
Deniable Fully Homomorphic Encryption

Shweta Agrawal∗ Shafi Goldwasser† Saleet Mossel‡

December 19, 2020

Abstract

We introduce the notion of Deniable Fully Homomorphic Encryption and provide constructions
based on the circular-secure Learning With Errors polynomial hardness assumption. Deniable
fully homomorphic encryption offers a compelling upgrade of deniable public key encryption
suitable for the motivating applications of deniability, such as prevention of vote-buying in
electronic voting schemes where encrypted votes can be tallied without decryption, or storing
encrypted data in the cloud, to be processed securely, in a deniable way. Our constructions enjoy
deniability compactness, namely both the size of the public key and the size of the ciphertext
of our schemes can be bounded by a fixed polynomial, independent of the level of deniability
(or faking probability) achieved by the scheme. Additionally, our constructions support large
message spaces and are well suited to an online-offline model of encryption, where the bulk of
computation is independent of the message and may be performed in an offline pre-processing
phase. This leads to a very efficient online phase, whose running time is independent of the
faking probability, whereas the offline encryption run-time grows with the inverse of the faking
probability.

In contrast, all prior constructions even in the context of deniable public key encryption
without homomorphic properties, encoded large messages bit by bit, where the ciphertext for
each bit grew inversely with the faking probability. Indeed, all previous constructions from
polynomial hardness assumptions have both the public key and ciphertext size that grows with
the inverse of the faking probability achieved by the scheme. This limitation dates back to the
seminal work of Canetti, Dwork, Naor and Ostrovsky (CRYPTO 1997) which introduced the
notion of deniable encryption, and has been inherited by all subsequent work (excepting one by
Sahai and Waters (STOC 2013) which is based on indistinguishability obfuscation1). Indeed
Canetti et al. argued that this dependence “seems inherent”. Our constructions imply deniable
public key encryption with deniability compactness, showing that this dependence is not inherent.
However, the running time of our encryption algorithm does depend on the inverse of the faking
probability, thus falling short of achieving simultaneously negligible deniability and polynomial
encryption time.

At the heart of our constructions is a new way to use bootstrapping to obliviously generate
FHE ciphertexts so that it supports faking under coercion.

∗IIT Madras, shweta.a@cse.iitm.ac.in
†Simons Institute of TOC at UC Berkeley, shafi.goldwasser@gmail.com
‡MIT, saleet@mit.edu
1Note that indistinguishability obfuscation (iO) is not a polynomial hardness assumption. iO is a non-falsifiable

assumption, and all provably secure constructions of iO (including recent breakthroughs) from polynomial assumptions
require a subexponential loss – please see [GPSZ17] for a discussion.

1

1 Introduction

Deniable encryption [CDNO97] is a paradoxical primitive that allows an encryptor to lie about which
message she encrypted, if later coerced to “open” a published ciphertext. In more detail, suppose an
encryptor has published a ciphertext ct, and is later forced by an adversary to reveal the randomness
and message chosen during encryption. Deniable encryption allows her to reveal fake random coins,
which convincingly explain the published ciphertext ct as the encryption of any message chosen
at the time of coercion. Aside from being a fundamental primitive, deniable encryption has many
important applications. Consider the scenario of vote buying in elections: if the voter encrypts her
vote using deniable encryption, then upon being forced to open the ciphertext, she can claim she
encrypted an alternate message. This capability makes vote selling ineffective, since there is no way
for the seller to verify the compliance of the voter. Additionally, it encourages honest voting, since
the voter may be reassured that she cannot be forced to reveal her choice. Another early motivation
for deniable encryption is to store encrypted data in a deniable way [CDNO97].

In this work, we introduce the notion of deniable fully homomorphic encryption and provide the
first constructions based on the circular-secure Learning With Errors assumption. In deniable FHE,
the encryptor can produce ciphertexts that not only support homomorphism, but can additionally
be opened to fake messages under coercion. Evidently, for all the applications of deniable public key
encryption, adding the capability of homomorphism is a much needed upgrade – several modern
e-voting protocols use FHE [CGGI16, Men09], and present-day encrypted data is often stored on a
server which assists the data owner with computing “blind-folded” via FHE [Gen09].

Our constructions enjoy deniability compactness, namely the public key and ciphertext of our
schemes have size that can be bounded by a fixed polynomial, and are, in particular, independent of
the level of deniability (or faking probability) achieved by the scheme. Additionally, our constructions
support large message spaces and are well suited to the online-offline model of encryption, where the
bulk of computation is independent of the message and may be performed in an offline pre-processing
phase. In contrast, all prior constructions encoded large messages bit by bit, where the ciphertext
for each bit grew inversely with the faking probability.

Furthermore, even in the context of deniable public key encryption, all previous constructions
from polynomial hardness assumptions2 have public key and ciphertext size that grows with the
inverse of the faking probability achieved by the scheme. This limitation dates back to the seminal
work of Canetti, Dwork, Naor and Ostrovsky (CRYPTO 1997) which introduced the notion of
deniable encryption, and has been inherited by all subsequent work from polynomial assumptions.
Indeed, Canetti et al. argued that this dependence “seems inherent”. Our constructions imply
deniable public key encryption with deniability compactness, showing that this dependence is not
inherent. However, the running time of our encryption algorithm does depend on the inverse of the
faking probability, thus falling short of achieving negligible deniability.

1.1 Prior Work.

The notion of deniable encryption was introduced by Canetti et al. (henceforth CDNO) who provided
elegant constructions based on the construct of so called “translucent sets”, which in turn can
be constructed from trapdoor permutations. They also provided other extensions – the notion of

2Note that this excludes indistinguishability obfuscation, which is an inherently subexponential assumption, please
see [GPSZ17] for a discussion.

2

weak deniability where the encryptor can lie not only about the random coins used to generate the
ciphertext, but also the algorithm used to encrypt the message, and the notion of receiver deniability,
where the receiver can produce a fake secret key that decrypts the message to an alternate one3.
Moreover, in the weak model, [CDNO97] showed that compact public key and ciphertext as well as
negligible deniability are possible. However, whether the weak model is meaningful for practical
applications has been the subject of some debate, we refer the reader to [OPW11] for a discussion.

Interestingly, Canetti et al. also provided a lower bound that shows that their construction in
the “full” (i.e. not weak) model is in some sense optimal. In more detail, they identified a structural
property of encryption, which they term as separability and argued that as long as a construction
is separable, the dependence of the public key and ciphertext size on the inverse of the faking
probability “seems inherent” [CDNO97]. Thus, to achieve the desired negligible deniability, the
public key and ciphertext size of any separable scheme would be required to grow super-polynomially
in the security parameter, ruling out a large class of natural constructions.

Other Related Work. Subsequent work explored extensions to CDNO – O’Neill, Peikert and
Waters [OPW11] provided the first constructions of non-interactive bi-deniable encryption schemes
where both the sender and the receiver can fake simultaneously. Their constructions rely generically
on simulatable public key encryption (in the weak model) or bi-translucent sets (in both the full
and weak models, using the CDNO transformation). They showed how to construct bi-translucent
sets from a variant of the Learning With Errors assumption (LWE) and also provided the first
construction of identity based bi-deniable encryption. Apon, Fan and Liu [AFL16] extended their
results to provide the first construction of attribute based translucent sets which in turn led to
the first construction of deniable attribute based encryption, also from LWE. We note that in the
full model, both works [OPW11, AFL16] inherit the faking probability of CDNO, which is inverse
polynomial. De Caro, Iovino and O’Neill [DCIO16] studied the notion of receiver deniable functional
encryption, but instantiating these constructions requires the assumption of full fledged functional
encryption, which in turn is known to imply indistinguishability obfuscation (iO) [AJ15, BV18]4.

Aside from work extending the functionality of deniable encryption, there was also progress in
lower bounds – for receiver deniability, [BNNO11] showed that a non-interactive public-key scheme
having key size δ can be fully receiver-deniable only with non-negligible Ω(1δ) faking probability
while for sender deniability, Dachman-Soled [DS14] showed that there is no black-box construction
of sender-deniable public key encryption with super-polynomial deniability from simulatable public
key encryption. There has also been work on interactive deniable encryption where the sender and
receiver are allowed to participate in an interactive protocol – in this setting, negligible bi-deniability
in the full model has been achieved based on subexponentially secure indistinguishability obfuscation
and one-way functions [CPP20]. Our focus in this work is the non-interactive setting.

A significant step forward in our understanding of deniable encryption was achieved via the
breakthrough work of Sahai and Waters in 2014 [SW14] which provided the first construction
achieving negligible deniability assuming indistinguishability obfuscation (iO) and one way functions.
However, iO is an inherently sub-exponential assumption [GGH+16], and while exciting as a
feasibility result, does not provide a satisfying solution to the question of efficient constructions of
deniable encryption from standard assumptions.

We note that barring the iO based construction, all constructions of (fully) sender deniable

3When unspecified, deniability refers to “sender” deniability, as in this work.
4We note that functional encryption for circuits is a polynomial hardness assumption.

3

encryption from standard assumptions (that we are aware of) have used the translucent set paradigm
dating from 1997, and suffer from a public key and ciphertext size that is inversely proportional to
the faking probability. Evidently, for any faking probability that could be considered reasonable in
practice, this implies a prohibitively large blow on efficiency, relegating these constructions to being
interesting “only in theory”. For a primitive as fundamental and interesting as deniable encryption,
this state of affairs is very dissatisfying.

1.2 Our Results.

Deniable FHE. We introduce the notion of (public key, sender) deniable fully homomorphic
encryption which consists of algorithms DFhe = (Gen,Enc,Eval,Dec,Fake) where Gen, Enc and
Dec are the standard key-generation, encryption and decryption algorithms, Eval is an algorithm
that takes as input the public key, a circuit C and a tuple of ciphertexts ct1, . . . , ctn encrypting
x1, . . . , xn respectively, and outputs a ciphertext ct∗ which encrypts C(x1, . . . , xn), and Fake is a
faking algorithm, which takes as input the public key, an original message m, randomness r, and
a fake message m∗ and outputs a fake randomness r∗ so that the encryption of message m using
randomness r produces the same ciphertext as the encryption of message m∗ using randomness
r∗, i.e. Enc(pk,m; r) = Enc(pk,m∗; r∗). The faking probability is the probability with which an
adversary can distinguish r from r∗, and we denote it by 1/δ = 1/δ(λ) where λ is the security
parameter. Our notion of deniable FHE is formalized in Definition 2.10.

We extend this definition to the so-called weak model (Definition 2.13) – a weakly deniable
FHE is defined as wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake) which is distinct from “fully” deniable
FHE in that there are two distinct algorithms for encryption, namely Enc and DEnc. Here, as
in [CDNO97], leveraging the additional secret “deniable” encryption algorithm DEnc, allows for
better constructions as discussed below (in particular, those that achieve negligible deniability in
polynomial time).

In more detail, Enc is an “honest” encryption algorithm and is used by the encryptor when it
does not wish to fake a ciphertext, and DEnc is a “deniable” encryption algorithm, which is used
when the encryptor wishes to retain the ability of faking a ciphertext in the future. Let us say the
encryptor wishes to compute an encryption of m which it may later want to explain differently.
Then it produces a ciphertext ct∗ by running the algorithm DEnc with message m using randomness
r. To explain ct∗ as encrypting an arbitrary fake message m∗ at a later time, the encryptor produces
random coins r∗ using the Fake algorithm, so that the ciphertext output by the honest encryption
algorithm Enc on m∗ using r∗ equals the ciphertext ct∗ which was produced using the deniable
encryption algorithm , i.e. DEnc(pk,m; r) = Enc(pk,m∗; r∗).

We provide the first constructions of deniable FHE in both the full and weak model, based on
the circular-secure Learning With Errors (LWE) assumption [Gen09, BV14, BGV14, GSW13]. In
more detail, we construct:

1. A weakly deniable FHE scheme for bits with negligible faking probability (Section 4.1). We
extend this scheme to support larger (polynomial sized) message spaces (Section 5).

2. A fully deniable FHE scheme for bits with inverse polynomial faking probability (Section 4.2).
We also extend this scheme to support larger (polynomial sized) message spaces (Section 6).
Both our fully deniable FHE schemes have compact public key and ciphertext, i.e. with size

4

independent of the faking probability, but with encryption running time that grows with the
inverse of the faking probability.

3. Plan-ahead deniable FHE schemes which support exponentially large message spaces (Section
6.1). Plan-ahead deniable encryption [CDNO97] requires the encryptor to choose all
(polynomially many) possible fake messages at the time of encryption. Later, when the
encryptor desires to explain a ciphertext, it can only provide convincing fake randomness for
one of the fake messages chosen during encryption.

Fake Evaluation. We note that our notions of deniable FHE also allow, in some cases, to explain
evaluated ciphertexts as encoding a fake message. For instance, suppose that ct∗ was computed by
homomorphically evaluating a polynomial sized circuit C on ciphertexts ct1, . . . , ctn which encode
messages x1, . . . , xn respectively. Suppose an encryptor wishes to explain ct∗ as an encryption of
an arbitrary message m∗ 6= C(x1, . . . , xn), and C supports inversion, i.e. given a value m∗, it is
possible to efficiently sample x′1, . . . x

′
n such that C(x′1, . . . , x′n) = m∗. Then, the encryptor may

simply explain cti as an encryption of x′i for i ∈ [n] and exhibit that the homomorphic evaluation
procedure for C results in ct∗. This convinces the adversary that ct∗ encodes m∗, as desired. We
note that for several applications of interest, the circuit C can indeed be invertible – for instance, C
may represent the vote counting circuit, which is simply addition and hence easily invertible.

Compact Deniable PKE from FHE. As discussed above, our construction of fully deniable FHE
implies, as a special case, a deniable public key encryption scheme, where the size of the public
key and ciphertext are compact and independent of the faking probability, which can be made
an arbitrarily small inverse polynomial. However, as discussed above, the running time of our
encryption algorithm does grow linearly with the inverse of the faking probability. Moreover, we
show that this dependence is inherent, since our constructions can be shown to be separable in
the sense of CDNO and hence subject to the lower bound. We discuss in Section 1.4 the technical
barriers in circumventing this lower bound from non-obfuscation assumptions.

Online-Offline Encryption. Our constructions of deniable FHE also enjoy a desirable online-offline
property, which allows the encryptor to do the bulk of the work in an offline phase that is independent
of the message to be encrypted. In more detail, our encryption algorithm can be divided into two
parts – an offline, message independent part which runs in time O(δ) (recall that 1

δ is the faking
probability), and an online phase which is efficient and independent of δ. We believe this feature
makes these schemes especially attractive for practice since it mitigates the disadvantage of the
large running time of encryption.

