
CirC: Compiler infrastructure for proof systems, software verification, and more

Alex Ozdemir∗ Fraser Brown∗† Riad S. Wahby∗†
∗Stanford University †Carnegie Mellon University

Abstract—Cryptographic tools like proof systems, multi-party
computation, and fully homomorphic encryption are usually
applied to computations expressed as systems of arithmetic
constraints. In practice, this means that these applications rely
on compilers from high-level programming languages (like C)
to such constraints. This compilation task is challenging, but
not entirely new: the software verification community has a rich
literature on compiling programs to logical constraints (like SAT
or SMT). In this work, we show that building shared compiler
infrastructure for compiling to constraint representations is pos-
sible, because these representations share a common abstrac-
tion: stateless, non-uniform, non-deterministic computations that
we call existentially quantified circuits, or EQCs. Moreover, we
show that this shared infrastructure is useful, because it allows
compilers for proof systems to benefit from decades of work on
constraint compilation techniques for software verification.

To make our approach concrete we create CirC, an infras-
tructure for building compilers to EQCs. CirC makes it easy to
compile to new EQCs: we build support for three, R1CS (used
for proof systems), SMT (used for verification and bug-finding),
and ILP (used for optimization), in ≈2000 LOC. It’s also easy
to extend CirC to support new source languages: we build a
feature-complete compiler for a cryptographic language in one
week and ≈900 LOC, whereas the reference compiler for the
same language took years to write, comprises ≈24000 LOC, and
produces worse-performing output than our compiler. Finally,
CirC enables novel applications that combine multiple EQCs.
For example, we build the first pipeline that (1) automatically
identifies bugs in programs, then (2) automatically constructs
cryptographic proofs of the bugs’ existence.

1. Introduction

Cryptographic proof systems allow one entity, a prover,
to construct a short and easily verified proof that convinces
another entity, a verifier, that the prover knows a witness W
satisfying a relation R(X,W), for an instance X specified by
the verifier. Roughly speaking, a proof convinces the verifier
that X corresponds to a true input-output pair for a program
specified by the relation R; a zero-knowledge proof does so
without revealing W .1 Applications of this paradigm have
seen explosive growth; examples include computing over the
prover’s secret data, as in Zcash [1, 2], and verifiably out-
sourcing computation, as in Rollups [3–6].

In most general-purpose proof systems, the relation R must
be reduced to a system of equations or constraints, often in a
format called a rank-1 constraint system (R1CS; §2.2). Writing
a proof about a program’s execution thus requires expressing
faithful execution of the program as a set of constraints. This
has motivated a large body of work on creating compilers from
various high- and low-level languages to constraints, both in
academia [7–11] and in industry [12–18].

Besides proofs, other settings give rise to similar compi-
lation problems. Secure multi-party computation (MPC) [19]

1. Here, W captures the program’s execution transcript and, in the zero-
knowledge case, any secret inputs provided by the prover.

and fully homomorphic encryption (FHE) [20] both support
computation over secrets, and both require a computation to
be expressed as a set of constraints, frequently an arithmetic
or boolean circuit. And compiling to constraints is neither new
nor peculiar to cryptography: the programming languages and
formal methods communities have a long tradition of translat-
ing programs to logical constraints, e.g., Satisfiability Modulo
Theories [21] (SMT) formulas, to verify properties [22–27],
synthesize new programs [28–30], and more. Further afield,
researchers also compile to integer linear programs [31, 32]:
a kind of constraint system used for optimization problems.

Compilers to constraints are crucial in all of these appli-
cations, but they are hard to build. For example, Torlak and
Bodik identify compilers to SMT as “the most difficult aspect
of creating solver-aided tools,” taking “years to develop” [26].
As a result, communities that work on constraint compil-
ers have poured enormous effort into building them (§2.5).
Unfortunately, there has been little cross-pollination among
communities, and duplicated efforts within them. Worse, many
research results never escape the academy, largely because
turning a research prototype into a robust, extensible toolchain
is a huge amount of work. Anecdotally, deployed applications
of proofs (e.g., Zcash [1, 2]) eschew compilation in favor
of hand-crafted constraints because, despite years of effort,
no existing software artifact synthesizes research results and
engineering know-how into a compelling case for compilation.

Thus, our animating question: is it possible to create
shared infrastructure for building constraint compilers that
is useful across such disparate applications? In this paper,
we show that the answer is yes! This means that newer ap-
plications like proof systems can leverage decades of insights
from the compilers and verification communities. It also means
that future work can build on common infrastructure, avoiding
duplication and promoting use beyond the prototype stage.

To start, we observe that shared infrastructure is possible in
principle, because all the constraint representations discussed
above can be viewed as instances of the same abstraction: a
class of non-deterministic execution substrates that we call
existentially quantified circuits, or EQCs.2 EQCs have two
main features that differentiate them from CPUs, the tar-
gets of traditional compilers. First, EQCs are stateless—they
do not support mutable variables, control flow, memory, or
storage. Second, they admit non-determinism in the form of
existentially quantified variables. As one example EQC: a
system of rank-1 constraints (R1CS; §2.2) is “executed” by a
cryptographic proof system; an R1CS is a system of equations,
so it is stateless and free of control flow; and a cryptographic
proof establishes ∃W.R(X,W), so the witness variables in an
R1CS are existentially quantified.

By leveraging the EQC abstraction, we show that shared
infrastructure for compiling to constraints is possible—and

2. Note that EQCs do not capture digital circuits, which are stateful and
deterministic; thus, we do not consider them in this work. See Section 2.5.

C
...

Rust

LLVM IR:
random-access

machine

x86
...

ARM

C subset

ZKlog

ZoKrates

CirC IR:
state-free, non-uniform,

non-deterministic
computation

SMT Solver

ILP Solver

Proof System

Figure 1. LLVM uses a random-access machine abstraction to make it easy
for new front-ends to target CPUs. CirC uses a non-uniform non-deterministic
state-free abstraction to make it easy to target EQCs.

useful—in practice, for three reasons. First, the process of
compiling from a high-level language to an EQC is similar,
even for very different EQCs. To compile, say, a C pro-
gram to SMT, there is a well-known procedure: explore all
paths through the program (i.e., unroll all loops, consider
all branches) while guarding all state modifications by the
condition under which the corresponding path is taken [27].
The same procedure is used to compile a program to boolean
circuits for multi-party computation [33] or to R1CS for proof
systems [11, 34]. Since this procedure is largely independent
of the application, sharing compilation infrastructure avoids
duplicated effort. We describe our language-agnostic machin-
ery for turning programs into circuits in Section 3.

Second, EQCs have performance characteristics different
from processors, but similar to other EQCs. As a result, shared
EQC infrastructure can support shared optimizations, whereas
reusing existing infrastructure geared towards CPUs wouldn’t
make sense. As one example, while CPUs support load and
store instructions for memory access, simulating memory in
EQCs (which are state-free) is very expensive: there are ac-
tive lines of research on memory representations and related
optimizations for both software verification [35–40] and proof
systems [6, 7, 10, 11, 41, 42]. We show that proof system and
software verifier performance both improve under the same
memory optimizations (and more) in Section 6.

Finally, shared compiler infrastructure unlocks benefits
with few analogs in traditional compilers. In a traditional
compiler, each target CPU supported by the compiler does
essentially the same thing: it executes code. EQCs, in contrast,
often have very different purposes—and shared infrastructure
makes it easy to combine those purposes in ways that enable
new applications. For example, verification allows users to
prove that a program has some property (e.g., “contains no
undefined behavior”), while proof systems allow users to prove
facts to one another in spite of mutual distrust (e.g., proving
“I know my password” without revealing it). Combining these
functionalities, we show in Section 7 that our work helps
analysts find a bug (using expert hints and an SMT solver)
and then prove the bug’s existence without revealing how to
trigger it (using a proof system). We also demonstrate other
combinations, e.g., optimizing R1CS using an SMT solver.

To make these benefits concrete, we implement an in-
frastructure for building compilers to EQCs, which we call
CirC (“SIR-see”). CirC is analogous to—and inspired by—
LLVM [43], an infrastructure for compiling programs to
machine code. LLVM’s key abstraction is its intermediate
representation, LLVM IR, which captures the computational

model of random-access machines (i.e., CPUs). CirC builds on
a different abstraction (Fig. 1): state-free, non-deterministic,
non-uniform computation, which captures the computational
model of EQCs (§2.1). As in LLVM, language designers
can write front-ends that compile to CirC-IR; build CirC-IR
analyses, transformations, and optimizations; and create back-
ends that lower from CirC-IR to a given EQC (e.g., R1CS),
allowing them to run the resulting executable (e.g., by feeding
the resulting R1CS to a proof system).

In sum, our contributions are:

• We build CirC, an infrastructure for compiling programs
to circuits (§3).

• We demonstrate CirC’s extensibility. We extend CirC to
the ZoKrates proof language in a week with ≈900 lines
of code, whereas the language’s reference compiler was
developed over years and comprises ≈24000 lines (§4).

• We evaluate the accuracy of CirC’s SMT output and the
performance (size) of its R1CS output. For example, we
find that for ZoKrates programs, CirC produces R1CS
instances which perform slightly better than those from the
language’s reference compiler. CirC also closely matches a
hand-tuned constraint system deployed by Zcash [2] (§5).

• We evaluate the effect of common optimizations on the
performance of verification and proof-system applications,
finding that some optimizations provide substantial benefit
to both (§6).

• We demonstrate the ease of combining back-end function-
ality using CirC. We use an SMT solver to optimize and
analyze R1CS compilation, and use a proof system to prove
knowledge of (1) a bug identified by an SMT solver and
(2) a high-value input identified by an ILP solver (§7).

Summarizing our key insights: (1) many subfields rely on the
same abstraction, the EQC; (2) compiling to different EQCs
uses similar steps, and EQCs have similar performance char-
acteristics, so shared infrastructure makes sense; and (3) with
shared infrastructure, different EQCs can be combined in
service of new applications.

2. Background and related work

In this section, we start with a slightly more formal defini-
tion of EQCs. Then, to set the stage for our evaluation (§5–§7),
we discuss our three example use cases: cryptographic proof
systems (§2.2) , automated verification (§2.3), and constrained
optimization (§2.4). Finally, we describe related work (§2.5).

2.1. Existentially quantified circuits

We refer to the broad class of non-deterministic execution
substrates that this work targets as existentially quantified
circuits (EQCs). EQCs share three key properties. First, they
are circuit-like: they comprise sets of wires taking values from
some domain (e.g., bits for a boolean circuit) and constraints
that express relationships among wire values (e.g., an AND
gate represents the constraint C = A ∧B).

Second, EQCs are state free: unlike variables in a computer
program or registers in a CPU, wire values in an EQC do not
change during execution. In a boolean circuit, for example,
each gate’s output is determined by its inputs, which are either
the outputs of other gates or input wires.

Third, EQCs have two kinds of inputs: explicit inputs, i.e.,
arguments supplied at the start of execution, and existentially-
quantified inputs, which may take any value consistent with
the explicit input values and the set of constraints. Consider
the trivial EQC ∃B.A⊕ B = 0, where A is an explicit input
and ⊕ is boolean XOR: when A is true, B must be true. In the
language of formal logic, EQCs correspond to quantifier-free
first-order formulas.

In complexity-theoretic terms, we say that EQCs capture
non-deterministic, non-uniform computation [44, Ch. 6]. Their
non-determinism stems from the existentially quantified inputs
whose values are, in principle, “guessed” by the execution
substrate. Their non-uniformity reflects the fact that a circuit
of a given size encodes a computation for a fixed-size input;
thus, for a given computation, computations with different
input lengths have distinct circuit representations.

2.2. Cryptographic proof systems

Probabilistic proof systems are powerful cryptographic
tools whose applications include verifying that outsourced
computations are executed correctly [6, 8, 45], implementing
private cryptocurrency transactions [1, 46], and defending
against hardware back-doors [47, 48]. In this section, we
describe the class of probabilistic proof systems CirC targets,
focusing on their computational model. Readers should consult
surveys [49, 50] for additional details.

At a high level, a probabilistic proof system is a crypto-
graphic protocol between two parties, a prover P and a verifier
V , whereby P produces a short proof that convinces V that
∃w.y = Ψ(x,w), for Ψ a computation that takes input x and
witness w and returns output y. Several lines of work [7–
10, 41, 42, 51, 52] instantiate end-to-end built systems. Two
key features of these systems are succinctness—P’s proof is
small, as is V’s work checking it—and zero knowledge—an
accepting proof reveals nothing about the witness w other than
the truth of y = Ψ(x,w).

These systems comprise a compilation stage and a proving
stage. The proving stage applies complexity-theoretic and
cryptographic machinery to the compilation stage’s output,
allowing P to generate a proof and V to verify it. The compi-
lation stage, our focus in this work, takes a source program Ψ
(written, say, in a subset of C) and transforms it into a system
of arithmetic constraints C in vectors of formal variables
W,X, Y , such that ∃w.y = Ψ(x,w) ⇐⇒ ∃W.C(W,X, Y)
for X = x, Y = y. (Note that ∃W.C(W,X, Y) is an EQC;
§2.1.) The primary figure of merit for a compiler is the size
of C: fewer constraints means less work for P to generate a
proof, and in some proof systems it also means a shorter proof
that is easier for V to verify.
The constraint formalism. The formalism used by most
proof systems is called a rank-1 constraint system (R1CS). An
R1CS instance C comprises a set of constraints over a finite
field F (usually the integers modulo a prime p) of the form
〈Ai, Z〉 · 〈Bi, Z〉 = 〈Ci, Z〉, where 〈·, ·〉 is an inner product, Z
is the concatenation (W,X, Y, 1) ∈ Fn, and Ai, Bi, Ci ∈ Fn

are constants. In other words, each constraint asserts that the
product of two weighted sums of the wires in C equals a
third weighted sum, which generalizes arithmetic circuits. C
is satisfied when the values W,X, Y satisfy all constraints. To

generate a proof, P first computes a satisfying assignment and
then executes the cryptographic proving machinery.

Compiling programs from languages like C to R1CS
instances is tricky. Domain differences are an immediate
concern: while C has a non-trivial type system, for R1CS
all computation must be encoded as arithmetic in F, which
can be awkward. For example, the assertion x 6= 0 has no
direct encoding as a rank-1 constraint. When F is the integers
mod p, by Fermat’s little theorem the assertion could be
rewritten as Xp−1 = 1, but this costs O(log p) constraints;
p ≈ 2256 is common for security of the proof system, so
this is very costly. In this and similar cases, an important
optimization is to introduce advice in the form of entries in
the (existentially quantified) vector W . In our example, x 6= 0
becomes ∃W.W · X = 1: since only nonzero elements of F
have a multiplicative inverse, this constraint is satisfiable iff
X 6= 0 ∈ F. For other examples see, e.g., [6, 10, 11, 34].

