
Attack Beyond-Birthday-Bound MACs in
Quantum Setting

Tingting Guo1,2, Peng Wang1,2(B), Lei Hu1,2, and Dingfeng Ye1,2

1 SKLOIS, Institute of Information Engineering, CAS
{guotingting, wpeng, hulei, yedingfeng}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences

Abstract. The security in the quantum setting of a series of message au-
thentication codes (MACs) with provable beyond-birthday-bound (BBB)
security is analyzed in this paper, including SUM-ECBC, PolyMAC,
PMAC Plus, 3kf9 and some variants (2K-ECBC Plus, GCM-SIV2, 1k-
PMAC Plus, 2K-PMAC Plus, PMAC TBC3k and 2kf9). All these MACs
have a security proof up to 22n/3 (even 23n/4) queries assuming the block
size of the underlying (tweakable) block cipher is n bits. Given that the
adversary can make quantum queries, we consider secret state recov-
ery and partial key recovery attacks against these MACs. Both attacks
lead to successful forgeries. For the first one, we apply Grover-meet-
Simon algorithm to recover some secret states of SUM-ECBC, PolyMAC,
PMAC Plus, 3kf9 and so on. Our research shows this forgery attack
costs at most O(2n/2n) quantum queries using at most O(n2) qubits.
For the second one, we apply Grover’s algorithm to recover partial keys
of PMAC Plus, 3kf9, PMAC TBC3k and so on. Our research shows this
forgery attack costs O(2m/2) quantum queries and O(m + n2) qubits
assuming the size of one key is m bits. As far as we know, these are the
first quantum attacks against BBB MACs. Our results show that in the
quantum setting their securities go back to birthday bounds.
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Quantum Attacks · Grover’s Algorithm · Simon’s Algorithm · Grover-
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1 Introduction

Grover’s and Simon’s algorithms. Quantum computing poses an impending
threat to many widely used cryptographic schemes. Other than Shor’s algo-
rithm [29] which speeds up factoring integers and computing discrete logarithms
from classic exponential time to polynomial time, breaking many asymmetric
cryptography schemes, such as RSA, ECDSA and ECDH, the existing quan-
tum attacks to symmetric schemes are mainly related to Grover’s or Simon’s
algorithms. Grover’s algorithm [14] speeds up the search problem quadratically
and Simon’s algorithm [30] finds the period of a periodic function in polyno-
mial time. For a long time, Grover search was regarded as the only threat to
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symmetric schemes, which can be thwarted by doubling the key length. How-
ever, from 2010, plenty of works applied Simon’s algorithm to attack symmetric
schemes, directly reducing the complexity from exponent to polynomial. The bro-
ken schemes include 3-round Feistel cipher [22], Even-Mansour construction [23],
message authentication code (MAC) modes [18] CBC-MAC, PMAC, GMA, etc.,
authenticated encryption modes [18] GCM, OCB, AEZ [5], etc., and tweakable
enciphering schemes [13] CMC, EME, XCB, TET, etc.

Simon’s algorithm and birthday attacks. The procedure of the attack using
Simon’s algorithm is as follows: first construct a periodic function f(x) based
on the scheme, where the period is a hidden value s such that f(x) = f(x ⊕ s)
for all x; second use Simon’s algorithm to find the period s; third use the period
s to carry out forgery etc. attacks. The period s also can be retrieved from a
collision of f(x) = f(y) for x 6= y, so that s = x ⊕ y with high probability.
Therefore O(2n/2) classic queries is enough to find the period and break the
scheme, where n is usually the block size of the underling (tweakable) block
ciphers. Therefore the schemes broken by using Simon’s algorithm are destined
to suffer from birthday attacks.

Beyond-Birthday-Bound MACs. When n = 64 especially for lightweight
(tweakable) block ciphers, birthday attacks become practical security problems [1,
3]. In recent years, crypto community made great efforts to enhance the security
strength, by constructing beyond-birthday-bound (BBB) schemes, particularly
MAC modes, which are secure for above 2n/2 queries. In 2010, Yasuda firstly
proposed a BBB MAC: SUM-ECBC [32]. Later on, other BBB MACs, such as
PMAC Plus [33], 3kf9 [34], LightMAC [28], 1k-PMAC Plus [12], PloyMAC [9]
and so on were proposed. All these BBB MACs follow a generic design paradigm
called Double-block Hash-then-Sum (in short DbHtS) [10], which generates dou-
ble hash blocks on the message and then sum the two encrypted blocks as the
output. So The computation of DbHtS consists of two chains, denoted as G and
H:

DbHtS(M) = G(M)⊕H(M),

for the message M . The double block brings 2n-bit internal state, making the
classic birthday attack no longer applicable. The primary proofs show that they
are secure up to 22n/3 queries (ignoring the maximum message length). The best
classical attacks against DbHtS MACs proposed by Leurent [25] in 2018 need
23n/4 queries, including SUM-ECBC, PMAC Plus, 1k-PMAC Plus, 3kf9, GCM-
SIV2 and so on. Recently Kim et al. [21] further proved that some of them are
secure up to 23n/4 queries, so the security bounds are tight.

Motivations. What about the security of BBB MACs in the quantum setting?
From the above analyses, we see that the effort of BBB designs to strengthen
security in the classic setting actually coincides with the designs against Simon’s
algorithm in the quantum setting. Are there any quantum attacks better than
classic attacks against these BBB MACs? Are they still BBB in the quantum
setting? There is still no answer.
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Grover-meet-Simon algorithm. For BBB MACs, Simon’s algorithm is in-
valid. We need new techniques. In 2017 Leander and May [24] combines Grover’s
algorithm with Simon’s algorithm to attack FX construction [19, 20]. The main
idea is to construct a function with two inputs based on FX, say f(u, x). When
the first input u equals to a special value k, the function has a hidden period s
such that f(k, x) = f(k, x⊕ s) for all x. Their combined algorithm use Grover’s
algorithm to search k, by running many independent Simon’s algorithms to check
whether the function is periodic or not, and recover both k and s in the end. The
attack only costs O(2m/2(m + n)) quantum queries to FX, which is much less

than the proved security bellow 2
m+n

2 queries [19], where |u| = m and |s| = n.
Their heuristic work provides a new tool to study the security of symmetric
schemes. We mainly utilize such Grover-meet-Simon algorithm to explore the
security of BBB MACs.

Attacking strategies. According to the method of double block hash gener-
ation, these DbHtS MACs can be categorized into SUM-ECBC-like MACs or
PMAC Plus-like MACs. SUM-ECBC-like MACs handle the message twice, gen-
erating two hash blocks independently using the same function with different
keys, so the chains G and H are the same except for their keys. PMAC Plus-
like MACs handle the message once by a common keyed permutation and then
linearly combine the result into two hash blocks, so the chains G and H are two
different functions.

