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ABSTRACT
A random beacon provides a continuous public source of ran-

domness and its applications range from public lotteries to zero-

knowledge proofs. Existing random beacon protocols sacrifice ei-

ther the fault tolerance or the communication complexity for se-

curity, or ease of reconfigurability. This work overcomes the chal-

lenges with the existing works through a novel communication

efficient combination of state machine replication and (publicly)

verifiable secret sharing (PVSS/VSS).

For a system with 𝑛 nodes in the synchronous communication

model and a security parameter ^, we first design an optimally

resilient Byzantine fault-tolerant state machine replication protocol

with 𝑂 (^𝑛2) bits communication per consensus decision without
using threshold signatures. Next, we design GRandPiper (Good

Pipelined Random beacon), a random beacon protocol with bias-

resistance and unpredictability, that uses PVSS and has a communi-

cation complexity of𝑂 (^𝑛2) always, for a static adversary. However,
GRandPiper allows an adaptive adversary to predict beacon values

up to 𝑡 + 1 epochs into the future. Therefore, we design BRandPiper

(Better RandPiper), that uses VSS and has a communication com-

plexity of 𝑂 (^𝑓 𝑛2), where 𝑓 is the actual number of faults, while

offering a strong unpredictability with an advantage of only a single

round even for an adaptive adversary. We also provide reconfigura-

tion mechanisms to restore the resilience of the beacon protocols

while still maintaining quadratic communication complexity per

round. We implement BRandPiper and compare it against the state

of the art practically deployed beacon protocol, drand, and show

that we are always better than or equal to in performance.

1 INTRODUCTION
Public digital randomness is essential across a large spectrum of

security applications ranging from e-voting to blockchains. Its prac-

tical relevance further evident from NIST’s Randomness Beacons

project [21] and from the recent emergence of Drand Organiza-

tion [25]. In addition, several other proposals [17, 20, 24, 29, 30, 42,

43, 47] and implementations [1, 2, 28] offer random beacons [39].
A random beacon emits a new random value at intermittent in-

tervals such that the emitted values are bias-resistant, i.e., no entity

can influence a future random beacon value, and unpredictable, i.e.,

no entity can predict future beacon value. Clearly, we cannot trust

a single node to offer such a service — the node can easily affect

both bias-resistance and unpredictability of the beacon. A series of
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recent work has instead relied on distributing the trust across mul-

tiple nodes such that even if a subset of nodes gets compromised,

the beacon is still secure [17, 30, 43, 47].

In a system consisting of 𝑛 nodes, tolerating 𝑡 Byzantine faults,

with security parameter ^, an ideal distributed randomness bea-

con protocol, in addition to being bias-resistant and unpredictable,

should have the following properties: (i) optimal resilience, (ii) low

communication overhead, (iii) reconfiguration friendliness (allow-

ing efficient addition and removal of nodes), and (iv) use efficient

cryptographic schemes as opposed to computationally expensive

schemes such as Proof-of-Work (PoW) or Verifiable Delay Func-

tions (VDFs). Existing works trade one or the other of the above fea-

tures expected from a random beacon. For instance, HydRand [43]

sacrifices optimal resilience (𝑡 < 𝑛/3) for better communication

complexity (𝑂 (^𝑛2) in the best case and 𝑂 (^𝑛3) in the worst case)

with minimal setup assumptions. Cachin et al. [17] provides a com-

munication complexity of𝑂 (^𝑛2), but it requires a threshold (cryp-

tographic) setup and hence cannot support a reconfiguration of

the system without changing the threshold setup through proac-

tive secret sharing techniques. Several other solutions [24, 42] use

computationally expensive mechanisms such as VDFs
1
[13] where

nodes compute VDF function constantly to ensure security of the

beacon.

In this paper, we askwhether we can design an optimally resilient

random beacon protocol that achieves good communication com-

plexity while using efficient cryptographic schemes and a re-usable

setup, i.e., avoiding setups such as those of threshold signatures

where the entire setup needs to be re-generated when a partici-

pating node is replaced. To answer this question, we first design

an optimally resilient Byzantine fault-tolerant (BFT) state machine

replication (SMR) protocol with𝑂 (^𝑛2) communication complexity

per consensus decision while requiring a structured reference string

(SRS) [34] setup that allows any bounded reconfiguration. Next, we

present two random beacon protocols GRandPiper (Good Pipelined

Random beacon) and BRandPiper (Better Pipelined Random beacon)

using our BFT SMR protocol as a building block and provide similar

guarantees. GRandPiper is communication efficient (𝑂 (^𝑛2) in the

best and worst case) but allows an adaptive adversary to predict 𝑡+1
epochs into the future. BRandPiper offers stronger unpredictability

guarantees, but has a communication complexity of𝑂 (^𝑓 𝑛2) where

1
VDFs require computing operations such as squarings, which are energy intensive.
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𝑓 is the actual number of faults. Finally, we present a communica-

tion efficient reconfiguration protocol to add nodes to the system

while maintaining quadratic communication complexity per round.

1.1 Efficient State Machine Replication
Without Threshold Signatures

There has been a long sequence of work in improving communi-

cation complexity of consensus protocols [3, 6, 15, 26, 33, 35, 49].

In the synchronous SMR setting, the optimal communication com-

plexity per consensus decision of an SMR protocol is𝑂 (^𝑛2) bits [3,
5, 35, 46]. However, all of these solutions use threshold signatures.

Our first result improves upon the communication complexity in

the absence of threshold signatures. Specifically, we show the fol-

lowing:

Theorem 1.1. Assuming public-key infrastructure and a univer-
sal structured reference string setup under 𝑞-SDH assumption, there
exists a state machine replication protocol with amortized 𝑂 (^𝑛2)
communication complexity per consensus decision tolerating 𝑡 < 𝑛/2
Byzantine faults.

To be precise, the protocol incurs 𝑂 (^𝑛2) communication com-

plexity under𝑞-strongDiffie-Hellman (SDH) assumption [14] (whose

parameters can be generated using distributed protocols) or𝑂 (^𝑛2 log𝑛)
without it. Getting rid of threshold signatures allows for efficient

reconfiguration of the participating nodes and does not require

generating threshold keys each time a new node joins the system. It

is in this sense that our system is reconfiguration-friendly. Thus, an

efficient BFT protocol in this setting is of independent interest. We

reduce communication by making use of efficient erasure coding

schemes [40] and cryptographic accumulators [10] to efficiently

broadcast large messages at the expense of increase in latency of

SMR protocol. As we will see, the increase in latency does not affect

our random beacon protocols adversely.

1.2 RandPiper – Random Beacon Protocols
RandPiper is a suite of random beacon protocols that use our SMR

protocol as a building block. We present two protocols: GRand-

Piper (Good Pipelined Random beacon) and BRandPiper (Better

Pipelined Random beacon) which differ in unpredictability and

communication complexity. In both protocols, we use secret shar-

ing schemes to privately commit random numbers ahead of time.

This ensures bias-resistance as the random number once shared

cannot be changed. For unpredictability, we ensure that the beacon

outputs are generated using inputs from 𝑡 + 1 nodes (where 𝑡 is the
threshold of Byzantine nodes) at least one of which is truly random,

and therefore the output is truly random.

GRandPiper. In GRandPiper, we explore how to build a commu-

nication optimal random beacon protocol with bias-resistance and

strong unpredictability, allowing a static adversary to predict up to

a security parameter number of epochs into the future. In particular

we show the following:

Theorem 1.2 (Informal). Assuming public-key infrastructure
and a universal structured reference string setup under 𝑞-SDH as-
sumption, there exists a reconfiguration friendly, bias-resistant, and

𝑂 (min(^, 𝑡))-absolute unpredictable (see Definition 3.2) random bea-
con protocol tolerating 𝑡 < 𝑛/2 Byzantine faults with 𝑂 (^𝑛2) com-
munication per beacon output.

Our GRandPiper protocol outputs a random beacon with𝑂 (^𝑛2)
communication complexity per beacon output, where ^ is the secu-

rity parameter. The output of the beacon protocol is bias-resistant

and satisfies strong unpredictability against a static adversary, i.e.,

the probability of a static adversary predicting 𝑐 rounds into the

future is less than 2
−𝑐

(in expectation this is 2 rounds into the

future). After 𝑡 + 1 epochs, an adversary cannot predict beacons

into the future with non-negligible probability for cases when 𝑡

is smaller than ^. We concisely term this as 𝑂 (min(^, 𝑡))-absolute
unpredictable protocol. We also do not need any threshold setups,

which allows nodes to join and leave the system easily without

stopping our protocol.

At a high-level, our protocol uses Publicly Verifiable Secret Shar-

ing (PVSS) schemes, and allows a leader to input an 𝑂 (^𝑛)-sized
PVSS encryptions PVSS. ®𝐸 into the SMR to share a single secret

per epoch. The secret shared by the leader will be reconstructed

when the same node is chosen as the leader again. To ensure that

eventually there is an honest leader, a leader does not repeat again

for the next 𝑡 epochs. This also ensures that our BFT SMR protocol

decides on the proposed shares once we get an honest leader. Our

construction ensures that we always have a communication com-

plexity of 𝑂 (^𝑛2) for the beacon, as the beacon keeps outputting

values based on buffered PVSS shares, and we remove Byzantine

nodes to avoid the buffer from ever being empty.

However, an adaptive adversary can predict 𝑡 + 1 epochs into the
future in GRandPiper by simply corrupting the next 𝑡 leaders and

learning their committed secrets. At this point, continuing to use

the PVSS scheme to improve the unpredictability leads to a loss of

quadratic communication complexity. Hence, we look in a different

direction to improve unpredictability.

BRandPiper. In BRandPiper, we explore how to achieve the best

possible unpredictability while having the best possible communica-

tion complexity and also supporting reconfiguration. In particular,

we show the following result:

Theorem 1.3 (Informal). Assuming public-key infrastructure
and a universal structured reference string setup under 𝑞-SDH as-
sumption, there exists a reconfiguration-friendly, bias-resistant and
1-absolute unpredictable (see Definition 3.2) adaptively secure random
beacon protocol tolerating 𝑡 < 𝑛/2 Byzantine faults with 𝑂 (^𝑓 𝑛2)
communication, where 𝑓 ≤ 𝑡 is the actual number of faults.

Our second protocol BRandPiper outputs a random beacon with

𝑂 (^𝑓 𝑛2) communication per output, and guarantees bias-resistance

and strong unpredictability against an adaptive adversary. Here,

𝑓 is the actual number of faults; when 𝑓 = 𝑂 (1), the protocol en-
joys 𝑂 (^𝑛2) communication complexity. BRandPiper uses random

inputs from > 𝑡 nodes in every epoch, ensuring strong unpre-

dictability of only 1 epoch into the future.

As a building block, we first construct an improved VSS (iVSS)

protocol by modifying the state-of-the-art VSS scheme eVSS [32].

Compared to eVSS, which requires 𝑂 (^𝑛 + ^𝑓 + ^𝑓 𝑛) information

on the bulletin board (broadcast channel), iVSS posts only 𝑂 (^𝑛)
bits of information on the bulletin board which in effect improves
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the amortized communication complexity of the VSS scheme to

𝑂 (^𝑓 𝑛2) where 𝑓 is the actual number of faults. This may be of in-

dependent interest in applications requiring batched VSS sharings.

At a high level, we use round-robin leaders and iVSS in point-to-

point channels to secret share 𝑛 random numbers in every epoch.

Since we are producing 𝑛 shares every epoch, we can now consume

𝑛 shares in every epoch. Thus, in every epoch, using the homomor-

phic properties of VSS secret shares, we reconstruct a homomorphic

sum of 𝑛 shares in every epoch, thus eliminating the 𝑡 + 1 epoch
advantage held by the adaptive adversary and reducing it to just 1

epoch. We carefully design the protocol so that we have a commu-

nication complexity of 𝑂 (^𝑓 𝑛2). Our key insight in BRandPiper is

that a leader can efficiently secret share 𝑛 shares at once instead

of one. These shares are buffered by all nodes, and it ensures that

there are always sufficient shares available for reconstruction in

the next 𝑛 epochs so far as leaders are chosen in a round-robin

manner. The buffering helps prevent a Byzantine node from biasing

by refusing to share new blocks, when the outputs are unfavorable.

Without our techniques, while assuming threshold signatures, exist-

ing VSS protocols have an optimistic communication complexity of

𝑂 (^𝑛2) [32] and a worst case communication complexity of𝑂 (^𝑛3)
to perform 1 secret sharing. The difference in the order arises from

opening 𝑓 shares for every node that complains against the leader.

BRandPiper shows how to perform 𝑂 (𝑛) VSS secret sharings with
a communication complexity of 𝑂 (^𝑓 𝑛2) which is quadratic when

𝑓 = 𝑂 (1).

1.3 Efficient Reconfiguration
While prior works [17, 43] provide a random beacon protocol with

𝑂 (^𝑛2) communication without threshold signatures and claim to

be reconfiguration-friendly, they do not provide any reconfigura-

tion mechanisms. In this work, we provide reconfiguration proto-

cols to restore the resilience of our beacon protocol when some

Byzantine nodes have been removed from the system. Since we do

not rely on threshold signatures, new nodes can join the system

without generating new keys for all nodes. Moreover, the recon-

figuration protocol is executed while still maintaining quadratic

communication complexity per round.

Synchronizing new joining nodes during reconfiguration while

keeping low communication overhead is a challenge. Prior clock

synchronization protocols [3] incur 𝑂 (^𝑛3) communication with-

out threshold signatures, and moreover, the execution cannot be

split across rounds to reduce per round complexity. We introduce a

new clock synchronization primitive that synchronizes new nodes

when a majority of honest nodes are already synchronized while

maintaining quadratic communication per round. The protocol

utilizes homomorphic addition property of VSS secret shares that

yields constant-sized secrets when the secret is opened. The homo-

morphic secret can be broadcast among all nodes to synchronize

all the nodes with only 𝑂 (^𝑛2) communication.

Implementation and Evaluation. We implement our protocol

and demonstrate the practicality of our random beacon. We show

that our BRandPiper protocol is as good as the state of the art

practically deployed system: drand in terms of beacons per minute.

Concretely, we show that choosing a Δ value for BRandPiper such

that it always succeeds, we are always better than drand if we

assume a similar low Δ value for drand. Giving a benefit of doubt

to drand, by choosing slightly relaxed value of 99.9𝑡ℎ percentile

value of Δ, we show that our protocol is still as practical as drand.

Summary of contributions. To summarize, we make the follow-

ing contributions in this work:

(1) We present a communication efficient BFT SMR protocol

with quadratic communication per consensus decision (Section 4).

(2) We then present two random beacon protocols. Section 5.1

presents GRandPiper, a simple beacon protocol using PVSS with

𝑂 (^𝑛2) communication. We then present BRandPiper, a protocol

with better unpredictability in Section 5.3.

(3) We evaluate our BRandPiper protocol (Section 8).

(4) We present mechanisms for synchronizing a new node in

Section 6 and reconfiguration in Section 7.

Related Work. Due to space constraints, we present related work

to our SMR and random beacon protocol in Section 2.

Limitations. Our protocol depends of the synchrony assumption,

i.e., messages sent between any two honest nodes in the system are

always delivered within a public value Δ.

2 RELATEDWORK
2.1 Related Works in the BFT SMR Literature
There has been a long line of work in improving the latency and

communication complexity of consensus protocols [3, 6, 7, 15, 26,

33, 35, 46, 49]. The state-of-the-art BFT SMR protocols [3, 5, 7, 46]

incur quadratic communication per consensus decision while using

threshold signatures. Without threshold signatures, they incur cu-

bic communication per consensus decision. Our BFT SMR protocol

makes progress in the setting where threshold signatures are not

desirable. Our protocol incurs 𝑂 (^𝑛2) communication complex-

ity under the 𝑞-SDH assumption or 𝑂 (^𝑛2 log𝑛) without it at the
expense of increased latency.

2.2 Related Works in the Random Beacons
Literature

In this section, we explore random beacon protocols, sometimes

also referred to as coin tossing protocols, in the synchronous setting.

Some of the works were originally designed for the asynchronous

settings, but in this section, we evaluate them in the synchronous

setting.

Cachin et al. [17] use a threshold shared secret 𝑥𝑖 of the secret

𝑥 ∈ Z𝑞 , where 𝑞 is the order of a group G. To generate beacons,

they create shares 𝑔𝑐𝑥𝑖 of the beacon 𝑔𝑐𝑥 , for some generator 𝑔 ∈
G. The beacon value 𝑐 is some agreed upon coin value , say for

instance, a counter. When > 𝑡 such shares are obtained, all the

honest nodes obtain the same beacon value 𝑔𝑐𝑥 . Drand [25] uses a

similar approach by replacing the threshold secret with a threshold

BLS key and using signatures on the common coin 𝑐 (say, a counter).

This incurs a communication complexity of 𝑂 (^𝑛2) always, but
comes with the drawback that it does not support reconfiguration,

i.e., if a single node is replaced or joins the system, the threshold

shared keys (sharing 𝑥𝑖 of 𝑥 ) must be regenerated or new keys (or

shares 𝑥 ′
𝑖
) for the old key (or secret 𝑥 ) need to be reshared between

the new participants.

Homomorphic Encryption Random Beacon (HERB) [20] uses

homomorphic threshold ElGamal encryption scheme to generate
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Table 1: Comparison of related works on Random Beacon protocols in standard synchrony

Protocol Res.(t) Unpred.
Comm. Compl Adp.

Adv.
Re-usable
Setup

No
DKG?

Assumption
Best Worst

Cachin et al./Drand [17, 25] 49% 1 𝑂 (^𝑛2) 𝑂 (^𝑛2) ✗ ✗ ✗ Threshold Secret/BLS

Dfinity [4, 30] 49% 𝑂 (^) 𝑂 (^𝑛2) 𝑂 (^𝑛3)∗ ✗ ✗ ✗ Threshold BLS

HERB [20] 33% 1 𝑂 (^𝑛3) 𝑂 (^𝑛3) ✗ ✗ ✗ Threshold ElGamal

HydRand [43] 33% 𝑂 (min(^, 𝑡))† 𝑂 (^𝑛2) 𝑂 (^𝑛3) ✗ ✓ ✓ PVSS

HydRand (Worst) [43] 33% 𝑡 + 1 𝑂 (^𝑛2) 𝑂 (^𝑛3) ✗ ✓ ✓ PVSS

RandChain [29] 33% 𝑂 (^) 𝑂 (^𝑛2) 𝑂 (^𝑛3) ✓ ✗ ✗ PoW

RandHerd [47] 33% 𝑂 (^) 𝑂 (^𝑐 log𝑛)¶ 𝑂 (^𝑛4) ✗ ✗ ✗ Threshold Schnorr

RandHound [47] 33% 1 𝑂 (^𝑐2𝑛)¶ 𝑂 (^𝑐2𝑛2)¶ ✗ ✓ ✓ Client based, PVSS

RandRunner [42] 49% 𝑡 + 1 𝑂 (^𝑛2) 𝑂 (^𝑛2) ✓ ✓ ✓ VDF

RandShare [47] 33% 1 𝑂 (^𝑛3) 𝑂 (^𝑛4) ✓ ✓ ✓ VSS

GRandPiper 49% 𝑂 (min(^, 𝑡))† 𝑂 (^𝑛2) 𝑂 (^𝑛2) ✗ ✓ ✓ PVSS, 𝑞-SDH

GRandPiper (Worst) 49% 𝑡 + 1 𝑂 (^𝑛2) 𝑂 (^𝑛2) ✗ ✓ ✓ PVSS, 𝑞-SDH

BRandPiper 49% 1 𝑂 (^𝑛2)§ 𝑂 (^𝑛3) ✓ ✓ ✓ VSS, 𝑞-SDH

^ is the security parameter denoting maximum of sizes of signatures, hashes, and other components used in the protocol. Res. refers to the

number of Byzantine faults tolerated in the system. Unpred. refers to the unpredictability of the random beacon, in terms of the number of

future rounds an adaptive rushing adversary can predict. A rushing adversary can always obtain outputs before correct nodes, and hence,

the minimum is 1. Adp. Adv refers to Adaptive Adversary whether the adversary can pick its 𝑡 corruptions at any point in the protocol.

Reusable Setup refers to a setup that can be reused when a node is replaced in the system.
∗
probabilistically 𝑂 (^𝑛3) when 𝑂 (𝑛)

consecutive leaders are bad.
¶𝑐 is the average (constant) size of the groups of server nodes. †In expectation it is 2 rounds, the probability of

an adversary predicting 𝑐 epochs into the future is 2
−𝑐
, with a security parameter ^ it is min(^, 𝑡) + 1 epochs. §In the optimistic case, when

the leader is honest and 𝑓 = 𝑂 (1) nodes are Byzantine.

random numbers. The system tolerates 𝑛 > 3𝑡 faults. Each node in

the system encrypts a random share and posts it on the bulletin

board. The protocol uses 𝑡 + 1 such encryptions to produce the final

beacon output. The work requires the use of a Byzantine Agreement

protocol whose inputs are 𝑂 (^𝑛) sized, and therefore trivially has

a communication complexity of𝑂 (^𝑛3) in the best and worst cases.

It also uses a variant of the threshold setup, thereby not permitting

a re-usable setup.

