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Abstract. Auxiliary-input idealized models, such as the auxiliary-input
random oracle model and the auxiliary-input random permutation model,
play a critical role in assessing non-uniform security of symmetric-key
and hash-function constructions. However, obtaining security bounds in
these models are often much more challenging than in traditional ideal-
ized models.
The presampling technique, introduced by Unruh (CRYPTO’ 07), gener-
ically reduces security proofs in the auxiliary-input models to a much
simpler bit-fixing models. This technique has been further optimized by
Coretti, Dodis, Guo, Steinberger (EUROCRYPT’ 18), and generalized
by Coretti, Dodis, Guo (CRYPTO’ 18), resulting in powerful tools for
proving non-uniform security bounds in various idealized models, includ-
ing random oracle models (ROM), random permutation models (RPM),
ideal cipher models (ICM) and generic group models (GGM).
We study the possibility of unifying and leveraging the presampling tech-
nique to the quantum world. To this end,

– We show that such leveraging will resolve a major open problem
in quantum computing, which is closely related with the famous
Aaronson-Ambainis conjecture (ITCS’ 11).

– Faced with this barrier, we give a new but equivalent bit-fixing model
and a simple proof of presampling techniques for arbitrary oracle
distribution and access in the classical setting, including AI-ROM
and AI-RPM. Our security loss matches the security loss of the best
known presampling technique by Coretti et al. (EUROCRYPT’ 18)
for both indistinguishability and unpredictability applications. Our
new proof unifies previous results by Coretti et al. (EUROCRYPT’
18) and Coretti et al. (CRYPTO’ 18).

– We leverage our new classical presampling techniques to a novel
“quantum bit-fixing version” of presampling. The security loss of our
quantum bit-fixing presampling also matches the optimal security
loss of the classical presampling. Using our techniques, we give the
first post-quantum non-uniform security bounds for salted Merkle-
Damg̊ard hash functions.



1 Introduction

Practical symmetric-key and hash-function constructions are typically designed
and analyzed in idealized models, such as random oracle model (ROM), random
permutation model (RPM) and ideal-cipher model (ICM). Since most construc-
tions of block ciphers and hash functions lack of solid theoretical foundations
from the point of view of provable security, security bounds in idealized mod-
els provide an essential (heuristic) justification for their security. In particular,
the exact security bounds obtained in such idealized models are often viewed
as guidelines for both designers and cryptanalysis in terms of the best possible
security level that can be achieved in the standard model.

Though idealized models capture all attacks that do not exploit the structure
of a particular instantiation of the underlying primitive, they fail to capture
preprocessing attacks. The obtained bounds in idealized model are inaccurate or
not applicable at all once preprocessing is allowed. For example, Hellman [Hel80]
showed a preprocessing attack that takes S bits of advice and makes T queries
to a permutation f : [N ] → [N ] and inverts a random element of [N ] with
probability roughly ST/N . Hence, a permutation cannot be one-way against
attacks beyond S = T = N1/2. However, it is easy to derive in RPM that
a random permutation is invertible with probability at most T/N , suggesting
security against attacks up to size N . Notice that the gap between N and N1/2

matters for practical constructions. For example, while N suggests a 128-bit level
security for 128-bit block cipher (e.g., 128-bit AES), N1/2 only suggests 64-bit
security.

Auxiliary-input models. To address the mismatch between idealized models and
preprocessing attacks, auxiliary-input extensions of idealized models have been
proposed, such as auxiliary-input random oracle model (AI-ROM), auxiliary-
input random permutation model (AI-RPM) and auxiliary-input ideal cipher
model (AI-ICM) [Unr07,DGK17,CDGS18,CDG18]. In AI models, an attacker
is allowed to obtain arbitrary S bits of leakage about the idealized primitive
before attacking the system, then use additional T queries to the primitive.
Similar as that in the idealized models, security bounds obtained in AI models
become the main source of justification and guidelines of the security level against
preprocessing attacks (or more generally non-uniform attacks).

While AI models are simple extensions of well studied idealized models, they
often do not offer simple and intuitive way to prove security bounds. Moreover,
it becomes much more challenging to prove exact security bounds, which are
demanded by practical relevance. For example, it is not straightforward how we
should analyze inverting a random permutation f : [N ]→ [N ] given S-bit advice
(even for S = 1) and T queries in AI-RPM, let alone proving a ST/N bound,
matching Hellman’s attack.

The compression technique. For the specific question of permutation inver-
sion, an optimal ST/N bound was first proved [DTT10] via the “compres-
sion paradigm”, as introduced by Yao [Yao90], Gennaro and Trevisan [GT00]
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(and later adopted by [Wee05]). The main idea is to argue if an attacker suc-
ceeds with “high probability” in inverting a random permutation, then we can
use this attacker to build a shorter representation of (i.e., compress) the ran-
dom permutation than what is possible from an information-theoretical point
of view. Compression paradigm is a general technique which can be applied to
different problems in auxiliary-input models. In fact, compression paradigm has
been successfully applied to (auxiliary-input) random oracle models by Dodis
et al. [DGK17], and (auxiliary-input) generic group model (GGM) by Corrigan-
Gibbs and Kogan [CK18]. While compression based proofs often lead to optimal
bounds, they are usually quite laborious. For every cryptographic construction
to be analyzed, we need to carefully examine the property of the construction
together with its security definition in order to compress the idealized primi-
tive. Moreover, compression based proofs seem inapplicable to computationally
secure applications. This limits the usage of this technique for analyzing more
sophisticated constructions or practical constructions based on computational
assumptions.

The presampling technique. A much simpler and intuitive proof for permuta-
tion inversion has been given by Coretti et al. [CDG18], by adapting the “pre-
sampling” approach taken by Coretti et al. [CDGS18] (and first introduced
by [Unr07]) in the random oracle model. The presampling technique can be
viewed as a general reduction from AI models to a much simpler bit-fixing model
(BF) model, where the oracle can be arbitrarily fixed on some P coordinates cho-
sen by the attacker, for some parameter P , but then the remaining coordinates
are chosen at random and independently of the fixed coordinates. Importantly,
the online attacker only knows the fixed coordinates. This makes BF models
particularly easier to work with, because most proofs techniques for idealized
models can be applied as long as we avoid the fixed coordinates.

Specifically, Coretti et al. [CDG18] and Coretti et al. [CDGS18] show that any
attack with S-bit advice and T oracle queries in AI-ROM/RPM/ICM/GGM will
have similar advantage in their corresponding P -BF models for an appropriately
chosen P , up to an additive loss of δ(S, T, P ) = ST/P (which is optimal shown
by Dodis et al. [DGK17]). Moreover, for the special case of unpredictability
applications (such as one-way function), one can set P to be roughly ST and
achieve a multiplicative factor of 2 in the exact security.

This results in a general way for proving security in AI models. For a cryp-
tographic application in an AI-model, we first analyze its security in the cor-
responding P -BF model and obtain security bounds ε(S, T, P ), then choose P
to optimize δ(S, T, P ) + ε(S, T, P ). For an unpredictability application, its se-
curity in the AI model is just roughly 2 · ε(S, T, ST ), i.e., twice of its security
in the (ST )-BF model. As an example, in the (ST )-BF-RPM, it can be easily
shown that a random permutation f : [N ]→ [N ] is invertible with probability at
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most O(ST/N) 5. Therefore it immediately gives the optimal O(ST/N) bound
(matching Hellman’s attack) in AI-RPM.

The presampling technique offers a much simpler approach for proving secu-
rity bounds in AI models than the compression technique. By presampling tech-
niques, Coretti et al. [CDG18] and Coretti et al. [CDG18] using simpler proofs
recover the AI-ROM/RPM/GGM security bounds obtained by the compression
technique [DTT10,DGK17,CK18], and give the first non-uniform bounds for
a number of important practical applications (which compression appears in-
tractable), such as (salted) Merkle-Dam̊gard hash functions (MDHF). Chung et
al. [CLMP13] study the effects of salting in the collision-resistant hash functions
and argues that salting defeats preprocessing in this case.

We remark that the optimal additive loss and multiplicative version of pre-
sampling techniques in [CDG18,CDGS18] are crucial for obtaining exact bounds.
As shown by Dodis et al. [DGK17], the presampling technique by Unruh [Unr07]
with security loss

√
ST/P yields sub-optimal bounds for many applications.

Moreover, even with optimal additive loss, the indistinguishability version of
presampling only yields

√
ST/N security bounds (therefore useless for obtain-

ing optimal bounds) for one-way functions.

A new challenge: quantum adversaries. Quantum algorithms can efficiently break
many widely used assumptions for public key cryptography (such as factoring).
Can they break practical symmetric-key and hash function constructions? How
much security these constructions have to compromise for quantum adversaries?
What if preprocessing is allowed?

To capture quantum adversaries, quantum extensions of idealized models
have been considered such as the quantum random oracle model (QROM) [BDF+11],
in which the attacker makes T superposition queries to the idealized primi-
tive. Very recently, demanded by assessing post-quantum non-uniform security
of symmetric-key and hash function, quantum versions of AI models have been
proposed and studied [NABT15,HXY19,CLQ19,CGLQ20], in which the adver-
sary is allowed to obtain S (qu)-bit precomputed advice about the idealized
primitive.

By leveraging classical compression proofs, [NABT15,HXY19,CLQ19] obtain
many security bounds. However, they only manage to analyze very basic appli-
cations such as one-way functions. Even for the basic question like inverting a
random permutation with S-bit (classical) advice and T quantum queries, com-
pression proofs give a sub-optimal bound ST 2/N . The success of presampling
techniques in the classical setting motivates the main questions we study in this
paper:

Can we leverage presampling techniques to the quantum setting?

5 If the challenge f(x) doesn’t come from the fixed coordinates, then a proof by stan-
dard techniques bounds the probability of f(x) by O(T/N). The probability that
f(x) comes from the fixed coordinates is at most ST/N when x is uniformly chosen
from [N ]. Therefore, the overall probability of inverting f(x) is O(ST/N)
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Specifically, we hope to reduce the AI quantum models to simpler BF quan-
tum models, then export similar proofs from quantum idealized models. More-
over, we hope to leverage security proofs proven using classical presampling
techniques to the quantum setting.

Recently, Chung et al. [CGLQ20] give a new general technique for ana-
lyzing AI models for quantum adversaries. This technique reduces (Q)AI se-
curity against attackers with (quantum) advice to analyzing a multi-instance
(MI) security against attackers without advice. They use this technique to prove
ST/N + T 2/N bound for inverting random functions in the AI-QROM model.
Although the new technique is quite general and easier to use than compression,
it inherently requires a proof of direct product type statement, to show the se-
curity of multiple-instance has an exponential decay in the number of instances.
For practical symmetric key and hash function constructions, proving such state-
ments may be challenging. On the contrast, analyzing a single-instance in the
BF-model is considerably simpler.

1.1 Our Results

One natural attempt to develop quantum presampling is to leverage the opti-
mal presampling lemma of Coretti et al. [CDGS18] for ROM (which has been
exported to ICM/RPM/GGM by Coretti et al. [CDG18]).

Barriers for leveraging presampling to the quantum setting. In Section
3, we show that such leveraging has a technical barrier: it resolves a major open
problem in quantum computing [AA11], namely Conjecture 1, which asserts
that any quantum algorithm can be approximated on most inputs by a classical
algorithm which is at most polynomially slower in terms of query complexity.
This open problem, dating back to (according to [AA11]) 1999 or earlier, was
included twice in Aaronson’s list of “ten semi-grand challenges for quantum
computing theory” [Aar05b,Aar10].

