the art in all cases, and slightly outperforms
the ZoKrates compiler; our metric is the number of rank-1
constraints, which is standard (§2.3; [76, 100, 130]).
C-to-R1CS. Compiling C to R1CS stresses CirC’s handling
of boolean, bit-vector, and array (memory) constraints. On
this task, we evaluate CirC against Pequin [103], a state-
of-the-art compiler from C to R1CS that builds on a long
line of work [31, 110, 111, 130]. We use 6 benchmarks from
the Pequin software distribution covering a representative
sample of control-flow patterns and primitive operations.
Pequin assumes that arithmetic never overflows; we use a
modified version of CirC’s R1CS machinery that matches
Pequin’s semantics. For each benchmark, we report the ratio
between the number of constraints that Pequin and CirC
produce, which is higher when CirC performs better.

Figure 6 shows the results: the compilers perform compara-
bly. On simple arithmetic (mm5: matrix multiplication), they

Figure 7. Comparison between CirC and ZoKrates’s refer-
ence compiler (§5.1). CirC generally produces better output.

produce an identical number of constraints. On a binary-
search implementation of integer square-root (u32sqrt),
CirC has a slight edge, probably because of aggressive con-
stant folding. On an addition- and bitmanipulation–intensive
hash (sha1), however, CirC performs slightly worse, likely
because of missed inlining opportunities. CirC uses 11.9x
fewer constraints for small arrays (ptrs-8) because CirC
optimizes its memory representation for memory size and
access pattern (as in xJsnark [76]), whereas Pequin uses a
single memory representation that is asymptotically cheap
yet concretely costly for small arrays.

The exception is u32log2-array, which computes integer
logarithms by decomposing the input into an (integer-typed)
array of bits, then scanning that array. CirC does not yet
have an optimization pass for integer-typed arrays contain-
ing only boolean values, so it treats the intermediate array
as if it contains integers rather than bits, yielding much
worse performance than Pequin. (This is a relatively simple
optimization; adding it is future work.) When we instead
evaluate a version of this function written in a more standard
way (u32log2; Fig. 15), CirC outperforms Pequin slightly.

ZoKrates-to-R1CS. We evaluate CirC’s ZoKrates-to-R1CS
pipeline relative to the ZoKrates compiler (v0.6.1). This tests
howCirC performswhen the source language includes R1CS-
friendly features like field elements and control-flow limi-
tations. Our benchmarks cover all major modules from the
ZoKrates standard library. The modules (and benchmarks)
are: utilities (mux3, field-to-bools, u32s-to-bools), hashes
(mimc7, pedersen, sha2round), elliptic curve operations (ec-
scalar-mult, ec-add), and signature verification (eddsa).
As above, we report the ratio of constraint counts.

Figure 7 shows the results: CirC slightly outperforms the
reference compiler. On straight-line computations with sim-
ple operations (mimc7, fields-to-bools, u32s-to-bools),

8

Unifying Compilers for SNARKs, SMT, and More

the compilers perform similarly. When there are opportu-
nities for common sub-expression elimination (ec-scalar-
mult, ec-add), or when CirC can optimize conditional ex-
pressions (pedersen, mux3signed), CirC performs better. In
one case, sha2round, CirC performs very slightly worse,
likely due to missed inlining opportunities.
Circom-To-R1CS. Circom [15] is effectively a hardware de-
scription language for R1CS. We support it in CirC by writ-
ing a front-end which targets R1CS directly. Thus, compiling
Circom to R1CS is a test of CirC’s R1CS-specific optimiza-
tions (§3). We evaluate CirC against the Circom compiler
(v0.0.30) on a representative subset of Circom’s standard
library, including: utilities (e.g., binary arithmetic, multiplex-
ers) hashes, elliptic curve operations, and signatures.

The compilers perform identically on all benchmarks, re-
flecting the fact that Circom programs explicitly describe
constraints, and the compilers apply identical optimizations.

5.2 Correctness
To evaluate the correctness of CirC’s output, we run it on
a subset of the tests from the Software Verification Com-
petition (sv-comp). This annual competition includes many
benchmarks that stress the speed and accuracy of software
verifiers. By extending CirC’s C front-end to support sv-
comp conventions for existential inputs, assertions, and as-
sumptions, we can run CirC on sv-comp benchmarks.
We run CirC on two benchmark categories: signedint-

egeroverflow-regression, which tests the precision with
which overflow is modeled, and bitvector-loops, which
tests the precision with which conditional branches, stack
arrays, and basic pointers-to-stack-arrays are modeled. We
choose these categories because they exercise the majority
of CirC’s front-end support for C semantics (§3). CirC is fully
correct in both categories.
We do not compare CirC’s performance (e.g., the SMT

solver’s execution time) on sv-comp benchmarks relative
to other systems. While CirC supports simple IR-level opti-
mization passes, it does not currently include machinery for
sophisticated static analysis (e.g., SMACK’s static analysis
for its memory representation [106]). Moreover, though CirC
handles the “compilation to SMT” piece of a verifier, it is of-
ten not comparable to the whole verifier (e.g., CirC does not
currently support a front-end forking phase like KLEE [39]).
We discuss combining CirC with existing verifiers and high-
performance verification strategies in Section 8.