Strategy 1: For SUM-ECBC-like MACs, G and H are not secure under the
quantum attack using Simon’s algorithm. We can use the same method C, based
on G (resp. H), to construct a periodic function denoted as g(b, x) = CG(b, x)
(resp. h(b, x) = CH(b, x)) where b ∈ {0, 1} and x ∈ {0, 1}n. The periods of g and
h are denoted as 1‖s1 and 1‖s2 respectively. Then use the same method C based
on DbHtS = G ⊕ H, we get CDbHtS(b, x) = CG(b, x) ⊕ CH(b, x) = g(b, x) ⊕
h(b, x). Unfortunately s1 is equal to s2 usually with negligible probability, so
CDbHtS(b, x) is not a periodic function. We construct

f(u, x) = CDbHtS(0, x)⊕CDbHtS(1, x⊕u) = g(0, x)⊕h(0, x)⊕g(1, x⊕u)⊕h(1, x⊕u).

We can verify that when u = s1 or s2, f(u, x) is a periodic function: the period
is s1⊕ s2. Thus we can use Grove-meet-Simon algorithm to recover both s1 and
s2.

Strategy 2: For PMAC Plus-like MACs, G and H are different in linear
combination processes, Strategy 1 is not applicable. But we can use the same
method based on G (resp. H), to construct a function denoted as g(u, b, x) (resp.
h(u, b, x)). When u equals a special value say u∗, both g(u∗, b, x) and h(u∗, b, x)
are periodic functions with the same period 1‖s. If the method is applied to
DbHtS, we get

f(u, b, x) = g(u, b, x)⊕ h(u, b, x).

For u = u∗, f(u∗, b, x) is a periodic function. So Grove-meet-Simon algorithm
can recover the special value u∗ and the period 1‖s.
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With these two strategies, we can utilize Grover-meet-Simon algorithm to
recover some secret states of BBB MACs, which leads to successful forgery at-
tacks.

Strategy of Grover search: We notice that most BBB MACs have more
than one key. For example, PMAC Plus, PMAC TBC3k and 3kf9, are respec-
tively keyed by three independent m-bit keys. For perfect crypto primitive, there
should be no better way to recover the key than the exhaustive search, whose
complexity is O(23m) for 3m-bit keys in the classic setting. If we directly Grover
search the whole 3m-bit keys, the number of queries is O(23m/2). Our strategy
is to Grover search only one of the three keys, so that we need only O(2m/2)
queries. Once the key is known, a forgery attack is straightforward.

Table 1. Summary of the main results. q is the number of queries, ` is the number of
maximum blocks of a query, σ is total number of processed blocks, n is the length of
the message block, m is the length of the key of a block cipher. The expected lower
bound and attack complexity is in number of constant length queries (` = O(1)).

Provable security bounds Classical attacks Quantum secret state Quantum key
Scheme Key Space recovery attack recovery attack

Advantage Queries Queries Queries Qubits Queries Qubits

SUM-ECBC [32] 24m `o(1)q4/3/2n + `4q4/3/22n [21] Ω(23n/4) O(23n/4) [25] O(2n/2n) O(n2) O(2mn) O(m+ n2)

2K-ECBC Plus [10] 23m q`2/2n + q3`2/22n [10] Ω(22n/3) - O(2n/2n) O(n2) O(2mn) O(m+ n2)

PolyMAC [9] 22m+2n `q4/3/2n [21] Ω(23n/4) - O(2n/2n) O(n2) O(2(n+m)/2n) O(m+ n2)

GCM-SIV2 [17] 24m+2n 7σ3/22n + 6`2q3/22n + q/22n [17] Ω(22n/3) O(23n/4) [25] O(2n/2n) O(n2) O(2(n+m)/2n) O(m+ n2)

PMAC Plus [33] 23m `/2n/2 + `2/3q4/3/2n + `2q/2n [21] Ω(23n/4) O(23n/4) [25] O(2n/2n) O(n2) O(2m/2) O(m+ n)

1k-PMAC Plus [12] 2m 21σ/2n + 224qσ2/22n [12] Ω(22n/3) O(23n/4) [25] O(2n/2n) O(n2) O(2m/2) O(m+ n)

2K-PMAC Plus [10] 22m q3`/22n + q2`2/22n [10] Ω(22n/3) - O(2n/2n) O(n2) O(2m/2) O(m+ n)

3kf9 [34] 23m `4/3q4/3/2n + `2q2/22n + `6q4/23n [21] Ω(23n/4) O( 4
√
n23n/4) [25] O(2n/2) O(n) O(2m/2) O(m+ n)

2kf9 [10] 22m q3`4/22n [10] Ω(22n/3) - O(2n/2) O(n) O(2m/2) O(m+ n)

PMAC TBC3k [27] 23m 0.5q2/(2n − q)2 [27] Ω(2n) - - - O(2m/2) O(m+ n)

Our contributions. Table 1 summarizes our main results and comparisons with
provable security claims and best classical attack results.

1) Reduce the query complexity from practicalO(23n/4) to at mostO(2n/2n) by
our secret state recovery attacks. We use Strategy 1 to analyze SUM-ECBC-
like MACs, including SUM-ECBC, 2K-ECBC-Plus, PolyMAC and GCM-
SIV2, and Strategy 2 to PMAC Plus-like MACs, including PMAC Plus, 1k-
PMAC Plus, 2K-PMAC Plus, 3kf9 and 2kf9.

2) Reduce the key search complexity fromO(23m) (for perfect MAC) toO(2m/2)
by our key recovery attacks. We use the strategy of Grover search to an-
alyze PMAC Plus-like MACs, including PMAC Plus, 1k-PMAC Plus, 2K-
PMAC Plus, 3kf9, 2kf9 and PMAC TBC3k.

Therefore our results show that the security of BBB DbHtS MACs goes back
to the birthday bound in the quantum setting.

Organization of the paper. Section 2 introduces quantum algorithms, the
quantum security of MAC and previous attack for MAC by Simon’s algorithm.
Section 3 applies Strategy 1 and 2 to make secret state attacks for SUM-ECBC-
like and PMAC Plus-like MACs respectively. Section 4 applies the strategy of
Grover search to make key recovery attacks for PMAC Plus-like MACs. Section
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5 gives conclusions. The quantum basis, the concrete introductions of quantum
algorithms is in Appendix A to D.

2 Preliminaries

For a positive integer m, let {0, 1}m is the set of all m-bit binary string. For two
bit strings x and y, the concatenation is x‖y , the bitwise exclusive-or is x⊕ y.
Let |U| be the number of the elements in set U .

2.1 Quantum Algorithms

In this section, we introduce some useful quantum techniques which will be
involved in the following sections. We put quantum basis in Appendix A.

1) Grover’s Algorithm Grover’s algorithm [14] finds with high probability
the input to a function that produces a particular output value. The specific
problem is as follows:

Definition 1. (Grover Problem) Let m be a positive integer, test : {0, 1}m →
{0, 1} be a boolean function (|{u : test(u) = 1}| = e). Find a u who satisfies
test(u) = 1.

Classically, we can search an element who satisfies test(u) = 1 with O( 2m

e )
queries to test(·). However, the Grover’s algorithm [14] can find such an elements

with only O(
√

2m

e ) quantum queries [8]. More generally, we can’t construct such

an accurate test function that coincides with U . We define the Grover problem
with error in the following.

Definition 2. (Grover Problem with Error) Let m be a positive integers,
U(|U| = e) be a subset in {0, 1}m, test : {0, 1}m → {0, 1} be a boolean function
who satisfies {

Pr[test(u) = 1] = 1, u ∈ U ,
Pr[test(u) = 1] ≤ p1, u 6∈ U .