In [AA11], Aaronson and Ambainis proposed an approach, which became
well-known as the Aaronson-Ambainis conjecture, towards this open problem
via analysis of Boolean function. In specific, Aaronson-Ambainis conjecture as-
serts that any bounded low-degree function on the discrete cube has a vari-
able with influence poly(Var[f ]/ deg(f)) (see Conjecture 2). Despite much effort
[DFKO06,Bac12,OY16,MA12,KK19], this open problem and the closely related
Aaronson-Ambainis conjecture seem still quite open: only some special functions
are confirmed [Bac12,OSSS05,MA12], and the best-known bound for general
functions is still exponentially far from the conjectured bound [DFKO06,OY16,DMP17].

Unifying presampling via concentration bounds. Facing with this barrier,
we revisit the presampling techniques in the classical setting. To this end, with
only standard concentration bounds, we give a simpler and unified proof for
the classical presampling theorems of both ROM [CDGS18] and RPM [CDG18],
using an equivalent characterization of P -BF-ROM/P -BF-RPM.
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Instead of viewing P -BF-ROM as a random function/oracle with at most
P prefixed inputs/outputs, we define it by a classical randomized algorithm f
making at most P queries. The random function is sampled in the following
way: sample a random H, compute fH ; restart the whole procedure (including
sampling a random function H) if the output of fH is not 1. In other words,
it defines a distribution over all functions conditioned on fH outputs 1. The
security game then is under the oracle access to the function H.

With the concentration bounds and the alternative definition, we show a
unified proof for the classical presampling theorems. The proof is much simpler
than the original proof [CDGS18], as the original proof needs to first decompose
a random oracle distribution H with advice into dense distributions (a technique
used in the area of communication complexity [GLM+16]), and then argue indis-
tinguishability between a dense distribution and a uniform distribution. With
almost no additional effort, the proof can be used to achieve the theorem for
AI-RPM, in [CDG18]. Note that the proof is optimal, as it matches the theorem
in [CDGS18], which is known to be optimal. Again the small additive security
loss and the multiplicative version are particularly appealing for obtaining exact
bounds.

Quantum presampling and applications to quantum random oracles.
With the new definition, it is natural to adapt the definition of P -BF-ROM
to P -BF-QROM. P -BF-QROM is defined by a P -query quantum algorithm f
making superposition queries. Similarly, the random function is sampled in the
following way: sample a random H, compute fH ; restart the whole procedure
(including sampling a random function H) if the output of fH is not 1.

Using the same proof for classical presampling, we obtain the quantum pre-
sampling.

Theorem 1. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-QROM, then it is (S, T, ε′)-secure in the AI-QROM, for
some ε′ such that,

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

If G is ε(T )-secure in the P -BF-QROM for P ≥ (S + log γ−1)T comb, then it is
(S, T, ε′)-secure in the AI-QROM, for some ε′ such that,

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

Note that it is optimal in the sense that it exactly matches the classical
presampling theorem, which is optimal.

Therefore, to obtain security in the AI-QROM, one needs to obtain its secu-
rity in the P -BF-QROM. We show Zhandry’s compressed oracle [Zha19] would
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be a useful tool for deriving bounds in the P -BF-QROM, by presenting the
first non-trivial security analysis of (salted) Merkle-Dam̊gard Hash Functions
(MDHF) in the P -BF-QROM and AI-QROM.

Theorem 2. GMDHF is ε(S, T ) = Õ(ST 3/M)-secure in the AI-QROM.

In the classical setting, Coretti et al. [CDGS18] show an attack with ad-
vantage Ω(ST 2/M) (which is optimal), and Akshima et al. [ACDW20] show an
attack for 2-block MDHF with advantage Ω((ST+T 2)/M). We observe that the
attack by Akshima et al. [ACDW20] can be extended to the quantum setting,
and yield an attack with advantage ST 2/M + T 3/M . However, it is not clear if
the attack of Coretti et al. [CDGS18] can be extended to the quantum setting
because of the usage of function iteration in the attack. Our bound suggests that,
the speedup of quantum adversaries is limited to a factor T . Further closing this
gap is an intriguing question.

1.2 Open Problems

Optimal Presampling for Quantum Advice. While our work provides a frame-
work for the presampling technique for classical advice, we are not able to give
presampling techniques for quantum advice. The difficulty comes from the fact
that quantum advice would be completely destroyed once a single round of on-
line computation was done. Note that the barrier would be overcome using the
similar idea in [CGLQ20], by boosting the succeeding probability and apply-
ing Gentle Measurement Lemma [Aar05a]. However, we suspect the resulting
statement may not be optimal.

Bit-Fixing Security of One-Way Permutations. While P -BF-QRPM (quantum
random permutation model) is well defined following our definition for P -BF-
QROM, it is not clear how to prove the security in this model. We hope one
of the following two approaches would work: (1) analyzing the probability dis-
tribution of the permutations in P -BF-QRPM, and using one-way to hiding
lemma [AHU19] to derive the bound for the online computation; (2) with “com-
pressed permutation” techniques similar to Zhandry’s compressed oracle tech-
niques, a similar proof to that in the P -BF-QROM would be possible.

Closing the gap for MDHF. As discussed in the previous section, closing the gap
for the security of MDHF in the AI-QROM is also an intriguing question.

2 Preliminaries

For any n ∈ N, we denote [n] to be the set {1, 2, ..., n}. We denote Z/nZ =
{0, 1, ..., n − 1} as the ring of integers modulo n, and F2 = {0, 1} as the binary
finite field. For a complex vector x ∈ Cn, we denote the L2-norm |x| = |x|2 =√∑

i∈[n] xixi. In algorithms, we denote a ←$ A to be taking a as a uniformly

independently sampled element of A.
Next, we recall some basic facts about quantum computation, and review the

relevant literature on the quantum random oracle model.
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2.1 Quantum Computation

A quantum system Q is defined over a finite set B of classical states. A pure
state over Q is a unit vector in C|B|, which assigns a complex number to each
element in B. In other words, let |φ〉 be a pure state in Q, we can write |φ〉 as a
column vector:

|φ〉 =
∑
x∈B

αx|x〉

where
∑
x∈B |αx|2 = 1 and {|x〉}x∈B is called the “computational basis” of C|B|.

The computational basis forms an orthonormal basis of C|B|. We define 〈φ| to
be the row vector that is the conjugate of |φ〉.

Given two quantum systems Q1 over B1 and Q2 over B2, we can define a
product quantum system Q1 ⊗ Q2 over the set B1 × B2. Given |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2, we can define the product state |φ1〉 ⊗ |φ2〉 ∈ Q1 ⊗Q2.

We say |φ〉 ∈ Q1 ⊗ Q2 is entangled if there does not exist |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2 such that |φ〉 = |φ1〉 ⊗ |φ2〉. For example, consider B1 = B2 = {0, 1}
and Q1 = Q2 = C2, |φ〉 = |00〉+|11〉√

2
is entangled. Otherwise, we say |φ〉 is

unentangled.
A state |φ〉 ∈ Q can be manipulated by a unitary operator U ∈ C|B|×|B|. The

resulting state |φ′〉 = U |φ〉. We denote the trace norm ‖U‖tr to be 1
2 Tr
√
U†U .

We extract classical information from a quantum state |φ〉 by performing a
measurement. A measurement is specified by an orthonormal basis, typically the
computational basis, and the probability of getting result x is |〈x|φ〉|2. After the
measurement, |φ〉 “collapses” to the state |x〉 if the result is x.

For example, given the pure state |φ〉 = 3
5 |0〉+

4
5 |1〉 measured under {|0〉, |1〉},

with probability 9/25 the result is 0 and |φ〉 collapses to |0〉; with probability
16/25 the result is 1 and |φ〉 collapses to |1〉.

We assume quantum circuits can implement any unitary transformation (by
using these basic gates, Hadamard, phase, CNOT and π

8 gates), in particular
the following two unitary transformations:

– Classical Computation: Given a function f : X → Y , one can im-
plement a unitary Uf over C|X|·|Y | → C|X|·|Y | such that for any |φ〉 =∑
x∈X,y∈Y αx,y|x, y〉,

Uf |φ〉 =
∑

x∈X,y∈Y
αx,y|x, y ⊕ f(x)〉

Here, ⊕ is a commutative group operation defined over Y . In particular, if
f is given as a classical circuit C, there exists an efficient implementation of
the unitary Uf using |C| ancillas, and each gate is evaluated at most twice.

– Quantum Fourier Transform: For every n ∈ N, the quantum Fourier
transform QFTn is a unitary operation, that is given a quantum state |φ〉 =∑
j∈Z/nZ xj |j〉, outputs |ψ〉 =

∑
k∈Z/nZ yk|k〉 where the sequence {yk}k is

the Fourier transform to the sequence {xj}j , i.e.

yk =
1√
n

∑
j∈Z/nZ

ωjkn xj
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where ωn = e2πi/n, and i is the imaginary unit.

2.2 Quantum Random Oracle Model

Here, for the completeness of the paper, we recall the background of quantum
random oracle model and the compressed oracle technique introduced by [Zha19].
This section is taken verbatim from Section 2.2 of [CGLQ20].

An oracle-aided quantum algorithm can perform quantum computation as
well as quantum oracle query. A quantum oracle query for an oracle f : [N ] →
[M ] is modeled as a unitary Uf : |x〉 |u〉 = |x〉 |u+ f(x)〉, where + denotes
addition in integer ring Z/MZ (we take the natural bijection that M ' 0, but
any bijection [M ]↔ Z/MZ suffices for our purposes).

A random oracle is a random function H : [N ]→ [M ]. The random function
H is chosen at the beginning. A quantum algorithm making T oracle queries
to H can be modeled as the following: it has three registers |x〉 , |u〉 , |z〉, where
x ∈ [N ], u ∈ Z/MZ and z is the algorithm’s internal working memory; it starts
with some input state |0〉 |0〉 |ψ〉, then it applies a sequence of unitary to the state:
U0, UH , U1, UH , · · · , UT−1, UH , UT and a final measurement over computational
basis. Each UH is the quantum oracle query unitary: UH |x〉 |u〉 = |x〉 |u+H(x)〉
and Ui is the local quantum computation that is independent of H. We can
always assume there is only one measurement which is a measurement on com-
putational basis and applied at the last step of the algorithm.

2.3 Compressed Oracle

Here we briefly recall some backgrounds about compressed oracle techniques,
first introduced in [Zha19]. More details are provided in Appendix A.

Intuitively, compressed oracle is an analogy of classical lazy sampling method.
To simulate a random oracle, one can sample H(x) for all inputs x and store
everything in quantum accessible registers. Instead of recording all the informa-
tion of H in the registers, Zhandry provides a solution which is useful to argue
the amount of the information an algorithm knows about the random oracle.

The oracle register records a database/list that contains the output on each
input x, the output is an element in Z/MZ ∪ {⊥}, where ⊥ is a special symbol
denoting that the value is “uninitialized”. The database is initialized as an empty
list D0 of length N , in other words, it is initialized as the pure state |∅〉 :=
|⊥,⊥, · · · ,⊥〉. Let |D| denote the number of entries in D that are not ⊥. Define
D(x) to be the x-th entry. Intuitively, D(x) can be seen as the output of the
oracle on x if D(x) 6= ⊥; otherwise, the oracle’s output on x is still undetermined.

For any D and x such that D(x) = ⊥, we define D∪(x, u) to be the database
D′, such that for every x′ 6= x, D′(x′) = D(x) and at the input x, D′(x) = u.

The compressed standard oracle is the unitary CStO := StdDecomp ◦CStO′ ◦
StdDecomp operating on the joint system of the algorithm’s registers and oracle’s
registers, where
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– CStO′ |x, u〉|D〉 = |x, u+D(x)〉|D〉 when D(x) 6= ⊥, which writes the output
of x defined in D to the u register. This operator will never be applied on
an x,D where D(x) = ⊥.

