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Abstract

Imagine one or more non-colluding servers each holding a large public database, e.g., the
repository of DNS entries. Clients would like to access entries in this database without disclos-
ing their queries to the servers. Classical private information retrieval (PIR) schemes achieve
polylogarithmic bandwidth per query, but require the server to perform linear computation per
query, which is a significant barrier towards deployment.

Several recent works showed, however, that by introducing a one-time, per-client, off-line
preprocessing phase, an unbounded number of client queries can be subsequently served with
sublinear online computation time per query (and the cost of the preprocessing can be amor-
tized over the unboundedly many queries). Existing preprocessing PIR schemes (supporting
unbounded queries), unfortunately, make undesirable tradeoffs to achieve sublinear online com-
putation: they are either significantly non-optimal in online time or bandwidth, or require the
servers to store a linear amount of state per client or even per query, or require polylogarithmi-
cally many non-colluding servers.

We propose a novel 2-server preprocessing PIR scheme that achieves Õ(
√
n) online computa-

tion per query and Õ(
√
n) client storage, while preserving the polylogarithmic online bandwidth

of classical PIR schemes. Both the online bandwidth and computation are optimal up to a poly-
logarithmic factor. In our construction, each server stores only the original database and nothing
extra, and each online query is served within a single round trip. Our construction relies on the
standard LWE assumption. As an important stepping stone, we propose new, more generalized
definitions for a cryptographic object called a Privately Puncturable Pseudorandom Set, and
give novel constructions that depart significantly from prior approaches.
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1 Introduction

Imagine that a service provider has a large public database, DB, and is serving clients who request
records from DB. For example, in a search-engine scenario each entry in DB may be the search result
for a specific keyword; in the DNS scenario, each entry contains the records for a specific domain
name. Without loss of generality, we may assume that the database DB ∈ {0, 1}n is an array of
bits indexed by {0, 1, . . . , n − 1}, and a client’s query is an index i ∈ {0, 1, . . . , n − 1} into DB1.
Although the database itself is public, the clients wish to hide their queries from the server. This
problem has been studied in a beautiful line of work called Private Information Retrieval (PIR),
first formulated by Chor, Goldreich, Kushilevitz, and Sudan [CGKS95, CKGS98]. Since then, a
rich line of work [CG97, Cha04, GR05, CMS99, KO97, Lip09, OS07, Gas04, DG16, PR93, DCIO98,
BLW17,BGI16,PPY18, IKOS04,HH17,ACLS18, IKOS06,LG15,DHS14] has improved the original
construction of Chor et al. [CGKS95]. This paper focuses on 2-server PIR, i.e., there are two non-
colluding servers, and the goal is to prevent each individual server from learning anything about
the clients’ actual queries.

Single- or multi-server PIR schemes with polylogarithmic bandwidth (bits sent per query) and
linear server work per query are well known [CG97,Cha04,GR05,CMS99,KO97,Lip09,OS07,PR93,
BLW17,BGI16,PPY18,DG16,IKOS04,HH17]. While these PIR schemes are elegant in construction
and achieve non-trivial asymptotic bounds, the prohibitive server running time per query is a
significant barrier towards practical deployment. For example, in our motivating applications, the
database may have billions or trillions of entries. Unfortunately, in the original formulation phrased
by Chor et al. [CGKS95], linear server work is required to achieve privacy [BIM00] — intuitively,
if there is a location that the server does not need to read, the query is definitely not looking
for that location. To avoid this drawback, a promising direction has been suggested by a few
recent works [BIM00, CK20], namely, PIR with preprocessing. In PIR with preprocessing, clients
and servers are allowed to perform one-time offline preprocessing. After preprocessing, the PIR
scheme should support an unbounded number of queries from each client. The cost of the offline
preprocessing can thus be amortized “away” over sufficiently many queries, and we can hope for
sublinear amortized (i.e., online) running time per query.

Preprocessing PIR was considered in several prior works [BIM00, Lip09, PR93]. Beimel, Ishai,
and Malkin [BIM00] were the first to suggest using preprocessing to reduce the server’s online
computation. They constructed a statistically secure 2-server PIR scheme with nε online bandwidth
and running time for some constant ε ∈ (0, 1) by having the servers preprocess the n-bit DB into an
encoded version of poly(n) bits. The line of work on preprocessing PIRs culminated in the elegant
work by Corrigan-Gibbs and Kogan [CK20], who showed that, assuming one-way functions, there is
a 2-server preprocessing PIR scheme with O(

√
n) online bandwidth and running time (ignoring the

dependence on the security parameter). In their scheme the servers store only the original database
DB and nothing extra, but each client needs to store a “hint” of size O(

√
n). Corrigan-Gibbs and

Kogan [CK20] also proved that the O(
√
n) online computation is optimal, assuming that the client

downloads only O(
√
n) amount of information from the server during pre-processing and that the

servers store only the unencoded database (and the proof works by reducing PIR to Yao’s Box
problem [Yao90]). The main drawback with their scheme is the significantly non-optimal O(

√
n)

online bandwidth which is also much worse than classical PIR without preprocessing.
Given the state of affairs for preprocessing PIR, we ask the following question:

Can we construct a preprocessing PIR scheme that is simultaneously optimal in online bandwidth

1If the query is a keyword or domain name, it can be hashed to an index, and if each entry has multiple bits, we
can treat it as retrieving multiple indices.
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and online time?

Before we present our results and contributions, we point out a couple of important desiderata
and clarify the problem statement:

• Unbounded query setting. First, we want the PIR scheme to support an unbounded number
of queries after a one-time processing. This is necessary in the vast majority of conceivable
applications (e.g., oblivious DNS [SCV+20, obl], oblivious Safe Browsing [dim21], the four ex-
cellent use cases in the Splinter work [WYG+17], and other applications [ACLS18, ALP+19]).
Unsurprisingly, state-of-the-art PIR implementations invariably support unbounded number of
queries too [ACLS18,ALP+19,WYG+17]. Without the unbounded requirement, there is indeed
a scheme with O(

√
n) online computation and Õ(1) online bandwidth shown in the same work

of Corrigan-Gibbs and Kogan [CK20] — unfortunately, this scheme supports only a single query
after the preprocessing, and thus the linear preprocessing cost should be charged to each query,
and cannot be amortized over multiple queries.

• No per-client server state. Second, the server should not have to store per-client state. There are
alternative solutions if we let the server store per-client state (and often O(n) state per client).
For example, one strawman candidate is to use an Oblivious RAM (ORAM) scheme [Gol87,
GO96,SCSL11]. During the offline phase, the client downloads the database from the server and
uses a secret key to compile the database into an ORAM which is then stored on the server. This
would allow queries to be supported in polylogarithmic running time and bandwidth per query,
and constant roundtrips (provided the server can perform computation) [DvDF+16, GHL+14,
LO13, GMP16]. Unfortunately, Ω(n) per-client state on the server would clearly be a barrier
towards practicality in some motivating applications. Similarly, the recent doubly-efficient (1-
server) PIR constructions in the designated-client setting [CHR17,BIPW17] also suffers from the
same drawback, although they remove the need for clients to store persistent state. A doubly-
efficient PIR construction in the public-client setting promises to remove the O(n) per-client
state at the server. Unfortunately, the only known such construction relies on virtual blackbox
(VBB) obfuscation which is known to be impossible [BGI+01]. We compare with additional
related works in Section 8.

Besides the above, we also want the client-side storage to be small — if the client could store
the entire database, then there is no need to talk to the server.

Our results and contributions. We answer the above question affirmatively, assuming Learning
With Errors (LWE) [Reg09]. Our scheme employs two servers, a “left” server and a “right” server
and, at a high level, works as follows.

• During the offline preprocessing phase, each client sends a single message of size roughly Õ(
√
n)

to the left server2. The left server responds with a hint of Õ(
√
n) bits, which is stored by the

client. Then online queries begin.

• For each online query, the client sends a single poly-logarithmically sized message to each server
in parallel. In particular, the message sent to the right server is used for answering the query.
Using its locally stored hint and the right server’s response, the client can reconstruct the correct
answer to the query except with negligible probability. The message sent to the left server is
used to partially “refresh” the client’s hint. The client uses the answer from the left server and
the outcome of the present query to update one entry in the Õ(

√
n)-sized hint it stores.

More formally, we prove the following theorem:

2The Õ(·) notation hides polylogarithmic factors and dependence on the security parameter.
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Theorem 1.1 (2-server preprocessing PIR). Assuming the Learning With Errors (LWE) assump-
tion, there exists a 2-server preprocessing PIR scheme that satisfies the following performance
bounds:

• the offline server running time is Õ(n); the offline client running time and bandwidth is Õ(
√
n).

• the online server and client time per query is Õ(
√
n); the online bandwidth per query is Õ(1).

• each online query can be accomplished in a single roundtrip, that is, the client sends a single
message to each server in parallel, and reconstructs the answer from the two servers’ responses
respectively; and

• each server needs to store only the original database DB and no extra information; each client
needs to store Õ(

√
n) bits of information.

Due to the lower bound of Corrigan-Gibbs and Kogan [CK20], our scheme’s total online time
is optimal up to poly-logarithmic factors, assuming that the client downloads only approximately√
n amount of information from the server during preprocessing. In comparison, the prior state-of-

the-art scheme [CK20] can achieve optimal online computation, but their
√
n online bandwidth is

significantly non-optimal. We improve their bandwidth consumption by a roughly
√
n factor, and

thus achieve near optimality in both online computation and bandwidth. Table 1 compares our
result with the most relevant prior work.

Theorem 1.1 does not give the exact constant c in the hidden logc n factor; however, in Sec-
tion 5.4, we give a more careful analysis of the concrete constants. Specifically, we show that
with additional fine-tuning and optimizations, we can get the following more precise asymptotical
performance where α(λ) denotes an arbitrarily small super-constant function: the offline server
time is O(n log2 n log λ) · α(λ), the offline client time is O(

√
n log2 n log λ) · α(λ), and the of-

fline client bandwidth is O(
√
n log2 n log λ) · α(λ). Moreover, the online client time per query

is O(
√
n log2 n log λ) · α(λ), the online server runtime is O(

√
n log n log λ) · α(λ), and the online

bandwidth per query is O(log n · log λ) · α(λ).
Furthermore, in Appendix A, we also discuss how to tune the parameters to get near optimality

of the online bandwidth and computation, for every choice of offline bandwidth, in light of the
known lower bound [CK20].

Remark 1. Like in earlier works [CK20], for simplicity, in our asymptotical performance bounds,
we hide a security parameter χ(λ) factor that is related to the strength of the LWE assumption.
If we assume standard polynomial security, χ(λ) is polynomially bounded in λ; if we assume
subexponential security, χ(λ) is poly-logarithmic in λ.

Technical highlight. Our 2-server preprocessing PIR scheme is inspired by the very recent
work of Corrigan-Gibbs and Kogan [CK20]. At a high level, their work shows how to construct
a 2-server preprocessing PIR scheme using a cryptographic object which they call a Puncturable
Pseudorandom Set (PRSet). A PRSet scheme provides an algorithm for generating a secret
key sk that can be used to generate a pseudorandom subset Set(sk) ⊆ {0, 1, . . . , n − 1}; sk thus
serves as a succinct representation of the set Set(sk). Further, there is an efficient puncturing
algorithm: suppose some element x ∈ Set(sk), then Puncture(sk, x) outputs a punctured key skx
that effectively removes x from the set, i.e., Set(skx) = Set(sk)\{x}.

Unfortunately the Corrigan-Gibbs and Kogan [CK20] PRSet scheme is not efficient in all dimen-
sions, namely, set enumeration time, membership test time, and punctured key size. As a tradeoff,
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Table 1: Comparison with prior schemes. Includes only schemes where the servers need not

store per-client state, has sublinear online time, and supports an unbounded number of queries (possibly

after a one-time preprocessing). Sections 1 and 8 review additional related work in the broader design

space, when we are willing to relax these desiderata. “C-Time”, “S-Time”, and “BW” denote client time,

server time, and bandwidth, respectively. “OLDC” means oblivious locally decodable codes, and “VBB

Obf.” means virtual-blackbox obfuscation. ε ∈ (0, 1) is a constant.

F: Beimel et al. [BIM00] requires the servers to store a large poly(n) amount of state.

Offline Online
Scheme #server Assumpt. C-Time S-Time BW C-Time S-Time BW

[BIM00]F 2 None 0 poly(n) 0 nε nε nε

[CK20]
2 OWF O(

√
n) O(n) O(

√
n) O(

√
n) O(

√
n) O(

√
n)

2 OWF O(
√
n) O(n) O(

√
n) O(n5/6) O(

√
n) Õ(1)

[BIPW17] 1 OLDC, VBB Obf. 0 0 0 nε nε nε

Our PIR 2 LWE Õ(
√
n) Õ(n) Õ(

√
n) Õ(

√
n) Õ(

√
n) Õ(1)

LB [CK20] - - - - n/β - β -

they opt for efficient set enumeration and efficient membership test, allowing their PIR scheme to
achieve roughly

√
n online running time. Their PRSet scheme, however, adopts a trivial puncturing

algorithm. The punctured key is simply the entire punctured set itself minus the element x to be
removed, which causes their online bandwidth to be roughly

√
n, which is asymptotically worse

than classical PIR schemes without preprocessing [CG97,GR05,CMS99,KO97,Lip09,OS07,Gas04,
BGI16,DG16].

To achieve our stated result, an important stepping stone is to construct a new Privately Punc-
turable Pseudorandom Set (PRSet) that is efficient in all dimensions. Unfortunately, as explained
in Section 2, these requirements seem to be inherently conflicting, and we were not able to directly
reconcile them — likely Corrigan-Gibbs and Kogan [CK20] encountered the same barriers.