6 Common performance characteristics
This section shows how SMT solvers and proof systems have
similar performance characteristics, which means that op-
timizations for one pipeline (e.g., C-to-R1CS) can improve
performance in another pipeline (e.g., C-to-SMT). This fact is
not obvious at first glance. Proof system performancemetrics
(i.e., prover runtime) are almost entirely determined by the

number of rank-1 constraints in the input circuit, while SMT
solver performance metrics (i.e., solver runtime) are much
more difficult to understand—and can sometimes be surpris-
ing [17, 41]. Nevertheless, CirC’s optimization passes demon-
strate performance similarities between both targets. In this
section, we show that CirC’s SMT-inspired constant-folding
helps proof systems, too, (§6.1), and that CirC’s oblivious
array elimination pass (§6.2) and granular array modeling
(§6.3) help both solver and proof system back-ends.

6.1 Constant folding
SMT term rewriting—replacing one SMT term with an equiv-
alent one to assist in SMT solving—is an old technique [6]
used in all major solvers [13, 35, 36, 53, 54, 97]. Constant fold-
ing refers to a simple but important class of rewrites such as
replacing 4 + 5 with 9 or replacing the bit-vector term 𝑥«1
with a combination of extractions and concatenations.

Constant folding helps the proof system back-end, too:
the following experiment shows that it reduces the number
of output constraints. We write a small (insecure!) hash func-
tion, 𝐻 , which digests 𝑁 32-bit blocks into a 32-bit result.6
We wrap the function with an assertion that the output ends
in a zero byte, encoding the predicate ∃𝑥 .𝐻 (𝑥) [0..8] = 0.
We use CirC to translate this predicate to R1CS and SMT,
varying 𝑁 and turning constant folding on and off. For R1CS,
we measure the number of constraints; for SMT we measure
the time that the SMT solver takes to find a satisfying 𝑥 .

Figure 8 shows the results: constant folding reduces R1CS
constraint count and SMT solver runtime. The benefit for
R1CS is substantial: constant folding reduces constraint count
by a factor of more than 16. The effect is smaller for SMT,
likely because the SMT solver already does constant folding.7

6.2 Oblivious array elimination
In the spirit of oblivious Turing machines, whose head move-
ments are input-independent, we use the term oblivious array
to refer to an array that is accessed only at input-independent
indices. CirC includes an optimization pass that identifies
such arrays and replaces them with a sequence of distinct
terms which are accessed independently. This optimization
is essentially a strengthening of well-known scalar replace-
ment optimizations: rather than just replacing a few array
references with scalars, the entire array is eliminated.
We conduct an experiment showing that both targets re-

spond similarly to oblivious array elimination. We write a C
program that (1) declares an array of𝑁 ints (2) fills the array
with non-deterministic inputs (3) sums all array elements
and (4) asserts that sum to be non-zero. Since the array is
only accessed at input-independent indices, the oblivious
6The hash is loosely inspired by SHA1, using bit rotations, sums, and XORs.
7Because the SMT solver performs a search, while the R1CS simply encodes
the predicate, solver time scales exponentially with input length, while
R1CS constraints scale linearly. This difference is orthogonal to the benefit
of constant folding to both performance metrics.

9

Alex Ozdemir Fraser Brown Riad S. Wahby

Figure 8. Solver and proof system performance when op-
erating on the predicate ∃𝑥 .𝐻 (𝑥) [0..8] = 0 (§6.1). Constant
folding improves performance for both back-ends.

Figure 9. Solver and proof system performance are both
improved by oblivious array elimination (§6.2).

array elimination pass replaces it with distinct terms. We
use CirC to find assertion-violating inputs using an SMT
solver, and measure the solver’s runtime. We also use CirC
to compile the program (and assertion) to R1CS, and count
the number of constraints. Figure 9 shows the results with
and without the optimization, with varied 𝑁 .8 Both targets
perform better when array elimination is enabled.

6.3 Array granularity
Compiling programs that use random-access storage (hence-
forth, arrays) requires the compiler to model those arrays.
CirC uses a fine-grained model: each source array is repre-
sented by its own SMT array. An alternative, coarse-grained
model would use a single large “stack” array containing all
source-level arrays. While the coarse-grained approach has
some benefits [34], it is generally more expensive for SMT

8When array elimination is disabled, the R1CS target falls back to its stan-
dard array implementation, which was briefly discussed in Section 5.1.

void perm(int i) {
__VERIFIER_assume(i >= 0 && i < 4);
int perm0[4] = {2, 0, 1, 3};
i = perm0[i];
int perm1[4] = {0, 1, 3, 2};
i = perm1[i];
__VERIFIER_assert(i != 0);

}

Figure 10. Array granularity benchmark: this C program
applies two permutations, which are implemented as arrays,
to its input (§6.3).

solvers to reason about [37, 132]. We now present an experi-
ment demonstrating that the coarse-grained approach is also
much more expensive for proof systems.

Our benchmark in this experiment is a function that takes
as input an integer between 0 and 𝑤 − 1, and applies a se-
quence of 𝑛 permutations of {0, 1, . . . ,𝑤 − 1} to it. Each
permutation is implemented as an array, so applying the
permutation is just an array index operation (the program
assumes that the input is in bounds). To evaluate the effect
of array granularity, we apply a source-level transformation
that fuses separate permutations into shared arrays, which
simulates coarser- or finer-grained arrays (e.g., fusing all
arrays simulates the “stack” approach discussed above).
Figure 10 shows our benchmark program for the case

𝑛 = 2,𝑤 = 4; the program uses sv-comp style assumptions
and assertions. The final line of the program asserts that the
output 𝑖 is not 0, which we use to measure performance as
follows. For the SMT back-end, we ask the solver to find
an assertion violation and measure how long it takes to
produce a result (a violation is guaranteed to exist, because
permutations are invertible). For the proof back-end, we
measure the number of R1CS constraints to construct a proof
that the input violates the assertion about the output.
Figure 11 shows the results for 𝑛 = 6 and 𝑤 ∈ {2, 4, 8},

varying the percentage of permutations fused into a single ar-
ray. The results show that fusing permutations together—i.e.,
coarsening granularity—significantly reduces performance
for both the SMT and proof back-ends.