RandChain [29] builds a DRB - Decentralized Random Beacon

that assumes sequential Proof-of-Work (Seq-PoW), and VDFs along

with Nakamoto consensus for consistency. Constructions using

these assumptions are not energy-efficient. In PoW, an adversary

with more hash power can neglect unfavorable random numbers

by forking, and to avoid this requires the total honest hash power

to be greater than 1/2. The work uses existing Byzantine Agree-

ment techniques which makes the protocol have a communication

complexity of 𝑂 (^𝑛2) in the best case, while inheriting the 𝑂 (^𝑛3)
communication complexity from BA [22] in the worst case.

Drake et al. [24] proposed a minimal bias-resistant VDF-based

random beacon scheme, that assumes the existence of a VDF [13]

and that the adversary has an advantage 𝐴𝑚𝑎𝑥 in terms of speed

over the honest nodes, in computing the VDF. The VDF is used

to determine the beacon output for a round, and sufficiently old

beacon outputs are used to select leaders for the Ethereum Proof-of-

Stake protocol. The system tolerates 𝑛 > 3𝑡 faults, and is designed

for partial synchrony.

RandRunner [42] builds a random beacon protocol using VDFs.

Therefore, it has a setup that can be re-used. It uses trapdoor Veri-

fiable Delay Functions - VDFs with strong uniqueness properties

that produces unique values efficiently for the node that has the

trapdoor, but takes time 𝑇 to produce an output for the nodes that

do not have the trapdoor. This allows the beacon to output bias-

resistant outputs in every round. It is not immediately unpredictable

as an adaptive adversary can corrupt the next 𝑡 < 𝑛/2 leaders to
know the outputs for the next 𝑡 epochs. RandRunner uses reliable

broadcasts which results in communication complexity of 𝑂 (^𝑛2)
for every round.

RandShare [47] is a strawman protocol for where the beacon

output is generated using 𝑛 independent Byzantine Agreement

instances are run in a system tolerating 𝑛 > 3𝑡 faults. Running

𝑛 BA instances incurs a communication complexity of 𝑂 (^𝑛3) in
the best case and 𝑂 (^𝑛4) in the worst case. RandHerd [47] is an

improved version of RandShare, driven by a client seeking a random

beacon value. The client splits the system into groups of size 𝑐 which

internally use RandShare, leading to a communication complexity

of 𝑂 (^𝑐2𝑛), even in the worst case. However, even though 𝑐 is a

constant, it depends on 𝑛 as the randomness of the beacon output is

determined by 𝑐 . RandHound [47] goes beyond RandHerd by using a
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stable-leader approach and dividing the system into groups of nodes

with group leaders in a tree structure during the setup. This incurs

RandHound, a communication complexity of 𝑂 (^𝑐2 log𝑛) when
the leader and the group leaders are honest. However, when the

leader is bad, it uses a view-change protocol which is analogous to

Byzantine Agreement, and incurs a cost of 𝑂 (^𝑛3) communication

complexity when 𝑡 < 𝑛/3 consecutive leaders are Byzantine.
HydRand [43] is a random beacon protocol in the synchrony

model which tolerates 𝑡 faults, with 𝑛 > 3𝑡 , with a communication

complexity of 𝑂 (^𝑛2), and 𝑂 (^𝑛3) communication complexity in

the worst case. It uses PVSS schemes (in particular SCRAPE [18])

and tolerates an adversary which can predict up to 𝑡 + 1 epochs
into the future.

Summary of limitations. Before, we set out to show what we

achieve in this work, we show what the current works show what

is achievable and what is not currently possible. The state of the

art SMR protocols [3, 5, 7, 49] have a lower bound of 𝑂 (^𝑛2) on
the communication complexity in the best case, which hints that

we cannot do better than 𝑂 (^𝑛2) without improving SMR first.

State of the art random beacon protocols [17, 20, 47] show that

we cannot achieve an unpredictability advantage better than 1

epoch, since a rushing adversary can always know one epoch output

before the rest of the honest nodes. State of the art Random beacon

protocols [17, 20, 47] also show that a random beacon not in lock-

step cannot avoid giving a time advantage of less than 2Δ to a

rushing adversary. Our work aims to bridge these gaps in existing

random beacon protocols.

Insights from existing works. RandPiper uses some insights

from HydRand [43] and non-trivially improves upon them for op-

timal fault tolerance (𝑡 < 𝑛/2 unlike 𝑡 < 𝑛/3 from HydRand) and

better communication complexity (recall that HydRand has a com-

munication complexity of 𝑂 (^𝑛2) in the best case and 𝑂 (^𝑛3) in
the worst case). We first observe that HydRand secret shares one

value and uses this shared value the next time the same node be-

comes a leader again. We observe that this is buffering of shares,

and that this buffering can be done for more than one share, i.e.,

every time a node becomes a leader, we can use the value from the

last 𝑑𝑡ℎ time it was a leader to buffer 𝑑 shares. Next, we observe

that HydRand cannot tolerate more than 𝑡 > 𝑛/3 because it fails to
deliver the PVSS encryptions to all correct nodes, if the leaders fails

to send it to them.We solve this concern using extension techniques

from recent works [36]. However, these works assume threshold

signatures which we avoid in our protocol. Thus, in RandPiper, we

achieve an optimal fault tolerance of 𝑡 < 𝑛/2 and also improved

communication complexity.

3 MODEL AND DEFINITIONS
We consider a system P := {𝑝1, . . . , 𝑝𝑛} consisting of 𝑛 nodes out

of which at most 𝑡 = ⌊𝑛 − 1/2⌋ nodes can be Byzantine which we

term as a 𝑡-bounded adversary. The Byzantine nodes may behave

arbitrarily. When we assume an adaptive adversary A, the nodes

can be corrupted to behave arbitrarily at any time during execution.

When we assume a static adversary A, the nodes to be corrupted

must be chosen by the adversary before the start of the protocol

execution. We also use the term 𝑡-bounded adversary. A node that

is not faulty throughout the execution is considered to be honest

and executes the protocol as specified.

We assume the network between nodes consists of point-to-point

secure (authenticated and confidential) synchronous communica-

tion channels. Messages between nodes may take at most Δ time

before they arrive, where Δ is a known maximum network delay.

To provide safety under adversarial conditions, we assume that the

adversary is capable of delaying the message for an arbitrary time

upper bounded by Δ. In addition, we assume all honest nodes have

clocks moving at the same speed. They also start executing the pro-

tocol within Δ time from each other. This can be easily achieved by

using the clock synchronization protocol [3] once at the beginning

of the protocol.

We make use of digital signatures and a public-key infrastructure

(PKI) to prevent spoofing and replays and to validate messages.

Message 𝑥 sent by a node 𝑝 is digitally signed by 𝑝’s private key

and is denoted by ⟨𝑥⟩𝑝 . In addition, we use 𝐻 (𝑥) to denote the

invocation of the random oracle 𝐻 on input 𝑥 .

3.1 Definitions
We consider a state machine replication protocol defined as follows:

Definition 3.1 (Byzantine Fault-tolerant State Machine Replica-

tion [44]). A Byzantine fault-tolerant state machine replication proto-
col commits client requests as a linearizable log to provide a consistent
view of the log akin to a single non-faulty server, providing the follow-
ing two guarantees: (i) Safety. Honest nodes do not commit different
values at the same log position. (ii) Liveness. Each client request is
eventually committed by all honest nodes.

We define 𝑑-absolute unpredictability as follows:

Definition 3.2 (𝑑-absolute unpredictability). Consider an epoch
based protocol. Let the fastest honest node be at epoch 𝑒 . The protocol
is said to be unpredictable with absolute bound 𝑑 for 𝑑 ≥ 1, if the the
probability of an adversary A predicting the honest output for any
epoch 𝑒 ′ ≥ 𝑒 + 𝑑 is negl(^).

We define the security requirements for a random beacon proto-

col RB as follows:

Definition 3.3 (Secure random beacon protocol). An epoch based
protocol RB is said to be a 𝑑-secure random beacon protocol if it
satisfies the following conditions:

(1) Bias-resistance. Let O be the output of the beacon for some
epoch 𝑒 . No adversary A can bias the output of the beacon, i.e., fix
some 𝑐 bits of O for any epoch 𝑒 > 1 with probability better than
negl(𝑐) + negl(^).

(2) Unpredictability. The protocol is 𝑑-absolute unpredictable.
(3) Guaranteed Output Delivery. For every epoch 𝑒 ≥ 1, the

protocol outputs a value.

3.2 Primitives
In this section, we present several primitives used in our protocols.

Linear erasure and error correcting codes. We use standard

(𝑡 + 1, 𝑛) Reed-Solomon (RS) codes [40]. This code encodes 𝑡 + 1
data symbols into codewords of 𝑛 symbols and can decode the 𝑡 + 1
elements of codewords to recover the original data.
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• ENC. Given inputs𝑚1, . . . ,𝑚𝑡+1, an encoding function ENC com-

putes (𝑠1, . . . , 𝑠𝑛) = ENC(𝑚1, . . . ,𝑚𝑡+1), where (𝑠1, . . . , 𝑠𝑛) are

codewords of length 𝑛. A combination of any 𝑡 + 1 elements of

𝑛 codewords uniquely determines the input message and the

remaining of the codeword.

• DEC. The functionDEC computes (𝑚1, . . . ,𝑚𝑡+1) = DEC(𝑠1, ..., 𝑠𝑛),
and is capable of tolerating up to 𝑐 errors and 𝑑 erasures in code-

words (𝑠1, . . . , 𝑠𝑛), if and only if 𝑡 ≥ 2𝑐 + 𝑑 .
Cryptographic accumulators.A cryptographic accumulator scheme

constructs an accumulation value for a set of values and produces

a witness for each value in the set. Given the accumulation value

and a witness, any node can verify if a value is indeed in the set.

Formally, given a parameter 𝑘 , and a set 𝐷 of 𝑛 values 𝑑1, . . . , 𝑑𝑛 ,

an accumulator has the following components:

• Gen(1𝑘 , 𝑛): This algorithm takes a parameter 𝑘 represented in

unary form 1
𝑘
and an accumulation threshold 𝑛 (an upper bound

on the number of values that can be accumulated securely), re-

turns an accumulator key 𝑎𝑘 . The accumulator key 𝑎𝑘 is part of

the 𝑞-SDH setup and therefore is public to all nodes.

• Eval(𝑎𝑘 ,D): This algorithm takes an accumulator key 𝑎𝑘 and a

setD of values to be accumulated, returns an accumulation value

𝑧 for the value set D.

• CreateWit(𝑎𝑘 , 𝑧, 𝑑𝑖 ,D): This algorithm takes an accumulator key

𝑎𝑘 , an accumulation value 𝑧 for D and a value 𝑑𝑖 , returns ⊥ if

𝑑𝑖 ∈ D ,and a witness𝑤𝑖 if 𝑑𝑖 ∈ D.

• Verify(𝑎𝑘 , 𝑧,𝑤𝑖 , 𝑑𝑖 ): This algorithm takes an accumulator key 𝑎𝑘 ,

an accumulation value 𝑧 for D, a witness 𝑤𝑖 and a value 𝑑𝑖 ,

returns true if𝑤𝑖 is the witness for 𝑑𝑖 ∈ D, and false otherwise.

In this paper, we use collision free bilinear accumulators from [37]

as cryptographic accumulators.

Verifiable Secret Sharing and Commitments. We assume the

existence of a secure Verifiable secret sharing schemeVSS with

commitments, satisfying the security properties in Definition 3.4.

We use the interfaces to a secure VSS schemeVSS as described

in Table 2 (Appendix A).

Definition 3.4 (VSS Security [8]). A VSS protocol consists of two
phases: sharing and reconstruction. We call an 𝑛−node VSS protocol,
with 𝑡−bounded adversaryA and security parameter^ , an (𝑛−𝑡)-VSS
protocol if it satisfies the following conditions:
(1) Secrecy. If the dealer 𝐿 is honest, then the probability ofA learning
any information about the dealer’s secret 𝑠 in the sharing phase is
negl(^).
(2) Correctness. If 𝐿 is honest, then the honest nodes output the secret
𝑠 at the end of the reconstruction phase with a high probability of
1 − negl(^).
(3) Commitment. If 𝐿 is Byzantine, then at the end of the sharing
phase there exists a value 𝑠★ in the input space including ⊥, such that
at the end of the reconstruction phase all honest nodes output 𝑠★ with
high probability 1 − negl(^).

In our work, we implicitly assume that the VSS scheme used is

(𝑛/2 + 1)-secure.
Publicly Verifiable Secret Sharing — PVSS. PVSS schemes con-

sist of communication such as broadcasts, posts on the bulletin

board, as well as computational components such as share genera-

tion, encryption, etc. We separate the two components and present

interfaces to computational algorithms that we will use in our pro-

tocols. We use the interfaces to a secure PVSS scheme PVSS as

described in Table 3 (Appendix A).

We assume the existence of a secure PVSS algorithm PVSS as

defined in Definition 3.5.

Definition 3.5 (PVSS security [8, 18]). Let 𝐿 ∈ P be the dealer with
secret 𝑠 and ^ be the security parameter. A PVSS scheme PVSS is a
secure VSS scheme (see Definition 3.4) and must provide the following
guarantees:
(1) Public Verifiability. If the check in share verification algorithm

(PVSS.ShVrfy, see Table 3) returns 1, i.e., succeeds, then with
high probability 1 − negl(^), the encryptions are valid shares of
some secret.

Normalizing the length of cryptographic building blocks. Let
_ denote the security parameter, ^ℎ = ^ℎ (_) denote the hash size,

^𝑎 = ^𝑎 (_) denote the size of the accumulation value and witness

of the accumulator and ^𝑣 = ^𝑣 (_) denote the size of secret share
along with the associated proofs (both for PVSS and VSS). Further,

let ^ = max(^ℎ, ^𝑎, ^𝑣); we assume ^ = Θ(^ℎ) = Θ(^𝑣) = Θ(^𝑎) =
Θ(_). Throughout the paper, we will use the same parameter ^ to

denote the hash size, signature size, accumulator size and secret

share size for convenience.

4 BFT SMR PROTOCOL
In this section, we present a simple BFT SMR protocol as a ba-

sic building block for the random beacon protocols discussed in

following sections. Our SMR protocol achieves 𝑂 (^𝑛2) bits com-

munication complexity with a universal structured reference string

(SRS) setup under the 𝑞-SDH assumption, or𝑂 (^𝑛2 log𝑛) bits com-

munication complexity without the 𝑞-SDH setup assumption. In

particular, we do not use threshold signatures, and thus avoid any

distributed key generation during the setup or proactive secret

sharing during reconfiguration. We note that prior synchronous

BFT SMR protocols [5, 19, 46] with honest majority incur 𝑂 (^𝑛3)
communication per consensus decision without threshold signa-

tures.

Epochs. Our protocol progresses through a series of numbered

epochs with each epoch coordinated by a distinct leader. Epochs are

numbered by integers starting with 1. The leaders for each epoch

are rotated irrespective of the progress made in each epoch. For

simplicity, we use round-robin leader election in this section and

the leader of epoch 𝑒 , represented as 𝐿𝑒 , is determined by 𝑒 mod 𝑛.
Later in the beacon protocols, we introduce different leader election

rules. Each epoch lasts for 11Δ time.

Blocks and block format. An epoch leader’s proposal is repre-

sented as a block. Each block references its predecessor with the

exception of the genesis block which has no predecessor. We call a

block’s position in the chain as its height. A block 𝐵ℎ at heightℎ has

the format, 𝐵ℎ := (𝑏ℎ, 𝐻 (𝐵ℎ−1)) where 𝑏ℎ denotes the proposed

payload at height ℎ, 𝐵ℎ−1 is the block at height ℎ − 1 and 𝐻 (𝐵ℎ−1)
is the hash digest of 𝐵ℎ−1. The predecessor for the genesis block is

⊥. A block 𝐵ℎ is said to be valid if (1) its predecessor block is valid,

or if ℎ = 1, predecessor is ⊥, and (2) the payload in the block meets

the application-level validity conditions. A block 𝐵ℎ extends a block
𝐵𝑙 (ℎ ≥ 𝑙) if 𝐵𝑙 is an ancestor of 𝐵ℎ . Note that a block’s height ℎ

and its epoch 𝑒 need not necessarily be the same.
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Certified blocks, and locked blocks. A block certificate on a

block 𝐵ℎ consists of 𝑡 + 1 distinct signatures in an epoch 𝑒 and is

represented by C𝑒 (𝐵ℎ). Block certificates are ranked by epochs, i.e.,

blocks certified in a higher epoch has a higher rank. During the

protocol execution, each node keeps track of all certified blocks and

keeps updating the highest ranked certified block to its knowledge.

Nodes will lock on highest ranked certified blocks and do not vote
for blocks that do not extend highest ranked certified blocks to

ensure safety of a commit.

Equivocation. Two or more messages of the same type but with
different payload sent by an epoch leader are considered an equiv-

ocation. In this protocol, the leader of an epoch 𝑒 sends propose
and vote-cert messages (explained later) to all other nodes. In or-

der to facilitate efficient equivocation checks, the leader sends the

payload along with the signed hash of the payload. When an equiv-

ocation is detected, broadcasting the signed hash suffices to prove

equivocation by 𝐿𝑒 .

4.1 Protocol Details
We first describe a simple function that is used by an honest node

to forward a long message received from the epoch leader.

Deliver function. The Deliver() function (refer Figure 2) imple-

ments efficient broadcast of long messages using erasure coding

techniques and cryptographic accumulators. The input parameters

to the function are message type mtype, long message 𝑏, accumu-

lation value 𝑧𝑒 corresponding to object 𝑏 and epoch 𝑒 in which

the deliver function is invoked. The input message type mtype
corresponds to message type containing large message 𝑏 sent by

leader 𝐿𝑒 of epoch 𝑒 . In order to facilitate efficient leader equiv-

ocation checks, the input message type mtype, hash of object 𝑏,

accumulation value 𝑧𝑒 and epoch 𝑒 are signed by leader 𝐿𝑒 .

When the function is invoked using the above input parameters,

the message 𝑏 is partitioned into 𝑡 + 1 data symbols. The 𝑡 + 1 data
symbols are then encoded into 𝑛 codewords (𝑠1, . . . , 𝑠𝑛) using ENC
function (defined in Section 3). Then, the cryptographic witness

𝑤𝑖 is computed for each codewords (𝑠1, . . . , 𝑠𝑛) using CreateWit
(defined in Section 3). Then, the codeword and witness pair (𝑠 𝑗 ,𝑤 𝑗 )

is sent to the node 𝑝 𝑗 ∈ P along with the accumulation value 𝑧𝑒 ,

message type mtype, and 𝐿𝑒 ’s signature on the message.

When a node 𝑝 𝑗 receives the first valid codeword 𝑠 𝑗 for an ac-

cumulation value 𝑧𝑒 such that the witness 𝑤 𝑗 verifies the code-

word 𝑠 𝑗 (using Verify function defined in Section 3), it forwards the

codeword and witness pair (𝑠 𝑗 ,𝑤 𝑗 ) to all nodes. Note that node 𝑝 𝑗
forwards only the first codeword and witness pair (𝑠 𝑗 ,𝑤 𝑗 ). Thus, it

is required that all honest nodes forward the codeword and witness

pair (𝑠 𝑗 ,𝑤 𝑗 ) for long message 𝑏; otherwise all honest nodes may

not receive 𝑡 + 1 codewords for 𝑏. When a node 𝑝𝑖 receives 𝑡 + 1
valid codewords corresponding to the first accumulation value 𝑧𝑒 it

receives, it reconstructs the object 𝑏. Note that node 𝑝𝑖 reconstructs

object 𝑏 for the first valid share even though it detects equivocation

in an epoch.

The Deliver function contains two communication steps and

hence requires 2Δ time to ensure all honest nodes can receive at

least 𝑡 + 1 codewords sufficient to reconstruct the original input 𝑏.

InvokingDeliver on a longmessage of size ℓ incurs𝑂 (𝑛ℓ+(^+𝑤)𝑛2)
bits where ^ is the size of accumulator and 𝑤 is the size of the

accumulator witness. The witness size is𝑂 (^) and𝑂 (^ log𝑛) when
bilinear accumulators and Merkle trees are respectively used as

witnesses. Thus, the total communication complexity to broadcast

a single message of size ℓ is 𝑂 (𝑛ℓ + ^𝑛2) bits, or 𝑂 (𝑛ℓ + ^𝑛2 log𝑛)
bits without the 𝑞-SDH assumption.

BFT SMR Protocol. Our BFT SMR protocol is described in Figure 1.

Consider an epoch 𝑒 and its epoch leader 𝐿𝑒 . To ensure an honest

leader can always make progress, leader 𝐿𝑒 first collects highest

ranked certificate C𝑒′ (𝐵ℎ) from all honest nodes. In each epoch, at

a high level, there are two “rounds” of communication from the

epoch leader. The first round involves leader making a proposal and

the second round involves sending certificates to aid in committing

the proposal.