Our key insight is to observe that the Corrigan-Gibbs and Kogan formulation of a PRSet scheme
seems too restrictive. We generalize their PRSet abstraction in the following ways.

1. Emulating a customized sampling distribution. Corrigan-Gibbs and Kogan consider only PRSet
schemes that emulate simple distributions, such as sampling a random

√
n-sized subset among n

elements, or sampling each element at random with probability 1/
√
n. By contrast, we generalize

the PRSet definition to allow it to emulate an arbitrary distribution of choice. Later we discuss
the challenges of choosing this distribution.

2. Relaxed correctness definition. Corrigan-Gibbs and Kogan’s definition insists on almost-always
correctness. We observe that a weaker notion, which we call “occasional correctness,” is suffi-
cient for obtaining a 2-server preprocessing PIR (since our PIR construction relies on parallel
repetition to amplify the correctness to 1 − negl(λ)) where λ denotes the security parameter
globally. Specifically, we want the puncturing algorithm to remove the point x being punctured,
and only the point x — but we only need this to happen with considerable but not overwhelming
probability.

Therefore, one technical contribution we make is to devise a more generalized/relaxed abstrac-

4



tion of a Privately Puncturable Pseudorandom Set (PRSet) scheme that is suitable and sufficient for
constructing an efficient 2-server preprocessing PIR. To do so, we need to identify an appropriate
sampling distribution that the PRSet should emulate. In our carefully chosen distribution, each
element from {0, 1, . . . , n − 1} is included in the set with roughly 1/(

√
n · poly log n) probability,

but the sampling is not completely independent among the elements. For example, if some element
x is included in the set, it might make some other element y more likely to be included. As we
explain in more detail in Sections 2 and 5.5, an independent distribution seems to facilitate an
efficient membership test, but preclude efficient set enumeration; on the other hand, having more
dependence and the right type of dependence can enable efficient set enumeration, but may destroy
the efficiency of the membership test. We seek a middle ground by choosing a distribution that has
a limited amount of dependence, and the right type of dependence.

We next show how to construct a PRSet scheme that emulates our carefully chosen distribution,
and prove the construction secure under our new definitions. Our construction relies on the exis-
tence of Privately Puncturable PRFs which can be constructed assuming LWE [BLW17, BKM17,
CC17, BTVW17]. Our PRSet construction is remotely inspired by the line of work on designing
block ciphers and format preserving encryption from pseudorandom functions [RY13, MR14, SS],
but our problem definition and solutions are novel and fundamentally different from prior works.

Finally, we use our PRSet scheme to construct a 2-server preprocessing PIR scheme and prove the
PIR scheme correct and secure. Our construction is inspired by Corrigan-Gibbs and Kogan [CK20]
but differs in several important details. The proofs are rather technical and involved. Perhaps
somewhat surprisingly, proving correctness turns out to be the most technically challenging part of
our proof, although proving privacy is also non-trivial. Our PIR scheme runs k parallel instances
of a single-copy PIR scheme. We need to prove occasional correctness of each single-copy scheme,
and use majority voting among all instances to amplify correctness. Unfortunately, we cannot
easily argue occasional correctness of the single-copy PIR from the occasional correctness of the
PRSet scheme. Part of challenge arises from the fact that conditioning on events that have taken
place skews the distribution of the pseudorandom sets, and we need to make an occasional correct-
ness argument even for this skewed distribution (which does not even have a clean and succinct
description). At a very high level, to make the argument work, we make an involved stochastic
domination argument that effectively shows that conditioning on the events that have taken place
will not worsen the probability of certain bad events that could lead to incorrectness. We refer the
reader to Section 5.5 for more detailed discussions on the technicalities in the proof.

Non-goals and open questions. Previous preprocessing PIR schemes in the unbounded query
setting are significantly non-optimal in either online bandwidth or computation. Our work is
primarily a theoretical exploration aimed at bridging the important theoretical gap in our under-
standing. We do not claim immediate practicality of our scheme. We believe, however, that achiev-
ing asymptotical near optimality represents an important step forward towards eventually having
a practical PIR scheme. Specifically, we suggest the following possible future directions towards
better concrete performance: 1) the parameters in our current theorems are not tight, therefore con-
crete security parameterization is a potential improvement; and 2) designing a concretely efficient
Privately Puncturable PRF would be critical to concrete performance. For example, instantiations
based on other assumptions might be more efficient than the current LWE-based schemes.

Besides improving concrete performance, there are also interesting theoretical open questions.
One seemingly challenging question is whether we can asymptotically reduce the client online time
— the lower bound by Corrigan-Gibbs and Kogan [CK20] shows that the server computation (or the
combined server-client computation) must be at least

√
n per query, assuming the client downloads
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√
n information from the server during pre-processing. The known lower bound does not rule out

schemes with asymptotically smaller client online time.

2 Strawman Attempts

To understand our ideas, it helps to first illustrate a strawman scheme and see why it fails — the
toy scheme below is a variant (and slight simplification) of the elegant 2-server preprocessing PIR
scheme by Corrigan-Gibbs and Kogan [CK20]. This toy scheme is meant for illustrating the “core”
of the scheme, and is not concerned about compressing storage or bandwidth.

An Inefficient Toy Scheme: Single-Copy Version

Offline preprocessing. (DBk denotes the k-th bit of the database)

• Client generates
√
n sets S1, S2, . . . , S√n. Each Sj ⊆ {0, 1, . . . , n − 1} where j ∈ [

√
n]

is sampled by including each element i ∈ {0, 1, . . . , n − 1} with independent probabilitya

1/
√
n.

• Client sends the resulting sets S1, . . . , S√n to Left. For each set j ∈ [
√
n], Left responds with

the parity bit pj := ⊕k∈SjDBk of indices in the set.

• Client stores the hint T := {Tj := (Sj , pj)}j∈[
√
n].

Online query for index x ∈ {0, 1, . . . , n− 1}.

• Query: (Client⇔ Right)

1. Find an entry Tj := (Sj , pj) in its hint table T such that x ∈ Sj . Let S∗ := Sj if found,
else let S∗ be a fresh random set containing x.

2. Send the set S := Resample(S∗, x) to Right, where Resample(S∗, x) outputs a set almost
identical to S∗, except that the coin used to determine x’s membership is re-tossed.

3. Upon obtaining a response p := ⊕k∈SDBk from Right, output the candidate answer
β′ := pj ⊕ p or β′ := 0 if no such Tj was found earlier.

4. Client obtains the true answer β := DBx — the full scheme will repeat this single-copy
scheme k times, and β is computed as a majority vote among the k candidate answers,
which is guaranteed to be correct except with negligible probability.

• Refresh (Client⇔ Left)

1. Client samples a random set S containing x, and then lets S′ := Resample(S, x), and
sends S′ to Left (notice that this is equivalent to just sampling a fresh set, but we write
it this way for later convenience).

2. Left responds with p := ⊕k∈S′DBk. If a table entry Tj containing x was found and
consumed earlier, Client replaces Tj with (S, p⊕ β).

aThe work of Corrigan-Gibbs and Kogan [CK20] samples a set of fixed size
√
n, whereas in our particular

variant, the size of each set is a random variable whose expectation is
√
n.

In this toy scheme, during pre-processing, the client samples
√
n sets each containing

√
n ran-

domly chosen bits, and downloads the parity of each set from the left server. During an online
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query, suppose the client wants the index i, it finds a set S∗ containing i. It then resamples the
decision whether i should belong to the set, and the resampled set S removes i with high probabil-
ity. It sends the resampled set S to the right server, which returns its parity. Now, if such a set S∗

was found, XORing the parity of the set S∗ and the set S gives client the correct answer with high
probability. To support an unbounded number of queries, the client performs a refresh procedure
with the left server to replenish the set that was just consumed.

Correctness amplification through parallel repetition. The above toy scheme guarantees
correctness for the query x, provided that 1) an entry Tj := (Sj , pj) containing x is found, and 2)
Resample(Sj , x) happens to remove x from the set Sj . It is not hard to prove that correctness is
guaranteed with probability at least 3/5 for sufficiently large n. To amplify correctness, we can
run k copies of the scheme, and instead of calling the true-answer oracle to obtain the answer β,
we set β to be the majority vote among the k candidate answers, which is correct with 1− 2−Θ(k)

probability due to the standard Chernoff bound. If we set k = ω(log λ), then the failure probability
would be negligibly small in λ.

Privacy. In the inefficient toy scheme, left-server privacy is easy to see: basically the left server
Left sees

√
n random sets during the offline phase. During each online query, it sees a random set

as well.
Arguing right-server privacy is a little more subtle. The right server Right is not involved

during the offline phase. We want to show that for each online query, Right sees a fresh random
set. Recall that during a query for x, the client finds an entry Tj := (Sj , pj) such that Sj 3 x. It
lets S∗ := Sj if such an entry Tj is found, else S∗ is a fresh random set containing x. The client
now sends Resample(S∗, x) to Right and if such a Tj was found and consumed, it replaces Tj with
a fresh set containing x. We can prove right-server privacy by induction: suppose that conditioned
on Right’s view so far, the client’s hint table T contains

√
n independent random sets (note that

this is true at the beginning of the online phase). Then, we can argue that during the next query
for x, Resample(S∗, x) is distributed as a fresh random set conditioned on Right’s view so far; and
moreover, at the end of the query, the client’s hint table T is distributed as

√
n independent random

sets conditioned on Right’s view so far.

Performance bounds. In the toy scheme, the bandwidth and server runtime are O(
√
n) for

each online query. If the client adopts an efficient data structure for testing set membership, the
client’s runtime can also be upper bounded by O(

√
n) per query, but its storage is O(n). We want

to reduce the online bandwidth to polylogarithmic and reduce the client-side storage to sublinear,
while preserving the Õ(

√
n) online time for both the server and the client.

Strawman ideas for improving efficiency. A failed attempt to improve efficiency is the fol-
lowing. Let us generate each set using a pseudorandom function (PRF) rather than using true
randomness. Specifically, we may assume that the PRF(sk, ·) outputs a number in [n], and an
element i ∈ {0, 1, . . . , n− 1} is considered in the set iff PRF(sk, i) ∈ [1,

√
n]. Moreover, sampling a

pseudorandom set would boil down to sampling a fresh PRF secret key.
In this way, a pseudorandom set can be succinctly represented by a PRF secret key, and we

can improve the client’s storage to
√
n · χ(λ) where χ(λ) is an upper bound on the length of the

PRF key. During the online phase, the client needs to resample the set at the point x where
x ∈ {0, 1, . . . , n−1} is the current query. If we could represent this locally resampled set succinctly
too, then we can reduce the online bandwidth.
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To achieve this, our idea is to adopt a Privately Puncturable PRF [BLW17,BKM17,CC17]. A
Puncturable PRF is a PRF with the following additional functionality: given a point x and the
secret key sk, one can call the skx ← Puncture(sk, x) function to obtain a secret key skx that
allows one to evaluate the PRF correctly at any point other than x. In an ordinary Puncturable
PRF construction [GGM86], using the punctured key skx to evaluate over the point x could result
in an invalid symbol ⊥. In contrast, a Privately Puncturable PRF allows one to remove a point x
and obtain a punctured key skx; however, the punctured key skx does not disclose the point x. For
skx to hide x, it must be that using skx to evaluate over the point x yields a non-⊥ outcome r. Not
only so, imprecisely speaking, to a computationally bounded adversary, calling Puncture(sk, x)
should behave just like resampling the PRF’s outcome at the point x.

If we use a Privately Puncturable PRF to construct a pseudorandom set like above, during
each online query, we obtain a construct which we call a Privately Puncturable Pseudorandom
Set. Generating a pseudorandom set is achieved by sampling a PRF key sk. Further, given a set
represented by sk that contains a specific element x, one can perform a puncturing operation at x
to derive a punctured secret key skx — this puncturing procedure acts as if we resampled the coins
that determine whether x is in the set or not.

With such a Privately Puncturable Pseudorandom set, during each online query, the client can
find a secret key sk from its table T that contains the queried element x ∈ {0, 1, . . . , n − 1} (or
sample a random sk containing x if not found), puncture the element x from the set sk, and send
the punctured key skx to the right server. Similarly, to perform a refresh operation with the left
server, the client simply samples a key sk′ such that the associated set contains x, puncture x
from sk′, and send the resulting punctured key sk′x to the left server. This approach allows us to
compress the online bandwidth to O(χ(λ)) bits per copy (and recall that there are k = ω(log λ)
parallel copies), where χ(λ) denotes the length of a punctured key.

Unfortunately, this idea completely fails because to generate the set from a secret key sk, the
server would have to do a linear amount of work! This defeats our original goal of achieving
sublinear online runtime.

Corrigan-Gibbs and Kogan’s variant and why it fails too. At this point, we also briefly
overview the approach of Corrigan-Gibbs and Kogan [CK20]. They adopt a different PRSet con-
struction that indeed allows efficient set enumeration in roughly

√
n (rather than linear in n) time.

Unfortunately, their scheme does not offer a puncturing procedure that achieves any non-trivial
efficiency; thus in each online query, the client has to send an entire (

√
n − 1)-sized set (rather

than a punctured secret key) to each server. More specifically, Corrigan-Gibbs and Kogan [CK20]
use a Pseudorandom Permutation (PRP) on the domain {0, 1, . . . , n − 1} to sample a pseudoran-
dom set. A secret key sk of a PRP scheme defines a corresponding set {PRP(sk, i)}i∈{0,1,...,√n−1}.
Thus, the definition of the set itself gives an efficient set enumeration algorithm. To determine
whether an element x ∈ {0, 1, . . . , n − 1} is in the set generated by sk, simply check whether
PRP−1(sk, x) ∈ {0, 1, . . . ,

√
n − 1}. Their approach samples the set from a different distribution

than our earlier strawman — in particular, the sampled set is of fixed size
√
n, and therefore x

being in the set is not independent of whether y 6= x is in the set (even when the PRP is replaced
with a completely random permutation). For this reason, during the online phase, they adopt a
slightly different approach than our earlier strawman: after finding a set either from the table T
or freshly generated that contains the queried element x, they remove x from the set with high
probability, but with a small probability, they remove a random element other than x. In this way,
the right server sees a random set of size exactly

√
n− 1, and the same applies to the left server.