Find a u ∈ U .

Grover’s algorithm can solve the problem as well with some biases. In fact,
Grover’s algorithm do as follows: first there is an initial probability to get a u who
satisfies test(u) = 1; second amplify the initial probability iteration by iteration;
third measure the quantum state and get a u who satisfies test(u) = 1 with high
probability. From definition 1, we obtain the initial probability to get a u who
satisfy test(u) = 1 is between [p0, p0 + p1], where p0 = e

2m and it is the initial
probability to get a u ∈ U . Bonnetain [6] has proved when the initial success
probability to get a u where test(u) = 1 is between an interval [p0, p0 +p1], then
after t = d π

4 arcsin
√
p0
e quantum queries to test(·), the final probability to get
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a u who satisfies test(u) = 1 is [1 − (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2]. Among

all elements satisfying test(u) = 1, the proportion of u ∈ U is at least p0
p0+p1

.
Multiple them and we get the following theorem.

Theorem 1. (Adapted from [6]) Let m, e,U , test as defined in definition 2,
p0 := e

2m . Assume the quantum implement of test(·) costs O(n) qubits. Then
Grover’s algorithm with t = d π

4 arcsin
√
p0
e quantum queries to test(·) and O(m+

n) qubits will output a u ∈ U with probability at least p0
p0+p1

[1− (p1p0 +
√
p0 + p1 +

2
√

1 + p1
p0

3
p0)2].

We put Grover’s algorithm and the concrete proof of theorem 1 in Appendix
B. When apply this algorithm to concrete attack for MACs, if e = 1, p1 ≤ 1

22m ,

then for sufficient large m the Grover’s algorithm with O(2m/2) quantum queries
to test(·) and O(m+n) qubits will output a u ∈ U with probability almost 1 by
theorem 1.

2) Simon’s Algorithm Simon’s algorithm [30] finds the period of a periodic
function in polynomial time.

Definition 3. (Periodic/Aperiodic Function) Let n, d be two positive inte-
gers, f : {0, 1}n → {0, 1}d be a boolean function. We call f is a periodic (resp.
aperiodic) function if there is a unique (resp. no) s ∈ {0, 1}n\{0n} such that
f(x) = f(x⊕ s) for all x ∈ {0, 1}n.

Definition 4. (Simon Problem) Let n, d be two positive integers, f : {0, 1}n →
{0, 1}d be a periodic function with a period s. Find s.

Classically, if f is a periodic function, we can find out the period by searching
a collision with birthday bound queries O(2d/2). However, if f is given as a
quantum oracle, Simon’s algorithm [30] can solve it with only O(n) quantum
queries. Let

ε(f) := max
t∈{0,1}n\{0n,s}

Prx[f(x) = f(x⊕ t)]. (1)

This parameter quantifies the disturbance of other partial periods. Kaplan et
al. [18] have proved the following theorem.

Theorem 2. [18] Let n, d, f, s as defined in definition 4, ε(f) as defined in
equation (1), c be an positive integer. Then Simon’s algorithm with cn quantum
queries to f and O(n + d) qubuts will recover s with probability at least 1 −
(2( 1+ε(f)

2 )c)n.

We put Simon’s algorithm and the proof of theorem 2 in Appendix C.
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3) Grover-meet-Simon Algorithm In 2017 Leander and May [24] combines
Grover’s algorithm with Simon’s algorithm to analyze FX construction. A gen-
eral problem is described as follows:

Definition 5. (Grover-meet-Simon Problem) Let m,n, d be three positive
integers, set U ⊆ {0, 1}m(|U| = e) and f : {0, 1}m × {0, 1}n → {0, 1}d be a
function who satisfies{

f(u, ·) is a period function with period su, u ∈ U ,
f(u, ·) is an aperiodic function, u 6∈ U .

Set Us := {(u, su) : u ∈ U , suis the period of f(u, ·)}. Find any tuple (u, su) ∈
Us.

The problem is composed of the Grover problem as a whole and the Simon
problem partially. The main idea is to search u ∈ U by Grover’s algorithm and
check whether or not u ∈ U by whether f(u, ·) is periodic or not, which can be
implemented by Simon’s algorithm. Bonnetain [6] has generalized a algorithm.
He gave the success probability of Grover-meet-Simon algorithm for problem
in definition 5 when |U| = 1. Further on, our paper generalizes the success
probability of the algorithm for |U| ≥ 1. Let

ε(f) := max
(u,t)∈{0,1}m×{0,1}n\(Us∪{0,1}m×{0n})

Prx[f(u, x) = f(u, x⊕ t)], (2)

to quantify the disturbance of u 6∈ U and other partial periods ts for u ∈ U . We
show the conclusion in theorem 3.

Theorem 3. Let m,n, d, f,U ,Us, e as defined in definition 5, ε(f) as defined

in equation (2), c be a positive integer, p0 := e
2m , p1 := [2 · ( 1+ε(f)

2 )c]n. Then
Grover-meet-Simon algorithm with d π

4 arcsin
√
p0
e · cn quantum queries to f and

O(m + cn2 + cdn) qubits outputs a tuple (u, su) ∈ Us with probability at least
(1−p1)p0
p0+p1

[1− (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2].

We put Grover-meet-Simon algorithm and the proof of theorem 3 in Ap-
pendix D. When apply this algorithm to concrete attack for MACs, if ε(f) ≤
3/4, e ≤ 2, d = m = n and n is sufficient large, then we let c = 16 and Grover-
meet-Simon algorithm after O(2n/2n) quantum queries to f using O(n2) qubits
will output a tuple (u, su) ∈ Us with probability almost 1 by theorem 3.

2.2 Quantum Security of MACs

Message authentication code (MAC) generates a tag for any input message:
T = MACK(M), where T is the tag, K is the key and M is the message. The
classic security of MAC requires that the attacker can not produce (M ′, T ′) such
that T ′ = MACK(M ′) and M ′ is a message that has never been queried to the
MAC.
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In the quantum setting, the attacker has access to the quantum oracle of
MACK(·). Boneh and Zhandry [4] firstly define the Existential unforgeability
against quantum chosen message attack (EUF-qCMA). One MAC is EUF-qCMA
if no quantum attacker can output q + 1 distinct massage-tag pairs with non-
negligible probability after q quantum queries to MACK(M). Notice that we can
regard any classical query as a special quantum query. So the q quantum queries
contain q quantum and classical queries in all.

For all concrete MACs in these paper, we assume the message block size is
n-bit and the message M has been padded with 10∗ padding and divided into
n-bit blocks. Also, we assume the underlying keyed (tweakable) block cipher of
MACs is a (tweakable) random permutation.

2.3 Attacking ECBC-MAC

MACs of single-chain like ECBC-MAC are broken by using Simon’s algorithm [18],
with only O(n) quantum queries. We write the MAC as a function G. The attack
in [18] is to construct a periodic function g based on G using a method C. We
denote it as g(b, x) = CG(b, x) with a period 1‖s.

Fig. 1. ECBC-MAC of two inputs M = (αb, x).