– StdDecomp(|x〉⊗|D〉) := |x〉⊗StdDecompx |D〉, where StdDecompx |D〉 works
on the x-th register of the database D(x). Intuitively, it swaps a uniform
superposition 1√

M

∑
y |y〉 with |⊥〉 on the x-th register. Formally,

• If D(x) = ⊥, StdDecompx maps |⊥〉 to 1√
M

∑
y |y〉, or equivalently,

StdDecompx|D〉 = 1√
M

∑
y |D ∪ (x, y)〉. Intuitively, if the database does

not contain information about x, it samples a fresh y as the output of x.

• If D(x) 6= ⊥, StdDecompx works on the x-th register, and it is an iden-
tity on 1√

M

∑
y ω

uy
M |y〉 for all u 6= 0; it maps the uniform superposition

1√
M

∑
y |y〉 to |⊥〉.

More formally, for a D′ such that D′(x) = ⊥,

StdDecompx
1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 =

1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 for any u 6= 0,

and,

StdDecompx
1√
M

∑
y

|D′ ∪ (x, y)〉 = |D′〉.

Since all 1√
M

∑
y ω

uy
M |y〉 and |⊥〉 form a basis, these requirements define a

unique unitary operation.

A quantum algorithm making T oracle queries to a compressed oracle can be
modeled as the following: the algorithm has three registers |x〉 , |u〉 , |z〉, where
x ∈ [N ], u ∈ Z/MZ and z is the algorithm’s internal working memory; it starts
with some input state |0〉 |0〉 |ψ〉; the joint state of the algorithm and the com-
pressed oracle is |0〉 |0〉 |ψ〉 ⊗ |∅〉. It then applies a sequence of unitary to the
state: U0, CStO, U1, CStO, · · · , UT−1, CStO, UT and a final measurement over
computational basis.

Zhandry proves that, the quantum random oracle model and the compressed
standard oracle model are perfectly indistinguishable by any unbounded quantum
algorithm.

In this work, we only consider query complexity, and thus simulation effi-
ciency is irrelevant to us. Looking ahead, we simulate a random oracle as a
compressed standard oracle to help us analyze security games with the help
from the following lemmas. Both lemmas are proven in [Zha19,CGLQ20].

The first lemma gives a general formulation of the overall state of A and
the compressed standard oracle after A makes T queries, even conditioned on
arbitrary measurement results. Looking ahead, it gives a characterization of P -
BF-QROM (defined in Section 4.1) if the oracle is simulated as a compressed
standard oracle.

10



Lemma 1. If A makes at most T queries to a compressed standard oracle, as-
suming the overall state of A and the compressed standard oracle is

∑
z,D αz,D |z〉A|D〉H

where |z〉 is A’s registers and |D〉 is the oracle’s registers, then it only has sup-
port on all D such that |D| ≤ T . In other words, the overall state can be written
as, ∑

z,D:|D|≤T

αz,D |z〉A ⊗ |D〉H .

Moreover, it is true even if the state is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

The second lemma provides a quantum analogue of lazy sampling in the
classical ROM.

Lemma 2 (Lemma 5 in [Zha19]). Let H be a random oracle from [N ]→
[M ]. Consider a quantum algorithm A making queries to the standard oracle
and outputting tuples (x1, · · · , xk, y1, · · · , yk, z). Supposed the random function
H is measured after A produces its output. Let R be an arbitrary set of such
tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is
in R and (2) H(xi) = yi for all i. Now consider running A with the compressed
standard oracle CStO, and suppose the database D is measured after A produces
its output. Let p′ be the probability that (1) the tuple is in R and (2) D(xi) = yi
(in particular, D(xi) 6= ⊥) for all i. Then

√
p ≤
√
p′ +

√
k/M .

Moreover, it is true even if it is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

2.4 Security Game with Classical Advice

In this paper, we only focus on the case where advice is classical. Therefore in the
rest of the presentation, “advice” simply means “classical advice”. The following
definitions are defined in [CGLQ20].

Definition 1 (Algorithm with Advice). An (S, T ) (query) classical/quantum
algorithm A = (A1,A2) with (oracle-dependent) advice consists of two proce-
dures:

– let H, H̃ be two oracles accessed by A1,A2 respectively in the offline and
online phases;

– α ← A1(H), which is an arbitrary (unbounded) function of H, and outputs
an S-bit α;

– |ans〉 ← AH̃2 (α, ch), which is an unbounded algorithm that takes advice α, a
challenge ch, makes at most T (classical or quantum respectively) queries to
H̃, and outputs an answer, which we measure in the computational basis to
obtain the classical answer ans.
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Note that we do not need to distinguish if A1 is classical or quantum because
as long as A1 is unbounded, they have the same computational power. We say
A is quantum if A2 makes quantum queries and otherwise A is classical. In this
work, we will mainly focus on A being quantum and the case of A being classical
will be provided mainly in the preliminary Section 2.5.

Below, we will use the words “adversary” and “algorithm” interchangeably,
especially when we consider interactive security games shortly after.

Definition 2 (Security Game). Let H be a random oracle [N ] → [M ].
A (non-interactive) security game G = (C) is specified by a challenger C =
(Samp,Query,Ver), where:

1. ch ← SampH(r) is a classical algorithm that takes randomness r ∈ R as
input, and outputs a challenge ch.

2. QueryH(r, ·) is a deterministic classical algorithm that hardcodes the ran-
domness r and provides adversary’s online queries6.

3. b ← VerH(r, ans) is a deterministic classical algorithm that takes the input
ans and outputs a decision b indicating whether the game is won.

For every algorithm with advice, i.e. A = (A1,A2) , we define

A ⇐⇒ C(H) := VerH
(
r,AH̃2 (A1(H),SampH(r))

)
to be the binary variable indicating whether A successfully makes the challenger
output 1, or equivalently if A wins the security game, where H̃(·) := QueryH(r, ·).
Additionally, we define TVer be the query complexity of computing VerH .

Definition 3 (Security in the AI-ROM/AI-QROM). We define the secu-
rity in the AI-ROM/AI-QROM of a security game G = (C) to be

δ = δ(S, T ) := sup
A

Pr
H,r,A

[A ⇐⇒ C(H) = 1] ,

where A in the probability denotes the randomness of the algorithm, and supre-
mum is taken over all classical or quantum (S, T ) algorithm A in the AI-ROM
or AI-QROM respectively.

Additionally, we say a security game G is δ-secure if its security is at most δ.

Definition 4. We call the security game a decision game if ans ∈ {0, 1}.

Definition 5 (Advantage against Decision Games). We define the advan-
tage of A for a decision game G to be

ε = ε(S, T ) := δ(S, T )− 1/2,

if it has winning probability δ(S, T ).

Definition 6 (Best Advantage of Decision Games). We define the best ad-
vantage of a decision game G in AI-ROM/AI-QROM to be ε(S, T ) := δ(S, T )−
1/2 if G has security δ(S, T ) in AI-ROM/AI-QROM.
6 As an example, for most applications, QueryH(r, ·) = H(·).
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2.5 Presampling Techniques for Random Oracles

We recall classical presampling techniques for random oracles in [CDGS18].

Definition 7 ((N,M)-source). An (N,M)-source is a random variable X
with range [M ]N .

An oracle O : [N ]→ [M ] can be represented by a string in [M ]N . In the rest
of the work, we will sometimes treat an oracle as an element in [M ]N . Drawing
an oracle from a certain distribution is equivalent to sampling a random variable
from the corresponding (N,M)-source.

Definition 8 (P -bit-fixing). An (N,M)-source is called P -bit-fixing if it is
fixed on at most P coordinates and uniform on the rest.

They then defined security in the P -BF-ROM.

Definition 9 (P -BF-ROM). A security game in the P -BF-ROM consists the
following two procedures:

– Before the challenging phase, the offline algorithm A1 runs a (randomized)
algorithm to generate a list L = {(xi, yi)}i∈[P ] containing at most P input-
output pairs (all xis are distinct).

– In the challenging phase, the security game is executed with an online algo-
rithm A2 and oracle access to H. H is a function drawn from the P -bit-fixing
distribution and the prefixed inputs/outputs are L.

Note that A2 knows the strategy of A1, but nothing else.

Remark 1. In [CDGS18], the definition of P -BF-ROM allows A2 to obtain the
list L generated by A1. In our definition, A2 only knows the strategy of the
offline algorithm A1. We observe that Definition 9 is a weaker definition and is
enough for deriving their main theorem Theorem 3.

The following lemma was given in [CDGS18]. It shows that a random oracle
distribution conditioned on advice is very close to a convex combination of P -
bit-fixing distributions.

Lemma 3. Let X be distributed uniformly over [M ]N and Z := f(X), where
f : [M ]N → {0, 1}S is an arbitrary function. For any γ > 0 and P ∈ N, there
exists a family {Yz}z∈{0,1}S of convex combinations Yz of P -bit-fixing (N,M)-
sources such that for any classical distinguisher D taking an S-bit input and
querying at most T < P coordinates of its oracle,

∣∣Pr
[
DX(f(X)) = 1

]
− Pr

[
DYf(X)(f(X)) = 1

]∣∣ ≤ (S + log 1/γ) · T
P

+ γ

and

Pr
[
DX(f(X)) = 1

]
≤ 2(S+log 1/γ)T/P · Pr

[
DYf(X)(f(X)) = 1

]
+ γ.
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Note that the case of getting X,Z := f(X) is the AI-ROM, and the case
of getting YZ , Z is the P -BF-ROM. The lemma implies the two main theorems
(Theorem 5, 6) of [CDGS18].

Theorem 3. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-ROM, then it is (S, T, ε′)-secure in the AI-ROM, for some
ε′ such that,

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

If G is ε(T )-secure in the P -BF-ROM for P ≥ (S + log γ−1)T comb, then it is
(S, T, ε′)-secure in the AI-ROM, for some ε′ such that,

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

Therefore, with the above lemma and theorems, [CDGS18] prove the security
of several cryptographic applications in the AI-ROM. The idea is to first switch to
the P -BF-ROM and then argue its security in this model. To prove the security of
one-way functions (OWF) in the AI-ROM, they can instead argue the security
in the P -BF-ROM, which is much easier to argue than that in the AI-ROM.
Informally, if the challenge y is not in the list L, to invert y in the P -BF-ROM
is as difficult as that in the ROM. Therefore, the overall security is at most
(P + T )/min{N,M} in the P -BF-ROM. Combining with Theorem 3, they get
the desired bound for the security of OWF in the AI-ROM.

2.6 Aaronson-Ambainis Conjecture

A major open problem in quantum computing is whether super-polynomial
quantum speedups need structures of inputs. The following conjecture captures
this question.

Conjecture 1 (folklore, see [AA11]). Let A be a quantum algorithm making T
queries to a Boolean input x = (x1, · · · , xn). For any ε > 0, there is a deter-
ministic classical algorithm that makes poly(T, 1/ε, 1/δ) queries to the xi’s, and
that approximates A’s acceptance probability within an additive error ε on a
(1− δ) fraction of inputs.

This conjecture is a central open problem in the area of quantum computing
[Aar05b,Aar10]. In the paper [AA11], Aaronson and Ambainis proposed a new
conjecture (a.k.a Aaronson-Ambainis conjecture) which is sufficient to affirm
Conjecture 1. In specific, they conjectured that any low-degree function f :
{−1, 1}n → [0, 1] has an influential variable.
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Conjecture 2 ([AA11]). Let f : {−1, 1}n → [0, 1] be a degree-d polynomial.