The main problem with their approach is that it is not amenable to puncturing (with non-trivial
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efficiency). In fact, Boneh, Kim, and Wu proved the non-existence of Puncturable PRPs [BKW17].
In our case, the domain size n is polynomially bounded, and even if we punctured a point x from
the PRP, the adversary can easily recover PRP(sk, x) by evaluating PRP(sk, ·) at all other points.

To get around the non-existence of puncturable PRP barrier, one might be tempted to compute
the pseudorandom set as {PRF(sk, i)}i∈{0,1,...,√n−1} instead, i.e., essentially the “dual” of our earlier
PRF-based strawman scheme. While this approach allows for efficient set enumeration, it precludes
efficient membership testing which, in our context, would make the client’s online runtime linear.

3 Preliminaries: Privately Puncturable PRFs

We define a Puncturable PRF scheme that allows puncturing of a set of m points. Such a scheme
consists of the following possibly randomized algorithms:

• sk← Gen(1λ, L,m): takes in a security parameter λ, the maximum message length L ≤ λ, and
the number of points to be punctured m, and samples a secret key sk.

• y ← Eval(sk, x): given the secret key sk and an input x ∈ {0, 1}≤L := {∅} ∪ {0, 1} ∪ {0, 1}2 ∪
. . . ∪ {0, 1}L, outputs an evaluation result y ∈ {0, 1}.

• skP ← Puncture(sk, P ): let P ⊆ {0, 1}≤L be a set of exactly m distinct points to puncture,
output a punctured key skP .

• y ← PEval(skP , x): given a punctured key skP and a point x ∈ {0, 1}≤L, outputs an evaluation
result y.

In the above, Eval and PEval are both deterministic algorithms.

Functionality preservation. We say that a Puncturable PRF scheme PRF := (Gen, Eval,
Puncture, PEval) satisfies functionality preservation, iff for any L and m that are upper bouned
by a fixed polynomial in λ, for any non-uniform p.p.t. stateful adversary A (that is required to
output a set P of size exactly m), there is a negligible function negl(·) such that

Pr


sk← Gen(1λ, L,m), P ← A(1λ),

skP ← Puncture(sk, P ),

x← AEval(sk,·)(skP )

:

(x /∈ P ) ∧ (Eval(sk, x) 6= PEval(skP , x))

 ≤ negl(λ)

Pseudorandomness. We say that a Puncturable PRF scheme PRF := (Gen, Eval, Puncture,
PEval) satisfies pseudorandomness iff for any L and m that are upper bouned by a fixed polynomial
in λ, for any non-uniform p.p.t. stateful, admissible adversaryA, there is a negligible function negl(·)
such that the following experiments are computationally indistinguishable:

1. sk← Gen(1λ, L,m), P ← A(1λ), skP ← Puncture(sk, P ), b← AEval(sk,·)(skP , {Eval(sk, x)}x∈P ),
and output b.

2. sk ← Gen(1λ, L,m), P ← A(1λ), skP ← Puncture(sk, P ), sample R1, R2, . . . , Rm
$←{0, 1},

b← AEval(sk,·)(skP , R1, . . ., Rm), and output b.

We say that the adversary A is admissible if it never queries the Eval(sk, ·) oracle on any point
x ∈ P , and moreover it always outputs a set P of size exactly m.
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Privacy w.r.t. puncturing. We say that PRF := (Gen, Eval, Puncture, PEval) satisfies
privacy w.r.t. puncturing, iff for any L and m that are upper bouned by a fixed polynomial
in λ, for any non-uniform p.p.t. stateful, admissible adversary A, there is a negligible function
negl(·) such that Expt0(1λ, L,m) and Expt1(1λ, L,m) are computationally indistinguishable where
the experiment Exptb(1λ, L,m) is defined as below:

• sk← Gen(1λ, L,m),

• P0, P1 ← A(1λ),

• skPb ← Puncture(sk, Pb),

• b′ ← AEval(sk,·)(skPb), and output b′.

The adversary A is said to be admissible iff it never queries Eval(sk, ·) on any point x ∈ P0 ∪ P1;
and moreover, it always outputs two sets P0 and P1 both of size exactly m.

Boneh et al. [BKM17] showed that one can construct a privately puncturable PRF that allows
puncturing of m points, from one that allows puncturing of only a single point. Henceforth let
PRF1 denote a privately puncturable PRF that supports the puncturing of only a single point.
The idea is to create m independent instances of PRF1, and let the outcome be the xor of these
m instances. To puncture a set P consisting of m points, we can puncture one point from each of
these m instances. In the resulting scheme, the size of the punctured key and the evaluation time
blows up by m in comparison with the original PRF1. This leads to the following theorem.

Theorem 3.1 (Private Puncturable PRFs [BKM17,CC17,BTVW17]). Suppose that the Learning
With Errors (LWE) assumption is hard and L ≤ λ. Then, there exists a privately puncturable
PRF scheme that achieves χ(λ) ·m runtime for Gen, Eval, and PEval; moreover, the Puncture
algorithm takes χ(λ) ·m time, and each punctured key is of length χ(λ) ·m.

The term χ(λ) is related to the strength of the LWE assumption. If we assume standard
polynomial security, χ(λ) is polynomially bounded in λ; if we assume subexponential security, χ(λ)
is poly-logarithmic in λ.

4 Generalized Privately Puncturable Pseudorandom Set

To summarize the above discussion, we would like to construct a Privately Puncturable Pseudo-
random Set (PRSet) scheme with some non-trivial security and efficiency requirements which we
shall state shortly after defining the syntax:

• (sk,msk) ← Gen(1λ, n): given the security parameter 1λ and the universe size n, samples a
secret key sk and a corresponding master secret key3 msk;

• S ← Set(sk): a deterministic algorithm that outputs a set S given the secret key sk;

• b ← Member(sk, x): given a secret key sk and an element x ∈ {0, 1, . . . , n − 1}, output a bit
indicating whether x ∈ Set(sk); and

• skx ← Puncture(msk, x): given a master secret key msk and an element x ∈ {0, 1, . . . , n − 1},
outputs a secret key skx punctured at x.

3The secret key sk is needed to enumerate the set, whereas the msk contains extra secret information needed for
computing a punctured key. Jumping ahead, in our PIR scheme, the secret key sk can be sent to the server whereas
the master secret key msk is kept secret by the client.
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We note that a PRSet scheme is parametrized by a family of distributions Dn. The pseudorandom
set generated by the PRSet scheme should emulate the distribution Dn — we will define this more
formally shortly.

Efficiency requirements. Our goal is to use the PRSet scheme to sample pseudorandom sets of
size roughly

√
n. For efficiency, we want that enumerating the set can be accomplished with the

Set(sk) algorithm, taking time roughly
√
n (rather than linear in n). Additionally, we want that

the membership test algorithm, i.e., Member(sk, x), completes in polylogarithmic time.

4.1 Security Definitions

For security, we want the following:

1. Pseudorandomness w.r.t. some distribution Dn: given a randomly sampled secret key
(sk, )← Gen(1λ, n), the associated set Set(sk) is computationally indistinguishable from a set
sampled at random from some distribution Dn — we shall specify the distribution Dn later;

2. Security w.r.t. puncturing I: we want the following two distributions to be computationally
indistinguishable for any x ∈ {0, 1, . . . , n− 1}:

• Sample (sk,msk)← Gen(1λ, n) until Set(sk) contains x, and output Puncture(msk, x).

• Sample (sk, )← Gen(1λ, n) and output sk.

The above definition says that a key punctured at any point is computationally indistinguishable
from an unpunctured key, which implies that a punctured secret key should be simulatable
without knowledge of the point x being punctured. In our PIR scheme, we only need the
latter property, i.e., that a punctured key is simulatable without knowledge of the point being
punctured — but we define this slightly stronger version for simplicity.

3. Security w.r.t. puncturing II (defined w.r.t. Dn): we want the following two distributions
to be computationally indistinguishable for any x ∈ {0, 1, . . . , n− 1}:

• Sample (sk,msk) ← Gen(1λ, n) until Set(sk) contains x, let skx ← Puncture(msk, x), and
output (Set(sk), x ∈ Set(skx)) where “x ∈ Set(skx)” denotes the boolean predicate whether
x ∈ Set(skx).

• Sample (sk,msk) ← Gen(1λ, n) until Set(sk) contains x, and output (Set(sk), Bernoulli(ρ))
where ρ := Pr

S
$←Dn

[x ∈ S].

Intuitively, the above says that knowing the unpunctured set reveals nothing about whether x
still belongs to the set after puncturing x from the set.

Remark 2. Jumping ahead, the “security w.r.t. puncturing I” property will be used in proving
the privacy of our PIR scheme, and the “security w.r.t. puncturing II” property will be needed for
proving correctness — it turns out that the correctness proof is rather technical (see Section 5.5
for further discussions).

4.2 Defining Occasional Correctness

From the strawman attempts described in Section 2, we are essentially faced with the following
dilemma. Consider some distribution Dn which the pseudorandom set tries to emulate. On one
hand, we want each element to be included in the set with independent probability, since this would
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enable puncturing and efficient membership test. On the other hand, we do not want complete
independence among elements, since it would preclude efficient set enumeration. It seems like we
have hit a wall, but what comes to our rescue is the observation that our single-copy scheme need
not guarantee (1 − negl(λ))-correctness. Since we can take majority vote among k = ω(log λ)
parallel copies, it suffices for each copy to have 2/3-correctness. We therefore hope to seek middle
ground between the seemingly conflicting requirements by relaxing correctness.

Informally speaking, we want the following notion of occasional correctness: with 1 − o(1)
probability over the choice of a PRSet secret key that contains an element x ∈ {0, 1, . . . , n − 1},
puncturing at an arbitrary point x would remove the point x from the set, and only x. Recall
that earlier, we said that puncturing at x should behave as if we resampled the choice whether
x is in the set or not, independent of the unpunctured set (see “security w.r.t. puncturing II”).
Thus, the relaxed correctness requirement intuitively implies that the resampling that happens at
puncturing should only choose to include x in the punctured set with small (but possibly non-
negligible) probability. Furthermore, jumping ahead, in our construction, puncturing at x may
occasionally end up removing other elements besides x from the set, but this should not happen
too often.

It turns out that to formally prove our PIR scheme secure, we actually need a more refined
occasional correctness definition. Specifically, our formal definition lets us specify exactly which
set of elements are related to x such that they might accidentally get evicted from the set due
to the puncturing of x. Further, we also need to define an extra monotonicity condition that the
puncturing operation never adds an element to the set.

Formally, we define occasional correctness as below.

Functionality preservation under puncturing. To define functionality preservation, we intro-
duce a symmetric boolean predicate Related(x, y) : {0, 1, . . . , n−1}2 → {0, 1}, that outputs whether
two elements x and y are related or not. We may assume that Related(x, y) = Related(y, x).

We say that PRSet := (Gen, Set, Member, Puncture) satisfies functionality preservation
w.r.t. the Related predicate, iff for any λ, n ∈ N, with probability 1 − negl(λ) for some negligible
function negl(·), the following holds: let (sk,msk) ← Gen(1λ, n), then, for any x ∈ Set(sk): let
skx ← Puncture(msk, x):

1. Set(skx) ⊆ Set(sk);

2. Set(skx) runs in time no more than Set(sk);

3. for any y ∈ Set(sk)\Set(skx), it must be that Related(x, y) = 1.

Intuitively, the above requires that puncturing results in a subset of the original set; and the set
enumeration time can only reduce once a set has been punctured. Moreover, puncturing x can
only cause elements related to x to be removed from the set. Later on, when we instantiate the

distribution S
$←Dn that the PRSet scheme tries to emulate, we shall see that most elements in the

sampled set S likely do not have other related elements in S.

4.3 Choosing a Sampling Distribution

Recall that each element wants to decide at random whether to be included in the sampled set. Our
idea is to allow weak dependence in the coins chosen by different elements. Such weak dependence
should be sufficient to allow efficient set enumeration, and yet without destroying efficient member-
ship tests. Of course, we have to pay a price for introducing the weak dependence among elements,
and indeed we pay in terms of the correctness of puncturing. In our PRSet scheme, puncturing a
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secret key msk at a point x may, with some small but non-negligible probability over the choice
of msk, not only cause the coins for x to be resampled, but also the coins for some elements other
than x. When this happens, puncturing at the point x may end up removing other elements from
the set, and possibly lead to an incorrect output in our single-copy PIR.

Even with this high-level intuition, identifying a construction that works is challenging. To this
end, our approach is very remotely inspired by the line of work on designing block ciphers and
format-preserving encryption [RY13, MR14, SS]. Despite the remote reminiscence, of course, our
problem definition and solutions are fundamentally different from block ciphers.

To convey the intuition, let us first describe the distribution our PRSet scheme aims to emulate,
assuming the existence of a random oracle4 RO : {0, 1}∗ → {0, 1}. Suppose we sample an RO at
random which will determine a pseudorandom set of expected size roughly

√
n/ log2 n. To determine

if an element x ∈ {0, 1, . . . , n − 1} is in the set associated with RO or not, write x as a log n-bit
string, i.e., x := {0, 1}logn. We then say that x is in the set iff using RO to “hash” every sufficiently
long suffix of 02 log logn||x outputs 1. More formally, set membership of x ∈ {0, 1}logn is defined
with the following algorithm:

1. let z := 0B||x, i.e., prepend B := d2 log log ne number of 0s in front of the string x;

2. we say that x is in the set iff RO(z[i :]) = 1 for every i ∈ [1, 1
2 log n+B], where z[i :] denotes

the suffix z[i : log n+B] starting at the index i. For example, z[1 :] = z, z[2 :] is the string z
removing the first bit, and so on.