1.3 Our Techniques.

The primary technical challenge in deniable encryption is satisfying the many constraints imposed
by the faking algorithm: the adversary knows the encryption algorithm and must be shown correctly
distributed randomness that explains a given challenge ciphertext to a fake message. Excepting the
construction based on obfuscation [SW14], all prior work addressed this challenge by setting the
ciphertext to be a long sequence of elements that are either random or pseudorandom, and encoding
the message bit in the parity of the number of pseudorandom elements. To fake, the encryptor

5

pretends that one of the pseudorandom elements is in fact random, thus flipping the parity of the
number of pseudorandom elements, and hence the encoded message. To construct a deniable fully
homomorphic encryption scheme, the first challenge that arises is that an FHE ciphertext is highly
structured, and this is necessary if it has to support homomorphic evaluation. Moreover, valid FHE
ciphertexts are sparse in the ciphertext space, so randomly sampled elements are unlikely to be
well-formed ciphertexts. Hence, if the encryptor for deniable FHE constructs all components of the
ciphertext by running the FHE encryption algorithm i.e. Fhe.Enc(pk,m; r), then it is forced to open
the FHE ciphertexts to provide r honestly – the structure of ciphertexts does not support lying
about any of the encoded bits. The encryptor is thus faced with the incongruous task of producing
highly structured ciphertexts without running the FHE encryption algorithm.

The Magic of Bootstrapping. To overcome this hurdle, we leverage the clever idea of “bootstrapping”
proposed by Gentry [Gen09]. At a high level, bootstrapping is the procedure of homomorphically
computing the decryption circuit of a given scheme, say Fhe, on a ciphertext of the same scheme,
using an encryption of the scheme’s secret key, denoted by ctsk. This procedure assumes circular
security, namely that semantic security of Fhe holds even when the adversary is provided an
encryption of the scheme’s own secret key. The original motivation for bootstrapping was to reduce
the “noise” level in a ciphertext – roughly speaking, the FHE ciphertext contains some noise terms
which are necessary for security but must be kept bounded below some threshold for correctness.
This noise grows as the ciphertext participates in homomorphic evaluations, and must be somehow
reduced after it reaches a threshold to support further homomorphic computation.

The neat observation that allows to use bootstrapping for reducing noise is that the decryption
circuit of an FHE scheme is quite shallow, so if we run the decryption circuit homomorphically on
some FHE ciphertext ct using the encryption of the FHE secret key ctsk, the noise contained in ct
is removed by decryption, and the noise in output ciphertext ct′ can be bound depending on the
depth of the decryption circuit and the noise in ctsk.

However, an additional attractive feature of bootstrapping is that it suggests a way to obliviously
generate FHE ciphertexts. Suppose our FHE scheme’s decryption algorithm always outputs a
valid message regardless of whether the ciphertext is well-formed or not. Then, by running the
bootstrapping procedure on a random element from the ciphertext space, we obtain a well formed,
valid FHE ciphertext for an unknown bit, by correctness of FHE evaluation. Moreover, if we
run the bootstrapping procedure on a valid FHE ciphertext of any bit, the ciphertext output by
bootstrapping still encodes the same bit, by correctness of FHE decryption and evaluation. If FHE
ciphertexts are indistinguishable from random (which they usually are), then the encryptor may
cheat about which of the two types of inputs was provided to the bootstrapping procedure and
thereby lie about the encoded bit in the bootstrapped ciphertext.

While this feels like progress, it is still unclear how to encrypt a single bit of one’s choosing using
obliviously generated ciphertexts of unknown bits and honestly generated ciphertexts of known bits.

Deniable FHE in the Weak Model. As a warm-up, let us consider the weak model of deniability,
where the encryptor can lie not only about the randomness used in encryption but also the algorithm
used. Let us suppose for the moment that we may engineer the bootstrapping procedure so that an
obliviously generated FHE ciphertext is biased and encodes the bit 0 with overwhelming probability
(we discuss this assumption below). Then, an approach to encrypt in the weak model is as follows.

Let the bootstrapping procedure be denoted by Btsp. In the honest mode, the encryptor encrypts

6

bit 0 by choosing R1 and R2 randomly from the ciphertext space, converting these to well formed
FHE ciphertexts via the bootstrapping procedure, and finally computing the homomorphic XOR
operation (denoted by ⊕2) on these FHE ciphertexts. Thus, we have:

ct0 = Btsp(R1)⊕2 Btsp(R2)

Since we assumed that random elements are bootstrapped to encode 0 with overwhelming probability,
the ciphertext ct0 encodes 0 due to correctness of the FHE evaluation procedure. To encrypt bit
1, the encryptor chooses R3 randomly from the ciphertext space, and computes R4 as an honest
encryption of 1 using the FHE encryption algorithm. It then sets:

ct1 = Btsp(R3)⊕2 Btsp(R4)

It is easy to see that correctness is preserved by the same arguments as above.

In the deniable or fake encryption algorithm, the sender changes the way it encrypts 0. Instead
of choosing R1 and R2 uniformly at random, it now computes both R1 and R2 as well formed FHE
ciphertexts of 1. Bootstrapping preserves the message bit and homomorphic evaluation of addition
modulo 2 ensures that ct0 is a valid encryption of 0. The bit 1 is encrypted as before. However, if
asked to explain, the encryptor can pretend that ct0 is in fact an encryption of 1 by claiming that
R1 is chosen uniformly and by explaining R2 as an encryption of 1. Since R1 is an FHE ciphertext,
the adversary cannot tell the difference as long as FHE ciphertext is pseudorandom. Similarly, if
asked to explain ct1 as an encryption of 0, she explains R4 as a randomly chosen element in the
ciphertext space. Thus, we obtain a construction of weakly deniable FHE for bits which achieves
negligible faking probability. For more details, please see Section 4.1.

Deniable FHE in the Full Model. In the full model, the encryptor is not allowed to cheat about
the algorithm it used for encryption, hence we may not take advantage of different ways of sampling
randomness in the real and deniable encryption algorithms – there is only one encryption algorithm.
In this model, we obtain FHE with polynomial deniability but with compact public key and
ciphertext, that is, the size of the public key and ciphertext are independent of the faking probability.
We proceed to describe the main ideas in the construction.

Let δ be the inverse of the desired faking probability. To encrypt a bit b, the encryptor samples
uniform random bits x1, . . . , xδ such that

∑
i∈[δ] xi = b (mod 2). It then computes δ elements

R1, . . . , Rδ of which, Ri is computed as an FHE encryption of 1 when xi = 1, and Ri is sampled
uniformly at random when xi = 0. Finally, it outputs

ct = Btsp(R1) ⊕2 Btsp(R2) ⊕2 . . . ⊕2 Btsp(Rδ)

To fake, it samples a random j ∈ [δ] such that xj = 1, sets x∗j = 0, and x∗i = xi for every
i 6= j, i ∈ [δ]. It pretends that Rj is chosen uniformly at random, implying that Btsp(Rj) encodes 0
with overwhelming probability. It is easy to see that this flips the message bit that was chosen during
encryption. Moreover, the statistical distance between honest randomness and fake randomness is
O(1δ) and we achieve polynomial deniability. Please see Section 4.2 for more details.

Special FHE. The above informal description brushes several important details under the rug.
For instance, we assumed various properties about the underlying FHE scheme which are not true

7

in general. The most problematic assumption we made is that the FHE bootstrapping procedure
can be engineered so that it outputs an encryption of 0 for a random input with overwhelming
probability.

Some thought reveals that existing FHE schemes do not satisfy this property. Fortunately
however, we show that some constructions can be modified to do so. For concreteness, we describe
how to modify the FHE scheme by Brakerski, Gentry and Vaikuntanathan [BGV14] to get the
“special FHE” that we require. At a high level, decryption in the BGV cryptosystem is a two step
procedure, where the first step computes the inner product of the ciphertext and the secret key over
the ambient ring, and the second step computes the least significant bit of the result, which is then
output. One can check that for any well formed ciphertext in this scheme, regardless of whether
it encodes 0 or 1, the first step of the decryption procedure always yields a “small” element. On
the other hand, for a random element in the ciphertext space, the first step of decryption yields a
random element, i.e. it is small with low probability. Thus, we may modify the BGV decryption
algorithm so that after computing the inner product in the first step, it checks whether the output
is small, and outputs 0 if not. This does not change decryption for well formed ciphertexts but by a
suitable setting of parameters, it biases the output of decryption to 0 for random inputs. We also
require some additional properties from our special FHE, which we define and establish in Section 3.

Large Messages. In all prior constructions of deniable encryption, larger messages were encoded bit
by bit, where the ciphertext for a single bit is itself quite substantial (O(δ)) as discussed above. To
further improve efficiency, we again leverage the power of FHE. This enables our schemes to support
large message spaces natively, thereby inheriting the significant advances in FHE schemes with large
information rate [SV10, BGV14, BDGM19, GH19], and bringing deniable FHE closer to practice.

Let M be the message space of an FHE scheme Fhe such that |M| = poly(λ). Further, let us
assume that Fhe satisfies the special properties discussed above (formalized in Section 3). Then, to
compute a ciphertext for a message mk ∈M, we express mk as the output of a “selector” function
which computes the inner product of the kth unit vector with a vector of all messages in M. In
more detail, we express

mk = 1 ·mk +
∑

mi∈M,i 6=k
0 ·mi

Here, the bits 0 or 1 are referred to as “selector” bits for obvious reasons. Our main observation is
that the deniable encryption scheme for bits can now be used to add deniability to ciphertexts of
selector bits and thereby to the overall ciphertext.

In more detail, assume that the sender selects message mk at the time of encryption. To compute
a ciphertext of mk, she computes FHE ciphertexts cti for all mi ∈M and selector bit ciphertexts
ctsel
i for i ∈ [|M|] where ctsel

i encodes 0 if i 6= k and 1 otherwise. We use deniable encryption to
compute the ciphertexts of selector bits as described above; thus, each selector bit is computed using
multiple elements {Ri} where i ∈ [δ]. She then homomorphically computes the selector function
described above to obtain a ciphertext ct∗ encoding mk. Under coercion, she may explain ct∗ as
encoding of any message mi, even for i 6= k, by explaining the corresponding selector bits differently,
i.e. by explaining ctsel

i as an encryption of 1 and ctsel
k as an encryption of 0.

We note that the above description is oversimplified and glosses over many technical details –
for instance, the deniable FHE scheme for bits assumes that decryption of a random element in the
ciphertext space is biased to 0 with overwhelming probability, which is no longer the case for FHE
with large message spaces. However, this and other issues can be addressed, and we get schemes in

8

both the weak and full models – please see Sections 5 and 6 for details.

Plan-Ahead Deniability. Plan-ahead deniable encryption [CDNO97] requires the sender to choose
all possible fake messages at the time of encryption itself. For plan-ahead fully homomorphic
encryption, it becomes possible to instantiate the underlying FHE to have super-polynomial message
space. Intuitively, without the plan-ahead restriction, the construction discussed above fails for
exponentially large message spaces, since it is not possible to “select” between exponentially many
options in polynomial time. However, if the number of possible fake messages is fixed to some
polynomial in advance, as is the case for plan-ahead deniability, then the same construction as
above works, as long as we can establish the “special” properties of the FHE. We discuss how this
can be achieved, please see Section 6.1 for details.

Online-Offline Encryption. We now describe how our encryption algorithms lend themselves
naturally to the online-offline model, where a bulk of the computation required for encryption is
performed before the message is available. Consider the encryption algorithm for bits in the full
model. Observe that sampling δ random bits x1, . . . , xδ such that

∑
i∈[δ] xi = b (mod 2) is the same

as sampling δ − 1 random bits x1, . . . , xδ−1 and setting xδ = b+
∑

i∈[δ−1] xi (mod 2). In the offline
phase, we may select δ − 1 bits x1, . . . , xδ−1 at random as well as the corresponding δ − 1 elements
Ri according to the encryption algorithm. Next, we may compute the homomorphic evaluation
of the bootstrapping circuit on the δ − 1 random elements, i.e. Btsp(Ri) for i ∈ [δ − 1]. Now, in
the online phase we can simply select the last bit and corresponding randomness Rδ according to
the message b being encrypted, compute the homomorphic bootstrapping algorithm on Rδ, and
evaluate the homomorphic addition mod 2 as: ct = ctoffline ⊕2 Btsp(Rδ), where

ctoffline = Btsp(R1) ⊕2 Btsp(R2) ⊕2 . . . ⊕2 Btsp(Rδ−1).

Thus, the online encryption time is independent of δ.

Next, consider the encryption scheme for large message spaces. Even here, note that the
dependence of the encryption running time on the faking probability comes from the construction of
selector bits. Since the construction of any ciphertext involves |M|− 1 encryptions of 0 and a single
encryption of 1, the encryptions of these selector bits can be computed in an offline pre-processing
phase. The encryptions of all possible messages in the message space can also be performed offline.
Then, in the online phase, given message mk, the encryptor needs only to perform the homomorphic
evaluation of the selector function to compute the final ciphertext. This leads to an online encryption
time which grows with |M| but not with the inverse of the faking probability.

The online processing time may be optimized further as follows – now, additionally in the offline
phase, let the encryptor perform the homomorphic evaluation of the selector function with all the
selector bits set to 0, i.e.

∑
mi∈M 0 ·mi. It stores the ciphertexts for all possible messages m ∈M,

the ciphertexts of the computed selector bits which are set to 0 as well as a ciphertext ct1 for an
extra selector bit which is set to 1. In the online phase, when mk is known, it subtracts the “wrong”
term ct0k · ctk and adds the term ct1 · ctk to the evaluated ciphertext to obtain the correct ciphertext.
Thus, the online phase can be performed in time independent of both |M| as well as δ.

Lower Bound. Canetti et al. [CDNO97] showed that no one round (sender) deniable scheme which
satisfies a certain structural property called “separability”, can enjoy negligible faking probability,

9

(denoted by 1
δ). In the original as well as subsequent work, this led to schemes with public key

and ciphertext size which grows linearly in δ, which the authors remark “seems to be inherent”
[CDNO97, Section 4]. As discussed above, our constructions achieve public key and ciphertext
size that is independent of δ, showing that this dependence is not inherent. Nevertheless, the
running time of the encryption algorithm is linear in δ, and this dependence is inherent. Perhaps
somewhat surprisingly, despite the assumption of circular-secure LWE, our schemes can be shown to
be separable in the sense of [CDNO97] and therefore subject to the dependence of the running time
on δ. Please see Section 7 for details.

1.4 Perspective and Open Problems.

Barriers from non-Obfuscation Assumptions. Despite achieving compact public key and ciphertext,
our constructions do not achieve negligible deniability. We briefly discuss here the technical barriers
encountered in achieving negligible deniability using non-obfuscation assumptions.