Beyond domain considerations lies a more insidious chal-
lenge: the fact that constraints cannot directly encode muta-
tion, control flow, etc., so the compiler must transform input
programs to eliminate these constructs. We defer discussion
of this challenge to the next subsection.

2.3. SMT-based verification

In this section we discuss SMT and SMT-LIB, then explain
how verifiers use these tools to prove properties of programs.

SMT solvers are tools that determine whether logical
formulas are unsatisfiable (i.e., can never evaluate to true) or
satisfiable (i.e., can evaluate to true); if satisfiable, the SMT
solver provides a satisfying assignment to the variables in the
formula. For example, given the formula x∨y, an SMT solver
may return a satisfying assignment of x to true and y to
false (or any other valid assignment). Free variables in SMT
formulas thus have existential semantics, which means that
SMT formulas are EQCs (§2.1). In addition to booleans, SMT
formulas can include terms from various theories, including
bit-vectors, arrays, uninterpreted functions, real and integer
arithmetic, etc. Theories are higher level than logical formulas,
so they make it easier for developers to use solvers.3 The SMT-
LIB [21] standard gives the semantics of each theory.
Compiling from high-level languages to SMT. SMT
solvers are often applied in service of program correctness—
everything from test case generation to bug finding to verifi-
cation. Typically, a verifier translates a program and assertions
about that program (e.g., index is within bounds of array)
into SMT formulas (or similar). The verifier then asks the
solver if the assertions make the program’s formula satisfiable
or not, either finding bugs or verifying their absence.

Compiling code into SMT formulas is challenging [26,
27, 53]. Since SMT (like R1CS) does not support mutable
variables or branching, programs must be substantially trans-
formed. As an example, consider this snippet of C code, and
its mutation-free translation:
// input program (x, y, z previously defined)
if (x < 20) { x = 2; }
else { y += z; }

3. Theories have other benefits too: they allow solvers to use theory-specific
algorithms for faster solving, and they allow users to specify formulas over
infinite domains (e.g., the integers), which booleans cannot represent.

// mutation-free program
x_1 = x_0 < 20 ? 2 : x_0;
y_1 = !(x_0 < 20) ? (y_0 + z_0) : y_0;

This snippet features variable mutations within an if-else
statement. By introducing new versions of the variables, and
guarding their new value by the condition of the statement,
we can rewrite the snippet without mutations. While simple
examples like this are easy enough to understand, eliminat-
ing mutation and branching quickly becomes complex. All
branches must be recorded, all mutations guarded, all loops
unrolled, and all program paths separately explored. Not only
is this process complex—it also produces large formulas.

2.4. Integer linear programs

Mixed integer linear programs (ILPs) are a ubiquitous lan-
guage for constrained optimization. An ILP comprises (1) a set
of real variables: X = {x1, . . . , xn}, (2) a set of constraints,
each having form

∑
i cixi ≤ b (for real constants ci, b),

(3) an objective function f(x) =
∑

i cixi (for real constants
ci) and (4) a subset of integral variables I ⊂ X . Given an
ILP, an assignment v : X → R is satisfying if it respects
all constraints and assigns integers to the variables in I . An
ILP can be infeasible (there are no satisfying assignments),
unbounded (the constraints do not entail an upper bound on f ’s
value), or solvable. An ILP solver determines whether an ILP
is infeasible, unbounded, or solvable; if the ILP is solvable,
the solver searches for a satisfying variable assignment that
achieves the maximum value of f .

2.5. Related work

CirC is related to and inspired by LLVM [43] and
SUIF [54], but CirC targets EQCs instead of CPUs. MLIR [55]
generalizes the LLVM methodology with a toolkit for con-
structing and manipulating interlocking IRs; in other words,
MLIR is infrastructure for constructing compiler infrastruc-
ture. This work is orthogonal to CirC, which is compiler
infrastructure for a specific family of non-deterministic com-
putational models.

High-level synthesis (HLS) turns programs (say, in C) into
digital circuits ([56] surveys). While digital circuits appear
superficially similar to EQCs, there are two key differences:
first, digital circuits do not allow existential quantification,
which is very important for efficiently compiling to EQCs.
Second, digital circuits are stateful; indeed, efficient use of
stateful elements like flip-flops is a key focus of HLS.

Many compilers to specific EQCs exist; we discuss closely
related work below. The main difference between CirC and
these compilers is that CirC is infrastructure for compiling
to EQCs generally, not just SMT, R1CS, etc. Generalizing
existing compilers to support a wide range of EQCs would
require essentially duplicating the work of building CirC.

The other difference between CirC and existing work
is that most other work combines compilation with front-
end–based optimization strategies. As examples: KLEE [37]
combines a core constraint compilation engine with a path ex-
ploration front-end that forks at every branch; and Giraffe [48]
uses program analysis to “slice” programs, then compiles a
subset of these slices to proof system constraints. We don’t

currently support such strategies in CirC because they do not
generalize to all back-ends. For example, forking compiles
only a subset of program paths to constraints. This is fine for
bug-finding, but is problematic for proof systems: some correct
executions might not induce a valid proof. Supporting certain
front-end–based optimization strategies is future work (§8).

Compilers for cryptography. A long line of prior work devel-
ops techniques for compiling to R1CS constraints. Ginger [34],
Zaatar [57], Pantry [7], and Buffet [11] compile a subset of C
and support proof-specific optimizations for rational numbers,
memory, key-value stores, complex control flow, etc. Pinoc-
chio [8] also compiles a subset of C with techniques similar
to Ginger’s. Geppetto [9] consumes LLVM IR and provides
efficient cryptographic primitives. xJsnark [10] consumes a
Java-like language and refines techniques from Buffet and
Geppetto. Zinc [14] and ZoKrates [12, 13] compile from
eponymous DSLs to R1CS using existing techniques. Finally,
Circom [15] is essentially a hardware description language that
relies on the programmer to write constraints.4

Another line of work [41, 42] uses hand-crafted constraints
that simulate a simple CPU, then modifies GCC to emit
code for that CPU; while conceptually simple, this entails
enormous overhead [11, §5]. Yet another approach, embodied
by libsnark [58], ZEXE [4], and Bellman [59], effectively uses
a macro assembler to compose hand-crafted R1CS “gadgets.”

Fairplay [33] is the earliest example of a compiler to
circuits for two-party computation (2PC); FairplayMP [60]
targets multi-party computation. Later works like Tasty [61],
HyCC [62], and Viaduct [63] optimize by matching pieces of
the source program to suitable cryptographic protocols.

CBMC-GC [64] adapts the CBMC [27] model checker
to emit boolean circuits for 2PC, implicitly leveraging the
similarities between compiling for model checking and for
2PC. Unlike CirC, however, CBMC-GC applies only to the
case of boolean circuits optimized to 2PC, rather than to EQCs
generally. Because of this, it cannot be used to compile to, say,
arithmetic constraints for proof systems, nor does it enable the
crossover applications that CirC does (§7).

Compilers for SMT. Many projects compile high-level pro-
grams or parts of programs to SMT in order to prove pro-
gram properties [27, 53, 65–76] (e.g., using bounded model
checking). For example, the CBMC verifier [27, 66] translates
C programs and assertions about their correctness into SMT,
unrolling loops up to a given bound. Then, it uses a solver to
prove or refute verification assertions. Other program analyzers
verify code written in verification-specific domain specific
languages (DSLs) [77–80]. For example, Alive [77] presents
a DSL for peephole optimizations: programmers write opti-
mizations in the DSL and Alive automatically verifies them.
Some projects even allow users to manipulate constraints from
within a higher-level language [81–84].

All of the projects listed above handle their own compila-
tion from a high-level language to SMT, but that is not always
the case: there are many projects that present infrastructure for
building verifiers [22, 23, 25, 26, 85–87]—often by handling
the details of SMT compilation—and there are many veri-
fiers that depend on them [88–91]. Intermediate Verification
Languages [22, 86, 87, 92] (IVLs), for example, decouple

4. Section 4 discusses building CirC-based Circom and ZoKrates compilers.

C subset

ZKlog

ZoKrates

Circom

CirC-IR

R1CS
Proof

System

SMT Solver

ILP Solver
Circify

Library Opt.

Opt.

Figure 2. CirC’s architecture, with extensions (§3).

language details from verifier details; the Boogie IVL [22]
targets SMT-like back-ends, so building a new verifier just
requires translating a source language to the IVL. Taking a
slightly different tack, Rosette [26] builds a virtual machine
for symbolic execution, and Serval [88] uses it to lift inter-
preters into symbolic execution engines. CirC has a similar
but broader goal: it aims to decouple source languages from
all EQC targets, not just verifiers—so it generalizes lessons
from these works to a wider range of constraint systems.

Symbolic execution (symex) tools [93, 94] combine SMT
compilation of a single program path with, typically, either
concrete execution or forking strategies [37, 40, 95–102]; some
systems use a hybrid of symex and model checking [26].
After SMT compilation, different tools proceed differently:
many [37] fork execution at each conditional jump, some
use a mixture of concrete and symbolic (concolic) execu-
tion [40, 98], some combine static analysis and symex [101],
some combine symex and fuzzing [40, 100], and more. In
each case, the symbolic tool relies on a core component that
compiles programs to SMT.
Optimization Languages. A variety of tools translate from
high-level modeling languages to ILPs, including AMPL [31]
and Pyomo [32]. ILPs themselves are solved by a variety of
tools including Gurobi [103] and CBC [104].

3. Design

CirC is designed to make new compilers easy to build:
it should be easy for designers to add support for new input
languages and new target EQCs. In CirC (as in LLVM), de-
signers do so with new front-ends (e.g., for C) and new back-
ends (e.g., for R1CS). Front-ends target CirC’s intermediate
representation (IR) and back-ends lower from IR to a target
representation (Fig. 2).

In this section we present CirC’s IR, which is a repre-
sentation of an abstract EQC. We also present Circify, a
language-independent library for writing new CirC front-ends.
Section 4 discusses specific front-ends and back-ends.

3.1. CirC-IR

CirC’s IR is a rich circuit language and is thus state-free
and non-uniform; conceptually, this IR represents an abstract
EQC. It’s based on the SMT-LIB standard (§2.3), limited
to booleans, floating-point numbers, bit-vectors, and arrays.
These theories cover common primitive types in high-level
languages, but one can extend the IR with other theories. For
example, we have built an extension to the IR that adds a
notion of finite fields, since this type underlies R1CS (§2.2).

1 uint8_t cond_add(uint8_t x, uint8_t y, uint8_t z) {
2 if (x == 0)
3 y = y + z;
4 else if (y == 1)
5 y = y + z + z;
6 return y;
7 }

Figure 3. A small C program.

3.2. Circify: managing state when compiling to
CirC-IR

To support a new language, the first step is to build a
front-end from that language to CirC-IR.
Building a front-end from scratch is hard. For example,
consider the C program in Figure 3. This program includes
variable mutations and conditional branches, two semantic
phenomena that cannot be directly represented in CirC-IR be-
cause EQCs do not support mutation or branching. Other chal-
lenges include functions with early returns, loops with break
or continue statements, and random-access memory, e.g.,
to access an array at a data-dependent index [11, 41, 53, 66].
While semantics of front-end languages differ in the details,
these challenges are similar across many languages. Taking
a broad view, we identify state as the key issue in these
challenges—the state of variables, the state of memory, and
even the state of the program counter. To help different lan-
guage front-ends overcome challenges related to state, CirC
provides Circify, a language-independent library for ex-
pressing state updates in CirC-IR.
Circify makes building front-ends easier. To construct a
front-end, a developer essentially writes an interpreter for the
source language using the Circify library.5 In particular,
Circify is responsible for managing the interpreter’s execu-
tion environment: interactions with variables (e.g., declarations
or mutations), functions (e.g., entry or returns), control flow
(e.g., branches or breaks), lexical scopes, and even arrays (e.g.,
initializations, accesses), are delegated to Circify functions.
Circify automatically handles the details of expressing
stateful semantics in EQCs.

In the rest of this section, we describe Circify’s support
for variables and conditional branching. This is only a small
subset of Circify’s functionality, but it gives intuition for
how Circify and a language-specific interpreter interact.

At a high level, Circify handles variable mutation by
transforming the program into static single assignment form
using a standard technique [105]: each time the source pro-
gram assigns a new value to a variable, Circify creates a
fresh version of that variable in CirC-IR, then constrains this
version to be equal to the new value. For example, “x = 1”
turns into “x_i = 1” for the next unused version number i.

This naive approach works for straight-line code, but han-
dling control flow requires a technique called guarding [66],
which works as follows: Circify records the conditions that
must hold for any given program path to execute, and then
guards all assignments on that path with those conditions. For
example, consider the assignment on line 3 of Figure 3: this
assignment only executes when x = 0. To achieve this, Cir-
cify uses an if-then-else (ITE) guard term, which evaluates

5. This is vaguely reminiscent of Serval [88]).

1 data CVal = Bool IR.Bool
2 | Uint IR.BitVec
3 | Sint IR.BitVec
4 | Struct String [(String, CVal)]
5 -- arrays, array pointers, ...

Figure 4. C’s V-type, in Haskell. The IR module contains the CirC-IR
definition.

Interpreter Circify Lang. def’n. intf.
getVar (“x”)

x0

enterBranch (x0 = 0)
getVar (“y”), getVar (“z”)

y0, z0

mutVar (“y”, y0 + z0)
ite (x0 = 0,y0 + z0,y0)
ITE(x0 = 0,y0 + z0,y0)

assign (cs, “y1”,
ITE(x0 = 0,y0 + z0,y0))

cs.assert(y1 =
ITE(x0 = 0,y0 + z0,y0))

y1

exitBranch ()
enterBranch (x0 6= 0)

Figure 5. Interactions between the ZoKrates front-end, Circify, and the
front-end’s language definition. Quotes denote strings, boldface denotes lan-
guage values or CirC-IR terms.

to the new value (y + z) when the condition is true (i.e.,
when x is zero), and to the old value (y) otherwise.

