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Abstract. In this work, we present the first post-quantum secure Up-
datable Public-Key Encryption (UPKE) construction. UPKE has been
proposed in the literature as a mechanism to improve the forward-secrecy
and post-compromise security of secure messaging protocols, but the
hardness of all existing constructions to date rely on discrete logarithm
assumptions. We focus our assessment on isogeny-based cryptosystems
due to their suitability for performing a potentially unbounded number
of update operations, a practical requirement for secure messaging where
user conversations can occur over months, if not years.
We begin by formalizing two UPKE variants presented in the literature
as Symmetric and Asymmetric UPKE. At a fundamental level, these
variants differ in how encryption and decryption keys are updated, and
consequently impact the design and security model for quantum-safe
constructions.
We demonstrate that Asymmetric UPKE cannot be instantiated using
existing isogeny-based constructions. We then describe a SIDH-based
Symmetric UPKE construction that is possible in theory but requires
improving existing mathematical limitations before a practical imple-
mentation is possible. Finally, we present a CSIDH-based Symmetric
UPKE construction that can be instantiated using a parameter set in
which the class group structure is fully known to ensure efficient uniform
sampling and canonical representation to prevent leakage of secret keys.
We discuss several open problems which are applicable to any cryptosys-
tem with similar requirements for continuous operations over elements
in the secret domain.

Keywords: isogenies, post-quantum cryptography, public-key encryption, se-
cure messaging

1 Introduction

Secure communication protocols are quickly evolving [26, 25, 3], driven by the
need to meet simultaneous usability and security requirements, such as asyn-
chronous communication while ensuring forward secrecy and post-compromise
security for conversations that can occur over months, if not years. Updatable
Public-Key Encryption (UPKE) schemes have been proposed as a seemingly
simple protocol solution to improve weak forward secrecy properties of existing



secure messaging protocols such as the Signal and Message Layer Security (MLS)
protocols [11, 23, 1, 19, 31, 2, 30]. In addition to standard public-key encryption
functionality, UPKE schemes allow encryption and decryption keys to be asyn-
chronously updated with fresh entropy, thereby healing the protocol by restoring
security even after exposure against an adversary that can temporarily com-
promise a victim’s local state. Unfortunately, the security of all UPKE schemes
proposed to date relies on the hardness of the discrete logarithm problem.

In this work, we perform the first assessment of the viability of quantum-
secure UPKE schemes, and present the first post-quantum secure UPKE con-
struction. To guide our analysis, we formalize two UPKE variants presented in
the literature which we call Symmetric UPKE and Asymmetric UPKE, and as-
sess the extent to which existing isogeny-based cryptosystems can instantiate
both variants. We model Asymmetric UPKE after a construction proposed by
Jost, Maurer, and Mularczyk [23], in which encryption keys are updated us-
ing elements in the public domain, while decryption keys are updated using
private values. We model Symmetric UPKE after a construction proposed by
Alwen et al. [1] to improve the forward-secrecy and post-compromise security of
TreeKEM [6], the group key-exchange primitive used by MLS, where both en-
cryption and decryption keys are updated using the same private update value.

We demonstrate that Asymmetric UPKE cannot be instantiated by either
Supersingular Isogeny Diffie Hellman (SIDH) nor Commutative Supersingular
Isogeny Diffie-Hellman (CSIDH) due to limitations in their algebraic structure.
We then present a series of steps demonstrating that SIDH can in theory be used
for Symmetric UPKE constructions, but in practice is hindered due to existing
mathematical limitations. We then present a CSIDH-based Symmetric UPKE
construction which can be used today with the existing CSIDH-512 parameter
set, or any CSIDH parameter set where the class group structure is fully known.
The requirement of knowing the class group structure is needed to allow for
unique group element representation and uniform sampling. Taken together,
these properties mean that the value of a secret key after an update has occurred
is independent of the previous secret key, providing strong forward secrecy and
post-compromise guarantees.

We focus our analysis on isogeny-based cryptosystems as alternative quantum-
secure cryptographic primitives have undesirable usability or efficiency trade-offs
for secure messaging protocols, or simply cannot support the algebraic struc-
ture required for UPKE. In the setting of secure messaging, user conversations
can potentially endure months, if not years, and so supporting ongoing proto-
col actions without bounds on the number of consecutive update operations is
desirable. For example, lattice-based cryptosystems accumulate errors for each
additional operation, and so require either bounding the number of operations
or performing some expensive compression function to limit growth of errors [16,
17]. Code-based primitives similarly accumulate errors over repeated operations,
and so have similar restrictions on the number of possible operations that can be
performed [27]. Finally, multivariate and hash-based primitives are not a good fit
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for key-exchange protocols in general, much less protocols with more advanced
requirements such as updatability1.

Some Open Problems. As we demonstrate later in our work, while in the-
ory SIDH can be used to instantiate a Symmetric UPKE construction, such a
construction cannot be instantiated today due to existing mathematical limita-
tions. Specifically, more efficient KLPT algorithms that can output isogenies of
degree less than some prime p are required for our SIDH construction in order
to guarantee forward-secrecy and post-compromise security for updated secret
keys. However, the state of the art in KLPT algorithms today [14] can at best
output an isogeny of degree 15

4 log`(p) for λ = 128 bits in security, where the
size of p is 2λ bits.

For CSIDH, the ability to sample group elements uniformly and a unique rep-
resentation of those elements is needed to instantiate an efficient construction
that is not limited in the number of update operations. However, such an im-
provement requires fully computing a class group cl(O), where the only existing
parameter sets [5] may provide less than 64 bits of post-quantum security [28,
7, 10]. Without such a structure, the distribution of the updated secret key is
dependent on both the original secret as well as the update value, thereby ex-
posing an information leak to an adversary that can temporarily compromise
the victim’s local state. Hence, similarly to constructions such as CSI-FiSh, our
CSIDH-based UPKE construction would benefit from stronger CSIDH parame-
ter sets whose class group can be fully computed. While today’s classical com-
puters can perform such operations in sub-exponential time (and so computing
larger parameter sets today may be infeasible), at worst, quantum computers
can certainly perform such operations more efficiently.

Finally, we wish to emphasize that any cryptosystem with similar require-
ments for continuous operations over elements in the secret domain will face
similar limitations, so these improvements will have wider benefits beyond our
constructions.

Contributions. In this work, we assess and give constructions for post-quantum
secure updatable public-key encryption (UPKE) schemes using isogeny-based
cryptosystems. Towards this end, we present the following contributions:

– We give formal definitions of Symmetric UPKE and Asymmetric UPKE as
two UPKE variants previously presented in the literature. We also present
IND-CPA-U, a formalization and generalized security model for proving
IND-CPA security specifically for UPKE schemes, a setting in which the
adversary is assumed to be able to adaptively choose update values as well
as corrupt secret key material.