In the following, we demonstrate how they give the construction g for the
ECBC-MAC variant [2], the estimation of ε(g) and the forgery attack after
recovery of s. ECBC-MAC uses a block cipher keyed by two independent keys,
denote as E1, E2.
Construction of function g. Let b ∈ {0, 1}, x ∈ {0, 1}n, α0, α1 are two arbi-
trary fixed number in {0, 1}n. ECBC-MAC with message M = (M [1],M [2]) =
(αb, x) are showed in figure 1, which can be wrote as

MAC(αb, x) = g(b, x),

where
g(b, x) = E2(E1(E1(αb)⊕ x)).

Obviously, g has a period of 1‖s where s = E1(α0)⊕ E1(α1):

g(b′, x′) = g(b, x)⇔ E2(E1(E1(αb′)⊕ x′)) = E2(E1(E1(αb)⊕ x))

⇔
{
x′ ⊕ x = 0n if b′ ⊕ b = 0,
x′ ⊕ x = E1(α0)⊕ E1(α1) if b′ ⊕ b = 1.

Therefore, ε(f) = 0 and s can be recovered with O(n) quantum queries to f
using O(n) qubits by theorem 2.
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Forgery attack. After recovering s, by using the property of g(b, x) = g(b, x⊕s),
they make a successful forgery after one classic queries as follows:
1) Query M1 = (α0, x) and get tag T ;
2) Forge M2 = (α1, x⊕ s) and its tag T .

To break the notion of EUF-qCMA security, they produce q + 1 valid tags
with only q queries to the quantum oracle of MAC. Let q′ = O(n) denote the
number of of quantum queries made to find s. The attacker just repeats the
above classic forgery step q′ + 1 times. So that 2q′ + 2 messages with valid tags
were produced, using a total of 2q′+1 classical and quantum queries. Therefore,
ECBC-MAC is broken by a quantum existential forgery attack.

3 Secret State Recovery Attack for BBB MACs

We focus on DbHtS MAC [10], the sum of two chains is denoted as:DbHtS(M) =
G(M)⊕H(M).

3.1 Secret State Recovery Attack for SUM-ECBC-like MACs

Both chains of G and H in SUM-ECBC-like MACs use the same MAC with
different keys. Each chain is vulnerable to Simon’s algorithm as showed in sec-
tion 2.3. So it is easy to construct a periodic function g (resp. h) based on G
(resp. H) using a method C. We denote it as g(b, x) = CG(b, x) (resp. h(b, x) =
CH(b, x)) with a period 1‖s1 (resp. 1‖s2). Therefore we get CDbHtS(b, x) =
g(b, x)⊕ h(b, x).

If s1 = s2, it is a periodic function with the same period, which we can apply
Simon’s algorithm to recover. However, it happens with negligible probability
for SUM-ECBC-like MACs. Strategy 1 constructs

f(u, x) = g(0, x)⊕ h(0, x)⊕ g(1, x⊕ u)⊕ h(1, x⊕ u).

When u = s1 or s2, f(u, x) has a period of s1 ⊕ s2. If ε(f) ≤ 3/4, then by
theorem 3, Simon-meet-Grover algorithm can find both s1 and s2 with at most
O(2n/2n) quantum queries and O(n2) qubits.

In the following, for any concrete SUM-ECBC-like MAC, we only give the
construction of function f , the estimation of ε(f), and the forgery attack after
recovery of s1 and s2.

The method applies to SUM-ECBC [32], PolyMAC [21], the authentication
part of GCM-SIV2 [17] and 2K-ECBC Plus [10]. In the following, we only give
SUM-ECBC and PolyMAC as examples.

1) Secret State Recovery Attack for SUM-ECBC. SUM-ECBC was de-
signed by Yasuda in 2010 [32], which is the sum of two independent ECBC-
MACs. The scheme uses a block cipher keyed with four independent keys, de-
noted as E1, E2, E3, E4. Assume the message has been padded and divided into
n-bit blocks.
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Fig. 2. SUM-ECBC of two inputs M = (αb, x).

Construction of function f . Let b ∈ {0, 1}, x ∈ {0, 1}n, α0, α1 are two arbi-
trary fixed number in {0, 1}n. SUM-ECBC with message M = (M [1],M [2]) =
(αb, x) is showed in figure 2, which can be wrote as

MAC(αb, x) = g(b, x)⊕ h(b, x),

where
g(b, x) = E2(E1(E1(αb)⊕ x)),

h(b, x) = E4(E3(E3(αb)⊕ x)).

Obviously, g (resp. h) has a period of 1‖s1 where s1 = E1(α0) ⊕ E1(α1)
(resp. 1‖s2 where s2 = E3(α0)⊕E3(α1)). Given that E1, E3 are two independent
pseudorandom permutations, the probability of s1 = s2 is at most 1− 1/2n. So
in the following we assume s1 6= s2. Let

f(u, x) = MAC(α0, x)⊕MAC(α1, x⊕ u).

Estimation of ε(f). Here, Us = {(s1, s1 ⊕ s2), (s2, s1 ⊕ s2)},

ε(f) = max
(u,t)∈{0,1}n×{0,1}n\(Us∪{0,1}n×{0n})

Prx[f(u, x) = f(u, x⊕ t)].

We consider u = s1 as an example and the other situation is similar. In this
case f(u, x) = f(s1, x) = E4(E3(x ⊕ E3(α0)) ⊕ E4(E3(x ⊕ s1 ⊕ E3(α1)). We
will prove ε(f(s1, ·)) ≤ 1

2 with overwhelming probability. Otherwise, there is
t 6∈ {0n, s1 ⊕ s2} such that Prx[f(s1, x) = f(s1, x⊕ t)] > 1/2, i.e.,

Prx

[
E4(E3(x⊕ E3(α0)))⊕ E4(E3(x⊕ s1 ⊕ E3(α1)))⊕

E4(E3(x⊕ t⊕ E3(α0)))⊕ E4(E3(x⊕ t⊕ s1 ⊕ E3(α1)))

]
> 1/2. (3)

By t 6∈ {0n, s1⊕s2} and s1 6= s2, we know the four inputs of E4(E3(·)) are differ-
ent from each other. By E4 is a pseudorandom function and E3 is a permutation,
then the equation (3) happens with negligible probability.
Forgery attack. After recovering s1 and s2, by using the property of f(s1, x) =
f(s1, x ⊕ s1 ⊕ s2), we can make a successful forgery after 3 classic queries as
follows:
1) Query M1 = (α0, x) and get tag T1;
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2) Query M2 = (α1, x⊕ s1) and get tag T2;
3) Query M3 = (α0, x⊕ s1 ⊕ s2) and get tag T3;
4) Forge M4 = (α1, x⊕ s2) and its tag T1 ⊕ T2 ⊕ T3.

To break the notion of EUF-qCMA security, we must produce q+1 valid tags
with only q queries to the quantum oracle of MAC. If q′ = O(2n/2n) denote the
number of of quantum queries made to find s1 and s2. The attacker just repeats
the above classic forgery step q′+1 times. So that 4q′+4 messages with valid tags
were produced, using a total of 4q′+3 classical and quantum queries. Therefore,
SUM-ECBC is broken by a quantum existential forgery attack. Generally, the
EUF-qCMA attack is straightforward after we find the hidden periods. So we
omit it in the following examples.