Efficient propagation of proposal. In the first round, the leader

proposes a block 𝐵ℎ to every node (step 2) by extending the highest

ranked certificate C𝑒′ (𝐵ℎ). The proposal for 𝐵ℎ , conceptually, has
the form ⟨propose, 𝐵ℎ, C𝑒′ (𝐵𝑙 ), 𝑧𝑝𝑒 , 𝑒⟩𝐿𝑒 where 𝑧𝑝𝑒 is the accumu-

lation value for the pair (𝐵ℎ, C𝑒′ (𝐵𝑙 )). In order to facilitate efficient

equivocation checks, the leader signs the tuple ⟨propose, 𝐻 (𝐵ℎ, C𝑒′ (𝐵𝑙 )),
𝑧𝑝𝑒 , 𝑒⟩ and sends 𝐵ℎ and C𝑒′ (𝐵𝑙 ) separately. The size of this signed
message is𝑂 (^) bits. In case of equivocation, all-to-all broadcast of

this signed message incur only 𝑂 (^𝑛2) in communication.

If the received proposal is valid and it extends the highest ranked

certificate known to a node 𝑝𝑖 , node 𝑝𝑖 forwards the proposal.

Forwarding the received proposal is required to ensure all honest

nodes receive a common proposal; otherwise only a subset of the

nodes may receive the proposal if the leader is Byzantine. Observe

that the size of the proposal is linear as it contains certificate C𝑒′ (𝐵𝑙 )
(which is linear in the absence of threshold signatures). A naïve

approach of forwarding the entire proposal incurs 𝑂 (^𝑛3) when
all nodes broadcast their proposal. In order to save communication,

nodes forward the proposal by invokingDeliver function. For linear
sized proposal, invokingDeliver incurs𝑂 (^𝑛2) bits (or𝑂 (^𝑛2 log𝑛)
bits under 𝑞-SDH assumption) in communication.

Observe that theDeliver primitive requires 2Δ time. In particular,

we need to ensure all honest nodes forward their codeword and

witness pair for the proposal. Thus, our protocol waits for 2Δ time

(i.e., vote-timer𝑒 ) before voting to check for equivocation. Hence, if
no equivocation is detected at the end of 2Δ wait, all honest nodes

forwarded their codeword and witness pair for the proposal and all

honest nodes can reconstruct the proposal. At the end of 2Δ wait,

if there no equivocation is detected, nodes vote for the proposed

block 𝐵ℎ (step 3).

Ensuring the receipt of a certificate efficiently. Observe that a
vote message is 𝑂 (^) sized and hence, it can be broadcast using all-

to-all communication with communication complexity of 𝑂 (^𝑛2).
However, if every node that commits needs to ensure that all honest

parties receive a certificate for the block being committed, this

can result in 𝑂 (^𝑛3) complexity again. This is because, all-to-all

broadcast of linear sized certificate incurs 𝑂 (^𝑛3). One might try

to invoke Deliver to propagate the certificate. However, this does

not save communication. This is because, in general, there can

be exponentially many combinations of 𝑡 + 1 signatures forming

a certificate depending on the set of signers, and each node may

invoke Deliver on a different combination.
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Let 𝑒 be the current epoch and 𝐿𝑒 be the leader of epoch 𝑒 . For each epoch 𝑒 , node 𝑝𝑖 performs following operations:

(1) Epoch advancement. When epoch-timer𝑒−1 reaches 0, enter epoch 𝑒 . Upon entering epoch 𝑒 , send highest ranked certificate C𝑒′ (𝐵𝑙 ) to 𝐿𝑒 . Set

epoch-timer𝑒 to 11Δ and start counting down.

(2) Propose. 𝐿𝑒 waits for 2Δ time after entering epoch 𝑒 and broadcasts ⟨propose, 𝐵ℎ, C𝑒′ (𝐵𝑙 ), 𝑧𝑝𝑒 , 𝑒 ⟩𝐿𝑒 where 𝐵ℎ extends 𝐵𝑙 . C𝑒′ (𝐵𝑙 ) is the highest
ranked certificate known to 𝐿𝑒 .

(3) Vote. If epoch-timer𝑒 ≥ 7Δ and node 𝑝𝑖 receives the first proposal 𝑝𝑒 = ⟨propose, 𝐵ℎ, C𝑒′ (𝐵𝑙 ), 𝑧𝑝𝑒 , 𝑒 ⟩𝐿𝑒 where 𝐵ℎ extends a highest ranked certificate,

invoke Deliver(propose, 𝑝𝑒 , 𝑧𝑝𝑒 , 𝑒) . Set vote-timer𝑒 to 2Δ and start counting down. When vote-timer𝑒 reaches 0, send ⟨vote, 𝐻 (𝐵ℎ), 𝑒 ⟩𝑖 to 𝐿𝑒 .
(4) Vote cert. Upon receiving 𝑡 + 1 votes for 𝐵ℎ , 𝐿𝑒 broadcast ⟨vote-cert, C𝑒 (𝐵ℎ), 𝑧𝑣𝑒 , 𝑒 ⟩𝐿𝑒 .
(5) Commit. If epoch-timer𝑒 ≥ 3Δ and node 𝑝𝑖 receives the first 𝑣𝑒 = ⟨vote-cert, C𝑒 (𝐵ℎ), 𝑧𝑣𝑒 , 𝑒 ⟩𝐿𝑒 , invoke Deliver(vote-cert, 𝑣𝑒 , 𝑧𝑣𝑒 , 𝑒) . Set
commit-timer𝑒 to 2Δ and start counting down. When commit-timer𝑒 reaches 0, if no equivocation for epoch-𝑒 has been detected, commit 𝐵ℎ and

all its ancestors.

(6) (Non-blocking) Equivocation. Broadcast equivocating hashes signed by 𝐿𝑒 and stop performing epoch 𝑒 operations.

Figure 1: BFT SMR Protocol with𝑂 (^𝑛2) bits communication per epoch and optimal resilience

Deliver(mtype, 𝑏, 𝑧𝑒 , 𝑒) :
(1) Partition input 𝑏 into 𝑡 + 1 data symbols. Encode the 𝑡 + 1 data

symbols into 𝑛 codewords (𝑠1, . . . , 𝑠𝑛) using ENC function. Com-

pute witness 𝑤𝑗 ∀𝑠 𝑗 ∈ (𝑠1, . . . , 𝑠𝑛) using CreateWit function. Send
⟨codeword,mtype, 𝑠 𝑗 , 𝑤𝑗 , 𝑧𝑟 , 𝑟 ⟩𝑟 to node 𝑗 ∀𝑗 ∈ [𝑛].
(2) If node 𝑝 𝑗 receives the first valid codeword

⟨codeword,mtype, 𝑠 𝑗 , 𝑤𝑗 , 𝑧𝑒 , 𝑒 ⟩∗ for the accumulator 𝑧𝑒 , forward

the codeword to all the nodes.

(3) Upon receiving 𝑡 + 1 valid codewords for the accumulator 𝑧𝑒 , decode

𝑏 using DEC function.

Figure 2: Deliver function

This issue can be addressed if we ensure that there is a single

certificate for a block. Hence, we use the leader to collect signatures

and form a single certificate (step 3). The leader forwards this cer-

tificate via ⟨vote-cert, C𝑒 (𝐵ℎ), 𝑧𝑣𝑒 , 𝑒⟩𝐿𝑒 to all nodes (step 4) where

𝑧𝑣𝑒 is the accumulation value of C𝑒 (𝐵ℎ). Similar to the proposal, the

hash of the certificate is signed to allow for efficient equivocation

checks. It is important to note that two different certificates for the

same value is still considered an equivocation in this step.

To ensure that every honest node receives this certificate, we

again resort to the Deliver primitive which yields a communication

complexity of𝑂 (^𝑛2) when all honest parties are invoking it using

the same certificate. Again, to tolerate malicious behaviors such

as sending multiple different certificates for the same block (due

to which none of them may be delivered), we treat the vote-cert

message similar to the proposal and perform equivocation checks.

Thus, nodes commit only if they observe no equivocation 2Δ time

after they invoke Deliver (step 5).

Epoch timers. Observe that we set the epoch timer epoch-timer𝑒
for each epoch 𝑒 to be 11Δ. This is the maximum time required

for an epoch when the leader is honest and all messages take Δ
time. Similarly, in different steps, we make appropriate checks

w.r.t. epoch-timer𝑒 to ensure that the protocol is making sufficient

progress within the epoch.

Latency. We note that all honest nodes commit in the same epoch

when the epoch leader is honest. However, when the epoch leader is

Byzantine, only some honest nodes may commit in that epoch. Due

to the round-robin leader selection, there will be at least one honest

leader every 𝑡 + 1 epochs and all honest nodes commit common

blocks up to the honest epoch. Thus, our protocol has a worst-case

commit latency of 𝑡 + 1 epochs.

4.2 Safety and Liveness for BFT SMR
We say a block 𝐵ℎ is committed directly in epoch 𝑒 if it is committed

as a result of its own commit-timer𝑒 expiring. We say a block 𝐵ℎ
is committed indirectly if it is a result of directly committing a

proposal 𝐵ℓ (ℓ > ℎ) that extends 𝐵ℎ .

Fact 4.1. If an honest node delivers an object 𝑏 at time 𝜏 in epoch
𝑒 and no honest node has detected an epoch 𝑒 equivocation by time
𝜏 + Δ, then all honest nodes will receive object 𝑏 by time 𝜏 + 2Δ in
epoch 𝑒 .

Proof. Suppose an honest node 𝑝𝑖 delivers an object 𝑏 at time

𝜏 in epoch 𝑒 . Node 𝑝𝑖 must have sent valid codewords and witness

⟨codeword,mtype, 𝑠 𝑗 ,𝑤 𝑗 , 𝑧𝑒 , 𝑒⟩𝑖 computed from object 𝑏 to every

𝑝 𝑗 ∈ P at time 𝜏 . The codewords arrive at all honest nodes by time

𝜏 + Δ.
Since no honest node has detected an epoch 𝑒 equivocation by

time 𝜏 + Δ, it must be that either honest nodes will forward their

codeword ⟨codeword,mtype, 𝑠 𝑗 ,𝑤 𝑗 , 𝑧𝑒 , 𝑒⟩ when they receive the

codewords sent by node 𝑝𝑖 or they already sent the correspond-

ing codeword when they either delivered object 𝑏 or received the

codeword from some other node 𝑝 𝑗 . In any case, all honest nodes

will forward their epoch 𝑒 codeword corresponding to object 𝑏 by

time 𝜏 + Δ. Thus, all honest nodes will have received 𝑡 + 1 valid

codewords for a common accumulation value 𝑧𝑒 by time 𝜏 + 2Δ
sufficient to decode object 𝑏 by time 𝜏 + 2Δ. □

Fact 4.2. If an honest node votes for a block 𝐵ℎ at time 𝜏 in epoch 𝑒 ,
then all honest nodes receive 𝐵ℎ by time 𝜏 .

Proof. Suppose an honest node 𝑝𝑖 votes for a block 𝐵ℎ at time

𝜏 in epoch 𝑒 . Node 𝑝𝑖 must have received proposal 𝑝𝑒 for 𝐵ℎ by

time 𝜏 − 2Δ and detected no epoch 𝑒 equivocation by time 𝜏 . This

implies no honest node detected an epoch 𝑒 equivocation by time

𝜏 − Δ. Node 𝑝𝑖 must have invoked Deliver(propose, 𝑝𝑒 , 𝑧𝑝𝑒 , 𝑒) at
time 𝜏 − 2Δ. By Fact 4.1, all honest nodes receive 𝑝𝑒 by time 𝜏 . Thus,

all honest nodes must have received 𝐵ℎ by time 𝜏 . □

8



Lemma 4.3. If an honest node directly commits a block 𝐵ℎ in epoch
𝑒 , then (i) no equivocating block certificate exists in epoch 𝑒 , and (ii)
all honest nodes receive C𝑒 (𝐵ℎ) before quitting epoch 𝑒 .

Proof. Suppose an honest node 𝑝𝑖 commits a block 𝐵ℎ in epoch

𝑒 at time 𝜏 . Node 𝑝𝑖 must have received a vote-cert for 𝐵ℎ at time

𝜏 − 2Δ such that its epoch-timer𝑒 ≥ 3Δ and did not detect an

equivocation by time 𝜏 . This implies no honest node detected an

epoch 𝑒 equivocation by time 𝜏 − Δ. In addition, some honest node

𝑝 𝑗 must have voted for 𝐵ℎ by time 𝜏 − 2Δ. By Fact 4.2, all honest

nodes would receive 𝐵ℎ by time 𝜏 − 2Δ.
For part (i), observe that no honest node received an equivocating

proposal by time 𝜏 − 2Δ; otherwise, all honest nodes would have

received a codeword for equivocating proposal by time 𝜏 − Δ and

node 𝑝𝑖 would not commit. And, no honest node would vote for an

equivocating block after time 𝜏 − 2Δ (since they have received 𝐵ℎ
by time 𝜏 − 2Δ). Thus, an equivocating block certificate does not

exist in epoch 𝑒 .

For part (ii), observe that node𝑝𝑖 must have invokedDeliver(vote-cert,
𝑣𝑒 , 𝑧𝑣𝑒 , 𝑒) for 𝑣𝑒 = C𝑒 (𝐵ℎ) at time 𝜏 − 2Δ and did not detect epoch 𝑒

equivocation by time 𝜏 . By Fact 4.1, all honest nodes receive 𝑣𝑒 by

time 𝜏 . Note that node 𝑝𝑖 must have its epoch-timer𝑒 ≥ 3Δ at time

𝜏 − 2Δ. Since, all honest nodes are synchronized within Δ time, all

other honest nodes must have epoch-timer𝑒 ≥ 2Δ at time 𝜏 − 2Δ.
Thus, all nodes are still in epoch 𝑒 at time 𝜏 and receive C𝑒 (𝐵ℎ)
before quitting epoch 𝑒 . □

Lemma 4.4 (Unique Extensibility). If an honest node directly com-
mits a block 𝐵ℎ in epoch 𝑒 , then any certified blocks that ranks higher
than C𝑒 (𝐵ℎ) must extend 𝐵ℎ .

Proof. The proof is by induction on epochs 𝑒 ′ > 𝑒 . For an epoch

𝑒 ′, we prove that if a C𝑒′ (𝐵ℎ′) exists then it must extend 𝐵ℎ .

For the base case, where 𝑒 ′ = 𝑒 + 1, the proof that C𝑒′ (𝐵ℎ′)
extends 𝐵ℎ follows from Lemma 4.3. The only way C𝑒′ (𝐵ℎ′) for 𝐵ℎ′
forms is if some honest node votes for 𝐵ℎ′ . However, by Lemma 4.3,

there does not exist any equivocating block certificate in epoch 𝑒

and all honest nodes receive and lock on C𝑒 (𝐵ℎ) before quitting
epoch 𝑒 . Thus, a block certificate cannot form for a block that does

not extend 𝐵ℎ .

Given that the statement is true for all epochs below 𝑒 ′, the proof
that C𝑒′ (𝐵ℎ′) extends 𝐵ℎ follows from the induction hypothesis

because the only way such a block certificate forms is if some

honest node votes for it. An honest node votes in epoch 𝑒 ′ only if

𝐵ℎ′ extends a valid certificate C𝑒′′ (𝐵ℎ′′). Due to Lemma 4.3 and the

induction hypothesis on all block certificates of epoch 𝑒 < 𝑒 ′′ < 𝑒 ′,
C𝑒′ (𝐵ℎ′) must extend 𝐵ℎ . □

Theorem 4.5 (Safety). Honest nodes do not commit conflicting
blocks for any epoch 𝑒 .

Proof. Suppose for the sake of contradiction two distinct blocks

𝐵ℎ and 𝐵′
ℎ
are committed in epoch 𝑒 . Suppose 𝐵ℎ is committed as

a result of 𝐵ℎ′ being directly committed in epoch 𝑒 ′ and 𝐵′
ℎ
is

committed as a result of 𝐵′
ℎ′′

being directly committed in epoch 𝑒 ′′.
Without loss of generality, assume ℎ′ < ℎ′′. Note that all directly
committed blocks are certified. By Lemma 4.4, 𝐵′

ℎ′′
extends 𝐵ℎ′ .

Therefore, 𝐵ℎ = 𝐵′
ℎ
. □

Fact 4.6. Let 𝐵ℎ be a block proposed in epoch 𝑒 . If the leader of an
epoch 𝑒 is honest, then all honest nodes commit 𝐵ℎ and all its ancestors
in epoch 𝑒 .

Proof. Suppose leader 𝐿𝑒 of an epoch 𝑒 is honest. Let 𝜏 be the

earliest time when an honest node 𝑝𝑖 enters epoch 𝑒 . Due to Δ delay

between honest nodes, all honest nodes enter epoch 𝑒 by time 𝜏 +Δ.
Some honest nodes might have received a higher ranked certificate

than leader 𝐿𝑒 before entering epoch 𝑒 ; thus, they send their highest

ranked certificate to leader 𝐿𝑒 .

Leader 𝐿𝑒 might have entered epoch 𝑒 at time 𝜏 while some

honest nodes enter epoch 𝑒 only at time 𝜏 + Δ. The 2Δ wait in the

Propose step ensures that the leader can receive highest ranked

certificates from all honest nodes. However, leader 𝐿𝑒 may enter

epoch 𝑒 Δ time after the earliest honest nodes. Due to 2Δ wait

after entering epoch 𝑒 , leader 𝐿𝑒 collects the highest ranked cer-

tificate C𝑒′ (𝐵𝑙 ) by time 𝜏 + 3Δ and sends a valid proposal 𝑝𝑒 =

⟨propose, 𝐵ℎ, 𝑒, C𝑒′ (𝐵𝑙 ), 𝑧𝑝𝑒 ⟩𝐿𝑒 for a block 𝐵ℎ that extends C𝑒′ (𝐵𝑙 )
which arrives all honest nodes by time 𝜏 + 4Δ.

Thus, all honest nodes satisfy the constraint epoch-timer𝑒 ≥ 7Δ.
In addition, 𝐵ℎ extends the highest ranked certificate. So, all honest

nodes will invoke Deliver(propose, 𝑝𝑒 , 𝑧𝑝𝑒 , 𝑒) and set vote-timer𝑒
to 2Δ which expires by time 𝜏 + 6Δ. All honest nodes send vote
for 𝐵ℎ to 𝐿𝑒 which arrives 𝐿𝑒 by time 𝜏 + 7Δ. Leader 𝐿𝑒 forwards
C𝑒 (𝐵ℎ) which arrives all honest nodes by time 𝜏 + 8Δ. Note that
all honest nodes satisfy the constraint epoch-timer𝑒 ≥ 3Δ and

honest nodes set their commit-timer𝑒 to 2Δ which expires by time

𝜏 + 10Δ. Moreover, no equivocation exists in epoch 𝑒 . Thus, all

honest nodes will commit 𝐵ℎ and its ancestors in epoch 𝑒 before

their epoch-timer𝑒 expires. □

Theorem 4.7 (Liveness). All honest nodes keep committing new
blocks.

Proof. For any epoch 𝑒 , if the leader 𝐿𝑒 is Byzantine, it may not

propose any blocks or propose equivocating blocks. Whenever an

honest leader is elected in epoch 𝑒 , by Fact 4.6, all honest nodes

commit in epoch 𝑒 . Since we assume a round-robin leader rotation

policy, there will be an honest leader every 𝑡 + 1 epochs, and thus

the protocol has a commit latency of 𝑡 + 1 epochs.
□

Lemma 4.8 (Communication complexity). Let ℓ be the size of block
𝐵ℎ , ^ be the size of accumulator and 𝑤 be the size of witness. The
communication complexity of the protocol is 𝑂 (𝑛ℓ + (^ +𝑤)𝑛2) bits
per epoch.

Proof. At the start of an epoch 𝑒 , each node sends a highest

ranked certificate to leader 𝐿𝑒 . Since, size of each certificate is𝑂 (^𝑛),
this step incurs 𝑂 (^𝑛2) bits communication. A proposal consists

of a block of size ℓ and block certificate of size 𝑂 (^𝑛). Proposing
𝑂 (𝑛 + ℓ)-sized object to 𝑛 nodes incurs 𝑂 (^𝑛2 + 𝑛ℓ). Delivering
𝑂 (^𝑛+ ℓ)-sized object has a cost𝑂 (𝑛ℓ + (^ +𝑤)𝑛2), since each node

broadcasts a codeword of size𝑂 ((𝑛 + ℓ)/𝑛), a witness of size𝑤 and

an accumulator of size ^.

In Vote cert step, the leader broadcasts a certificate for block

𝐵ℎ which incurs 𝑂 (^𝑛2) communication. Delivering 𝑂 (^𝑛)-sized
C𝑒 (𝐵ℎ) incurs 𝑂 ((^ + 𝑤)𝑛2) bits. Hence, the total cost is 𝑂 (𝑛ℓ +
(^ +𝑤)𝑛2) bits.
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□

5 RANDOM BEACON PROTOCOLS
In this section, we present two random beacon protocols while tol-

erating 𝑓 ≤ 𝑡 < 𝑛/2 Byzantine faults. The first protocol GRandPiper
outputs a random beacon with 𝑂 (^𝑛2) communication complexity

always, per beacon output, where ^ is the security parameter, guar-

antees bias-resistance, and 𝑂 (min(^, 𝑡))-absolute unpredictability
against a static adversary, but 𝑡 +1-absolute unpredictability against
an adaptive adversary. The second protocol BRandPiper outputs

a random beacon with 𝑂 (^𝑓 𝑛2) communication complexity per

output after amortization where ^ is the security parameter, and

guarantees bias-resistance and 1-absolute unpredictability. When

the actual number of faults 𝑓 = 𝑂 (1), the communication complex-

ity is quadratic.