We define its variance as Var[f ] := Ex[f(x)2] − (Ex[f(x)])
2
. For each i ∈ [n],

its influence is defined as Ii(f) := Ex
[(
f(x)− f(xi)

)2]
, where xi is the string

obtained by flipping the i-th bit of x. Then there is a coordinate i ∈ [n] such
that

Ii(f) = (Var [f ] /d)
O(1)

.

Despite much effort [DFKO06,Bac12,OY16,MA12,KK19,LZ20], both Con-
jecture 1 and Conjecture 2 are still quite open. Special classes were confirmed
by several papers [Bac12,OSSS05,MA12]. The best known bound for general
functions is still exponentially far from conjectured [DFKO06,OY16,DMP17].

Li and Zhang [LZ20] provided an equivalent form7 of Conjecture 1, which
seems easier to prove and will be used in this paper. Similar ideas are also ex-
plored by Keller and Klein [KK19]. Given a (classical or quantum) distinguisher

A, let E[A] = EX
[
Pr[AX = 1]

]
and Var[A] = EX

[
Pr[AX = 1]− E[A]

]2
. Here,

X is uniformly distributed over [M ]N .

Conjecture 3. Let A be a quantum distinguisher that makes T queries to an
oracle [N ]→ {0, 1}. Then there exists a poly(T/Var[A])-bit-fixing (2, N)-source
Y (i.e., there is a list L containing at most poly(T/Var[A]) input-output pairs,
and Y is uniformly distributed over {0, 1}N conditioned on some coordinates are
fixed according to L) such that∣∣Pr

[
AY = 1

]
− E[A]

∣∣ ≥ poly(Var [A] /T ).

For the sake of completeness, we present the proof of the equivalence between
Conjecture 1 and Conjecture 3 in the appendix. The nontrivial direction is to
show how Conjecture 3 implies Conjecture 1. It follows the general strategy of
the argument of Midrijanis [Mid04] which shows that any Boolean function can
be computed by a classical decision tree of depth at most the block sensitivity
times the polynomial degree.

2.7 Concentration Bounds

The following claim and lemmas of concentration bounds will be used in our
proof. We prove them in this section.

Claim 1. Let X1, . . . , XN be indicators (potentially correlated, binary random
variables). Let Y1, . . . , Yg be binary variables such that each Yi is uniformly ran-
domly sampled from X1, . . . , XN . Suppose that

Pr[Y1 = 1 ∧ · · · ∧ Yg = 1] ≤ αg,
7 In fact, our setting is a little different from that in [LZ20], in which A can be

any degree-d bounded polynomial. However, the proof in [LZ20] can be generalized
without effort to our setting.
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then

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ (α
δ

)g
.

Proof. Let E denote the event Y1 = 1 ∧ · · · ∧ Yg = 1. We have,

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ Pr[E]

Pr
[
E
∣∣∣∑i∈[N ]Xi ≥ δN

] ≤ αg

δg
,

where the second inequality is because the probability that Y1, . . . , Yg are all 1 is
at least δg conditioning on that there are at least δN ones among X1, . . . , XN .

We first define random variables Y<i: Y<i = 1 if and only if Y1 = Y2 = · · · =
Yi−1 = 1. Y<1 is always equal to 1. We then show two concentration bounds
using the claim above. The first one is a multiplicative bound and the second
one is an additive bound.

Lemma 4. Define Xi, Yi as in Claim 1. Let S′, T, g be arbitrary integers, and
P := gT . Suppose that, for every i ∈ [g],

Pr[Yi = 1|Y<i = 1] ≤ ε,

then,

Pr

 1

N

∑
i∈[N ]

Xi ≥ 2S
′T/P · ε

 ≤ 2−S
′
.

Proof. Let α := ε, and δ := 2S
′T/P · ε. Note that,

Pr[Y1 = 1 ∧ · · · ∧ Yg = 1] =

g∏
i=1

Pr[Yi = 1|Y<i = 1] ≤ αg .

By Claim 1,

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ (α
δ

)g
=
( ε

2S′T/P · ε

)g
= 2−S

′
.

Lemma 5. Define Xi, Yi as in Claim 1. Let S′, T, g be arbitrary integers, and
P := gT . Suppose that, for every i ∈ [g],

Pr[Yi = 1|Y<i = 1] ≤ ε,

then,

Pr

 1

N

∑
i∈[N ]

Xi ≥ ε+
S′T

P

 ≤ 2−S
′
.
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Proof. Let α := ε, and δ := ε+S′T/P . We assume that ε+S′T/P ≤ 1, otherwise
the statement is trivially true. Note that,

Pr[Y1 = 1 ∧ · · · ∧ Yg = 1] =

g∏
i=1

Pr[Yi = 1|Y<i = 1] ≤ αg .

By Claim 1,

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ ( ε

ε+ S′T/P

)g
≤
(

1− S′T

P

)g
≤ 2−S

′
,

where the second inequality uses the assumption that ε+ S′T/P ≤ 1, the third
inequality uses the fact 1− x ≤ 2−x for any x ≥ 0 and P = gT .

3 Barriers for Leveraging Presampling Techniques

As we have seen the simple and easy-to-use tools (presampling techniques) in the
preliminary Section 2.5, we ask the question: is it possible to leverage Lemma 3
(and Theorem 3) to the quantum world? The following conjecture formally states
that the presampling technique could reduce security proofs in AI-QROM to
those in the simpler “P -BF-QROM”8. The conjecture requires a much weaker
bound than that in Lemma 3.

Conjecture 4. Let X be distributed uniformly over [M ]N and Z := f(X), where
f : [M ]N → {0, 1}S is an arbitrary function. For any P ∈ N, there exists a family
{Yz}z∈{0,1}S of convex combinations Yz of P -bit-fixing (N,M)-sources such that
for any quantum distinguisher A taking an S-bit input and making T quantum
queries of its oracle,

∣∣Pr[AX(f(X)) = 1]− Pr[AYf(X)(f(X)) = 1]
∣∣ ≤ h(S) · T ·

(
logM

P

)C
.

Here C is a universal constant and h : N→ R+ can be any function.

Note that this conjecture is weaker than Section 2.5 in the sense that the
dependency on S can be arbitrary, but Lemma 3 is polynomial in S.

In this section, we show that even requiring a much weaker bound (Conjecture
4) implies Conjecture 1, which reveals a barrier for leveraging Lemma 3 to the
quantum world.

8 We have not defined what is P -BF-QROM yet. Since we will give a barrier and
the following Conjecture 4 does not require a formal definition, we will not formally
define it in this section.
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Lemma 6. Conjecture 4 implies Conjecture 3, then Conjecture 1.

Proof. In fact, we will prove Conjecture 3 only assuming that Conjecture 4
holds for S = 1. Let A be a quantum distinguisher that makes T queries of an
oracle in {0, 1}N . We will show that there exists a poly(T/Var[A])-bit-fixing
source Y such that the gap between Pr[AY = 1] and E[A] is at least σ/4. Here,
σ =

√
Var[A].

The basic idea is as follows. Let f : {0, 1}N → {0, 1} indicate whether the ac-
ceptance probability of A access to the oracle O ∈ {0, 1}N is high (say, f(O) = 1
if and only if Pr[AO = 1] − E[A] ≥ σ/2). Let A1 be another quantum distin-
guisher which (i) takes the bit f(O) as advice, (ii) simulates A if f(O) = 1, and
(iii) makes no queries and rejects if f(O) = 0. On one hand, A1 and A have
the same acceptance probability when access to any O ∈ f−1(1). On the other
hand, according to Conjecture 4, for an oracle randomly sampled from f−1(1),
A1 has the similar acceptance probability with oracle access to some bit-fixing
source.

More formally, let X be uniformly distributed over {0, 1}N . For simplicity of
notations, we abbreviate Pr[AO = 1] to AO. Noting that |AO − E[A]| ≤ 1 for
any O ∈ {0, 1}N , we have

σ2 = EX
[∣∣AX − E[A]

∣∣2]
≤Pr

X

[
|AX − E[A]| ≥ σ/2

]
+ Pr

X

[
|AX − E[A]| ≤ σ/2

]
· σ2/4

≤Pr
X

[
|AX − E[A]| ≥ σ/2

]
+ σ2/4.

So PrX
[
|AX − E[A]| ≥ σ/2

]
≥ 3σ2/4. By symmetry, we assume

Pr
X

[
AX − E[A] ≥ σ/2

]
≥ 3σ2/8. (1)

Let f : {0, 1}N → {0, 1} be defined as follows: f(X) = 1 if and only if
AX − E[A] ≥ σ/2. Inequality 1 says that PrX [f(X) = 1] ≥ 3σ2/8. Let X1 be
the distribution of X conditioned on f(X) = 1. Let {Y0, Y1} be the family of
convex combinations of P -bit-fixing sources guaranteed by Conjecture 4. Let A1

be another quantum distinguisher that (i) takes a 1-bit input, (ii) simulates A
if the input bit is 1, and (iii) makes no queries and rejects if the input bit is 0.
It has that

h(1) · T
PC

≥
∣∣∣EX [AX1 (f(X))

]
− EX

[
AYf(X)

1 (f(X))
]∣∣∣ ≥ Pr

X
[f(X) = 1] ·

∣∣AX1 −AY1
∣∣

That is,
∣∣AX1 −AY1

∣∣ ≤ 8h(1) · T/(3σ2PC). In particular, there is a P -bit-fixing

source Y such that
∣∣AX1 −AY

∣∣ ≤ 8h(1) · T/(3σ2PC). Let P = d
( 32h(1)·T

3σ3

)1/Ce,
then 8h(1) · T/(3σ2PC) ≤ σ/4. Finally, by the triangle inequality,∣∣AY − E[A]

∣∣ ≥∣∣AX1 − E[A]
∣∣− ∣∣AY −AX1

∣∣ ≥ σ/2− σ/4 = σ/4.

This completes the proof.
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4 Unifying Presampling via Concentration Bounds

As discussed in the last section, the natural extension of Lemma 3 does not work
in the quantum world, otherwise we can prove AA conjecture. In this section,
we will give a much simpler proof for (classical) Theorem 3 directly, using only
concentration bounds, which also unifies the proof for both AI-ROM [CDGS18]
and AI-RPM (random permutation model) [CDG18]. The core of the proof is to
use an equivalent characterization of the P -BF-ROM. We will then generalize
this definition for AI-QROM in the next section.

4.1 A New Characterization of Bit-Fixing

The P -BF-ROM fixes at most P input-output pairs of a random oracle. The
failed attempt in the last section tries to classically fix P input-output pairs
of a quantum random oracle (which will be queried in superposition later). To
overcome the barrier, we may need to ‘quantumly ’ fix P input-output pairs and
avoid the AA conjecture barrier. However, it is not clear how to ‘fix quantumly’
or ‘fix in superposition’.

We realize that the P -BF-ROM can be defined by a bounded query algorithm.

Definition 10 (P -BF-ROM). A security game in the P -BF-ROM consists
the following two procedures:

– Before the challenging phase, the offline adversary A1 prepares a (random-
ized) algorithm f , and then interacts with a challenger:

1. The challenger samples a random function H;
2. A1 computes fH which makes at most P queries to H.
3. A1 gets a single bit output z of fH . If z 6= 1, it restarts the whole proce-

dure (including sampling a new random function H at the beginning).

– In the challenging phase, the security game is executed with an online algo-
rithm A2 and oracle access to the function H.

Note that the algorithm f can be inefficient, including running time of f and
time for sampling a random H conditioned on fH = 1, except the number of
queries are bounded by P .