2) Secret State Recovery Attack for PolyMAC. Replace the block cipher
E1 and E3 in SUM-ECBC with multiplication functions Hk1(x) = k1 · x and
Hk3(x) = k3 ·x, we get PolyMAC [21]. k1, k3 are two independent keys in {0, 1}n
and they they are independent with the keys of E2, E4. The chain of MAC
is actually PolyHash, whih is used in the authentication of associated data in
GCM-SIV2 [17], GCM [26] and HCTR [31].

Fig. 3. The left part of PolyMAC with two inputs M = (M [1],M [2]) = (αb, x).

Construction of function f . Let b ∈ {0, 1} and x ∈ {0, 1}n, α0, α1 are two
arbitrary fixed number in {0, 1}n. PolyMAC with message M = (M [1],M [2]) =
(αb, x) is showed in figure 3, which can be wrote as

MAC(αb, x) = g(b, x)⊕ h(b, x)

where
g(b, x) = E2(k21αb ⊕ k1x),

h(b, x) = E4(k23αb ⊕ k3x).

Obviously, g (resp. h) has a period of 1‖s1 where s1 = k1α0 ⊕ k1α1 (resp.
1‖s2 where s2 = k3α0 ⊕ k3α1). Given that k1, k3 are two independent keys, the
probability of s1 6= s2 is at most 1−1/2n. So in the following we assume s1 6= s2.
Let

f(u, x) = MAC(α0, x)⊕MAC(α1, x⊕ u).

Similar as SUM-ECBC, we can prove ε(f) ≤ 3/4.
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3.2 Secret State Recovery Attack for PMAC Plus-like MACs

The two chains G and H of PMAC Plus-like MAC are different in the linear
combination processes, so Strategy 1 is on longer applicable. Strategy 2 uses the
same method based on G (resp. H), to construct a function denoted as g(u, b, x)
(resp. h(u, b, x)). When u equals a special value, say u∗, both g(u∗, b, x) and
h(u∗, b, x) are periodic functions with the same period 1‖s. So we get

f(u, b, x) = g(u, b, x)⊕ h(u, b, x).

For u = u∗, f(u∗, b, x) is a periodic function. Then that we can use Grove-meet-
Simon algorithm to recover u∗ and s.

If s 6= 0n, ε(f) ≤ 3/4, apply Grover-meet-Simon algorithm (theorem 3) to
recover u∗, s with at most O(2n/2n) quantum queries and O(n2) qubits.

If s = 0n, apply Grover algorithm (theorem 1) to recover u∗ with at most
O(2n/2) quantum queries and O(n) qubits.

In the following, for any concrete PMAC Plus-like MAC, we only give the
construction of function f , the estimation of ε(f).

The method applies to PMAC Plus [33], 1k-PMAC Plus [11, 12], 3kf9 [34],
2K-PMAC Plus [10] and 2kf9 [10]. In the following, we only give PMAC Pluss [33]
and 3kf9 [34] as examples.

1) Secret State Recovery Attack for PMAC Plus. PMAC Plus was de-
signed by Yasuda in 2011 [33]. The scheme uses block cipher E1, E2, E3, who are
keyed by three independent keys. The block size is n bits.

(a) MAC(x). (b) MAC(u, x).

Fig. 4. PMAC Plus with message M = (x) and M = (u, x).
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Construction of function f . Let b ∈ {0, 1}, u, x ∈ {0, 1}n and

αb :=

{
2E1(0)⊕ 22E1(1), if b = 0,
22E1(0)⊕ 24E1(1), if b = 1.

PMAC Plus with message M = (M [1]) = (x) and message M = (M [1],M [2]) =
(u, x) are shown as figure 4, which can be wrote as

MAC(M) =

{
g(u, 0, x)⊕ h(u, 0, x), if M = (x),
g(u, 1, x)⊕ h(u, 1, x), if M = (u, x),

where

g(u, b, x) =

{
E2(E1(x⊕ α0)), if b = 0,
E2(E1(x⊕ α1)⊕ E1(u⊕ α0)), if b = 1,

h(u, b, x) =

{
E3(E1(x⊕ α0)), if b = 0,
E3(E1(x⊕ α1)⊕ 2E1(u⊕ α0)), if b = 1.

We define

f(u, b, x) =

{
MAC(x), if b = 0,
MAC(u, x), if b = 1.

Let u∗ ∈ {0, 1}n such that E1(u∗ ⊕ α0) = 0n. When u = u∗, f(u, b, x) has
a period 1‖α0 ⊕ α1. So if ε(f) ≤ 3/4, then we can apply Grover-meet-Simon
algorithm to make forgery attack.
Estimation of ε(f). Here Us = {(u∗, 1‖α0 ⊕α1)}. Let Ut := {0, 1}n ×{0, 1}×
{0, 1}n\(Us ∪ {0, 1}n × {0n+1}), then

ε(f) = max
(u,t1,t2)∈Ut

Prb,x[f(u, b, x) = f(u, b⊕ t1, x⊕ t2)].

We consider u = u∗ as example and the other is similar. Firstly, we divide the
scope t1‖t2 ∈ {0, 1}n+1\{0n+1, 1‖α0 ⊕ α1} into two parts t1 = 0, t2 6= 0n and
t1 = 1, t2 6= α0 ⊕ α1. We take the former as example. In fact, when u = u∗, t1 =
0, t2 6= 0n, the equation f(u, b, x) = f(u, b⊕ t1, x⊕ t2) equals

E2(E1(x⊕αb))⊕E2(E1(x⊕t2⊕αb))⊕E3(E1(x⊕αb))⊕E3(E1(x⊕t2⊕αb)) = 0n.
(4)

By t2 6= 0n and E1 is a permutation, we obtain both the two inputs of E2 and the
two inputs of E3 are different respectively. Therefore, by the pseudo-randomness
of E2, E3, the equation (4) holds with probability at most 1/2 with overwhelming
probability.

2) Secret State Recovery Attack for 3kf9. 3kf9 was designed by Zhang
et.al. [34]. The scheme uses block cipher E1, E2, E3, who are keyed by three
independent keys. The block size is n bits.
Construction of function f . Let b ∈ {0, 1}, u, x ∈ {0, 1}n. The 3kf9 with
message M = (M [1]) = (x) and message M = (M [1],M [2]) = (u, x) are showed
in figure 5, which can be wrote as

MAC(M) =

{
g(u, 0, x)⊕ h(u, 0, x), if M = (x),
g(u, 1, x)⊕ h(u, 1, x), if M = (u, x),
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(a) MAC(x). (b) MAC(u, x).

Fig. 5. 3kf9 with message M = (x) and M = (u, x).

where

g(u, b, x) =

{
E2(E1(x)), if b = 0,
E2(E1(x⊕ E1(u))), if b = 1,

h(u, b, x) =

{
E3(E1(x)), if b = 0,
E3(E1(x⊕ E1(u))⊕ E1(u)), if b = 1.

Let

f(u, b, x) =

{
MAC(x), if b = 0,
MAC(u, x), if b = 1.