7 Crossover applications and techniques
CirC’s different targets serve substantially different purposes,
opening the door to applications that combine targets, and to
techniques that use one target to help another. In this section,
we discuss two such cross-overs: zero-knowledge detection
and proof of bugs, and SMT-driven optimization of R1CS
size. CirC’s common infrastructure makes cross-overs easy:
in ≈100 LOC, we create the first pipeline for automatically
finding bugs and proving their existence in zero knowledge
(§7.1); in sixteen LOC, we build the first tool to use SMT
queries to optimize R1CS circuits (§7.2).

10

Unifying Compilers for SNARKs, SMT, and More

Figure 11. Effect of array granularity on solver and proof
system performance (§6.3). Increasing x-axis corresponds
to increasingly coarse-grained array representations, which
increase costs for both the SMT and proof back-ends.

7.1 Automatically finding and proving bugs
Over the past decade, many companies have started bug
bounty programs. These programs offer cash rewards in ex-
change for legitimate bug reports, incentivizing researchers
to report—rather than exploit—zero-day vulnerabilities. Al-
though bounty programs have been successful in practice [85],
the literature presents lingering concerns about everything
from economic incentives to fairness [32, 33, 78, 79]. For ex-
ample, once a reporter discloses a bug, they lose their bargain-
ing power: if the vendor doesn’t pay the promised bounty,
the reporter has little (or slow) recourse (e.g., [4, 124]).
One proposal to address some of these problems is to

use zero-knowledge proofs (§2.3) to report bugs without
revealing their details [104, 121]; a recent DARPA program
solicited solutions to precisely this problem [12]. This could
work roughly as follows: first, a company offering a bounty
indicates which program properties they expect to hold, e.g.,
by embedding assertions in the code. Then, when security
researchers find a bug, they construct a zero-knowledge
proof that there exists an execution path on which some
assertion is violated, and submit the proof to the vendor.
Upon verifying the proof, the company is convinced that
the researchers have found a bug, and the parties negotiate
details and payment. This requires additional machinery
(e.g., smart contracts); we discuss in Section 8.

While prior work [32, 33, 121] constructs manual proof-
of-bug pipelines, none of them can automatically detect bugs
and then automatically prove their existence in zero knowl-
edge: existing compilers to R1CS have no way of automati-
cally detecting bugs, and existing SMT-based verifiers have
no way of generating R1CS. In fact, even proving the pres-
ence of many types of bugs is beyond the reach of existing
R1CS compilers like Pequin [103] (§5.1), because they model
language semantics too imprecisely. In contrast, CirC makes
both bug proving and bug finding easy: CirC can model

#define mul_add_c2(a,b,c0,c1,c2) { \
BN_ULONG ta=(a),tb=(b),t0; \
BN_UMULT_LOHI(t0,t1,ta,tb); \
t2 = t1+t1; c2 += (t2<t1)?1:0; \
t1 = t0+t0; t2 += (t1<t0)?1:0; \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; }

Figure 12. Incorrect carry handling in OpenSSL, responsible
for CVE-2014-3570 (§7.1). Figure 13 explains the issue.

a b c2 c1 c0

×
t1(hi) ∥ t0 (lo)

×2

+1?

+1?

+1?
overflow?

×2
of.?

+
overflow?

+

+1? over
flow

?

c2 c1 c0

Figure 13. Dataflow for the code in Figure 12. Conditional
increments handle overflow. If the operation circled in red
overflows, c2 should be (but is not) incremented again.

#include "stdint.h"
int wrapper(uint32_t a, uint32_t b, uint32_t c2,

uint32_t c1, uint32_t c0) {
uint32_t cc2 = c2, cc1 = c1, cc0 = c0;
mul_add_c2(a, b, c2, c1, c0);
"SMT_assert: (= (concat c2 c1 c0) (+ (concat cc2 cc1 cc0)

(* [96]2 (uext 64 a) (uext 64 b))";↩→
return 0;

}

Figure 14. Function wrapper for mul_add_c2with assertion
of correct behavior (§7.1). CirC’s assertion language is more
verbose; we simplify for brevity. The size of BN_ULONG de-
pends on architecture; we set it to 32 bits to make the SMT
solver’s task easier. Note that the bug is width-independent.

language semantics precisely (§5.2) and can embed those
semantics into both SMT (to find bugs) and R1CS (to prove
bugs’ existence).
As a proof of concept, we augment CirC’s C front-end

with support for SMT assertions over C integers (≈60 LOC)
and some glue code (≈40 LOC). This lets CirC automatically
(1) detect and (2) write a zero-knowledge proof for the bug
underlying CVE-2014-3570 [50, 99] in OpenSSL. The bug is
in the macro mul_add_c2 (Fig. 12), which is intended to com-
pute c = c + 2*a*b, where c is a multi-precision integer

11

Alex Ozdemir Fraser Brown Riad S. Wahby

#include "stdint.h"
uint32_t u32log2(uint32_t x) {

uint32_t n_bits = 0;
while (x != 0) {

n_bits++;
x >>= 1u;

}
return n_bits - 1;

}

Figure 15. . This function computes ⌊log2 x⌋. The SMT
solver determines how many iterations to unroll (§7.2).

comprising three words, c0, c1, and c2. Figure 13 illustrates
mul_add_c2’s overflow handling bug: the conditional incre-
ment enclosed in the dotted red circle can cause unsound
integer overflow. After wrapping mul_add_c2 in a function
that expresses the intended behavior as an assertion (Fig. 14),
CirC automatically finds inputs that violate the assertion,
generates R1CS constraints for a zero-knowledge proof that
the assertion can be violated, and generates the proof.