At a high level, the Sahai-Waters construction [SW14] based on iO, works by obfuscating the
encryption algorithm as well as the faking algorithm. Recall that in deniable encryption, the faking
algorithm is required to output the fake randomness (rand∗, say) that is used to explain a ciphertext
ct∗ as encrypting a fake message m∗. The obfuscated explain algorithm simply takes in a ciphertext
and message pair (ct∗,m∗) and outputs a pseudorandom encoding of these as rand∗. The encrypt
algorithm, upon receiving a message m and randomness rand∗, first checks for a “hidden sparse
trigger”, namely whether rand∗ is an encoding of some pair (ct∗,m∗) that was output by the faking
algorithm. It also checks whether m = m∗, and outputs ct∗ if these two conditions hold. If not, and
rand∗ looks like genuine randomness, it proceeds to encrypt as usual.

Showing that the above idea can be made to work by relying only on iO (and one way functions),
and not virtual black box obfuscation, must overcome several hurdles and requires multiple innovative
techniques, but these are not relevant for the present discussion. Here, we only draw attention to two
relevant facts: first, since the encryption and faking algorithms are obfuscated, they can share secrets
such as PRF keys. In contrast, without using obfuscation, the encryption and faking algorithms
are public and cannot share any secrets, making any co-ordination between them significantly
harder. Second, in the above construction, the tuple (ct∗, rand∗,m∗) are not required to satisfy any
structural/algebraic relation of well-formedness. In more detail, the ciphertext ct∗ and message m∗

need not be related in any way, and the the only property that rand∗ must satisfy is to “tie together”
this unrelated ciphertext and message pair via a pseudorandom encoding. These unrelated objects
can be made to appear related by triggering a trapdoor mode which is hidden in the encryption
procedure by the amazing power of obfuscation.

Without relying on obfuscation, it is significantly more difficult to design an encryption algorithm
with compact randomness so that the structural relationship of well-formedness holds for a single
ciphertext with respect to multiple messages. All constructions of non-interactive sender deniable
encryption in the full model known from 1997 to date, achieve this by relying on the trick of
providing multiple elements in the ciphertext, both pseudorandom and random, and encoding the
message bit in the parity of the number of pseudorandom elements as described previously. However,
since the ability to pretend is only in one direction, namely, pseudorandom to random, this approach
is inherently restricted to polynomial deniability as formalized by the “separability” argument of
[CDNO97].

Using fully homomorphic encryption, bootstrapping let’s us obliviously sample ciphertexts,

10

and FHE evaluation enables us to “compactify” the final ciphertext. However, we remain stuck
with being able to only cheat in a single direction – we can pretend that FHE ciphertexts are
random but not the other way around. This leads to the unfortunate fact that the number of
pseudorandom elements is always smaller in the fake algorithm than in the real algorithm, and this
can be formalized into an attack. Thus, as we show in Section 7, our constructions of deniable FHE
are also separable in the sense of CDNO and hence the limitation of polynomial (and not negligible)
deniability is inherent. Overcoming these barriers, using our techniques or otherwise, is a fascinating
open problem.

On Receiver Deniability. We briefly discuss here the prospect of constructing receiver deniable
FHE. The notion of receiver deniablity allows the receiver to decrypt a received ciphertext to
an alternate message by using a fake secret key, which is derived specifically for that particular

“challenge” ciphertext. However, the fake secret key must nevertheless correctly decrypt all other
ciphertexts to their honest messages. It is easy to see that inability to do so leads to a distinguishing
attack – the adversary may itself encrypt messages of its choice and use the fake secret key to open
them.

Due to these requirements on the fake secret key, it is unclear whether the notion of receiver
deniability is meaningful in the context of FHE. To see the conundrum, consider an adversary, who
receives a challenge ciphertext ct∗ along with a fake secret key sk∗ which falsely decrypts ct∗ to m∗.
Since ct∗ is an FHE ciphertext, it could be the result of evaluating some circuit on some other FHE
ciphertexts, or it could be the input ciphertext used in homomorphic operations to generate other
evaluated ciphertexts. Let us say that ct∗ participates in multiple homomorphic evaluations, say of
circuits C1, . . . , Cn to yield outputs ct1, . . . , ctn. Then, given the input and output ciphertexts, the
adversary can decrypt these and test whether the circuits C1, . . . , Cn applied to the input messages
yield the output messages. To avoid a distinguishing attack, the fake key sk∗ should decrypt the
input and output ciphertexts to messages consistent with the fake message m∗, which implies that i)
these ciphertexts cannot be decrypted honestly in general, violating one of the conditions discussed
above, and ii) even if we modify the condition and allow faking for some non-challenge ciphertexts,
it may not be possible to find fake messages consistent with the multiple, arbitrary dependencies
imposed by the circuits.

Hence, to define receiver deniability in the context of FHE, it appears necessary to restrict
an adversary’s view to exclude all ciphertexts which are related to the challenge ciphertext ct∗ .
However, this restriction seems hard to justify in practice. For example, it appears infeasible to
control which ciphertexts are obtained by an adversary when encrypted data is stored on the cloud.
Due to these difficulties, we do not consider receiver deniabile FHE in this work.

2 Preliminaries

In this section, we define the notation and preliminaries that we require in this work.

Notation. Let A(x; r) denote the randomized algorithm A run on input x, using randomness r.
We let m denote the complement of bit m. We denote by [n] the set {1, ..., n}. If X is a random
variable, a probability distribution, or a randomized algorithm we let x← X denote the process of
sampling x according to X. If X is a set, we let x← X denote the process of sampling x uniformly

11

at random from X .

We say a function f(λ) is negligible if it is O(λ−c) for all c > 0, and we use negl(λ) to denote
a negligible function of λ. We say f(λ) is polynomial if it is O(λc) for some constant c > 0, and
we use poly(λ) to denote a (positive) polynomial function of λ. We say that an event occurs with
overwhelming probability in λ if it occurs with probability 1− negl(λ). Where evident from context,
we sometimes use f to denote f(λ).

Definition 2.1 (Statistical Distance). Let P and Q be two distributions over a finite set U . The
statistical distance is define as

SD(P,Q) :=
1

2

∑
x∈U
|P (x)−Q(x)|.

2.1 Fully Homomorphic Encryption

Definition 2.2 (Fully Homomorphic Encryption). A public-key fully homomorphic encryption
scheme for a message space M consists of PPT algorithms Fhe = (Gen,Enc,Eval,Dec) with the
following syntax:

• Gen(1λ)→ (pk, sk): on input the unary representation of the security parameter λ, generates
a public-key pk and a secret-key sk.

• Enc(pk,m)→ ct: on input a public-key pk and a message m ∈M, outputs a ciphertexts ct.

• Eval(pk, C, ct1, . . . , ctk)→ ct: on input a public-key pk, a circuit C :Mk →M, and a tuple of
ciphertexts ct1, . . . , ctk, outputs a ciphertext ct.

• Dec(sk, ct)→ m: on input a secret-key sk and a ciphertext ct, outputs a message m ∈M.

The scheme should satisfies the following properties:

Correctness. A scheme Fhe is correct if for every security parameter λ, polynomial-time circuit
C :Mk →M, and messages mi ∈M for i ∈ [k]:

Pr[Dec(sk,Eval(pk, C, ct1, . . . , ctk)) = C(m1, . . . ,mk)] = 1− negl(λ)

where (pk, sk)← Gen(1λ), and cti ← Enc(pk,mi) for i ∈ [k].

Compactness. A scheme Fhe is compact if there exists a polynomial poly(·) such that for all
security parameter λ, polynomial-time circuit C :Mk →M, and messages mi ∈M for i ∈ [k]:

Pr [|Eval (pk, C, ct1, . . . , ctk)| ≤ poly(λ)] = 1

where (pk, sk)← Gen(1λ), and cti ← Enc(pk,mi) for i ∈ [k].

CPA Security. A scheme Fhe is IND-CPA secure if for all PPT adversary A:∣∣Pr
[
FheGame0A(λ) = 1

]
− Pr

[
FheGame1A(λ) = 1

]∣∣ ≤ negl(λ)

where FheGamebA(λ) is a game between an adversary and a challenger with a challenge bit b
defined as follows:

12

• Sample (pk, sk)← Gen(1λ), and send pk to A.

• The adversary chooses m0,m1 ∈M.

• Compute ct← Enc(pk,mb), and send ct to A.

• The adversary A outputs a bit b′ which we define as the output of the game.

Definition 2.3 (Circular Security). A public-key encryption scheme with key generation algorithm
Gen and encryption algorithm Enc is circular secure if for every PPT adversary A:∣∣Pr

[
CircGame0A(λ) = 1

]
− Pr

[
CircGame1A(λ) = 1

]∣∣ ≤ negl(λ)

where CircGamebA(λ) is a game between an adversary and a challenger with a challenge bit b defined
as follows:

• Sample (pk, sk)← Gen(1λ), compute ctsk ← Enc(pk, sk), and give (pk, ctsk) to A.

• The adversary chooses m0,m1 ∈M.

• Compute ct← Enc(pk,mb), and give ct to A.

• The adversary A outputs a bit b′ which we define as the output of the game.

Definition 2.4 (Bootstrapping Procedure). [Gen09] Let Fhe = (Gen,Enc,Eval,Dec) be a public-key
FHE scheme for a message space M with ciphertext space R`c . We define the bootstrapping
procedure, denoted by Btsp : R`c → R`c , as

Btsp(x) = Fhe.Eval(pk,Decx, ctsk)

where (pk, sk)← Fhe.Gen(1λ), ctsk ← Fhe.Enc(pk, sk), and Decx(sk) = Fhe.Dec(sk, x). Above, when
sk /∈M, we assume that sk may be represented as a vector of elements in M, which would make
ctsk a vector of ciphertexts.

Definition 2.5 (Valid Ciphertext). We say that an Fhe ciphertext ct is a valid ciphertext of m, if
either

ct← Enc(pk,m),

or for any polynomial-sized circuit C, we have that:

Pr[Dec(sk,Eval(pk, C, ct)) = C(m)] = 1− negl(λ),

where (pk, sk)← Gen(1λ) and λ is the security parameter.

Some Useful Functions. In this paragraph, we define notation for some functions that will
prove useful in our constructions.

Definition 2.6 (Addition Modulo 2). We denote by ⊕2 the homomorphic evaluation of addition
modulo 2 circuit, that is for k ≥ 2, ⊕2(ct1, . . . , ctk) = ct, ct is a valid encryption of

∑k
i=1 xi (mod 2)

where xi ∈ {0, 1} and cti is a valid encryption of xi for i ∈ [k].

For ease of readability, we will often denote ⊕2(ct1, . . . , ctk) by ct1 ⊕2 ct2 . . .⊕2 ctk.

13

Definition 2.7 (Multiplexer). A multiplexer is a deterministic procedure that selects between
several inputs using “selector” bits. In more detail, on input x0, . . . , xk, and b1, . . . , bt where k < 2t,
and bi ∈ {0, 1}, outputs xj where j =

∑t
i=1 2i−1bi. Let Fhe be a public-key FHE scheme for message

space M, we denote by Mux the homomorphic evaluation of the multiplexer (data selector) circuit.
That is for k < 2t,

Mux(ct0, . . . , ctk, ct
′
1, . . . , ct

′
t) = ct,

ct is a valid encryption of the selected message xj where j =
∑t

i=1 2i−1bi, ct
′
i is a valid encryption

of bi ∈ {0, 1} for i ∈ [t], and cti is a valid encryption of xi ∈M for i ∈ [k].

Definition 2.8 (Selector). Let bi ∈ {0, 1} such that for all i ∈ [k], i 6= j, bi = 0, and bj = 1 for
some fixed j ∈ [k]. For all i ∈ [k], let xi ∈M. We define a selector function as

∑
i∈[k] bixi = xj .

We denote the homomorphic evaluation of this function by∑
i∈[k]

ctsel
i ⊗ cti = ct,

where ct is a valid encryption of the selected message xj , ct
sel
i is a valid encryption of bi and cti is a

valid encryption of xi for all i ∈ [k].

Definition 2.9 (Indicator Function). The indicator function for the set X , denoted by 1X (·),
defined as

1X (x) =

{
1 x ∈ X
0 x /∈ X

.

2.2 Deniable Homomorphic Encryption

Definition 2.10 (Compact Deniable FHE.). A compact public-key deniable fully homomorphic en-
cryption scheme for message spaceM consists of PPT algorithms DFhe = (Gen,Enc,Eval,Dec,Fake)
with the following syntax:

• Gen(1λ)→ (dpk, dsk): on input the unary representation of the security parameter λ, generates
a public-key dpk and a secret-key dsk.

• Enc(dpk,m; r) → ct: on input a public-key dpk and a message m ∈ M, uses `-bit string
randomness r, outputs a ciphertexts dct.

• Eval(dpk, C, dct1, . . . , dctk) → dct: on input a public-key dpk, a circuit C :Mk →M, and a
tuple of ciphertexts dct1, . . . , dctk, outputs a ciphertext dct.

• Dec(dsk, dct)→ m: on input a secret-key dsk and a ciphertext dct, outputs a message m ∈M.

• Fake(dpk,m, r,m∗) → r∗: on input a public-key dpk, an original message m ∈ M, an `-bit
string randomness r, and a fake message m∗ ∈M, output an `-bit string randomness r∗.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme DFhe is correct, compact and secure
if the scheme (Gen,Enc,Eval,Dec) satisfies the standard notions of correctness, compactness
and IND-CPA security properties of fully homomorphic encryption, as in Definition 2.2. We
remark that a scheme cannot simultaneously satisfy perfect correctness and deniability, so
negligible decryption error in correctness is inherent.

14

Deniability. A scheme DFhe is δ(λ)-deniable if for all PPT adversary A:∣∣Pr
[
DnblGame0A(λ) = 1

]
− Pr

[
DnblGame1A(λ) = 1

]∣∣ ≤ δ(λ)

where DnblGamebA(λ) is a game between an adversary and a challenger with a challenge bit b
defined as follows:

• Sample (dpk, dsk)← Gen(1λ), and send dpk to A.

• The adversary chooses m,m∗ ∈M.

• Sample r ← {0, 1}`, and r∗ ← Fake(dpk,m, r,m∗); if b = 0 give (m∗, r,Enc(dpk,m∗; r))
to A, else if b = 1, give (m∗, r∗,Enc(dpk,m; r)) to A.

• The adversary A outputs a bit b′ which we define as the output of the game.

Remark 2.11. We note that in our constructions, the length of randomness used during
encryption may depend on the message being encrypted. This does not affect deniability,
because the length of the randomness is only revealed together with the encrypted message.
For ease of exposition, we do not introduce additional notation to capture this nuance.

Deniability Compactness. A δ(λ)-deniable scheme DFhe is deniability compact if there exists a
a polynomial poly(·) such that for all security parameters λ, and message m ∈M:

Pr[|Enc(dpk,m)| ≤ poly(λ)] = 1

where (dpk, dsk)← Gen(1λ).

Remark 2.12. The above definition can be modified to capture a compact deniable public key
encryption scheme by removing the evaluation algorithm required by FHE.