1 Hash functions only rely on one-way functions and thus cannot provide the structure
needed for key exchange. Multivariate schemes are generally built from a surjective
trapdoor function that is difficult to build a key exchange protocol from, and with
no obvious algebraic structure to allow for updating.
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– We assess the capability of two isogeny-based public-key cryptosystems—
SIDH and CSIDH—to instantiate Asymmetric and Symmetric UPKE con-
structions. Towards this end, we assess the algebraic structure defined by
SIDH and CSIDH, and provide a comparison to two structures commonly
used for classically secure Diffie-Hellman operations.

– We determine that Asymmetric UPKE cannot be instantiated by either
SIDH or CSIDH due to limitations in their algebraic structure.

– We describe a series of steps leading to a SIDH-based Symmetric UPKE
construction that is possible in theory, but requires further mathematical
advancements to be instantiated in practice. We describe these advancements
and how such improvements apply to related cryptographic protocols.

– We present a Symmetric UPKE construction that can be used today with
CSIDH-512, or any CSIDH parameter set where the class group has been
fully computed. We prove this construction to be IND-CPA-U secure, and
also provide an implementation.

Related Work The most closely related work to our own is the already men-
tioned Alwen et al. work [1]; our Symmetric UPKE primitive is modeled after
their construction. However, as mentioned, the work by Alwen et al. defines and
applies an updatable public-key encryption scheme to TreeKEM as a mechanism
to improve forward secrecy. This present paper is an effort to construct updata-
bale public-key encryption primitives using supersingular isogenies, to define
a post-quantum variant suitable for similar use in asynchronous group-based
key-exchange protocols akin to TreeKEM. Further, we prove security in a more
robust model that models the adversary’s capability to both adaptively choose
update values for the victim as well as corrupt their local state. The work by
Alwen et al. on updatable public-key encryption was in turn based upon work
by Jost et al. [23], which is most akin to our Asymmetric UPKE notion.

Both secure messaging protocols and post-quantum protocols are still in ac-
tive development. Efforts to combine the two (post-quantum secure messaging)
are so far rare in the literature, although we refer to [8] as a recent example of
exactly this. Their work constructs a version of Signal’s X3DH protocol out of
the (ring)-LWE problem.

Finally, we note that there exists a separate notion of “updatable encryption”
in the literature [22]. In these schemes, a ciphertext is updated using an update
token such that the encrypted message becomes an encryption under a new
public key without the need to decrypt the message in the process. This notion
should not be confused with the schemes we present here, which use update
tokens to update the public key and rely on asymmetric encryption.

Organization. We give an overview of isogenies and isogeny-based cryptosys-
tems in Section 2 and of updatable public-key encryption schemes in Section 3.
In Section 4 we assess the extent to which SIDH and CSIDH can be used to
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instantiate Asymmetric and Symmetric UPKE constructions. We present a se-
ries of steps toward a SIDH Symmetric UPKE construction in Section 5 and a
CSIDH Symmetric UPKE construction in Section 6. We conclude in Section 7.

2 Isogenies and Isogeny-Based Cryptography

Let p be a prime number and Fp as a finite field of characteristic p, and let E0

and E1 be elliptic curves defined over Fp. An isogeny φ : E0 → E1 is a rational
map from E0(Fp) to E1(Fp) which is also a group homomorphism [33]. Two
curves over the same finite field are considered identical if they are the same
up to isomorphism; such a correspondence can be determined by comparing the
j-invariant of each curve, which remains a constant value for all isomorphic
curves.

The endomorphism of an elliptic curve φ : E → E is a rational map from
E to itself, defined over an extension field Fpn . The set of all endomorphisms
for an elliptic curve forms a ring under the operation of point-wise addition and
composition; we denote this ring of endomorphisms as End(E ). When End(E )
is isomorphic to an order in a quaternion algebra, the curve is classified as
supersingular, otherwise, End(E ) is isomorphic to to an imaginary quadratic
field and the curve is classified as ordinary [33].

The Deuring correspondence proves that there is a one-to-one mapping be-
tween supersingular curves over the quadratic extension field Fp2 and maximal
orders in a quaternion algebra, up to isomorphism. In short, End(E ) is isomor-
phic to a maximal order O in Qp,∞ (the quaternion algebra over Q ramified
at p and ∞), and for each O ∈ Qp,∞, there exists an isomorphism to some
supersingular curve E defined over Fp2 .

We next describe two existing cryptosystems—SIDH and CSIDH—whose
security has been demonstrated to reduce to the hardness of the Supersingular
Isogeny Problem, described in Definition 1.

Definition 1. Supersingular Isogeny Problem [21] Given a finite field K
and two supersingular elliptic curves E1, E2 defined over K such that |E1| =
|E2|, compute an isogeny φ : E1 → E2

2.1 Supersingular Isogeny Diffie-Hellman (SIDH)

Introduced by Jao and De Feo in 2011 [21], SIDH is a Diffie-Hellman like scheme
defined using secret isogenies between supersingular elliptic curves to perform
a key exchange protocol between two parties. SIDH can also be constructed as
a PKE scheme [21], and has been adapted as a KEM with additional Fujisaki-
Okamoto techniques [18] as an IND-CCA2 secure candidate for the ongoing NIST
competition to standardize quantum-resistant key exchange protocols [20].

Performing key exchange via SIDH begins with each party agreeing to a start-
ing public curve E0(Fp2), where p is a prime of the form 2e13e2 + 1, and a set
of auxiliary points ((PA, QA), (PB , QB)) ∈ E0. For this work, we assume secret
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values—which define the kernel of an isogeny—are of the form 〈[1]P+[n]Q〉, such
that participants only need to randomly generate the scalar n to define their

secret key. Correspondingly, Alice selects nA
$← Z2e1 which defines her secret

isogeny φA : E0 → EA, such that EA = E0/〈[1]PA + [nA]QA〉. Similarly, Bob se-

lects nB
$← Z3e2 , which defines his secret isogeny φB : E0 → EB , such that EB =

E0/〈[1]PB + [nB ]QB〉. Alice publishes her public key (EA, φA(PB), φA(QB)),
while Bob publishes his public key (EB , φB(PA), φB(QA)).

After obtaining each other’s public values, their shared secret is the j-invariant
of the resulting secret curve EAB , which we denote as j(EAB). Alice arrives
at EAB by calculating EB/〈φB(PA) + [nA]φB(QA)〉 using her secret term nA,
whereas Bob calculates EA/〈φA(PB) + [nB ]φA(QB)〉 using his secret term nB .
Alice and Bob obtain the same shared secret by finding the j-invariant of EAB ,
as their resulting values

EB/〈φB(PA) + [nA]φB(QA)〉 ∼= EA/〈φA(PB) + [nB ]φA(QB)〉

are equal up to isomorphism.

2.2 Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

As described in Section 2.1, SIDH performs “Diffie-Hellman-like” operations over
a set of supersingular elliptic curves over the quadratic extension field Fp2 and
isogenies between these curves. SIDH ensures commutativity of key-exchange
operations between two participants by additional sending auxiliary points on
each participant’s public curves. Participants arrive at the same curve up to
isomorphism by “dividing out” the starting elliptic curve by two non-intersecting
subgroups.