0010 RO(10)= 1?

RO(010)= 1?

RO(0010)= 1?

xpadding

Figure 1: A toy example.

Toy example. Figure 1 gives a toy example: suppose that
n = 4, and thus B = 2 log log n = 2, and 1

2 log n + B = 3.
Then, the string x = 10 is in the set iff RO(0010) = RO(010) =
RO(10) = 1.

The above sampling distribution has the following proper-
ties.

Expected set size. Each x ∈ {0, 1}logn is included in the

set with probability 2−( 1
2

logn+B) ≈ 1/(
√
n log2 n), and the ex-

pected set size is roughly
√
n/ log2 n.

Fast membership test. The definition itself gives a fast algorithm to test if an element x ∈
{0, 1}logn is in the set, by making 1

2 log n+B calls to RO.

Fast set enumeration. Enumerating all elements in the set can be accomplished by making
roughly

√
n · poly log n calls to RO with at least 1− o(1) probability. Let ` ≥ 1

2 log n+ 1, and let Z`
be the set of all strings z of length exactly `, such that using RO to “hash” all suffixes of z of length
at least 1

2 log n+ 1 outputs 1. To enumerate the set generated by RO, we can start out Z 1
2

logn+1,

which takes at most 2
1
2

logn+1 RO calls to generate. Then, for each ` := 1
2 log n+ 2 to 1

2 log n+B,
we will generate Z` from Z`−1. This can be accomplished by enumerating all elements z′ ∈ Z`−1,
and checking whether RO(0||z′) = 1 and RO(1||z′) = 1. In our supplementary materials, we will
prove that with at least 1 − o(1) probability, all the Z` sets encountered along the way will not
exceed

√
n ·poly log n in size. Thus, with 1− o(1) probability, set enumeration can be accomplished

by making at most
√
n · poly log n calls to RO.

4Our final scheme does not need any random oracle, the RO is only for exposition.
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Occasional correctness of “puncturing”. Suppose that we sample an RO whose associated
set contains the element x ∈ {0, 1}logn. In this idealized world with RO, imagine that puncturing
the point x from RO means that we resample the outcomes for RO((0B||x)[i :]) for every i ∈
[1, 1

2 log n + B]. We want to make sure that with 1 − o(1) probability over the choice of the RO,
puncturing the point x removes x and only x from the resulting set. We prove (a more refined
version of) this statement in our supplementary materials. At a high level, to prove this statement,
it suffices to prove that the expected number of related elements in the set is o(1), where an element
x′ 6= x is related to x, iff the longest common suffix of x and x′ has length at least 1

2 log n+ 1.

4.4 Our PRSet Scheme

Given the above distribution Dn, we can derive a PRSet scheme by replacing the RO with a privately
puncturable PRF [BLW17,BKM17,CC17] — we review the formal definition for a privately punc-
turable PRF in Appendix 3. Puncturing a point x ∈ {0, 1}logn simply punctures all queries we must
make to the PRF to determine x’s membership. For a punctured key to be indistinguishable from a
freshly generated secret key, we puncture a set of “useless” points from a freshly generated secret key
as well, since original keys and punctured keys may be trivially distinguishable in the the underly-
ing privately puncturable PRF scheme. More formally, let PRF := (Gen,Eval,Puncture,PEval)
be a privately puncturable PRF scheme where Eval and PEval denote the evaluation algorithms
using a normal key and a punctured key, respectively. Our PRSet scheme is described below:

Our PRSet scheme

• Gen(1λ, n): let B := d2 log log ne,

1. call PRF.Gen with the appropriate parameters to generate a normal PRF key sk′.

2. let P be an arbitrary set of 1
2 log n + B distinct strings in {0, 1}logn+B that begin with

the bit 1;

3. call sk← PRF.Puncture(sk′, P ), and output (sk,msk = sk′).

• Set(sk): similar to the earlier set enumeration algorithm for the distribution Dn, but replace
RO(·) calls with calls to PRF.PEval(sk, ·) instead;

• Member(sk, x):

1. write x ∈ {0, 1}logn as a binary string, and let z := 0B||x;

2. if for every 1 ≤ i ≤ 1
2 · log n+B, PRF.PEval(sk, z[i :]) = 1, then output 1; else output 0.

• Puncture(msk, x):

1. write x ∈ {0, 1}logn as a binary string, and let z := 0B||x;

2. let P := {z[i :]}i∈[1, 1
2
·logn+B] and skP ← PRF.Puncture(msk, P ); output skP .

Performance bounds. Our privately puncturable PRF scheme must support puncturingO(log n)
many points. As stated in Appendix 3, we can construct such a privately puncturable PRF with
Õ(1) runtime for Gen, Eval, and PEval, and moreover, each punctured key is of length Õ(1). Using
such a privately puncturable PRF, our resulting PRSet scheme achieves Õ(1) time for PRSet.Gen,
PRSet.Member, and PRSet.Puncture operations. Further, PRSet.Set requires at most Õ(

√
n)

calls to the underlying PRF.PEval with probability 1−o(1) (see Lemma 6.4 for a detailed analysis).
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We also defer to Section 6 a detailed analysis and proof of security for our PRSet scheme,
including the distribution Dn.

5 Putting it All Together: Our PIR Scheme

5.1 Definitions: Two-Server Preprocessing PIR

In our definition below, the two servers are treated as stateful algorithms Left and Right, respectively
(but in our construction, the only state they need to store is the database itself). The client is
treated as a stateful algorithm denoted Client. Initially, all of Client, Left, and Right receive the
parameters 1λ and n.

• Offline setup. Client receives nothing and each of Left and Right receives the same database
DB ∈ {0, 1}n as input. Client sends a single message to Left, and Left responds with a single
message often called a hint.

• Online queries. The following can be repeated for a priori-unknown polynomially many steps.
Upon receiving an index x ∈ {0, 1, . . . , n− 1} to query, Client sends a single message to Left and
a single message to Right. It receives a single response from each server Left and Right. Client
then performs some computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n where the bits are indexed 0, 1, . . . , n − 1, the
correct answer for a query x ∈ {0, 1, . . . , n− 1} is the x-th bit of DB.

For correctness, we require that for any Q,n that are polynomially bounded in λ, there is a
negligible function negl(·), such that for any database DB ∈ {0, 1}n, for any sequence of queries
x1, x2, . . . , xQ ∈ {0, 1, . . . , n − 1}, an honest execution of the offline/online PIR scheme with DB
and queries x1, x2, . . . , xQ returns all correct answers with probability 1− negl(λ).

Privacy. For privacy, we require the following.

• Left-server privacy. There is a probabilistic polynomial time (p.p.t.) stateful simulator Sim,
such that for any arbitrary (even computationally unbounded) algorithm Right∗, for any non-
uniform p.p.t. adversary A, A’s views in the Real and Ideal experiments are computationally
indistinguishable:

1. Real: The honest Client interacts with A who acts as the left server and may deviate arbitrarily
from the prescribed protocol, and an arbitrary (even computationally unbounded) algorithm
Right∗ acting as the right server. In every online step t, A adaptively chooses the next query
xt ∈ {0, 1, . . . , n− 1}, and Client is invoked with xt.

2. Ideal: The simulated client Sim interacts with A who acts as the left server, and an arbitrary
(even computationally unbounded) algorithm Right∗ acting as the right server. In every online
step t, A adaptively chooses the next query xt ∈ {0, 1, . . . , n− 1}, and Sim is invoked without
receiving xt.

• Right-server privacy. Right-server privacy is defined in a symmetric way as above by exchanging
left and right.
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Intuitively, the above privacy definition requires that any single server alone cannot learn any-
thing about the client’s queries; further, this must hold even when both servers can behave mali-
ciously. However, recall that we do not guarantee correctness if one or both server(s) fail to respond
correctly.

5.2 Construction

We describe our PIR scheme below, where Client, Left, Right denote the client, the left server, and
the right server, respectively.

Our PIR Scheme

Run k = ω(log λ) parallel copies of the single-copy scheme described below.

Offline setup. For i = 1 to lenT := 6
√
n · log3 n in parallel:

1. Client: Sample (ski,mski)← PRSet.Gen(1λ, n), send ski to Left.

2. Left: Run Si ← PRSet.Set(ski). If the runtime of PRSet.Set(ski), measured in terms of
PRF.PEval calls, exceeds maxT := 6

√
n log5 n, return pi := 0 to Client. Else, return the

parity bit pi ∈ {0, 1} of the set Si to Client.

3. Client: Save Ti := (ski,mski, pi) where T := (T1, T2, . . . , TlenT) denotes a table saved by
Client.

Online query for index x ∈ {0, 1, . . . , n− 1}.

• Query (Client⇔ Right):

1. Client:

(a) Sample (sk,msk) ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1, append
(sk,msk, 0) to the end of the table T . (?)

(b) Henceforth parse Ti := (ski,mski, pi). Let j be the smallest entry in the table T such
that PRSet.Member(skj , x) = 1.

(c) Call s̃kj := PRSet.Puncture(mskj , x). Send s̃kj to Right.

2. Right: Run S ← PRSet.Set(s̃kj). If the runtime exceeds maxT, return p := 0 to Client.
Else, return the parity bit p ∈ {0, 1} of the set S to Client.

3. Client: Let β′ := p ⊕ pj be a candidate answer of this copy. Let β be the majority vote
among the candidate answers of all k copies.

• Refresh (Client⇔ Left):

1. Client:

(a) Sample a new (sk′,msk′)← PRSet.Gen(1λ, n) subject to the constraint PRSet.Member(sk′,
x) = 1. (?)

(b) Call sk′x ← PRSet.Puncture(msk′, x), and send sk′x to Left.

2. Left: Run S ← PRSet.Set(sk′x). If the runtime exceeds maxT, return p := 0 to Client.
Else, return the parity bit p ∈ {0, 1} of the set S to Client.

3. Client: Replace Tj := (sk′,msk′, p⊕ β). Finally, remove the last entry from the table T .
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Remark. To obtain deterministic performance bounds, we can have the client run the Step
1(a) of both the Query and Refresh phases, marked with (?), at the very beginning of each
online query, and simply abort if the number of tries exceeds maxT — in this case, no message
is sent and the client outputs a canonical bit 0 as the candidate answer. It is not hard to
see that this change does not affect the privacy proof and adds only o(1) correctness failure
probability for each instance per query.

Intuitively, the idea here is to summarize the random sets in the earlier toy scheme with the keys
of a PRSet scheme, i.e., the client stores the lenT number of keys to represent lenT sets; moreover,
the client sends punctured keys to the servers rather than the full sets. By construction, in each
copy, the client always obtains answers from the respective servers during the query and refresh
phases, but the answers may be incorrect with some small probability. The k = ω(log λ) parallel
repetions make the overall error probability negligibly small.

Specifically, the answer from the right-server during the query phase may be incorrect if 1) the
queried index x is not found in the lenT sets stored by the client; 2) x is found to be in some
set represented by (skj ,mskj), but the parity bit stored by the client is incorrect (see why the
refresh phase may cause error shortly); 3) puncturing the key mskj does not result in exactly the
set Set(skj)\{x}; or 4) the right server exceeds maxT set enumeration time.

The refresh phase can incur error with small probability too, and thus cause the client to store
an incorrect parity bit for the refreshed set. Recall that during refresh, the client computes the
parity bit of a newly refreshed set as β+p where β is the client’s belief of the answer to the present
query, and p is the answer returned by the left server. If either β or p is wrong, the refreshed parity
bit may be incorrect. Specifically, p can be wrong if the left server exceeded maxT set enumeration
time. Moreover, if the punctured key sk′x does not give exactly Set(sk′)\{x}, then the parity p
returned by the left server could be incorrect.

5.3 Performance Analysis

For our performance analysis, we will assume that Step 1(a) of both the Query and Refresh phases,
marked (?) in the PIR scheme, are capped at maxT runtime, since this will give us deterministic
performance bounds — see the remark at the end of the PIR algorithm.

We now analyze the performance bounds for each instance of PIR — keep in mind that our
final scheme involves k = ω(log λ) = Õ(1) parallel instances. Our analysis below also shows how to
translate the runtime of the underlying PRSet scheme to the runtime of the resulting PIR scheme.
Specifically, we will use our PRSet scheme whose performance bounds are stated in Section 4.4.

• The offline bandwidth and client computation are Õ(
√
n), the offline server computation is Õ(n).

The offline client computation is dominated by running PRSet.Gen for lenT = Õ(
√
n) number

of times; the bandwidth is dominated by transmitting lenT number of PRSet keys to the server
and then for the server to transmit 1 parity bit back for each of the lenT keys; and the server
computation is dominated by running the PRSet.Set algorithm for lenT number of times, where
each PRSet.Set call is capped at maxT = Õ(

√
n) runtime.

• The online server and client runtime is Õ(
√
n), and the online bandwidth is Õ(1). Specifically,

during the “Query” phase, the client’s runtime is bounded by the following: Step 1(a) is capped
at maxT calls to PRSet.Gen and PRSet.Member; Step 1(b) involves running PRSet.Member
at most lenT number of times; the runtime of Step 1(c) and Step 3 is dominated by other steps.
During the “Refresh” phase, the client’s runtime involves the following: Step 1(a) is capped at
maxT calls to PRSet.Gen and PRSet.Member, and the runtime of Step 1(b) and 3 is dominated
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by Step 1(a). Both the left and right server’s runtime includes a single call to PRSet.Set capped
at maxT, and the cost of computing the parity of at most maxT number of bits. The online
bandwidth involves the client sending a single PRSet key to each of the left and right server,
and each server sending back one bit.