Definition 10 says that the oracle distribution in the online phase is deter-
mined by a P -query bounded algorithm in the pre-computation stage, condi-
tioned on the output of the algorithm fH being 1. This definition can be easily
extended to P -BF-RPM, by simply replacing H with a random permutation.

Next, we show that the P -BF-ROM defined above is exactly equivalent to
that defined in Definition 9. In other words, any oracle distribution in the online
phase that can be generated in the offline phase of Definition 9, can also be
generated in Definition 10, and vice versa.

Lemma 7. Definition 9 is equivalent to Definition 10.
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Proof. We first show the easy direction: any oracle distribution in the online
phase that can be generated in the offline phase of Definition 9, can also be
generated in Definition 10.

Assume an algorithm g samples a list L of at most P input-output pairs and
L defines the P -bit-fixing oracle distribution in Definition 9. We show such a
distribution can be generated by conditioning on some algorithm fH outputting
1. Let f be the following algorithm:

– f runs g as a subroutine and obtains L = {(xi, yi)} for at most P distinct
xis.

– fH queries x1, x2, · · · one by one and it outputs 1 if and only if for all i,
H(xi) = yi.

It is easy to see that the oracle distribution defined by f in Definition 10 is the
same as that defined by g in Definition 9.

Now we focus on the opposite direction: any oracle distribution in the online
phase that can be generated in the offline phase of Definition 10, can also be
generated in Definition 9.

We first assume f is a deterministic algorithm. Without loss of generality,
f will never query the same input twice as it can simply record all queries it
made. A transcript τ of f is defined as a set containing all input-output pairs
queried by f . Each transcript will be marked as accepting or rejecting depending
on whether f outputs 1 or 0 respectively.

Note that every pair of transcripts τ, τ ′ is ‘disjoint’. Namely, for any τ, τ ′,
there always exists an input x and y 6= y′ such that (x, y) ∈ τ and (x, y′) ∈
τ ′. Moreover, let Xτ be the oracle distribution that is compatible with τ but
everywhere else is sampled uniformly at random. Then Xτ and Xτ ′ are disjoint.
We notice that {Xτ}τ is indeed a partition of all possible oracles.

Therefore, we can construct the algorithm g as follows:

– g uses f as a subroutine. It obtains all transcripts T = {τ}.
– g samples a transcript τ with probabilityM−|τ |. Note thatM−|τ | = |Xτ |/MN ,

because {Xτ}τ is a partition of all possible oracles, we have∑
τ∈T

M−|τ | = 1.

– If τ is not an accepting transcript, g restarts everything. Otherwise, it out-
puts L = τ .

The distribution generated by g is simply bit-fixing sources corresponding to all
accepting transcripts. We observe that it is a uniform distribution over all oracles
in {Mτ} for τ being an accepting transcript. This is exactly the distribution
defined by f .

If f is a randomized algorithm, we construct g in the following way:
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– g uses f as a subroutine. It first samples uniform randomness r. It obtains
all transcripts T = {τ} corresponding to f(; r) (which is deterministic).

– g samples a transcript τ with probability M−|τ |.
– If τ is not an accepting transcript, g restarts everything (including sampling

randomness r). Otherwise, it outputs L = τ .

The proof is almost identical to the deterministic case.

4.2 A Simpler Proof for Theorem 3

We reprove Theorem 3 using concentration bounds. The proof is much simpler
than the original proof [CDGS18], as the original proof needs to first decompose
a random oracle distribution H with advice into dense distributions (a technique
used in the area of communication complexity [GLM+16]), and then argue in-
distinguishability between a dense distribution and a uniform distribution.

We first recall the theorem.

Theorem 3. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-ROM, then it is (S, T, ε′)-secure in the AI-ROM, for some
ε′ such that,

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

If G is ε(T )-secure in the P -BF-ROM for P ≥ (S + log γ−1)T comb, then it is
(S, T, ε′)-secure in the AI-ROM, for some ε′ such that,

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

Proof (Reprove Theorem 3).
Let G be a security game with random coin space R. As defined in Defini-

tion 2, randomness i ∈ R is for generating a challenge.
We first prove the second half of the theorem. Fix any (S, T ) algorithm A

for G. For a given advice α ∈ {0, 1}S , let Xα
i be the random variable indicating

if A(α, ·) wins the game G with randomness i ∈ R. More precisely, Xα
i is the

following:

– H is sampled at the beginning;
– A(α) plays the game G, where the challenge ch is sampled by SampH(i) for

this fixed i;
– Xα

i = 1 if and only if the game is won by A(α).

Note that Xα
i and Xα

i′ use the same random H.
Similarly we define Y αj to be the random variable that is uniformly at random

sampled from {Xα
i }i∈R. Y αj is the random variable indicating if an algorithm

A(α) wins the game in the j-th round, with a uniformly chosen challenge.
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We also define Y α<j in a similar way in Section 2.7: it is 1 if and only if all
Y α1 = · · · = Y αj−1 = 1. Y α<j is the random variable indicating if an algorithm
A(α) wins all games in the first (j−1) rounds, with uniformly chosen challenges
for each round.

Since G is ε-secure in the P -BF-ROM for P ≥ (S + log γ−1)T comb = gT comb,
we have the following claim:

Claim 2.

Pr
[
Y αj = 1 |Y α<j = 1

]
≤ ε for all j ≤ g := (S + log γ−1).

Proof. Fixing a j ≤ g. Let f be an algorithm that computes Y α<j . We know
that Y α<j = 1 if and only if Y α1 = · · · = Y αj−1 = 1. To compute each Y αk for
k ∈ {1, 2, · · · , j−1}, the total number of queries to make is (T +TVer). Thus, the
total number of queries to compute Y α<j (or compute f) is at most (j − 1)(T +

TVer) = (j − 1)T comb < gT comb.
Thus, the oracle distribution conditioned on f outputting 1 is a distribution

generated in the P -BF-ROM for P ≥ (S + log γ−1)T comb. Because G is ε-secure
in the P -BF-ROM, by definition we have,

Pr
[
Y αj = 1 |Y α<j = 1

]
= Pr

H

[
Y αj = 1 | fH = 1

]
≤ ε.

It holds for all j ≤ g.

By Lemma 4, for any advice α, let S′ = S + log γ−1, we have that

Pr

 1

|R|
∑
i∈[R]

Xα
i ≥ 2ε

 ≤ 2−S
′

= 2−S · γ.

Applying union bound, we have

Pr

∃α ∈ {0, 1}S , 1

|R|
∑
i∈[R]

Xα
i ≥ 2ε

 ≤ γ.
Therefore, we have for any (S, T ) algorithm A,

Pr
[
∃α ∈ {0, 1}S , A(α, ·) wins the game

]
≤ 2ε+ γ.

We finish the proof for the second part.

We then prove the first half of the theorem. If P < (S + log γ−1)T comb, the
statement is trivially true. Otherwise, let g = P/T comb.

Fix any (S, T ) algorithm A for G. For a given advice α ∈ {0, 1}S , we define
Xα
i , Y αj and Y α<j as above.

Since G is ε-secure in the P -BF-ROM, similar to Claim 2, we have,

Pr
[
Y αj = 1 |Y α<j = 1

]
≤ ε for all j ≤ g = P/T comb.
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By Lemma 5, for any advice α, let S′ = S + log γ−1, we have that

Pr

[
1

|R|
∑
i∈R

Xα
i ≥ ε+ S′T comb/P

]
≤ 2−S

′
= 2−S · γ.

Applying union bound, we have

Pr

[
∃α ∈ {0, 1}S , 1

|R|
∑
i∈R

Xα
i ≥ ε+ S′T comb/P

]
≤ γ.

Therefore, we have for any (S, T ) algorithm A,

Pr
[
∃α ∈ {0, 1}S , A(α, ·) wins the game

]
≤ ε+

(S + γ−1)T comb

P
+ γ.

Note that if we assume the underlying G is secure in the P -BF-RPM, we can
prove its security in the AI-RPM with the same parameter.

5 Applications to AI-QROM

In this section, we leverage presampling techniques to the quantum setting, and
obtain a presampling lemma for quantum oracles (Theorem 1). To illustrate the
power of the presampling techniques, we give the first post-quantum non-uniform
security bounds for salted Merkle-Damg̊ard hash functions (Theorem 2).

5.1 Presampling Techniques for Quantum Random Oracles

The classical P -BF-ROM is defined by a P -query classical algorithm f . We now
extend it to the quantum case. The quantum P -BF-QROM is similarly defined
by a P -query quantum algorithm.

Definition 11 (P -BF-QROM). A security game in the P -BF-QROM con-
sists the following two procedures:

– Before the challenging phase, the offline adversary A1 prepares a quantum
algorithm f , and then interacts with a challenger:
1. The challenger samples a random function H;
2. A1 computes fH which makes at most P superposition queries to H.
3. A1 gets a single bit output z of fH . If z 6= 1, it restarts the whole proce-

dure (including sampling a new random function H at the beginning).
– In the challenging phase, the security game is executed with an online algo-

rithm A2 and oracle access to the function H.

Note that the algorithm f can be inefficient, including running time of f and
time for sampling a random H conditioned on fH = 1, except the number of
queries are bounded by P .
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Equivalently, the definition says that the oracle distribution in the online
phase is determined by a P -query bounded quantum algorithm in the pre-
computation stage, conditioned on the output of the algorithm fH being 1.

Note that a random oracle distribution defined by a P -query f outputting
1, can be described by a joint state as in Lemma 1 if the random oracle is
simulated as a compressed oracle. This will be useful when we prove security in
the P -BF-QROM.

With the definition above, we can lift Theorem 3 to the quantum setting.

Theorem 1. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-QROM, then it is (S, T, ε′)-secure in the AI-QROM, for
some ε′ such that,

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

If G is ε(T )-secure in the P -BF-QROM for P ≥ (S + log γ−1)T comb, then it is
(S, T, ε′)-secure in the AI-QROM, for some ε′ such that,

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

The proof is identical to that for Theorem 3, except Xα
i , Y

α
j , Y

α
<j are defined

for a quantum algorithm A with a classical advice α. Therefore, we omit the
proof here.

By replacing H with a random permutation, the definition can be easily
extended to P -BF-QRPM. We present a similar presampling theorem for AI-
QRPM. More details are provided in Appendix C.

5.2 Post-quantum Non-uniform Security of Merkle-Dam̊gard Hash
Functions (MDHF)

Collision resistant hash functions are an important cryptographic primitive. Let
H be a (collision resistant) hash function. It is required that finding two distinct
inputs x 6= x′ such that H(x) = H(x′) is hard. However, this definition can
not be achieved in the AI-QROM. An attack would simply find a collision in
the pre-processing stage and make the security trivial. Thus in practice, one
considers a family of collision resistant functions, with a public key called salt
that determines which function is chosen. More formally, a hash function is
H : [K]× [N ]→ [M ] that takes a salt a ∈ [K] and an input x ∈ [N ]. Its collision

resistance is defined as, given a uniformly random a
$← [K], finding two distinct

x 6= x′ such that H(a, x) = H(a, x′) is hard.
In practice, a hash function usually takes inputs of different lengths. Many

hash functions used, including MD5, SHA-2, are based on the Merkle-Dam̊gard
construction. It transforms a hash function with fixed input lengths to a hash
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function with arbitrary input lengths (as long as the length is still a polynomial).
More formally, let H be a collision resistant hash function with fixed input
lengths, modeled as a random oracle H : [M ] × [N ] → [M ]. Note that the salt
space [K] is the same as its image [M ]. Let a message y = (y1, · · · , yB) be a
B-block message with each yi ∈ [N ]. The function HMD(a, y) evaluates as the
follows:

HMD(a, y) = HB
MD(a, (y1, · · · , yB)) =

{
H(HB−1

MD (a, (y1, · · · , yB−1)), yB) B > 1

H(a, y1) B = 1

In other words, it applies the fixed-length hash function H on the salt a and the
first block y1 to get a2 as the salt for the next step; it then applies H on a2 and
y2 to get a3 and so on.