Definition 2.13 (Weak Deniable FHE). A public-key weak deniable fully homomorphic encryption
scheme for message space M consists of PPT algorithms wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake)
where Gen,Eval, and Dec have the same syntax as in Definition 2.10, and DEnc,Enc and Fake have
the following syntax:

• DEnc(dpk,m; r) → ct: on input a public-key dpk and a message m ∈ M, uses `-bit string
randomness r, outputs a ciphertexts dct.

• Enc(dpk,m; r) → ct: on input a public-key dpk and a message m ∈ M, uses `∗-bit string
randomness r, outputs a ciphertexts dct.

• Fake(dpk,m, r,m∗) → r∗: on input a public-key dpk, an original message m ∈ M, an `-bit
string randomness r, and a faking message m∗ ∈M, output an `∗-bit string randomness r∗.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme wDFhe is correct, compact and secure
if both schemes (Gen,Enc,Eval,Dec), and (Gen,DEnc,Eval,Dec) satisfy the standard notions of
correctness, compactness and IND-CPA security properties of fully homomorphic encryption,
as in Definition 2.2.

15

Weak Deniability. A scheme wDFhe is weakly-deniable if for all PPT adversary A:∣∣Pr
[
wDnblGame0A(λ) = 1

]
− Pr

[
wDnblGame1A(λ) = 1

]∣∣ ≤ negl(λ)

where wDnblGamebA(λ) is a game between an adversary and a challenger with a challenge bit
b defined as follows:

• Sample (dpk, dsk)← Gen(1λ), and send dpk to A.

• The adversary A chooses m,m∗ ∈M.

• Sample r ← {0, 1}`∗ , r′ ← {0, 1}`, and r∗ ← Fake(dpk,m, r′,m∗); if b = 0 return
(m∗, r,Enc(dpk,m∗; r)) else if b = 1 return (m∗, r∗,DEnc(dpk,m; r′)) to A.

• The adversary A outputs a bit b′ which we define as the output of the game.

3 Special Homomorphic Encryption

Our constructions rely on a fully homomorphic encryption scheme which satisfies some special
properties. We define these and instantiate it below.

Definition 3.1 (Special FHE). A special public-key FHE scheme for a message space M with
ciphertext space R`c is a public-key FHE scheme, Fhe = (Gen,Enc,Eval,Dec), with the following
additional properties:

1. Deterministic Algorithms. The evaluation and decryption algorithms, Eval and Dec respectively,
are deterministic. In particular, this implies the bootstrapping procedure Btsp, defined in 2.4,
is deterministic.

2. Pseudorandom Ciphertext. The distribution Fhe.Enc(pk,m;U `) is computationally indistin-
guishable from R`c , where U ` is the uniform distribution over `-bit strings, (pk, sk) ←
Fhe.Gen(1λ), and m ∈ M. Moreover, the distribution Btsp(R`c) is computationally
indistinguishable from R`c , where Btsp is the bootstrapping procedure as in Definition 2.4.

3. Decryption Outputs Valid Message. The decryption algorithm, Fhe.Dec, always outputs a
message from the message space M. Namely, for any x ∈ R`c , Fhe.Dec(sk, x) ∈ M where
(pk, sk) ← Fhe.Gen(1λ). In particular, this implies that the output of the bootstrapping
procedure Btsp is always a valid ciphertext (Definition 2.5).

4. Circular Secure. The scheme Fhe is circular secure as in Definition 2.3.

5. Biased Decryption on Random Input (Strong Version). The decryption algorithm Fhe.Dec,
when invoked with a random element in the ciphertext space x ← R`c , outputs a message
from a fixed (strict) subset of the message space S ⊂M with overwhelming probability.

Formally, we require that there exists a strict subset of the message space, S ⊂M, such that

P (S) :=
∑
m∈S

P (m) ≥ 1− negl(λ)

where P : M → R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where x ← R`c and
(pk, sk)← Fhe.Gen(1λ). Moreover, we require that 0 ∈ S. Thus, if the message space is binary,
then S = {0}.

16

We remark that the above property, while sufficient, is not strictly necessary for our
constructions. However, for ease of exposition, our constructions assume the “strong version”
stated above. In Section 8 we describe how to modify our constructions to instead use the
weaker version below.

Biased Decryption on Random Input (Weak Version). This version weakens overwhelming to
noticeable in the above definition, i.e. using the notation above, we require:

P (S) :=
∑
m∈S

P (m) ≥ 1/ poly(λ)

As before, we require that 0 ∈ S.

3.1 Instantiation

For concreteness, we instantiate our special FHE scheme with (a modified version of) the scheme by
Brakerski, Gentry and Vaikuntanathan [BGV14] (henceforth BGV), which is based on the hardness
of the learning with errors (LWE) problem. To begin, note that BGV already satisfies the property
that the algorithms for evaluation and decryption are deterministic (property 1), the property
that the ciphertext is pseudorandom (property 2) as well as the property that decryption always
outputs valid message (property 3). The property of circular security (property 4) does not provably
hold in BGV, or indeed any existing FHE scheme, but is widely assumed to hold for BGV. In
particular, the authors already assume it for optimized versions of their main construction (which
does not require this assumption)– please see [BGV14, Section 5] for a discussion. We also remark
that circular security is assumed by all “pure” FHE schemes, namely, schemes that can support
homomorphic evaluation of circuits of arbitrary polynomial depth. We require circular security for
a different reason – to support the bootstrapping operation, which allows us to obliviously sample
FHE ciphertexts. Thus, it remains to establish the property that decryption of a (truly) random
element from the ciphertext space outputs a biased message from the message space (property 5).
Establishing this property requires slight modifications to the BGV scheme5. Next, we describe
these modifications for the case when the M is binary, of polynomial size and of super-polynomial
size.

Recap of BGV. Let us consider the BGV construction for binary messages [BGV14, Section 4].
We begin by providing a brief recap of the features of BGV that we require. We use the same
notation as in their paper for ease of verification. Let R be a ring and |R| = q. Recall that the
key generation algorithm of BGV samples a vector s′ ∈ Rn such that all the entries of s′ are “small”
with high probability (details of the distribution are not relevant here) and outputs sk = s = (1, s′).
The public key is constructed by sampling a uniform random matrix A′ ← RN×n, an error vector
e ∈ RN from a special “error” distribution, and setting b = A′s′ + 2 · e. Denote by A the (n+ 1)
column matrix consisting of b followed by the n columns of −A′. Observe that A · s = 2e. The
public key contains A in addition to some other elements which are not relevant for our discussion6.
To encrypt a message bit m, set m = (m, 0, 0, . . . , 0) ∈ {0, 1}n+1, sample r← {0, 1}N and output

5We note that these properties are also satisfied by several other FHE schemes, for instance [BV14, Bra12, GSW13].
6Since we assume circular security which BGV do not, we can simplify their scheme – in particular, we not need

fresh keys for each level of the circuit as they do.

17

ct = m + A> r. To decrypt, compute and output [[〈ct, sk〉]q]2, where 〈· , ·〉 denotes inner product
over the ring, and [·]p denotes reduction modulo p. The above construction can be adapted to
support larger message spaces. A simple extension is to choose the message from Zp for a polynomial
sized prime p and multiply the error with p instead of 2. This, and other extensions are discussed in
detail in [BGV14, Section 5].

Creating a Bias. Observe that the decryption algorithm, given a ciphertext ct and secret sk, outputs
the decrypted message bit as [[〈ct, sk〉]q]2 regardless of the distribution of ct. Thus, even if ct is
a random element from the ciphertext space Rn+1 which may not be well formed, it still outputs
a valid message from the message space. However, it is easy to see that for a random element
R← Rn+1, the output of [[〈R, sk〉]q]2 is a uniformly distributed random bit, whereas we require
the decryption algorithm to output a biased bit to satisfy property 5. Below, we will describe the
modification to BGV to achieve the strong version of property 5. In Section 8, we describe how we
can instead rely on the weak version of the property, which is satisfied by BGV unmodified.

To create a bias, an idea is to build in an additional step in the decryption algorithm, which first
checks whether the input ciphertext ct is well-formed. If so, it proceeds with legitimate decryption,
i.e. computes [[〈ct, sk〉]q]2. If not, it simply outputs 0. Since well-formed ciphertexts in the BGV
FHE are sparse in the ciphertext space Rn+1, this ensures that a randomly chosen element from
the ciphertext space is decrypted to 0 with high probability.

It remains to identify an efficient check for the well-formedness of the ciphertext. Towards this,
we observe that for any valid ciphertext (Definition 2.5), the inner product [〈ct, sk〉]q = m + 2e
where m is the encrypted bit and e is some error whose norm may be bounded using bounds on the
norms of the secret key s, the randomness r, the error term in the public key e and the depth of the
circuit – of which the norms of all aforementioned elements were chosen to be sufficiently “small”
and the depth of the circuit can be bounded by the depth of the bootstrapping circuit [Gen09].

Let us assume that the decryption error is bounded above by B − 1, for some B = poly(λ).
We note that this bound holds true for the current setting of parameters in [BGV14]. Then, it
follows that the output of step 1 of decryption, for any well formed ciphertext can be bounded
from above by B. On the other hand, the output of [〈R, sk〉]q for a random element R will also be
uniformly distributed, and hence will have norm ≤ B only with probability O(Bq). If we set q to
be super-polynomial in the security parameter, then this term is negligible. Thus, we may modify
the BGV decryption algorithm so that after computing [〈ct, sk〉]q, it checks whether the output is
≤ B, and outputs 0 if not. This biases the output of decryption to 0 for random inputs – in more
detail, decryption of a random element yields 0 with probability 1− negl(λ) as desired. With this
modification, we ensured that BGV satisfies all the properties required by special FHE. We refer the
reader to [BGV14] for more details about the full construction of FHE.

In the above description, we chose the ring modulus q to be super-polynomial in the security
parameter to obtain the desired bias. However, this large modulus is unnecessary and affects the
efficiency of the scheme negatively. In Section 8, we describe how to relax this requirement.

Next, we discuss how to modify the BGV scheme supporting larger (polynomial) message spaces,
as discussed in [BGV14, Section 5]. As in the case of binary messages (discussed above), we have
that without performing any modifications, the BGV decryption algorithm, if executed on a random
element in the ciphertext space, outputs a uniformly distributed message from the message space.

It remains to establish property 5 which requires that there exists a strict subset of the message

18

space, S ⊂M, such that

P (S) :=
∑
m∈S

P (m) ≥ 1− negl(λ)

where P : M → R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where x ← R`c and (pk, sk) ←
Fhe.Gen(1λ).

Let S be an arbitrary subset of M that contains 0. For the binary message case above,
we described a trick that ensures that random elements are decrypted to 0 with overwhelming
probability. The same trick may be generalized to larger message spaces. If the modulus q is
superpolynomial, and the message space is polynomial (say of size p), then the first step of decryption
yields [〈ct, sk〉]q = m + p · e for well-formed ciphertexts, and a random element in R otherwise.
Again, this term can be bounded by some polynomial B and the decryption procedure can be
modified to output 0 (or any element from the set S) if the output of step 1 is greater than B. By
the same reasoning as above, this biases the output to S with overwhelming probability as long as q
is super-polynomial. Please see Section 8 to avoid the restriction of super-polynomial q.

Finally, we remark that BGV also includes variants where the message space is super-polynomial
in size [BGV14, Section 5.4]. In this case, biasing the output to a fixed set S is simple: we can just
set S =M\ {1}. Moreover S has efficient representation since it can simply be represented by its
complement, which is of small size and it is clear that the decryption output of a random element is
biased to S with overwhelming probability.

4 Deniable Encryption for Bits

In this section, we provide our constructions for weak deniable FHE, as in Definition 2.13, and
compact deniable FHE, as in Definition 2.10. Let Fhe = (Gen,Enc,Eval,Dec) be a special public-key
FHE scheme for the message space M = {0, 1} with ciphertext space R`c , as in Definition 3.1. For
reading convenience, we denote by lowercase r, the `-bit string randomness that is input to an
Fhe.Enc algorithm, and by uppercase R, the elements in R`c , where R`c is the co-domain of the
algorithm Fhe.Enc. We denote by `′c the bit length of elements in R`c (that is, `′c = d`c log2(|R|)e).
Recall that Btsp denotes the bootstrapping procedure described in Definition 2.4 and ⊕2 denotes
the homomorphic evaluation of addition mod 2 described in Definition 2.6.

4.1 Weakly Deniable FHE for Bits

Our public-key weak deniable fully homomorphic encryption scheme for message space M = {0, 1},
wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described as follows:

wDFhe.Gen(1λ) : Upon input the unary representation of the security parameter λ, do the following:

1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).

2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk,m; rand): Upon input the public key dpk, a message bit m and (3`+`′c)-bit string
randomness rand, do the following:

1. Parse dpk := (pk, ctsk) and rand = (r1, r2, r3, R4), where |ri| = ` for i ∈ [3] and |R4| = `′c.

2. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).

19

3. Let ct0 = Btsp(R1)⊕2 Btsp(R2) and ct1 = Btsp(R4)⊕2 Btsp(R3).

4. Output dct = ctm.

wDFhe.Enc(dpk,m; rand) : Upon input the public-key dpk, the message bit m, and the (`+ 3`′c)-bit
string randomness rand, do the following:

1. Parse dpk := (pk, ctsk) and rand = (R1, R2, R3, r4), where |Ri| = `′c for i ∈ [3] and |r4| = `.

2. Set R4 = Fhe.Enc(pk, 1; r4).

3. Let ct0 = Btsp(R1)⊕2 Btsp(R2) and ct1 = Btsp(R3)⊕2 Btsp(R4).

4. Output dct = ctm.

wDFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the circuit C and
the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext cti for i ∈ [k], and output
dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct
as Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

wDFhe.Fake(dpk,m, rand,m∗): Upon input the public key dpk, the original message bit m, (3`+`′c)-
bit string randomness rand, and the faking message bit m∗, do the following:

1. Parse dpk := (pk, ctsk) and rand = (r1, r2, r3, R4), where |ri| = ` for i ∈ [3] and |R4| = `′c.

2. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).

3. If m = m∗, then set R∗1 = R1, R
∗
2 = R2, R

∗
3 = R4, and r∗4 = r3.

4. Else if m 6= m∗, then set R∗1 = R4, R
∗
2 = R3, R

∗
3 = R1, and r∗4 = r2.

5. Output rand∗ = (R∗1, R
∗
2, R

∗
3, r
∗
4)

We now prove the scheme satisfies correctness, compactness, CPA security and weak deniability.

Compactness and Security. Observe that the output of both wDFhe.DEnc and wDFhe.Enc is
a valid ciphertext of the underlying Fhe scheme. This is due to property 3 of the special FHE which
states that the FHE decryption algorithm always outputs a valid bit, and due to the correctness of
FHE evaluation which implies correctness of bootstrapping. Together, these two properties ensure
that Btsp always outputs a valid ciphertext. Moreover, correctness of homomorphic evaluation
implies that the addition mod 2 operation is performed correctly, so that the output of wDFhe.DEnc
and wDFhe.Enc is a valid ciphertext of FHE.