Let u∗ ∈ {0, 1}n such that E1(u∗) = 0n. It is easy to obtain u∗ is unique
by permutation E1. Then when u = u∗, f(u∗, 0, x) = f(u∗, 1, x) holds for all
x ∈ {0, 1}n. It means the period is 1‖0n, which is trivial. So we apply Grover
algorithm to recover u∗ directly. Let test : {0, 1}n → {0, 1} be defined as

test(u) =

{
1, if f(u, 0, xi) = f(u, 1, xi), where i = 1, . . . , q,
0, otherwise.

If maxu∈{0,1}n\{u∗} Pr[test(u) = 1] ≤ 2−2n when q = O(1), then Grover’s algo-

rithm (theorem 1) will recover u∗ using O(n) qubits and at most than O(2n/2)
quantum queries.
Estimation of maxu∈{0,1}n\{u∗}Pr[test(u) = 1] ≤ 2−2n. The deviation

max
u∈{0,1}n\{u∗}

Pr[test(u) = 1] ≤ 2−2n

= max
u∈{0,1}n\{u∗}

Pr[f(u, 0, x1) = f(u, 1, x1), . . . , f(u, 0, xq) = f(u, 1, xq)].

Here, the equation system

f(u, 0, xi) = f(u, 1, xi), i = 1, 2, . . . , q,
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equals

E2(y1i )⊕ E2(y2i )⊕ E3(y3i )⊕ E3(y4i ) = 0n, i = 1, 2, . . . , q,

where y1i = E1(xi), y
2
i = E1(xi ⊕ E1(u)), y3i = E1(xi), y

4
i = E1(xi ⊕ E1(u)) ⊕

E1(u). To calculate the probability of these q equations, we consider sampling
about E2. If y1i , y

2
i , who are the inputs of E2 in ith equation, have all appeared

in the other q − 1 equations, then we don’t sample in the ith equation. In fact,
if xi ⊕ xj = E1(u) then y1i = y2j , y

2
i = y1j . Therefore, we have to sample E2 in at

least b q+1
2 c equations among q. For every equation, by the randomness of E2, it

holds with probability at most 1
2n−2q . Therefore, for any u ∈ {0, 1}n\{u∗}, we

have Pr[test(u) = 1] ≤ ( 1
2n−2q )

q−1
2 . When q = 7, we have Pr[test(u) = 1] ≤ 2−2n

for sufficient large n.

4 Partial Key Recovery Attack for PMAC Plus-like
MACs

We notice that most BBB MACs have several keys. So we consider a partial key
recovery attack by applying Grover’s algorithm. We observe that PMAC Plus-
like MACs such as PMAC Plus [33], 3kf9 [34] etc., [27, 12, 10] with message
M = (M [1],M [2],M [3]) share a common structure as in figure 6.

Fig. 6. PMAC Plus-like MACs with message M = (M [1],M [2],M [3]).

Let messageM = (M [1],M [2],M [3]) ∈ ({0, 1}n)3, the tag MACk1,k2,k3(M) ∈
{0, 1}n, the independent keys (k1, k2, k3) ∈ ({0, 1}m)3, Pk1 be a permutation
from 3n bit to 3n bit keyed by k1 and Ek2,k3 be a function from 2n bit to n
bit keyed by k2, k3, Y = (Y [1], Y [2], Y [3]) ∈ ({0, 1}n)3, public constants A =
(a1, a2, a3) ∈ ({0, 1}n)3, B = (b1, b2, b3) ∈ ({0, 1}n)3. Then the procedure of
MACk1,k2,k3(M) is as follows.
1) Given message M , compute Y = Pk1(M);
2) Compute Σ(Y ) := a1Y [1]⊕ a2Y [2]⊕ a3Y [3] and Θ(Y ) := b1Y [1]⊕ b2Y [2]⊕

b3Y [3];
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3) Compute Ek2,k3(Σ(Y ), Θ(Y )) and output it.
We notice the middle part of the above structure is a little special. We ex-

tract it in figure 7 and call it linear combination processes. In fact, it is a equa-

Fig. 7. Linear combination processes with input C = (C[1], C[2], C[3]) and output
(Σ(C), Θ(C)).

tion system with two equations about variable C = (C[1], C[2], C[3]), where
C[1], C[2], C[3] are three independent components. We write it as{

a1C[1]⊕ a2C[2]⊕ a3C[3] = Σ(C),
a1C[1]⊕ a2C[2]⊕ a3C[3] = Θ(C).

Obviously, for any fixed outputs (Σ(C), Θ(C)) = (z0, z1), such equation system
has more than one solution. In the following attack, we will choose two different
solutions C0 = (C0[1], C0[2], C0[3]) and C1 = (C1[1], C1[2], C1[3]) with a same
output to construct the test function of Grover’s algorithm.
Construction of function test. Let set

C :=

{
(C0, C1)

∣∣∣∣ Σ(C0) = Σ(C1), Θ(C0) = Θ(C1), where
Cj = (Cj [1], Cj [2], Cj [3]) ∈ ({0, 1}n)3, j = 0, 1.

}
and function f : {0, 1}m × {0, 1}n → {0, 1}n as

f(k,C) = MACk1,k2,k3(P−1k (C)).

Then we define test : {0, 1}m → {0, 1} as

test(k) =

{
1, if f(k,Ci0) = f(k,Ci1), for i = 1, . . . , q,
0, otherwise,

where (Ci0, C
i
0) ∈ C. We notice when k = k1, test(k) = 1. Given quantum oracle

of MACk1,k2,k3(·), if the deviation maxk∈{0,1}m\{k1} Pr[test(k) = 1] ≤ 2−2m

when q = O(1), then we can recover k1 by Grover’s algorithm (theorem 1) with
at most O(2m/2) quantum queries and O(m+ n) qubits.
Forgery attack. After recovering k1, we can make a successful forgery after a
classical query as following.
1) Choose an arbitrarily pair (C0, C1) ∈ C.
2) Compute M0 = (Pk1)−1(C0) and M1 = (Pk1)−1(C1);
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3) Query M0 to MACk1,k2,k3(·) and get T ;
4) Forge M1 and its tag T .

Generally, the EUF-qCMA attack is straight forward the same as in section 2.3.
So we omit it.

The method apply to PMAC Plus [33], PMAC TBC3k [27], 1k-PMAC Plus [11,
12], 3kf9 [34], 2K-PMAC Plus [10] and 2kf9 [10]. In the following, we only give
PMAC Plus [33] and 3kf9 [34] as examples. And for them, we only give the
estimation of the deviation maxk∈{0,1}m\{k1} Pr[test(k) = 1].

4.1 Partial Key Recovery Attack for PMAC Plus

Fig. 8. PMAC Plus with message M = (M [1],M [2],M [3]).

We have introduced PMAC Plus in section 3.2. Assume the three indepen-
dent keys are (k1, k2, k3) ∈ ({0, 1}m)3. The construction with three-block mes-
sage M = (M [1],M [2],M [3]) is showed in figure 8, where tjk1 = 2jEk1(0n) ⊕
22jEk1(0n−1 ‖ 1), j = 1, 2, 3.

Estimation of maxk∈{0,1}m\{k1}Pr[test(k) = 1]. The deviation is equals to

max
k∈{0,1}m\{k1}

Pr[f(k,C1
0 ) = f(k,C1

1 ), . . . , f(k,Cq0) = f(k,Cq1)].