Much of this guarded versioning machinery is language-
independent. The only language-dependent pieces are: a defi-
nition of language values, a function that assigns values, and
a function that constructs ITE terms over values. Together,
these three pieces comprise Circify’s language definition
interface, which Circify’s language-independent function-
ality uses to manipulate source language values. Simplifying
slightly, that interface comprises one type and two functions:

• V: a CirC-IR embedding of language values,
• assign(cs, id, v ∈ V): adds constraints to cs that assign (the

next version of) the variable id to value v, and
• ite(c, t ∈ V, f ∈ V) → V: takes a CirC-IR boolean c and

two language values t and f , and returns a language value
that equals t when c is true and f otherwise.

An example: Circify for C. Figure 4 shows part of our
C front-end’s V-type, CVal, a recursive data type. Its base
constructors wrap CirC-IR booleans and fixed-width integers
(lines 1-3); there is also a recursive constructor for named
structures (line 4). The corresponding assign and ite definitions
are direct when their value arguments are non-recursive: they
simply emit an IR assignment or an IR ITE term for the
wrapped CirC-IR value. For values with recursive constructors,
these functions recursively deconstruct the values, emitting IR
assignments or IR ITE terms for each sub-value. For example,
calling assign with a v that is structure results in recursive
assign calls to each of the field in the structure.

After defining the Circify language definition interface
for C, completing the front-end requires (1) writing a parser
for the C source text, and (2) writing an interpreter that

uses Circify’s functionality to translate stateful C code
into CirC-IR. As an example, consider the cond_add C
function in Figure 3. Figure 5 depicts the interpreter’s calls
to Circify, and Circify’s corresponding calls to the C
language definition interface as the interpreter steps through
this function line-by-line. After argument declarations (not
shown), the interpreter requires a few steps to interpret line 2.
First, it uses the Circify getVar function to retrieve the
IR representation of x’s current value; the result in this case is
x’s initial version, x0. Next, the interpreter builds the symbolic
condition x0 = 0, and uses Circify’s enterBranch to
indicate that subsequent calls are conditionally executed (only
when x0 = 0) until a matching exitBranch.

For line 3, the interpreter first gets the values of y and z,
then calls Circify’s mutVar to set y to y0 + z0. Behind
the scenes, this causes Circify to use the functions provided
by the language definition interface. Specifically, Circify
invokes the ite function to build a new term that is conditioned
on the current path (where x0 = 0), then uses the assign
function to bind the next version of y (i.e., y1) to that term.

Finally, the interpreter exits the branch and enters the
alternative branch, i.e., the one corresponding to the x 6= 0
condition. The rest of the interpretation process is similar:
the interpreter walks the program, using Circify functions
to handle variable interactions and branching. In the next
paragraphs, we describe how the interpreter uses Circify
to handle other stateful operations.
Breakable blocks: the foundation for exceptional control
flow. Most imperative languages include exceptional control
flow (e.g., early returns). CirC supports exceptional control
flow through a construct that we call the breakable block. A
breakable block comprises a sequence (block) of statements;
within that block, a break directs control flow to the end of
the block. Early returns, loop breaks, continues, and try-catch
blocks can all be implemented using breakable blocks, but the
construct cannot simulate all control flow (e.g., gotos).

We implement breakable blocks in CirC by extending the
guarding system. Recall that CirC guards the side-effects of
side-effect inducing statements on a condition c equal to the
conjunction of enclosing branch conditions: c =

∧
i branchi.

For each breakable block i, Circify also stores the condition
under which the block has been broken out of as breaki.
Then, Circify guards side effects within the block under
c =

∧
i branchi∧

∧
i ¬breaki, and when Circify encounters

a break for block j, it updates breakj to (breakj ∨ c).
Scopes & functions. Circify supports function-local vari-
ables and lexical scoping rules. Circify exposes methods
for entering and exiting lexical scopes; variable lookups are
informed by this scoping structure. Circify also supports
function scopes; these hide the variables of enclosing scopes.

To compile a program to an EQC, the compiler must
inline all functions. Circify helps compiler-writers with
this task by supporting function scopes and return statements
(implemented using breakable blocks).
Early returns, breaks, and continues. Recall that a break-
able block is a sequence (block) of statements that can be
interrupted by a break, which (conditionally) jumps to the
end of the block. Circify implements returns by setting
the return value and jumping to the end of a breakable block
containing the function body. Similarly, one can implement

1 n = getBound(loop)
2 circify.enterBreakable(loop.label)
3 for i in {0, .., n-1}:
4 cond = compileExpr(loop.cond).asBool()
5 circify.enterBranch(cond)
6 circify.enterScope()
7 # may contain: circify.break(label)
8 compileStmt(loop.body)
9 circify.exitScope()

10 for i in {0, .., n-1}:
11 circify.exitBranch()
12 circify.exitBreakable()

Figure 6. Pseudocode for loop-handling in a Circify-based compiler.

loop breaks by jumping to the end of a breakable block
containing the whole loop, and continues by jumping to the
end of a breakable block containing just the loop body.
An example: loops with lexical scopes and breaks. Circuits
are non-uniform, so circuit compilers must unroll loops. In
CirC, front-ends implement unrolling. Figure 6 shows pseudo-
code for how a front-end might unroll a while-loop. First, the
front-end decides how many times to unroll the loop (line 1);
this information may come from a programmer annotation or
an SMT-assisted analysis (§7.1). In each unrolling, the front-
end branches on the loop’s condition (lines 3, 4) and enters a
lexical scope (line 5). It then compiles the loop body; within
the body, loop breaks target the breakable block that begins
on line 2 and ends on line 12. Finally, the front-end exits the
lexical scope (line 9) and the branches (line 11).
Stack Arrays. Circify supports accesses to dynamic lo-
cations within statically-known stack arrays of bit-vectors.
Compiler developers must serialize their types as bit-
vectors to use stack arrays. Circify supports allocat-
ing stack arrays (using “circify.alloc(addr_bits,
val_bits, size)”); allocation returns a concrete alloca-
tion identifier, id. Loads and stores use id to indicate which
array to access. Load operations take a concrete id and a
CirC-IR offset; they return an IR value. Store operations take
a concrete id, an IR offset, and an IR value. The effect of a
store operation is guarded on the current path condition.
References. Circify supports fixed references to (poten-
tially out-of-scope) variables, similar to C++. References are
modeled as a kind of location, similar to a variable. Refer-
ences can be created to any variable, and Circify allows
new values to be written to references. Circify’s reference
system is useful for capturing C pointers with fixed referents,
e.g., pointers used as output arguments.
An example: functions and references. Figure 7 shows an
example of how a front-end uses Circify’s reference and
function support. This example calls a function with signature
int f(bool& out, int a, int b). Line 1 creates a
reference to callee variable mybool, line 2 enters the new
function scope, and line 3 binds the function-local variable
out to the reference. Lines 4 and 5 set function-local variables
a and b to constants. We elide the function body (line 6); note
that is may include early return statements. Finally, line 7 exits
the function and fetches the return value.

Together, Circify’s features provide a useful framework
for constructing front-ends for new languages. Once a lan-
guage designer has used Circify to attach a front-end to

1 ref = circify.mkRef("mybool")
2 circify.enterFn("f", CTy::Int)
3 circify.declAssign("out", ref)
4 circify.declAssign("a", cInt(5))
5 circify.declAssign("b", cInt(6))
6 # ... fn body, including circify.return(val)
7 retVal = circify.exitFn()

Figure 7. Pseudocode for references and function calls.

CirC, they can create their own optimizations over CirC-IR or
use any existing ones.

3.3. IR Optimization

Once a front-end has compiled its input to CirC-IR, the
optimization phase begins. CirC includes a large suite of CirC-
IR–based optimizations that language designers can selectively
apply, depending on their input language and target circuit.
Many optimizations are standard, e.g., constant-folding, n-ary
operator flattening, and inlining; these are almost always ben-
eficial. Other optimizations are more complex and should be
selectively applied. For example, CirC can replace operations
over bit-vector arrays with operations over bit-vectors, via
memory-checking techniques [7, 10, 11, 41, 42, 106]. This
is essential for proof systems, which do not support arrays.
When compiling to SMT—which natively supports arrays—
the optimization is unnecessary.

Optimizations motivated by one pipeline often help others,
too. As one example, while implementing our ZoKrates-to-
R1CS compiler, we added a bit-shifting optimization in the
constant folding pass; this pass also helps the C-to-R1CS
compiler (and likely any future R1CS pipelines, too). The
optimization replaces terms of the form x>>k (for bit-vector
x and constant k) with a rearrangement of the bits of x. The
latter ultimately requires substantially fewer R1CS constraints
than a variable offset bit-shift.

Optimizations can also help multiple targets. In Section 6,
we present experiments demonstrating that some optimizations
are beneficial for both SMT and R1CS, despite significant
differences in these targets’ execution semantics.

3.4. Back-ends: from CirC-IR to circuits

To support a new EQC back-end, designers lower CirC-IR
to their chosen representation. Generally, writing a back-end
for a new circuit representation is easier than writing a front-
end, since CirC-IR is already a circuit IR. Once a developer
has lowered CirC-IR to their target of choice, they can per-
form target-specific optimizations. This is relatively standard:
many compilers support such optimizations [77, 107], and we
discuss those that we implement in Section 4.2.

4. Extensibility and implementation

As we discussed in the previous section, CirC’s main goal
is extensibility to new source languages and target EQCs. The
compiler’s design made it easy to implement five front-ends—
for Circom, ZoKrates 0.6.1, a modified version of ZoKrates
0.7.6 that we call Z#, a Datalog dialect, and a subset of C—
and three back-ends—to SMT, R1CS, and ILP. The rest of this

section gives background on the languages and back-ends, and
describes using CirC to support each of them.

4.1. Front-ends

Circify makes certain aspects of supporting a new lan-
guage easy, because it manages the transformation of stateful
programs with complex control flow into flat circuits. On
the other hand, Circify does not assist with features that
are likely to be language-specific, such as type checking and
namespacing. In this section, we discuss CirC’s front-ends and
describe what was easy and what was hard for each.
C. CirC supports a subset of C that includes floats, doubles,
booleans, integers, structures, stack arrays, and pointers to
a statically known variable or array. Our C front-end also
includes an opt-in taint-tracking system for definedness, which
is useful, e.g., for detecting bugs due to undefined behavior
(§7.3). It does not support recursion or goto.6 In spite of these
limitations, CirC’s C semantics are richer and more standards-
compliant than prior work. As important examples: CirC wraps
integer arithmetic modulo powers of two, as required by
C11; Pequin [108] instead wraps modulo a large prime. CirC
supports data-dependent array accesses and pointer offsets;
PICCO [109] and CMBC-GC [66] only support constant off-
sets that are known at compile time.
ZoKrates. ZoKrates [12, 13] is a recent (2018) language
for programming zero-knowledge proof systems. Developers
write ZoKrates programs that check properties (e.g., “account
balance is positive”), and the ZoKrates compiler converts those
programs into equivalent R1CS. ZoKrates is a mature project:
at least 42 contributors have authored over 3600 commits
in the past several years, and there have been dozens of
versions of the ZoKrates language to date. We now describe
our experience implementing front-ends for two versions.

ZoKrates 0.6.1’s types are fixed-width integers, finite
field elements, booleans, field element–indexed arrays, and
structures. The language supports mutable variables, condi-
tional expressions, and statically bounded loops. Neither data-
dependent control flow (e.g., conditional statements) nor loops
with an input-dependent number of iterations are supported.

Our ZoKrates front-end builds on Circify (§3.2), which
handles essentially all of the complexity (variable mutation,
scoping, and function calls). The most complex remaining is-
sue is ZoKrates’s module and import system: import directives
can rename imported identifiers, so name resolution depends
on the current module (e.g., a structure might be defined as S
but imported into another module as S′). To handle this, the
front-end tracks the current module and uses this information
for name resolution (≈50 LOC).

Building this compiler took one person less than one
week; the ZoKrates front-end comprises less than 900 lines
of (non-parser, non-AST) code. For comparison, the core of
the ZoKrates 0.6.1 reference compiler (which also excludes
parsers, ASTs, and tooling) comprises over 24,000 lines and
was written over the course of multiple years. Furthermore, our
compiler supports a strict superset of the ZoKrates language,
including (for example) if-statements. Finally, as §5 will show,
our compiler produces slightly better output.

6. Prior work [11, 27] shows how to support some of these constructs.

1 pow(X: u16, E: u16, Y: u16) % Y = X ** E
2 if E = 0, Y = 1;
3 or E > 0, E & 1 = 0, pow(X * X, E / 2, Y);
4 or exists Z: u16,
5 E > 0, E & 1 = 1, pow(X * X, E / 2, Z), Z * X = Y.

Figure 8. Recursive ZKlog rule for computing powers.

ZoKrates 0.7.6 adds support for structures and functions
that are generic over integer constants (used to write code that
is generic over array lengths; recall that these must be known
at compile time). We have adopted these features in Z#, a
language based on—but not fully compatible with—ZoKrates
0.7.6 that is being used in a commercial deployment of zero-
knowledge proofs. Our Z# implementation invokes the SMT
solver during compilation to infer generic parameters, a simple
but useful example of invoking a CirC back-end to implement
a language feature (§7). Adding support for the above, plus a
Z# AST analysis library (used for type checking and inference)
and an AST-walking interpreter (used to support compile-
time macros, testing, and debugging), took roughly 3 kLOC.
Importantly, none of these features required changes to CirC-
IR or Circify, giving us confidence that CirC’s abstractions
will easily support more advanced language features.
ZKlog. Datalog is a class of logic programming languages;
Datalog dialects have been used to express database queries,
program analyses, and more. We build a front-end for a
Datalog dialect that we call ZKlog, to show that CirC can
support a very different programming paradigm from that of
C or ZoKrates. ZKlog programs are a collection rules over
input variables; rules are defined in terms of cases, which can
introduce (existentially quantified) variables and enumerate
conditions. Figure 8 shows a ZKlog rule for the relation
Y = XE. ZKlog supports booleans, fixed-width integers, finite
field elements, and fixed-length array types; it (like other
Datalog dialects) does not allow negated rule applications, so
any ZKlog rule can be compiled to an EQC. Appendix B
presents ZKlog’s syntax.

The main challenge in supporting ZKlog is recursion:
ZKlog, as a Datalog dialect, relies on recursion for iteration—
there is no looping construct. Naively inlining recursive calls
would cause the compiler to diverge, so we bound recursion
in two ways. First, we use a programmer-specified, command-
line recursion limit that bounds the number of times any rule
can be recursively inlined. Using this construct, the program-
mer must correctly specify a recursion limit that’s sufficiently
large to compile a given rule into an EQC. If the recursion limit
is too low, the generated EQC is incomplete—unsatisfiable for
some inputs that it should be satisfiable for.