A key aspect of both of our protocols is their reconfiguration-

friendliness. A protocol is said to be reconfiguration-friendly if it

allows changing protocol parameters such as the scheme and nodes,

without stopping the old instance, and starting a new one. Such

reconfiguration is possible if the setup used for the protocol does

not bind to the system, as such a binding will force a new setup

to change any parameter in the system. This is true, for instance,

when using threshold signatures in a protocol which is used by

many existing permissioned systems [9, 15, 16, 27]. Neither of our

protocols use setups for threshold signatures, but a setup based on

the 𝑞-SDH assumption. This allows for easy reconfiguration.
2

5.1 RandPiper – GRandPiper Protocol

SMR

𝑅𝑒

Recon.

Epoch 𝑒

Leader 𝐿𝑒

Share Queue Q(·)

SMR

𝑅𝑒+1

Recon.

Epoch 𝑒 + 1

Leader 𝐿𝑒+1

· · ·

· · ·

SMR

𝑅𝑒′

Recon.

Epoch 𝑒 ′

Leader 𝐿𝑒′ = 𝐿𝑒

Enqueue(Q(𝐿𝑒 ), 𝑅𝑒 )

Dequeue(Q(𝐿𝑒′))

𝐿𝑒 ≠ 𝐿𝑖
∀𝑖 ∈ {𝑒 + 1, . . . , 𝑒 + 𝑡}

O𝑒′ ← 𝐻 (𝑅𝑒 ,
O𝑒′−1, . . . ,O𝑒′−𝑡 )

Figure 3: Overview of RandPiper – GRandPiper. In every epoch, a
PVSS sharing of some random value is secret shared. At the same
time, a reconstruction protocol is used to reconstruct the random
value committed by the leader of this epoch, the last time it was a
leader. O𝑒′ is generated using the random value 𝑅𝑒 , shared in epoch
𝑒, reconstructed in epoch 𝑒′ > 𝑒 + 𝑡 , and outputs {O𝑒′−1, . . . , O𝑒′−𝑡 }
from previous epochs by using them as inputs to the random oracle
𝐻 .

We use the SMR protocol (refer Figure 1) described in Section 4

as a building block. At a high-level, consider using the SMR protocol

such that the leader outputs a number chosen uniformly at random

in each epoch. The random beacon output can be a function of

the outputs of the last 𝑡 + 1 epochs, allowing for the presence of

at least one honest input (chosen uniformly at random) which is

2
We can use Merkle trees instead of 𝑞-SDH at the expense of𝑂 (log𝑛) multiplicative

communication complexity.

potentially sufficient to obtain a random output. This argument

holds only if each leader chooses their input in the SMR protocol

independently of other inputs. Otherwise, if a Byzantine leader

can choose an input after knowing the outputs of the previous 𝑡

instances then it can bias the output. A separate concern with using

the SMR protocol as is, is that in an epoch with a Byzantine leader,

honest nodes may not all output the same value or output at all.

To fix both of these concerns, we require each node to send

a commitment of a random value more than 𝑡 epochs before it

will be reconstructed and used in the beacon protocol. To ensure

the secrecy of this value (for unpredictability and bias-resistance),

the values are shared with the nodes using a publicly verifiable

secret sharing (PVSS) scheme (refer Appendix A for detailed PVSS

interface). Committing a secretly chosen value ahead of time helps

us solve both of our previous concerns. First, if the same leader is

not chosen twice in any span of 𝑡 +1 epochs, it ensures that the 𝑡 +1
values that will be used to construct the beacon protocol are chosen

independently of one another. Thus, when nodes reconstruct a

value in an epoch, it corresponds to a value committed more than

𝑡 epochs before. Moreover, the nodes can reconstruct this value

independent of the participation of the leader in this epoch. Second,

waiting for 𝑡 + 1 epochs before opening allows for the value to be

committed by the SMR protocol. Thus, all honest nodes will open

the same value in an epoch.

A graphical description of this approach is presented in Figure 3.

In epoch 𝑒 , a leader 𝐿𝑒 inputs PVSS shares corresponding to a

random value 𝑅𝑒 to the SMR protocol. Conceptually, when the block

is committed, this value is added to a queue Q(𝐿𝑒 ) corresponding
to this leader. When the same node is chosen the next time as a

leader, say in epoch 𝑒 ′, the committed shares of 𝑅𝑒 is dequeued

and reconstructed by all honest nodes to obtain 𝑅𝑒 . The output O𝑒′
of epoch 𝑒 ′ can be computed as 𝐻 (𝑅𝑒 ,O𝑒′−1, . . . ,O𝑒′−𝑡 ). To allow

for unpredictability in leader selection while disallowing repetition

within 𝑡 + 1 epochs, the leader for the next epoch 𝑒 ′ + 1 is chosen
based on O𝑒′ and by removing the leaders 𝐿𝑒′, . . . , 𝐿𝑒′−𝑡 .

A remaining concern is when no values are added to the chain at

epoch 𝑒 . Observe that the reconstruction in epoch 𝑒 is not affected,

since nodes reconstruct values previously committed. However,

nodes may not have shares in epoch 𝑒 ′ > 𝑒 + 𝑡 where 𝑒 ′ is the first
epoch where 𝐿𝑒 is chosen as the leader again. To fix this concern,

we ensure that such a malicious leader who does not commit in

epoch 𝑒 can be removed by all nodes by 𝑒 + 𝑡 < 𝑒 ′. Subsequently,
we can ensure that 𝐿𝑒 is never chosen as the leader again. To allow

for reconstruction the first time a node is chosen as the leader, we

ensure a setup where each node has an agreed upon share buffered

for every other node.

5.1.1 Protocol details. We now explain the protocol in detail (de-

scribed in Figure 4). We use a Publicly Verifiable Secret Sharing

(PVSS) scheme PVSS with threshold 𝑡 to generate encrypted

shares and an associated proof that guarantees that any > 𝑡 nodes

will reconstruct a unique secret.

Setup. We establish PVSS parameters PVSS.pp, and public keys

PVSS.pk𝑖 for every node 𝑝𝑖 ∈ P. We also buffer shares for one

random value for every node 𝑝𝑖 , i.e., fill Q(𝑝𝑖 ) for 𝑝𝑖 ∈ P. We

start with epoch 𝑒 = 1, and use seed random values for 𝑅𝑒 and
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All nodes 𝑝𝑖 ∈ P running the SMR protocol do the following:

• Setup. Set 𝑒 = 1. All nodes agree upon seed random values for 𝑅𝑒 and {O𝑒−1, . . . , O𝑒−𝑡 }. Set L𝐿𝑎𝑠𝑡 ← {𝑝𝑛, . . . , 𝑝𝑛−𝑡 }, P𝑟 ← ∅. Run PVSS.Setup and

agree on the public parameters PVSS.pp. Then every node generates a key pair (PVSS.sk, PVSS.pk) ← PVSS.KGen(^) , and all nodes agree on
each others public keys.

• Leaders. Choose leaders for an epoch 𝑒 using Definition 5.1 instead of a round-robin order.

• Blocks. The leader 𝐿𝑒 of an epoch 𝑒 , creates a PVSS sharing (PVSS. ®𝑆, PVSS. ®𝐸, PVSS.𝜋 ) ← PVSS.ShGen(𝑅) of a random value chosen from the

input space of PVSS, and creates a block 𝐵ℎ with block contents 𝑏ℎ as 𝑏ℎ := (PVSS. ®𝐸, PVSS.𝜋 ) ← PVSS.ShGen(𝑅) . (We drop the individual

shares in PVSS. ®𝑆 .)
• Update.When committing a block 𝐵ℎ sent by leader 𝐿𝑒′ for some epoch 𝑒′, Enqueue(Q (𝐿𝑒′ ), 𝑏ℎ) . At the end of epoch 𝑒 , if no block was committed for

epoch 𝑒 − 𝑡 by 𝐿𝑒−𝑡 , then remove 𝐿𝑒−𝑡 from future proposals, i.e., P𝑟 ← P𝑟 ∪ {𝐿𝑒−𝑡 } from epoch 𝑒 + 1.
• Reconstruct.When the epoch timer epoch-timer𝑒−1 for epoch 𝑒 − 1 ends, obtain the (PVSS. ®𝐸, PVSS.𝜋 ) corresponding to the committed block in

Dequeue(Q (𝐿𝑒 )) . Send 𝑠 ← PVSS.Dec(PVSS.sk, PVSS. ®𝐸𝑖 ) to all the nodes in the system. On receiving share 𝑠′ from another node 𝑝 𝑗 , ensure

that PVSS.Enc(PVSS.pk𝑗 , 𝑠′) = PVSS. ®𝐸 𝑗 . On receiving 𝑡 + 1 valid shares in PVSS. ®𝑆 , reconstruct 𝑅𝑒 ← PVSS.Recon(PVSS. ®𝑆) .
• Output. After reconstructing 𝑅𝑒 for epoch 𝑒 , output the beacon value O𝑒 by computing O𝑒 ← 𝐻 (𝑅𝑒 , O𝑒−1, . . . , O𝑒−𝑡 )

Figure 4: RandPiper – GRandPiper beacon protocol description.

{O𝑒−1, . . . ,O𝑒−𝑡 }.We also arbitrarily assignL𝐿𝑎𝑠𝑡 ← {𝑝𝑛, . . . , 𝑝𝑛−𝑡 }
and set P𝑟 ← ∅.
Leader selection. The leader for epoch 𝑒 is chosen based on the

following rule:

Definition 5.1 (Leader selection rule). Let 𝑒 be the current epoch,
L𝐿𝑎𝑠𝑡 := {𝐿𝑒−1, . . . , 𝐿𝑒−𝑡 } be the leaders of the last 𝑡 epochs, P𝑟 be
the set of nodes that are removed (due to misbehavior), and L𝑒 =

(P \ L𝐿𝑎𝑠𝑡 ) \ P𝑟 := {𝑙0, . . . , 𝑙𝑤−1}, be a set of candidate leaders for
epoch 𝑒 ordered canonically, with 0 < 𝑤 < 𝑛 − 𝑡 and L𝑒 ⊆ P. Then
the leader 𝐿𝑒 of epoch 𝑒 , is derived from output O𝑒−1, as

𝐿𝑒 ← 𝑙 (O𝑒−1 mod 𝑤)

Blocks. The leader of an epoch chooses 𝑅 uniformly at random

from the input space of the PVSS algorithm (which could be a

cyclic additive/multiplicative group, or pairing groups). The leader

uses the PVSS.ShGen algorithm to generate share PVSS.s𝑖 for
node 𝑝𝑖 which are encrypted using PVSS.pk𝑖 , and all shares for

the nodes are stored in PVSS. ®𝐸. The PVSS.ShGen algorithm

also outputs the proof PVSS.𝜋 that any > 𝑡 shares will recon-

struct a unique secret, which implies that the degree of the polyno-

mial cannot be more than 𝑡 . Finally, the block in our SMR protocol

consists of the outputs of the PVSS.ShGen algorithm, i.e., 𝑏ℎ :=

(PVSS. ®𝐸,PVSS.𝜋) ← PVSS.ShGen(𝑅𝑒 ). An honest nodes

acknowledges 𝐵ℎ if 𝑏ℎ meets the validity condition PVSS.ShVrfy
algorithm. Note that despite the blocks being 𝑂 (^𝑛) sized, due to
our usage of Deliver primitive, we retain a communication com-

plexity of 𝑂 (^𝑛2) per epoch.
Commit, reconstruct, and output beacon value. In each epoch,

nodes commit the shares sent by the leader. They also reconstruct

the last sharing sent by the leader at the start of the epoch. Note

that each node can separately maintain the last time a node was

elected as the leader, and thus, be able to appropriately invoke

Dequeue(Q(𝐿𝑒 )). Moreover, since a leader does not repeat in any

consecutive 𝑡 + 1 epochs, and we ensure that the set of leaders are

consistently known to all honest nodes (as will be shown in the next

subsection), the value being reconstructed is agreed upon by all the

honest nodes. When the nodes reconstruct 𝑅𝑒 , they already have

access to {O𝑒−1, . . . ,O1}. Hence, they can compute a consistent

output O𝑒 . Observe that since all nodes enter epoch 𝑒 within a

delay of Δ, they also output the beacon value within Δ time of each

other.

Remove misbehaving leaders. Finally, at the end of an epoch 𝑒 ,

if no block was committed in epoch 𝑒 − 𝑡 by 𝐿𝑒−𝑡 , 𝐿𝑒−𝑡 is removed

from all future proposals. Since this operation is performed after

𝑡 + 1 epochs, all nodes will perform this action consistently.

5.2 GRandPiper Security Analysis
Theorem 5.1 (Consistent beacon). Let 𝐿 = 𝐿𝑒 denote the leader

of epoch 𝑒 . Then the following properties hold:

(i) Block consistency: if an honest node commits a block 𝐵 pro-
posed in epoch 𝑒 ′ ≤ 𝑒 − 𝑡 , then all the honest nodes commit
block 𝐵 by epoch 𝑒 .

(ii) Leader validity: all the honest nodes have a block in Q(𝐿𝑒 ).
(iii) Output consistency: all the honest nodes output the same

randomness 𝑅𝑒 , output O𝑒 , and
(iv) Leader consistency: all the honest nodes choose the same leader

for epoch 𝑒 + 1.

Proof. We prove the theorem by induction on epochs.

Base case for epoch 𝑒 = 1 to 𝑒 = 𝑡 + 1. (ii) should hold for the first
𝑡 + 1 leaders because we fill Q(𝑝𝑖 ) with𝑚 = 1 values for all nodes

𝑝𝑖 ∈ P during the setup phase. Additionally, from Definition 5.1,

no leaders repeat in the first 𝑡 + 1 epochs, thereby proving (ii) for

the base case. (iii) and (iv) hold since the first 𝑡 + 1 outputs only
use the seed values, and pre-agreed upon shares from Q from the

setup phase. At epoch 𝑒 = 𝑡 + 1, from the proof for (iv) for the

base cases, we know that all nodes agree on the leaders for epochs

1 ≤ 𝑒 ′ ≤ 𝑡 + 1. Therefore, if some honest node commits block 𝐵1
from epoch 𝑒 = 1, then all honest nodes will commit 𝐵1 by epoch

𝑒 = 𝑡 + 1, because at least one leader in some epoch 1 ≤ 𝑒 ′ ≤ 𝑡 + 1
must be honest, and from Fact 4.6 all honest nodes commit the

block proposed in 𝑒 ′ and therefore directly or indirectly commit 𝐵1.

Therefore, by epoch 𝑒 = 𝑡 + 1 all honest nodes commit 𝐵1, thereby

proving (i) for the base cases.

Induction hypothesis. The statements hold until epoch 𝑒 − 1.
Induction step. Proof for (i). From the induction hypothesis for

(iv), we have that all the leaders until epoch 𝑒 are consistent and

at epoch 𝑒 − 1, and from the induction hypothesis for (i) all honest

nodes would have committed all the blocks for epoch 𝑒 ′ < 𝑒 − 1− 𝑡
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by consistent leaders up to epoch 𝑒 − 1. Now, at epoch 𝑒 all honest
nodes need to decide on the block 𝐵 proposed in epoch 𝑒 − 𝑡 − 1. In
epochs 𝑒 − 𝑡 − 1 ≤ 𝑒 ′ < 𝑒 , there is one epoch 𝑒 ′ whose leader 𝐿𝑒′ is
honest, from Fact 4.6, all honest nodes commit 𝐵 in epoch 𝑒 ′, thus
proving the hypothesis for (i).

Proof for (ii). By the induction hypothesis for (iv), the leader of

epoch 𝑒 and all previous epochs is agreed upon. Let 𝐿𝑒 be the leader

for epoch 𝑒 . Then 𝐿𝑒 must have committed a block in some epoch

< 𝑒 − 𝑡 , or during the setup. If 𝐿𝑒 was never the leader, then the

hypothesis (ii) is trivially satisfied. Let 𝑒 ′ < 𝑒 − 𝑡 be the latest epoch
in which 𝐿𝑒 was the leader last. If 𝐿𝑒 proposed a block in some

epoch 𝑒 ′ < 𝑒 − 𝑓 , then from the proof for (i) for epoch 𝑒 , all nodes

agree on the same block for epoch 𝑒 ′. If no block proposed in epoch

𝑒 ′ is added to the chain by epoch 𝑒 ′ + 𝑡 < 𝑒 , then from our leader

selection rule (in Definition 5.1), no honest node will derive 𝐿𝑒 as

the leader as 𝐿𝑒 ∈ P𝑟 . Therefore, (ii) also holds for epoch 𝑒 .

Proof for (iii). The randomness 𝑅𝑒 depends on choosing a commit-

ted value to be reconstructed. The output O𝑒 depends on 𝑅𝑒 and

{O𝑒−1, . . . ,O𝑒−𝑡 }. By the induction hypothesis for (iii), all honest

nodes agree on O𝑒−1, . . . ,O𝑒−𝑓 . Moreover, by the induction hypoth-

esis for (iv), they also choose the same leader 𝐿𝑒 for epoch 𝑒 . Thus,

if we can prove that all honest nodes agree upon the value from 𝐿𝑒
that is reconstructed in epoch 𝑒 , then agreement on O𝑒 is trivial.

From the proof of (i) and (ii), we know that there is a block 𝑏ℎ that is

enqueued in the queue Q(𝐿𝑒 ) for 𝐿𝑒 , which all honest nodes agree

on, and therefore obtain the same 𝑅𝑒 for epoch 𝑒 . Thus, (iii) holds

true for epoch 𝑒 .

Proof for (iv). The leader derivation depends on the candidate set

L𝑒 , outputs of the last 𝑡 iterations {O𝑒−1, . . . ,O𝑒−𝑡 }, and the recon-
structed randomness 𝑅𝑒 in epoch 𝑒 . By the induction hypothesis

for (iv), and proof of (iii), the output of the last 𝑓 iterations and

that of epoch 𝑒 is agreed upon. From the proof of (i), (ii), and the

induction hypothesis for (iv), all honest nodes have the same L𝐿𝑎𝑠𝑡
and P𝑟 . From (iii), all honest nodes derive the same leader for epoch

𝑒 + 1. □

Next, we show that GRandPiper protocol is a secure PVSS proto-

col, satisfying the requirements specified in Definition 3.5.

Theorem 5.2 (Secure PVSS). Assuming a secure PVSS scheme
PVSS, the GRandPiper protocol is a secure publicly verifiable secret
sharing protocol with the dealer as the leader of an epoch, and the
rest of the nodes as the verifiers.

Proof Sketch. We already know that our SMR is secure against

a 𝑡-bounded adversary assuming a secure digital signature scheme,

𝑞-SDH and a random oracle 𝐻 . Given a secure suite of algorithms

in PVSS, on a high level we do not reveal any new information.

To formally prove it, consider the view 𝑉𝑖 of any honest node

𝑝𝑖 . It observes 𝑉𝑖 := (PVSS. ®𝐸,PVSS.pk𝑖,PVSS.𝜋). In the

underlying PVSS scheme PVSS, the view of a node is also 𝑉𝑖 .

An adversary A that can successfully violate the secrecy property

from GRandPiper can do so by:

(1) Breaking the underlying PVSS schemePVSS. SincePVSS
satisfies Definition 3.5, this can occur with negl(^) probability.

(2) Guessing the secret. The probability of an adversary winning

this way is negl(^).

Correctness. Let 𝐿𝑒 be an honest leader for epoch 𝑒 . Then its pro-

posed block that shares 𝑅𝑒 is always committed (from Fact 4.6).

Thus when the secret is reconstructed in the beacon protocol (Fig-

ure 4) all the honest nodes will output 𝑅𝑒 with a high probability

of 1 − negl(^) (from the underlying PVSS algorithm).

Commitment. If 𝐿𝑒 is Byzantine, then either all the honest nodes

commit to one of the blocks 𝐵ℎ proposed, or ⊥ by epoch 𝑒 + 𝑡 + 1.
Therefore, the commitment property is satisfied by our protocol.

From the underlying scheme PVSS, there is a negligible proba-
bility negl(^) for two correct nodes 𝑝𝑖 and 𝑝 𝑗 to output different

𝑠∗
𝑖
≠ 𝑠∗

𝑗
≠ ⊥.

(Public) Verifiability. This property holds true with high probability

from the underlying PVSS schemePVSS as the views are identical.

The probability is over the choice of randomness for the verifier. □

Concrete instantiations. Consider instantiating GRandPiper us-
ing SCRAPE [18]. We can show a reduction from an adversary

breaking the IND1-secrecy [31] property in GRandPiper into an

adversary that can break the secrecy property from SCRAPE (which

in turn shows a reduction to DDH or DBS assumptions [18, Sec.3,

Sec.4]). In the simulation, since the adversary is static, pick ran-

dom public keys for the 𝑛 − 𝑡 honest nodes, and use A to run an

instance of GRandPiper using the input secrets. When A wins, we

can directly break the IND1-Secrecy property.