CSIDH [9] builds upon the Conveignes-Rostovisev-Stolbunov [12, 32] scheme,
but instead uses the graph of supersingular curves. The security of CSIDH is
based on the Supersingular Isogeny problem defined in Definition 1, but CSIDH
restricts the supersingular graph (where nodes are supersingular curves, and
edges are isogenies) to curves defined over Fp.

While the full ring of endomorphisms of supersingular curves over Fp2 (an
order in a quaternion algebra) is non-commutative, restricting this graph to
the subring of curves defined over Fp (also an order in a quaternion algebra)
allows for commutativity of multiplication within the subring. To ensure that
isogeny operations can be computed efficiently using Vélu’s formula, p in CSIDH
is defined to be of the form p = 4 · `1 · `2, . . . , ·`d − 1 for some set of d small
primes. This set of ideals [`] generates the class group cl(O).

Similarly to SIDH, participants performing a key-exchange must agree to
some starting curve curve E0(Fp). A secret key in CSIDH is a vector e ∈ Zd;
each element in e is within some specified bound to ensure that these values
are “small”. This value e represents a secret ideal

∏d
i=1 `i

ei . By the Deuring
correspondence, we know that this ideal corresponds to exactly one isogeny from
the starting curve E0 to some other curve in the graph.
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Signature Schemes Building upon CSIDH: CSI-FiSh Recently, an ef-
ficient signature scheme based on the hardness of CSIDH-512 was presented [5].
While CSIDH has always been framed as a group action, there are some limita-
tions to using it as such. The specific structure of the class group cl(O) was pre-
viously not known, which made sampling from the group uniformly and having
a unique representation of group elements impossible. The authors of [5] solved
this problem by explicitly computing the structure of the cl(O), which required
a sub-exponential computation. They found that the group was cyclic, and the
value N such that cl(O) ∼= ZN . As well, the authors described a methodology
to translate the representation of group elements from ZN to vectors e ∈ Zd, so
that the same method of applying the secret ideal

∏d
i=1 `

ei
i can be used.

This allows anyone to sample uniform group elements and have unique rep-
resentations, so long as the CSIDH-512 parameter set is used. While the authors
of CSI-FiSh used these properties to define a signature scheme, we will show
how the same structure is useful in building updatable public-key encryption.

2.3 KLPT Algorithm

While SIDH and CSIDH rely on the hardness of finding a path in the `-isogeny
graph between two challenge curves (vertices in the supersingular graph), a
“quaternion analog” of this `-isogeny problem solves for a relation between the
representation of the endomorphism rings of two curves as a maximal order of a
quaternion algebra. In short, given a maximal order O ∈ Qp,∞, the problem is
to find a left O0-ideal J with norm `k, and another left ideal O0 ideal I with the
same norm. Doing so in turn corresponds to finding an isomorphism between
the two challenge curves).

The KLPT algorithm—named for its authors Kohel, Lauter, Petit, and Tignol—
presents one such algorithm for solving this `-isogeny problem [24]. This algo-
rithm accepts as input an integral I and finds an equivalent ideal J ∼ I for the
specified norm. Such an algorithm is useful to produce an isogeny η : E0 → E2

from two isogenies φ ◦ ψ : E0 → E2, where φ : E0 → E1 and ψ : E1 → E2, such
that η is independent to φ and ψ.

The KLPT algorithm first described by Kohel, Lauter, Petit, and Tignol [24]
and then improved by Petit and Smith [29] produces isogenies of degree 9

2 log`(p)
as output. However, recent work by De Feo, Leroux, Petit, and Wesolowski on an
isogeny-based signature scheme SQI-Sign [14] improves the degree of this output
to 15

4 log`(p).

3 Updatable Public-Key Encryption (UPKE)

We first present definitions for updatable public-key encryption (UPKE) variants
described in the literature. We then review the notions of security for any UPKE
scheme.
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Note that while Alwen et al. [1] use “updatable public-key encryption” to
refer to the Symmetric UPKE scheme we define in Section 3.12, we use the
UPKE terminology in a more generalized sense to refer to the broader class of
any public-key encryption scheme that satisfy the notions we define below.

We do not include in our analysis optimally secure UPKE constructions that
rely on identity-based encryption [19, 31], due to their lack of efficiency in com-
parison to real-world protocols such as MLS and Signal.

3.1 Definitions

We begin by formalizing the notion of a generalized UPKE scheme. We then
present two variants of UPKE schemes presented previously in the literature [1,
23], which differ in how update values are generated and applied to an existing
public-key encryption keypair.

Definition 2. Updatable Public-Key Encryption An Updatable Public-
Key Encryption scheme U is defined by six algorithms: a key generation algo-
rithm KeyGen, an encryption algorithm Encrypt, a decryption algorithm Decrypt,
an algorithm to generate update values GenerateUpdate, and protocols to update
the private and public keys UpdatePrivate,UpdatePublic, respectively.

The notions that any UPKE scheme should satisfy are as follows:

– Correctness: The scheme should correctly perform public-key encryption and
decryption both before and after a series of update operations.

– Forward secrecy : If an attacker learns the secret key for epoch n, the updated
secret keys in epochs 1 . . . , n− 1 should not be recoverable by the attacker.

– Post-compromise security : If an attacker learns the secret key for epoch n,
all updated secret keys in epochs n, n + 1, . . . should not be recoverable by
the attacker.

– Asynchronicity : Anyone with knowledge of a public key should be able to
initiate an update, so that the update operation to the public key is imme-
diately available, and only the update operation to the secret key should be
performed eventually.

– Key Indistinguishability : An adversary that has access to both a freshly
generated keypair and an updated keypair has a negligible advantage to dis-
tinguish between the two. Note that while such a property may be desirable
in practice for privacy reasons, our reason for requiring this property is that
we need it in our IND-CPA-U proof. However, it is possible that alternative
proof strategies may not require key indistinguishability to prove IND-CPA-
U security.

We provide a formalization for how UPKE schemes fulfill these notions in
Section 3.2.
2 Other terms in the literature also have been introduced such as “key-updatable

public key encryption” for variants modeled by our Asymmetric UPKE variant [23,
19]; we simply use UPKE as the broader term to refer to any public-key encryption
scheme that allows for key updates of any form.
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Symmetric Updatable Public-Key Encryption We model the notion of
Symmetric UPKE after a construction described by Alwen et al. [1] as a mech-
anism to improve the forward-secrecy and post-compromise security properties
of TreeKEM, the group key-exchange primitive used to achieve key agreement
for MLS. In the construction by Alwen et al., the sender of a message will also
generate an update value, which is transmitted privately to the holder of the
decryption key as part of the ciphertext along with the message. As such, the
sender of a message can apply the update value to the other party’s encryption
key, and then the update value is applied by the receiver of the message to their
decryption key. Notably, Symmetric UPKE uses the same update value µ when
performing UpdatePublic and UpdatePrivate, meaning that the encryption and
decryption keys are both updated using µ.

More formally, Symmetric UPKE instantiates U as follows:

KeyGen: Produces as output a public key pk and secret key sk .

Encrypt : Encrypts a message m using the public key pk , resulting in a cipher-
text c.

Decrypt : Decrypts the ciphertext c using sk , producing as output the plaintext
message m.