5.4 Optimizing the Polylogarithmic Factors

So far, we have been concerned with achieving optimality up to polylogarithmic factors, and we have
not cared about optimizing the constant c in the polylogarithmic factor logc n in our bound. We
now discuss how to modify the constants in our constructions and proofs to optimize this constant.

Tighter parameters. Without loss of generality, we may assume that n is a power of 2 since
we can always round it up to the next power of 2 losing only constant factors. First, in our PRSet
scheme, we will set B = log log n + C for some suitably large consant C. Due to the same proof
as Fact 6.1, the expected set size generated by PRSet is now O(

√
n/ log n). Due to the same

proof as Lemma 6.2, E
S

$←D+x
n

[Nrelated(S, x)] now becomes 1/C1 for some large constant C1 which

is dependent on C. We can now set the number of sets the client stores lenT to be C2
√
n log n for

a sufficiently large constant C2. Using a similar proof as that of Lemma 6.3, we can prove that the
probability that some fixed index x is not found in the union of lenT randomly generated sets is
1/C3 where C3 is a sufficiently large constant. Note that our correctness proof would still work
as long as C1 and C3 are sufficiently large constants, and the correctness failure probability for
each single copy can be shown to be at least 1− 1/C ′ where C ′ > 2 is a sufficiently large constant.
To get negligible failure probability, we will need ω(log λ) copies. Finally, the proof of Lemma 6.4
implies that with the new parameters, the expected set enumeration time is O(

√
n log n). We will

set maxT to C4
√
n log n for a sufficiently large constant C4.

Optimized privately puncturable PRF. To get tighter performance bounds, we will also
need an optimized construction for the underlying privately puncturable PRF, as described in
Appendix B. Specifically, our PRSet scheme always punctures a set of O(log n) points at distinct
bit-lengths. By exploiting this observation, we show how to reduce the evaluation time by a
O(log n) factor in Appendix B. Using this optimized privately puncturable PRF in our PRSet
scheme, the PRSet.Gen, PRSet.Puncture, and PRSet.Member algorithms run in time O(log n),
hiding security parameters related to the strength of the underlying LWE assumption.

Optimized performance bounds. Using these optimized parameters and an optimized pri-
vately puncturable PRF scheme, we can get the following more concrete performance bounds,
where α(·) denotes an arbitrarily small super-constant function, and the O(·) notation hides a se-
curity parameter dependent on the strength of the underlying privately puncturable PRF scheme:

• The offline server time is O(n log2 n log λ)·α(λ), the offline client time is O(
√
n log2 n log λ)·α(λ),

and the offline client bandwidth is O(
√
n log2 n log λ) · α(λ).

• The online client time per query isO(
√
n log2 n log λ)·α(λ), the online server runtime isO(

√
n log n log λ)·

α(λ), and the online bandwidth per query is O(log n · log λ) · α(λ).

• each server needs to store only the original database DB and no extra information; each client
needs to store O(

√
n log2 n log λ) · α(λ) bits of information.

In the above bounds, the extra log λ · α(λ) factor comes from the log λ · α(λ) number of copies.
For bandwidth and storage bounds, one of the log n factor comes from the fact that the PRSet’s
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secret key has size proportional to O(log n) since O(log n) points are punctured in the underlying
privately puncturable PRF.

5.5 Proof Roadmap

Proving our PIR scheme secure turns out to be very much non-trivial. Somewhat surprisingly at
first, the most challenging part is actually the proof of occasional correctness of the single-copy
version of our PIR scheme (see Sections 6 and 7.2) — even though we are only asking for a relaxed
correctness requirement. At a high level, the challenge arises from the fact that the distribution of
the PRSet key sk becomes skewed, when conditioning on the fact that the key sk is chosen during the
online query phase, since it is the first entry in the client’s hint table T that contains the queried
element x. In one part of the occasional correctness proof, we need to argue that, imprecisely
speaking, despite this skewed distribution, the selected secret key can provide a correct answer to
the present query with 1− o(1) probability. In a key technical step (see the proof of Lemma 7.7),
we make a stochastic domination type of argument that roughly speaking, proves the following:
conditioned on the secret key not having been consumed so far and now being consumed by the
present query, it makes it less likely, in comparison with a freshly generated PRSet key, for certain
bad events to happen that might lead to incorrectness. To make this argument work, we rewrite
the randomized experiment into an equivalent one where the sampling of a subset of the random
coins is delayed to the point when they are consumed. In our scheme, multiple bad events can lead
to incorrectness of a single copy of the scheme. Therefore, in our proof, we bound the probability
of each of these bad events (see Section 7.2) — to do so, we often view the randomized experiment
in different lights, to facilitate the analyses of different bad events.

6 Proofs for our PRSet Scheme

6.1 Analysis of the Distribution Dn
Fact 6.1. For any fixed x ∈ {0, 1, . . . , n − 1}, Pr

S
$←Dn

[x ∈ S] = 1√
n·2B . Moreover, E

S
$←Dn

[|S|] ≤
√
n

log2 n
.

Proof. Every element is included in the output S with probability
(

1
2

)(logn)/2+B
= 1√

n·2B ≤
1√

n·log2 n
. Therefore, by the linearity of expectation, E

S
$←Dn

[|S|] ≤ n · 1√
n·log2 n

=
√
n

log2 n
.

Let x ∈ {0, 1, . . . , n − 1}, and henceforth let D+x
n be the following distribution: sample from

Dn until we obtain a set S such that x ∈ S, and output S. Given x, y ∈ {0, 1, . . . , n− 1}, write x
and y as binary strings, i.e., x, y ∈ {0, 1}logn. We say that x and y are related or Related(x, y) = 1,
if they share a common suffix of length at least 1

2 log n + 1. Given a set S ⊆ {0, 1, . . . , n − 1}, let
Nrelated(S, x) be the number of elements in S that are related to x.

Lemma 6.2 (Number of related elements in sampled set). Fix an arbitrary element x ∈ {0, 1, . . . , n−
1}. Then,

E
S

$←D+x
n

[Nrelated(S, x)] ≤ 1

log n

Proof. Let k ∈ [1
2 log n + 1, log n − 1]. There are at least 2logn−k strings in {0, 1}logn that share a

suffix of length at least k with x ∈ {0, 1}logn. Let Tk denote the set of 2logn−k strings in {0, 1}logn
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not equal to x that share a suffix of length at least k with x. Let T ∗k ⊆ Tk be the subset that share
a longest common suffix of length exactly k with x.

For any y ∈ T ∗k , Pr
S

$←D+x
n

[y ∈ S] = 1
2logn+B−k

. By linearity of expectation,

E
S

$←D+x
n

[|T ∗k ∩ S|] ≤
1

2logn+B−k · 2
logn−k =

1

2B

Observe that Nrelated(S, x) =
∑logn−1

k= 1
2

logn+1
|T ∗k ∩ S|. Therefore,

E
S

$←D+x
n

[Nrelated(S, x)] ≤ 1

2B
·
(

1

2
log n− 1

)
≤ 1

2B
· log n ≤ 1

log n

Henceforth let Dmn be the distribution where we sample from Dn independently at random m
times.

Lemma 6.3 (Coverage probability). Let m ≥ 6
√
n · log3 n. For any fixed x ∈ {0, 1, . . . , n − 1},

Pr
S1,...,Sm

$←Dmn
[x /∈ ∪i∈[m]Si] ≤ 1/n.

Proof. Every element x is included in the set S
$←Dn with probability

(
1
2

)logn/2+B
= 1√

n·2B ≥
1

2
√
n·log2 n

. Therefore, the probability that x does not appear in ∪i∈[m]Si is(
(1− 1

2
√
n · log2 n

)2
√
n·log2 n

)3 logn

≤
(

1

e

)3 logn

≤ 1/n

Given x ∈ {0, 1, . . . , n − 1}, henceforth we use the notation RO
$←D+x

n to mean sample the
random oracle RO until the set determined by RO contains the element x. We use the notation
EnumTime(RO) to denote the total number of RO calls made by the set enumeration algorithm
of Section 4.3 to enumerate the set generated by RO. The following lemma bounds the time to
enumerate a set that is already known to contain a particular element x, i.e., a set drawn from D+x

n .
A similar bound holds for enumerating a set drawn from Dn. For technical reasons needed in our
correctness proof for the PIR scheme, we need a slightly stronger version for the set enumeration
for a set sampled from D+x

n rather than Dn.

Lemma 6.4 (Efficient set enumeration). Suppose that n ≥ 4. For any fixed x ∈ {0, 1, . . . , n− 1},

Pr
RO

$←D+x
n

[
EnumTime(RO) > 6

√
n log5 n

]
≤ 1/ log n

Proof. Henceforth, for every element z ever written down in one of the sets Zi0 , . . . , Zlogn in the
above set enumeration algorithm, we say that z is eligible.

In the above set enumeration algorithm, first, we make 2i0 RO calls on all strings of length
i0 := 1

2 log n + 1. Then, for every eligible element z whose length is smaller than log n, at most 2
RO calls are made, to determine whether 0||z and 1||z are eligible. Finally, for every eligible string
of length exactly log n, 2B ≤ 2 log2 n more calls are made to RO. It suffices to prove that except
with 1/ log n probability, it must be that for all i ∈ [i0, log n], |Zi| ≤ 2

√
n · log2 n. If so, the total

number of RO calls is upper bounded by 2i0 + log n · 2 log2 n · 2
√
n · log2 n ≤ 6

√
n log5 n.

Fix some i ∈ [i0, log n], consider all strings z of length i.
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• Case 1: the length of the longest common suffix of z and x is less than 1
2 log n+ 1. In this case,

knowing that x belongs to the set provides no information about whether z belongs to Zi. Hence

in this case PrD+x
n

[z ∈ Zi] =
(

1
2

)i− 1
2

logn
. There are at most 2i such elements (since there are at

most 2i strings of length i, whether or not they share any suffix with x), and thus the expected

number of elements from this set that are eligible in Zi is at most 2i ·
(

1
2

)i− 1
2

logn
= 2

1
2

logn =
√
n.

• Case 2: the length of the longest common suffix of z and x is exactly k, where i ≥ k ≥ 1
2 log n+1.

In this case, for any such fixed z, PrD+x
n

[z ∈ Zi] =
(

1
2

)i−k
. There are at most 2i−k such elements,

so the expected number of elements that are eligible in Zi for any fixed value of k is at most
1. Summing over all possible values of k, the expected number of elements eligible for Zi is at
most log n.

Summarizing the above cases, the expected number of strings in Zi is at most
√
n + log n; for

n ≥ 4, this is upper bounded by 2
√
n. By the Markov Inequality, PrD+x

n
[|Zi| > 2

√
n log2 n] <

1/ log2 n. By the union bound, PrD+x
n

[∀i ∈ [i0, log n] : |Zi| ≤ 2
√
n log2 n] ≥ 1− 1/ log n.

6.2 Proofs for Our PRSet

Lemma 6.5 (Correctness, pseudorandomness, and functionality preservation under puncturing).
The above PRSet construction satisfies correctness. Further, suppose that the PRF scheme satis-
fies pseudorandomness; then the PRSet scheme also satisfies pseudorandomness and functionality
preservation under puncturing.

Proof. Correctness follows directly from the construction. Pseudorandomness relies on the pseu-
dorandomness of the PRF through a straightforward reduction. To see functionality preservation,
let (sk,msk) ← Gen(1λ, n), let skx ← Puncture(msk, x), and below we may ignore the negligi-
ble probability event that the underlying puncturable PRF violates its functionality preservation
property. Notice that for every string z that is a suffix of 0B||x of length at least 1

2 log n + 1,
PRF.PEval(sk, z) = 1, but there may exist such z where PRF.PEval(skx, z) becomes 0 instead.
For any string z that is not a suffix of 0B||x of length at least 1

2 log n + 1, PRF.PEval(sk, z) =
PRF.PEval(skx, z). Given the above observation, “functional preservation under puncturing” is
easy to verify.

Lemma 6.6 (Security w.r.t. puncturing). Suppose that the PRF scheme satisfies pseudorandomness
and privacy w.r.t. puncturing as defined in Section 3. Then, the above PRSet construction satisfies
security w.r.t. puncturing.

Proof. We need to prove two properties.

First property. We begin by proving the first property, that is, the following distributions are
computationally indistinguishable for any x ∈ {0, 1, . . . , n− 1}:

• Expt0: Repeat (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), let skx ← Puncture(msk, x), output
skx.

• Expt1: (sk,msk)← Gen(1λ, n) and output sk.

We define an intermediate hybrid experiment Hyb: sample (sk,msk) ← Gen(1λ, n), let skx ←
Puncture(msk, x), and output skx.

Claim 6.7. Suppose that the puncturable PRF satisfies pseudorandomness as defined in Section 3.
Then, Expt0 and Hyb are computationally indistinguishable.
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Proof. Suppose that there is an efficient adversary A that can distinguish Expt0 and Hyb with non-
negligible probability. We can construct an efficient reduction B that breaks the pseudorandomness
of the PRF scheme.

Let Px denote the set containing the m = 1
2 log n + B queries we need to make to determine

whether x is in the set. B asks its own challenger denoted C for a PRF key punctured at Px, and
it obtains skPx . It forwards skPx to A. B then obtains a vector of bits denoted β := (β1, . . . , βm)
as the purported outcomes for {Eval(sk, y)}y∈Px . If β = 1, then B outputs whatever A outputs.
Else, it outputs a random bit.