Remark. There are no known adaptively secure PVSS protocols.

It is not the case that there are attacks on existing PVSS schemes

when assuming an adaptive adversary, it is just that the existing

proof techniques fail to show security against adaptive adversaries.

Lemma 5.3 (Rushing Adversary Advantage). For any epoch 𝑒 ≥ 1,
a rushing adversary can reconstruct output O𝑒 at most 2Δ time before
the honest nodes.

Proof. An honest node sends its secret shares in epoch 𝑒 when

its epoch-timer𝑒−1 expires. Let node 𝑝𝑖 be the earliest honest node
whose epoch-timer𝑒−1 expires and node 𝑝𝑖 sends its secret share at
time 𝜏 . A rushing adversary may instantaneously receive the share

and reconstruct the output 𝑂𝑒 at time 𝜏 .

Due to the Δ delay among the honest nodes entering epoch 𝑒 ,

the other honest nodes may send their secret shares only at time

𝜏 + Δ which arrives at all the honest nodes by time 𝜏 + 2Δ. In the

worst case, the honest nodes can reconstruct only at time 𝜏 + 2Δ.
Thus, a rushing adversary can reconstruct output O𝑒 at most 2Δ
time before honest nodes. □

Lemma 5.4 (Guaranteed Beacon Output). For any epoch 𝑒 ≥ 1, all
the honest nodes output a new beacon output O𝑒 .

Proof. By Theorem 5.1 part (iv), all the honest nodes have con-

sistent leaders. Let node 𝑝𝑖 be the leader of epoch 𝑒 . The honest

nodes output a new beacon output in each epoch 𝑒 if Q(𝑝𝑖 ) ≠ ⊥.
Suppose for the sake of contradiction Q(𝑝𝑖 ) = ⊥ in epoch 𝑒 . Ob-

serve that nodes update Q(𝑝𝑖 ) with secret proposed in epoch 𝑒 ′

(with 𝑒 ′ < 𝑒 − 𝑡 ) when 𝑝𝑖 was an epoch leader in epoch 𝑒 ′ by epoch

𝑒 and node 𝑝𝑖 did not propose any secrets in epoch 𝑒 ′. However, if
𝑝𝑖 did not propose in epoch 𝑒 ′, 𝑝𝑖 would have been removed from

the candidate leader set for epoch 𝑒 and would not be epoch leader

for epoch 𝑒 and honest nodes would not use Q(𝑝𝑖 ) in epoch 𝑒 . A

contradiction.
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Thus, all the honest nodes send secret shares for secret shared

in Q(𝑝𝑖 ) and all the honest nodes will receive 𝑡 + 1 valid shares to

reconstruct a common randomness 𝑅𝑒 and output O𝑒 . □

Now, we show that GRandPiper is a secure random beacon pro-

tocol by showing that the individual properties are satisfied.

Lemma 5.5 (Bias-Resistance). For any epoch 𝑒 ≥ 1, the probability
that a 𝑡 bounded adversary A can fix any 𝑐 bits of the GRandPiper
beacon output O𝑒 is negl(𝑐) + negl(^).

Proof Sketch. The output in any epoch 𝑒 is O𝑒 which is the

hash𝐻 (𝑅𝑒 ,O𝑒−1, . . . ,O𝑒−𝑡 ). Assume that a static adversaryA wants

to bias 𝑐 bits of O𝑒 . Now there is at least one honest leader in

epoch 𝑒 ′ where 𝑒 − 𝑡 ≤ 𝑒 ′ ≤ 𝑒 . WLOG, assume that the leader at

epoch 𝑒 ′ = 𝑒 − 𝑡 is honest. Then the output of epoch 𝑒 ′ is known
only in epoch 𝑒 ′ within 2Δ time of entering the epoch 𝑒 ′ (from
Lemma 5.4). Therefore, a rushing adversaryA can know the O𝑒′ at
max 2Δ before an honest node enters epoch 𝑒 ′ (from Lemma 5.3).

But the adversary has to choose all 𝑅𝑒′′ before epoch 𝑒 ′, where
𝑒 − 𝑡 < 𝑒 ′′ ≤ 𝑒 , so that it can bias O𝑒 . But all blocks containing 𝑅𝑒′′
are committed before the epoch 𝑒 ′, since 𝑅𝑒′′ comes from the blocks

previously proposed by the leaders before epoch 𝑒 ′ at the start

(or during the setup). Thus all blocks containing 𝑅𝑒′′ are proposed

before observing 𝑅𝑒′ , which is guaranteed to be secret for a honest

node against A (from the secrecy property of Theorem 5.2) except

with negligible probability negl(^). Thus, an adversary A can do

no better than negl(𝑐) + negl(^) to fix 𝑐 bits. □

Lemma 5.6 (GRandPiper unpredictability). Assuming a secure
PVSS scheme PVSS and SMR protocol, the GRandPiper random
beacon protocol is an 𝑂 (min(^, 𝑡))-absolute unpredictable random
beacon protocol against a static adversary.

Proof Sketch. Since the leaders are chosen using the beacon

outputs, the probability that the adversary’s nodes are chosen in

an epoch 𝑒 is 𝑡/𝑛 < 1/2. The probability that 𝑐 consecutive leaders

are Byzantine is therefore

(𝑡
𝑐

)
/(𝑛 − 𝑡)𝑐 < 2

−𝑐
for 3 < 𝑐 < 𝑡 and is

exponentially decreasing in 𝑐 . The expected value of 𝑐 is ⌈log 2⌉ = 2.

If 𝑐 = 𝑡 + 1, the probability is already negl(^) (from the probability

of breaking secrecy of secrets shared by honest nodes). Thus, for

a given security parameter ^, a static adversary cannot predict

the output with better than negl(^) probability in min(^, 𝑡) + 1
epochs. □

Theorem 5.7 (GRandPiper secure random beacon). GRand-
Piper protocol is a 𝑂 (min(^, 𝑡))-secure random beacon protocol as-
suming a static adversary.

Proof. The proof follows from Lemma 5.5 for bias-resistance,

Lemma 5.4 for guaranteed output delivery, and Lemma 5.6 for

unpredictability. □

5.3 RandPiper – BRandPiper Protocol
In this section, we present a random beacon protocol using𝑂 (^𝑓 𝑛2)
bits of communication complexity where 𝑓 ≤ 𝑡 is the actual number

of faults andwith 1-absolute unpredictability. Thus, in the optimistic

case when 𝑓 = 𝑂 (1), our communication complexity is quadratic.

In order to achieve 1-absolute unpredictability, we need to ensure

that we reconstruct inputs from > 𝑡 nodes in every epoch. If we

use PVSS schemes, we need to add 𝑂 (𝑡) shares in every epoch, so

that we can consume > 𝑡 combined shares in every round. A PVSS

sharing for one secret is of size 𝑂 (𝑛), and therefore performing

𝑂 (𝑛𝑡) sharings trivially results in a communication complexity of

𝑂 (𝑛3). Therefore, we will use VSS schemes (refer Appendix A for

detailed VSS interface) in an attempt to improve the communication

complexity for a 1-absolute unpredictable random beacon protocol.

5.3.1 Improved VSS. Wewill first describe an improvedVSS scheme

that achieves better communication complexity to share 𝑛 secrets

in the optimistic case which will then be used in our random beacon

protocol.

Efficient VSS (eVSS). eVSS [32] (refer Figure 5) presents the state-
of-the-art VSS scheme for synchronous network setting. The pro-

tocol is described assuming the presence of a bulletin board (or

broadcast channels) [8, 18, 20, 32] where there exists a public bul-

letin board, in which messages posted by any node are available

instantly, and the bulletin board provides a consistent view to all

the nodes. We can realize such message delivery guarantees by

invoking Byzantine Broadcast (BB) protocols.

In this protocol, a dealer 𝐿 creates a commitmentVSS.C to a

random polynomial whose constant term is the secret, and posts the

commitment on the bulletin board (Step 1), while privately sending

individual sharesVSS.s𝑗 along with witnessesVSS.𝜋 𝑗 to every

node 𝑝 𝑗 ∈ P (Step 2). Nodes post complaints on the bulletin board

in the form of blame message if they do not receive valid shares

(Step 3) in a timely manner. The dealer then opens the secret shares

on the bulletin board corresponding to the nodes that blamed (Step

4). If there are > 𝑡 complaints, the nodes abort (Step 5). Otherwise,

the honest nodes commit their shares (Step 5), with the guarantee

that all honest nodes will be able to reconstruct the shared secret.

Note that 𝑓 ≤ 𝑡 Byzantine nodes can always blame regardless
of the dealer being honest or not. This forces an honest dealer to

post 𝑂 (𝑓 𝑛) shares on the bulletin board when secret sharing 𝑂 (𝑛)
secrets. In general, the amount of information posted on the bulletin

board is 𝑂 (^𝑛 + ^𝑓 + ^𝑓 𝑛) corresponding to 𝑂 (𝑛) commitments, 𝑓

blame messages and𝑂 (𝑓 𝑛) opened secret shares. A naïve approach

of using BB protocols (extension protocols [36] for larger inputs)

to instantiate the bulletin board involves following steps:

(1) Commitment and sharing. Dealer 𝐿 invokes BB to broadcast 𝑛

commitments Step 1, while privately sharing individual shares

Step 2.

(2) Blame. Nodes invoke 𝑛 parallel instances of BB to broadcast

blame messages Step 3.

(3) Open shares. Dealer 𝐿 invokes an instance of BB with secret

shares corresponding to the blames received.

We note that state-of-the-art honest majority BB protocols, with-

out threshold signatures, incur 𝑂 (^𝑛3) bits communication cost to

achieve consensus on a single decision [3, 23, 33]. Thus, invoking 𝑛

parallel instances of BB trivially incurs𝑂 (^𝑛4) communication cost.

In addition, running BB on inputs of size 𝑂 (𝑓 𝑛) incurs 𝑂 (^𝑓 𝑛3)
without threshold signatures and extension techniques. Thus, the

total communication complexity is 𝑂 (^𝑛4) bits.
Improved eVSS (iVSS). In order to reduce the large communi-

cation overhead, we first present an improved VSS scheme, that

reduces (i) the number of posts to the bulletin board, and (ii) the

amount of information posted on the bulletin board.
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LetVSS be the VSS scheme being used. LetVSS.pp be the public VSS parameters. Let 𝐿 be a dealer with secret 𝑠 . Assuming the existence

of a bulletin board, each node 𝑝𝑖 ∈ P does the following:

1. Post commitment. If 𝑝𝑖 is 𝐿, then generate shares for every node by running (VSS. ®𝑆,VSS. ®𝑊,VSS.C) ← VSS.ShGen(𝑠), and
post the commitmentVSS.C to the secret 𝑠 on the bulletin board.

2. Send shares. If 𝑝𝑖 is 𝐿, then send sharesVSS.s𝑗 ∈ VSS. ®𝑆 and witnessVSS.𝜋 𝑗 ∈ VSS. ®𝑊 over the confidential channel to all

nodes 𝑝 𝑗 ∈ P.
3. Send blames. Post complaints ⟨blame, 𝐿⟩𝑖 on the bulletin board, if no valid share is received privately or if

VSS.ShVrfy(VSS.s𝑖 ,VSS.𝜋𝑖 ,VSS.C) = 0.

4. Open shares. For all blames ⟨blame, 𝐿⟩𝑖 , if 𝑝𝑖 is 𝐿, post their sharesVSS.s𝑗 and witnessesVSS.𝜋 𝑗 on the bulletin board.

5. Decide. If the published share and witness satisfiesVSS.ShVrfy(VSS.s𝑘 ,VSS.𝜋𝑘 ,VSS.C) = 1 for every blame, and there are

only up to 𝑓 ≤ 𝑡 blames on the bulletin board, then commitVSS.s𝑗 . Otherwise, abort, i.e., output ⊥.

Figure 5: eVSS [32] protocol description. This scheme is to secret share one secret.

Let VSS be the VSS scheme being used. Let VSS.pp be the public VSS parameters. Let 𝐿 be a dealer with 𝑛 secrets 𝑆 := {𝑠1, . . . , 𝑠𝑛 } it wishes to secret

share with nodes P. Assuming the existence of a bulletin board, each node 𝑝𝑖 ∈ P does the following:

(1) Post commitment. If 𝑝𝑖 is 𝐿, run (VSS. ®𝑆𝑖 ,VSS. ®𝑊𝑖 ,VSS.C𝑖 ) ← VSS.ShGen(𝑠𝑖 ) for all 𝑠𝑖 ∈ 𝑆 . Build the commitment vector VSS. ®𝐶 :=

{VSS.C1, . . . ,VSS.C𝑛 } which contain commitments VSS.C𝑖 for 𝑠𝑖 . Post VSS. ®𝐶 on the bulletin board.

(2) Send shares. If 𝑝𝑖 is 𝐿, collect shares and witnesses (VSS.s𝑗 ,VSS.𝜋 𝑗 ) for every node 𝑝 𝑗 ∈ P, and secret 𝑠𝑖 ∈ 𝑆 , and build VSS. ®𝑆 𝑗 ,VSS. ®𝑊𝑗 . Send

(VSS. ®𝑆 𝑗 ,VSS. ®𝑊𝑗 ) to node 𝑝 𝑗 ∈ P.
If 𝑝𝑖 ∈ P is not the dealer 𝐿, then wait to obtain (VSS. ®𝑆𝑖 ,VSS. ®𝑊𝑖 ) from the dealer 𝐿, and ensure thatVSS.ShVrfy(VSS.s𝑗 ,VSS.𝜋 𝑗 ,VSS. ®𝐶 𝑗 ) =
1 holds for VSS.s𝑗 ∈ VSS. ®𝑆𝑖 , and VSS.𝜋 𝑗 ∈ VSS. ®𝑊𝑖 .

(3) Send blames. If invalid/no shares are received from the dealer 𝐿, then send ⟨blame, 𝐿⟩𝑖 to all the nodes. Collect similar blames from other nodes.

(4) Private open. Send all the collected blames to the dealer 𝐿. If 𝑝𝑖 is the leader, then for every blame ⟨blame, 𝐿⟩𝑘 received from node 𝑝 𝑗 , send

(VSS. ®𝑆𝑘 ,VSS. ®𝑊𝑘 ) to node 𝑝 𝑗 .

If 𝑝𝑖 is not 𝐿, then ensure thatVSS.ShVrfy(VSS.s𝑗 ,VSS.𝜋 𝑗 ,VSS. ®𝐶 𝑗 ) = 1 for every ⟨blame, 𝐿⟩𝑗 ,VSS.s𝑗 ∈ VSS. ®𝑆 𝑗 , andVSS.𝜋 𝑗 ∈ VSS. ®𝑊𝑗 .

(5) Ack and decide. If 𝑝𝑖 received ≤ 𝑡 blames and the leader responded with valid shares (VSS. ®𝑆 𝑗 ,VSS. ®𝑊𝑗 ) for every ⟨blame, 𝐿⟩𝑗 it forwarded, then
send an ack message to the dealer 𝐿.

If 𝑝𝑖 is 𝐿, then post ack certificate (denoted by AC(VSS. ®𝐶)) on the bulletin board.

If there is an ack certificate AC(VSS. ®𝐶) on the bulletin board, commit VSS. ®𝐶 , and send (VSS. ®𝑆 𝑗 ,VSS. ®𝑊𝑗 ) , if received from 𝐿.

(6) Reconstruction. Each node 𝑝𝑖 ∈ P does the following:

(a) If there is a share VSS.s𝑖 ,VSS.𝜋𝑖 , send the share and witness to all the nodes.

On receiving a share and witness (VSS.s𝑗 ,VSS.𝜋 𝑗 ) from 𝑝 𝑗 , ensure that VSS.ShVrfy(VSS.s𝑗 ,VSS.𝜋 𝑗 ,VSS.C) = 1.

(b) On receiving 𝑡 + 1 valid shares in VSS. ®𝑆 , reconstruct the secret 𝑠 using 𝑠 ← VSS.Recon(VSS. ®𝑆) . Send 𝑠 to all the nodes.

(c) On receiving an opened secret 𝑠 , ensure that VSS.ComVrfy(VSS.C, 𝑠) = 1 and output 𝑠 .

Figure 6: iVSS - Improved eVSS protocol description

In iVSS (refer Figure 6), the dealer posts commitments on the

bulletin board, privately sends the secret shares and corresponding

witnesses similar to eVSS. However, unlike eVSS, nodes send the

blamemessages to all nodes. In addition, nodes forward the received

blame messages to the dealer to request for missing shares. The

dealer privately sends missing shares to the nodes that forwarded

the blame message instead of posting on the bulletin board. If

an honest node receives missing shares for all blame messages it

forwarded, it sends an ack to the dealer. The dealer collects 𝑡 + 1
ack messages and posts the ack certificate on the bulletin board.

An honest node commits the proposed commitment if it observes

an ack certificate on the bulletin board.

The honest nodes then forward the missing shares if the dealer

sent the missing shares. A key correctness argument for our scheme

is the following: if an honest node 𝑝𝑖 ∈ P does not receive commit-

ments and secret shares, it must have sent blame messages to all

honest nodes. If some honest node 𝑝 𝑗 ∈ P sends an ack message, it

must have received missing shares corresponding to the blamemes-

sages it received and forwarded (which includes share for 𝑝𝑖 ). Thus,

all the honest nodes shares to reconstruct the proposed secrets.

We note that both eVSS and iVSS schemes guarantee secrecy

(see Definition 3.4) only when the dealer is honest. If 𝑡 Byzantine

nodes send a blame message, then an honest but curious node can

violate secrecy, however this was also possible in the bulletin board

based protocol and can be easily solved by assuming an additional

honest node, i.e., 𝑛 > 2𝑡 + 1.

5.3.2 Random Beacon for BRandPiper. In this section, we instanti-

ate bulletin boards using our SMR protocol (Section 4) and present a

random beacon protocol, we call BRandPiper, using the iVSS scheme.

If we use our SMR protocol with rotating leaders, we can commit

blocks of size𝑂 (^𝑛) within 𝑡 +1 epochs while incurring𝑂 (^𝑛2) bits
of communication per epoch. To obtain 1-absolute unpredictability,

we need to reconstruct at least 𝑡 + 1 secrets from distinct nodes in
each epoch. For simplicity, we reconstruct one secret from all nodes
that have not been removed. Using the round-robin leader selection

rule, every node can share secrets at least once every 𝑛 epochs. If in
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every epoch, the leader proposes commitments to 𝑛 secrets using

SMR protocol, we can use these secrets for the next 𝑛 epochs in the

reconstruction. Our beacon output step can take advantage of the

homomorphic properties of the underlying VSS schemeVSS to

combine secret shares for multiple secrets from different nodes into

an 𝑂 (^)-sized share which can be efficiently broadcast to all nodes.

Honest nodes collect 𝑡 + 1 homomorphic shares to reconstruct the

common randomness 𝑅𝑒 . Such reconstructed randomness is guar-

anteed to be unbiasable since an adversary cannot know the secrets

of honest nodes until reconstructed, and an adversary cannot pre-

vent reconstruction. For the same reason, our BRandPiper protocol

ensures 1-absolute unpredictability, even for a rushing adaptive

adversary.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑣1,1 · · · 𝑣1,3

𝑣2,1 · · · 𝑣2,3

𝑣3,1 · · · 𝑣3,3

𝑣4,1 · · · 𝑣4,3

𝑣5,1 · · · 𝑣5,3

𝑣1,4

𝑣2,4 𝑣2,5

𝑣3,4 𝑣3,5 𝑣3,6

𝑣4,4 𝑣4,5 𝑣4,6 𝑣4,7

𝑣5,1

Buffer 𝑡 + 1 shares

← 𝑣5,4 𝑣5,5 𝑣5,6 𝑣5,7 𝑣5,8

← Q(3)

Figure 7: An example illustration of BRandPiper for 𝑛 = 5 and 𝑡 = 2

in epoch 𝑒 = 5. The region marked in red are the shares that will be
homomorphically combined in every epoch for reconstruction. In
general, in every epoch, shares from the left-most column will be
used for reconstruction. The region marked in yellow is the addi-
tion of 𝑛 new shares by the leader 𝐿𝑒 = 𝑝5.

Example. Consider an example scenario as shown in Figure 7. In

epoch 5, 𝑝5 proposes and adds 𝑛 VSS shares to the system which

will be committed within 𝑡 + 1 = 3 epochs. If 𝑝5 is Byzantine, by the

end of epoch 8, all the nodes will remove 𝑝5 from future proposals,

thus guaranteeing outputs for every epoch. Until epoch 8 observe

that we have shares for 𝑝5.

Protocol Details. Leader selection.Weemploy a round robin leader

selection policy. If an epoch leader 𝑝𝑖 fails to commit within 𝑡 + 1
epochs, it is added to the set of removed nodes P𝑟 and is prevented
from being a future leader. The remaining nodes P \ P𝑟 propose in
a round robin manner.