The security game GMDHF = (CMDHF) is defined as the following, where the
challenger CMDHF is specified by these procedures:

– SampH(r): it takes r ∈ [M ] as randomness and outputs a salt a = r;

– QueryH(a, ·) = H(·);
– VerH(a, (x, x′)) = 1 if and only if x 6= x′ and HMD(a, x) = HMD(a, x′).

In other words, an algorithm gets access to the random oracle H in the pre-
processing stage; in the online phase, it has the advice computed in the pre-
processing stage and is given a random salt a; its goal is to find x 6= x′ (either
they are of different lengths or they are different inputs of the same length) such
that HMD(a, x) = HMD(a, x′).

In the AI-ROM, a tight bound Õ(S/M+T 2/M) for the caseB = 1 was proven
by [DGK17]. Later Dodis et al. [CDGS18] proved a tight bound Õ(ST 2/M)
for the general MDHF case. More recently, [ACDW20] studied finding short
collisions of MDHFs in the AI-ROM. In the rest of the section, we are going to
show the first non-trivial bound in the AI-QROM.

We prove the following theorem:

Theorem 2. GMDHF is ε(S, T ) = Õ(ST 3/M)-secure in the AI-QROM.

In order to prove the theorem, we show the following lemma. Combining with
Theorem 1, we have the first non-trivial bound for the security of MDHF in the
AI-QROM.

Lemma 8. GMDHF is O((PT 2 + T 3)/M)-secure in the P -BF-QROM.

Proof. In the P -BF-QROM, as stated in Lemma 1, the overall state of an al-
gorithm and the oracle conditioned on the measurement of the first P queries
is

|ψ0〉 =
∑

z,D:|D|≤P

αz,D |z〉 |D〉 .
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For every salt a ∈ [M ], define a projection Qa that finds if a is in the database
D. In other words,

Qa =
∑

z,D:∃x,D(a,x)6=⊥

|z,D〉〈z,D|.

Thus, the probability that a fixed salt a in D is pa = |Qa |ψ0〉 |2. Since |ψ0〉
only has support on all databases D with at most P entries, each z,D will
contribute |αz,D|2 to at most P different probabilities pa. Therefore, if a random
challenging salt a is chosen, the probability of a in the database is at most
Ea[pa] = 1

M

∑
a pa ≤

P
M .

In the online phase, the algorithm and the challenger are doing the follows:

– The challenger samples a random salt a and gives it to A;
– A upon receiving a, for i = 1, · · · , T ,
• It applies a unitary Ui−1 (depends on a), |ψ′i〉 = (Ui−1 ⊗ I) |ψi−1〉;
• It makes an oracle query to H (i.e CStO), |ψi〉 = CStO |ψ′i〉.

– A measures its registers and outputs distinct {(xi, yi)}Bi=1 and {(x′i, y′i)}B
′

i=1.
It wins if and only if they form an MDHF collision respect to a: let y0 = y′0 =
a, it should satisfy: (1) ∀i ∈ [B], H(yi−1, xi) = yi; (2) ∀j ∈ [B′], H(y′j−1, x

′
j) =

y′j ; (3) yB = y′B′ .

From Lemma 2, let the probability that A finds an MDHF collision as de-
scribed above be qa, the probability that D contains an MDHF collision be

q′a, we have
√
qa ≤

√
q′a +

√
B+B′

M . Without loss of generality we can assume

B +B′ ≤ T , therefore
√
qa ≤

√
q′a +

√
T
M .

To bound qa, we only need to focus on the probability q′a that D contains
an MDHF collision. Define Ra be a projection that check if D has an MDHF
collision with respect to a. We observe that |Ra |ψ0〉 | ≤ |Qa |ψ0〉 |, because a
database contains an MDHF collision with respect to a only if it contains entries
starting with a.

First, we know that applying a unitary only on A’s register does not affect
the projection Ra:

Lemma 9. |Ra |ψ′i〉 | = |Ra |ψi−1〉 | for all i ∈ [T ].

Proof. By the definition of |ψ′i〉, we have |Ra |ψ′i〉 | = |Ra(Ui−1⊗I) |ψi−1〉 |. Since
Ra is a projection applied on the second half of the state but Ui−1 is applied only
on the first half of the state, it does not affect the overall probability. Therefore,
|Ra |ψ′i〉 | = |Ra |ψi−1〉 |.

Lemma 10. |Ra |ψi〉 | ≤ |Ra |ψ′i〉 |+
√

P+i−1
M for all i ∈ [T ].

Proof. By definitions of |ψi〉 and |ψ′i〉, we have:

|Ra |ψi〉 | = |RaUH |ψ′i〉|
= |RaUH(I −Ra +Ra) |ψ′i〉|
≤ |RaUH(I −Ra) |ψ′i〉|+ |RaUHRa |ψ′i〉|
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The second term |RaUHRa |ψ′i〉| ≤ |UHRa |ψ′i〉| = |Ra |ψ′i〉|. For the first term
|RaUH(I −Ra) |ψ′i〉|, the state (I − Ra) |ψ′i〉 has support only on databases D
that do not contain any MDHF collision.

We first show the classical statement and translate it into the quantum world
using compressed oracle techniques. Classically, by making a new query (ã, x̃),
the only possibility that an MDHF collision appears in a database D which
previously did not contain any MDHF collision is the following case: assume
the resulting database contains distinct {(xi, yi)}Bi=1 and {(x′i, y′i)}B

′

i=1 (assuming
y0 = y′0 = a) which form an MDHF collision; the query (ã, x̃) must be part of
either of {(xi, yi)}Bi=1 or {(x′i, y′i)}B

′

i=1; in other words, there must exist either an
i ∈ [B] or a j ∈ [B′] such that (ã, x̃, H(ã, x̃)) = (yi−1, xi, yi) or (y′j−1, x

′
j , y
′
j).

Since D previously did not contain an MDHF collision, (ã, x̃) was not in the
database. SinceD only contains |D| entries andH(ã, x̃) is completely random (by
classical lazy sampling argument), the probability of having an MDHF collision
is at most |D|/M .

Quantumly, the above analysis can be applied using compressed oracle tech-
nique. The same arguments have been applied in analyzing finding pre-images
[Zha19,CGLQ20] and collision-finding [Zha19,LZ19,CGLQ20]. Using this state-

ment, |RaUH(I −Ra) |ψ′i〉| is at most
√

P+i−1
M where (P + i − 1) is the largest

cardinality of all databases with non-zero support.

Therefore, combining it with the above lemmas, we conclude that:

|Ra |ψT 〉 | ≤ |Ra |ψT−1〉 |+
√
P + T − 1

M
≤

T∑
i=1

√
P + i− 1

M
+ |Ra |ψ0〉 |.

By Lemma 2, we have,

√
qa ≤

√
q′a +

√
T/M

= |Ra |ψT 〉 |+
√
T/M

≤
T∑
i=1

√
P + i− 1

M
+ |Ra |ψ0〉 |+

√
T/M

≤
T∑
i=1

√
P + i− 1

M
+ |Qa |ψ0〉 |+

√
T/M.

By Cauchy-Schwarz,

qa ≤ O
(
(T + PT 2 + T 3)/M

)
+ 2 · |Qa |ψ0〉 |2 = O

(
(PT 2 + T 3)/M

)
+ 2pa.

Averaging over a, Ea[qa] ≤ O
(
(PT 2 + T 3)/M

)
+ Ea[pa] = O

(
(PT 2 + T 3)/M

)
.

Thus MDHF is O
(
PT 2+T 3

M

)
-secure in the P -BF-QROM.
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5.3 Post-quantum Non-uniform Security of One-way Functions
(OWF)

In this section, we show the simplicity and generality of our theorem by reprov-
ing results in [CGLQ20]. We only prove one of the main results in [CGLQ20],
namely the almost optimal bound of OWF in the AI-QROM. Other results can
be reproved with almost no extra effort, in a similar way.

The security game GOWF = (COWF) is defined as follows, where the challenger
COWF is specified by the following procedures:

– SampH(r): which takes randomness r = x ∈ [N ] and outputs the challenge
ch = y = H(x).

– QueryH(r, x′): it ignores the randomness and simply outputs H(x′).
– VerH(r, x′): it outputs 1 if and only if H(x′) = H(x) where x = r.

Namely, the challenger samples a random input x and the challenge is y =
H(x). An adversary wins the game if and only if it finds any preimage of y.

We reprove the following theorem.

Theorem 7. GOWF is ε(S, T ) = Õ((ST + T 2)/min{N,M})-secure in the AI-
QROM.

By Theorem 1, we only need to prove its security in the P -BF-QROM.

Lemma 11. GOWF is O((P + T 2)/min{N,M})-secure in the P -BF-QROM.

Proof. To prove it, we first recall the lemma 1.5 in [CGLQ20]. Note that although
the original statement for the following lemma only considers H having the same
domain and range, it indeed works for any H : [N ]→ [M ] and the proofs are in
Lemma 5.6 and Lemma 5.9 of [CGLQ20].

Lemma 12 (Lemma 1.5, [CGLQ20]). For any quantum algorithm making
q0 +q queries to a random function H : [N ]→ [M ], if H(x) is sampled and given
after the q0-th query, conditioned on arbitrary outcomes (with non-zero proba-
bility) of the algorithm’s measurement during the first q0 queries, the probability
of inverting H(x) is at most O((q0 + q2)/min{N,M}).

By letting the computation for the first q0 queries to be an evaluation of f
and measuring if fH = 1, we realize it is exactly the statement for its security
in the q0-BF-QROM. By letting q0 = P and q = T , we prove our lemma.

References

[AA11] Scott Aaronson and Andris Ambainis. The need for structure in quan-
tum speedups. In Proc. of Innovations in Theoretical Computer Science
Conference (ITCS), pages 338–352, 2011.

[Aar05a] Scott Aaronson. Limitations of quantum advice and one-way communica-
tion. Theory of Computing, 1(1):1–28, 2005.

[Aar05b] Scott Aaronson. Ten semi-grand challenges for quantum computing theory.
http://www.scottaaronson.com/writings/qchallenge.html, 2005.

28



[Aar10] Scott Aaronson. Updated version of “ten semi-grand challenges for quan-
tum computing theory”. http://www.scottaaronson.com/blog/?p=471,
2010.

[ACDW20] Akshima, David Cash, Andrew Drucker, and Hoeteck Wee. Time-space
tradeoffs and short collisions in merkle-damg̊ard hash functions. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceed-
ings, Part I, volume 12170 of Lecture Notes in Computer Science, pages
157–186. Springer, 2020.

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum secu-
rity proofs using semi-classical oracles. In Annual International Cryptology
Conference, pages 269–295. Springer, 2019.

[Bac12] Arturs Backurs. Influences in low-degree polynomials.
https://www.scottaaronson.com/showcase2/report/arturs-backurs.pdf,
2012.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778–797,
2001.
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A More on Quantum Random Oracle Model

This section is taken verbatim from Section 2.3 of [CGLQ20]. In this subsection,
we recall the technique introduced by Zhandry [Zha19]. We will explain how to
purify a random oracle in the quantum setting first, and then give equivalent
forms of a quantum random oracle, namely standard oracle StO, phase oracle
PhO and compressed standard oracle CStO. All these oracles are equivalent in
the sense that for every (even unbounded) algorithm making queries to one
of these oracles, the output distribution of the algorithm is exactly identical
regardless of which oracle is given. Then Zhandry shows dealing with compressed
standard oracle is usually easier. Roughly speaking, Zhandry shows that with
compressed standard oracle, one could quantify the amount of the information
about the random oracle learned by any quantum algorithm, analogous to the
lazy sampling technique that is very commonly used for classical random oracles.