7.2 Optimizing R1CS using SMT
SMT-guided optimization is an old idea, and SMT solvers
have optimized everything from code [108] to smart con-
tracts [2] to tensorflow graphs [72]. CirC makes it easy to
apply SMT-guided optimizations to R1CS, too.
To illustrate this, we use one critical compilation task—

loop unrolling—as a case study. To embed a loop like the one
in Figure 15 in an EQC, the compiler must unroll it some
number of times 𝑁 , and in some cases emit an assertion
that the bound is respected (§2). If 𝑁 is too small, the re-
sulting circuit won’t handle some valid executions; if 𝑁 is
too large, the extra unrollings increase circuit size—and thus
solving or proving time. Precisely determining 𝑁 guarantees
completeness while minimizing circuit size.

For this case study, we extend CirC to use an SMT solver
to determine the maximum number of iterations of a loop.
Mechanically, we add nine lines of code to CirC and add a
function to Circify that asks the SMT solver whether the
current path condition is feasible; we add seven lines to the C
front-end to stop unrolling loops in the case of an infeasible
path, plus a few lines to CirC’s commandline interface to
control this feature. Obviously this approach cannot work
for all programs, but it is quite effective for some: for the
u32log2 function of Figure 15, CirC and the SMT solver
determine that 𝑁 = 32 in well under one second.
In future work we hope to improve this technique, e.g.,

by using the SMT solver’s incremental mode, and to use the
SMT solver for more complex R1CS optimizations.

8 Discussion, future work, and conclusion
Targeting other applications. CirC has applications be-
yond SMT solvers and proof systems. As one example, CirC

could support multi-party computation (MPC), which en-
ables mutually distrusting parties to collaboratively evaluate
a function while revealing only the result [87]. MPC frame-
works require the function to be expressed as a boolean [134],
or arithmetic circuit [16, 20, 63], so extending CirC for MPC
applications would require adding support for these. One
potential issue is that MPC protocols do not support cir-
cuits with existentially quantified wires. This is likely not
a problem, however, because in most (and maybe all) cases,
such variables can be transformed either into private inputs
supplied by one party, or into values computed from the
private inputs of multiple parties. This view is implicit, for
example, in the seminal work of Ishai et al. on constructing
zero-knowledge proofs via MPC protocols [70].

As another example, CirC could support optimization prob-
lems (e.g., integer linear programming, or ILP), which maxi-
mize an objective function subject to a set of constraints [58].
Augmenting CirC with a notion of objective functions and
adding a back-end for an appropriate constraint formatwould
enable compiling high-level languages to optimization prob-
lems. One intriguing application of an optimization back-end
is in service of the compilation process itself, i.e., adding op-
timization passes very roughly analogous to SMT-guided
optimization (§7.2). Exploring this is future work.
Program analysis infrastructure. CirC supports IR-level
optimizations, but sophisticated static analysis infrastructure—
at both the language and IR level—would improve most com-
pilation pipelines. For example, CirC could use a range an-
alysis to shrink IR-level bit-vectors, which would make their
R1CS embedding more efficient. As another example, design-
ers could build analyses into their language front-end, e.g.,
to select the cryptographic protocol that gives the best effi-
ciency on a particular program [38, 68, 127, 129]. Designing
new analyses of this kind is also future work.
Combining CirC with existing verifiers. It might also be
interesting to combine CirC with modern verification ma-
chinery. For example, CirC could benefit from SMACK’s [106]
front-end–based optimizations, while Boogie front-ends [11]
could benefit from targeting cryptographic applications.
Challenges for proof-based bug reporting. While the idea
of bug bounties using zero-knowledge proofs has seen recent
interest [12, 104, 121], proofs are not a drop-in replacement
for existing bug-reporting mechanisms. First proof-based
bounties require extra machinery to enforce fairness (e.g.,
forcing the reporter to reveal bug details before payment;
this is not a problem today because reporting the bug natu-
rally reveals the details). Existing work proposes automating
this using smart contracts [32, 33, 121]; cryptographic fair
exchange protocols may offer another solution [101].
Second, proof-based bounties require the definition of a

bug to be precise enough that, once compiled to an EQC, any
satisfying assignment encodes a real bug. This is a departure
because, in traditional bounties, reporters and triage teams

12

Unifying Compilers for SNARKs, SMT, and More

often interact, both to determine whether a report represents
a real bug and to subsequently reproduce and fix it.
Third, existing bounty programs often support massive

software artifacts (e.g., Mozilla Firefox, which comprises
21 million LOC [1, 92]). Compiling such a large program
would yield an immense EQC. Meanwhile, proof system
costs grow with EQC size (§2.3)—so a naive approach (i.e.,
compiling the entire program to prove one bug) is far too
costly to be feasible for today’s proof systems [130, §5]. Better
proof systems and new approaches seem necessary.
Conclusion. In this work, we show how CirC makes it easy
to compile new source languages, support new EQC targets,
and write optimizations that apply to multiple pipelines:
all of these can be done with very little code, and all yield
high-quality compiler output. Moreover, with CirC it’s easy
to combine different EQC compilation pipelines to support
novel applications., e.g., automatically finding bugs and prov-
ing their existence. In short: shared infrastructure for con-
straint compilers is both possible and useful.