Since the underlying FHE scheme satisfies compactness, it holds that the ciphertext output by
wDFhe.DEnc and wDFhe.Enc is also compact. Similarly, due to property 4 which states that the
scheme is circular secure, and since the ciphertext of the underlying FHE satisfies semantic security,
so does the ciphertext output by wDFhe.DEnc and wDFhe.Enc. Thus, both schemes are compact
and secure as the underlying FHE scheme is.

20

Correctness. We start by proving correctness of the deniable encryption algorithm wDFhe.DEnc.
Parse rand ∈ {0, 1}3`+`′c as rand = (r1, r2, r3, R4). Observe that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i ∈ [3], we have by correctness of the underlying Fhe, that
R1, R2 and R3 are valid encryptions of 1.

2. By properties 3 and 5 which state that FHE decryption always outputs a bit and this bit is
biased to 0 with overwhelming probability when decryption is invoked with a truly random
input, we have that Btsp(R4) is a valid encryption of 0 with overwhelming probability.

Now, by correctness of FHE evaluation, we have that ct0 = Btsp(R1)⊕2Btsp(R2) is a valid encryption
of 0 and ct1 = Btsp(R4)⊕2 Btsp(R3) is a valid encryption of 1.

Next we prove correctness of wDFhe.Enc. Parse rand ∈ {0, 1}`+3`′c as rand = (R1, R2, R3, r4).
Observe that:

1. Since R4 = Fhe.Enc(pk, 1; r4), we have that R4 is a valid encryption of 1.

2. As above, we have by properties 3 and 5 that Btsp(Ri) for i ∈ [3] are valid encryptions of 0
with overwhelming probability.

Thus, again by correctness of FHE evaluation, we have that ct0 = Btsp(R1)⊕2 Btsp(R2) is a valid
encryption of 0 and ct1 = Btsp(R3)⊕2 Btsp(R4) is a valid encryption of 1.

Weak-Deniability. Next, we prove weak deniability of the construction. Fix a security parameter
λ, an original message m ∈ {0, 1}, and a faking message m∗ ∈ {0, 1}. Let (dpk, dsk) ←
wDFhe.Gen(1λ), and parse dpk := (pk, ctsk), dsk := sk.

Faking Case. First consider the distribution of (dpk,m∗, rand,DEnc(dpk,m; rand′)) in the case of
faking.

1. Select uniformly at random rand′ ← {0, 1}3` ×R`c .
2. Parse rand′ := (r1, r2, r3, R4), where |ri| = ` for i ∈ [3] and |R4| = `′c.

3. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).

4. Let rand∗ = wDFhe.Fake(dpk,m, rand′,m∗).

5. By the faking algorithm rand∗ =
(
R∗1, R

∗
2, R

∗
3, r
∗
4) which is computed as follows:

(a) Case m = m∗:
R∗1 = R1, R∗2 = R2, R∗3 = R4, r∗4 = r3.

By property 2 which asserts that ciphertexts are pseudorandom, we can explain
R∗1 and R∗2 as uniform from the ciphertexts space R`c . Here, R∗3 = R4 is already a
uniform element in R`c , and r∗4 = r3 is a uniform ` bit string.

(b) Case m 6= m∗:
R∗1 = R4, R∗2 = R3, R∗3 = R1, r∗4 = r2.

As above, we can explain R∗2 and R∗3 as uniform elements in R`c , and R∗1 = R4 and
r∗4 = r2 are already uniform.

21

6. The output of this hybrid is:(
dpk,m∗, rand∗ = (R∗1, R

∗
2, R

∗
3, r
∗
4) , ct∗ = wDFhe.DEnc(dpk,m; rand′)

)
where ct∗ := ctm, ct0 = Btsp(R1)⊕2 Btsp(R2) and ct1 = Btsp(R4)⊕2 Btsp(R3).

Observe that ct∗ = wDFhe.Enc(dpk,m∗; rand∗). Thus, the output of this hybrid can be
written as:(

dpk,m∗, rand∗ = (R∗1, R
∗
2, R

∗
3, r
∗
4) , ct∗ = wDFhe.Enc(dpk,m∗; rand∗)

)
where ct∗ := ctm∗ , ct0 = Btsp(R∗1) ⊕2 Btsp(R∗2), ct1 = Btsp(R∗3) ⊕2 Btsp(R∗4) and
R∗1, R

∗
2, R

∗
3 and r∗4 are explained as uniform in R3`c × {0, 1}`.

Honest Case. Next, note that in the honest case rand← R3`c × {0, 1}`, so the output distribution
is: (

dpk,m∗, rand = (R1, R2, R3, r4) , ct
∗ = wDFhe.Enc(dpk,m∗; rand)

)
where ct∗ := ctm∗ , ct0 = Btsp(R1) ⊕2 Btsp(R2), ct1 = Btsp(R3) ⊕2 Btsp(R4) and R1, R2, R3

and r4 are sampled uniformly. Hence, the two distributions are indistinguishable.

4.2 Fully Deniable FHE for Bits

Our compact public-key 1/δ-deniable7 fully homomorphic encryption scheme for message space
M = {0, 1}, DFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described below. We also provide an
alternate construction with slightly different parameters in Appendix A. Recall that Btsp denotes
the bootstrapping procedure described in Definition 2.4 and ⊕2 denotes the homomorphic evaluation
of addition mod 2 described in Definition 2.6). We let n = δ2.

DFhe.Gen(1λ) : Upon input the unary representation of the security parameter λ, do the following:

1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).

2. Outputs dpk := (pk, ctsk), dsk := sk.

DFhe.Enc(dpk,m) : Upon input the public-key dpk, the message bit m, do the following:

1. Parse dpk := (pk, ctsk)

2. Select rand as follows:

(a) Select uniformly x1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi = m (mod 2).

(b) For i ∈ [n]: if xi = 1, then select ri ← {0, 1}`; else if xi = 0, select Ri ← R`c .
3. For i ∈ [n] such that xi = 1, set Ri = Fhe.Enc(pk, 1; ri).

4. Output dct = ⊕2(Btsp(R1), . . . ,Btsp(Rn))

DFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the circuit C and
the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext cti for i ∈ [k], and output
dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

7We remind the reader that δ = δ(λ), but we drop the λ for readability.

22

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct as
Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

DFhe.Fake(dpk,m, rand,m∗): Upon input the public key dpk, the original message bit m,
randomness rand, and the fake message m∗ do the following:

1. If m = m∗, output rand∗ = rand.

2. Parse dpk := (pk, ctsk) and rand = (x1, . . . , xn, ρ1, . . . , ρn), where x1, . . . , xn ∈ {0, 1}, and
for each i ∈ [n], if xi = 1, then |ρi| = `; else if xi = 0, |ρi| = `′c.

3. Select uniform i∗ ∈ [n] such that xi∗ = 1. If there is no such i∗, output “cheating
impossible”; else:

(a) Set x∗i∗ = 0 and ρ∗i∗ = Fhe.Enc(pk, 1; ρi∗);

(b) For i ∈ [n] \ {i∗}, set x∗i = xi and ρ∗i = ρi.

4. Output rand∗ = (x∗1, . . . , x
∗
n, ρ
∗
i , . . . , ρ

∗
n).

We now prove the scheme satisfies correctness, compactness, CPA security and poly deniability.
Compactness and security follow exactly as in Section 4.1.

Correctness. To argue correctness, we note that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i such that xi = 1, we have by correctness of the underlying
Fhe that Ri, and hence Btsp(Ri) are valid encryptions of 1 for all i ∈ [n] such that xi = 1.

2. By properties 3 and 5 which state that FHE decryption always outputs a bit and this bit is
biased to 0 with overwhelming probability when decryption is invoked with a truly random
input, we have that Btsp(Ri) for i such that xi = 0 is valid encryption of 0 with overwhelming
probability.

Hence, since
∑n

i=1 xi = m (mod 2), the (FHE evaluation of) addition mod 2 of Btsp(Ri) for i ∈ [n]
yields an encryption of m. Hence, the scheme encodes the message bit correctly.

Deniability. Next, we prove 1/δ-deniability of the construction. Fix a security parameter λ, an
original message m ∈ {0, 1}, and a faking message m∗ ∈ {0, 1}. Let (dpk, dsk) ← DFhe.Gen(1λ),
and parse dpk := (pk, ctsk), dsk := sk. When the original message m and the fake message m∗ are
the same, the faked randomness rand∗ is equal to the original randomness rand. Thus in this case,
m = m∗, the distributions are identical:

(dpk,m∗, rand,DFhe.Enc(dpk,m∗; rand)) = (dpk,m∗, rand∗,DFhe.Enc(dpk,m; rand)).

When the original message m and the fake message m∗ are not the same, observe that “cheating
impossible” will be output only in case that xi = 0 for all i ∈ [n], which occurs with probability
2−n. Assuming we are not in this case, the output distribution is:

Faking Case. First consider the distribution of (dpk,m∗, rand∗,DFhe.Enc(dpk,m; rand)) in the case
of faking, where rand∗ ← DFhe.Fake(dpk,m, rand;m∗).

1. Select uniform rand := (x1, . . . , xn, ρ1, . . . , ρn), by,

23

(a) Select xi ← {0, 1} for i ∈ [n] such that
∑

i∈[n] xi = m (mod 2)

(b) For i ∈ [n], if xi = 1, select ρi ← {0, 1}`

(c) For i ∈ [n], if xi = 0, select ρi ← R`c

2. Let rand∗ = DFhe.Fake(dpk,m, rand,m∗), that is rand∗ = (x∗1, . . . , x
∗
n, ρ
∗
1, . . . , ρ

∗
n) which is

computed as follows:

(a) Select a uniform index i∗ ∈ [n] such that xi∗ = 1, i.e. i∗ ← {i|xi = 1}.
(b) For i ∈ [n], i 6= i∗, set x∗i = xi and ρ∗i = ρi.

(c) Set xi∗ = 0, and ρ∗i∗ = Fhe.Enc(pk, 1; ρi∗).

Intermediate Case. By property 2 of the special FHE, which asserts that ciphertexts are
pseudorandom, we can explain ρ∗i∗ = Fhe.Enc(pk, 1; ρi∗) as uniform element from the ciphertexts
space R`c . The distribution of this hybrid is (dpk,m∗, rand′,DFhe.Enc(dpk,m; rand)), where
rand′ = (x′1, . . . , x

′
n, ρ
′
1, . . . , ρ

′
n) is sampled as follows:

1. Select xi ← {0, 1} for i ∈ [n] such that
∑

i∈[n] xi = m (mod 2)

2. Select a uniform index i′ ∈ [n] such that xi′ = 1 (i.e. i′ ← {i|xi = 1}), and set x′i′ = 0,
and for all i ∈ [n] \ {i′} set x′i = xi.

3. For i ∈ [n], if x′i = 1, select ρ′i ← {0, 1}`

4. For i ∈ [n], if x′i = 0, select ρ′i ← R`c

Honest Case. Note that in the honest case the distribution is (dpk,m∗, rand,DFhe.Enc(dpk,m∗; rand)),
where rand = (x1, . . . , xn, ρ1, . . . , ρn) is sampled as follows:

1. Select xi ← {0, 1} for i ∈ [n] such that
∑

i∈[n] xi = m∗ (mod 2).

2. For i ∈ [n], if xi = 1, select ρ′i ← {0, 1}`

3. For i ∈ [n], if xi = 0, select ρ′i ← R`c

The statistical distance between the two distributions used to sample (x1, . . . , xn), in the honest case
and in the intermediate/faking case, is 1√

n
. Hence, any PPT adversary A can win the DnblGamebA(λ)

game with probability at most 1√
n

, which is 1
δ by our choice of n.

5 Weakly Deniable FHE with Large Message Space

In this section, we provide our construction for weak deniable FHE for polynomial size8 message space
M, as in Definition 2.13. Let Fhe = (Gen,Enc,Eval,Dec) be a special public-key fully homomorphic
encryption for the message space M with ciphertext space R`c , as in Definition 3.1, and Btsp(x) be
the bootstrapping procedure, described in Definition 2.4. We denote by S a strict subset of the
message space to which decryption of random elements is biased,9 by 1S the indicator function
for the set S = M \ S, described in Definition 2.9, and by s a fixed element in S. Recall that
⊕2 denotes the homomorphic evaluation of addition mod 2 described in Definition 2.6 and select
denotes the selector circuit described in Definition 2.8.

8Polynomial in the security parameter. That is |M| = poly(λ).
9Note that this exists from property 5 of the special Fhe.

24

For reading convenience, we denote by lowercase r, the `-bit string randomness that is input
to an Fhe.Enc algorithm, and by upper case R, the elements in R`c , where R`c is the co-domain
of the FHE encryption algorithm. We denote by `′c the bit length of elements in R`c (that is,
`′c = d`c log2(|R|)e). We index the messages in the message space as M = {m0, . . . ,mµ}.

Our (public-key) weakly deniable fully homomorphic encryption scheme for message space M
wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake) is described as follows:

wDFhe.Gen(1λ) : Upon input the unary representation of the security parameter λ, do the following:

1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).

2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk,mk; rand): Upon input the public key dpk, a message mk ∈M and ((4`+`′c)µ)-bit
string randomness rand, do the following:

1. Parse the input.

dpk := (pk, ctsk), rand = (r1, . . . , rµ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rµ,1, rµ,2, rµ,3, R̂µ,4))
where |ri| = |ri,j | = ` and |R̂i,4| = `′c for i ∈ [µ], j ∈ [3].

2. Generate ciphertexts for every possible message.

For i ∈ [µ], set cti = Fhe.Enc(pk,mi; ri).

3. Generate ciphertexts for “selector” bits.

(a) For every i ∈ [µ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).

(b) For every i ∈ [µ], j ∈ [4], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).

(c) We compute ciphertexts for selector bits 0 and 1 for every index as follows. For
i ∈ [µ], compute

cti0 = Btsp(Ri,1)⊕2 Btsp(Ri,2), cti1 = Btsp(Ri,4)⊕2 Btsp(Ri,3)

(d) We let the kth message to be selected by setting it’s selector bit to 1, and all others
to 0 as follows. For every i ∈ [µ] if i 6= k, set ctsel

i = cti0; else if i = k, set ctsel
i = cti1.

4. Evaluate selector circuit on ciphertexts.

Compute and output dct = select(ct1, . . . , ctµ, ct
sel
1 , . . . , ct

sel
µ), that is dct =

∑
i∈[µ]

(
ctsel
i ⊗ cti

)
.

wDFhe.Enc(dpk,mk; rand) : Upon input public-key dpk, a message mk ∈M, and ((2`+ 3`′c)µ)-bit
string randomness rand, do the following:

1. Parse the input.

dpk := (pk, ctsk), rand = (r1, . . . , rµ, (R̂1,1, R̂1,2, R̂1,3, r1,4), . . . , (R̂µ,1, R̂µ,2, R̂µ,3, rµ,4))
where |ri| = |ri,4| = ` and |R̂i,j | = `′c for i ∈ [µ], j ∈ [3].