Case 1. If the challenger C is using real values for {Eval(sk, y)}y∈Px , then A’s view is identically
distributed as Expt0. The probability that B outputs 1 is

p := Pr[A(Expt0) = 1] · Pr[β = 1] +
1

2
· Pr[β 6= 1]

Case 2. If the challenger C is using random values in place of {Eval(sk, y)}y∈Px , then A’s view
is identically distributed as Hyb. In this case, the probability that B outputs 1 is equal to

p′ := Pr[A(Hyb) = 1] · Pr[β = 1] +
1

2
· Pr[β 6= 1]

Note that in Case 1, |Pr[β = 1]− 1/2m| ≤ negl(λ) due to the pseudorandomness of the PRF; and
in Case 2 Pr[β = 1] = 1/2m. Moreover, 1/2m is non-negligible due to the choice of m. Therefore,
if |Pr[A(Expt0) = 1] − Pr[A(Hyb) = 1]| is non-negligible, then |p − p′| would be non-negligible,
too.

Claim 6.8. Suppose that the puncturable PRF satisfies privacy w.r.t. puncturing as defined in
Section 3. Then, Hyb is computationally indistinguishable from Expt1.

Proof. Follows from a straightforward reduction to the privacy w.r.t. puncturing property of the
PRF.

The computational indistinguishability of Expt0 and Expt1 now follows from Claim 6.7 and
Claim 6.8.

Second property. We next prove the second property, that is, we want to show that the following
two distributions are computationally indistinguishable:

• Expt∗0: Repeat (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), let skx ← Puncture(msk, x), and
output (Set(sk), x ∈ Set(skx)) where x ∈ Set(skx) denotes a boolean predicate.

• Expt∗1: Repeat (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), and output (Set(sk),Bernoulli(ρ))

where ρ := 2−( 1
2

logn+B).

Let (sk,msk)← Gen(1λ, n) until x ∈ Set(sk), and let skx ← Puncture(msk, x). Observe that
there is a deterministic, polynomial-time function Reconstruct such that Reconstruct(skx, x) =
Set(sk). Essentially, Reconstruct uses answers to PRF.PEval(skx, ·) calls to determine set mem-
bership, except that when encountering any string z that is a suffix of 0B||x of length at least
1
2 log n+ 1, override the outcome of PRF.PEval(skx, z) to 1.

We can therefore rewrite Expt∗0 as the following experiment Hyb: repeat (sk,msk)← Gen(1λ, n)
until x ∈ Set(sk), let skx ← Puncture(msk, x), and output (Reconstruct(skx, x), x ∈ Set(skx)).
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Due to the first property which we just proved, the above distribution Hyb is computationally in-
distinguishable from the following Hyb′: (sk, )← Gen(1λ, n), and output (Reconstruct(sk, x), x ∈
Set(sk)).

Now, consider the experiment Ideal which is defined just like in Hyb, except that sampling a
PRF secret key is replaced with sampling an RO, and to determine set membership, any call to
PRF.PEval(sk, ·) is replaced with RO(·). In Ideal, Reconstruct(RO, x) does not need to look at
the coins that determine x’s membership in the set. Based on this observation as well as the pseu-
dorandomness of the underlying PRF, we conclude that Ideal is computationally indistinguishable
from Expt∗1.

7 Proofs for our PIR Scheme

Single-copy varirant of our PIR scheme. In our proofs, we consider a single-copy variant
of our PIR scheme. In the single-copy scheme, we set the number of parallel instances k := 1.
Further, we imagine that the true answer β is obtained from some true-answer oracle rather than
taking majority vote.

7.1 Privacy Proof

We focus on the single-copy variant, and prove its privacy.

Theorem 7.1 (Left-server privacy). Suppose that the PRSet scheme satisfies (the first property in)
“security w.r.t. puncturing”. Then, the single-copy scheme satisfies left-server privacy.

Proof. We define the following simulator Sim which fully specifies the ideal experiment Ideal:

• Offline setup. For i = 1 to lenT := 6
√
n · log3 n: sample (ski,mski)← PRSet.Gen(1λ, n) and

send {ski}i∈[1,lenT] to A acting as the left server.

• Online queries. For each online query, sample (sk′,msk′) ← PRSet.Gen(1λ, n) and send sk′

to A acting as the left server.

The computational indistinguishability of A’s views in Real and Ideal follow due to a straightfor-
ward hybrid argument relying on the “security w.r.t. puncturing” property of the PRSet scheme.
Specifically, let Q be the total number of queries in the online phase. We define a sequence of
hybrid experiments {Hybi}i∈{0,1,...,Q}, where in Hybi, during the first i online steps, A (acting as
the left server) receives a message constructed like in Ideal, and during the remaining Q− i online
steps, A receives a message constructed like in Real. Clearly, Hyb0 = Real and HybQ = Ideal. It
suffices to show that any two adjacent hybrid experiments are computationally indistinguishable,
and this follows due to a straightforward reduction to the “security w.r.t. puncturing” property of
the PRSet scheme.

Theorem 7.2 (Right-server privacy). Suppose that the PRSet scheme satisfies (the first property
in) security w.r.t. puncturing. Then, the single-copy scheme satisfies right-server privacy.

Proof. We define the following simulator Sim which fully specifies the ideal experiment Ideal:

• Offline setup. A, acting as the right server, receives nothing.

• Online queries. For each online query, sample (sk′,msk′) ← PRSet.Gen(1λ, n) and send sk′

to A acting as the right server.
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We now need to argue that any non-uniform p.p.t.A’s views in Real and Ideal are computationally
indistinguishable.

Real∗. First, we consider the following experiment Real∗.

• Offline setup. For each i ∈ [1, lenT], Client samples (ski,mski) ← PRSet.Gen(1λ, n), and lets
Ti := (ski,mski). The adversary A, acting as the right server, receives nothing.

• Online queries. For each online query x ∈ {0, 1, . . . , n− 1}:

a) Client samples (sk,msk) ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1, and
appends (sk,msk) to the end of the table T .

b) Client finds the smallest entry Tj := (skj ,mskj) in T such that PRSet.Member(skj , x) = 1.
It sends PRSet.Puncture(mskj , x) to A acting as the right server.

c) Client samples (sk′,msk′) ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1, over-
writes Tj with (sk′,msk′), and removes the last entry from T .

Real∗ is just a rewrite of Real throwing away terms that we do not care. Let ViewReal and
ViewReal∗ denote A’s view and the client’s table T (truncating the third field of each entry in Real)
at the beginning of each online query, in the experiments Real and Real∗, respectively. We have
that even for a computationally unbounded A, ViewReal and ViewReal∗ are identically distributed.

Fact 7.3. In Real∗, for every online step t, even if A is computationally unbounded, and even when
conditioned on A’s view over the first t− 1 steps,

• let x ∈ {0, 1, . . . , n − 1} be the t-th online query, the message A receives in the t-th query is
distributed as: sample (sk,msk) ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1
and output PRSet.Puncture(sk, x);

• at the end of the t-th online query, the client’s table T is a fresh uniform sample from
PRSet.Gen(1λ, n)lenT independent of the message A receives during the t-th query, i.e., T con-
tains a sample of lenT uniform, independent entries from the distribution PRSet.Gen(1λ, n).

Proof. We can prove by induction.

Base case. At the end of the offline phase (henceforth also called the 0-th query), indeed the
client’s table T is a uniform sample from the distribution PRSet.Gen(1λ, n)lenT.

Inductive step. Suppose that at the end of the t-th step, the client’s table T is uniform sample
from the distribution PRSet.Gen(1λ, n)lenT even when conditioned on A’s view in the first t steps.
We now prove that the stated claims hold for t + 1. Let x ∈ {0, 1, . . . , n − 1} be the query
made in online step t + 1, the choice of x depends only on A’s view in the first t online queries.
Henceforth, for i ∈ [1, lenT], let αi,x be the probability that in a random sample from the distribution

PRSet.Gen(1λ, n)lenT, the first entry that contains x is i. Let αlenT+1,x := 1−
∑lenT

i=1 αi,x.
Consider the following experiment Expt:

• Client samples an index u ∈ [lenT + 1] such that u = i with probability αi,x.

• ∀j < u, Client samples Tj := (skj ,mskj)← PRSet.Gen(1λ, n) subject to PRSet.Member(skj , x) =
0.
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• For u, Client samples (sk,msk) and (sk′,msk′) independently from the distribution PRSet.Gen(1λ, n)
subject to PRSet.Member(skj , x) = 1. It sends PRSet.Puncture(sk, x) to A and saves Tu :=
(sk′,msk′).

• ∀j ∈ [u+ 1, lenT + 1], Client samples Tj := (skj ,mskj)← PRSet.Gen(1λ, n).

• Finally, Client removes last entry from T .

Let ViewReal∗
t+1 be the message A receives during the (t + 1)-st query as well as the client’s table T

at the end of the (t + 1)-st query in Real∗. Let ViewExpt be the message A receives as well as the
client’s table T at the end in Expt. Suppose that the induction hypothesis holds, then it is not hard
to see that ViewExpt is identically distributed as ViewReal∗

t+1 even when conditioning on the view of A
in the first t queries in Real∗, and even when A is computationally unbounded.

In the experiment Expt, it is not hard to see the distribution ViewExpt is the following: T is
sampled at random from PRSet.Gen(1λ, n)lenT, and A’s received message is distributed as: sample
(sk,msk)← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1 and output PRSet.Puncture(sk, x).

Given Fact 7.3, we can prove that any non-uniform p.p.t. A’s views in Ideal and Real∗ are
computationally indistinguishable through a standard hybrid argument, relying on the the “security
w.r.t. puncturing” property of the PRSet scheme — the hybrid sequence is similar to the proof of
Theorem 7.1.

7.2 Correctness Proof

We analyze the correctness of our single-copy PIR scheme. We would like to prove that for any
query, the candidate answer of each single-copy PIR is correct with probability at least 2/3. This
way, due to a standard Chernoff bound argument, when we do majority voting among k = ω(log λ)
copies, the majority vote is correct with all but negl(λ) probability.

Experiment CExpt. We consider the following experiment CExpt.

Correctness Experiment CExpt

Offline setup. For j = 1 to lenT := 6
√
n · log3 n: sample (skj ,mskj) ← PRSet.Gen(1λ, n);

let Tj := (skj ,mskj), and set label(Tj) := ⊥.

Online query for index x ∈ {0, 1, . . . , n− 1}.

a) Sample (sk∗,msk∗)
$←PRSet(1λ, n) subject to x ∈ PRSet.Set(sk∗). Append (sk∗,msk∗) to the

table T as the last entry, and mark its label label(TlenT+1) := ⊥.

b) Let Tj := (skj ,mskj) be the smallest entry in the table T such that x ∈ PRSet.Set(skj).

c) If z := label(Tj) 6= ⊥ and it is not the case that Set(skj,z) = Set(skj)\{z} where skj,z ←
PRSet.Puncture(mskj , z), then return Err-PunctureLeft.

d) If it is not the case that Set(skj,x) = Set(skj)\{x} where skj,x ← PRSet.Puncture(mskj , x),
then return Err-PunctureRight.

e) If PRSet.Set(skj) runs in time more than maxT, return Err-ExceedTime.
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f) Sample a new (sk′,msk′) ← PRSet.Gen(1λ, n) subject to x ∈ PRSet.Set(sk′). Overwrite
Tj := (sk′,msk′) and set label(Tj) := x.

g) If j = lenT + 1, return Err-NotFound.

h) Remove the last entry from T , and return Success.

Let Wrongi,CExpt(x1, . . . , xQ) be the event that the i-th query returns an error message in CExpt
with the query sequence x1, . . . , xQ. Let Wrongi,Real(DB, x1, . . ., xQ) be the event that during
the i-th query, the candidate answer β′ is incorrect during an honest execution of the single-copy
scheme using DB and queries x1, . . . , xQ as input.

Fact 7.4. Suppose that the PRSet scheme satisfies “functional preservation under puncturing”.
Then, for any DB ∈ {0, 1}n, for any Q ∈ N polynomially bounded in λ, for any sequence of queries
x1, x2, . . . , xQ ∈ {0, 1, . . . , n− 1}, for any i ∈ [Q],

Pr[Wrongi,CExpt(x1, . . . , xQ)] ≥ Pr[Wrongi,Real(DB, x1, . . . , xQ)]− negl(λ).

Proof. In an honest execution of the single-copy scheme, correctness is independent of DB. Hence-
forth we may assume that PRSet.Puncture never violates the “functionality preservation under
puncturing” property. Since this bad event happens only with negligible probability, technically,
ignoring the bad event translates to applying a union bound and subtracting the negligible prob-
ability at the end — this explains the negl(λ) discount in the statement of the fact. Assuming
that PRSet.Puncture always satisfies the “functionality preservation under puncturing” property,
then CExpt is basically a rewrite of the honest execution of the single-copy scheme, with the fol-
lowing modifications all of which either do not affect correctness, or will only increase the chance
of incorrectness (in a statistical dominance sense):

1. Remove instructions not related to dertermining correctness;

2. Replace any occurrence of PRSet.Member(sk, x) with the functionally equivalent instruction
x ∈ PRSet.Set(sk);

3. Defer checking whether the client knows the correct parity bit corresponding to each table entry
Tj to when Tj is consumed during an online query. Note that the client may fail to know the
correct parity bit for Tj only if one of the following happens: either the table entry Tj was
updated when z was queried, but the set generated by Tj contains elements related to z; or
when Tj was updated, the left server exceeded runtime.

4. For an (sk,msk) in the client’s table T , in an honest execution, the client might send a punctured
set of T to both the left and right servers, and if either server exceeded runtime, the entry sk
might result in an incorrect answer when it is consumed during an online query. In CExpt, due
to the “functional preservation under puncturing” property of PRSet, we may use the runtime
of PRSet.Set(sk) as an over-estimate of the set enumeration time of the left server and right
server upon receiving a punctured key, i.e., skx := PRSet.Puncture(msk, x) for some x.

Fact 7.5. In CExpt, for any Q ∈ N and any sequence of queries x1, . . . , xQ, for every i ∈ [Q], at the
end of the i-th online query, the client’s table T (not including the labels on entries) is distributed
as a fresh random sample from PRSet.Gen(1λ, n)lenT.
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Proof. The proof is almost the same as that of Fact 7.3.