GenerateUpdate: Produces as output a randomly-generated update value µ.

UpdatePrivate: Takes as input the secret key sk and the update value µ and
produces a deterministic output that is the updated secret key sk ′.

UpdatePublic: Takes as input the public key pk and the update value µ, and
produces a deterministic output that is the updated public key pk ′. This
operation is intended to be performed independently from UpdatePrivate by
an entity that is not the same entity that performed KeyGen, as otherwise
the keypair owner could simply perform KeyGen to generate completely
fresh keys.

Correctness. Symmetric UPKE constructions are correct if they correctly per-
form Encrypt and Decrypt operations both before and after a series of UpdatePublic
and UpdatePrivate operations have been performed.

Asymmetric Updatable Public-Key Encryption We model the notion of
Asymmetric UPKE after a construction proposed by Jost, Maurer, and Mula-
rczyk [23] that is based on the ElGamal cryptosystem to improve the security
of secure messaging protocols such as Signal. In their construction, the owner of
the decryption key first generates a private update value and applies this update
to their decryption key, and then generates a public update value (corresponding
to the private update value), and sends this public update value to the other
party, who applies it to the encryption key. In short, in the Asymmetric UPKE
setting, encryption and decryption keys are updated using different update val-
ues. Notably, the update value applied to the encryption key is in the public
domain, while the update value applied to the decryption key is assumed to be
secret.
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More formally, Asymmetric UPKE schemes instantiate U as follows, where
KeyGen,Encrypt ,Decrypt remain identical to the Symmetric setting:

GenerateUpdate: Produces as output an update value µ that is a tuple com-
prised of public and private update values µsk, µpk.

UpdatePrivate: Accepts as input a secret key sk and a secret update value µsk,
and produces as output an updated secret key sk ′.

UpdatePublic: Accepts as input a public key pk and a update value µpk, and
produces as output a updated public key pk ′.

Correctness. As in the Symmetric setting, Asymmetric UPKE constructions
are correct if both before and after performing a series of UpdatePublic and
UpdatePrivate operations, Encrypt and Decrypt operations can be correctly per-
formed.

3.2 Security

The security of UPKE schemes can be formalized using a modified notion of
Indistinguishability under Chosen Plaintext Attacks (IND-CPA) security first
introduced by Alwen et al. [1]. We now present a generalization of Alwen et
al.’s definition of IND-CPA security which we define as “Indistinguishability
under Chosen Plaintext Attacks with Updatability”, or IND-CPA-U. Note that
we present this notion of IND-CPA-U security assuming a Symmetric UPKE
construction, but this security model extends easily to the Asymmetric UPKE
setting by simply allowing the adversary to learn public update values when an
honest update operation has been performed.

In Alwen et al.’s definition, the adversary is given the public key pk0 and
provides a sequence of updates µ1, . . . , µτ . The public and private keys are up-
dated accordingly and the adversary is issued an IND-CPA challenge under pkτ .
The public and secret key are updated again, this time with a secret update,
and the adversary is given the resulting public and secret key. They then must
respond to the IND-CPA challenge.

Their model illustrates the fundamental idea behind how security works for
updatable encryption: the adversary may learn (or even control) either the up-
date value or the secret key, but as long as they do not have both, the updated
secret key remains secure. However they have the restriction that the adversary
controls the updates prior to the IND-CPA challenge, and receives the secret key
afterwards. We generalize this by allowing the adversary to adaptively choose
whether they want to control the update or learn a secret key, with the restric-
tion that the IND-CPA challenge can only be issued on a public key that has
not been compromised in a straightforward way.

As with the Alwen et al. model, we begin by generating a keypair (pk0, sk0)
and sending pk0 to A. We initialize i← 0 (the most recent version of the keypair
will be (pk i, sk i)). After this we let the adversary decide how the key will be
updated. To this end, we provide our adversary with the following oracles they
may call:
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– The GiveUpdate(µ) oracle takes in an update value µ. It increments i← i+1,
and then generates

(pk i, sk i)← UpdatePublic(pk i−1, µ),UpdatePrivate(sk i−1, µ)

before providing the new pk i to the adversary.

– The FreshUpdate() oracle corresponds to updates happening that the adver-
sary does not control or know the update value for. It generates a random

µ
$← GenerateUpdate() and then calls GiveUpdate(µ), providing the new pk i

to the adversary.

– The Corrupt(j) oracle provides sk j for a index j ≤ i.

Eventually, the adversary requests a challenge on an index j ≤ i and provides

messages (m0,m1). A bit b
$← {0, 1} is sampled and cb ← Encrypt(mb, pk j) is

provided back to the adversary. After making further queries to the update and
corruption oracles, the adversary must issue a bit b′. They are said to win if b = b′

and the index j is fresh. The freshness requirement ensures that the adversary
cannot trivially win.

An index j is considered fresh if:

– The adversary has not called Corrupt(j), and

– There is not a sequence of updates (in either direction) all of which from
GiveUpdate that connects the index j to an index k for which Corrupt(k) has
been called.

In Figure 1 we visualize how the queries that the adversary has performed cause
a given index to be considered fresh or not.

pk0 pk1 pk2 pk3 pk4 pk5 pk6

Fig. 1. A series of updates applied to public keys. In this diagram, updates that occur
as a result of GiveUpdate queries are solid, while updates that are a result of FreshUpdate
queries are dashed. Keys that are connected by updates that the adversary has pro-
vided or has knowledge of can be viewed as a block. If one index in a given block is
compromised, leaking the secret key, then the secret key for any index in the block can
be calculated. In our security model, such indices are not considered fresh, and if the
adversary requests the challenge on such an index, they are penalized.

We denote the advantage of A as CPAU adv = 2 · Pr[A wins]− 1.

Definition 3. A UPKE scheme is IND-CPA-U secure if for any polynomial-
time adversary A, the value of CPAU adv is negligible.
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Unlike IND-CPA games for plain PKE schemes, the IND-CPA-U defini-
tion presented in Definition 3 captures the notion of forward secrecy and post-
compromise security by allowing A to learn any secret key material and provide
whatever update values that it wishes, and then determines the extent to which
this knowledge grants the adversary additional advantage within the IND-CPA
game, for which we enforce that the adversary does not know the encryption key.
In short, updates that the adversary does not control “resets” their advantage
to a negligible amount, even if they have compromised the secret key prior to
the update (in other words, the scheme is post-compromise secure). Similarly, if
the adversary learns the secret key after an honest update has occurred, their
advantage in the IND-CPA game is negligible for that secret key prior to the
update (i.e, the scheme achieves forward secrecy).

This model is tailored towards symmetric UPKE, but can be adapted to also
model an adversary targeting an asymmetric UPKE. For an asymmetric scheme,
we need to change how updates are considered, as there are now ‘public’ and
‘private’ parts to the update. This can be done by having the FreshUpdate oracle
return the public part of the update.