2. Generate ciphertexts for every possible message.

For i ∈ [µ], set cti = Fhe.Enc(pk,mi; ri).

3. Generate ciphertexts for “selector” bits.

25

(a) For every i ∈ [µ], set R̂i,4 = Fhe.Enc(pk, s; ri,4).

(b) For every i ∈ [µ], j ∈ [4], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).

(c) We compute ciphertexts for selector bits 0 and 1 for every index as follows.
For i ∈ [µ], compute

cti0 = Btsp(Ri,1)⊕2 Btsp(Ri,2), cti1 = Btsp(Ri,3)⊕2 Btsp(Ri,4).

(d) We let the kth message to be selected by setting it’s selector bit to 1, and all others
to 0 as follows. For every i ∈ [µ] if i 6= k, set ctsel

i = cti0; else if i = k, set ctsel
i = cti1.

4. Evaluate selector circuit on ciphertexts.

Compute and output dct = select(ct1, . . . , ctµ, ct
sel
1 , . . . , ct

sel
µ), that is

∑
i∈[µ]

(
ctsel
i ⊗ cti

)
.

wDFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the circuit C and
the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext cti for i ∈ [k], and output
dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct
as Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

wDFhe.Fake(dpk,mk, rand,mk∗): Upon input the public key dpk, the original message mk ∈ M,
((4`+ `c)µ)-bit string randomness rand and the fake message mk∗ , do the following:

1. Parse dpk := (pk, ctsk), and rand := (r1, . . . , rµ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rµ,1, rµ,2, rµ,3, R̂µ,4)),
where |ri| = |ri,j | = ` and |R̂i,4| = `′c for i ∈ [µ], j ∈ [3].

2. For all i ∈ [µ], set r∗i = ri.

3. For every i ∈ [µ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).

4. For every i ∈ [µ] \ {k, k∗} set

R̂∗i,1 = R̂i,1, R̂∗i,2 = R̂i,2, R̂∗i,3 = R̂i,3, r∗i,4 = ri,4.

5. If k = k∗, then set

R̂∗k,1 = R̂k,1, R̂∗k,2 = R̂k,2, R̂∗k,3 = R̂k,4, r∗k,4 = rk,3;

Else if k 6= k∗, for every i ∈ {k, k∗} set

R̂∗i,1 = R̂i,4, R̂∗i,2 = R̂i,3, R̂∗i,3 = R̂i,1, r∗i,4 = ri,2.

6. Output rand∗ = (r∗1, . . . , r
∗
µ, (R̂

∗
1,1, R̂

∗
1,2, R̂

∗
1,3, r

∗
1,4), . . . , (R̂

∗
µ,1, R̂

∗
µ,2, R̂

∗
µ,3, r

∗
µ,4))

Remark 5.1. We observe that by using the circuit Mux instead of the circuit select, we can use
smaller randomness – in particular, we can achieve |rand| = µ`+ 2 log2(µ)`′c.

We now prove the scheme satisfies correctness, compactness, CPA security and weak deniability.
As in Section 4.1, compactness and security follow from those of the underlying FHE scheme. We
argue correctness and weak deniability next.

26

Correctness. We start by proving correctness of the deniable encryption algorithm wDFhe.DEnc.
Parse dpk := (pk, ctsk), dsk := sk, and rand ∈ {0, 1}µ(4`+`′c) as

rand = (r1, . . . , rµ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rµ,1, rµ,2, rµ,3, R̂µ,4)),

where |ri| = |ri,j | = ` and |R̂i,4| = `′c for i ∈ [µ], j ∈ [3]. Observe that:

1. Since cti = Fhe.Enc(pk,mi; ri) for i ∈ [µ], we have by correctness of the underlying scheme
Fhe, that cti is a valid encryption of mi for every i ∈ [µ].

2. Since R̂i,j = Fhe.Enc(pk, s; ri,j), we have by correctness of the underlying scheme Fhe, that
R̂i,j is a valid encryption of s for s /∈ S, i ∈ [µ], and j ∈ [3].

3. By correctness of the underlying scheme Fhe, we have that Ri,j = Fhe.Eval(pk,1S , R̂i,j) is a
valid encryption of 1 for every i ∈ [µ], j ∈ [3]. Thus, also Btsp(Ri,j) is a valid encryption of 1.

4. By correctness of the underlying scheme Fhe and the properties 3 and 5 which state that
FHE decryption always outputs a valid ciphertext for some message m ∈M, and m ∈ S with
overwhelming probability when decryption is invoked with a truly random input, we have
that Ri,4 = Fhe.Eval(pk,1S , R̂i,4) is a valid encryption of 0 with overwhelming probability for
every i ∈ [µ]. Thus, for every i ∈ [µ], Btsp(Ri,4) is also a valid encryption of 0 with similar
probability.

Now, by correctness of FHE evaluation, we have that cti0 = Btsp(Ri,1) ⊕2 Btsp(Ri,2) is a valid
encryption of 0 and cti1 = Btsp(Ri,4)⊕2 Btsp(Ri,3) is a valid encryption of 1 for every i ∈ [µ]. Thus,
for every i ∈ [µ], i 6= k, ctsel

i is a valid encryption of 0, and for i = k, ctsel
k is a valid encryption of 1.

This implies that the output dct =
∑

i∈[µ] ct
sel
i ⊗ cti is a valid encryption of the message mk.

Next, we prove correctness of the encryption algorithm wDFhe.Enc. Parse dpk := (pk, ctsk),
dsk := sk, and rand ∈ {0, 1}µ(2`+3`′c) as

rand = (r1, . . . , rµ, (R̂1,1, R̂1,2, R̂1,3, r1,4), . . . , (R̂µ,1, R̂µ,2, R̂µ,3, rµ,4)),

where where |ri| = |ri,4| = ` and |R̂i,j | = `′c for i ∈ [µ], j ∈ [3]. Observe that, as in the proof of
correctness for DEnc, we have that:

1. For every i ∈ [µ], cti = Fhe.Enc(pk,mi; ri) is a valid encryption of mi.

2. For every i ∈ [µ], R̂i,4 = Fhe.Enc(pk, s; ri,4) is a valid encryption of s for s /∈ S.

3. For every i ∈ [µ], Ri,4 = Fhe.Eval(pk,1S , R̂i,4) is a valid encryption of 1.

4. For every i ∈ [µ], j ∈ [3], Ri,j = Fhe.Eval(pk,1S , R̂i,j) is a valid encryption of 0 with
overwhelming probability. Thus, Btsp(Ri,j) is also a valid encryption of 0 with overwhelming
probability.

Now, by correctness of FHE evaluation, we have that cti0 = Btsp(Ri,1) ⊕2 Btsp(Ri,2) is a valid
encryption of 0 and cti1 = Btsp(Ri,3)⊕2 Btsp(Ri,4) is a valid encryption of 1 for every i ∈ [µ]. Thus,
for every i ∈ [µ], i 6= k, ctsel

i is a valid encryption of 0, and for i = k, ctsel
k is a valid encryption of 1.

This implies that the output dct =
∑

i∈[µ] ct
sel
i ⊗ cti is a valid encryption of the message mk.

27

Weak Deniability. Next, we prove weak deniability of the construction. Fix a security parameter
λ, an original message mk ∈ M and a fake message mk∗ ∈ M. Let (dpk, dsk) ← wDFhe.Gen(1λ),
and parse dpk := (pk, ctsk), dsk := sk.

Faking Case. First consider the distribution of (dpk,mk∗ , rand
∗,DEnc(dpk,mk; rand

′)) in the case
of faking.

1. Select uniformly at random rand′ ← {0, 1}4µ` ×Rµ`c .
2. Parse rand′ := (r1, . . . , rµ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rµ,1, rµ,2, rµ,3, R̂µ,4)), where |ri| =
|ri,j | = ` and |R̂i,4| = `′c for i ∈ [µ], j ∈ [3].

3. For i ∈ [µ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).

4. Let rand∗ = wDFhe.Fake(dpk,mk, rand
′,mk∗)

5. By the faking algorithm rand∗ = (r∗1, . . . , r
∗
µ, (R̂

∗
1,1, R̂

∗
1,2, R̂

∗
1,3, r

∗
1,4), . . . , (R̂∗µ,1, R̂

∗
µ,2, R̂

∗
µ,3, r

∗
µ,4))

which is computed as follows:

(a) For every i ∈ [µ], set r∗i = ri.

(b) For every i ∈ [µ] \ {k, k∗}, j ∈ [4], set R̂∗1,j = R̂1,j , r
∗
i,4 = ri,4.

(c) For every i ∈ {k, k∗}, set

i. Case k = k∗:

R̂∗k,1 = R̂k,1, R̂∗k,2 = R̂k,2, R̂∗k,3 = R̂k,4, r∗k,4 = rk,3.

By property 2 which asserts that ciphertexts are pseudorandom, we can explain
R̂∗i,1 and R̂∗i,2 as uniform from the ciphertexts space R`c . Here R̂∗i,3 is already a

uniform element in R`c , and r∗i,4 is a uniform ` bit string. Hence, we can explain

rand∗ ← {0, 1}2µ` ×R3µ`c .

ii. Case k 6= k∗:

R̂∗i,1 = R̂i,4, R̂∗i,2 = R̂i,3, R̂∗i,3 = R̂i,1, r∗i,4 = ri,2.

As above, we can explain R̂∗i,2 and R̂∗i,3 as uniform element in R`c , and R̂∗i,1, and

r∗i,4 are already uniform. Hence, we can explain rand∗ ← {0, 1}2µ` ×R3µ`c .

6. The output of this hybrid is:

(dpk,mk∗ , rand
∗, ct∗ = wDFhe.DEnc(dpk,mk; rand

′)).

Observe that ct∗ = wDFhe.Enc(dpk,mk∗ ; rand
∗). Thus the output of this hybrid can be

written as:
(dpk,mk∗ , rand

∗, ct∗ = wDFhe.Enc(dpk,mk∗ ; rand
∗)).

Honest Case. Next, note that in the honest case rand← {0, 1}2µ`×R3µ`c , so the output distribution
is:

(dpk,mk∗ , rand, ct
∗ = wDFhe.Enc(dpk,mk∗ ; rand)).

Hence, the two distributions are indistinguishable.

28

6 Fully Deniable FHE with Large Message Space

In this section, we construct a compact public-key 1/δ-deniable10 fully homomorphic encryption
scheme for polynomial sized message spaceM, as in Definition 2.10. Let Fhe = (Gen,Enc,Eval,Dec)
be a special fully homomorphic encryption scheme for the message space M with ciphertext R`c , as
in Definition 3.1. Again, we let Btsp(x) be the bootstrapping procedure, described in Definition
2.4. We denote by S a strict subset of the message space to which decryption of random element
is biased,11 by 1S the indicator function for the set S :=M\ S, described in Definition 2.9, and
by s ∈ S a fixed element in S. Recall that ⊕2 denotes the homomorphic evaluation of addition
mod 2 described in Definition 2.6) and select denotes the selector circuit described in Definition 2.8.
We let n = δ2

For reading convenience, we denote by lowercase r, the `-bit string randomness that is input
to an Fhe.Enc algorithm, and by upper case R, the elements in R`c , where R`c is the co-domain
of the FHE encryption algorithm. We denote by `′c the bit length of elements in R`′c (that is,
`′c = d`c log2(|R|)e). We index the messages in the message space as M = {m0, . . . ,mµ}.

Our (public-key) compact 1/δ-deniable fully homomorphic encryption scheme for message space
M DFhe = (Gen,Enc,Eval,Dec,Fake) is described as follows:

DFhe.Gen(1λ) : Upon input the unary representation of the security parameter λ, do the following:

1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).

2. Outputs dpk := (pk, ctsk), dsk := sk

DFhe.Enc(dpk,mk) : Upon input the public-key dpk and a message mk ∈M, do the following:

1. Parse the input.

dpk := (pk, ctsk).

2. Select randomness.

Select rand as follow:

(a) Select uniform `-bit strings ri for i ∈ [µ].

(b) For each i ∈ [µ] do:

i. If i 6= k: select uniformly xi,1, . . . , xi,n ∈ {0, 1} s.t.
∑n

j=1 xi,j = 0 (mod 2).

ii. Else if i = k: select uniformly xk,1, . . . , xk,n ∈ {0, 1} s.t.
∑n

j=1 xk,j = 1 (mod 2).

iii. For every j ∈ [n]: if xi,j = 1, then select ri,j ← {0, 1}`; else if xi,j = 0, select
R̂i,j ← R`c .

3. Generate ciphertexts for every possible message.

Let cti = Fhe.Enc(pk,mi; ri) for i ∈ [µ].

4. Generate ciphertext for “selector” bits.

(a) For each i ∈ [µ], j ∈ [n] such that xi,j = 1, let R̂i,j = Fhe.Enc(pk, s; ri,j).

(b) We compute ciphertexts for selector bits for each i ∈ [µ] as follows.

i. For each j ∈ [n], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).

10We remind the reader that δ = δ(λ), but we drop the λ for readability.
11Note that this exists from property 5 of the special Fhe.

29

ii. Let ctsel
i = ⊕2 (Btsp (Ri,1) , . . . ,Btsp (Ri,n)) .

5. Evaluate selector circuit on ciphertexts.

Compute and output dct = select(ct1, . . . , ctµ, ct
sel
i , . . . , ct

sel
i), that is dct =

∑
i∈[µ]

(
ctsel
i ⊗ cti

)
.

DFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the circuit C and
the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext cti for i ∈ [k], and output
dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct as
Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

DFhe.Fake(dpk,mk, rand,mk∗): Upon input the public key dpk, the original message mk ∈M, the
randomness rand, and the faking messages mk∗ do the following:

1. If k = k∗, output rand.

2. Parse dsk := (pk, ctsk), and the randomness as:

rand = (r1, . . . , rµ, (x1,1, . . . , x1,n, ρ1,1, . . . , ρ1,n), . . . , (xµ,1, . . . , xµ,n, ρµ,1, . . . , ρµ,n)), where
|ri| = `, and xi,j ∈ {0, 1}, if xi,j = 1 then |ρi,j | = `; else if xi,j = 0, |ρi,j | = `′c for every
i ∈ [µ], j ∈ [n].

3. Set r∗i = ri for all i ∈ [µ].

4. For every i ∈ [µ] \ {k, k∗}, set x∗i,j = xi,j and ρ∗i,j = ρi,j for all j ∈ [n].

5. For i ∈ {k, k∗} do:

(a) Select uniform j∗i ∈ [n] such that xi,j∗i = 1

i. Set x∗i,j∗i
= 0, and ρ∗i,j∗i

= Fhe.Enc(pk, s; ρi,j∗i).

ii. For every j ∈ [n] \ {j∗i }: set x∗i,j = xi,j and ρ∗i,j = ρi,j .