References
[1] Bastien Abadie and Sylvestre Ledru. Engineering code quality in the

Firefox browser: a look at our tools and challenges. https://hacks.
mozilla.org/2020/04/code-quality-tools-at-mozilla/.

[2] Elvira Albert, Pablo Gordillo, Albert Rubio, and Maria A Schett. 2020.
Synthesis of Super-Optimized Smart Contracts Using Max-SMT. In
CAV.

[3] Alex: A lexical analyser generator for Haskell. https://www.haskell.
org/alex/.

[4] Ionut Arghire. Researchers Claim Wickr Patched Flaws but Didn’t
Pay Rewards. https://www.securityweek.com/researchers-claim-
wickr-patched-flaws-didnt-pay-rewards.

[5] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A
Modern Approach. Cambridge University Press, Cambridge, UK.

[6] Franz Baader and Tobias Nipkow. 1999. Term rewriting and all that.
Cambridge University Press, Cambridge, UK.

[7] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. 2018. A survey of symbolic execution
techniques. Comput. Surveys 51, 3 (2018), 1–39.

[8] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and
Jakob Lichtenberg. 2010. The static driver verifier research platform.
In CAV.

[9] Thomas Ball, Vladimir Levin, and Sriram K Rajamani. 2011. A decade
of software model checking with SLAM. Commun. ACM 54, 7 (July
2011), 68–76.

[10] Marek Baranowski, Shaobo He, and Zvonimir Rakamarić. 2018. Veri-
fying Rust programs with SMACK. In ATVA.

[11] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K Rustan M Leino. 2005. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO.

[12] Joshua Baron. Securing Information for Encrypted Verification
and Evaluation. https://web.archive.org/web/20200221151433/https:
//www.darpa.mil/attachments/SIEVEProposersDaySlidesv4.pdf.
DARPA SIEVE Program Proposers Day Slides.

[13] Clark Barrett, Christopher L Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare
Tinelli. 2011. CVC4. In CAV.

[14] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The SMT-LIB
standard: Version 2.0. In SMT.

[15] Jordi Baylina. Circom. https://github.com/iden3/circom.

[16] Donald Beaver. 1991. Efficient multiparty protocols using circuit
randomization. In CRYPTO.

[17] Nils Becker, Peter Müller, and Alexander J Summers. 2019. The axiom
profiler: understanding and debugging SMT quantifier instantiations.
In TACAS.

[18] Bellman Circuit Library, Community Edition. https://github.com/
matter-labs/bellman.

[19] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP:
a system for secure multi-party computation. In ACM CCS.

[20] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Com-
pleteness Theorems for Non-Cryptographic Fault-Tolerant Dis-
tributed Computation (Extended Abstract). In STOC.

[21] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. 2014. Zerocash:
Decentralized Anonymous Payments from Bitcoin. In IEEE S&P.

[22] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. 2013. SNARKs for C: Verifying Program Executions
Succinctly and in Zero Knowledge. In CRYPTO.

[23] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. 2014. Scalable
Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO.

[24] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
2014. Succinct Non-Interactive Zero Knowledge for a von Neumann
Architecture. In USENIX Security.

[25] Dirk Beyer. 2019. Automatic verification of C and Java programs:
SV-COMP 2019. In TACAS.

[26] Nikolaj Bjørner and Leonardo de Moura. 2014. Applications of SMT
solvers to program verification. In Notes for the Summer School on
Formal Techniques.

[27] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan,
and Moni Naor. 1991. Checking the Correctness of Memories. In
FOCS.

[28] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and
Mary Maller. 2018. Arya: Nearly linear-time zero-knowledge proofs
for correct program execution. In ASIACRYPT.

[29] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush
Mishra, and HowardWu. 2020. ZEXE: Enabling Decentralized Private
Computation. In IEEE S&P.

[30] Benjamin Braun. Compiling computations to constraints for verified
computation. UT Austin Honors Thesis HR-12-10.

[31] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, An-
drew J. Blumberg, andMichaelWalfish. 2013. Verifying computations
with state. In SOSP. Extended version: http://eprint.iacr.org/2013/356.

[32] Lorenz Breidenbach, Philip Daian, Florian Tramèr, and Ari Juels.
2018. Enter the Hydra: Towards principled bug bounties and exploit-
resistant smart contracts. In USENIX Security.

[33] Lorenz Breidenbach, Philip Daian, Florian Tramèr, and Ari Juels. 2019.
The Hydra framework for principled, automated bug bounties. IEEE
Security & Privacy Magazine 17, 4 (July 2019), 53–61.

[34] Fraser Brown, Deian Stefan, and Dawson Engler. 2020. Sys: A
static/symbolic tool for finding good bugs in good (browser) code. In
USENIX Security.

[35] Robert Brummayer and Armin Biere. 2009. Boolector: An efficient
SMT solver for bit-vectors and arrays. In TACAS.

[36] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. 2008. The MathSAT 4 SMT solver.
In CAV.

[37] Rodney M Burstall. 1972. Some techniques for proving correctness of
programs which alter data structures. Machine intelligence 7, 23-50
(1972), 3.

[38] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kret-
zmer, and Thomas Schneider. 2018. HyCC: Compilation of Hybrid
Protocols for Practical Secure Computation. In ACM CCS.