To alleviate the burden on the programmer, we support
arbitrary recursion for primitive recursive rules applied to
compile-time constants. From computability theory, a rule
(more generally, a function) is primitive recursive in a formal
argument x if all recursive calls are strictly decreasing in x.
For example, the rule pow in Figure 8 is primitive recursive in
E. However, without the condition E > 0 on line 3, it would
not be, since E / 2 might not be less E.

To identify rules and arguments with primitive recursion,
we allow programmers to annotate one rule argument as
“decreasing”. If the rule recurses and the annotated ar-
gument is a compile-time-constant that is strictly less than its

def difflog(private u8 x) -> u8:
u8 acc = 0x00
for field i in 0..8 do

acc = if x != 0x00 then acc + 0x01 else acc fi
x = x >> 1

endfor
return x - acc

Figure 9. A small ZoKrates program that computes x− blog2 xc.

previous value, the compiler ignores the recursion limit while
compiling the rule to an EQC. We use CirC’s constant-folding
pass to check whether a value is a compile-time-constant that
is less than in previous calls.

We can also use an SMT solver to determine whether
a decreasing annotation is valid for all compile time
constants. We describe this analysis in Section 7.2.
Circom. Circom is a hardware description language for arith-
metic circuits. Our Circom compiler thus bypasses CirC-
IR, and only takes advantage of the R1CS optimizations in
CirC. This demonstrates the CirC framework’s modularity: it’s
possible to attach front-ends to CirC-IR, but it’s also possible
to attach directly to back-ends in order to take advantage of
target-specific optimizations.

4.2. Back-ends and target-specific optimizations

We’ve implemented three EQC back-ends in CirC: SMT,
R1CS, and ILP. We will use the ZoKrates program in Figure 9
as a running example to illustrate the semantics of these back-
ends. This program takes a private input x and computes an
(implicitly public) output x − blog2 xc. The front-end marks
private inputs as existential in the compiled EQC. As we will
see, existential inputs have slightly different semantics in each
back-end.
SMT. Targeting SMT from CirC is trivial, since CirC-IR
is based on SMT-LIB. Our SMT back-end (based on Z3’s
Haskell bindings [110]) supports all of CirC-IR except finite
field elements. Finite field arithmetic could be represented
as modular arithmetic over bit-vectors of sufficient width,
but existing SMT solvers are hopelessly inefficient on this
encoding, so we omit it. Efficiently supporting finite fields in
SMT solvers is future work.

When paired with the ZoKrates front-end, the SMT back-
end requires values for public inputs and outputs of the entry
function (in Fig. 9 this is only the return value, e.g., 9).
Then, the backend produces an SMT formula that allows an
SMT solver to search for an assignment to the private inputs
corresponding to a valid execution (e.g., x 7→ 13).
R1CS. Our R1CS back-end supports booleans, finite field
elements, bit-vectors, and arrays checkable using memory
checking techniques (§3.3).7 We use prior techniques [7, 10,
34, 57, 111, 112] to lower booleans and bit-vectors to R1CS.
Our lowering pass also optimizes translation of certain CirC-
IR terms. For example, the bit-vector term “(c & t) |
((not c) & f)” is better translated as a bitwise if-then-
else than as two ANDs and an OR.

7. CirC does not currently lower floating-point arithmetic to R1CS. Al-
though prior work supports a rudimentary floating-point representation [34],
embedding IEEE 754–compatible floats in R1CS remains an open problem.

Following prior work on proof system compilers [10, 15],
we implement one simple but powerful R1CS-specific opti-
mization in CirC: linearity reduction. This optimization looks
for linear constraints, e.g., 0 = c+

∑
i cixi. It solves for one

of the variables in the constraint, then eliminates that variable
from the constraint system using substitution.

When paired with the ZoKrates front-end, the R1CS back-
end implements ZKPs of function execution that reveal noth-
ing additional about the values of private inputs. For instance,
a prover can show that they know an input x such that the
program in Figure 9 outputs 4 (e.g., x 7→ 7 or x 7→ 8).
ILP. Our ILP back-end supports booleans, bit-vectors, and
arrays captured by memory checking techniques (§3.4). Given
a CirC-IR circuit C that outputs an unsigned bit-vector, the
back-end uses techniques from [113] and [114] to build an
ILP. This ILP includes variables that encode C’s inputs, and
its objective is maximized when C’s output is. Thus, by giving
the ILP to a solver (we use CBC [104]), one can discover
output-maximizing inputs for C.

When paired with the ZoKrates front-end, the ILP back-
end requires values for public inputs to the entry function (in
Fig. 9, there are none). Then, the ILP backend produces a
circuit that allows an ILP solver to search for an assignment to
the private inputs (in Fig. 9, x) that maximizes the return value.
For example, in Figure 9, the ILP solver finds that x 7→ 255
achieves the maximum output value of 247.

4.3. Implementation

CirC’s v1.0 implementation comprises ≈15k lines of
Haskell. The core (i.e, Circify and the IR definition and
optimizations) is ≈5.7k lines; tests and extensions are the rest.
This is the implementation that we evaluate (§5). CirC v2.0
is a ground-up re-implementation in Rust (≈11k lines), which
makes it easier to reason about and optimize compilation times
and to bring new developers onboard. CirC v2.0 is under active
development and will be the main focus of future efforts.

The two versions have different sets of extensions. All
extensions described in this paper were implemented for CirC
v1.0, except those for ILP and ZKlog. CirC v2.0 doesn’t
support Circom, and its subset of the C language is more
restricted. All benchmarks in this paper were run using CirC
1.0 unless otherwise noted. Both versions are open-source.8

5. Output performance and correctness

Language designers should be able to use CirC to create
correct, efficient circuits. In this section, we evaluate both
performance—does CirC produce circuits that perform well
with respect to a given target?—and correctness—can CirC
accurately model input language semantics? We measure per-
formance by comparing CirC’s proof system pipelines to state-
of-the-art, dedicated R1CS compilers. We evaluate correctness
by running CirC’s SMT pipeline on two standard verification
benchmarks. Ultimately, we answer two questions. Does CirC:

• Emit R1CS outputs competitive in size with those emitted
by state-of-the-art proof-system compilers? (§5.1)

8. v1.0: github.com/circify/compiler and v2.0: github.com/circify/circ

https://github.com/circify/compiler
https://github.com/circify/circ

Figure 10. Comparison between CirC and Pequin (§5.1). Relative performance
depends on the benchmark, with neither compiler dominating the other.

• Emit SMT circuits that capture C program semantics with
enough fidelity to find simple bugs? (§5.3)

We find that CirC’s R1CS outputs perform exactly the
same as the Circom compiler’s, roughly the same as Pequin’s,
and slightly better than the ZoKrates compiler’s. We also
find that CirC’s SMT formulas are correct on two benchmark
suites from the sv-comp [115] verifier competition. Finally,
we evaluate CirC on a deployed proof-system application,
verifying Merkle paths, by compiling ZoKrates code to R1CS
(§5.2); CirC matches Zcash’s hand-tuned implementation.

5.1. Performance

We consider three compilation pipelines when evaluating
the performance of CirC’s output: C-to-R1CS, ZoKrates-to-
R1CS, and Circom-to-R1CS. We find that CirC is competitive
with the state of the art in all cases, and slightly outperforms
the ZoKrates compiler; our metric is the number of rank-1
constraints, which is standard (§2.2; [6, 10, 11]).
C-to-R1CS. Compiling C to R1CS stresses CirC’s handling
of boolean, bit-vector, and array (memory) constraints. On this
task, we evaluate CirC against Pequin [108], a state-of-the-art
compiler from a subset of C to R1CS that builds on a long line
of work [7, 11, 34, 57]. We use 6 benchmarks from the Pe-
quin software distribution covering a representative sample of
control-flow patterns and primitive operations. Pequin assumes
that arithmetic never overflows; we use a modified version of
CirC’s R1CS machinery that matches Pequin’s semantics. For
each benchmark, we report the ratio between the number of
constraints that CirC and Pequin produce, which is lower when
CirC performs better.

Figure 10 shows the results: the compilers perform compa-
rably. On simple arithmetic (mm5: matrix multiplication), they
produce an identical number of constraints. On a binary-search
implementation of integer square-root (u32sqrt), CirC has a
slight edge, probably because of aggressive constant folding.
On an addition- and bit manipulation–intensive hash (sha1),
however, CirC performs slightly worse, likely due to missed
inlining opportunities. CirC uses 11.9x fewer constraints for
small arrays (ptrs-8) because CirC optimizes its memory
representation for memory size (as in xJsnark [10]), whereas
Pequin uses a single memory representation that is asymptot-
ically cheap but concretely costly for small arrays.

Figure 11. Comparison between CirC and ZoKrates’s reference compiler
(§5.1). CirC generally produces better output.

Pequin performs better on one benchmark, u32log2-
array, which computes integer logarithms by decomposing
the input into an (integer-typed) array of bits, then scanning
that array. CirC does not yet optimize integer-typed arrays
containing only boolean values, so it treats the intermediate
array as if it contains integers rather than bits, yielding much
worse performance than Pequin. (This is a relatively simple
optimization; adding it is future work.) When we instead
evaluate a version of this function written in a more standard
way (u32log2; Fig. 17), CirC outperforms Pequin slightly.

For consistency with prior work, Appendix A compares
CirC and Pequin on the benchmark set from [11]. On these
benchmarks, CirC produces between 1x and 10x fewer con-
straints than Pequin. This is because small array accesses are
the bottleneck in many of these benchmarks.
ZoKrates-to-R1CS. We evaluate CirC’s ZoKrates-to-R1CS
pipeline relative to the ZoKrates compiler, version 0.6.1. (We
use this version because CirC’s ZoKrates front-end is fully
compatible with it (§4.1).) This comparison tests how CirC
performs when the source language includes R1CS-friendly
features like field elements and control-flow limitations.

We benchmark all major modules in the ZoKrates stan-
dard library. The modules (and benchmarks) are: utili-
ties (mux3, field-to-bools, u32s-to-bools), hashes
(mimc7, pedersen, sha2round), elliptic curve operations
(ec-scalar-mult, ec-add), and signature verification
(eddsa). In Appendix A, we evaluate on the entire standard
library. As above, we report the ratio of constraint counts.

Figure 11 shows the results: CirC slightly outperforms the
reference compiler. On straight-line computations with sim-
ple operations (mimc7, fields-to-bools, u32s-to-
bools), the compilers perform similarly. When there are
opportunities for common sub-expression elimination (ec-
scalar-mult, ec-add), or when CirC can optimize con-
ditional expressions (pedersen, mux3signed), CirC per-
forms better. In one case, sha2round, CirC performs very
slightly worse, likely due to missed inlining opportunities. Our
evaluation on the whole ZoKrates standard library (App. A)
corroborates these results.
Circom-To-R1CS. Circom [15] is effectively a hardware de-
scription language for R1CS. We support it in CirC by writing
a front-end that directly targets R1CS. Thus, compiling Circom
to R1CS is a test of CirC’s R1CS-specific optimizations (§3).

We evaluate CirC against the Circom compiler (v0.0.30) on the
test suite for Circom’s standard library. The compilers perform
identically on all nearly all benchmarks. This is because
Circom designs explicitly describe R1CS constraints, and the
compilers apply the same R1CS optimizations. Appendix A
contains the details of the evaluation.

5.2. Performance on a ZK proof application

We evaluate CirC’s ZoKrates compilation pipeline on a key
primitive for zero-knowledge proof applications: Merkle path
validation. A valid Merkle path establishes that an element x is
in a committed set S. By implementing Merkle path validation
inside a zero-knowledge proof, one can prove that a secret x
is in some publicly committed S. This is used, for example, in
the Zcash cryptocurrency [1, 2]: a private transaction contains
a proof that the coin being spent is in the global set of unspent
coins. Since the proof hides which coin is being spent, an
analyst cannot trace the flow of funds through the system.

We start by implementing a simple 6-line ZoKrates func-
tion that verifies a Merkle proof using an elliptic curve–based
hash function from the ZoKrates standard library. Figure 12
compares cost in constraints versus depth of Merkle tree.
Compared to the ZoKrates reference compiler, CirC produces
≈21% fewer constraints for this naive implementation.

Zcash’s deployed Sapling implementation [116], however,
has less than half as many constraints as CirC produces in
the naive approach. The reason for this discrepancy is that the
Sapling constraint system uses algorithmic optimizations that
are not reflected in ZoKrates’s standard library.9 CirC makes
it easy to implement Sapling’s optimized algorithm: we do so
in just 87 lines of ZoKrates code (and without using the stan-
dard library), whereas Sapling requires well over 1500 lines
of Rust10 to generate constraints using Bellman [59], which
is effectively a macro assembler for R1CS. CirC generates
essentially the same number of constraints as in Sapling’s
implementation, and ≈20% less than the ZoKrates reference
compiler on our optimized ZoKrates code (Fig. 12).

Our optimized ZoKrates implementation is available in the
extended version of this paper [118], Appendix D.

5.3. Correctness

To evaluate the correctness of CirC’s output, we run it
on a subset of the tests from the Software Verification Com-
petition (sv-comp). This annual competition includes many
benchmarks that stress the speed and accuracy of software
verifiers. By extending CirC’s C front-end to support sv-comp
conventions for existential inputs, assertions, and assumptions
(≈40 LOC), we can run CirC on sv-comp benchmarks.

We run CirC on two benchmark categories: signedint-
egeroverflow-regression, which tests the precision
with which overflow is modeled, and bitvector-loops,
which tests the precision with which branches, stack arrays,

9. Sapling’s elliptic curve–based hash function uses optimized point repre-
sentations and incomplete arithmetic formulas. This optimization is thus un-
sound, but the Zcash developers show that this unsoundness is computationally
infeasible to exploit assuming the hardness of discrete log [2, §A.3.3.9].

10. This count includes the Sapling pedersen_hash implementa-
tion [117] and transitive dependencies within the Sapling codebase; it does
not include external libraries, unrelated functionality, or tests.

0

30

60

90

0 5 10 15 20 25

Depth

C
o
n
s
tr

a
in

ts
 (

k
)

System

ZoKrates (std)

CirC (std)

ZoKrates (opt)

CirC (opt)

Sapling

Figure 12. Constraint cost for Merkle path validation versus tree depth (§5.2).
“ZoKrates” denotes the reference compiler; “Sapling” denotes the Zcash
constraint generation library [116]. For ZoKrates and CirC, “(std)” is a naive
implementation using the ZoKrates standard library, whereas “(opt)” incorpo-
rates algorithmic optimizations from Sapling. CirC consistently outperforms
the ZoKrates reference compiler, and matches Sapling’s hand-tuned constraint
count on the Sapling algorithm.

and basic pointers-to-stack-arrays are modeled. We choose
these categories since they exercise most of CirC’s support
for C semantics (§3). CirC is correct in both categories.