6. Output rand∗ = (r∗1, . . . , r
∗
µ, (x

∗
1,1, . . . , x

∗
1,n, ρ

∗
1,1, . . . , ρ

∗
1,n), . . . , (x∗µ,1, . . . , x

∗
µ,n, ρ

∗
µ,1, . . . , ρ

∗
µ,n)).

Remark 6.1. We observe that by using the circuit Mux instead of the circuit select, we can use
smaller randomness - in particular, we can achieve |rand| = µ`+ δ2 log2(µ)(1 + `′c).

12

Online-Offline Encryption. It is easy to see that the only step in the encryption algorithm
whose running time depends on the detection probability is the step that computes the ciphertexts
for the selector bits, namely step 4. Since for every valid ciphertext, the number of selector bits
encoding 0 are |M| − 1 and there is a single selector bit encoding 1, these bits can be computed
offline. Moreover, the ciphertexts encoding every possible message in M can also be constructed
offline. Only the final step of evaluating the selector circuit based on the selected message, i.e. step
5 needs be performed after the message becomes available in the online phase. The running time of
this step depends on |M| but not on the detection probability of the scheme.

We also remark that the dependence of the online computation time on |M| may be mitigated
by evaluating the selector circuit with all selector bits set to 0 in the offline phase, and storing the
selector ciphertexts. An extra selector ciphertext ct1 for the bit 1 is also computed and stored, to be
used in the online phase. Then, in the online phase when the message is known, the precomputed

12Here we assume w.l.o.g that ` ≤ `′c, namely the randomness used by the Fhe encryption algorithm is at most the
size of the output ciphertext.

30

sum can be adjusted by subtracting out the incorrect term and adding in the correct one. In more
detail, in the offline phase, the encryptor can perform the homomorphic evaluation of the function∑

mi∈M 0 ·mi, namely with all the selector bits set to 0, and store the selector bit ciphertexts in
a table. In the online phase, when the message mk (say) is known, it can subtract the wrongly
deselected term ct0k · ctk and add the term ct1 · ctk to obtain the correct ciphertext. Note that here,
ct1 is the extra selector bit computed in the offline phase.

Compactness and Security. As in Section 4.1, compactness and security follow from those
of the underlying FHE scheme. We argue correctness, polynomial deniability, and deniability
compactness next.

Correctness. Parse dpk := (pk, ctsk), dsk := sk, and rand as

rand = (r1, . . . , rµ, (x1,1, . . . , x1,n, ρ1,1, . . . , ρ1,n), . . . , (xµ,1, . . . , xµ,n, ρµ,1, . . . , ρµ,n)),

where |ri| = `, xi,j ∈ {0, 1}, if xi,j = 0, then |ρi,j | = `′c; else if xi,j = 1, then |ρi,j | = `; for
i ∈ [µ], j ∈ [n].

Observe that:

1. Since cti = Fhe(pk,mi; ri) for i ∈ [µ], we have by correctness of the underlying scheme Fhe,
that cti is a valid encryption of mi for every i ∈ [µ].

2. For every i ∈ [µ], j ∈ [n] such that xi,j = 1, since R̂i,j = Fhe.Enc(pk, s; ri,j), we have by
correctness of the underlying scheme Fhe that R̂i,j is a valid encryption of s.

3. For every i ∈ [µ], j ∈ [n] such that xi,j = 1, by correctness of the underlying Fhe, we have
that Ri,j = Fhe.Eval(pk,1S , R̂i,j) is a valid encryption of 1. Thus, also Btsp(Ri,j) is a valid
encryption of 1.

4. For every i ∈ [µ], j ∈ [n] such that xi,j = 0, by correctness of the underlying Fhe and the
properties 3 and 5 which state that FHE decryption always outputs a valid ciphertext for some
message m ∈M, and m ∈ S with overwhelming probability when decryption is invoked with
a truly random input, we have that Ri,j = Fhe.Eval(pk,1S , R̂i,j) is a valid encryption of 0 with
overwhelming probability. Thus, also Btsp(Ri,j) is a valid encryption of 0 with overwhelming
probability.

5. For every i ∈ [µ], j ∈ [n], since Btsp(Ri,j) is a valid encryption of xi,j , we have by correctness
of the underlying Fhe that ctsel

i is a valid encryption of
∑

j∈[n] xi,j (mod 2) which is 0 for every
i 6= k, and 1 for i = k.

Hence, the output dct =
∑

i∈[µ] ct
sel
i ⊗ cti, is a valid encryption of the message mk.

Deniability. Next, we prove polynomial deniability of the construction. Fix a security parameter
λ, an original message mk ∈ M, and a faking message mk∗ ∈ M. Let (dpk, dsk)← DFhe.Gen(1λ),
and parse dpk := (pk, ctsk), dsk := sk. When the original message mk and the fake message mk∗ are
the same, the fake randomness rand∗ is equal to the original randomness rand. Thus in this case,
k = k∗, the distributions are identical:

(dpk,mk∗ , rand,DFhe.Enc(dpk,mk∗ ; rand)) = (dpk,mk∗ , rand
∗,DFhe.Enc(dpk,mk; rand))

31

When the original message mk and the faked message mk∗ are not the same, observe that the
only difference between the randomnesses rand and rand∗ is in the randomness used in the encryption
algorithm for encrypting the k and k∗ selector bits, i.e. in computing ctsel

k and ctsel
k∗ which is sampled

independent of the messages mk,m
∗
k. Moreover, all other randomness is selected independent of the

randomness used for ctsel
k and ctsel

k∗ . Thus, in the proof below we will only write the parts of the
distribution that involve the randomness used for encrypting the k and k∗ selector bits, that is:

(xk,1, . . . , xk,n, ρk,1, . . . , ρk,n, xk∗,1, . . . , xk∗,n, ρk∗,1, . . . , ρk∗,n).

The proof is very similar to the proof of polynomial deniability for our public-key compact deniable
fully homomorphic encryption scheme for bits described in Section 4.2. We provide it here for the
sake of completeness.

Faking Case. First consider the distribution in the case of faking, where

(x∗k,1, . . . , x
∗
k,n, ρ

∗
k,1, . . . , ρ

∗
k,n, x

∗
k∗,1, . . . , x

∗
k∗,n, ρ

∗
k∗,1, . . . , ρ

∗
k∗,n) is sampled as follows:

1. For i ∈ [n], select uniformly at random x∗k,i, x
∗
k∗,i ← {0, 1} such that∑

i∈[n] x
∗
k,i = 1 (mod 2);

∑
i∈[n] x

∗
k∗,i = 0 (mod 2).

2. Select uniform indexes i∗k, i
∗
k∗ ∈ [n] such that x∗k,i∗k

= 1 and x∗k∗,i∗
k∗

= 1.

3. Set x∗k,i∗k
= 0 and x∗k∗,i∗

k∗
= 0.

4. Set ρ∗k,i∗k
= Fhe.Enc(pk, s; ρk,i∗k) and ρ∗k∗,i∗

k∗
= Fhe.Enc(pk, s; ρk∗,i∗

k∗
) where ρk,i∗k , ρk∗,i

∗
k∗

are

random ` bit strings.

5. For j ∈ {k, k∗}, i ∈ [n], i 6= i∗j , if x∗j,i = 1, select ρ∗j,i ← {0, 1}`.

6. For j ∈ {k, k∗}, i ∈ [n], i 6= i∗j , if x∗j,i = 0, select ρ∗j,i ← R`c .

Intermediate Case. By property 2 of the special FHE, which asserts that ciphertexts are
pseudorandom, we can explain ρ∗k,i∗k

= Fhe.Enc(pk, s; ρk,i∗k) and ρ∗k∗,i∗
k∗

= Fhe.Enc(pk, s; ρk∗,i∗
k∗

)

as uniform elements from the ciphertexts space R`c .
In this hybrid,

(x′k,1, . . . , x
′
k,n, ρ

′
k,1, . . . , ρ

′
k,n, x

′
k∗,1, . . . , x

′
k∗,n, ρ

′
k∗,1, . . . , ρ

′
k∗,n) is sampled as follows:

1. For i ∈ [n], select uniformly at random x′k,i, x
′
k∗,i ← {0, 1} for i ∈ [n] such that∑

i∈[n] x
′
k,i = 1 (mod 2);

∑
i∈[n] x

′
k∗,i = 0 (mod 2).

2. Select uniform indexes i∗k, i
∗
k∗ ∈ [n] such that x′k,i∗k

= 1 and x′k∗,i∗
k∗

= 1.

3. Set x′k,i∗k
= 0 and x′k∗,i∗

k∗
= 0.

4. For j ∈ {k, k∗}, i ∈ [n], if x′j,i = 1, select ρ∗j,i ← {0, 1}`.

5. For j ∈ {k, k∗}, i ∈ [n], if x′j,i = 0, select ρ∗j,i ← R`c .

Honest Case. In this hybrid,

(xk,1, . . . , xk,n, ρk,1, . . . , ρk,n, xk∗,1, . . . , xk∗,n, ρk∗,1, . . . , ρk∗,n) is sampled as follows:

1. For i ∈ [n], select uniformly at random xk,i, xk∗,i ← {0, 1} for i ∈ [n] such that∑
i∈[n] xk,i = 1 (mod 2);

∑
i∈[n] xk∗,i = 0 (mod 2).

32

2. For j ∈ {k, k∗}, i ∈ [n], if xi = 1, select ρi ← {0, 1}`

3. For j ∈ {k, k∗}, i ∈ [n], if xi = 0, select ρi ← R`c

The statistical distance between the two distributions used to sample (xj,1, . . . , xj,n) for j ∈ {k, k∗},
in the honest case and in the intermediate/faking case, is 1√

n
. Hence, any PPT adversary A can

win the DnblGamebA(λ) game with probability at most 1√
n

, which is 1/δ by our choice of n.

Deniability Compactness. Fix a security parameter λ, and a message m ∈M. Observe that
the output of the encryption algorithm is a ciphertext of the underlying Fhe scheme, namely
DFhe.Enc(dpk,m) ∈ R`c where (dpk, dsk)← DFhe.Gen(1λ). Hence, it follows from the compactness
of Fhe that the ciphertext also satisfies deniability compactness.

6.1 Plan Ahead Deniability.

Plan-ahead deniable encryption [CDNO97] requires the sender to choose all possible fake messages
at the time of encryption. For the plan-ahead setting, we can instantiate the underlying FHE to
support message spaces of exponential size. Intuitively, without the plan-ahead restriction, the above
construction fails for exponentially large message spaces, since it is not possible to “select” between
exponentially many options in polynomial time. However, if the number of possible fake messages
is fixed to some polynomial in advance, then it is easy to check that exact same construction as
above is a plan-ahead deniable encryption scheme, provided we can instantiate the special FHE to
have an exponentially large message space. As discussed in Section 3, to support message spaces of
exponential size [BGV14, Section 5], i.e. |M| = 2λ, we can set S =M\ {1}. This ensures that S
has an efficient representation and that the output is biased to S with overwhelming probability, as
desired.

7 Lower Bound for Deniable Schemes

As discussed in Section 1, Canetti et al. [CDNO97] (denoted by CDNO) showed that no one round
(sender) deniable scheme which satisfies a certain structural property called “separability”, can
enjoy negligible detection probability, say 1

δ . While our constructions (Sections 4.2 and 6) achieve
deniability compactness, where the size of the public key and ciphertext do not depend on δ, we
show here that these schemes are separable in the sense of CDNO and hence the dependence of the
encryption running time on δ is inherent. This implies that our schemes cannot achieve negligible
deniability without incurring super-polynomial running time.

Separable Schemes. In a separable scheme, the decryption key is a trapdoor that allows the
holder to distinguish a pseudorandom element from random. In CDNO, the ciphertext consists
of a sequence of elements R1, . . . , Rn where Ri for i ∈ [n] may be random or pseudorandom,
and distinguishing between the two cases is hard given public information. To encrypt a bit b,
the encryptor samples uniform random bits x1, . . . , xn such that

∑
i∈[n] xi = b (mod 2). It then

computes n elements R1, . . . , Rn of which, Ri is pseudorandom when xi = 1, and Ri is random
when xi = 0. To fake, it samples a random j ∈ [n] such that xj = 1, sets x∗j = 0, and x∗i = xi for
every i 6= j, i ∈ [n]. It pretends that Rj is chosen uniformly at random – this flips the parity of∑

i∈[n] x
∗
i (mod 2) and hence the presumed encoded message.

33

CDNO provide an attack against any separable scheme which claims to enjoy negligible detection
probability. The attack is based on the observation that the faking algorithm always decreases the
number of claimed pseudorandom elements – in particular, one may pretend that pseudorandom is
random, but one cannot pretend in the opposite direction. Hence, for any bit b, the adversary can
compute the expected number of elements in [n] which ought to be pseudorandom. If the claimed
number of pseudorandom elements is below the expected value, the adversary decides that the
sender is lying. They show that this strategy succeeds with probability Ω(1

n).

Separability of Our Schemes. Our schemes can be seen as following a similar philosophy of
separability as above, but with compactification of the public key and ciphertext using FHE. For
concreteness, let us consider the construction from Section 4.2 that achieves polynomial deniability
for bits in the full model. Here, to encrypt a bit b, the encryptor samples uniform random bits
x1, . . . , xn such that

∑
i∈[n] xi = b (mod 2). It then computes n elements R1, . . . , Rn of which, Ri

is computed as an FHE encryption of 1 when xi = 1, and Ri is sampled uniformly at random when
xi = 0. Finally, it outputs

ct = Btsp(R1) ⊕2 Btsp(R2) ⊕2 . . . ⊕2 Btsp(Rn)

To fake, it samples a random j ∈ [n] such that xj = 1, sets x∗j = 0, and x∗i = xi for every
i 6= j, i ∈ [n]. It pretends that Rj is chosen uniformly at random, implying that Btsp(Rj) encodes 0
with overwhelming probability.

For applying the lower bound of CDNO, it suffices to observe that to fake a bit, the encryptor
must again always decrease the number of claimed pseudorandom elements by 1. As in CDNO,
one may pretend that pseudorandom is random, but it is infeasible to pretend in the opposite
direction. Hence, for any bit b, the adversary can compute the expected number of elements in [n]
which should be pseudorandom, and decide that the encryptor is cheating if the claimed number of
pseudorandom elements is below the expected value. The success probability of the adversary is
Ω(1

n) by exactly the same argument as in CDNO. We recap the argument below.

Definition 7.1 (Separable Scheme). [CDNO97] A 1
δ -deniable public key encryption scheme is

n-separable if there exists an efficient deterministic algorithm Cnt which given an input rand
(interpreted as the claimed random input of the sender), outputs a number Cnt(rand) ∈ {1, . . . , n}
(interpreted as the number of pseudorandom elements used by the encryption algorithm to generate
the ciphertext). Additionally:

1. For a value rand, let randb be the random variable denoting the output of the faking algorithm
Fake(dpk, b̄, rand, b) and E(Cnt(randb)) denote the expected value of Cnt(randb). Then for any
value rand such that Cnt(rand) ≥ 1, either E(Cnt(rand0)) ≤ Cnt(rand)− 1 or E(Cnt(rand1)) ≤
Cnt(rand)− 1.