13

https://hacks.mozilla.org/2020/04/code-quality-tools-at-mozilla/
https://hacks.mozilla.org/2020/04/code-quality-tools-at-mozilla/
https://www.haskell.org/alex/
https://www.haskell.org/alex/
https://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
https://www.securityweek.com/researchers-claim-wickr-patched-flaws-didnt-pay-rewards
https://web.archive.org/web/20200221151433/https://www.darpa.mil/attachments/SIEVEProposersDaySlidesv4.pdf
https://web.archive.org/web/20200221151433/https://www.darpa.mil/attachments/SIEVEProposersDaySlidesv4.pdf
https://github.com/iden3/circom
https://github.com/matter-labs/bellman
https://github.com/matter-labs/bellman
http://eprint.iacr.org/2013/356

Alex Ozdemir Fraser Brown Riad S. Wahby

[39] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
unassisted and automatic generation of high-coverage tests for com-
plex systems programs. In OSDI.

[40] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for soft-
ware testing: Three decades later. Commun. ACM 56, 2 (2013), 82–90.

[41] Mu Chang. Performance issue on QF_NIRA formula. CVC4 Issue
5354. https://github.com/CVC4/CVC4/issues/5354.

[42] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: A platform for in-vivo multi-path analysis of software systems.
In ASPLOS.

[43] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for
Checking ANSI-C Programs. In TACAS.

[44] Ernie Cohen, Michał Moskal, Stephan Tobies, and Wolfram Schulte.
2009. A precise yet efficient memory model for C. In SSV.

[45] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. 2011. SMT-
based bounded model checking for embedded ANSI-C software. IEEE
Trans. Software Engineering 38, 4 (July 2011), 957–974.

[46] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel,
and Marek Trtik. 2018. JBMC: A bounded model checking tool for
verifying Java bytecode. In CAV.

[47] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Ben-
jamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. 2015.
Geppetto: Versatile Verifiable Computation. In IEEE S&P.

[48] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. 2012. Frama-c. In SEFM.

[49] CVC4, ShlByConst Rewrite Rule. https://github.com/CVC4/CVC4/
blob/d7f92f70bb8ff221dc3d7cb086e5e2e237dadc67/src/theory/bv/
theory_bv_rewrite_rules_simplification.h#L312.

[50] CVE-2014-3570. https://nvd.nist.gov/vuln/detail/CVE-2014-3570.
[51] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan

Parno. 2013. Pinocchio Coin: Building Zerocoin from a Succinct
Pairing-based Proof System. In PetSHOP.

[52] Luka Daoud, Dawid Zydek, and Henry Selvaraj. 2013. A Survey of
High Level Synthesis Languages, Tools, and Compilers for Reconfig-
urable High Performance Computing. In ICSS.

[53] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In TACAS.

[54] Bruno Dutertre. 2014. Yices 2.2. In CAV.
[55] Jacob Eberhardt and Stefan Tai. 2018. ZoKrates - Scalable Privacy-

Preserving Off-Chain Computations. In IEEE Blockchain.
[56] L Erkök. SBV: SMT based verification in Haskell. https://hackage.

haskell.org/package/sbv.
[57] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—where

programs meet provers. In ESOP.
[58] Robert Fourer, David M. Gay, and Brian W. Kernighan. 2002. AMPL:

A Modeling Language for Mathematical Programming (2nd ed.). Cen-
gage Learning, Boston, MA, USA.

[59] Matthew Fredrikson and Benjamin Livshits. 2014. ZØ: An Optimizing
Distributing Zero-Knowledge Compiler. In USENIX Security.

[60] Andy Gill and Simon Marlow. Happy: the parser generator for
Haskell. https://www.haskell.org/happy/doc/html/.

[61] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART:
Directed automated random testing. In PLDI.

[62] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE:
Whitebox fuzzing for security testing. Queue 10, 1 (2012), 20–27.

[63] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play
any Mental Game or A Completeness Theorem for Protocols with
Honest Majority. In STOC.

[64] Arie Gurfinkel and Jorge A Navas. 2017. A context-sensitive memory
model for verification of C/C++ programs. In SAS.

[65] Kobi Gurkan. Zero-Knowledge taxation on Ethereum. https:
//medium.com/qed-it/zero-knowledge-qed-it-sdk-b20a6526e0a6.

[66] Ákos Hajdu and Dejan Jovanović. 2019. solc-verify: A modular
verifier for Solidity smart contracts. In VSTTE.

[67] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W.
Liao, E. Bugnion, and M. S. Lam. 1996. Maximizing multiprocessor
performance with the SUIF compiler. IEEE Computer 29, 12 (1996),
84–89.

[68] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and ImmoWehrenberg. 2010. TASTY: tool for automating secure
two-party computations. In ACM CCS.

[69] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut
Veith. 2012. Secure two-party computations in ANSI C. In ACM CCS.

[70] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007.
Zero-knowledge from secure multiparty computation. In STOC.

[71] Bart Jacobs and Frank Piessens. 2008. The VeriFast program verifier.
Technical Report CW-520. Dept. of Computer Science, KU Leuven.

[72] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. 2019. TASO: optimizing deep learning
computation with automatic generation of graph substitutions. In
SOSP.

[73] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2015. Frama-C: A software analysis perspec-
tive. Formal Aspects of Computing 27, 3 (Jan. 2015), 573–609.

[74] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013.
Synthesis modulo recursive functions. In OOPSLA.

[75] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. 2012. Con-
straints as Control. In POPL.