We do not compare CirC’s performance (e.g., the SMT
solver’s execution time) on sv-comp benchmarks relative to
other systems. While CirC supports simple IR-level optimiza-
tion passes, it does not currently include machinery for sophis-
ticated static analysis (e.g., SMACK’s static analysis for its
memory representation [25]). Moreover, though CirC handles
the “compilation to SMT” piece of a verifier, it is often not
comparable to the whole verifier or symbolic execution engine
(e.g., CirC does not currently support a front-end forking
phase like KLEE [37]). We discuss combining CirC with
existing verifiers and high-performance verification strategies
in Section 8.

6. Common performance characteristics

This section shows how SMT solvers and proof systems
have similar performance characteristics, which means that
optimizations for one pipeline (e.g., C-to-R1CS) can improve
performance in another pipeline (e.g., C-to-SMT). This fact is
not obvious at first glance. Proof system performance metrics
(i.e., prover runtime) are almost entirely determined by the
number of rank-1 constraints in the input circuit, while SMT
solver performance metrics (i.e., solver runtime) are more diffi-
cult to understand—and are sometimes surprising [119, 120].
Nevertheless, CirC’s optimization passes reveal performance
similarities between both targets. We find that CirC’s SMT-
inspired constant-folding helps proof systems, too, (§6.1),
and that CirC’s oblivious array elimination pass (§6.2) and
granular array modeling (§6.3) help both solver and proof
system back-ends.

6.1. Constant folding

SMT term rewriting—replacing one SMT term with an
equivalent one to assist in SMT solving—is an old tech-
nique [121] used in all major solvers [122–127]. Constant
folding refers to a simple but important class of rewrites such

Figure 13. Solver and proof system performance when operating on the
predicate ∃x.H(x)[0..8] = 0 (§6.1). Constant folding improves performance
for both back-ends.

as replacing 4+5 with 9 or replacing the bit-vector term x<<1
with extractions and concatenations.

Constant folding helps the proof system back-end, too:
the following experiment shows that it reduces the number of
output constraints. We write a small (insecure!) hash function,
H , which digests N 32-bit blocks into a 32-bit result. We wrap
the function with an assertion that the output ends in a zero
byte, encoding the predicate ∃x.H(x)[0..8] = 0. We use CirC
to translate this predicate to R1CS and SMT, varying N and
turning constant folding on and off. For R1CS, we measure
the number of constraints; for SMT we measure the time that
the SMT solver takes to find a satisfying x.

Figure 13 shows the results: constant folding reduces
R1CS constraint count and SMT solver runtime. The benefit
for R1CS is substantial: constant folding reduces constraint
count by a factor of more than 16. The effect is smaller for
SMT, likely because the SMT solver already does constant
folding.11

6.2. Oblivious array elimination

In the spirit of oblivious Turing machines, whose head
movements are input-independent, we use the term oblivious
array to refer to an array that is accessed only at input-
independent indices. CirC includes an optimization pass that
identifies such arrays and replaces them with a sequence of
distinct terms which are accessed independently. This opti-
mization is essentially a strengthening of well-known scalar
replacement optimizations: rather than just replacing a few
array references with scalars, the entire array is eliminated.

We conduct an experiment showing that both targets re-
spond similarly to oblivious array elimination. We write a C
program that (1) declares an array of N ints (2) fills the
array with non-deterministic inputs (3) sums all array elements
and (4) asserts that sum to be non-zero. Since the array is
only accessed at input-independent indices, the oblivious array
elimination pass replaces it with distinct terms. We use CirC
to find assertion-violating inputs using an SMT solver, and
measure the solver’s runtime. We also use CirC to compile

11. Because the SMT solver performs a search, while the R1CS simply
encodes the predicate, solver time scales exponentially with input length, while
R1CS constraints scale linearly. This difference is orthogonal to the benefit
of constant folding to both performance metrics.

Figure 14. Solver and proof system performance are both improved by
oblivious array elimination (§6.2).

the program (and assertion) to R1CS, and count the number
of constraints. Figure 14 shows the results with and without
the optimization, with varied N .12 Both targets perform better
when array elimination is enabled.

6.3. Array granularity

Compiling programs that use random-access storage
(henceforth, arrays) requires the compiler to model those
arrays. CirC uses a fine-grained model: each source array
is represented by its own SMT array. An alternative, coarse-
grained model would use a single large “stack” array contain-
ing all source-level arrays. While the coarse-grained approach
has some benefits [101], it is generally more expensive for
SMT solvers to reason about [128, 129]. We now present an
experiment demonstrating that the coarse-grained approach is
also much more expensive for proof systems.

Our benchmark in this experiment is a function that takes
as input an integer between 0 and w−1, and applies a sequence
of n permutations of {0, 1, . . . , w−1} to it. Each permutation
is encoded as an array, so applying the permutation is just
an array index operation (the program assumes that the input
is in bounds). To vary array granularity, we apply a source
transformation that fuses separate arrays into shared arrays,
which simulates coarser- or finer-grained arrays (e.g., fusing
all arrays simulates the “stack” approach discussed above).

Figure 15 shows our benchmark program for the case n =
2, w = 4; the program uses sv-comp style assumptions and
assertions. The final line of the program asserts that the output
i is not 0, which we use to measure performance as follows.
For the SMT back-end, we ask the solver to find an assertion
violation and measure how long it takes to produce a result
(a violation is guaranteed to exist, because permutations are
invertible). For the proof back-end, we measure the number of
R1CS constraints to construct a proof that the input violates
the assertion about the output.

Figure 16 shows the results for n = 6 and w ∈ {2, 4, 8},
varying the percentage of permutations fused into a single
array. The results show that fusing permutations together—i.e.,
coarsening granularity—significantly reduces performance for
both the SMT and proof back-ends.

12. When array elimination is disabled, the R1CS target falls back to its
standard array implementation, which was briefly discussed in Section 5.1.

void perm(int i) {
__VERIFIER_assume(i >= 0 && i < 4);
int perm0[4] = {2, 0, 1, 3}; i = perm0[i];
int perm1[4] = {0, 1, 3, 2}; i = perm1[i];
__VERIFIER_assert(i != 0);

}

Figure 15. Array granularity benchmark: this C program applies two permu-
tations, which are implemented as arrays, to its input (§6.3).

Figure 16. Effect of array granularity on solver and proof system performance
(§6.3). Increasing x-axis corresponds to increasingly coarse-grained array
representations, which increase costs for both the SMT and proof back-ends.

7. Crossover applications and techniques

In contrast to traditional compilers, CirC’s targets serve
substantially different purposes. This opens the door to appli-
cations that combine targets, and to techniques that use one
target to help another. In this section, we discuss four such
cross-overs: SMT-driven optimization of R1CS size, SMT-
based analysis of ZKlog code, automatic detection and zero-
knowledge proof of bugs, and automatic optimization and
zero-knowledge proof of high value. With CirC, these cross-
overs are easy to implement: each requires between 16 and
≈60 new lines of code.

7.1. Optimizing R1CS using SMT

SMT-guided optimization is an old idea, and SMT solvers
have been used to optimize everything from code [130] to
smart contracts [131] to TensorFlow graphs [132]. CirC makes
it easy to apply SMT-guided optimizations to R1CS, too.

To illustrate this, we use one critical compilation task—
loop unrolling—as a case study. To embed a loop like the one
in Figure 17 in an EQC, the compiler must unroll it some
number of times N , and in some cases emit an assertion
that the bound is respected (§2). If N is too small, the
resulting circuit won’t handle some valid executions; if N is
too large, the extra unrollings increase circuit size, and thus
solving or proving time. Precisely determining N guarantees
completeness while minimizing circuit size.

For this case study, we extend CirC (≈18 LOC) to use an
SMT solver to determine the maximum number of iterations of
a loop. Obviously this approach cannot work for all programs,
but it is quite effective for some: for the u32log2 function of
Figure 17, CirC and the SMT solver determine that N = 32
in well under one second. Figure 18 shows the workflow for

#include "stdint.h"
uint32_t u32log2(uint32_t x) {

uint32_t n_bits = 0;
while (x != 0) {

n_bits++;
x >>= 1u;

}
return n_bits - 1;

}

Figure 17. This function computes blog2 xc. The SMT solver determines
how many iterations to unroll (§7.1).

C program
with loop

CirC-IR
(1 unroll)

CirC-IR
(32 unrolls)

CirC-IR
(33 unrolls)

CirC-IR
(final)

SMT SAT

SMT SAT

SMT UNSAT

begin compile lower solve

continue

...

continuefinish

R1CS
lower

Figure 18. Workflow for determining loop bounds with SMT while compiling
to R1CS. Incrementally compiled circuit fragments are lowered to SMT for
analysis. An UNSAT result causes unrolling to end.

u32log2. Initially, the loop is unrolled once into CirC-IR
which is is lowered to SMT that is satisfiable, so unrolling
continues. After 33 unrollings, the corresponding SMT is now
unsatisfiable, so the IR for 32 unrollings is used to finish
compiling to CirC-IR. The final IR is lowered to R1CS for
use in a proof system, the intended target.

In future work we hope to improve this technique, e.g.,
by using the SMT solver’s incremental mode, and to use the
SMT solver for more complex R1CS optimizations.

7.2. Analyzing ZKlog with SMT

Our ZKlog compiler (based on CirC v2.0) does not limit
recursion when a rule that is annotated as primitive recursive
is applied to decreasing compile-time-constants (§4)—but it
can be difficult to tell if a rule is primitive recursive at all.13

Consider a rule r with arguments x1, . . . , xm that (without loss
of generality) purports to be primitive recursive in x1. Now,
consider a recursive case c for rule r that binds existential
variables xm+1, . . . , xn with conditions t1 ∧ · · · ∧ t` such
that (without loss of generality) condition t1 is the recursive
application of rule r where the first argument depends only
on x1. Thus, the case c encodes the implication:

[∃xm+1, . . . , xn. r(f(x1), . . .)∧t2∧· · ·∧t`]→ r(x1, . . . , xm)

13. Other languages that consider primitive recursion (e.g., Gallina, the
language of Coq [133]) occasionally require the programmer to prove to the
compiler that a recursion is primitive.

For this to be a primitive recursion, it suffices to show that
the other conditions in c imply f(x1) < x1. That is, that the
following is unsatisfiable:

(f(x1) ≥ x1) ∧ t2 ∧ · · · ∧ t` (1)

Our analysis pass checks this property by lowering it to
SMT. The programmer can run the analysis on any rule that
they’ve annotated as primitive recursive. If (1) is UNSAT
for each recursive case, then the rule may be applied to any
compile-time constant without introducing incompleteness.

7.3. Automatically finding and proving bugs

Bug bounties are a popular way for software companies
to incentivize bug reporting, by offering cash rewards to re-
porters. But the incentives in these programs are imperfect. As
examples, a company might accept a bug report but refuse to
pay a bounty; or it might refuse to acknowledge a severe bug,
leaving the reporter with an uncomfortable choice between
remaining silent and publicly revealing the bug’s details, both
of which could harm innocent users. One way to address
problems like this may be to prove the existence of bugs in
zero knowledge; in fact, this application is a key element of
an ongoing DARPA program [134, 135].

Prior work [136–138] constructs manual proof-of-bug
pipelines, but none automatically detects bugs and then auto-
matically proves their existence in zero knowledge: existing
compilers to R1CS have no way of automatically detect-
ing bugs, and existing SMT-based verifiers have no way of
generating zero-knowledge proofs. In fact, just proving the
presence of many types of bugs is beyond the reach of existing
proof compilers that, like Pequin [108] (§5.1), model language
semantics too imprecisely (§4.1). Since CirC models language
semantics precisely (§5.3) and can embed those semantics into
both SMT and R1CS, CirC seems ideally suited to building a
semi-automated proof-of-bug pipeline.

But zero-knowledge proofs-of-bug generally, and auto-
mated pipelines in particular, are still unrealistic. The main is-
sue is that proof systems and SMT solvers both fall hopelessly
short of practical applicability to production-sized codebases.
Naively, this means that proving the existence of a bug in a
large system might require first isolating the buggy code and
then generating a proof—in the process revealing the bug’s
location and potentially allowing anyone to rediscover it!

Nevertheless, we see two strong reasons to hope for a
path forward, with CirC as a key component. First, recent
theoretical advances in efficient proofs of disjunctions [139–
142] promise proof systems well suited to proving statements
like “there is a bug in one of the thousands of functions in
this codebase”—and CirC makes it easy to marry such proof
systems to SMT-based bug-finding techniques.14 Second, prior
work shows that tools capable of detecting subtle bugs or
verifying complex properties often rely on analysts’ expert
knowledge [88, 101]—of a class of bug, of a codebase, or even
of the SMT solver itself [143]. In the case of solver-based bug
finding, furnishing expert hints to the solver can dramatically

14. Standard ZKPs give disjunction proofs with proving time dependent
on the sum of the disjunct sizes. The recent advances yield proving time
dependent on the maximum disjunct size.

1 #define mul_add_c2(a,b,c0,c1,c2) { \
2 BN_ULONG ta=(a),tb=(b),t0; \
3 BN_UMULT_LOHI(t0,t1,ta,tb); \
4 t2 = t1+t1; c2 += (t2<t1)?1:0; \
5 t1 = t0+t0; t2 += (t1<t0)?1:0; \
6 c0 += t1; t2 += (c0<t1)?1:0; \
7 c1 += t2; c2 += (c1<t2)?1:0; }

Figure 19. Incorrect carry handling in OpenSSL, responsible for CVE-2014-
3570 (§7.3). Appendix C explains the bug in detail.

#include "stdint.h"
int wrapper(uint64_t a, uint64_t b, uint64_t c2,

uint64_t c1, uint64_t c0) {
uint64_t cc2 = c2, cc1 = c1, cc0 = c0;
mul_add_c2(a, b, c2, c1, c0);
"SMT_assert: (= (concat c2 c1 c0) (+ (concat cc2

cc1 cc0) (* [192]2 (uext 128 a) (uext 128 b))";↪→

return 0;
}

Figure 20. Function wrapper for mul_add_c2 with assertion of correct
behavior (§7.3). CirC’s assertion language is more verbose; we simplify for
brevity. BN_ULONG’s size depends on the architecture; we use 64 bits.

increase the reach of bug-finding tools. Crucially, a zero-
knowledge proof of a bug’s existence does not reveal these
expert hints; as a result, knowing the approximate location of
a bug may not help non-experts rediscover it.