4 Assessing Isogeny-Based UPKE Constructions

In order to construct a UPKE scheme, an UpdatePrivate operation should re-
randomize the secret key. By applying updates from GenerateUpdate, the dis-
tribution of the new secret key should be independent from that of the previous
one. This is what can ensure that the scheme satisfies forward-secrecy and post-
compromise security. Achieving such a property is difficult with lattice systems.
The obvious thing to do with a lattice-based system is to add together two (ring)-
LWE samples to update a public key. However the corresponding secret key will
then be the sum of two (ring)-LWE secrets. The distribution of the resulting
secret will be dependent on the previous secret, making it difficult to argue for
the security of such a system.

For this reason we assess the extent to which two isogeny-based public-key
cryptosystems—SIDH and CSIDH—can support the construction of a updatable
public-key encryption scheme. To begin, we review the required algebraic struc-
ture to perform both Asymmetric and Symmetric UPKE operations, and assess
the capability to perform these operations using SIDH and CSIDH in comparison
to two algebraic structures used to instantiate classically secure “Diffie-Hellman-
like” schemes. We then discuss the barriers in constructing asymmetric UPKE
from SIDH and CSIDH. In Section 5 we discuss the gaps in constructing a sym-
metric UPKE scheme from SIDH, and in Section 6 we present a Symmetric
UPKE scheme from CSIDH.

We present a high-level overview of our analysis in Table 1.

4.1 Comparison of Algebraic Structure

We begin by assessing the extent to which SIDH and CSIDH can support per-
forming Asymmetric or Symmetric UPKE operations. We compare these results
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to two classically secure algebraic structures over which Diffie-Hellman like op-
erations are commonly performed; the multiplicative group of integers modulo
some prime Zp and elliptic curves over some finite field E(F).

Required Structure for Asymmetric and Symmetric UPKE

Symmetric UPKE. In the setting for Symmetric UPKE, the same update
value is applied to both the encryption and decryption keys, as further described
in Section 3.1. Note that this update value is assumed to be efficiently and
uniformly sampled to prevent information leakage. Symmetric UPKE relies upon
similar group structure requirements as plain Diffie-Hellman key exchange, as
while Symmetric UPKE requires some form of commutativity, a group action is
not strictly necessary.

Asymmetric UPKE. In the setting for Asymmetric UPKE, performing up-
dates requires a ring structure, as a group action must be defined. Let µ denote
the secret value used to update the decryption key and gµ be the public value
used to update the encryption key. In a multiplicative group, the update oper-
ations to the encryption key can be thought of as performing ga · gµ = ga+µ.
Updating the decryption key requires performing a+ µ. Similarly to Symmetric
UPKE, Asymmetric UPKE assumes that the secret update value µ is efficiently
and uniformly sampled.

Classical Algebraic Structures

Multiplicative Groups. Let Zp be the group of integers modulo some prime
p ∈ Z, and generated by some generator g ∈ Zp. Here, Zp supports the group
operation of multiplying two group elements A ·B, as well as exponentiation of
group elements by some scalar value. The group operation in Zp is commutative.

Elliptic Curves over Finite Fields. Let E(F) be an elliptic curve over some
finite field, generated by a point G ∈ E/F. Such finite fields can be of prime
order given some prime modulus p or of a non-prime order but generate a sub-
field of prime order over which operations are performed, such as in the case of
Curve25519 [4]. Here, E(F) supports one group operation, that of point addition,
where a group element is repeatedly added to itself, and point multiplication is
supported by performing repeated addition operations.

Isogeny-Based Algebraic Structures

SIDH. Unlike groups such as Zp or elliptic curves over some finite field, the
endomorphism ring for supersingular curves over Fp2 is neither commutative
nor defines a group action at all. To perform SIDH, participants require agreeing
upon additional “auxiliary points” which ensure both parties arrive at the same
shared secret after completing the protocol. This structure defined by SIDH can
be thought of as a semigroup; although note that since any function can be
considered a semigroup, this classification is not particularly informative.
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Asymmetric Symmetric
Update Value Update Operation Update Value Update Operation

Zp

Secret b
$← Zp a+ b b

$← Zp a · b

Public gb (ga · gb) = ga+b b gab

E(F)

Secret b
$← F a+ b b

$← F a · b

Public bG aG+ bG = (a+ b)G b a · (b ·G)

SIDH

Secret X X φU : E0 → EU KLPT (φA, φu)→ φAU

Public X X φU : E0 → EU φU (EA)

CSIDH

Secret X X b
$← ZN a+ b (mod N)

Public X X b b ? EA

Table 1. Updatable Symmetric and Asymmetric UPKE Instantiated Across Isogeny-
Based Cryptosystems and Two Classical Constructions for Comparison. “X” denotes
operations which cannot be performed in that construction. ”Secret“ denotes the secret
key operations; “Public” for public key operations. For CSIDH, the ? operator denotes
the group action defined in CSI-FiSh, which takes an element b of ZN and interprets
it as an ideal before applying it to the elliptic curve (further details in Section 2.2).

CSIDH. Couveignes [13] first defined the concept of a hard homogeneous space
as a finite commutative group G acting over some set X, a generalization of
the structure for a group suitable to performing Diffie-Hellman-like operations.
Similarly to SIDH, CSIDH defines a finite commutative group consisting of the
ideal-class group cl(O) acting over the set of supersingular curves through the
application of isogenies. However, importantly, the graph of supersingular curves
in CSIDH is restricted to the field Fp, thereby ensuring that cl(O) can act freely
and transitively over the group. As cl(O) is commutative, CSIDH can support
commutativity of operations over this set of supersingular curves via the group
action.

As discussed in Section 2.2, group elements are represented by a vector e ∈
Zd, representing the ideal

∏d
i=1 `

ei
i . This representation is used because in general

applying the group action is computationally difficult. To get around this, CSIDH
uses a canonical set of generators g1, . . . , gd and works be only applying small
powers of these generators to the starting curve E. Two major limitations of
this representation are that it does not allow for uniform sampling over the class
group, and the representation of group elements is not necessarily unique.

Beullens et al. [5] solved this problem, at least for the CSIDH-512 parameter
set by explicitly computing the structure of the class group. For this parameter
set, they found an N such that cl(O) ∼= ZN and described a method to swap
between the representation of group elements as a member of ZN and of Zd.
This allows for both uniform sampling and unique representation.
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4.2 Assessing Isogeny-Based Asymmetric UPKE

We now determine the extent to which SIDH and CISDH can be used to instan-
tiate Asymmetric UPKE schemes as defined in Section 3.1.

SIDH. An Asymmetric UPKE scheme must be able to “combine” public val-
ues (i.e, group elements) via some group operation, as described in Section 4.1.
Further, the construction should support a second, distinct operation for “com-
bining” private and public values.

As described in Section 4.1, SIDH supports only one operation—applying
isogenies via Vélu’s formula—over elements in the set of supersingular curves
over Fp2 . Hence, while SIDH can “combine” public and private values by some
(non-group) operation, SIDH does not support the other requirement of Asym-
metric UPKE of “combining” two group elements. More clearly, it is difficult
to imagine how to apply one public value in SIDH—a supersingular curve—to
another.

As such, SIDH cannot be used as an underlying public-key encryption prim-
itive to construct an Asymmetric UPKE scheme.