Setup. During the setup phase, all the nodes are provided with

VSS parametersVSS.pp required for using the VSS schemeVSS.
Each node maintains 𝑛 queues Q(𝑝𝑖 ), for 𝑝𝑖 ∈ P. Each queue

Q(𝑝𝑖 ) holds tuples with each tuple containing a secret share, its

witness and commitment proposed by node 𝑝𝑖 when node 𝑝𝑖 was

an epoch leader. During the setup phase, each queue Q(𝑝𝑖 ) is filled
with 𝑚 = 𝑛 + 𝑡 tuples containing secret shares, witnesses and

commitments for𝑚 secrets. This ensures that all honest nodes have

common secret shares in Q(𝑝𝑛) and can perform Dequeue(Q(𝑝𝑛))
up to epoch 𝑛 + 𝑡 even if 𝑝𝑛 does not propose in epoch 𝑛. This is

because honest nodes perform Dequeue(Q(𝑝𝑛)) (explained later)

in each epoch unless node 𝑝𝑛 has been removed. If node 𝑝𝑛 does

not propose in epoch 𝑛, it is removed only in epoch 𝑛 + 𝑡 .

Block validation protocol. BRandPiper uses a block validation

protocol to generate valid blocks for use in the SMR. A valid block

in BRandPiper is a vector of VSS commitmentsVSS. ®𝐶 along with

acks from 𝑡 +1 nodes. The block validation protocol is essentially an

instance of iVSS where the leader ends up with 𝑡 + 1 votes for a VSS
commitment vectorVSS. ®𝐶 . The commitment and ack certificate

is then input to the SMR protocol to ensure that all honest nodes

agree on a single commitment vector. During the SMR protocol, the

honest nodes vote only if a valid block is produced via the block

validation protocol. The block validation protocol guarantees that

if a block is certified, then all the honest nodes have sharings for

all the secrets committed in VSS. ®𝐶 . When these commitments

are committed via SMR, all the honest nodes use the secret shares

in the commitments in different epochs to generate the common

randomness.

The block validation protocol (refer Figure 8) is executed in par-

allel with SMR protocol. The leader 𝐿𝑒 of epoch 𝑒 executes the

block validation protocol while in epoch 𝑒 − 1 to generate an ack
certificate for commitments to be proposed in epoch 𝑒 . The protocol

consists of following steps:

Distribute. Leader 𝐿𝑒 creates 𝑛 commitmentsVSS. ®𝐶 correspond-

ing to 𝑛 secrets {𝑠1, . . . , 𝑠𝑛} it wishes to share usingVSS.ShGen
algorithm for secrets {𝑠𝑖 |∀1 ≤ 𝑖 ≤ 𝑛}, along with sharesVSS. ®𝑆 𝑗 :={
VSS.s1, 𝑗 , . . . ,VSS.s𝑛,𝑗

}
andwitnessesVSS. ®𝑊𝑗 := {VSS.𝜋1, 𝑗 ,

. . . ,VSS.𝜋𝑛,𝑗 }, for all 𝑝 𝑗 ∈ P. We define a block containing 𝑛

commitments VSS. ®𝐶 as 𝑆𝐵 := ⟨Commitment,VSS. ®𝐶, 𝑒, 𝑧𝑠𝑒 ⟩𝐿𝑒 .
The leader 𝐿𝑒 sendsVSS. ®𝑆 𝑗 ,VSS. ®𝑊𝑗 , and 𝑆𝐵 to node 𝑝 𝑗 , for all

𝑝 𝑗 ∈ P. Similar to the SMR protocol, the leader signs the tuple

⟨Commitment, 𝐻 (VSS. ®𝐶)), 𝑒, 𝑧𝑠𝑒 ⟩ and sends VSS. ®𝐶 separately

to facilitate efficient equivocation checks. It is important to note

that commitmentVSS. ®𝐶 , sharesVSS. ®𝑆 𝑗 , and witnessVSS. ®𝑊𝑗

are 𝑂 (𝑛)-sized and the shares VSS.s𝑗 are only sent to node 𝑝 𝑗 .

Sending only the required shares to designated nodes reduces com-

munication complexity.

Blame/Forward. If a node 𝑝𝑖 receives a valid secret shareVSS. ®𝑆𝑖 ,
witnessVSS. ®𝑊𝑖 , and sharing block 𝑆𝐵 := ⟨Commitment,VSS. ®𝐶,
𝑒, 𝑧𝑠𝑒 ⟩𝐿𝑒 within 3Δ time in epoch 𝑒−1, it invokesDeliver(Commitment,
𝑆𝐵, 𝑧𝑠𝑒 , 𝑒). A valid share satisfiesVSS.ShVrfy(VSS.s𝑗 ,VSS.𝜋 𝑗 ,
VSS. ®𝐶 𝑗 ) = 1, ∀𝑗 ∈ [𝑛]. Otherwise, node 𝑝𝑖 broadcasts ⟨blame, 𝑒⟩𝑖
to all nodes.

Request open. Node 𝑝𝑖 waits for 6Δ time in epoch 𝑒 − 1 to collect
any blames sent by other nodes. If no blames or equivocation by

𝐿𝑒 has been detected within that time, 𝑝𝑖 sends ⟨ack, 𝐻 (𝑆𝐵), 𝑒⟩𝑖 to
𝐿𝑒 . If up to 𝑡 blames are received, 𝑝𝑖 forwards the blames to 𝐿𝑒 .

Private open. If 𝐿𝑒 receives any blames from node 𝑝𝑖 , it sends valid

VSS. ®𝑆 𝑗 , witness VSS. ®𝑊𝑗 for every blame ⟨blame, 𝑒⟩𝑗 received
from node 𝑝𝑖 .

Ack. If node 𝑝𝑖 forwarded any blames and received valid secret

sharesVSS. ®𝑆 𝑗 and witnessVSS. ®𝑊𝑗 for every blame ⟨blame, 𝑒⟩𝑗
it forwarded and detects no equivocation, node 𝑝𝑖 sends ⟨ack, 𝐻 (𝑆𝐵), 𝑒⟩𝑖
to 𝐿𝑒 . In addition, node 𝑝𝑖 forwards secret sharesVSS. ®𝑆 𝑗 and wit-

nessVSS. ®𝑊𝑗 for every blame ⟨blame, 𝑒⟩𝑗 it received. Thus, if an
honest node sends an ack for the sharing block 𝑆𝐵, then all honest
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This protocol is executed in parallel with BFT SMR protocol in Figure 1 using the round-robin leader selection. Let 𝐿𝑒 be the leader of epoch 𝑒 and the current

epoch be 𝑒 − 1. Node 𝑝𝑖 performs following operations while in epoch 𝑒 − 1:
(1) Distribute. 𝐿𝑒 waits for Δ time after entering epoch 𝑒 − 1 and then does the following:

• Let {𝑠1, . . . , 𝑠𝑛 } be 𝑛 random numbers chosen uniformly from the input space of VSS.
• Build 𝑆𝐵 := ⟨Commitment,VSS. ®𝐶, 𝑒, 𝑧𝑠𝑒 ⟩𝐿𝑒 , the sharing block which consists of commitments VSS. ®𝐶 := {VSS.C1, . . . ,VSS.C𝑛 } to
the 𝑛 random numbers generated by running (VSS. ®𝑆𝑖 ,VSS. ®𝑊𝑖 ,VSS.C𝑖 ) ← VSS.ShGen(𝑠𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}, where VSS. ®𝑆𝑖 :={
VSS.s𝑖,1, . . . ,VSS.s𝑖,𝑛

}
, and VSS. ®𝑊𝑖 :=

{
VSS.𝜋𝑖,1, . . . ,VSS.𝜋𝑖,𝑛

}
.

• Build the share vector VSS. ®𝑆 𝑗 := {VSS.s1 ← VSS. ®𝑆1, 𝑗 , . . . ,VSS.s𝑛 ← VSS. ®𝑆𝑛,𝑗 } and the witness vector VSS. ®𝑊𝑗 := {VSS.𝜋1 ←
VSS. ®𝑊1, 𝑗 , . . . ,VSS.𝜋𝑛 ← VSS. ®𝑊𝑛,𝑗 } for node 𝑝 𝑗 using 𝑗𝑡ℎ share and witness from VSS. ®𝑆𝑖 and VSS. ®𝑊𝑖 for random number 𝑠𝑖 .

• Send VSS. ®𝑆 𝑗 , VSS. ®𝑊𝑗 , and 𝑆𝐵 to every node 𝑝 𝑗 ∈ P.
(2) Blame/Forward. If epoch-timer𝑒−1 ≥ 8Δ and node 𝑝𝑖 receives valid share vector VSS. ®𝑆𝑖 , witness vector VSS. ®𝑊𝑖 and commitment 𝑆𝐵 :=

⟨Commitment,VSS. ®𝐶, 𝑒, 𝑧𝑠𝑒 ⟩𝐿𝑒 , then invoke Deliver(Commitment, 𝑆𝐵, 𝑧𝑠𝑒 , 𝑒) . If no shares has been received within 3Δ time while in epoch 𝑒 − 1,

broadcast a blame ⟨blame, 𝑒 ⟩𝑖 to all nodes.

(3) Request open.Wait until epoch-timer𝑒−1 ≥ 5Δ. Collect all blames received so far. If up to 𝑡 blames are received so far, forward the blames to 𝐿𝑒 . If no

blames or equivocation by 𝐿𝑒 has been detected, send ⟨ack, 𝐻 (𝑆𝐵), 𝑒 ⟩𝑖 to 𝐿𝑒 .
(4) Private open. 𝐿𝑒 sends valid share VSS. ®𝑆 𝑗 and witness VSS. ®𝑊𝑗 to node 𝑝𝑖 , for every blame ⟨blame, 𝑒 ⟩𝑗 received from node 𝑝𝑖 .

(5) Ack. Upon receiving valid share VSS. ®𝑆 𝑗 and witness VSS. ®𝑊𝑗 for every ⟨blame, 𝑒 ⟩𝑗 it forwarded and detects no equivocation, send ⟨ack, 𝐻 (𝑆𝐵), 𝑒 ⟩𝑖
to 𝐿𝑒 . Forward share VSS. ®𝑆 𝑗 and witness VSS. ®𝑊𝑗 to node 𝑝 𝑗 for every ⟨blame, 𝑒 ⟩𝑗 it received.

(6) (Non-blocking) Equivocation. Broadcast equivocating hashes signed by 𝐿𝑒 and stop performing any operations.

Figure 8: Block validation protocol.

nodes have their respective secret shares corresponding to sharing

block 𝑆𝐵 (more details in Lemma 5.9).

Equivocation. At any time in epoch 𝑒 − 1, if a node 𝑝𝑖 detects an
equivocation, it broadcasts equivocating hashes signed by 𝐿𝑒 and

stops participating in epoch 𝑒 − 1 block validation protocol.

Beacon protocol. We now present the beacon protocol (refer Fig-

ure 9) in BRandPiper. It consists of the following rules for an epoch

𝑒 . Here, an epoch corresponds to an epoch in SMR protocol.

Generate Blocks. The leader 𝐿𝑒 of an epoch 𝑒 chooses 𝑛 secrets uni-

formly at random and invokes the block validation protocol while

in epoch 𝑒 −1 to obtain an ack certificate (denoted byAC𝑒 (𝑆𝐵)), to
generate a valid block 𝑆𝐵 corresponding to the 𝑛 secrets. In epoch 𝑒 ,

the leader proposes block 𝐵ℎ with 𝑏ℎ := (𝐻 (𝑆𝐵),AC𝑒 (𝑆𝐵)) where
AC𝑒 (𝑆𝐵) is an ack certificate for commitment 𝑆𝐵 using the SMR

protocol obtained from the block validation protocol. We redefine

valid blocks for the SMR protocol with an additional constraint to

contain an ack certificate created in epoch 𝑒 − 1
3
and all honest

nodes vote in the SMR protocol as long as the proposed block meets

this additional constraint. As mentioned before, an ack certificate
for a sharing block 𝑆𝐵 implies all honest nodes have secret shares

required to reconstruct the secrets corresponding to commitments

in 𝑆𝐵. Thus, it is safe for honest nodes to vote in the SMR protocol

although they sent blame during the block validation phase.

Update. At the end of epoch 𝑒 , node 𝑝𝑖 updates Q(𝐿𝑒−𝑡 ) as follows.
If 𝐿𝑒−𝑡 proposed a valid block 𝐵𝑙 in epoch 𝑒 − 𝑡 and 𝐵𝑙 has been

committed by epoch 𝑒 , node 𝑝𝑖 replaces the contents of Q(𝐿𝑒−𝑡 )
with 𝑛 tuples with each tuple containing secret shares, witnesses

and commitments shared in epoch 𝑒 − 𝑡 . If no epoch 𝑒 − 𝑡 block
was committed, it removes 𝐿𝑒−𝑡 from future proposals, i.e., P𝑟 ←
P𝑟∪{𝐿𝑒−𝑡 }. It is important to note that the SMR protocol guarantees

all honest nodes commit proposed blocks in 𝑡 + 1 epochs. Thus, all
honest nodes either update Q(𝐿𝑒−𝑡 ) or remove 𝐿𝑒−𝑡 in epoch 𝑒 .

3
For the first epoch, an ack certificate can be created during the setup phase.

Reconstruct. At the end of epoch 𝑒 , all nodes perform Dequeue(Q(𝑝 𝑗 )),
∀𝑝 𝑗 ∉ P𝑟 , to fetch 𝑛 secret shares (one from each node) and corre-

sponding witnesses. The nodes compute the homomorphic sum of

shares and witnesses and broadcast it to all other nodes.

Output. From the above discussion, it is clear that all honest nodes

send homomorphic sum of shares for common commitments and

all honest nodes will receive at least 𝑡 +1 valid homomorphic shares.

When a node 𝑝𝑖 receives 𝑡 + 1 homomorphic shares, it reconstructs

the randomness 𝑅𝑒 using VSS.Recon primitive and computes

O𝑒 ← 𝐻 (𝑅𝑒 ).

5.4 BRandPiper Security Analysis
Theorem 5.8 (Security of iVSS). The verifiable secret sharing

scheme proposed in Figure 6 is a secure verifiable secret sharing scheme
assuming a bulletin board.

Proof Sketch. Consider any secure VSS scheme VSS. The
view 𝑉𝑖 of an honest node is 𝑉𝑖 := (VSS.C,VSS.s𝑖,VSS.𝜋𝑖) to
every node 𝑝𝑖 in bothVSS and the iVSS protocol. Any 𝑡-bounded

adversary with access to 𝑡 views in both the protocols, has an equal

probability of extracting the secret. The case where the adversary

forges the digital signatures to obtain 𝑡 + 1 acks, which happens

with negligible probability, is an extra case to consider for the

commitment and correctness properties.

Formally, assume a secure VSS scheme satisfying Definition 3.4.

Secrecy: If the dealer 𝐿 is honest, then no honest node will blame

and the maximum number of blames is at most 𝑡 . Thus, only up to

𝑡 blames will be opened privately by the leader. Therefore, the view

𝑉𝑇 of an adversary corrupting 𝑇 ⊂ [𝑛] nodes with |𝑇 | ≤ 𝑡 has the

same view in both the protocols.

Correctness: If the dealer 𝐿 is honest, then all honest nodes have

their shares for the secret 𝑠 , and similar to eVSS, will output the

same secret 𝑠 except with negl(^) probability, where the probability
is over forging digital signatures.
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Let VSS be the VSS scheme used, 𝑒 be the current epoch and 𝐿𝑒 be the leader of epoch 𝑒 . Node 𝑝𝑖 ∈ P augments SMR protocol in Figure 1 as follows:

• Setup. Set 𝑒 = 1. All nodes agree upon and fill Q(𝑝𝑖 ) with𝑚 = 𝑛 + 𝑡 tuples ∀𝑝𝑖 ∈ P. Set P𝑟 ← ∅. Run VSS.Setup and agree on the public parameters

VSS.pp. Set 𝐿𝑒 ← 𝑝1.

• Blocks. While in epoch 𝑒 − 1, leader 𝐿𝑒 starts the block validation protocol (refer Figure 8) with {𝑠1, . . . , 𝑠𝑛 }, where the secrets are chosen randomly

𝑠𝑖 ←$ {0, 1}^ for 1 ≤ 𝑖 ≤ 𝑛.

In epoch 𝑒 , 𝐿𝑒 proposes block 𝐵ℎ with 𝑏ℎ := (𝐻 (𝑆𝐵),AC𝑒 (𝑆𝐵)) where AC𝑒 (𝑆𝐵) is an ack certificate for commitment 𝑆𝐵.

• Update. When epoch-timer𝑒 expires, if 𝐿𝑒−𝑡 proposed a valid block 𝐵𝑙 in epoch 𝑒 − 𝑡 and 𝐵𝑙 has been committed by epoch 𝑒 , update Q(𝐿𝑒−𝑡 ) with 𝑛

tuples with each tuple containing secret shares, witnesses and commitments shared in epoch 𝑒 − 𝑡 . Otherwise, remove 𝐿𝑒−𝑡 from future proposals i.e.,

P𝑟 ← P𝑟 ∪ {𝐿𝑒−𝑡 }.
• Reconstruct. When epoch-timer𝑒 expires, do the following:

(1) Get (VSS. ®𝑆,VSS. ®𝑊,VSS. ®𝐶) :=
{
Dequeue(Q (𝑝 𝑗 )) |𝑝 𝑗 ∉ P𝑟

}
.

(2) Build homomorphic sum share 𝑆𝑉𝑖 , witness VSS.𝜋𝑖 , and commitment VSS.C𝑒 using all shares from VSS. ®𝐶 . Send 𝑆𝑉𝑖 and VSS.𝜋𝑖 to all the

nodes.

(3) Upon receiving share 𝑆𝑉𝑗 and witness VSS.𝜋 𝑗 for VSS.C𝑒 , ensure that VSS.ShVrfy(𝑆𝑉𝑗 ,VSS.𝜋 𝑗 ,VSS.C𝑒 ) = 1.

(4) Upon receiving (𝑡 + 1) valid homomorphic sum shares in 𝑆𝑉 , obtain 𝑅𝑒 ← VSS.Recon(𝑆𝑉 ) .
• Output. Compute and output O𝑒 ← 𝐻 (𝑅𝑒 ) .

Figure 9: RandPiper – BRandPiper beacon protocol.

Commitment: If an ack certificate is formed, irrespective of the

leader being honest or Byzantine, at least one honest node has not

observed ≥ 𝑡 + 1 blames, and has received valid shares for every

blame. This honest node, say 𝑝𝑖 has all the shares for every honest

node that does not have a share. Therefore, all honest nodes together

have 𝑡 + 1 shares, which guarantees reconstruction to the unique

secret 𝑠 that was committed except with negl(^) probability. If no
ack certificate is formed, then all the honest nodes, agree on⊥, thus
satisfying the Commitment requirement with high probability of

1− negl(^), where the probability is over forging digital signatures

and the adversary generating incorrect witnesses. □

Lemma 5.9. If an honest node sends an ack for a sharing block
𝑆𝐵 in epoch 𝑒 , then (i) all honest nodes receive the sharing block 𝑆𝐵
in epoch 𝑒 , (ii) all honest nodes receive their respective secret shares
corresponding to sharing block 𝑆𝐵 within Δ time of entering epoch
𝑒 + 1.

Proof. Suppose an honest node 𝑝𝑖 sends an ack for sharing

block 𝑆𝐵 := ⟨Commitment,VSS. ®𝐶, 𝑒, 𝑧𝑠𝑒 ⟩𝐿𝑒 at time 𝜏 in epoch

𝑒 . Node 𝑝𝑖 must have received up to 𝑡 blame messages. This im-

plies at least one honest node 𝑝 𝑗 received a valid share VSS.s𝑖
and sharing block 𝑆𝐵 within 3Δ time in epoch 𝑒 and invoked

Deliver(Commitment, 𝑆𝐵, 𝑧𝑠𝑒 , 𝑒). Let 𝜏 ′ be the time when node 𝑝 𝑗
invokedDeliver(Commitment, 𝑆𝐵, 𝑧𝑠𝑒 , 𝑒). The earliest node 𝑝𝑖 sends
an ack for 𝑆𝐵 is when it waits until epoch-timer𝑒 ≥ 5Δ (i.e., 6Δ
in epoch 𝑒) and does not detect any equivocation by 𝐿𝑒 or any

blame messages. Due to Δ delay between honest nodes entering

into epoch 𝑒 , this time corresponds to 𝜏 ′ + 2Δ in the worst case.

This implies no honest node received an epoch 𝑒 equivocation by

time 𝜏 ′ + Δ. By Fact 4.1, all honest nodes receives the sharing block

𝑆𝐵. This proves part (i) of the Lemma.

For part (ii), node 𝑝𝑖 can send ack on two occasions: (a) when it

does not detect any equivocation or blame until its epoch-timer𝑒 ≥
5Δ, and (b) when leader 𝐿𝑒+1 sent valid secret shares for every

blame message it forwarded and does not detect any equivocation

by time 𝜏 .