As a proof of concept, we augment CirC’s C front-end with
support for assertions and assumptions (≈60 LOC). Codebase
owners use assertions to specify intended behavior. Consider
a small example: the macro mul_add_c2 (Fig. 19). It is
intended to compute c = c + 2*a*b, where c is a multi-
precision integer comprising three words, c0, c1, and c2.
Figure 20 shows how a codebase owner would add an assertion
of this behavior. Unfortunately, the macro mishandles integer
overflow (see App. C for details). Indeed, an analyst who
compiles the macro and assertion to SMT can find a violation
using the Z3 SMT solver in ≈700 seconds. The analyst can
then produce a zero-knowledge proof that the codebase owner
can verify in milliseconds (Figure 21). The above pipeline is
impractical for larger programs and more complex properties,
since the solving step quickly becomes intractable.

Assumptions allow the security analyst to use their ex-
pertise to make bug-finding tractable: the analyst encodes
facts about the program or its potential bugs that reduce the
SMT solver’s search burden. As an example, consider again
mul_add_c2 (Fig. 19). Since overflow is a traditional source
of bugs, and mul_add_c2 does not explicitly handle over-
flow caused by its increment steps, the analyst may suspect
that overflow as a possible bug source. With an (overflow)
assumption that t2 == 0 && c0 < t1 after line 6, the
SMT solver can find a bug after only 2.5s. This improves
on the unassisted search time by more than two orders of
magnitude, but expert assumptions can also allow the solver
to finish when it was unable to previously (e.g., [144, §4.2]).

7.4. Automatically finding and proving high-value
inputs

CirC also supports proofs of high-value (which is very
similar to proof-of-bug). Let f(x)→ y be a function, and y0
be a threshold output. A proof of high-value shows that one

Owner Analyst

C program
& assertions

R1CS

Public
Params.

Proof

Hints

SMT
formula

Bad input

X/×

1) compile

2) ZKP setup

3) compile

4) solve

5) ZKP prove
6) ZKP verify

Figure 21. Workflow for finding and proving bugs (§7.3). Left steps are
performed by the codebase owner; right steps by the analyst. (Step 2 samples
cryptographic parameters for the zero-knowledge proof system.)

knows an x such that φ(x, y0) := f(x) ≥ y0, without revealing
x. Proofs of high-value might be applied to optimization
competitions. In an optimization competition (e.g., a Kaggle
competition [145] or the ARPA-E Grid Optimization Com-
petition [146]), competitors submit parameters which maxi-
mize an objective function, and high-performing competitors
receive a reward. This setup has a similar drawback to bug
bounty programs (§8): if competitors submit their parameters
in the clear, then the competition operator could choose not to
compensate them—but zero-knowledge proofs of high-value
avoid this counterparty risk.

With CirC it’s easy to compile an objective function
and constraints to an optimization format (e.g., an ILP) for
finding high-value solutions. Then, it’s easy to compile the
same objective function to a proof-system constraint format
(like R1CS) for writing zero-knowledge proofs. (Just as in
the previous section, making this pipeline realistic requires
using human insight to assist the ILP solver.) As a proof of
concept, we build an automated pipeline for proofs of high-
value (similar to Figure 21, but with an ILP solver in place of
an SMT solver). The pipeline (≈30 LOC) takes a function f
and (a) compiles the predicate φ(x, y) := f(x) ≥ y to R1CS,
(b) compiles f to an ILP, (c) solves the ILP to find an x∗ such
that f(x∗) = y∗, and finally, (d) writes a zero-knowledge proof
of knowledge of an x∗ that satisfies φ(x∗, y∗).

8. Discussion, future work, and conclusion

Targeting other applications. CirC has applications beyond
SMT, ILP, and proof systems. As one example, CirC could
support multi-party computation (MPC), which enables mutu-
ally distrusting parties to collaboratively evaluate a function
while revealing only the result [19]. MPC frameworks require
the function to be expressed as a boolean [147] or arithmetic
circuit [148–150], where each input is labeled with the parties
that know its value. Thus, extending CirC to MPC applications
would require adding support for these fine-grained knowledge
labels. Even after this modification, however, lowering CirC-
IR to MPC targets requires care when handling existential
quantifiers. We conjecture that in many (and perhaps all)
cases, these quantifiers can be transformed either into private

inputs supplied by one party, or into values computed from
the private inputs of multiple parties. A related transformation
is implicit in the seminal work of Ishai et al. on constructing
zero-knowledge proofs via MPC protocols [151].
Program analysis infrastructure. CirC supports IR-level
optimizations, but sophisticated static analysis infrastructure—
at both the language and IR level—would improve most
compilation pipelines. For example, CirC could use a range
analysis to shrink IR-level bit-vectors, which would make
their R1CS embedding more efficient. As another example,
designers could build analyses into their language front-end,
e.g., to select the cryptographic protocol that gives the best
efficiency on a particular program [48, 61, 62, 152]. Designing
new analyses of this kind is future work.

Beyond static analyses, there is potential to leverage more
powerful SMT-based analyses in CirC. Section 7 shows that
CirC’s SMT target can be used to search for loop bounds.
One could also imagine searching for loop invariants, tighter
range bounds, aliasing relationships, and more. The program
verification literature is full of SMT-based analyses which may
be useful for optimizing the size of emitted circuits.
Combining CirC with existing verifiers. It may be inter-
esting to combine CirC with modern verification machinery.
For example, CirC could benefit from SMACK’s [25] front-
end–based optimizations, while Boogie front-ends [22] could
benefit from targeting cryptographic applications.
Conclusion. In this work, we show how CirC makes it easy
to compile new source languages, support new EQC targets,
and write optimizations that apply to multiple pipelines: all
of these can be done with very little code, and all yield
high-quality compiler output. Moreover, with CirC it’s easy to
combine different EQC compilation pipelines to support novel
applications., e.g., automatically finding bugs and proving
their existence. In short: shared infrastructure for constraint
compilers is both possible and useful.

Acknowledgments

We are grateful to Sebastian Angel, Clark Barrett, Andrew
Blumberg, Dan Boneh, Patrick Cousot, Dawson Engler, Ranjit
Jhala, Soren Lerner, Andres Nötzli, Deian Stefan, Michael
Walfish, and Thomas Wies for helpful conversations. We thank
the anonymous reviewers and our shepherd, Trevor Perrin, for
making our work stronger with their careful feedback. This
work was supported in part by the NSF, the Stanford Center
for Blockchain Research, and the Simons Foundation. It was
also supported by DARPA under Agreement HR00112020022.
The views in this paper are the authors’ and do not necessar-
ily represent the views of the United States Government or
DARPA. Riad’s work was partly supported by Algorand.

References
[1] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,

E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous
payments from Bitcoin,” in IEEE S&P, May 2014.

[2] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification.” https://zips.z.cash/protocol/protocol.pdf, 2016.

[3] B. Whitehat, “roll up: Scale ethereum with SNARKs.”
https://github.com/barryWhiteHat/roll up.

[4] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu,
“ZEXE: Enabling decentralized private computation,” in IEEE S&P,
May 2020.

https://zips.z.cash/protocol/protocol.pdf
https://github.com/barryWhiteHat/roll_up

[5] J. Lee, K. Nikitin, and S. Setty, “Replicated state machines without
replicated execution,” in IEEE S&P, May 2020.

[6] A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh, “Scaling
verifiable computation using efficient set accumulators,” in USENIX
Security, Aug. 2020.

[7] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish, “Verifying computations with state,” in SOSP, Nov.
2013. Extended version: http://eprint.iacr.org/2013/356.

[8] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in IEEE S&P, May 2013.

[9] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in IEEE S&P, May 2015.

[10] A. E. Kosba, C. Papamanthou, and E. Shi, “xJsnark: A framework
for efficient verifiable computation,” in IEEE S&P, May 2018.

[11] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish,
“Efficient RAM and control flow in verifiable outsourced
computation,” in NDSS, Feb. 2015.

[12] J. Eberhardt and S. Tai, “ZoKrates—scalable privacy-preserving
off-chain computations,” in IEEE Blockchain, July 2018.

[13] “ZoKrates.” https://zokrates.github.io/.
[14] “Zinc.” https://zinc.matterlabs.dev/.
[15] J. Baylina, “Circom.” https://github.com/iden3/circom.
[16] “Noir.” https://noir-lang.github.io/book/index.html.
[17] “Leo.” https://developer.aleo.org/aleo/getting started/overview/.
[18] C. Chin, H. Wu, R. Chu, A. Coglio, E. McCarthy, and E. Smith,

“Leo: A programming language for formally verified, zero-knowledge
applications,” 2021. https://ia.cr/2021/651.

[19] Y. Lindell, “Secure multiparty computation (MPC).”
https://eprint.iacr.org/2020/300. To appear in CACM.

[20] V. Vaikuntanathan, “Computing blindfolded: New developments in
fully homomorphic encryption,” in FOCS, Oct. 2011.

[21] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard:
Version 2.0,” in SMT, 2010.

[22] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “Boogie: A modular reusable verifier for object-oriented
programs,” in FMCO, 2005.

[23] K. R. M. Leino, “Dafny: An automatic program verifier for
functional correctness,” in LPAR, 2010.

[24] N. Bjørner and L. de Moura, “Applications of SMT solvers to
program verification,” in Notes for the Summer School on Formal
Techniques, 2014.

[25] Z. Rakamarić and M. Emmi, “Smack: Decoupling source language
details from verifier implementations,” in CAV, 2014.

[26] E. Torlak and R. Bodik, “A lightweight symbolic virtual machine for
solver-aided host languages,” in PLDI, 2014.

[27] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, 2004.

[28] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, 2006.

[29] E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter, “Synthesis modulo
recursive functions,” in OOPSLA, 2013.

[30] S. Srivastava, S. Gulwani, and J. S. Foster, “From program
verification to program synthesis,” in POPL, 2010.

[31] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Boston, MA, USA:
Cengage Learning, 2nd ed., 2002.

[32] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A.
Hackebeil, B. L. Nicholson, and J. D. Siirola, Pyomo-optimization
modeling in Python, vol. 67. Springer, 2017.

[33] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay–A secure
two-party computation system,” in USENIX Security, Aug. 2004.

[34] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish, “Taking proof-based verified computation a few steps
closer to practicality,” in USENIX Security, Aug. 2012. Extended
version: https://ia.cr/2012/598.

[35] A. Gurfinkel and J. A. Navas, “A context-sensitive memory model for
verification of C/C++ programs,” in SAS, 2017.

[36] C. Sinz, S. Falke, and F. Merz, “A precise memory model for
low-level bounded model checking,” in SSV, 2010.

[37] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in OSDI, 2008.

[38] K. R. M. Leino, “This is Boogie 2.” https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/12/krml178.pdf, 2008.

[39] E. Cohen, M. Moskal, S. Tobies, and W. Schulte, “A precise yet
efficient memory model for C,” in SSV, Oct. 2009.

[40] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in USENIX
Security, 2018.

[41] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: Verifying program executions succinctly and in zero
knowledge,” in CRYPTO, Aug. 2013.

[42] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct
non-interactive zero knowledge for a von Neumann architecture,” in
USENIX Security, Aug. 2014.

[43] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis and transformation,” in CGO, 2004.

[44] S. Arora and B. Barak, Computational Complexity: A Modern
Approach. Cambridge, UK: Cambridge University Press, 2009.

[45] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and
C. Papamanthou, “vSQL: Verifying arbitrary SQL queries over
dynamic outsourced databases,” in IEEE S&P, 2017.

[46] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
coin: Building Zerocoin from a succinct pairing-based proof system,”
in PETShop, 2013.

[47] R. S. Wahby, M. Howald, S. Garg, a. shelat, and M. Walfish,
“Verifiable ASICs,” in IEEE S&P, 2016.

[48] R. S. Wahby, Y. Ji, A. J. Blumberg, a. shelat, J. Thaler, M. Walfish,
and T. Wies, “Full accounting for verifiable outsourcing,” in CCS,
2017.

[49] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them: from theoretical possibility to near practicality,”
CACM, vol. 58, pp. 74–84, Feb. 2015.

[50] J. Thaler, “Proofs, arguments, and zero-knowledge.”
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf.

[51] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” in CRYPTO, Aug. 2014.

[52] M. Fredrikson and B. Livshits, “Zø: An optimizing distributing
zero-knowledge compiler,” in USENIX Security, Aug. 2014.

[53] Y. Xie and A. Aiken, “Saturn: A scalable framework for error
detection using boolean satisfiability,” in TOPLAS, 2007.

[54] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W.
Liao, E. Bugnion, and M. S. Lam, “Maximizing multiprocessor
performance with the SUIF compiler,” IEEE Computer, 1996.

[55] C. Lattner, J. A. Pienaar, M. Amini, U. Bondhugula, R. Riddle,
A. Cohen, T. Shpeisman, A. Davis, N. Vasilache, and O. Zinenko,
“MLIR: A compiler infrastructure for the end of Moore’s law.”
https://arxiv.org/abs/2002.11054.

[56] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level
synthesis languages, tools, and compilers for reconfigurable high
performance computing,” in ICSS, Apr. 2013.

[57] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish,
“Resolving the conflict between generality and plausibility in verified
computation,” in EuroSys, Apr. 2013.

[58] “libsnark.” https://github.com/scipr-lab/libsnark.
[59] “bellman.” https://github.com/zkcrypto/bellman.
[60] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system for

secure multi-party computation,” in CCS, Oct. 2008.
[61] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and

I. Wehrenberg, “TASTY: tool for automating secure two-party
computations,” in CCS, Oct. 2010.

[62] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and
T. Schneider, “HyCC: Compilation of hybrid protocols for practical
secure computation,” in CCS, Oct. 2018.

[63] C. Acay, R. Recto, J. Gancher, A. C. Myers, and E. Shi, “Viaduct:
An extensible, optimizing compiler for secure distributed programs,”
in PLDI, 2021.

[64] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure
two-party computations in ANSI C,” in CCS, Oct. 2012.

[65] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded
model checking for embedded ANSI-C software,” in ASE, 2009.

[66] D. Kroening and M. Tautschnig, “CBMC–C bounded model checker,”
in TACAS, 2014.

[67] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-C,” in SEFM, 2012.

[68] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-C: A software analysis perspective,” in FAC,
2015.