CSIDH. Similarly to SIDH, CSIDH cannot be used for an Asymmetric UPKE
construction. The private values in CSIDH form a commutative group, so one
might hope for more algebraic structure to be useful. But for asymmetric UPKE
we need some sort of structure in the public domain. Public values in CSIDH
are still elliptic curves, and without an operation that can be applied between
elliptic curves or a new way to separate private and public values, Asymmetric
UPKE is also impossible to build with straightforward CSIDH.

5 Symmetric UPKE via SIDH

We now present a series of steps towards a SIDH-based Symmetric UPKE con-
struction. While our end result does define a complete construction, future math-
ematical improvements must be made before it can be instantiated in a practical
setting. We conclude by describing these improvements and their applications
to related cryptographic schemes.

SIDH-based UPKE, first attempt. A first step towards a Symmetric UPKE
scheme using SIDH has a similar form to plain public-key encryption via SIDH
defined by Jao and De Feo [21]. However, here, the update step is performed using
a SIDH key exchange operation, where the resulting curve from the exchange
becomes the updated public key as opposed to the negotiated shared secret.

Alice performs key generation in exactly the same way as in plain SIDH, by

first sampling a scalar nA
$← Z2e1 which then defines her secret encryption key

skA is the isogeny φA : E0 → EA, such that EA = E0/〈[1]PA + [nA]QA〉. Alice
then generates her public encryption key pkA is the curve with auxiliary points
(EA, φA(PB), φA(QB)). exactly the same way as in plain SIDH
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Let’s say now that Bob wishes to generate an update for Alice’s keypair.
To do so, he simply performs an SIDH KeyGen operation in exactly the same

manner as Alice. He samples a secret update value nµ
$← Z3e2 which he uses

to define a secret isogeny µ : E0 → Eµ. Bob then applies µ to derive Alice’s
new public key EAµ by performing a SIDH key exchange operation, and then
transmits µ to Alice (using an encrypted channel). Alice applies µ to her secret
term similarly by performing a plain SIDH key exchange operation.

Differently to plain SIDH key exchange, Alice’s updated public key now be-
comes the resulting curve EAµ, along with updated auxiliary points.

(EAµ, φAµ(PB), φAµ(QB))

Alice’s updated secret key skA correspondingly becomes the updated isogeny
φAµ : E0 → EAµ, such that

φAµ = 〈φµ(PA) + [nA]φµ(QA)〉.

Problem 1: The naive scheme does not preserve forward secrecy or
post-compromise security. While the naive scheme does enable performing
updates to SIDH public and private keys via a secret update value, this approach
does not fulfill the notions of forward secrecy or post-compromise security as
required for UPKE schemes. We now describe how the scheme fails to be IND-
CPA-U secure.

Recall that in the IND-CPA-U game described in Section 3.2, the adversary
is allowed to perform the GiveUpdate query with update values of the adversary’s
own choosing, and can learn any keypair by performing Corrupt on some index j
denoting the secret key of interest. The adversary wins the game if they have a
non-negligible chance at guessing the contents of some ciphertext that has been
encrypted after some series of τ update, for which the adversary cannot derive
the corresponding skτ secret key.

In this naive construction, after applying the series of τ update values, the
challenger’s secret key skA will have the following form:

φ(A1,...,τ) = 〈φ1(. . . (φτ (PA))) + [nA]φ1(. . . (φτ (QA)))〉

It is easy to see that even after applying τ updates, the nA term remains
static. Consequently, the adversary can use their knowledge of skA and the
update values after applying the τ updates to derive φ(A1,...,τ), by solving a
system of linear equations. Even if φ(A1,...,τ+1) were instead represented as a
group element Pτ+1 that generates the kernel of φ(A1,...,τ+1) (to avoid persisting
the static nA value), the adversary could still learn φ(A1,...,τ+1) simply by solving
the discrete logarithm problem for the generator point Qτ+1 = [nA]φ1(. . . (φτ +
1(QA))). While solving the discrete logarithm is hard in a classical setting with
points defined over some ordinary curves, this problem is easy in a post-quantum
setting and also in a classical setting over supersingular curves.
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Proposed Fix 1: Use KLPT to output a new independent secret, en-
suring forward secrecy and post-compromise security after performing
an update. As described in Section 2, the KLPT algorithm finds equivalent
ideals J ∼ I for a specified norm. Such an algorithm can be used to efficiently
find an isogeny η : E0 → E2, given the composition of two isogenies φ◦ψ, where
φ : E0 → E1 and ψ : E1 → E2, as enabled by the Deuring correspondence.
Importantly, η is independent of φ and ψ.

Using KLPT to apply an update value to the keyholder’s secret would en-
sure forward secrecy against an adversary that could learn the secret before the
update value has been applied. In short, applying an update value would allow
the protocol to be self-healing, as the keyholder could “ratchet forward” to a
new independent secret that the adversary could not derive without also gaining
knowledge of the corresponding update value.

Problem 2: The degree of the isogeny output by KLPT or SQI-Sign is
larger than p. As described in Section 2.1, SIDH represents secret keys as an
isogeny of degree either 2e or 3f , such that p = 23 ·3f−1. To efficiently represent
and apply these isogenies using Vélu’s formula, SIDH represents each isogeny as
a series of degree-two or degree-three isogenies whose composition represents
the desired larger-degree isogeny. In other words, SIDH defines isogenies with a
kernel that is the composition of small-degree generator points, as follows:

φ : E0 → En = 〈P 〉 = {∞, 2P, 3P, . . . , (23 − 1)P}

Because elements in the endomorphism ring of curves over Fp2 do not com-
mute, both parties publish auxiliary points (PA, QA) and (PB , QB) of order 23

and 3f , respectively, which are then “pushed through” the other party’s secret
isogeny as part of the key exchange protocol. Doing so ensures that both parties
derive the same curve up to isomorphism.

Let’s examine how applying an update value µ to Alice’s secret φA via KLPT
behaves in the context of SIDH key exchange operations. As described in Sec-
tion 2, the output of the KLPT algorithm defined by Kohel, Lauter, Petit, and
Tignol [24] when provided as input the isogenies φA : E0 → EA and µ : E0 → Eµ
is a new isogeny φAµ : E0 → EAµ of approximately p2.

Unfortunately, several issues immediately present themselves with this con-
struction. Because the output isogeny φAµ is of degree larger than p, Alice’s
original auxiliary points (PA, QA) are no longer usable as the order of these
points is 2e ≤ p, and applying φAµ sends these points to infinity.

Even the improvement on the original KLPT algorithm presented by De Feo,
Kohel, Leroux, and Petit as part of the SQI-Sign signature scheme [14] resulting
in a smaller output isogeny with a deterministic degree and uniformly-random
path is insufficient; the output isogeny is still larger than p and thus the same
problem remains.

Proposed Fix 2: Represent secret isogenies as a composition of several
isogenies. One option to address the issue of isogenies of degree larger than
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p is to represent each participant’s secret as a ordered set of several isogenies
whose composition equals the updated secret φAµ output from KLPT. Here,
each isogeny in this set can be of a fixed degree of either 2e or 3f , except for the
variable-length remainder.