Theorem 7.6 (Occasional correctness of the single-copy scheme). Suppose that the PRSet scheme
satisfies (the second property in) security w.r.t. puncturing, as well as pseudorandomness. For
any DB ∈ {0, 1}n, for any Q that is polynomially bounded in λ, for any sequence of queries
x1, x2, . . . , xQ ∈ {0, 1, . . . , n− 1}, for any i ∈ [Q], Pr[Wrongi,Real(DB, x1, . . . , xQ)] ≤ 1/3.

Proof. Due to Fact 7.4, it suffices to prove that for any Q ∈ N, for any sequence of queries
x1, x2, . . . , xQ, for any i ∈ [Q], Pr[Wrongi,CExpt(x1, . . . , xQ)] ≤ 1/4.

Henceforth we focus on CExpt, and we fix an arbitrary fixed sequence of queries x1, x2, . . . , xQ
and an index i ∈ [Q]. Observe that Wrongi,CExpt can only occur if the i-th online query returns one
of the following error messages {Err-NotFound, Err-ExceedTime, Err-PunctureRight, Err-PunctureLeft
}. Therefore, it suffices to show that each of these errors happens with probability at most 3/ log n+
negl(λ). We shall upper bound the probability of the bad events Err-NotFound, Err-ExceedTime,
Err-PunctureRight, and Err-PunctureLeft in the remainder of this section.

7.2.1 Bounding the Probability of Err-PunctureLeft

Recall that we fix an arbitrary Q ∈ N, an arbitrary sequence of queries x1, x2, . . . , xQ, an arbitrary
i ∈ [Q]. Below, we first bound the probability that the i-th query outputs the error message
Err-PunctureLeft.

Let Tj := (skj ,mskj) be the smallest entry whose corresponding set contains xi during the
i-th query, and define the random variable y := label(Tj). Let Err-RelatedLeft be the bad event
that ∃z ∈ Set(skj), such that Related(y, z) = 1; and let Err-RemoveFailLeft be the bad event that
y ∈ Set(skj,y) where skj,y ← PRSet.Puncture(mskj , y). Clearly,

Pr[Err-PunctureLeft] ≤ Pr[Err-RemoveFailLeft] + Pr[Err-RelatedLeft]

Below we upper bound Pr[Err-RemoveFailLeft] and Pr[Err-RelatedLeft] separately.

Bounding the probability of Err-RelatedLeft. First, we shall bound Pr[Err-RelatedLeft] and
prove the following lemma.

Lemma 7.7. Suppose that PRSet satisfies pseudorandomness. Then, Pr[Err-RelatedLeft] ≤ 2/ log n+
negl(λ) in CExpt.

Proof. Observe that

Err-RelatedLeft = ((Related(xi, y) = 1) ∧ Err-RelatedLeft) ∪ ((Related(xi, y) = 0) ∧ Err-RelatedLeft)

We know that Pr[(Related(xi, y) = 1)∧ Err-RelatedLeft] ≤ Pr[Err-RelatedRight] ≤ 1/ log n+ negl(λ).
Therefore, it suffices to show that Pr[(Related(xi, y) = 0) ∧ Err-RelatedLeft] ≤ 1/ log n+ negl(λ).

We now consider an idealized experiment CExpt-Ideal where each PRF is replaced with a random
oracle. In CExpt-Ideal, we only care about the bad event Err-RelatedLeft, and therefore we omit
writing all other error messages.

Experiment CExpt-Ideal

Offline setup. For j = 1 to lenT := 6
√
n · log3 n: sample a random oracle RO and let

Tj := RO. Set label(Tj) := ⊥.

Online query for index x ∈ {0, 1, . . . , n− 1}.
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a) Sample a new RO∗ such that the associated set contains x. Append RO∗ to the table T as
the last entry, and mark its label label(TlenT+1) := ⊥.

b) Let Tj := ROj be the smallest entry in the table T such that the set generated by ROj
contains x.

c) If z := label(Tj) 6= ⊥ and the set generated by ROj contains some y such that Related(y, z) =
1, then return Err-RelatedLeft.

d) Sample a new RO′ such that the generated set contains x. Overwrite Tj := RO′ and set
label(Tj) := x.

e) Remove the last entry from T and return Success.

Fact 7.8. Suppose that the PRSet scheme satisfies pseudorandomness. Then,
PrCExpt(Err-RelatedLeft) ≤ PrCExpt-Ideal(Err-RelatedLeft)+negl(λ) where PrCExpt(Err-RelatedLeft) de-
notes the probability that the i-th query encounters Err-RelatedLeft in a random execution of CExpt,
and PrCExpt-Ideal(Err-RelatedLeft) is similarly defined but for CExpt-Ideal instead.

Proof. The event Err-RelatedLeft is a polynomial-time checkable event defined over the outputs
of multiple instances of PRF (or RO, respectively). Therefore, we can prove this fact through
a straightforward reduction to the pseudorandomness of the PRSet scheme, through a standard
hybrid argument where we replace each independent instance of PRF with an RO one by one.

Given Fact 7.8, it suffices to prove that the probability of Err-RelatedLeft in CExpt-Ideal is upper
bounded by 2/ log n. The challenge in arguing this is that conditioned on the i-th query finding
the smallest matching entry Tj := ROj , the distribution of ROj is no longer uniform at random
and independent of label(Tj). Therefore, we need a more involved probabilistic argument.

To make it easier to analyze the distribution, we can view the experiment CExpt-Ideal in an
alternative way. We now imagine an experiment CExpt-Ideal∗ that is equivalent to CExpt-Ideal but
the sampling of a subset of the coins of the random oracles are deferred to the time of consumption.
More specifically, in CExpt-Ideal∗, the ROj associated with each table entry Tj is stored in the
following format — henceforth we say that a query string y ∈ {0, 1}≤logn+B to a random oracle is
related to x ∈ {0, 1}logn if x and y share a common suffix of length at least 1

2 log n+ 1.

• If z := label(Tj) = ⊥, ROj is sampled when the table entry is generated or updated, and the
answers to all queries are stored.

• If z := label(Tj) 6= ⊥, then for all queries not related to z, their answers are pre-sampled and
stored when the table entry is updated; however, for answers to all queries related to z, we
store a refined distribution Distr in the table entry characterizing all the decisions that have
been made so far. Every time we need to make a decision about an element related to z, we
sample the answer to this decision according to the distribution Distr, and we then refine the
distribution Distr based on the newly sampled decision.

Using this as a guideline, we now rewrite CExpt-Ideal into CExpt-Ideal∗. Since we do not care
about other errors besides Err-RelatedLeft, we omit reporting some of the other types of errors in
CExpt-Ideal∗.

CExpt-Ideal∗
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Offline setup. For j = 1 to lenT := 6
√
n · log3 n: sample the answers to all random oracle

queries, and store them in Tj ; moreover, set label(Tj) := ⊥.

Online query for index x ∈ {0, 1, . . . , n− 1}.

1. Sample a random oracle including answers to all queries, and append the full description to
the table T as the last entry; mark its label label(TlenT+1) := ⊥.

2. For j′ ∈ [1, lenT + 1] sequentially:

• If y := label(Tj′) = ⊥, check if x is in the set described by Tj′ . If so, let j := j′ and break.

• If x is not related to y := label(Tj′), check if x is in the set described by Tj′ by looking at
the pre-sampled answers for queries not related to y. If so, let j := j′ and break.

• If x is related to y := label(Tj′), let Distrj′ be the current description of the distribution
for answers to queries related to y. Sample the binary decision b whether x is in the set
associated with Tj′ based on Distrj′ , and then refine the distribution Distrj′ based on the
sampled result. If b = 1, then let j := j′ and break.

3. If y := label(Tj) 6= ⊥ and the set associated with Tj contains another element related to y,
then return Err-RelatedLeft.

4. Partially sample a new random oracle. For all queries not related to x, sample all their
answers and store them in Tj . For all queries related to x, update the distribution Distrj to
be random but subject to that x being in the set. Set label(Tj) := x.

5. Remove the last entry of T and return Success.

In CExpt-Ideal∗, conditioned on Related(xi, y) = 0, i.e., the i-th query finding some Tj such
that y := label(Tj) is not related to xi, then the description Distrj associated with Tj must be
the following: sample at random but possibly subject to the constraint that some set of elements
related to y are not in the set. Note also that whether an element related to y is in the sampled
set is independent of all the answers to queries not related to y. Therefore,

Pr[¬Err-RelatedLeft|(Related(xi, y) = 0) ∧ (y 6= ⊥)] ≥ Pr
S

$←D+y
n

[@z ∈ S s.t. Related(z, y) = 1]

≥ 1− 1/ log n (due to Lemma 6.2)

In the above, D+y
n be the following distribution: sample from Dn until we obtain a set S such that

y ∈ S, and output S.
Therefore, we have that

Pr[(Related(xi, y) = 0) ∧ Err-RelatedLeft] ≤ Pr[Err-RelatedLeft|(Related(xi, y) = 0) ∧ (y 6= ⊥)]

≤ 1− Pr[¬Err-RelatedLeft|(Related(xi, y) = 0) ∧ (y 6= ⊥)]

≤ 1/ log n

Summarizing the above, we have that Pr[Err-RelatedLeft] ≤ 2/ log n in CExpt-Ideal∗.

Bounding the probability of Err-RemoveFailLeft. We now bound the probability of Err-RemoveFailLeft
— recall that this is necessary for bounding the probability of Err-PunctureLeft.
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Lemma 7.9. Suppose that PRSet satisfies (the second property in) security w.r.t. puncturing.
Then, Pr[Err-RemoveFailLeft] ≤ 1/(

√
n log2 n) + negl(λ) in CExpt.

Proof. Let us first rewrite CExpt by 1) removing all instructions not relevant to the bad event
Err-RemoveFailLeft; and 2) computing whether the punctured set contains the point being punctured
when the table entry is being updated, not when being consumed. In this way, we obtain CExpt′

as described below:

Experiment CExpt′

Offline setup. For j = 1 to lenT := 6
√
n · log3 n: sample (skj , ) ← PRSet.Gen(1λ, n); let

Tj := skj , and set label(Tj) := good.

Online query for index x ∈ {0, 1, . . . , n− 1}.

(a) Sample (sk∗, )
$←PRSet(1λ, n) subject to x ∈ PRSet.Set(sk∗). Append sk∗ to the table T

as the last entry, and mark its label label(TlenT+1) := good.

(b) Let Tj := skj be the smallest entry in the table T such that x ∈ Set(skj).

(c) If z := label(Tj) = bad and then return Err-RemoveFailLeft.

(d) Sample a new (sk′,msk′) ← PRSet.Gen(1λ, n) subject to x ∈ PRSet.Set(sk′). Call sk′′ ←
PRSet.Puncture(msk′, x). Overwrite Tj := sk′. Moreover, if x ∈ Set(sk′′), set label(Tj) :=
bad; else set label(Tj) := good.

(e) Remove the last entry from T , and return Success.

CExpt′ is equivalent to the following CExpt′′ in terms of Err-RemoveFailLeft. In CExpt′′, we
simply save the entire sets in T rather than the secret keys.

Experiment CExpt′′

Offline setup. For j = 1 to lenT := 6
√
n · log3 n: sample (skj , ) ← PRSet.Gen(1λ, n); let

Tj := Set(skj), and set label(Tj) := good.

Online query for index x ∈ {0, 1, . . . , n− 1}.

(a) Sample (sk∗, )
$←PRSet(1λ, n) subject to x ∈ PRSet.Set(sk∗). Append Set(sk∗) to the table

T as the last entry, and mark its label label(TlenT+1) := good.

(b) Let Tj be the smallest entry in the table T such that x ∈ Tj .

(c) If z := label(Tj) = bad and then return Err-RemoveFailLeft.

(d) Sample a new (sk′,msk′) ← PRSet.Gen(1λ, n) subject to x ∈ PRSet.Set(sk′). Call sk′′ ←
PRSet.Puncture(msk′, x). Overwrite Tj := Set(sk′). Moreover, if x ∈ Set(sk′′), set
label(Tj) := bad; else set label(Tj) := good.

(e) Remove the last entry from T , and return Success.

It suffices to prove that in CExpt′′, Pr[Err-RemoveFailLeft] ≤ 1/(
√
n · log2 n) + negl(λ). We now

focus on analyzing CExpt′′.
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We consider the following hybrid experiment Hyb. Hyb is defined almost the same way as
CExpt′′, except the following modification: Step (d) is replaced with the following: sample (sk′, )←
PRSet.Gen(1λ, n) subject to x ∈ Set(sk′), and let Tj := sk′. Let b ← Bernoulli(2−( 1

2
logn+B)). If

b = 1, mark label(Tj) = bad; else, mark label(Tj) = good.
Due to the “security w.r.t. puncturing” property of PRSet, PrCExpt′ [Err-RemoveFailLeft] ≤

PrHyb[Err-RemoveFailLeft]+negl(λ) for an arbitrary query i. In Hyb, clearly, Pr[Err-RemoveFailLeft] ≤
2−( 1

2
logn+B) ≤ 1/(

√
n · log2 n).

7.2.2 Bounding the Probability of Err-NotFound, Err-ExceedTime, and Err-PunctureRight

Recall that we fix an arbitrary Q ∈ N, an arbitrary sequence of queries x1, x2, . . . , xQ, an arbitrary
i ∈ [Q]. We now bound the probability that the i-th query outputs the error messages Err-NotFound,
Err-ExceedTime, and Err-PunctureRight, respectively.