In case (a), node 𝑝𝑖 did not detect any equivocation or blame
messages until its epoch-timer𝑒 > 5Δ at time 𝜏 . Observe that all

honest nodes must have received valid shares corresponding to the

sharing block 𝑆𝐵 within 3Δ time in epoch 𝑒 ; otherwise node 𝑝𝑖 must

have received blame message by time 𝜏 (since honest nodes may

enter epoch 𝑒 with Δ time difference and send blame message if no

valid secret shares received within 3Δ time in epoch 𝑒). In addition,

no honest node received an equivocating sharing block 𝑆𝐵′ within
3Δ time in epoch 𝑒 ; otherwise, node 𝑝𝑖 must have received a share

for 𝑆𝐵′ (via Deliver) by time 𝜏 . Thus, all honest nodes receive their

respective secret shares corresponding to sharing block 𝑆𝐵 in epoch

𝑒 (i.e., within Δ time of entering epoch 𝑒 + 1).
In case (b), node 𝑝𝑖 receives valid secret shares from leader 𝐿𝑒+1

for every blame (up to 𝑡 blame) messages it forwarded and detected

no equivocation by time 𝜏 . Observe that node 𝑝𝑖 received 𝑓 ≤ 𝑡

blamemessages and received valid shares for every blamemessage

it forwarded. This implies at least 𝑛 − 𝑡 − 𝑓 honest nodes have

received valid shares for sharing block 𝑆𝐵 from leader 𝐿𝑒+1 within
3Δ in epoch 𝑒; otherwise, node 𝑝𝑖 would have received more than

𝑓 blame message by the time its epoch-timer𝑒 = 5Δ. Since, node
𝑝𝑖 forwards 𝑓 received secret shares corresponding to 𝑓 received

blame message in epoch 𝑒 and honest nodes enter epoch 𝑒 + 1
within Δ time, all honest nodes receive their respective secret shares

corresponding to sharing block 𝑆𝐵 within Δ time of entering epoch

𝑒 + 1.
□

Theorem 5.10 (Consistent Beacon). For any epoch 𝑒 , all honest
nodes reconstruct the same randomness𝑅𝑒 and output the same beacon
O𝑒 .

Proof. Honest nodes output the same randomness 𝑅𝑒 and out-

put the same beacon O𝑒 in epoch 𝑒 if all honest nodes receive 𝑡 + 1
valid homomorphic shares for the same set of secrets. This condition

is satisfied if all honest nodes (i) have consistentQ(𝑝𝑖 ),∀𝑝𝑖 ∈ P and

consistentP𝑟 in each epoch, (ii) {Dequeue(Q(𝑝𝑖 )) ≠ ⊥,∀𝑝𝑖 ∈ P \ P𝑟 }
in each epoch, and (iii) share valid homomorphic shares correspond-

ing to dequeued secret shares.

For part(i), we show all honest nodes have consistent Q(𝑝𝑖 ),
∀𝑝𝑖 ∈ P and consistent P𝑟 in every epoch.
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We prove part (i) by induction on epochs. Consider the base

case for epochs 1 to 𝑡 . During setup phase, each node is assigned

𝑚 = 𝑛+𝑡 tuples (with each tuple containing secret shares, witnesses
and commitments) for each Q(𝑝𝑖 ), ∀𝑝𝑖 ∈ P (i.e.,𝑚 ∗ 𝑛 secrets in

total). Since, removing a Byzantine node requires 𝑡 + 1 epochs, all
honest nodes have P𝑟 = ∅ for epochs 1 to 𝑡 . In addition, no honest

node update Q(𝑝𝑖 ) during epochs 1 to 𝑡 . Thus, for epochs 1 to 𝑡 , all
honest nodes have consistent Q(𝑝𝑖 ), ∀𝑝𝑖 ∈ P and P𝑟 .

We assume part(i) holds until epoch 𝑒 − 1.
Consider an epoch 𝑒 > 𝑡 . In epoch 𝑒 , all honest nodes up-

date only Q(𝐿𝑒−𝑡 ). If 𝐿𝑒−𝑡 proposed a valid block 𝐵𝑙 (with 𝑏𝑙 =

(𝐻 (𝑆𝐵), ack-cert(𝑆𝐵)) for some commitment 𝑆𝐵 and 𝐵𝑙 is commit-

ted by epoch 𝑒 , all honest nodes update Q(𝐿𝑒−𝑡 ) with 𝑛 tuples

containing secret shares, witnesses and commitments in 𝑆𝐵 (by

Lemma 5.9, all honest nodes receive commitments and secret shares

in 𝑆𝐵 before epoch 𝑒). Otherwise, all honest nodes update P𝑟 to

exclude 𝐿𝑒−𝑡 i.e., P𝑟 ← P𝑟 ∪ {𝐿𝑒−𝑡 }. Thus, all honest nodes should
have consistent Q(𝐿𝑒−𝑡 ) by epoch 𝑒 . Since honest nodes do not

update Q(𝑝𝑖 ≠ 𝐿𝑒−𝑡 ) and do not add 𝑝𝑖 into P𝑟 in epoch 𝑒 , by in-

duction hypothesis, all honest nodes should have consistent Q(𝑝𝑖 )
∀𝑝𝑖 ∈ P and consistent P𝑟 in epoch 𝑒 . This proves part(i). Since,

all honest nodes have a consistent Q(𝑝𝑖 ) ∀𝑝𝑖 ∈ P and consistent

P𝑟 , all honest nodes perform {Dequeue(Q(𝑝𝑖 ))∀𝑝𝑖 ∈ P \ P𝑟 } for
common secrets.

Next, we show {Dequeue(Q(𝑝𝑖 )) ≠ ⊥∀𝑝𝑖 ∈ P \ P𝑟 } in epoch 𝑒 .

Suppose for the sake of contradiction, Dequeue(Q(𝑝𝑖 )) = ⊥ and

𝑝𝑖 ∉ P𝑟 in epoch 𝑒 . Observe that, honest nodes update Q(𝑝𝑖 ) or
include 𝑝𝑖 in P𝑟 𝑡 + 1 epochs after node 𝑝𝑖 becomes an epoch

leader. Let 𝑒 ′ be the last epoch in which node 𝑝𝑖 last proposed with

𝑒 ′ ≤ 𝑒 − 𝑡 . However, if node 𝑝𝑖 did not propose in 𝑒 ′, all honest
nodes would have removed 𝑝𝑖 by epoch 𝑒 ′ + 𝑡 ≤ 𝑒 and 𝑝𝑖 ∈ P𝑟 in
epoch 𝑒 . A contradiction.

Finally, we show all honest nodes send valid homomorphic shares

for the dequeued secret shares. Observe that honest nodes only

dequeue secret shares corresponding to a committed block that

contains a valid ack certificate. By Lemma 5.9 part(ii), all honest

nodes receive valid secret shares before honest nodes update their

queues. Thus, all nodes will dequeue common secret shares and

will receive at least 𝑡 + 1 valid homomorphic shares for a common

secrets and reconstruct the same randomness 𝑅𝑒 and output the

same beacon O𝑒 . □

Lemma 5.11 (Liveness). If the leader 𝐿𝑒 of an epoch 𝑒 is honest,
then (i) an ack certificate for its sharing block 𝑆𝐵 will form in epoch
𝑒 − 1, and (ii) all honest nodes commit (𝐻 (𝑆𝐵),AC𝑒 (𝑆𝐵)) in epoch
𝑒 .

Proof. Consider an honest leader 𝐿𝑒 for an epoch 𝑒 . Let 𝜏 be the

time when leader 𝐿𝑒 enters epoch 𝑒 − 1. Leader 𝐿𝑒 waits for Δ time

after entering epoch 𝑒 − 1 and must have sent valid sharesVSS.s𝑖
and sharing block 𝑆𝐵 containing commitments to node 𝑝𝑖 ∀𝑝𝑖 ∈ P
at time 𝜏 + Δ.

Since honest nodes enter epoch 𝑒 − 1 within Δ time, all honest

nodes must have entered epoch 𝑒 − 1 by time 𝜏 +Δ. Leader 𝐿𝑒 could
have entered epoch 𝑒−1 Δ time before some honest nodes or Leader

𝐿𝑒 could have entered epoch 𝑒 − 1 Δ time after some honest nodes.

In any case, all honest nodes must have received valid secret shares

and sharing block 𝑆𝐵 within 3Δ after entering epoch 𝑒 − 1. Thus, no
honest nodes send blame in epoch 𝑒 − 1 and will receive no blame
messages from honest nodes within 6Δ time in epoch 𝑒 − 1 (i.e.,

until epoch-timer𝑒−1 > 5Δ).
Consider an honest node 𝑝𝑖 . If node 𝑝𝑖 receives no blame mes-

sages from Byzantine nodes, it will send an ack for sharing block 𝑆𝐵
to 𝐿𝑒 . On the other hand, if node 𝑝𝑖 receives up to 𝑡 blamemessages

from Byzantine nodes, it forwards blame messages to 𝐿𝑒 . Honest

Leader 𝐿𝑒 sends the shares corresponding to the blame messages to

node 𝑝𝑖 which node 𝑝𝑖 receives within 8Δ in epoch 𝑒 − 1. Moreover,

there is no equivocation from leader 𝐿𝑒 . Thus, node 𝑝𝑖 sends an ack
for sharing block 𝑆𝐵 to 𝐿𝑒 .

Thus, all honest nodes send ack for sharing block 𝑆𝐵 and leader

𝐿𝑒 receives 𝑡 + 1 ack message for sharing block 𝑆𝐵 within 10Δ (𝐿𝑒
may start epoch 𝑒 − 1 Δ time before node 𝑝𝑖 ) in epoch 𝑒 − 1. This
proves part (i) of the Lemma.

Since leader 𝐿𝑒 proposes a valid proposal (𝐻 (𝑆𝐵),AC𝑒 (𝑆𝐵)) in
epoch 𝑒 , part(ii) follows immediately from Fact 4.6. □

Lemma 5.12 (Guaranteed Beacon Output). For any epoch 𝑒 ≥ 1,
all the honest nodes output a new beacon output O𝑒 .

Proof. Due to the round-robin leader selection, the honest nodes

propose in at least 𝑛 − 𝑡 epochs out of 𝑛 epochs. By Lemma 5.11, all

honest nodes commit𝑛 new secret shares in every honest epoch and

updates their queues after 𝑡 + 1 epochs. Thus, Dequeue(Q(𝑝𝑖 )) ≠
⊥∀𝑝𝑖 ∈ P \ P𝑟 . where 𝑝𝑖 is an honest node. From the proof of

Theorem 5.10, all honest nodes have consistent queues and P𝑟 in
each epoch. At the end of each epoch, all honest nodes dequeue

common secret shares and send homomorphic sums to all other

nodes. Thus, honest nodes will have 𝑡 + 1 valid homomorphic sums

and will output new beacon outputs in every epochs. □

Lemma 5.13 (Communication Complexity). Let 𝑓 ≤ 𝑡 be the num-
ber of actual Byzantine faults, ^ be the size of accumulator and𝑤 be
the size of witness. The amortized communication complexity of the
protocol is 𝑂 (^𝑓 𝑛2 + (^ +𝑤)𝑛2) bits per epoch.

Proof. In the Block validation protocol, distributing 𝑂 (^𝑛)-
sized commitment has a cost of 𝑂 (^𝑛2) communication. Sending

corresponding 𝑂 (^𝑛)-sized secret shares and 𝑂 (𝑤𝑛)-sized witness

incur 𝑂 ((^ +𝑤)𝑛2) communication. Next, 𝑓 Byzantine nodes can

always blame even when the epoch leader is honest. Thus, an epoch
leader needs to send 𝑂 (^𝑓 𝑛)-sized secret shares while privately

opening the secret shares. The nodes also forward privately opened

secret secrets to nodes that blamed. This step has a cost of𝑂 (^𝑓 𝑛2)
in an honest epoch. When the leader is Byzantine, it can create a

scenario when up to 𝑡 nodes send blame and hence, this step has

𝑂 (^𝑡𝑛2) cost. Out of 𝑛 consecutive epochs, there can be at most 𝑓

Byzantine epochs and 𝑛 − 𝑓 honest epochs. Hence, this step has

amortized complexity of 𝑂 (^𝑓 𝑛2).
By Lemma 4.8, SMR protocol has a cost 𝑂 ((^ +𝑤)𝑛2) bits for

input of size 𝑂 (^𝑛). The homomorphic sum of secret shares is ^

and homomorphic sum of witness is𝑤 . Thus, all-to-all broadcast

of homomorphic sums incurs 𝑂 ((^ +𝑤)𝑛2). Thus, the amortized

communication complexity is 𝑂 (^𝑓 𝑛2 + (^ +𝑤)𝑛2) bits per epoch.
□
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Now, we prove the beacon properties for BRandPiper protocol.

We first show that BRandPiper is a secure VSS protocol as per

Definition 3.4. The proof is similar to the proof in Theorem 5.8, but

we present it here for completeness.

Theorem 5.14 (Secure VSS). Assuming a secure VSS scheme
VSS, the BRandPiper protocol is a secure verifiable secret sharing
protocol with the dealer as the leader of an epoch, and the rest of the
nodes as the verifiers.

Proof Sketch. The view of an adversary A in BRandPiper is

the same as the view of an adversary running one instance of iVSS

assuming a bulletin board. Therefore, an adversary that can break

the secrecy property in BRandPiper protocol can also break the

secrecy in iVSS, which in turn can break the secrecy property from

VSS (Theorem 5.8). The commitment property has an additional

failure probability arising from the case where the adversary can

forge 𝑡 + 1 signatures which occurs with negl(^) probability.
Formally, we prove the security of VSS by proving the individual

properties:

Secrecy: For an honest leader 𝐿𝑒 of epoch 𝑒 , no honest node will

blame, and therefore an adversary A will only learn the 𝑡 shares

of its own corruption, and not learn any new share by blaming.

Therefore the probability of A of violating the secrecy property

is negl(^) from the underlyingVSS scheme, since the views are

identical to that of iVSS.

Correctness: For an honest leader 𝐿𝑒 of epoch 𝑒 , from Lemma 5.11,

all the honest nodes commit the 𝑆𝐵 with shares for the secret.

During the reconstruction for the beacon, every honest node 𝑝𝑖 ∈ P
use the same share for 𝑆𝑉𝐿𝑒 ,𝑖 with a high probability of 1−negl(^). A
Byzantine node 𝑝 𝑗 ∈ P cannot provide a valid witnessVSS.𝜋𝐿𝑒 , 𝑗
for an incorrect share with probability better than negl(^), thereby
ensuring that the correctness property is maintained.

Commitment: If an honest node commits a valid block 𝑆𝐵 from a

byzantine leader 𝐿𝑒 in some epoch 𝑒 , then all honest nodes commit

𝑆𝐵, from the SMR property in Theorem 4.5. Therefore during re-

construction, a Byzantine node 𝑝 𝑗 ∈ P cannot provide incorrect

shares as it cannot generate a valid witness VSS.𝜋𝐿𝑒 , 𝑗 (except
with negl(^) probability). If a Byzantine leader does not propose
any block, then all honest nodes agree on ⊥, thereby ensuring the

commitment property. □

Concrete Instantiations. Consider instantiatingVSS using the

Pedersen commitment based VSS [32] using the polynomial com-

mitment scheme. This scheme is identical to the Pedersen VSS [38]

which is an information-theoretic VSS scheme except that the poly-

nomial commitment based on 𝑞-SDH is used. The polynomial com-

mitment scheme however is identical to the Pedersen commitment

and is unconditionally hiding. Since our SMR is adaptively secure,

and our VSS scheme is unconditionally hiding, BRandPiper is also

adaptively secure. For the binding part, as shown in [32], one can

show a reduction to an adversary violating the binding property to

an adversary violating the 𝑞-SDH assumption.

Next, we show that BRandPiper satisfies the bias-resistance re-

quirement from Definition 3.3.

Lemma 5.15 (Bias-resistance). For any epoch 𝑒 ≥ 1, the probability
that a 𝑡-bounded adversary A can fix any 𝑐 bits of the BRandPiper
beacon output O𝑒 is negl(𝑐) + negl(^).

Proof Sketch. The output in any epoch 𝑒 is O𝑒 ← 𝐻 (𝑅𝑒 ),
where 𝑅𝑒 is the homomorphic sum of secrets from at least 𝑡 + 1
honest nodes. From the secrecy guarantee in Theorem 5.14, we

know that no adversary A can predict the value of these honest

nodes until reconstruction with probability better than negl(^). At
the same time, no adversary A can change the committed value

for any 𝑝𝑖 during reconstruction due to the commitment guarantee
from Theorem 5.14 with probability better than negl(^). Therefore,
a 𝑡-bounded adversary cannot do better than guessing whose prob-

ability is negl(𝑐) + negl(^) to fix 𝑐 bits in the output O𝑒 for any

epoch 𝑒 ≥ 1. □

Lemma 5.16 (Rushing Adversary Advantage). For any epoch 𝑒 , a
rushing adversary can reconstruct output O𝑒 at most 2Δ time before
honest nodes.

The proof remains identical to Lemma 5.3.

Next, we show that BRandPiper satisfies the 1-absolute unpre-

dictability requirement from Definition 3.3.

Lemma 5.17 (BRandPiper 1-absolute unpredictability). The BRand-
Piper random beacon protocol is an 1-absolute unpredictable random
beacon.

Proof Sketch. Since our SMR protocol is adaptively secure and

our protocol is as secure asVSS, we can instantiateVSS with

Pedersen VSS which is information theoretically secure but at the

cost of communication complexity to prove adaptive security of

BRandPiper. By instantiatingVSS with eVSS [32], we do not know

how to show adaptive security using existing proof techniques.

However, no adaptive attacks against eVSS are known either.

Let 𝜏 be some time at which all honest nodes are in an epoch

𝑒 ≥ 1. We show that an adversary A cannot predict O𝑒+1. Due to
the secrecy property in Theorem 5.14 and the fact that the beacon

output O𝑒+1 is derived from the reconstruction of 𝑅𝑒+1, which is

a homomorphic sum of inputs from at least 𝑛 − 𝑡 > 𝑡 nodes, any

adversaryA cannot predictO𝑒+1. The values from the honest nodes

are guaranteed to be truly random (by definition). Therefore, the

output O𝑒+1 is unpredictable for an adversary A.

An adversary A can get a 1 epoch advantage since there can

exists times 𝜏 where some honest nodes are in epoch 𝑒 and others

are in epoch 𝑒 − 1. At this point, a rushing adversary knows the

output O𝑒 before the honest nodes. □

Theorem 5.18 (BRandPiper Secure Random Beacon). BRand-
Piper protocol is a 1-secure random beacon.

Proof. The proofs follow trivially fromLemma 5.15, Lemma 5.17,

and Lemma 5.12. □

6 CLOCK SYNCHRONIZATION FOR NEW
NODES

In this section, we present a clock synchronization protocol to syn-

chronize some additional nodes when majority of honest nodes

are synchronized. Such a synchronization is useful during recon-

figuration when a new node joins the system. Prior known clock

synchronization protocol [3] can be used to synchronize all nodes

with a communication cost of𝑂 (^𝑛3) without threshold signatures.
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Let clock synchronization protocol start in epoch 𝑒 . Node 𝑝𝑖 ∈ P performs the following:

(1) Share secrets. Leaders {𝐿𝑒 , . . . , 𝐿𝑒+𝑡 } use block validation (refer Figure 8) and the BFT protocol to commit secrets {𝑠𝑒 , . . . , 𝑠𝑒+𝑡 }
respectively. e.g., Leader 𝐿𝑒 uses the block validation protocol while in epoch 𝑒 − 1 to share a single secret 𝑠𝑒 chosen uniformly

at random and collect an ack certificate AC(𝑆𝐵) on the commitment 𝑆𝐵 for secret 𝑠𝑒 . In epoch 𝑒 , Leader 𝐿𝑒 proposes block

𝐵𝑘 := (𝐻 (𝑆𝐵),AC(𝑆𝐵)).
(2) Reconstruct. When epoch-timer𝑒+2𝑡 expires, perform the following:

(a) Build homomorphic sum share 𝑆𝑉𝑖 , witnessVSS.𝜋𝑖 , and commitmentVSS.C𝑒 using secret shares for {𝑠𝑒 , . . . , 𝑠𝑒+𝑡 }. Send 𝑆𝑉𝑖
andVSS.𝜋𝑖 to all the nodes.

(b) Upon receiving share 𝑆𝑉𝑗 and witnessVSS.𝜋 𝑗 forVSS.C𝑒 , ensure thatVSS.ShVrfy(𝑆𝑉𝑗 ,VSS.𝜋 𝑗 ,VSS.C𝑒 ) = 1.

(c) Upon receiving 𝑡 + 1 valid homomorphic sum shares in 𝑆𝑉 , obtain 𝑅𝑒 ←VSS.Recon(𝑆𝑉 ).
(3) Synchronize. The first time node 𝑝𝑖 receives a valid homomorphic secret 𝑅𝑒 either through reconstruction or on receiving sync

message from other nodes, it

• resets its epoch-timer𝑒+2𝑡+1 to the beginning of epoch 𝑒 + 2𝑡 + 1.
• broadcasts a sync message containing 𝑅𝑒 to all other nodes

Figure 10: Clock synchronization protocol

This holds true even when synchronizing a single node in the sys-

tem where a majority of nodes are already synchronized.