Correspondingly, each participant’s public key must be represented as a set
of public keys representing each “chunk” in the participant’s secret, of the form
(E0, . . . , Ek, E`, . . . , EAµ).

Problem 3: Only the owner of the secret key can update the public
key. Unfortunately, the proposed approach to represent public keys as a series
of curves does not fulfill the requirements for asynchronicity for UPKE construc-
tions; namely that anyone other than the owner of the secret key should be able
to perform non-interactive updates to the public key.

This is because KLPT outputs isogenies that are independent of the input
terms. After Alice applies the update value µ, Alice’s new public key will be a
series of curves (E0, . . . , Ek, E` . . . , EAµ) corresponding to each “chunk” in Al-
ice’s updated secret. While external parties could non-interactively derive the
starting and ending curves E0, EAµ in this series, they will not be able to de-
rive intermediate curves Ek, E`, as these curves represent points in the updated
walk from E0, EAµ that is determined by the output from KLPT. As such, this
proposed fix does not satisfy the requirement for asynchronous updates, or that
anyone can perform UpdatePublic with knowledge of only the public key.

Summary. In theory, a SIDH-based Symmetric UPKE construction is possible
by using KLPT to perform updates to decryption keys, thereby ensuring forward-
secrecy and post-compromise security as is required in practice. However, in
practice, improved KLPT algorithms are required to output isogenies whose
degree is smaller than the degree of each party’s auxiliary points. Without such
improvements, such schemes either lack forward secrecy or cannot fulfill certain
properties of UPKE designs, namely that of asynchronicity.

We note that improvements in the efficiency of KLPT algorithms will benefit
not only our construction, but any construction that similarly requires commu-
tative actions over elements in the public domain.

6 Symmetric UPKE Construction via CSIDH

In the previous section, we saw that the main difficulty in constructing a UPKE
scheme from SIDH was in updating the secret key. In order to update the secret
key in a way that offers both forward secrecy and post-compromise security, we
need a mechanism that completely incorporates the update value into the secret
key. This mechanism should result in an entirely new secret key from which no
information about the previous secret key can be gained. Furthermore, this new
secret key should lie on the same domain as the previous one.
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CSIDH UPKE, first attempt. CSIDH admits operations that are much
closer to those used in the classical construction from Alwen et al. Recall that
secret keys in CSIDH are represented by a vector of ` integers. For efficiency
reasons, the integers are usually chosen to be within a bound B, for example, B =
5 so that all entries are between −5 and 5. Then the group element [e1, e2, . . . , e`]
represents the group element

ge11 ge22 . . . ge`` ,

for a set of canonical generators {gi}. Since the group is commutative, we have
that if g is represented by [e1, . . . , e`] and h is represented by [f1, . . . , f`] then g ·h
can be represented by [e1+f1, . . . , e`+f`]. A basic design for a symmetric UPKE
scheme would then be for the update value to be a random group element, to
update the public key by applying the group action, and to update the secret
key by adding the group elements together.

Problem: Secret keys leak information about keys before an update.
Unfortunately, this simple design is not secure. If each entry for the update
value is drawn uniformly from −B to B, then the distribution of each entry
of the new public key is centered at the old public key. This leaks a certain
amount of information about the old secret key. For example, if only one update
has occurred, if an entry is 2B then the adversary immediately knows that the
corresponding entry before the update must have been B.

One fix may be to increase the bound B in an attempt to show that leaking
the secret key between certain updates still doesn’t reveal enough of the secret
key to allow a break. Such an analysis must be done carefully, but reveals another
fundamental problem. As more updates occur, the size of each entry in the vector
is likely to grow. The efficiency of CSIDH is directly dependent on the `1-norm
of this vector, and so allowing it to grow with updates will result in a slower and
slower decryption process, eventually becoming unacceptable.

Note that this is almost exactly the same problem that a first attempt at a
lattice-based scheme would run into. If one were to define a scheme based on
the LWE problem, then updates could be generated by sampling an LWE secret.
The secret key would then be updated by adding the update value to the old
secret. But as described for CSIDH, this will cause the error term to grow over
time, eventually causing the system to fail. Furthermore, because errors are not
chosen uniformly, the distribution of a secret will always be dependent on the
previous secret, meaning some information about previous keys is leaked in the
event of a compromise.

One technique to circumvent this problem that has been to employ rejection
sampling, as in the signature scheme SeaSign [15]. However, rejection sampling
only works when we can reject the group elements that would leak information
on the secret key. Since the party selecting the update value is not the owner
of the public key, rejection sampling is not an option in our scenario. Instead,
we will need the group elements to be represented in a way that has better
properties.

19



Proposed Fix: Use the class group structure. As mentioned in Section 2.2,
the signature scheme CSI-FiSh has a different way to represent group elements.
They computed the structure of the class group and found that the group (for the
CSIDH-512 parameters) is cyclic and found its order, denoted N . To compute
the group action (i.e., apply the isogeny to an elliptic curve) they convert the
representation as an element of ZN to one in Z` and then apply the action
as in CSIDH. Representing group elements as a member of ZN gives a unique
representation. It is also still very easy to apply the group operation in this
representation — it is just addition modulo N .

We can now define our symmetric UPKE scheme based on the CSIDH group
action. In a few sentences, the idea is simply to have the secret key and update
value both be in ZN . To update a public key, we apply the group action, and
to update the secret key we add modulo N . Because we can sample uniformly
over ZN , we have that the updated secret key leaks no information about the
previous secret key, as desired.

We now describe the scheme in full. For simplicity we will rely heavily on
group action notation to describe the operations in our UPKE scheme. Let N
be the order of the class group cl(O) ∼= ZN . To apply the group action onto
a supersingular elliptic curve E (denoted g ? E), we first need to convert the
element to a representation in Z` with a low L1 norm, and then apply the action
as in the original CSIDH paper. The calculation of this value N as well as the
methodology to convert the representation was a major contribution of the CSI-
FiSh paper [5].

KeyGen(): Sample a uniform gsk
$← ZN and set Epk := gsk ? E0. Return

(sk , pk) = (gsk, Epk).

Encrypt(m, pk): Sample a uniform genc
$← ZN and compute K ← KDF (genc ?

pk). Send c = (genc ? E0, DEMK(m)).

Decrypt(c, sk): Parse c as (Eenc, ctxt). Compute K ← KDF (sk ? Eenc) and
return DEM−1K (ctxt).

GenerateUpdate(): Simply sample µ
$←− ZN .

UpdatePrivate(sk , µ): Return sk ′ = gsk + µ (mod N).

UpdatePublic(pk , µ): Return pk ′ = µ ? Epk.

6.1 Proof

Here we show that our construction attains IND-CPA-U security, as described
in Section 3.2. We will show a reduction from an adversary capable of winning
the IND-CPA-U game to one that can win a plain IND-CPA game. By a plain
IND-CPA game, we mean a game in which no calls to the GenerateUpdate,
GiveUpdate, or Corrupt oracles are made.