[69] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model

http://eprint.iacr.org/2013/356
https://zokrates.github.io/
https://zinc.matterlabs.dev/
https://github.com/iden3/circom
https://noir-lang.github.io/book/index.html
https://developer.aleo.org/aleo/getting_started/overview/
https://ia.cr/2021/651
https://eprint.iacr.org/2020/300
https://ia.cr/2012/598
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://github.com/scipr-lab/libsnark
https://github.com/zkcrypto/bellman

checking with SLAM,” CACM, vol. 54, pp. 68–76, July 2011.
[70] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg, “The

Static Driver Verifier research platform,” in CAV, 2010.
[71] K. R. M. Leino, P. Müller, and J. Smans, “Verification of concurrent

programs with Chalice,” in FOSAD, 2009.
[72] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and

F. Piessens, “VeriFast: A powerful, sound, predictable, fast verifier
for C and Java,” in NASA Formal Methods Symposium, 2011.

[73] N. Vazou, Liquid Haskell: Haskell as a theorem prover. PhD thesis,
UC San Diego, 2016.

[74] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones,
“Refinement types for haskell,” in ICFP, 2014.

[75] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Dependent types and
multi-monadic effects in F?,” in POPL, 2016.

[76] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik,
“JBMC: A bounded model checking tool for verifying Java
bytecode,” in CAV, 2018.

[77] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr, “Provably
correct peephole optimizations with Alive,” in PLDI, 2015.

[78] D. Menendez, S. Nagarakatte, and A. Gupta, “Alive-FP: Automated
verification of floating point based peephole optimizations in LLVM,”
in SAS, 2016.

[79] A. Nötzli and F. Brown, “Lifejacket: Verifying precise floating-point
optimizations in LLVM,” in SOAP, 2016.

[80] K. v. Gleissenthall, R. G. Kıcı, A. Bakst, D. Stefan, and R. Jhala,
“Pretend synchrony: synchronous verification of asynchronous
distributed programs,” in POPL, 2019.

[81] R. Uhler and N. Dave, “Smten with satisfiability-based search,” in
OOPSLA, 2014.

[82] A. Köksal, V. Kuncak, and P. Suter, “Constraints as control,” in
POPL, 2012.

[83] L. Moura, “Z3Py guide: Z3 API in Python.”
https://ericpony.github.io/z3py-tutorial/guide-examples.htm.

[84] L. Erkök, “SBV: SMT based verification in Haskell.”
https://hackage.haskell.org/package/sbv.

[85] E. Torlak and R. Bodik, “Growing solver-aided languages with
Rosette,” in Onward!, 2013.

[86] J.-C. Filliâtre and A. Paskevich, “Why3—where programs meet
provers,” in ESOP, 2013.

[87] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in VMCAI, 2016.

[88] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang,
“Scaling symbolic evaluation for automated verification of systems
code with Serval,” in SOSP, 2019.

[89] Z. Nehai and F. Bobot, “Deductive proof of Ethereum smart contracts
using Why3.” arXiv:1904.11281, 2019.

[90] M. Baranowski, S. He, and Z. Rakamarić, “Verifying Rust programs
with SMACK,” in ATVA, 2018.

[91] Á. Hajdu and D. Jovanović, “solc-verify: A modular verifier for
Solidity smart contracts,” in VSTTE, 2019.

[92] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits,
“Verifying higher-order programs with the Dijkstra monad,” in PLDI,
2013.

[93] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing
Surveys, vol. 51, no. 3, pp. 1–39, 2018.

[94] C. Cadar and K. Sen, “Symbolic execution for software testing:
Three decades later,” CACM, vol. 56, no. 2, pp. 82–90, 2013.

[95] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in USENIX Security, 2015.

[96] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox fuzzing
for security testing,” CACM, vol. 55, no. 3, pp. 40–44, 2012.

[97] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in PLDI, 2005.

[98] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in ESEC-FSE, 2005.

[99] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in ASPLOS, 2011.

[100] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in NDSS, 2016.

[101] F. Brown, D. Stefan, and D. Engler, “Sys: A static/symbolic tool for
finding good bugs in good (browser) code,” in USENIX Security,

2020.
[102] S. Poeplau and A. Francillon, “Symbolic execution with SymCC:

Don’t interpret, compile!,” in USENIX Security, 2020.
[103] “Gurobi.” https://www.gurobi.com/.
[104] J. Forrest and R. Lougee-Heimer, “CBC user guide,” in Emerging

theory, methods, and applications, pp. 257–277, 2005.
[105] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, principles,

techniques. Addison Wesley, 1986.
[106] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor,

“Checking the correctness of memories,” in FOCS, 1991.
[107] E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman, “Verified

peephole optimizations for CompCert,” in PLDI, 2016.
[108] “Pequin: A system for verifying outsourced computations and

applying SNARKs.” https://github.com/pepper-project/pequin.
[109] Y. Zhang, A. Steele, and M. Blanton, “PICCO: A general-purpose

compiler for private distributed computation,” in CCS, Nov. 2013.
[110] I. Abal, “Haskell Z3 bindings.”

https://github.com/PLSysSec/haskell-z3.
[111] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller, “Arya:

Nearly linear-time zero-knowledge proofs for correct program
execution,” in ASIACRYPT, 2018.

[112] B. Braun, “Compiling computations to constraints for verified
computation.” UT Austin Honors Thesis HR-12-10, Dec. 2012.

[113] R. Brinkmann and R. Drechsler, “RTL-datapath verification using
integer linear programming,” in ASP-DAC/VLSI, 2002.

[114] Z. Zeng, P. Kalla, and M. Ciesielski, “LPSAT: A unified approach to
RTL satisfiability,” in DATE, 2001.

[115] D. Beyer, “Automatic verification of C and Java programs:
SV-COMP 2019,” in TACAS, 2019.

[116] “Zcash Sapling circuit library.”
https://github.com/zcash-hackworks/sapling-crypto, 2018.

[117] “pedersen hash.rs.” https://github.com/zcash-hackworks/
sapling-crypto/blob/49017b4e055ba4322dad1f03fe7d80dc0ed449cc/
src/circuit/pedersen hash.rs, 2018.

[118] A. Ozdemir, F. Brown, and R. S. Wahby, “CirC: Compiler
infrastructure for proof systems, software verification, and more.”
https://eprint.iacr.org/2020/1586. Extended version.

[119] M. Chang, “Performance issue on QF NIRA formula. CVC4 Issue
5354.” https://github.com/CVC4/CVC4/issues/5354.

[120] N. Becker, P. Müller, and A. J. Summers, “The Axiom Profiler:
Understanding and debugging SMT quantifier instantiations,” in
TACAS, 2019.

[121] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge,
UK: Cambridge University Press, 1999.

[122] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in CAV, 2011.

[123] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP 2020.”
arXiv:2006.01621, 2020.

[124] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC and
Boolector 3.0,” in CAV, 2018.

[125] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, 2008.

[126] B. Dutertre, “Yices 2.2,” in CAV, 2014.
[127] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and

R. Sebastiani, “The MathSAT 4 SMT solver,” in CAV, 2008.
[128] W. Wang, C. Barrett, and T. Wies, “Partitioned memory models for

program analysis,” in VMCAI, 2017.
[129] R. M. Burstall, “Some techniques for proving correctness of

programs which alter data structures,” Machine intelligence, vol. 7,
no. 23-50, p. 3, 1972.

[130] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, G. Lup,
J. Taneja, and J. Regehr, “Souper: A synthesizing superoptimizer.”
arXiv:1711.04422, 2017.

[131] E. Albert, P. Gordillo, A. Rubio, and M. A. Schett, “Synthesis of
super-optimized smart contracts using Max-SMT,” in CAV, 2020.

[132] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and
A. Aiken, “TASO: optimizing deep learning computation with
automatic generation of graph substitutions,” in SOSP, 2019.

[133] Y. Bertot and P. Castéran, Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media, 2013.

[134] J. Baron, “Securing information for encrypted verification and
evaluation.” https://web.archive.org/web/20200221151433/https:
//www.darpa.mil/attachments/SIEVEProposersDaySlidesv4.pdf, 2019.
DARPA SIEVE Program Proposers Day Slides.

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://hackage.haskell.org/package/sbv
https://www.gurobi.com/
https://github.com/pepper-project/pequin
https://github.com/PLSysSec/haskell-z3
https://github.com/zcash-hackworks/sapling-crypto
https://github.com/zcash-hackworks/sapling-crypto/blob/49017b4e055ba4322dad1f03fe7d80dc0ed449cc/src/circuit/pedersen_hash.rs
https://github.com/zcash-hackworks/sapling-crypto/blob/49017b4e055ba4322dad1f03fe7d80dc0ed449cc/src/circuit/pedersen_hash.rs
https://github.com/zcash-hackworks/sapling-crypto/blob/49017b4e055ba4322dad1f03fe7d80dc0ed449cc/src/circuit/pedersen_hash.rs
https://eprint.iacr.org/2020/1586
https://github.com/CVC4/CVC4/issues/5354
https://web.archive.org/web/20200221151433/https://www.darpa.mil/attachments/SIEVEProposersDaySlidesv4.pdf
https://web.archive.org/web/20200221151433/https://www.darpa.mil/attachments/SIEVEProposersDaySlidesv4.pdf

[135] “Researchers demonstrate potential for zero-knowledge proofs in
vulnerability disclosure.”
https://www.darpa.mil/news-events/2021-04-22, 2021. DARPA Press
Release.

[136] F. Tramèr, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi,
“Sealed-glass proofs: Using transparent enclaves to prove and sell
knowledge,” in IEEE S&P, 2017.

[137] L. Breidenbach, P. Daian, F. Tramèr, and A. Juels, “The Hydra
framework for principled, automated bug bounties,” IEEE Security &
Privacy Magazine, vol. 17, pp. 53–61, July 2019.

[138] L. Breidenbach, P. Daian, F. Tramèr, and A. Juels, “Enter the Hydra:
Towards principled bug bounties and exploit-resistant smart
contracts,” in USENIX Security, 2018.

[139] D. Heath and V. Kolesnikov, “Stacked garbling with O(b log b)
computation,” in EUROCRYPT, 2021.

[140] D. Heath and V. Kolesnikov, “Stacked garbling for disjunctive
zero-knowledge proofs.,” EUROCRYPT, 2020.

[141] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl,
“Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic
circuits with nested disjunctions,” in CRYPTO, 2021.

[142] D. Heath, Y. Yang, D. Devecsery, and V. Kolesnikov, “Zero
knowledge for everything and everyone: Fast ZK processor with
cached ORAM for ANSI C programs,” in IEEE S&P, 2021.

[143] K. R. M. Leino and C. Pit-Claudel, “Trigger selection strategies to
stabilize program verifiers,” in CAV, Springer, 2016.

[144] M. Andrysco, A. Nötzli, F. Brown, R. Jhala, and D. Stefan, “Towards
verified, constant-time floating point operations,” in CCS, 2018.

[145] Kaggle, “Compeitions.” https://www.kaggle.com/docs/competitions.
[146] ARPA-E, “Grid optimization competition.”

https://gocompetition.energy.gov/.
[147] A. C. Yao, “Protocols for secure computations,” in FOCS, 1982.
[148] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental

game or A completeness theorem for protocols with honest majority,”
in STOC, 1987.

[149] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract),” in STOC, 1988.

[150] D. Beaver, “Efficient multiparty protocols using circuit
randomization,” in CRYPTO, 1991.

[151] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge
from secure multiparty computation,” in STOC, 2007.

[152] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish, “A hybrid
architecture for interactive verifiable computation,” in IEEE S&P,
2013.

[153] J.-C. Filliâtre and S. Conchon, “Type-safe modular hash-consing,” in
ML, 2006.

[154] A. P. Ershov, “On programming of arithmetic operations,” CACM,
vol. 1, no. 8, pp. 3–6, 1958.

Appendix A.
Full Benchmarks

In this section, we compare CirC v1.0 against the
ZoKrates, Circom, and Pequin compilers on a full set of
benchmarks. We use the same testbed described in Section 5.1.
ZoKrates-to-R1CS. We benchmark every circuit in the
ZoKrates standard library (v0.6.1), reporting compile time and
constraint count for CirC and the ZoKrates reference compiler
(v0.6.1). Figure 22 shows the results. Generally, CirC produces
slightly fewer constraints. For the elliptic curve module (ecc),
CirC produces many fewer constraints, but it produces slightly
more for bit-intensive hashing (sha256). In almost all cases,
the ZoKrates compiler is faster; this is probably because of
the term representation in CirC’s v1.0 implementation. Terms
are recursive Haskell GADTs, and maps from them are either
(a) hash maps on a hash that traverses the full term or (b)
tree maps on the term’s full string representation. CirC v2.0
represents terms with hash-consing [153, 154]; this yields
better performance.

File CirC ZoKrates
Constraints Time (s) Constraints Time (s)

ecc/babyjubjubParams 10 0.08 10 0.01
ecc/edwardsAdd 11 0.07 19 0.01
ecc/edwardsCompress 763 3.66 766 0.13
ecc/edwardsNegate 2 0.06 2 0.02
ecc/edwardsOnCurve 6 0.12 9 0.01
ecc/edwardsOrderCheck 40 0.09 60 0.03
ecc/edwardsScalarMult 6394 6.04 9994 0.46
ecc/proofOfOwnership 6350 7.92 9989 0.85
mimc7/mimc7R10 40 0.48 42 0.02
mimc7/mimc7R20 80 0.84 82 0.03
mimc7/mimc7R50 200 1.31 202 0.19
mimc7/mimc7R90 360 1.96 362 0.88
mimcSponge/mimcFeistel 661 7.29 662 11.10
mimcSponge/mimcSponge 2632 46.46 2643 89.39
pedersen/512bit 3062 9.38 3940 1.90
sha256/1024bitPadded 84237 193.11 79575 18.13
sha256/1024bit 57098 122.31 56674 8.82
sha256/1536bit 85791 182.48 87345 16.38
sha256/256bitPadded 27547 61.72 26587 3.80
sha256/512bitPacked 55544 141.51 50398 10.70
sha256/512bitPadded 55544 125.13 48904 8.74
sha256/512bit 28405 60.45 27470 3.18
sha256/shaRound 28949 56.42 28070 2.49
utils/256bitsDirectionHelper 529 0.10 1105 0.02
signatures/verifyEddsa 96765 205.78 99359 22.20
casts/1024to256array 2048 7.80 2048 0.19
casts/bool 128 to u32 4 132 0.37 132 0.01
casts/bool 256 to u32 8 264 0.65 264 0.05
casts/u32 4 to bool 128 256 0.42 260 0.01
casts/u32 8 to bool 256 512 0.64 520 0.02
multiplexer/lookup1bit 2 0.06 4 0.02
multiplexer/lookup2bit 5 0.08 6 0.01
multiplexer/lookup3bitSigned 7 0.07 8 0.02
bool/nonStrictUnpack256 508 1.49 511 0.05
bool/pack128 128 0.42 129 0.05
bool/pack256 256 1.10 257 0.06
bool/unpack128 382 1.30 635 0.02
u32/nonStrictUnpack256 254 2.05 263 0.11
u32/pack128 128 0.54 133 0.05
u32/pack256 256 0.96 265 0.09
u32/unpack128 254 1.55 511 0.08

Figure 22. CirC vs. the ZoKrates 0.6.1 reference compiler on the ZoKrates
standard library.