2. If Cnt(rand) = 0, then the faking algorithm aborts and outputs “cheating impossible”.

It is easy to see that our schemes in Sections 4.2 and 6 are n-separable. The value Cnt(rand),
i.e. the number of pseudorandom elements in rand can be easily computed as the number of 1’s in
x1, . . . , xn. Moreover, the faking algorithm always decreases the number of pseudorandom elements
used during encryption hence condition 1 is satisfied. If the number of pseudorandom elements
used is 0, the fake algorithm outputs “cheating impossible” and aborts (please see step 3 of Fake in
Section 4.2), hence condition 2 is satisfied.

34

CDNO prove the following theorem:

Theorem 7.2. [CDNO97, Claim 8] For any n-separable scheme with 1
δ deniability, it holds that

2n ≥ δ.

The proof follows by demonstrating an adversary A who can distinguish between the real and
fake distributions of randomness when the bit b̄ is encrypted (or claimed encrypted). We have by the
definition of separable that E(Cnt(rand))− E(Cnt(rand0)) ≥ 1

2 or E(Cnt(rand))− E(Cnt(rand1)) ≥ 1
2 .

Let D denote the distribution of Cnt(rand) when rand is chosen randomly, and Db denote the
distribution of Cnt(randb). Then we have that

SD(D,D0) >
1

2n
or SD(D,D1) >

1

2n

The distinguisher A is now straightforward – it leverages the above statistical distance between
the real and fake distributions to distinguish successfully with probability at least 1

2n . We refer the
reader to [CDNO97] for more details.

8 Weakening the Condition on Special FHE

In this section, we describe how to adapt our constructions to rely on the weak version of property 5
of special FHE. To aid understanding, we recap the strong and weak version of the property below:

Biased Decryption on Random Input (Strong Version). The decryption algorithm Fhe.Dec, when
invoked with a random element in the ciphertext space x← R`c , outputs a message from a fixed
(strict) subset of the message space S ⊂M with overwhelming probability.

Formally, we require that there exists a strict subset of the message space, S ⊂M, such that

P (S) :=
∑
m∈S

P (m) ≥ 1− negl(λ)

where P : M → R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where x ← R`c and (pk, sk) ←
Fhe.Gen(1λ). Moreover, we require that 0 ∈ S. Thus, if the message space is binary, then S = {0}.

Biased Decryption on Random Input (Weak Version). This version weakens overwhelming to
noticeable in the above definition, i.e. using the notation above, we require:

P (S) :=
∑
m∈S

P (m) ≥ 1/poly(λ)

As before, we require that 0 ∈ S.

Modifying Our Constructions. Let us consider the case of binary message spaces. Let us say
that decryption of a random element R from the ciphertext space yields 0 with only non-negligible
probability. Thus, Btsp(R) is an encryption of 0 also with non-negligible probability. Intuitively,
we may amplify this probability by sampling many random elements, bootstrapping them, and
setting R as the homomorphic AND function on these. In more detail, denote by 1/p = 1/ poly(λ)

35

the probability in which Btsp(R) is a valid encryption of 0, when R is a uniform element form the
ciphertext space, i.e. R← R`c . If we sample k = λ · p2 random elements then the probability for
homomorphic AND of k such elements to be a valid encryption of 1 is (1− 1/p)k ≤ e−k/p = e−λ·p,
which is negligible13. Thus, the homomorphic AND ciphertext will be an encryption of 0 with
overwhelming probability as desired.

For concreteness, we describe the encryption algorithm in Section 4.2. Assume that for a
uniformly random R ← R`c , Pr[Dec(sk, R) = 0] = 1/p. Then, the new encryption algorithm is
described as follows:

DFhe.Enc(dpk,m) : Upon input the public-key dpk, the message bit m, do the following:

1. Parse dpk := (pk, ctsk)

2. Select uniformly x1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi = m (mod 2).

3. For i ∈ [n], if xi = 0, select Ri as in Figure 8.1. Observe that in Section 4.2, we select
Ri ← R`c when xi = 0.

4. For i ∈ [n] such that xi = 1, select Ri as in Figure 8.2. Observe that in Section 4.2, we select
Ri = Fhe.Enc(pk, 1; ri) when xi = 1, where ri ← {0, 1}`.

5. Output dct = ⊕2(Btsp(R1), . . . ,Btsp(Rn))

Sampling Ri for xi = 0

Sample Ri as follows:

1. Sample A1, . . . , Ak randomly in R`c .

2. For j ∈ [k], let Tj = Btsp(Aj).

3. Set Ri = Fhe.Eval(pk,AND, T1, . . . , Tk).

Figure 8.1: Algorithm to sample Ri when xi = 0.

Sampling Ri for xi = 1

Sample Ri as follows:

1. Sample rj ← {0, 1}` for j ∈ [k].

2. Compute A1, . . . , Ak as FHE encryptions of 1, that is Aj ← Enc(pk, 1; rj) for j ∈ [k].

3. Set Tj = Btsp(Aj) for j ∈ [k].

4. Set Ri = Fhe.Eval(pk,AND, T1, . . . , Tk).

Figure 8.2: Algorithm to sample Ri when xi = 1.

13Recall, for any real numbers x, r with r > 0, one has (1 + x)r ≤ erx.

36

Correctness. Observe that when xi = 0, Ri, and hence Btsp(Ri) will be an encryption of 0 with
overwhelming (1− negl) probability. Similarly, when xi = 1, Ri and hence Btsp(Ri) will always be
an encryption of 1. The remainder of the correctness follows exactly as in Section 4.2.

Faking. Faking is performed exactly as in Section 4.2, except that each Ri is now replaced by the
corresponding vector Ai,1, . . . , Ai,k. If Ri is explained as random (resp. pseudorandom) in the fake
algorithm of Section 4.2, then the corresponding tuple is explained as random (resp. pseudorandom)
in the current construction.

Acknowledgment

We are grateful to Daniele Micciancio for very insightful discussions about bootstrapping, and
helpful comments that helped us improve the quality of this writeup.

References

[AFL16] Daniel Apon, Xiong Fan, and Feng-Hao Liu. Deniable attribute based encryption for
branching programs from lwe. In Theory of Cryptography Conference, pages 299–329.
Springer, 2016.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Theory of
Cryptography Conference, pages 407–437. Springer, 2019.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT),
6(3):1–36, 2014.

[BNNO11] Rikke Bendlin, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi.
Lower and upper bounds for deniable public-key encryption. In Asiacrypt. Springer,
2011.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Annual Cryptology Conference, pages 868–886. Springer, 2012.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. SIAM Journal on Computing, pages 831–871, 2014.

[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. Journal of the ACM (JACM), 65(6):1–37, 2018.

[CDNO97] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption.
In Annual International Cryptology Conference, pages 90–104. Springer, 1997.

37

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. A
homomorphic lwe based e-voting scheme. In Post-Quantum Cryptography, pages 245–265.
Springer, 2016.

[CPP20] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully deniable interactive encryption.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I, volume 12170 of
Lecture Notes in Computer Science, pages 807–835. Springer, 2020.

[DCIO16] Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. Deniable functional encryption.
In Public-Key Cryptography–PKC 2016, pages 196–222. Springer, 2016.

[DS14] Dana Dachman-Soled. On minimal assumptions for sender-deniable public key
encryption. In International Workshop on Public Key Cryptography, pages 574–591.
Springer, 2014.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[GH19] Craig Gentry and Shai Halevi. Compressible fhe with applications to pir. In Theory of
Cryptography Conference, pages 438–464. Springer, 2019.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking
the sub-exponential barrier in obfustopia. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 156–181. Springer, 2017.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual
Cryptology Conference, pages 75–92. Springer, 2013.

[Men09] Bo Meng. A secure internet voting protocol based on non-interactive deniable
authentication protocol and proof protocol that two ciphertexts are encryption of
the same plaintext. J. Networks, 4(5):370–377, 2009.

[OPW11] Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key encryption. In
Annual Cryptology Conference, pages 525–542. Springer, 2011.

[SV10] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In International Workshop on Public Key Cryptography,
pages 420–443. Springer, 2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 475–484, 2014.

38

crypto.stanford.edu/craig

A Another Compact FHE for bits

We provide another construction for compact deniable FHE, as in Definition 2.10. Let Fhe =
(Gen,Enc,Eval,Dec) be a special public-key FHE scheme for the message space M = {0, 1} with
ciphertext space R`c , as in Definition 3.1. For reading convenience, we denote by lowercase r, the
`-bit string randomness that is input to an Fhe.Enc algorithm, and by uppercase R, the elements
in R`c , where R`c is the co-domain of the algorithm Fhe.Enc. We denote by `′c the bit length of
elements in R`c (that is, `′c = d`c log2(|R|)e).

Our alternate compact public-key deniable fully homomorphic encryption scheme for message
space M = {0, 1}, DFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described as follows:

DFhe.Gen(1λ) : Upon input the unary representation of the security parameter λ, do the following:

1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).

2. Outputs dpk := (pk, ctsk), dsk := sk.

DFhe.Enc(dpk,m) : Upon input the public-key dpk, the message bit m, do the following:

1. Parse dpk := (pk, ctsk)

2. Select rand = (k, r1, . . . , rk, Rk+1, . . . Rn) ∈ {0, 1}log2(n) × {0, 1}k` ×R(n−k)`c as follows:

(a) If m = 0, select k ← {0, 2, . . . , n− 1}, else if m = 1 select k ← {1, 3, . . . , n} where n
is an odd integer.

(b) Select ri ← {0, 1}`, for i ∈ [k].

(c) Select and Ri ← R`c for i ∈ [n] \ [k].

3. Let Ri = Fhe.Enc(pk, 1; ri) for i ∈ [k].

4. Output dct = ⊕2(Btsp(R1), . . . ,Btsp(Rn))

DFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the circuit C and
the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext cti for i ∈ [k], and output
dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct as
Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

DFhe.Fake(dpk,m, rand,m∗): Upon input the public key dpk, the original message bit m,
randomness rand, and the faking message m∗ do the following:

1. If m = m∗, output rand∗ = rand.

2. Parse dpk := (pk, ctsk) and rand = (k, r1, . . . , rk, Rk+1, . . . , Rn), where |k| = log2(n),
|ri| = ` for i ∈ [k], |Ri| = `′c for i ∈ [n] \ [k].

3. Set k∗ = k − 1. If k = 0, output “cheating impossible” and abort.

4. Set r∗i = ri for i ∈ [k∗].

5. Set R∗k∗+1 = Fhe.Enc(pk, 1; rk).

6. Set R∗i = Ri for i ∈ [n] \ [k].

39

7. Let rand∗ = (k∗, r∗1, . . . , r
∗
k∗ , R

∗
k∗+1, . . . , R

∗
n), that is

rand∗ = (k − 1, r1, . . . , rk−1,Fhe.Enc(pk, 1; rk), Rk+1, . . . , Rn).

8. Output rand∗.

We now prove the scheme satisfies correctness, compactness, CPA security and poly deniability.
Compactness and security follow exactly as in Section 4.1.

Correctness. To argue correctness, we note that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i ∈ [k], we have by correctness of the underlying Fhe that
R1, . . . , Rk, and hence Btsp(R1), . . . ,Btsp(Rk) are valid encryptions of 1.

2. By properties 3 and 5 which state that FHE decryption always outputs a bit and this bit is
biased to 0 with overwhelming probability when decryption is invoked with a truly random
input, we have that Btsp(Rk+1), . . . ,Btsp(Rn) are valid encryptions of 0 with overwhelming
probability.

Hence, when k is odd (respectively even), the (FHE evaluation of) addition mod 2 of Btsp(Ri)
for i ∈ [n] yields an encryption of 1 (respectively 0). Hence, the scheme encodes the message bit
correctly.

Polynomial Deniability. When the original message m and the fake message m∗ are the same,
the faked randomness rand∗ is equal to the original randomness rand. Thus in this case, m = m∗,
the distribution are identical (dpk,m, rand) = (dpk,m∗, rand∗). When the original message m and
the fake message m∗ are not the same, we distinguish two cases:

1. When the original message m = 0, we have in the real randomness rand, k ← {0, 2, . . . , n− 1},
where n is an odd integer. In the faking algorithm, we have in the faked randomness rand∗,
k∗ = k − 1, that is k∗ ← {−1, 1, . . . , n− 2}.

2. When the original message m = 1, we have in the real randomness rand, k ← {1, 3 . . . , n},
where n is an odd integer. In the faking algorithm, we have in the faked randomness rand∗,
k∗ = k − 1, that is k∗ ← {0, 2, . . . , n− 1}.

Observe that when the original message is m = 1, we have that k∗ in the faking randomness
rand∗ is sampled from the exact same distribution as in the real randomness rand when encrypting
the message m = 0. Moreover, by property 2 which asserts that ciphertexts are pseudorandom, we
can explain R∗k as uniform element in R`c . Hence, the output of the faking algorithm in this case
(m = 0,m∗ = 1) will be indistinguishable from real randomness.

When the original message is m = 0, the statistical distance between the distribution of
sampling k∗ in the faking algorithm (namely, sampling k ← {2, 4, . . . , n − 1} and setting k∗ =
k − 1) and the distribution of sampling k when encrypting the message m = 1 (namely, sampling
k ← {1, 3, . . . , n}) is 2

n+1 . To see this, let P and Q be two distribution over a finite set U =

{−1, 1, 3, . . . , n}, where P (x) = 2
n+1 = 1

|U|\{−1} , P (−1) = 0, i.e. P is the uniform distribution

over the set {1, 3, . . . , n}, and Q(x) = 2
n+1 for all x ∈ U \ {n}, and Q(n) = 0 (Q is the uniform

40

distribution over the set {−1, 1, . . . , n− 2}). The statistical distance between these distributions is

SD(P,Q) = 1
2

(
2

n+1 + 2
n+1 + 0

)
= 2

n+1 . Note that when k = 0 (k∗ = −1) “cheating is impossible”,

which happened with 2
n+1 probability. The probability we select k = 0 from the set of {0, 2, . . . , n−1},

is 1
|{0,2,...,n−1}| = 2

n+1 .

41

	Introduction
	Prior Work.
	Our Results.
	Our Techniques.
	Perspective and Open Problems.

	Preliminaries
	Fully Homomorphic Encryption
	Deniable Homomorphic Encryption

	Special Homomorphic Encryption
	Instantiation

	Deniable Encryption for Bits
	Weakly Deniable FHE for Bits
	Fully Deniable FHE for Bits

	Weakly Deniable FHE with Large Message Space
	Fully Deniable FHE with Large Message Space
	Plan Ahead Deniability.

	Lower Bound for Deniable Schemes
	Weakening the Condition on Special FHE
	Another Compact FHE for bits