Here, the equation system

f(k,Ci0) = f(k,Ci1), i = 1, 2, . . . , q, (5)

equals

Ek2(Σ(Y i0 ))⊕ Ek3(Θ(Y i0 )) = Ek2(Σ(Y i1 ))⊕ Ek3(Θ(Y i1 )), i = 1, 2, . . . , q,
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where

Σ(Y ib ) =Ek1(Xi
b[1])⊕ Ek1(Xi

b[2])⊕ Ek1(Xi
b[3]), b = 0, 1,

Θ(Y ib ) =22Ek1(Xi
b[1])⊕ 2Ek1(Xi

b[2])⊕ Ek1(Xi
b[3]), b = 0, 1,

and

Xi
b[1] = E−1k (Cib[1])⊕ t1k ⊕ t1k1 ,

Xi
b[2] = E−1k (Cib[2])⊕ t2k ⊕ t2k1 ,

Xi
b[3] = E−1k (Cib[3])⊕ t3k ⊕ t3k1 .

We assume all Cib[a], i = 1, . . . , q, b = 0, 1, a = 1, 2, 3 are different. This can be
realized easily. Then all Xi

b[1], i = 1, . . . , q, b = 0, 1 are different, all Xi
b[2], i =

1, . . . , q, b = 0, 1 are different and all Xi
b[3], i = 1, . . . , q, b = 0, 1 are different as

well.
In the following, we only consider the equations which have new sample of

Ek1 among the q equations in (5). If Xi
b[a], b = 0, 1, j = 1, 2, 3, who are the in-

puts of Ek1 in ith equation, have all appeared in the other q− 1 equations, then
we don’t sample in the ith equation. In fact, there may be Xi

b[a1] = Xi′

b′ [a2] =

Xi′′

b′′ [a3], where a1, a2, a3 are three different values belong to {1, 2, 3}, b, b′, b′′ ∈
{0, 1}, i′, i′′ ∈ {1, . . . , q}. TakeXi

0[1] as example, there may be b′, b′′ ∈ {0, 1}, i′, i′′ ∈
{1, . . . , q} such that Xi

0[1] = Xi′

b′ [2] = Xi′′

b′′ [3]. Therefore, it is easily to obtain
that we have to sample Ek1 in at least b q+2

3 c equations among q. Then we con-
sider the probability of the ith equation f(k,Ci0) = f(k,Ci1) where we have new
sample of Ek1 .
1) If

Σ(Y i0 ) = Σ(Y i1 ), Θ(Y i0 ) = Θ(Y i1 ), (6)

then the ith equation holds. We want to know the upper bound of the prob-
ability of this case. So we only consider Σ(Y i0 ) = Σ(Y i1 ). It means

Ek1(Xi
0[1])⊕Ek1(Xi

0[2])⊕Ek1(Xi
0[3]) = Ek1(Xi

1[1])⊕Ek1(Xi
1[2])⊕Ek1(Xi

1[3]).

By the randomness of Ek1 , the probability to make the above equation holds
by sampling Ek1 is at most 1

2n−6q .

2) When the equation set (6) doesn’t holds but

Ek2(Σ(Y i0 ))⊕ Ek3(Θ(Y i0 )) = Ek2(Σ(Y i1 ))⊕ Ek3(Θ(Y i1 )), (7)

then the ith equation holds as well. Firstly, we exclude the case that Σ(Y i0 ),
Θ(Y i0 ),Σ(Y i1 ),Θ(Y i1 ) in ith equation have all appeared in other q − 1 equa-
tions, whose probability is at most ( 2q

2n−6q )4. Then we assume that in ith

equation that at least Σ(Y i0 ) hasn’t been appeared in other q− 1 equations,
which means Ek2(Σ(Y i0 )) is a new sample. Thus the ith equation holds with
probability at most 1

2n−2q . Overall, this case happens with probability at

most ( 2q
2n−6q )4 + 1

2n−2q .
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Sum of case 1) and 2), the ith equation holds with probability at most 1
2n−6q +

( 2q
2n−6q )4 + 1

2n−2q ≤
q

2n−3 assuming 6q ≤ 2n−1. Therefore, the q equations

happens with probability at most ( q
2n−3 )

q−1
3 . For PMAC Plus, the key length

m ≤ 2n. Then when q = 16, we have Pr[test(k) = 1] ≤ 2−2m for sufficient large
m and any k ∈ {0, 1}m\{k1}.

4.2 Partial Key Recovery Attack for 3kf9

Fig. 9. 3kf9 with a 3-block message M = (M [1],M [2],M [3]).

We have introduced 3kf9 in section 3.2. Assume the three keys are (k1, k2, k3) ∈
({0, 1}m)3. The construction with massage M = (M [1],M [2],M [3]) is defined
as in figure 9.
Estimation of maxk∈{0,1}m\{k1}Pr[test(k) = 1]. The deviation is equals to

max
k∈{0,1}m\{k1}

Pr[f(k,C1
0 ) = f(k,C1

1 ), . . . , f(k,Cq0) = f(k,Cq1)].

Here, the equation system

f(k,Ci0) = f(k,Ci1), i = 1, 2, . . . , q, (8)

equals

Ek2(Σ(Y i0 ))⊕ Ek3(Θ(Y i0 )) = Ek2(Σ(Y i1 ))⊕ Ek3(Θ(Y i1 )), i = 1, 2, . . . , q,

where
Σ(Y ib ) =Ek1(Xi

b[3]), b = 0, 1,

Θ(Y ib ) =Ek1(Xi
b[1])⊕ Ek1(Xi

b[2])⊕ Ek1(Xi
b[3]), b = 0, 1,
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and
Xi
b[1] = E−1k (Cib[1]),

Xi
b[2] = Ek1(Xi

b[1])⊕ Cib[1]⊕ E−1k (Cib[2]),

Xi
b[3] = Ek1(Xi

b[2])⊕ Cib[2]⊕ E−1k (Cib[3]).

We assume all Cib[1], i = 1, . . . , q, b = 0, 1 are different. This can be realized
easily. Then all Xi

b[1], i = 1, . . . , q, b = 0, 1 are different from each other, which
means we have to sample for Ek1(Xi

0[1]) in every equation in (8). Similar as
the PMAC Plus in section 4.1, every equation f(k,Ci0) = f(k,Ci1) holds with
probability at most q

2n−3 . Therefore, the q equations happens with probability
at most ( q

2n−3 )q. For 3kf9, the key length m ≤ 2n. Then when q = 5, we have
Pr[test(k) = 1] ≤ 2−2m for sufficient large m and any k ∈ {0, 1}m\{k1}.

5 Conclusions

In this paper, we introduce secret state recovery attacks and key recovery attacks
for a series of BBB MACs, leading to forgery attacks and drawing the security
back to birthday bound.

Notice that we didn’t apply secret state attack to PMAC TBC3k in section
3.2 as other PMAC Plus-like MACs. The reason is that for PMAC Plus-like
MACs based on block cipher, we can set an independent variable x that is xored
with another value αi before a block cipher Ek: Ek(x⊕ αi), which is also called
separability property in [15]. However, PMAC TBC3k is based on tweakable
block cipher and doesn’t have such separability property.