[76] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. 2018.
xJsnark: A Framework for Efficient Verifiable Computation. In IEEE
S&P.

[77] Daniel Kroening and Michael Tautschnig. 2014. CBMC–C bounded
model checker. In TACAS.

[78] Aron Laszka, Mingyi Zhao, and Jens Grossklags. 2016. Banishing
misaligned incentives for validating reports in bug-bounty platforms.
In ESORICS.

[79] Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags.
2018. The rules of engagement for bug bounty programs. In Financial
Cryptography.

[80] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis and transformation. In CGO.

[81] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. https://arxiv.org/abs/2002.11054.

[82] K. Rustan M. Leino. This is Boogie 2. https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/12/krml178.pdf.

[83] K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for
functional correctness. In LPAR.

[84] K. Rustan M. Leino, Peter Müller, and Jan Smans. 2009. Verification
of concurrent programs with Chalice. In FOSAD.

[85] Daphne Leprince-Ringuet. Google’s bug bounty pro-
gram just had a record-breaking year of payouts. https:
//www.zdnet.com/article/googles-bug-bounty-program-just-
had-a-record-breaking-year-of-payouts.

[86] libsnark. https://github.com/scipr-lab/libsnark.
[87] Yehuda Lindell. Secure Multiparty Computation (MPC). https://

eprint.iacr.org/2020/300. To appear in Commun. ACM.
[88] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John

Regehr. 2015. Provably correct peephole optimizations with alive. In
PLDI.

[89] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004.
Fairplay - Secure Two-Party Computation System. In USENIX Secu-
rity.

[90] David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-
FP: Automated verification of floating point based peephole optimiza-
tions in LLVM. In SAS.

14

https://github.com/CVC4/CVC4/issues/5354
https://github.com/CVC4/CVC4/blob/d7f92f70bb8ff221dc3d7cb086e5e2e237dadc67/src/theory/bv/theory_bv_rewrite_rules_simplification.h#L312
https://github.com/CVC4/CVC4/blob/d7f92f70bb8ff221dc3d7cb086e5e2e237dadc67/src/theory/bv/theory_bv_rewrite_rules_simplification.h#L312
https://github.com/CVC4/CVC4/blob/d7f92f70bb8ff221dc3d7cb086e5e2e237dadc67/src/theory/bv/theory_bv_rewrite_rules_simplification.h#L312
https://nvd.nist.gov/vuln/detail/CVE-2014-3570
https://hackage.haskell.org/package/sbv
https://hackage.haskell.org/package/sbv
https://www.haskell.org/happy/doc/html/
https://medium.com/qed-it/zero-knowledge-qed-it-sdk-b20a6526e0a6
https://medium.com/qed-it/zero-knowledge-qed-it-sdk-b20a6526e0a6
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://www.zdnet.com/article/googles-bug-bounty-program-just-had-a-record-breaking-year-of-payouts
https://www.zdnet.com/article/googles-bug-bounty-program-just-had-a-record-breaking-year-of-payouts
https://www.zdnet.com/article/googles-bug-bounty-program-just-had-a-record-breaking-year-of-payouts
https://github.com/scipr-lab/libsnark
https://eprint.iacr.org/2020/300
https://eprint.iacr.org/2020/300

Unifying Compilers for SNARKs, SMT, and More

[91] L Moura. Z3Py guide: Z3 API in Python. https://ericpony.github.io/
z3py-tutorial/guide-examples.htm.

[92] Mozilla. Security Bug Bounty Program. https://www.mozilla.org/en-
US/security/bug-bounty/.

[93] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman.
2016. Verified peephole optimizations for CompCert. In PLDI.

[94] Peter Müller, Malte Schwerhoff, and Alexander J Summers. 2016.
Viper: A verification infrastructure for permission-based reasoning.
In International Conference on Verification, Model Checking, and Ab-
stract Interpretation.

[95] Zeinab Nehai and François Bobot. Deductive proof of ethereum
smart contracts using Why3. arXiv:1904.11281.

[96] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, andXiWang. 2019. Scaling symbolic evaluation for automated
verification of systems code with Serval. In SOSP.

[97] Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-COMP 2020.
arXiv:2006.01621.

[98] Andres Nötzli and Fraser Brown. 2016. LifeJacket: verifying precise
floating-point optimizations in LLVM. In SOAP.

[99] OpenSSL’s squaring bug, and opportunistic formal verifica-
tion. http://kryptoslogic.blogspot.com/2015/01/openssls-squaring-
bug-and-opportunistic.html.

[100] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. 2020.
Scaling verifiable computation using efficient set accumulators. In
USENIX Security.

[101] Henning Pagnia, Holger Vogt, and Felix C. Gärtner. 2003. Fair ex-
change. Comput. J. 46, 1 (Jan. 2003), 55–75.

[102] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013.
Pinocchio: Nearly Practical Verifiable Computation. In IEEE S&P.

[103] Pequin: A system for verifying outsourced computations and apply-
ing SNARKs. https://github.com/pepper-project/pequin.

[104] Ben Perez. Reinventing Vulnerability Disclosure using Zero-
knowledge Proofs. https://blog.trailofbits.com/2020/05/21/
reinventing-vulnerability-disclosure-using-zero-knowledge-
proofs/.

[105] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution
with SymCC: Don’t interpret, compile!. In USENIX Security.

[106] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling
source language details from verifier implementations. In CAV.

[107] David A Ramos and Dawson Engler. 2015. Under-constrained sym-
bolic execution: Correctness checking for real code. In USENIX Secu-
rity.