Our clock synchronization protocol to add new nodes (refer Fig-

ure 10) makes use of VSS secret sharing scheme presented in Sec-

tion 5.3.2. Our approach requires a total communication complexity

of 𝑂 (^𝑛3); however, this can be split over 𝑂 (𝑛) iterations with
𝑂 (^𝑛2) communication. This will be useful in our beacon protocol

to maintain quadratic communication complexity in each round.

Our protocol uses the fact that 𝑂 (𝑡) secret shares can be homo-

morphically combined to a single secret share of size 𝑂 (1) and
𝑡 + 1 homomorphic secret shares can be be opened to get a 𝑂 (^)
sized secret. The opened secret can be broadcast among all nodes

to synchronize the clocks of all honest nodes including the new

joining node within Δ time from each other.

The first honest node to reset epoch-timer for some epoch 𝑒 will

broadcast syncmessage containing𝑅𝑒 whichmakes all other honest

parties reset their epoch-timer𝑒 within Δ time. Observe that since

the size of homomorphic 𝑅𝑒 is𝑂 (^) bits, an all-to-all broadcast has

a cost of 𝑂 (^𝑛2) bits.

7 RECONFIGURATION
In this section, we present reconfiguration mechanisms for our

beacon protocols to restore the resilience of the protocol after re-

moving some Byzantine nodes. We make following modification

to the protocols. Each node maintains a variable 𝑛𝑡 that records

the number of additional nodes that can been added to the system.

Variable 𝑛𝑡 is incremented each time a Byzantine node is added to

set P𝑟 and is decreased by one when a new node joins the system.

The value of 𝑛𝑡 can be at most 𝑡 .

The generic reconfiguration protocol is presented in Figure 11.

The reconfiguration protocol applies to both beacon protocols. Later,

we make appropriate modifications for each beacon protocols.

Lemma 7.1 (Liveness). If 𝑛𝑡 > 0 at some epoch 𝑒∗ and there are new
nodes intending to join the system in epochs ≥ 𝑒∗, then eventually a
new node will be added to the system.

Proof. Suppose 𝑛𝑡 > 0 and a new node 𝑝𝑖 intends to join the

system. Suppose for the sake of contradiction, no new node includ-

ing 𝑝𝑖 is added to the system. However, since node 𝑝𝑖 intends to join

the system, it must have sent inquire requests to all nodes in the

system and at least 𝑡 + 1 honest nodes will respond to the inquire

request since 𝑛𝑡 > 0 at the end of some epoch 𝑒 ′ ≥ 𝑒∗.
Let node 𝑝𝑖 send join request along with an inquire certificate

and nodes receive the request in epoch 𝑒 ≥ 𝑒 ′. The first honest

leader 𝐿𝑒′′ of epoch 𝑒 ′′ ≥ 𝑒 will include the join request in its

block proposal if no new node has been added to the system since

epoch 𝑒 ′ and there does not exist any block proposal with a join

request in the last 𝑡 + 1 epochs in its highest ranked chain and by

Fact 4.6, the block proposal with join request will be committed. A

contradiction.

If some node has already been added to the system since epoch 𝑒 ′,
this trivially satisfies the statement and we obtain a contradiction.

If there exists a block proposal 𝐵ℎ with a join request for some node

𝑝𝑘 in last 𝑡 epochs in the highest ranked chain for 𝐿𝑒′′ , 𝐵ℎ will be

committed since honest node 𝐿𝑒′′ extends it. The lemma holds and

we obtain a contradiction.

□

7.1 Reconfiguration for GRandPiper
Node 𝑝𝑘 generates a PVSS sharing (PVSS. ®𝑆,PVSS. ®𝐸,PVSS.𝜋) ←
PVSS.ShGen(𝑅) of a random value chosen from the input space

of PVSS for nodes P ∪ {𝑝𝑘 } \ P𝑟 . During the join phase in the

reconfiguration protocol (refer Figure 11), it sends a join request to

all nodes P \ P𝑟 with entityM set to the above PVSS sharings. In

addition, all nodes update Q(𝑝𝑘 ) with the PVSS sharings provided

by node 𝑝𝑘 once the join request from node 𝑝𝑘 gets committed.

We note that the adaptive adversary can corrupt any node as

long as 𝑡 + 1 honest nodes have full queue Q(𝑝 𝑗 ) ≠ ⊥∀𝑝 𝑗 ∈ P \ P𝑟 ,
i.e., if the adversary already corrupted 𝑡 nodes some of which are

removed, the adversary can corrupt old honest nodes only when

node 𝑝𝑘 has full queue (i.e., Q(𝑝 𝑗 ) ≠ ⊥∀𝑝 𝑗 ∈ P \P𝑟 ). This happens
when all nodes in P \ P𝑟 becomes a leader at least once after node

𝑝𝑘 becomes a leader. Due to random leader election, the expected

number of epochs required for all nodes to be selected as leaders is

𝑛
𝑛∑
𝑖=0

1

𝑖 = Θ(𝑛 log𝑛).

Remark.We note that our GRandPiper beacon protocol can em-

ploy a rotating leader election for our BFT SMR protocol with

randomized leader election during reconstruction phase. With this
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A new node 𝑝𝑘 that intends to join the system uses following procedure to join the system.

(1) Inquire. Node 𝑝𝑘 inquires all nodes in the system to send the set of active nodes, i.e., P \ P𝑟 . Upon receiving the inquire request,

an honest node 𝑝𝑖 responds to the request only if 𝑛𝑡 > 0. Node 𝑝𝑖 sends P \ P𝑟 at the end of some epoch 𝑒 ′ in which the inquire

request was received. Node 𝑝𝑘 waits for at least 𝑡 + 1 consistent responses from the same epoch 𝑒 ′ and forms an inquire certificate.

An inquire certificate is valid if it contains 𝑡 + 1 inquire responses that belong to the same epoch 𝑒 ′ and contains the same set of

active nodes.

(2) Join. Node 𝑝𝑘 sends a join request to all nodes P \ P𝑟 along with the inquire certificate and an additional entityM specific to the

beacon protocols.

(3) Propose. Upon receiving the join request, the leader 𝐿𝑒 of current epoch 𝑒 adds the join request containing inquire certificate and

entityM in its block proposal 𝐵𝑘 if (i) 𝐿𝑒 does not observe a block proposal with a join request in last 𝑡 + 1 epochs in its highest

ranked chain and (ii) no new node has been added since epoch 𝑒 ′.
(4) Update. If the block 𝐵𝑘 with the join request from node 𝑝𝑘 proposed in epoch 𝑒 gets committed by epoch 𝑒 + 𝑡 , update 𝑛𝑡 ← 𝑛𝑡 − 1

in epoch 𝑒 + 𝑡 and send P \ P𝑟 to node 𝑝𝑘 . Henceforth, node 𝑝𝑘 becomes a passive node and receives all protocol messages from

active nodes.

(5) Synchronize. Nodes execute clock synchronization protocol (refer Figure 10) from epoch 𝑒 + 𝑡 + 2 to synchronize node 𝑝𝑘 . All

nodes including node 𝑝𝑘 are synchronized in epoch 𝑒 + 3𝑡 + 3. At epoch 𝑒 + 3𝑡 + 3 update P ← P ∪ {𝑝𝑘 }. Henceforth, node 𝑝𝑘
becomes an active node and participates in the protocol. Additionally, node 𝑝𝑘 participates in the reconstruction protocol only if it

has required secret shares.

If node 𝑝𝑘 fails to join the system, it restarts reconfiguration process again after some time.

Figure 11: Reconfiguration protocol

change, the adaptive resilience of the beacon protocol is restored

in 𝑛 + 𝑡 + 1 epochs compared to expected 𝑛 log𝑛 epochs.

Theorem 7.2. GRandPiper protocol maintains safety and liveness
after reconfiguration.

Proof. Let node 𝑝𝑖 be the new joining node. GRandPiper pro-

tocol is safe and live before reconfiguration. Since we assume the

adversary can corrupt a new node as long as 𝑡 + 1 honest nodes
have full queue, i.e., Q(𝑝 𝑗 ) ≠ ⊥∀𝑝 𝑗 ∈ P \ P𝑟 , there will always be
𝑡 + 1 honest nodes with correct secret shares. Hence, the protocol

maintains safety and liveness after reconfiguration. □

7.2 Reconfiguration for BRandPiper
Node 𝑝𝑘 that intends to join the system uses the reconfiguration

protocol (refer Figure 11) to join the system. During the join phase,

node 𝑝𝑘 does not need to send any additional commitment i.e.,

setsM := ⊥. Once node 𝑝𝑘 becomes the active node, it is then

allowed to become a leader using round-robin leader election and

shares VSS commitments to 𝑛 secrets when it becomes the leader.

All active nodes uses secret shares for node 𝑝𝑘 only when they have

committed the commitment shared by node 𝑝𝑘 .

Like the reconfiguration for GRandPiper protocol, the adaptive

adversary can corrupt any node as long as 𝑡 + 1 honest nodes have
full queue Q(𝑝 𝑗 ) ≠ ⊥∀𝑝 𝑗 ∈ P \ P𝑟 . I.e., if the adversary already

corrupted 𝑡 nodes some of which are removed, the adversary can

corrupt old honest nodes only when node 𝑝𝑘 has full queue (i.e.,

Q(𝑝 𝑗 ) ≠ ⊥∀𝑝 𝑗 ∈ P \ P𝑟 ). This happens when all nodes in P \ P𝑟
becomes a leader at least once after node 𝑝𝑘 becomes a leader. Due

to the round-robin leader election, node 𝑝𝑘 will have full queue

after 𝑛 + 𝑡 + 1 epochs after it has become an active node.

Theorem 7.3. BRandPiper protocol maintains safety and liveness
after reconfiguration.

The proof remains identical to Theorem 7.2.

8 PERFORMANCE EVALUATION
In this section, we evaluate the performance of RandPiper, and

compare it with the performance of related works.

Implementation.We implement BRandPiper protocol in Rust, due

to its strong support for correctness in concurrency, and compile-

time memory safety guarantees. Our implementation is lock-free

and uses message passing to ensure efficiency. We provide the

setup parameters for every node in the config files. Our code is

event driven, and reacts to various timeouts and messages from

the network. We use ED25519 for digital signatures. We use the

BLS-12-381 [11] curve and use implementations of SCRAPE [18]

over this curve as the PVSS scheme, Pedersen-based eVSS and

Polycommit [32] over this curve as the VSS and bilinear accumulator

scheme.

Optimizations.We perform some system-level optimizations. In

particular, we do the following: (1) We generate random shares

before the propose step (this can be done using extra cores, an

external node supplying sharings) and use it during the propose

step, so that the share generation does not block the critical path.

(2) We take advantage of the tokio library [48] and futures in Rust

to run concurrently without spawning threads. (3) We implement

both the accumulator libraries: the bilinear accumulator as well as

the Merkle tree accumulator. We observe that the computational

performance of the Merkle tree accumulator is much better in

practice in general.

Setup. All our experiments were conducted on t2.micro AWS in-

stances located at ohio data center, which have 1GBRAM, 8GB hard

disk, 1 vCPU running at up to 3.3 GHz. The advertised bandwidth

for these instances is 60-80MBits/s.

Baselines. We compare the performance of our implementation

with two baselines which are the current state-of-the-art public im-

plementations: drand [25] and HydRand [41, 43]. We choose drand
because it is a practically deployed system implementing Cachin et
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Figure 12: Overview of the beacons produced perminute for the var-
ious protocols. Among the compared implementations, HydRand is
only bias-resistant but does not offer 1-absolute unpredictability

al. [17] and evaluating our performance against it justifies our prac-

ticality. We choose HydRand as our second baseline because, it is

theoretically related to our work: HydRand requires 2/3 honest ma-

jority as compared to the optimal 1/2 honest majority necessary for

us. Note that the basic HydRand protocol and implementation [41]

only offers bias-resistance but no unpredictability: an adversary

may correctly predict a random beacon in 𝑡 + 1 epochs in advance.

Micro-Benchmarks. We measure the efficiency of the primitives

used in our protocol. Concretely, we measure the run times for

(1) accumulator share generation, verification and reconstruction

for the bilinear accumulator as well as the Merkle tree accumulator,

(2) PVSS share generation, verification, and reconstruction, (3) eVSS

share generation, verification, and reconstruction, and (4) the size of

the various messages used in the protocol. The details are provided

in Appendix B. We observe that the Merkle tree accumulator for

our small scales has smaller message sizes and very efficient run

times. We also observe that eVSS operations in general perform

much better than its PVSS counterparts.

In this work, we build communication-efficient random beacon

protocols with comparable or better performance than the state of

the art solutions. Thus, the key metric we compare is the number

of beacon values that can be produced in a minute. In addition,

compared to Drand, we have the advantage of reconfigurability

and weaker network assumptions, and compared to HydRand, we

can tolerate more faults. The methodology is to run protocols at

appropriate values of Δ, which in turn depends on the computation

and communication costs.

BRandPiper.Our beacon produces a value every 11Δ. Wemeasure

the smallest value of Δ for which our beacon produces outputs

without any of the 𝑛 correct nodes blaming/reporting malicious

behaviour in the logs. Using this, we measure the metric: number of

beacons produced per minute for BRandPiper protocol, and present

them in Figure 12.We run our beacon for 100 rounds, thereby giving

a strong confidence that the Δ used is viable, provided the network

conditions stay the same.

Drand. For Drand, we measure the parameter time discrepancy,
which is a value output by the drand daemon by every node that

reports the time (in ms) between obtaining the beacon value and

the time at which the epoch started. This time accounts for the

synchronization losses, network delays as well as the computations.

The beacon continues to produce values every period seconds. How-

ever, the time discrepancy parameter defines the lowest period we

can set to ensure continuous beacon output. We give the benefit of

the doubt to drand here as there is no guarantee that setting such

low values for Δ does not overwhelm the system. We allow the

beacon to run for 100 epochs, and measure the 99.9𝑡ℎ percentile of

the time discrepancies observed in the logs of all the nodes over

all the epochs, and present their growth in Figure 12. For 100 per-

centile, we observe that we are always better than drand. In our

experiments, when 𝑛 = 65, we observed that the DKG initialization

in drand results in all the nodes aborting, even after setting large

values for period.

HydRand.We use the public implementation [41]. It consists of

three rounds: propose, acknowledge and vote, timeouts for which

can be configured. We find the smallest such configuration that

allows the system to work and report the numbers in Figure 12.

HydRand on its own offers 𝑡 + 1-absolute unpredictability where

𝑡 < 𝑛/3 along with the unbiasability property. However, drand and

BRandPiper are both 1-absolute unpredictable, and in that sense,

HydRand is not unpredictable.

From Figure 12, we can clearly see that the Merkle tree based

BRandPiper implementation is quantitatively as practical as the

state of the art practical random beacon protocol: drand. Drand
uses a leader to co-ordinate the DKG and reconfiguration proto-

cols. There is no description on how to recover if the leader was

Byzantine. Additionally, in drand, the synchronization for the re-

configured instance is via the co-ordinator (the leader). It is not clear

how the protocol will recover if the leader sends start messages

differently to different nodes in the system. Therefore, qualitatively,

we use much clearer and formal network assumptions and allow

efficient and secure reconfiguration, including synchronization for

the incoming nodes, without pausing the protocol, unlike drand,

and therefore can conclude that BRandPiper protocol is not just

theoretically interesting, but practical as well.
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A EXTENDED PRELIMINARIES
In this section, we provide additional preliminaries used in our

paper. The VSS interface is presented in Table 2 and the PVSS

interface is presented in Table 3.
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Figure 13: Performance comparison of the bilinear accumulator and
theMerkle tree accumulator.Wemeasure the performance to create
and reconstruct shares for the propose message, one of the largest
messages in our protocol.

Methodology. We use the criterion [12] benchmarking suite for

performing benchmarks. It warms the CPU for 3 seconds with plain

runs, and then finally benchmarks our code, computes a distribution

over the runs, and returns the likely cost (time) of the benchmark

after removing the outliers.

Accumulators. For this benchmark, we plot the time to create

shares for messages typically used in our protocol for the value of

𝑛 in the 𝑥-axis and the time in 𝑦-axis. We do not use parallelism

here, so when we say verify 𝑛 shares we mean verifying 𝑛 witnesses

serially.

Figure 13 shows the variation in the performance of the bilinear

accumulator and the Merkle tree accumulator. We observe that

the performance of the Merkle tree accumulator is significantly
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Table 2: VSS scheme algorithm interface

Interface Description

VSS.pp←VSS.Setup(^, aux) Generate the scheme parametersVSS.pp.VSS.pp is an implicit

input to all other algorithms.

(VSS. ®𝑆,VSS. ®𝑊,VSS.C) ← VSS.ShGen(𝑠) Typically executed by the dealer 𝐿 with secret 𝑠 to generate secret

sharesVSS. ®𝑆 := {VSS.s1, . . . ,VSS.s𝑛}, witnesses
VSS. ®𝑊 := {VSS.𝜋1, . . . ,VSS.𝜋𝑛}, and a constant size

commitmentVSS.C to a degree 𝑡 + 1 polynomial.

{0, 1} ← VSS.ShVrfy(VSS.s,VSS.𝜋,VSS.C) Verify if the shareVSS.s and witnessVSS.𝜋 form a correct

share forVSS.C. 0 indicates a failure and 1 indicates a success.

𝑠 ←VSS.Recon(VSS. ®𝑆) Reconstruct the shared secret 𝑠 from the collection of shares

VSS. ®𝑆 ⊆ {VSS.s1, . . . ,VSS.s𝑛}𝑡+1.

{0, 1} ← VSS.ComVrfy(VSS.C, 𝑠) Check if 𝑠 is the correct opening for the commitmentVSS.C. 0
indicates a failure, and 1 indicates a success.

Table 3: PVSS scheme algorithm interface

Interface Description

PVSS.pp← PVSS.Setup(^, aux) Generate the scheme parameters PVSS.pp. PVSS.pp is an

implicit input to all other algorithms.

(PVSS.pk,PVSS.sk) ← PVSS.KGen(^) Generate PVSS key-pair (PVSS.pk,PVSS.sk) used for share

encryption and decryption

𝑐 ← PVSS.Enc(PVSS.pk,𝑚)
𝑚 ← PVSS.Dec(PVSS.sk, 𝑐)

The encryption and decryption algorithms used to send shares to

all, and obtain private share respectively. The invariant

Pr [PVSS.Dec(PVSS.Enc(𝑚)) =𝑚] = 1 must always hold true

for all𝑚 in the message domain of PVSS.Enc. The decryption
algorithm may also optionally output a proof of correct decryption.

(PVSS. ®𝑆,PVSS. ®𝐸,PVSS.𝜋) ← PVSS.ShGen(𝑠) Typically, executed by the dealer 𝐿 with secret 𝑠 to generate secret

shares PVSS. ®𝑆 := {PVSS.s1, . . . ,PVSS.s𝑛} and encryptions

of shares PVSS. ®𝐸 :=

{PVSS.Enc(PVSS.s1), . . . ,PVSS.Enc(PVSS.s𝑛)} for all
nodes P, and a cryptographic proof PVSS.𝜋 committing to 𝑠

which guarantees any node with > 𝑡 shares reconstruct a unique 𝑠 .

{0, 1} ← PVSS.ShVrfy(PVSS. ®𝐸,PVSS.𝜋) Verify if the sharing is correct. A successful verification guarantees

that all the encrypted shares are correct and that any 𝑡 + 1 nodes
will reconstruct a unique 𝑠 . 0 indicates a failure and 1 indicates a

success.

𝑠 ← PVSS.Recon(PVSS. ®𝑆) Reconstruct the shared secret 𝑠 from the collection of shares

PVSS. ®𝑆 ⊆ {PVSS.s1, . . . ,PVSS.s𝑛}𝑡+1

better than that of the bilinear accumulator, and therefore in cloud

settings it is efficient to choose a Merkle tree implementation. For

high performance machines, or very tightly constrained networks,

the bilinear accumulator provides a trade-off between the message

size and computation.

Secret sharing. Figure 14 gives an overview of the performance of

the various secret sharing schemes. We observe that the VSS scales

much better than PVSS scheme for the same number of nodes. An

interesting quirk we observe is that for eVSS, the costliest operation

is the share generation as it involves generating shares for every

node, witnesses and commitments. However, this step is not on the

critical path; it can be performed one epoch before a proposal. The

verification is the next costliest operation which again can proceed

at its own pace without affecting the BFT for BRandPiper and only

affects a delay in producing the beacon value.

Message sizes.We plot the message sizes of the various steps used

in both variant of our implementation. The 𝑦-axis in Figure 15

and Figure 16 represents the size of the message after serialization.
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Figure 14: An overview of the performance of VSS and PVSS
schemes. In general, we observe that the VSS scheme (eVSS) per-
forms better than the PVSS schemes.
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Figure 15: An overview of themessage sizes of the variousmessages
in ourMerkle tree based implementation of BRandPiper. The sharp
rise observed for the deliver messages is due to the log factor.
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Figure 16: An overview of themessage sizes of the variousmessages
in our bilinear accumulator based implementation of BRandPiper.

We use Rust’s in built serde [45] mechanism to derive an efficient

binary encoding/decoding scheme for our data. For instance, The

Ack message is 56 bytes,a Vote message is 56 bytes, and Reconstruct
is 189 bytes after serialization in both our implementations.
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