Circom-to-R1CS. We evaluate on every test circuit in the test
suite of the Circom standard library (v0.20). We omit circuits
that the Circom compiler (v0.30) could not compile (either
because the test was invalid or because our testbed did not
have enough memory).

Figure 23 shows the results. The compilers give identical
constraint counts in nearly every case. Recall (§5.1) that Cir-
com is essentially a hardware description language for R1CS,
and both compilers perform the same R1CS optimizations. The
runtime of CirC is typically better than the reference compiler,
which is written in JavaScript.

C-to-R1CS. We evaluate on all C-language benchmarks
from [11]. We get these benchmarks from the Pequin
source distribution (https://github.com/pepper-project/pequin).
In [11], these benchmarks are parameterized; we use the
default parameters from the source distribution.

We apply two transforms to the benchmarks before eval-
uation. First, since CirC’s C front-end does not support Pe-
quin’s (bespoke) I/O conventions for multi-dimensional input
arrays, we flatten the inputs to the matrix-multiplication bench-
mark. (Note that CirC’s C front-end does support standard C-
language multi-dimensional arrays.) Second, since CirC’s C
front-end does not evaluate C constant expressions before type
checking, we evaluate constant expressions in array lengths.

https://www.darpa.mil/news-events/2021-04-22
https://www.kaggle.com/docs/competitions
https://gocompetition.energy.gov/
https://github.com/pepper-project/pequin

File CirC Circom
Constraints Time (s) Constraints Time (s)

aliascheck test 261 0.10 261 0.30
babyadd tester 6 0.08 6 0.30
babycheck test 3 0.09 3 0.27
babypbk test 776 0.42 776 4.96
binsub test 49 0.07 49 0.22
constants test 1 0.08 1 0.13
eddsamimc test 5712 0.83 5712 19.05
eddsaposeidon test 4208 1.07 4208 18.44
edwards2montgomery 2 0.08 2 0.15
escalarmulany test 2554 0.36 2554 1.18
escalarmulfix test 776 0.44 776 5.00
greatereqthan 65 0.11 65 0.18
greaterthan 65 0.10 65 0.17
isequal 2 0.08 2 0.17
iszero 2 0.07 2 0.18
lesseqthan 65 0.07 65 0.17
lessthan 65 0.09 65 0.17
mimc sponge hash test 2640 0.24 2640 0.71
mimc sponge test 660 0.14 660 0.31
mimc test 364 0.08 364 0.20
montgomery2edwards 2 0.06 2 0.18
montgomeryadd 3 0.05 3 0.13
montgomerydouble 4 0.07 4 0.13
mux1 1 1 0.07 2 0.15
mux2 1 3 0.07 3 0.20
mux3 1 5 0.07 5 0.21
mux4 1 9 0.07 9 0.22
pedersen2 test 701 0.40 701 3.91
sha256 2 test 30134 53.77 30134 80.88
sign test 262 0.13 262 0.33
smtprocessor10 test 7895 5.07 7895 158.39
smtverifier10 test 4783 2.72 4783 50.12
sum test 97 0.07 97 0.20

Figure 23. CirC vs. the Circom compiler on the Circom test suite.

Benchmark CirC Pequin
Constraints Time (s) Constraints Time (s)

sparse matvec 5806 1.47 23466 7.63
mm 27000 577.97 27001 17.44
rle decode 4560 1.10 9847 6.23
mergesort 10400 3.32 19781 5.45
kmp search 75650 23.13 163664 30.56
ptrchase 168 0.11 1993 1.43
boyer moore 2016 0.91 5612 2.06

Figure 24. CirC vs. the Pequin compiler on C-language benchmarks from [11].

For benchmarks that use Buffet’s loop-flattening directives,
we manually apply Buffet’s C-to-C flattening pass. This is
identical to the way that Pequin uses loop flattening, except
that Pequin invokes the source-to-source transformation auto-
matically as the first step in compilation.

Figure 24 shows the results. Generally, CirC produces
many fewer constraints. This is because these benchmarks—
similar to ptrs-8 from our main evaluation—are bottlenecked
on accesses to small arrays. Recall (§5.1) that CirC compiles
small arrays more efficiently than Pequin.

Since small array accesses are the bottleneck, we think that
this benchmark set portrays CirC in an unfairly favorable light.
Nonetheless, we include these benchmarks for consistency
with [11]; see Section 5.1 for a fairer comparison (in our view).

Appendix B.
ZKlog abstract syntax

Figure 25 shows the abstract syntax of ZKlog, our Datalog
dialect. A type is a bool, field element, unsigned integer, or a
fixed-size array. A rule holds for some input variables if any

n ∈ N i ∈ identifiers ` ∈ constant literals
⊕ ∈ binary ops. 	 ∈ unary ops.
τ ::= un | bool | field | τ [n] types
q ::= public | ε qual. types
d ::= i : q τ declarations

t ::= ` | i | t⊕ t | 	 t | t[t] | [~t] terms

a ::= t | i(~t) atoms

c ::= ∃~d. ~a cases

r ::= i(~d) :- ~c rules

Figure 25. The abstract syntax of our Datalog dialect. For a term class
represented by x, ~x denotes lists of such terms.

a b c2 c1 c0

×
t1(hi) ‖ t0 (lo)

×2

+1?

+1?

+1?
overflow?

×2
of.?

+
overflow?

+

+1? overflow?

c2 c1 c0

Figure 26. Dataflow for the code in Figure 19. Conditional increments
handle overflow. If the circled operation overflows, c2 should be (but is not)
incremented again.

case does. Each case can quantify existential variables and
holds if all of its atoms hold for some variable assignment.
Each atom is a rule application or a term: a literal, variable,
array, or an operator applied to other terms. A program com-
prises rules, including a distinguished entry rule: main.

Types can be qualified as public. For a zero knowledge
proof, inputs to the entry rule are public if so qualified and
private otherwise. All variables quantified by cases are private.

Appendix C.
OpenSSL Bug Details

Figure 26 illustrates the bug in the OpenSSL macro
mul_add_c2 (Figure 19). Double and add operations can
overflow by a single bit; these overflows are handled by
conditional increments to c2 and t1. However, the conditional
increments themselves can also overflow. In some cases, this
does not introduce a bug. Overflows in c2 can be soundly
ignored, since this macro implements triple-word arithmetic.
The first conditional increment to t1 cannot overflow, because
t1 must be even before the increment. However, if the second
condition increment to t1 (circled with a dashed red line)
overflows, c2 should be—but is not—incremented again.

Appendix D.
Optimized ZoKrates Pedersen hash

The listing below contains our optimized implementation
of an elliptic curve–based hash function (87 LOC; some lines
have been broken for clarity). First, we define a structure for
Montgomery-form elliptic curve points and Montgomery-form
elliptic curve parameters (lines 1–12). Then, we implement
incomplete formulas for adding, doubling, and negating curve
points in this form (lines 15–49). We also implement conver-
sions between Montgomery and twisted Edwards form, and
multiplexers (lines 45–94). These primitives make it easy to
implement optimized Pedersen hashing (lines 101–130).

1 struct Mont {
2 field x
3 field y
4 }
5 struct MontParams {
6 field A
7 field B
8 }
9

10 // The parameters for our curve
11 def mont_params() -> MontParams:
12 return MontParams { A: 40962, B: 1 }
13

14 // montgomery (incomplete) addition
15 def mont_add(Mont p1, Mont p2) -> Mont:
16 // Formula:
17 // lam = (y2 - y1) / (x2 - x1)
18 // x3 = B*lamˆ2 - A - x1 - x2
19 // y3 = lam*(x1 - x3) - y1
20 field A = mont_params().A
21 field B = mont_params().B
22 field lam = (p2.y - p1.y) / (p2.x - p1.x)
23 field x3 = B*lam*lam - A - p1.x - p2.x
24 field y3 = lam*(p1.x - x3) - p1.y
25 return Mont { x: x3, y: y3 }
26

27 // montgomery (incomplete) doubling
28 def mont_doub(Mont p1) -> Mont:
29 // Formula:
30 // x2 = x*x
31 // lam = (3*x2 + 2*A*x + 1) / (2*B*y)
32 // xx = B*lam*lam - A - 2*x
33 // yy = lam*(x - xx) - y
34 field A = mont_params().A
35 field B = mont_params().B
36 field x = p1.x
37 field y = p1.y
38 field x2 = x*x
39 field lam = (3*x2 + 2*A*x + 1) / (2*B*y)
40 field xx = B*lam*lam - A - 2*x
41 field yy = lam*(x - xx) - y
42 return Mont { x: xx, y: yy }
43

44 // montgomery (incomplete) conditional negation
45 def mont_cond_neg(Mont p, bool s) -> Mont:
46 return Mont {
47 x: p.x,
48 y: if s then (0-1)*p.y else p.y fi
49 }
50

51 // montgomery to edwards
52 def mont_to_ed(Mont p) -> field[2]:
53 // formula:
54 // xx = p.x / p.y
55 // yy = (p.x - 1) / (p.x + 1)
56 field xx = p.x / p.y

57 field yy = (p.x - 1) / (p.x + 1)
58 return [xx, yy]
59

60 // edwards to montgomery
61 def ed_to_mont(field[2] p) -> Mont:
62 // formula:
63 // xx = (p.y + 1) / (p.y - 1)
64 // yy = xx / p.x
65 field x = p[0]
66 field y = p[1]
67 field xx = (y + 1) / (y - 1)
68 field yy = xx / x
69 return Mont { x: xx, y: yy }
70

71 // return x[s], good for constant x
72 def mux_2b(field[2] s, field[4] x, field s01) -> field:
73 field s0 = s[0]
74 field s1 = s[1]
75 return x[0] + s0*(x[1] - x[0]) + \
76 s1*(x[2] - x[0]) + s01*(x[3] - x[2] - x[1] + x[0])
77

78 // return x[s], good for constant x
79 def mont_mux_2b(bool[2] s, Mont x0, Mont x1, Mont x2,
80 Mont x3) -> Mont:
81 field s0 = if s[0] then 1 else 0 fi
82 field s1 = if s[1] then 1 else 0 fi
83 field s01 = s0*s1
84 return Mont {
85 x: mux_2b([s0, s1], [x0.x, x1.x, x2.x, x3.x], s01),
86 y: mux_2b([s0, s1], [x0.y, x1.y, x2.y, x3.y], s01)
87 }
88

89 // return x[s[0], s[1]], conditionally negated
90 // good for constant x
91 def mont_mux_2b_cond_neg(bool[3] s, Mont x0, Mont x1,
92 Mont x2, Mont x3) -> Mont:
93 Mont sel = mont_mux_2b([s[0], s[1]], x0, x1, x2, x3)
94 return mont_cond_neg(sel, s[2])
95

96 // pedersen hash generators, in montgomery form
97 def mont_gens() -> field[1384]:
98 return [/* ommitted: a constant array */]
99

100 // pedersen hash (collision-resistant)
101 def main(private bool[512] pbits) -> field[2]:
102 // pseudo-personalization, for cost accuracy
103 bool[518] bits = [...[true; 6], ...pbits]
104 field[1384] G = mont_gens()
105 bool first = true
106 Mont sum = Mont {x: 0, y: 0}
107 for field seg_i in 0..172 do
108 field i = seg_i*3
109 field j = 8*seg_i
110 bool[3] s = [bits[i], bits[i+1], bits[i+2]]
111 Mont p0 = Mont{x: G[j+0], y: G[j+1]}
112 Mont p1 = Mont{x: G[j+2], y: G[j+3]}
113 Mont p2 = Mont{x: G[j+4], y: G[j+5]}
114 Mont p3 = Mont{x: G[j+6], y: G[j+7]}
115 Mont summand = mont_mux_2b_cond_neg(s,p0,p1,p2,p3)
116 sum = if first then summand \
117 else mont_add(sum, summand) fi
118 first = false
119 endfor
120 field seg_i = 172
121 field i = seg_i*3
122 field j = 8*seg_i
123 bool[2] s = [bits[i], bits[i+1]]
124 Mont p0 = Mont{x: G[j+0], y: G[j+1]}
125 Mont p1 = Mont{x: G[j+2], y: G[j+3]}
126 Mont p2 = Mont{x: G[j+4], y: G[j+5]}
127 Mont p3 = Mont{x: G[j+6], y: G[j+7]}
128 Mont summand = mont_mux_2b(s,p0,p1,p2,p3)
129 sum = mont_add(sum, summand)
130 return mont_to_ed(sum)

	1 Introduction
	2 Background and related work
	2.1 Existentially quantified circuits
	2.2 Cryptographic proof systems
	2.3 SMT-based verification
	2.4 Integer linear programs
	2.5 Related work

	3 Design
	3.1 CirC-IR
	3.2 Circify: managing state when compiling to CirC-IR
	3.3 IR Optimization
	3.4 Back-ends: from CirC-IR to circuits

	4 Extensibility and implementation
	4.1 Front-ends
	4.2 Back-ends and target-specific optimizations
	4.3 Implementation

	5 Output performance and correctness
	5.1 Performance
	5.2 Performance on a ZK proof application
	5.3 Correctness

	6 Common performance characteristics
	6.1 Constant folding
	6.2 Oblivious array elimination
	6.3 Array granularity

	7 Crossover applications and techniques
	7.1 Optimizing R1CS using SMT
	7.2 Analyzing ZKlog with SMT
	7.3 Automatically finding and proving bugs
	7.4 Automatically finding and proving high-value inputs

	8 Discussion, future work, and conclusion
	Appendix A: Full Benchmarks
	Appendix B: ZKlog abstract syntax
	Appendix C: OpenSSL Bug Details
	Appendix D: Optimized ZoKrates Pedersen hash