[108] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen
Ketema, Gratian Lup, Jubi Taneja, and John Regehr. Souper: A syn-
thesizing superoptimizer. arXiv:1711.04422.

[109] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic
unit testing engine for C. ESEC-FSE.

[110] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan
Parno, and Michael Walfish. 2013. Resolving the conflict between
generality and plausibility in verified computation. In EuroSys.

[111] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, An-
drew J. Blumberg, and Michael Walfish. 2012. Taking Proof-Based
Verified Computation a Few Steps Closer to Practicality. In USENIX
Security. Extended version: https://ia.cr/2012/598.

[112] Carsten Sinz, Stephan Falke, and Florian Merz. 2010. A precise
memory model for low-level bounded model checking. In SSV.

[113] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Se-
shia, and Vijay Saraswat. 2006. Combinatorial sketching for finite
programs. In ASPLOS.

[114] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2010. From
program verification to program synthesis. In POPL.

[115] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing

Through Selective Symbolic Execution. In NDSS.
[116] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-

toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, et al. 2016. Dependent
types and multi-monadic effects in F★. In POPL.

[117] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and
Benjamin Livshits. 2013. Verifying higher-order programs with the
Dijkstra monad. In PLDI.

[118] Justin Thaler. Proofs, arguments, and zero-knowledge. http://people.
cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf.

[119] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided lan-
guages with Rosette. In Onward!

[120] Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic
virtual machine for solver-aided host languages. PLDI.

[121] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels,
and Elaine Shi. 2017. Sealed-glass proofs: Using transparent enclaves
to prove and sell knowledge. In IEEE S&P.

[122] Richard Uhler and Nirav Dave. 2014. Smten with satisfiability-based
search. In OOPSLA.

[123] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian
Stefan, and Ranjit Jhala. 2019. Pretend synchrony: synchronous
verification of asynchronous distributed programs. In POPL.

[124] Lisa Vaas. PayPal refuses to pay bug-finding teen.
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-
to-pay-bug-finding-teen/.

[125] Niki Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. Ph.D.
Dissertation. UC San Diego.

[126] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. 2014. Refinement types for Haskell. In ICFP.

[127] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish.
2013. A Hybrid Architecture for Interactive Verifiable Computation.
In IEEE S&P.

[128] Riad S.Wahby,MaxHowald, Siddharth Garg, abhi shelat, andMichael
Walfish. 2016. Verifiable ASICs. In IEEE S&P.

[129] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, abhi shelat, Justin Thaler,
Michael Walfish, and Thomas Wies. 2017. Full accounting for verifi-
able outsourcing. In ACM CCS.

[130] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg,
and Michael Walfish. 2015. Efficient RAM and control flow in verifi-
able outsourced computation. In NDSS.

[131] Michael Walfish and Andrew J. Blumberg. 2015. Verifying computa-
tions without reexecuting them: from theoretical possibility to near
practicality. Commun. ACM 58, 2 (Feb. 2015), 74–84.

[132] Wei Wang, Clark Barrett, and Thomas Wies. 2017. Partitioned mem-
ory models for program analysis. In International Conference on Veri-
fication, Model Checking, and Abstract Interpretation.

[133] Yichen Xie and Alex Aiken. 2007. Saturn: A scalable framework for
error detection using boolean satisfiability. TOPLAS.

[134] Andrew C Yao. 1982. Protocols for secure computations. In FOCS.
[135] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.

2018. QSYM: A practical concolic execution engine tailored for
hybrid fuzzing. In USENIX Security.

[136] Yupeng Zhang, Daniel Genkin, JonathanKatz, Dimitris Papadopoulos,
and Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary
SQL Queries over Dynamic Outsourced Databases. In IEEE S&P.

[137] Zinc. https://zinc.matterlabs.dev/.
[138] ZKProof Community Reference. https://docs.zkproof.org/reference.

pdf.
[139] ZoKrates. https://zokrates.github.io/.

15

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
http://kryptoslogic.blogspot.com/2015/01/openssls-squaring-bug-and-opportunistic.html
http://kryptoslogic.blogspot.com/2015/01/openssls-squaring-bug-and-opportunistic.html
https://github.com/pepper-project/pequin
https://blog.trailofbits.com/2020/05/21/reinventing-vulnerability-disclosure-using-zero-knowledge-proofs/
https://blog.trailofbits.com/2020/05/21/reinventing-vulnerability-disclosure-using-zero-knowledge-proofs/
https://blog.trailofbits.com/2020/05/21/reinventing-vulnerability-disclosure-using-zero-knowledge-proofs/
https://ia.cr/2012/598
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-to-pay-bug-finding-teen/
https://nakedsecurity.sophos.com/2013/05/29/paypal-refuses-to-pay-bug-finding-teen/
https://zinc.matterlabs.dev/
https://docs.zkproof.org/reference.pdf
https://docs.zkproof.org/reference.pdf
https://zokrates.github.io/

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Existentially quantified circuits
	2.2 SMT-based verification
	2.3 Cryptographic proof systems
	2.4 Related work

	3 Design
	4 Extensibility
	5 Output performance and correctness
	5.1 Performance
	5.2 Correctness

	6 Common performance characteristics
	6.1 Constant folding
	6.2 Oblivious array elimination
	6.3 Array granularity

	7 Crossover applications and techniques
	7.1 Automatically finding and proving bugs
	7.2 Optimizing R1CS using SMT

	8 Discussion, future work, and conclusion
	References