Error Err-NotFound. Due to Fact 7.5, and the pseudorandomness of the PRSet scheme,

Pr[Err-NotFound] ≤ Pr
{Sk}k∈[lenT]

$←DlenT
n

[xi /∈ ∪k∈[lenT]Sk] + negl(λ)

By Lemma 6.3, Pr[Err-NotFound] ≤ 1/n+ negl(λ).

Error Err-PunctureRight. Let (skj ,mskj) be the entry in the table T matched during the i-
th query, such that xi ∈ Set(skj). Recall that Err-PunctureRight happens if it is not the case
that Set(skj,xi) = Set(skj)\{xi} where skj,xi ← PRSet.Puncture(mskj , xi). Henceforth, let
Err-RelatedRight be the bad event that ∃y ∈ Set(skj), such that Related(xi, y) = 1; and let
Err-RemoveFailRight be the bad event that xi ∈ Set(skj,xi). Clearly,

Pr[Err-PunctureRight] ≤ Pr[Err-RelatedRight] + Pr[Err-RemoveFailRight]

Below we will bound Pr[Err-RemoveFailRight] and Pr[Err-RelatedRight] separately. Due to Fact 7.5,
during the i-th query, the entry (skj ,mskj) found is distributed as sampling at random from

(sk,msk) ← PRSet.Gen(1λ, n) subject to xi ∈ Set(sk). Due to the “security w.r.t. punctur-
ing” property of PRSet, skj,xi is computationally indistinguishable from a freshly sampled secret

key from PRSet.Gen(1λ, n). Therefore, we have the following:

• Err-RemoveFailRight: Pr[Err-RemoveFailRight] ≤ Prsk←PRSet.Gen(1λ,n)[x ∈ Set(sk)]+negl(λ). Due
to the pseudorandomness of PRSet, the above is upper bounded by Pr

S
$←Dn

[x ∈ S] + negl(λ) +

negl(λ) ≤ 1√
n·log2 n

+ negl(λ). Therefore, we have that Pr[Err-RemoveFailRight] ≤ 1√
n·log2 n

+

negl(λ).

• Err-RelatedRight: Due to the pseudorandomness of PRSet, Pr[Err-RelatedRight] ≤ Pr
S←D+xi

n
[∃y ∈

S : Related(xi, y) = 1] + negl(λ). Recall that the distribution D+xi
n means sampling at ran-

dom from Dn such that the resulting set contains xi. Due to Lemma 6.2, it must be that
Pr

S←D+xi
n

[∃y ∈ S : Related(xi, y) = 1] ≤ 1/ log n. Therefore, we have that Pr[Err-RelatedRight] ≤
1/ log n+ negl(λ).
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Error Err-ExceedTime. Due to Fact 7.5 and the pseudorandomness of our PRSet scheme,

Pr[Err-ExceedTime] ≤ Pr
RO

$←D+xi
n

[EnumTime(RO) > maxT] + negl(λ)

By Lemma 6.4, we have that Pr
RO

$←D+xi
n

[EnumTime(RO) > maxT] ≤ 1/ log n. Hence, Pr[Err-ExceedTime] ≤
1/ log n+ negl(λ).

8 Additional Related Work

Beimel et al. [BIM00] proved that in the original formulation of PIR, the servers must collectively
probe all n bits of the database on average to respond to a client’s query. Various techniques
have been suggested to overcome this key performance bottleneck, e.g., encoding the server-side
database, storing per-client or even per-query server state, batching, introducing assumptions like
Virtual-Blackbox obfuscation which is known to be impossible [BGI+01], or having many non-
colluding servers. We review this line of work below.

As mentioned in Section 1, the work of Beimel et al. achieves sublinear online computation by
encoding the database into a n1+ε to poly(n)-sized string. The recent (designated-client) doubly
efficient PIR schemes [CHR17,BIPW17] rely on encoding the database as well as having the server
store Ω(n) state per client, which is a significant barrier towards practicality in our motivating
applications. Boyle et al. [BIPW17] show that assuming Virtual-Blackbox Obfuscation which is
known to be impossible [BGI+01] (and additional non-standard assumptions that are not yet well
understood), one can indeed construct a preprocessing PIR with nε online runtime and bandwidth,
without having to store per-client state at the server.

A related notion called private anonymous data access (PANDA) was recently introduced by
Hamlin et al. [HOWW19]. PANDA is a form of preprocessing PIR which requires a third-party
trusted setup besides the client and the servers (which is not necessary in our work); and moreover,
the server storage and time grow w.r.t. the number of corrupt clients. In our motivating examples,
the number of clients is essentially unbounded which makes known PANDA schemes unsuitable.
Some works [BIM00,DCIO98] suggested having the server store per-query state to reduce the online
time. Specifically, the construction by Beimel et al. [BIM00] requires a linear amount of server
storage per query, and this is even worse than per-client storage. Other works [PPY18] improve
the online time by making the number of public-key operations sublinear, along with a still linear
number of symmetric-key operations. Sharding has also been suggested to spread out the server
work online [DHS14] but the total work across all servers is still linear.

A couple of works [PR93,Lip09] construct preprocessing PIR schemes whose online runtime is
marginally sublinear, e.g., roughly O(n/ log n); and the complexity of these protocols is much larger
than Corrigan-Gibbs and Kogan [CK20].

An elegant line of work suggested batching queries from the same client [IKOS04,HH17,ACLS18,
ALP+19] or among multiple clients [BIM00,IKOS06,LG15] to amortize the linear server work among
the batch. Our formulation can be viewed as a generalization of batched PIR, since we do not require
the requests to come in a batch, and we can nonetheless achieve small online bandwidth and work.
The work by Beimel et al. [BIM00] also showed how to get a preprocessing PIR with polylogarithmic
online bandwidth and cost assuming polylogarithmically many non-colluding servers, and poly(n)
server space. Toledo et al. [TDG16] consider how to relax the security definition and achieve
differential-privacy-style security, to improve the server time to sublinear.

The concurrent of Kogan and Corrigan-Gibbs [KCG21] gives a practical instantiation of their
earlier work [CK20], with a clever trick to remove the k-fold parallel repetition. Their implemen-
tation is indeed in the unbounded query setting. For their particular application, i.e., private

32



blocklist, it turns out that the dabase is somewhat small, and therefore, they are willing to incur
Θ(n) computation per online query, in exchange for roughly O(

√
n) online time and logarithmic

bandwidth. While their implementation is indeed a practical sweetspot for the private blocklist
application, for larger databases, incurring linear client time per online query could be prohibitive.
Their trick to remove the k-fold repetition does not seem to immediately apply to our construction
because we have an additional source of error from our underlying PRSet scheme.
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A Tunable Performance Bounds

So far, we have chosen our parameters such that the client storage (roughly equal to the number
of bits retrieved from the servers during preprocessing) and online computation per query (both
server and client) are balanced, and both are Õ(

√
n). Balancing the two metrics is the most

natural, and is also what prior works [CK20] have focused on. Interestingly, Corrigan-Gibbs and
Kogan’s lower bound [CK20] suggests a possible trade off between the number of bits downloaded
from the servers during preprocessing, and the online server computation per query. Specifically,
the lower bound says for any preprocessing PIR scheme where the servers store only the original
database, if the client downloads O(f(n)) amount of information during preprocessing, then the
online server computation must be at least n/f(n). In our scheme, the client downloads Õ(

√
n)

amount of information during preprocessing, and therefore the online computation is optimal up to
polylogarithmic factors. An interesting question is whether we can make our construction tunable
as well, to achieve near optimality for every choice of f(n).

Indeed, we can tune the parameters in our construction as follows. Suppose that f(n) ∈
[logc n, n

logc n ] for some suitably large constant c. In our PRSet scheme, we can set the probability

that any element is included to be 1
f(n) log2 n

. This can be accomplished by applying the PRF to any

suffix of 0B||x of length at least log n− log f(n) + 1 and checking whether all of these outcomes are
1. In this way, the expected set size becomes n

f(n) log2 n
. The number of sets the client must keep

can be set to lenT := f(n) log3 n, and one can check that Lemma 6.3 still holds. Due to the same

argument as Lemma 6.4, the expected set enumeration time now becomes O
(

n
f(n) log n

)
, and it

suffices to set the time threshold maxT to be O
(

n
f(n) · log5 n

)
. One can mechanically verify step

by step that our correctness proofs still hold under the new set of parameters. Therefore, we can
achieve the following tunable performance bounds for f(n) ∈ [logc n, n/ logc n]:

• The offline server time is Õ(n), the offline client time and bandwidth are Õ(f(n)).

• The online server and client time per query is Õ(n/f(n)), and the online bandwidth per query
is Õ(1).
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• each server needs to store only the original database DB and no extra information; each client
needs to store Õ(f(n)) bits of information.

Essentially, for every choice of the offline bandwidth f(n) ∈ [logc n, n/ logc n], we can achieve
optimal online bandwidth and time up to polylogarithmic factors.

B An Optimized Privately Puncturable PRF Scheme Tailored for
our PRSet

In our PRSet construction, we always puncture a set of points with distinct bit-lengths. This
observation allows us to get a better privately punctured PRF that saves an m = O(log n) factor in
terms of evaluation time, in comparison with Theorem 3.1 of Section 3. Specifically, we can modify
the syntax to the following:

• sk ← Gen(1λ, L0, L1): the algorithm takes in a security parameter λ, and the lower- and
upper-bounds on the message length denoted L0 and L1 respectively, respecting the relationship
L0 ≤ L1 ≤ λ; it samples a secret key sk.

• y ← Eval(sk, x): given the secret key sk and an input x ∈ {0, 1}L0..L1 := {0, 1}L0 ∪ {0, 1}L0+1 ∪
. . . ∪ {0, 1}L1 , outputs an evaluation result y ∈ {0, 1}.

• skP ← Puncture(sk, P ): let P be a set of exactly L1 − L0 + 1 points to puncture, each with
a distinct bit-length L0, L0 + 1, . . . , L1, respectively; the algorithm Puncture takes the secret
key sk and the set P to be punctured, and outputs a punctured key skP .

• y ← PEval(skP , x): given a punctured key skP and a point x ∈ {0, 1}L0..L1 , outputs an evalua-
tion result y.

In the above, Eval and PEval are both deterministic algorithms. We can define functionality
preservation, pseudorandomness and privacy w.r.t. puncturing similarly as before, except that now
the set P to be punctured must contain L1−L0 + 1 strings with distinct bit-lengths from L0 to L1.

Optimized construction. Let PRF1 be a privately puncturable PRF scheme that allows punc-
turing at a single point. We can use the LWE-based construction of PRF1 from several prior
works [BKM17, CC17, BTVW17]. We now construct the aforementioned special privately punc-
turable PRF (henceforth denoted PRF) that allows puncturing at multiple points of distinct bit-
lengths as follows.

• PRF.Gen(1λ, L0, L1): for i ∈ [L0, L1], let ski ← PRF1.Gen(1λ). Output sk := (skL0
, . . . , skL1

).

• PRF.Eval(sk, x): let i = |x| ∈ [L0, L1] be the bit-length of x, output PRF1.Eval(ski, x).

• PRF.Puncture(sk, P ):

– let xi be the unique string in the set P of bit-length i;

– for i ∈ [L0, L1], let sk′i ← PRF1.Puncture(sk, xi);

– output skP := (sk′L0
, . . . , sk′L1

).

• PRF.PEval(skP , x) let i = |x| ∈ [L0, L1] be the bit-length of x and parse skP := (skL0
, . . . , skL1

),
output PRF1.Eval(ski, x).
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It is straightforward to show that the above construction satisfies the desired functionality
preservation, pseudorandomness, and privacy w.r.t. puncturing.

In comparison with Theorem 3.1, the above optimized construction is a factor of m := L1−L0+1
faster in terms of evaluation time. More specifically, it achieves χ(λ) evaluation time, and the key
length and puncture time are still χ(λ) ·m where m := L1 − L0 + 1.

Using the optimized privately puncturable PRF scheme in our PRSet. We need a small,
non-essential modification to the PRSet scheme to make use of the optimized privately puncturable
PRF. In our PRSet scheme, when we call PRSet.Gen(1λ, n), we need to puncture a set P of
1
2 log n + B distinct and irrelevant strings — here “irrelevant” means that the punctured points
would never be queried to determine the set membership of an element. In the PRSet construction of
Section 4.4, we assumed a privately puncturable PRF that allows the puncturing of m := 1

2 log n+B
arbitrary points. Since in normal membership test for an element x, we prepend 0B to the binary
representation of the element x, the set of irrelevant points to puncture in PRSet.Gen are strings
of length log n+B beginning with 1.

If we were to use the optimized privately puncturable PRF scheme instead, we can make the
following small modification: to test the membership of the element x ∈ {0, 1}logn, we let z :=
0B||x||1, and test if for all i ∈ [1, 1

2 log n + B], PRF(sk, z[i :]) = 1. The set enumeration algorithm
can be modified in a similar way. When we call PRSet.Gen, the irrelevant points to puncture can
be strings of distinct lengths that end with 0.

38


	Introduction
	Strawman Attempts
	Preliminaries: Privately Puncturable PRFs
	Generalized Privately Puncturable Pseudorandom Set
	Security Definitions
	Defining Occasional Correctness
	Choosing a Sampling Distribution
	Our PRSet Scheme

	Putting it All Together: Our PIR Scheme
	Definitions: Two-Server Preprocessing PIR
	Construction
	Performance Analysis
	Optimizing the Polylogarithmic Factors
	Proof Roadmap

	Proofs for our PRSet Scheme
	Analysis of the Distribution D n
	Proofs for Our PRSet

	Proofs for our PIR Scheme
	Privacy Proof
	Correctness Proof
	Bounding the Probability of Err-PunctureLeft
	Bounding the Probability of Err-NotFound, Err-ExceedTime, and Err-PunctureRight


	Additional Related Work
	Tunable Performance Bounds
	An Optimized Privately Puncturable PRF Scheme Tailored for our PRSet