Note that in Zhandry’s work [Zha19], they originally only considered output
of size M = 2m, and implementing a quantum random oracle as UH : |x〉 |u〉 =
|x〉 |u⊕H(x)〉 where ⊕ is bit-wise XOR, or the addition over Fm2 . Therefore,
their description of the compressed oracle technique is different since the range
is defined as Fm2 instead of Z/MZ considered in this paper. Two oracles are
equivalent as we can simulate one with the other using two queries. For the
completeness of the paper, we will reprove some of the useful lemmas under the
integer ring Z/MZ.

Also note that Zhandry also showed that a compressed oracle can be ef-
ficiently implemented by a quantum computer, i.e. the running time is only
polynomial in the number of queries and logN, logM . In this work, since we
mainly consider query complexity and for presentation, we ignore the issue of
efficiency for a simpler presentation.

Purification: standard oracle. Let H be a random oracle [N ]→ [M ]. The func-
tion H is sampled at the very beginning, or equivalently, initially we prepare
a maximally mixed state η

∑
H |H〉 〈H| up to some normalization factor η, and
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each query can be implemented by another unitary U , which reads the func-
tion H and applies UH . However, we can “purify” the random oracle, meaning
that we can replace the mixed state of |H〉 with a uniform superposition of
all possible functions, i.e.

√
η
∑
H |H〉. Consider the truth table of H, that is

|H〉 = |H(1)〉 |H(2)〉 · · · |H(N)〉. Let A be any quantum algorithm. We say the
algorithm can query the standard oracle if we treat the algorithm’s registers and
|H〉 as a whole system, initialized as |0〉 |ψ〉 ⊗ 1

MN/2

∑
H |H〉. An oracle query

StO in this purified state is defined as,

StO |x〉 |u〉 |z〉 ⊗ |H〉 = |x〉 |u+H(x)〉 |z〉 ⊗ |H〉 ,

where |x〉 , |u〉 are the input and output register, |z〉 is an arbitrary working
register and |H〉 is the random oracle. Each local quantum computation is Ui⊗I
which only operates on A’s registers |x〉 |u〉 |z〉. Therefore the computation of any
A can be described as a sequence of: U0⊗I, StO, · · · , UT−1⊗I, StO, UT ⊗I, and
a final computational measurement over A’s register. The following proposition
tells that the output distribution using a standard oracle is exactly the same as
using a random oracle.

Lemma 13 ([Zha19, Lemma 2]). Let A be an (unbounded) quantum algo-
rithm making oracle queries. The output of A given a random function H is
exactly identical to the output of A given access to a standard oracle. There-
fore, a random oracle with quantum query access can be perfectly simulated as a
standard oracle.

Phase kickback: phase oracle. Define a unitary V as (Ix ⊗ QFT†M ⊗ IH) which

applies QFT†M on the output register |u〉. Define the phase oracle operator
PhO := V † · StO · V .

PhO |x〉 |u〉 ⊗ |H〉 = V † · StO · 1√
M

∑
y

ω−uyM |x〉 |y〉 ⊗ |H〉

= V † · 1√
M

∑
y

ω−uyM |x〉 |y +H(x)〉 ⊗ |H〉

=
1

M

∑
y,y′

ω
−uy+(y+H(x))y′

M |x〉 |y′〉 ⊗ |H〉

=
1

M
ω
uH(x)
M

∑
y,y′

ω
(y+H(x))(y′−u)
M |x〉 |y′〉 ⊗ |H〉

= |x〉 |u〉 ⊗ ωuH(x)
M |H〉 .

Similarly, we override the notation PhO such that for any auxiliary register |z〉,
PhO |x〉 |u〉 |z〉 ⊗ |H〉 = |x〉 |u〉 |z〉 ⊗ ωuH(x)

M |H〉.
Observing that V V † = I, the following lemma tells that we can efficiently

convert between a standard oracle algorithm and a phase oracle algorithm.
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Lemma 14 ([Zha19, Lemma 3]). Let A be an (unbounded) quantum algo-
rithm making queries to a standard oracle. Let B be the algorithm that is identical
to A, except it performs V and V † before and after each query. Then the output
distributions of A (given access to a standard oracle) and B (given access to a
phase oracle) are identical. Therefore, a quantum random oracle can be perfectly
simulated as a phase oracle.

We then have the following lemma for the phase oracle, that formulates
the behavior of a quantum algorithm making at most T queries to the phase
oracle. We have seen that every PhO query will add a phase to the |H〉 reg-

ister, i.e., PhO |x〉 |u〉 ⊗ |H〉 = |x〉 |u〉 ⊗ ω
uH(x)
M |H〉. Define D as a truth ta-

ble, or equivalently a vector in (Z/MZ)N and D(x) be the x-th entry of D.
Define |D| be the number of non-zero entries in D. For any D, we define

|φD〉 = 1
MN/2

∑
H ω
〈D,H〉
M |H〉 for all D ∈ (Z/MZ)N where 〈D,H〉 is defined

to be the inner product
∑
x∈[N ]D(x)H(x). Note that we will only use this inner

product on the exponent of ωM so it is irrelevant whether we are computing it
on the integer ring or the ring modulo M .

Lemma 15. Let A be a quantum algorithm making at most T queries to a
phase oracle. The overall state of A and the phase oracle can be written as∑
z,D:|D|≤T αz,D |z〉 ⊗

1
MN/2

∑
H ω
〈D,H〉
M |H〉 =

∑
z,D:|D|≤T αz,D |z〉 ⊗ |φD〉.

Moreover, it is true even if the state is conditioned on arbitrary outcomes
(with non-zero probability) of A’s intermediate measurements.

Compressed standard oracle. Intuitively, compressed oracle is an analogy of clas-
sical lazy sampling method. Instead of recording all the information of H in the
registers (like what it does in the standard oracle or the phase oracle), Zhandry
provides a better solution which is useful to argue the amount of the information
an algorithm knows about the random oracle.

The oracle register records a database/list that contains the output on each
input x, the output is an element in Z/MZ ∪ {⊥}, where ⊥ is a special symbol
denoting that the value is “uninitialized”. The database is initialized as an empty
list D0 of length N , in other words, it is initialized as the pure state |∅〉 :=
|⊥,⊥, · · · ,⊥〉. Let |D| denote the number of entries in D that are not ⊥. Define
D(x) to be the x-th entry.

For any D and x such that D(x) = ⊥, we define D∪(x, u) to be the database
D′, such that for every x′ 6= x, D′(x′) = D(x) and at the input x, D′(x) = u.

The compressed standard oracle is the unitary CStO := StdDecomp ◦CStO′ ◦
StdDecomp, where

– CStO′ |x, u〉|D〉 = |x, u+D(x)〉|D〉 when D(x) 6= ⊥, which writes the output
of x defined in D to the u register. This operator will never be applied on
an x,D where D(x) = ⊥.

– StdDecomp(|x〉⊗|D〉) := |x〉⊗StdDecompx |D〉, where StdDecompx |D〉 works
on the x-th register of the database D(x). Intuitively, it swaps a uniform
superposition 1√

M

∑
y |y〉 with |⊥〉 on the x-th register. Formally,
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• If D(x) = ⊥, StdDecompx maps |⊥〉 to 1√
M

∑
y |y〉, or equivalently,

StdDecompx|D〉 = 1√
M

∑
y |D ∪ (x, y)〉. Intuitively, if the database does

not contain information about x, it samples a fresh y as the output of x.
• If D(x) 6= ⊥, StdDecompx works on the x-th register, and it is an iden-

tity on 1√
M

∑
y ω

uy
M |y〉 for all u 6= 0; it maps the uniform superposition

1√
M

∑
y |y〉 to |⊥〉.

More formally, for a D′ such that D′(x) = ⊥,

StdDecompx
1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 =

1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 for any u 6= 0,

and,

StdDecompx
1√
M

∑
y

|D′ ∪ (x, y)〉 = |D′〉.

Since all 1√
M

∑
y ω

uy
M |y〉 and |⊥〉 form a basis, these requirements define a

unique unitary operation.

Zhandry proves that, StO and CStO are perfectly indistinguishable by any un-
bounded quantum algorithm.

Lemma 16 ([Zha19, Lemma 4]). Let A be an (unbounded) quantum algo-
rithm making oracle queries. The output of A given access to the standard ora-
cle is exactly identical to the output of A given access to a compressed standard
oracle.

Combining this lemma with Lemma 13, we obtain the following corollary.

Corollary 1. A quantum random oracle can be perfectly simulated as a com-
pressed standard oracle.

In this work, we only consider query complexity, and thus simulation effi-
ciency is irrelevant to us. Looking ahead, we simulate a random oracle as a
compressed standard oracle to help us analyze security of different games with
the help from the following lemmas.

The first lemma gives a general formulation of the overall state of A and the
compressed standard oracle after A makes T queries, analogous to Lemma 15
for phase oracle.

Lemma 1. If A makes at most T queries to a compressed standard oracle, as-
suming the overall state of A and the compressed standard oracle is

∑
z,D αz,D |z〉A|D〉H

where |z〉 is A’s registers and |D〉 is the oracle’s registers, then it only has sup-
port on all D such that |D| ≤ T . In other words, the overall state can be written
as, ∑

z,D:|D|≤T

αz,D |z〉A ⊗ |D〉H .

Moreover, it is true even if the state is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.
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The second lemma provides a quantum analogue of lazy sampling in the
classical ROM.

Lemma 2 (Lemma 5 in [Zha19]). Let H be a random oracle from [N ]→ [M ].
Consider a quantum algorithm A making queries to the standard oracle and
outputting tuples (x1, · · · , xk, y1, · · · , yk, z). Supposed the random function H is
measured after A produces its output. Let R be an arbitrary set of such tuples.
Suppose with probability p, A outputs a tuple such that (1) the tuple is in R
and (2) H(xi) = yi for all i. Now consider running A with the compressed
standard oracle CStO, and suppose the database D is measured after A produces
its output. Let p′ be the probability that (1) the tuple is in R and (2) D(xi) = yi
(in particular, D(xi) 6= ⊥) for all i. Then

√
p ≤
√
p′ +

√
k/M .

Moreover, it is true even if it is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

B Equivalence between Conjecture 1 and Conjecture 3

We first present some notations and basic facts in Boolean function analysis
that will be used. Let f : {−1, 1}n → R be a function, we make the following
notations.

1. We define the zero vector as 0 := (0, . . . , 0) ∈ Rn.
2. The expectation of f is defined as f(0) := Ex∼{−1,1}n [f(x)]

3. The variance of f is defined as Var[f ] := Ex
[
(f(x)− f(0))2

]
.

4. The degree of f is defined as deg(f) = max{|S| : f̂(S) 6= 0}. Here f̂(S) :=
Ex[f(x)

∏
i∈S xi] represents the Fourier coefficient of f .

5. For every set J ⊆ [n], we denote its complement as J̄ := [n] \ J .
6. For each J ⊆ [n] and x′J ∈ {−1, 1}J , the restricted function f |x′

J
: {−1, 1}J̄ →

R is defined as f |x′
J
(xJ̄) = f(x′J , xJ̄). Besides, we denote as f(xJ ,0J̄) =

ExJ̄
[f(xJ , xJ̄)].