Theorem 1. Let A be an adversary capable of winning the IND-CPA-U game
with advantage p that makes qgen queries to the FreshUpdate oracle. We will con-
struct an adversary capable of winning an IND-CPA game in time approximately
equal to the running time of A with advantage p/(qgen + 1).
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Proof. As we are showing a reduction to a plain IND-CPA game, we will start
by being given a public key pk∗. To begin, select a uniformly random index

i
$← {0, . . . , qgen}. The idea of the proof is to set the public key after the

ith FreshUpdate query to be pk∗, and hope that the adversary requests the
IND-CPA-U challenge to be issued on a public key that occurs before the next
FreshUpdate. If we are correct, then the adversary’s ability to distinguish which
message was encrypted under pk∗ (or a related key) will allow us to win the
IND-CPA game.

At the start of the game, if i = 0 then we set pk0 → pk∗. Otherwise, we
sample a new uniform pk0 from KeyGen. From here we proceed as normal. If
the adversary makes a corruption query, then we provide them with the cor-
responding private key. When a GiveUpdate(µ) query is made, we update the
secret and public key and make note of the µ value.

When the ith query to FreshUpdate is made, we set the resulting public key
to pk∗. We carry on, and when the next FreshUpdate query is made we sample
a fresh public key from KeyGen. If the adversary ever makes a Corrupt query
on any of the keys between these FreshUpdate queries, then we abort. We will
consider the probability of having to abort occurring momentarily.

Eventually, the adversary requests the IND-CPA-U challenge on a public
key with index j. We hope that this index means a key that falls between the
ith FreshUpdate and the i + 1th call to FreshUpdate. When this happens, the
adversary submits m0,m1 as part of the challenge.

We then forward m0,m1 to receive back an encryption of mb, consisting of
C = g ?E0 for a random g, as well as DEMK(mb). Let µ1, µ2, ..., µk be k queries
to GiveUpdate after the ith FreshUpdate query. We provide the adversary with
(−µ1 − µ2 − · · · − µk) ? C and DEMK(mb).

Note thatK = KDF (g?pk∗) = KDF ((−µ1−· · ·−µk)?g?(µ1+· · ·+µk)?pk∗),
which means that the message is encrypted under the correct key. So, when the
adversary submits a guess for b, we can guess the same value, and if the adversary
is correct, so are we.

When we set the public key to pk∗ after the ith call to FreshUpdate, the
adversary cannot notice that we have not genuinely updated the public key,
unless they issue a Corrupt query. If such a Corrupt query is issued, we must
abort. However, note that if our guess is correct, and a the IND-CPA query is
requested in this segment of public keys, then no Corrupt query will be issued,
or else the adversary’s advantage is 0.

Because updates are sampled uniformly over Zp, the resulting public key is
uniformly random over the public key space (this follows from the fact that the
group action is regular). So after a FreshUpdate has occurred, the adversary has
no information on the distribution of the secret key, and we can thus replace the
public key with the challenge public key pk∗. The adversary has no advantage in
distinguishing that we have done this. As a result, we have a 1/(1+qgen) chance
of correctly guessing where the challenge will be requested. If we are correct,
the adversary does not change their behavior at all, as they have no advantage
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in distinguishing that we are not managing the game honestly. This means the
chance that we abort is exactly qgen/(1 + qgen).

Our advantage in winning the IND-CPA game is thus the adversary’s advan-
tage in winning the IND-CPA-U game times the probability we do not abort,
which is p/(1 + qgen), as desired.

We note that the techniques in this proof can also be applied to the classical
construction of Alwen et al. [1]. While they couple together the public key update
and encryption functions, the same general strategy can be used to show that
the stronger IND-CPA-U notion can be satisfied by their construction.

6.2 Implementation

The main challenge in an implementation of the scheme is selecting parameters.
Because the scheme requires the structure of the class group to be known, our
CSIDh-based scheme can only be instantiated if such a computation has been
performed. This limits a current implementation to the CSIDH-512 parameter
set, which aims for 64 bits of post-quantum security.3 Computing the structure
of the class group is a sub-exponential computation, and thus is unlikely to be
performed for much larger parameter sets. However, with a quantum computer,
the computation becomes entirely feasible. As such, the scheme may not be able
to be instantiated until it is most needed (when a scalable quantum computer
is finally a reality). This limitation presents a problem for transitional security,
but remains an interesting possibility for the future.

Other than computing the class group, the main challenge in an implementa-
tion is in computing the group action. To compute the group action, the element
of ZN is converted to a vector in Z`, which represents the group element

∏`
i=1 g

ei
i

for a vector e and set of generators {gi}i. This vector is then applied to the el-
liptic curve as is done in CSIDH.

Thus the additional complication over any other CSIDH implementation is
in converting the element of ZN to a vector of integers. This process is described
in the CSI-FiSh paper, and the authors have provided code to do this (for the
CSIDH-512 parameter set). The authors of CSI-FiSh found that the process of
converting to a vector only makes a key negotiation 15% slower. Using their
implementation of CSI-FiSh, we have a proof of concept script that illustrates
the process of updating the secret and public keys. Our script is available at
https://github.com/tedeaton/CSIDH-UPKE.

7 Conclusion

In this work, we perform the first assessment of the post-quantum readiness for
updatable public-key encryption schemes by determining the extent to which two

3 It has been contested in [28] that this parameter set may not achieve 64 bits of
security. This has been disputed by others, but more recent analysis puts CSIDH-
4096 at NIST level 1 security [10].
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isogeny-based cryptosystems can be used to instantiate Symmetric and Asym-
metric UPKE constructions. Because neither SIDH nor CSIDH define a group
action among elements in the public domain, neither can support update op-
erations among public update values and public encryption keys as is required
by Asymmetric UPKE. However, both SIDH and CSIDH can be used to in-
stantiate Symmetric UPKE, which only requires operations between elements
in the secret domain, and applying elements in the secret domain to public val-
ues. The SIDH-based Symmetric UPKE construction, while possible in theory,
requires mathematical improvements for a construction in practice. However,
our CSIDH-based construction can be instantiated today using CSIDH-512 as
the parameter set. We highlight several open problems that would improve our
constructions, including the need for a more efficient KLPT algorithm to gen-
erate smaller-degree isogenies and stronger CSIDH parameter sets. Beyond just
Symmetric UPKE, such improvements will benefit any protocol that requires
ongoing and asynchronous randomization of secret terms.
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7. Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, pages 493–522, Cham, 2020. Springer International Publishing.

8. Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas
Stebila. Towards post-quantum security for Signal’s X3DH handshake. In Michael
J. Jacobson Jr., Orr Dunkelman, and Colin O’Flynn, editors, Proc. 27th Conference
on Selected Areas in Cryptography (SAC) 2020, LNCS. Springer, October 2020. To
appear. Cryptology ePrint Archive, Report 2019/1356. http://eprint.iacr.org/
2019/1356.

9. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. In Advances in
Cryptology – ASIACRYPT 2018 – 24th International Conference, Proceedings,
Part III, volume 11274 of Lecture Notes in Computer Science, pages 395–427.
Springer, 2018.
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