7. For every x ∈ {−1, 1}n and J ⊂ [n], let xJ ∈ {−1, 1}n denote the string
obtained by flipping all bits in J .

Definition 12 (Smooth function). Let t be a positive integer and δ > 0.
A function f : {−1, 1}n → R is called (t, δ)-smooth if for any |J | ≤ t and
xJ ∈ {−1, 1}J , it has that

|f(xJ ,0J̄)− f(0)| ≤ δ.

Definition 13. Let f : {−1, 1}n → R be a function. For each x ∈ {−1, 1}n, the
block-sensitivity of f at x is defined as

bs(f, x) = max
k,J1t···tJk

∑
i∈[k]

|f(xJi)− f(x)|/2.

The block-sensitivity of f is defined as max
x
{bs(f, x)}.

35



Nisan and Szegedy [NS94] proved that bs(f) = O(deg(f)2) for any Boolean
function f : {−1, 1}n → {0, 1}. This result can be further generalized to bounded
functions, see [KK19] for a formal proof.

Claim 3 ([NS94,KK19]). Let f : {−1, 1}n → [0, 1] be a bounded degree-d
polynomial, then bs(f) = O(d2).

Let f : {−1, 1}n → [0, 1] be the acceptance probability of some quantum
algorithm that makes T queries to a Boolean string x = (x1, · · · , xn), a basic
result shown by Beals et al. [BBC+01] says that deg(f) ≤ 2T . Furthermore,
according to Claim 3, we have bs(f) = O(T 2).

It is more convenient to use the following restates of Conjecture 1 and Con-
jecture 3.

Conjecture 5 (restate of Conjecture 1). There is a constant C > 0. For the
acceptance probability f : {−1, 1}n → [0, 1] of any quantum algorithm that
makes T queries to a Boolean string x = (x1, · · · , xn) and any ε > 0, there is a
decision tree g : {−1, 1}n → [0, 1] of depth (T/ε)C such that ‖g − f‖2 ≤ ε.

The equivalence between Conjecture 1 and Conjecture 5 is based on the fact
that ‖g − f‖22 ≤ ‖g − f‖1 ≤ ‖g − f‖2 as ‖g − f‖∞ ≤ 1.

Conjecture 6 (restated of Conjecture 3). There is a constant C > 0. For the
acceptance probability f : {−1, 1}n → [0, 1] of any quantum algorithm that
makes T queries to a Boolean string x = (x1, · · · , xn) and any δ > 0, if f is(
(T/δ)C , (δ/T )C

)
-smooth, then Var[f ] ≤ δ.

The following claim will be used.

Claim 4. Let J ⊂ [n] be any set. Then

E
xJ

[
E
xJ̄

[bs(f |xJ
, xJ̄)]

]
≤ E

x
[bs(f, x)]−max

xJ

{|f(xJ ,0J̄)− f(0)|/4} .

Proof. Let r := max
xJ

{|f(xJ ,0J̄)− f(0)|} and let x∗J be the input reaching

it. Since f(0) = ExJ
[f(xJ ,0J̄)], there is a string x′J ∈ {−1, 1}J such that

|f(x∗J ,0J̄)− f(x′J ,0J̄)| ≥ r. Hence

r ≤
∣∣E
xJ̄

[f(x∗J , xJ̄)− f(x′J , xJ̄)]
∣∣

≤ E
xJ ,xJ̄

[|f(x∗J , xJ̄)− f(xJ , xJ̄)|+ |f(x′J , xJ̄)− f(xJ , xJ̄)|]

≤2 · E
xJ ,xJ̄

[
max

zJ∈{−1,1}J
{|f(zJ , xJ̄)− f(xJ , xJ̄)|}

]
.

On the other hand, according to the definition of block-sensitivity, it has

bs(f |xJ
, xJ̄) + max

zJ∈{−1,1}J
{|f(zJ , xJ̄)− f(xJ , xJ̄)|/2} ≤ bs(f, x).
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Putting these together, we conclude that

E
xJ ,xJ̄

[bs(f |xJ
, xJ̄)] ≤E

x
[bs(f, x)]− E

xJ ,xJ̄

[
max

zJ∈{−1,1}J
{|f(zJ , xJ̄)− f(xJ , xJ̄)|/2}

]
≤E
x

[bs(f, x)]− r/4.

Theorem 8. Conjecture 6 implies Conjecture 5.

Proof. Assuming Conjecture 6 holds, and let C0 be the constant from this con-
jecture. For the acceptance probability f : {−1, 1}n → [0, 1] of any quantum
algorithm that makes T queries to a Boolean string x = (x1, · · · , xn) and any
ε > 0, we construct a small depth decision tree g that ε-approximates f as fol-
lows: given any function f , we continually query non-smooth set, a set J of size
(T/ε)C0 such that |f(xJ ,0J̄) − f(0)| ≥ (ε/T )C0 , until reaches a small variance
function. We formalize the idea as follows:

1. Define f0 = f and B := c1 · TC0+2/εC0+1, where c1 is a large constant
to be determined later.

2. Given a function fi : {−1, 1}Si → [0, 1], if Var[fi] ≤ ε or i ≥ B, then
output T (x) = E[fi];

3. Otherwise, since fi is a restricted function of f , fi is also the acceptance
probability of some quantum algorithm that makes at most T queries.
Then Conjecture 6 guarantees the existence of J of size at most (T/ε)C0

and x∗J ∈ {−1, 1}J s.t. |fi(x∗J ,0Si\J) − fi(0)| ≥ (ε/T )C0 . Deterministi-

cally choose such a J , query xJ and define fi+1 : {−1, 1}Si\J → [0, 1]
by fi+1(y) = fi(xJ , y). Repeat Stage 2 with fi+1.

Obviously the depth of g is at most B · (T/ε)C0 = c1 · T 2C0+2/ε2C0+1. What
remains is to show that g approximates f , i.e., ‖f−g‖22 ≤ 2ε. Let I be a random
variable counting the number of iterations on a random input x. Then

‖f − g‖22 =Ex
[
(fI(x)− E(fI))

2
]

= Ex[Var [fI ]]

= Pr [I < B] · Ex[Var [fI ] |I < B] + Pr[I = B] · Ex[Var [fI ] |I = B]

≤Ex[Var [fI ] |I < B] + Pr [I = B]

≤ε+ Pr [I = B] ,

where the last inequality is due to that Var[fI ] ≤ ε if I < B. In the following,
we show that Pr(I = B) ≤ ε, and then finish the proof.

By contradiction, suppose Pr[I = B] > ε. For convenience, we pretend that
the algorithm iterates exactly B times on every input x, in the way that for any
I < i ≤ B, the algorithm queries nothing. Fix any i < B, let J ⊂ [n] (and fi
resp.) be the random set queried (and the random resulted subfunction resp.) in

37



the i-th iteration on a random input x. Note that fi+1 = fi|xJ
, then according

to Claim 4, we have

Ex[bs(fi+1, x)]

=EfiEx[bs(fi+1, x)|fi] = EfiEx[bs(fi|xJ
, x)|fi]

≤EfiEx[bs(fi, x)|fi]−
1

4
· EfiEx

[
max

xJ∈{−1,1}J

{
|fi(xJ ,0Si\J)− f(0Si

)|
} ∣∣fi]

=Ex[bs(fi, x)]− 1

4
· Ex

[
max

xJ∈{−1,1}J

{
|fi(xJ ,0Si\J)− f(0Si)|

}]
≤Ex[bs(fi, x)]− 1

4
· Pr(I > i) · Ex

[
max

xJ∈{−1,1}J

{
|fi(xJ ,0Si\J)− f(0Si

)|
} ∣∣I > i

]
≤Ex[bs(fi, x)]− 1

4
· εC0+1/TC0 .

By induction, we have that Ex[bs(fi, x)] ≤ Ex[bs(f0, x)]− i
4 · ε

C0+1/TC0 . Partic-
ularly,

Ex[bs(fB , x)] ≤Ex[bs(f0, x)]− B

4
· εC0+1/TC0

≤Ex[bs(f0, x)]− c1
4
· T 2 < 0,

if c1 is sufficiently large. A contradiction.

We then prove the other direction.

Theorem 9. Conjecture 5 implies Conjecture 6.

Proof. Assuming Conjecture 5 holds, and let C0 be the constant. For the accep-
tance probability f : {−1, 1}n → [0, 1] of any quantum algorithm that makes T
queries to a Boolean string x = (x1, · · · , xn), we show there is a set J ⊂ [n] of
size |J | ≤ (T/Var[f ])C0 and a string xJ ∈ {−1, 1}J such that

|f(xJ ,0J̄)− f(0)| ≥ Var [f ] /4.

Let ε = Var[f ]/4, then by Conjecture 5, there is a decision tree g of depth
(T/ε)C0 such that ‖f − g‖2 ≤ ε. For each x ∈ {−1, 1}n, let Qx ⊂ [n] denote the
set of variables queried by g on input x. Notice that,

Ex[|f(x)−f(xQx
,0Q̄x

)|] ≤ Ex[|f(x)−g(x)|] = ‖f−g‖1 ≤ ‖f−g‖2 ≤ Var [f ] /4.

Since |f(x)− f(0)| ≤ 1,

Ex [|f(x)− f(0)|] ≥ Ex
[
|f(x)− f(0)|2

]
= Var [f ] .

By combining them, we have that

E
x

[
|f(xQx

,0Q̄x
)− f(0)|

]
≥E
x

[|f(x)− f(0)|]− E
x

[
|f(xQx

,0Q̄x
)− f(x)|

]
≥3 Var [f ] /4.

Since the set Qx has size at most (T/ε)C0 for every input x. There is a pair
(x,Qx) that certifies Conjecture 6.
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C Applications to AI-QRPM

In this section, we define P -BF-QRPM (quantum random permutation model)
and present the presampling theorem for quantum random permutations. Similar
to P -BF-QROM, P -BF-QRPM is defined by a P -query quantum algorithm f .

Definition 14 (P -BF-QRPM). A security game in the P -BF-QRPM con-
sists the following two procedures:

– Before the challenging phase, the offline adversary A1 prepares a quantum
algorithm f , and then interacts with a challenger:
1. The challenger samples a random permutation H;
2. A1 computes fH which makes at most P superposition queries to H.
3. A1 gets a single bit output z of fH . If z 6= 1, it restarts the whole proce-

dure (including sampling a new random permutation H at the beginning).
– In the challenging phase, the security game is executed with an online algo-

rithm A2 and oracle access to the function H.

Note that the algorithm f can be inefficient, including running time of f and
time for sampling a random H conditioned on fH = 1, except the number of
queries are bounded by P .

Equivalently, the definition says that the permutation distribution in the
online phase is determined by a P -query bounded quantum algorithm in the
pre-computation stage, conditioned on the output of the algorithm fH being 1.

With the definition above, we obtain the following theorem.

Theorem 10. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-QRPM, then it is (S, T, ε′)-secure in the AI-QRPM, for some
ε′ such that,

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

If G is ε(T )-secure in the P -BF-QRPM for P ≥ (S + log γ−1)T comb, then it is
(S, T, ε′)-secure in the AI-QRPM, for some ε′ such that,

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

One major question raised by [CGLQ20] is the optimal security of OWF in
the AI-QRPM. They prove an almost optimal bound for OWF in the AI-QROM
(reproved in Section 5.3 of this work), but their tools can not handle AI-QRPM.
We give a sufficient condition for achieving the optimal security bound of OWF
in the AI-QRPM, which is the conjecture below.

Conjecture 7. GOWF is O((P + T 2)/N)-secure in the P -BF-QRPM.

If we can prove the conjecture, an optimal security bound of OWF in the
AI-QRPM can be achieved, following from Theorem 10.

Theorem 11. GOWF is ε(S, T ) = Õ((ST + T 2)/N)-secure in the AI-QRPM.
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