Another notice is that we didn’t apply key recover attack to SUM-ECBC-
like MACs as PMAC Plus-like MACs in section 4. Because SUM-ECBC-like
MACs don’t have linear combination processes, which means we can’t construct
a valid test function. However, we can still make another key recovery attack.
Take SUM-ECBC as example. The complexity of the attack is O(2mn) quantum
queries assuming the size of block message is n bits and the size of keys is
4m bits. It is still more than birthday bound but better than Grover search
for keys, whose complexity is O(22m). So we just mention it as follows. Let
b ∈ {0, 1}, x ∈ {0, 1}n. Similar as in introduction (section 1, strategy 1), we
can construct a function CMACk1,k2,k3,k4 (b, x) = gk1,k2(b, x) ⊕ hk3,k4(b, x) from
SUM-ECBC through method C, where gk1,k2(b, x) and hk3,k4(b, x) have periods
1‖s1 and 1‖s2 respectively and k1, k2, k3, k4 are keys. Then we can construct a
function f : {0, 1}m × {0, 1}m × {0, 1} × {0, 1}n → {0, 1}n as

fk1,k2,k3,k4(k′3, k
′
4, b, x) =CMACk1,k2,k3,k4 (b, x)⊕ hk′3,k′4(b, x)

=gk1,k2(b, x)⊕ hk3,k4(b, x)⊕ hk′3,k′4(b, x).

When (k′3, k
′
4) = (k3, k4), then f equals gk1,k2(b, x) and have a period 1‖s1. By

applying Grover-meet-Simon algorithm we can recover k3, k4, s1, which leads to
a forgery attack.
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The further question is whether our attacks to DbHtS MACs are optimal or
whether there are quantum security proofs to show the tightness of the bounds.
We leave it as an open problem for future researches.
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A Quantum Basics

For two n-bit strings x = x1x2 . . . xn and y = y1y2 . . . yn where xi, yi ∈ {0, 1},
the inner product of them is x · y = x1y1 ⊕ . . .⊕ xnyn.

Qubits. We call quantum bits as qubits . Let notation ket ”|·〉” represent a
column vector. The n-qubit system is associated with the 2n-dimension Hilbert
space in complex field. Let the unit orthogonal basis of the Hilbert space be
{|x〉} where x ∈ {0, 1}n, which also is the basis of the n-qubit system. If we let
|x〉 be an unit column vector whose x-th component is 1 and other components
are 0. Then any n-qubit state can be represented as the linear combination of
the basis:

|ψ〉 =
∑

x∈{0,1}n
αx|x〉 =


α00...0

α00...1

. . .
α11...1

 .
where αx ∈ C and

∑
x∈{0,1}n |αx|2 = 1. It means any n-qubit state |ψ〉 is a unit

length complex vector in the Hilbert space. If we measure |ψ〉, the superposition
state will collapse into a basis state |x〉 with probability |αx|2. Let notation bra

”〈·|” represent a row vector. Then |ψ〉 = (|ψ〉)† = [α†00...0, . . . , α
†
11...1]. We call

〈ψ1|ψ2〉 as inner product and |ψ1〉〈ψ2| as outer product. The orthogonal basis
means the inner product of any two different vectors in the basis is equal
to 0. For two independent quantum system |ψ1〉 =

∑
x1∈{0,1}n αx1

|x1〉 and

|ψ2〉 =
∑
x2∈{0,1}m αx2 |x2〉, the joint state can be represented by tensor product:
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|ψ1〉 ⊗ |ψ2〉 =
∑
x1∈{0,1}n

∑
x2∈{0,1}m αx1

αx2
(|x1〉 ⊗ |x2〉),where |x1〉 ⊗ |x2〉 can

be represented as |x1x2〉 as well.

Quantum Operations. Unitary operation (unitary matrix, unitary gate) U
can transform a quantum state |ψ1〉 to another quantum state |ψ2〉 = U |ψ1〉.
For a joint system of two independent quantum system |ψ1〉 and |ψ2〉, a joint
quantum unit operation on the system can be represented as by tensor product
U ⊗ V , where U ⊗ V (|ψ1〉 ⊗ |ψ2〉) = (U |ψ1) ⊗ (V |ψ2〉). There are some useful
unitary operations. The first is Hadamard transform

H =

[
1√
2

1√
2

1√
2
− 1√

2

]

on a single qubit. For example, when we apply it to state |1〉, we get 1√
2
|0〉− 1√

2
|1〉

by

H|1〉 =

[
1√
2

1√
2

1√
2
− 1√

2

] [
0
1

]
=

[
1√
2

− 1√
2

]
=

1√
2
|0〉 − 1√

2
|1〉.

If we apply H on 1√
2
|0〉 − 1√

2
|1〉 again, it is easy to know we will get |1〉 again.

So H is the inverse of itself. Let H⊗n be the operation that apply H to ev-
ery qubit of n-qubit quantum state. Then for n-qubit basis state |x〉, we get
H⊗n|x〉 = 1√

2n

∑
y∈{0,1}n(−1)x·y|y〉. Assume |ψ1〉, |ψ2〉 are n qubits state. The

second unitary operation is D|ψ1〉 = 2|ψ1〉〈ψ1| − I2n . The transform D|ψ1〉|ψ2〉
implements filpping the vector |ψ2〉 with |ψ1〉 as the symmetry axis, which is the
core operation of Grover’s algorithm.

Quantum Queries. Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉 be a quantum oracle for
implementing function f : {0, 1}n → {0, 1}m, where |y〉 is ancilla m qubits and
|x〉, |y〉 are basis states. For f : {0, 1}n → {0, 1}, there is another available quan-

Fig. 10. The oracle Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉.

tum oracle O′f , which is constructed from Of by the following quantum circuit.

The input of the quantum circuit is |x〉|1〉 and the output is (−1)f(x)|x〉|1〉. If we
neglect the last qubit |1〉, then we get the quantum oracle O′f : |x〉 → (−1)f(x)|x〉.
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Fig. 11. The quantum circuit to construct oracle O′f from oracle Of .

In fact, for state

|ψ〉 =
∑

x∈{0,1}n
αx|x〉

=
∑

f(x)=0

αx|x〉+
∑

f(x)=1

αx|x〉

=

√ ∑
f(x)=0

α2
x

∑
f(x)=0

αx√∑
f(x)=0 α

2
x

|x〉+

√ ∑
f(x)=1

α2
x

∑
f(x)=1

αx√∑
f(x)=1 α

2
x

|x〉

= cos θ|ψ0〉+ sin θ|ψ1〉,

O′f |ψ〉 = O′f (cos θ|ψ0〉+ sin θ|ψ1〉) = cos θ|ψ0〉 − sin θ|ψ1〉. That is to say, O′f flip
the vector |ψ〉 with |ψ0〉 as its symmetry axis.

In fact, in EUF-qCPA the quantum adversary maintains its state as follows.
Let |0n〉 be the initial state of adversary. Let Oi be the i-th quantum oracle query
for adversary of MAC function and let U0, U1, . . . , Uq be the unitary operations
applied by adversary between queries. Then after q quantum queries, the final
state of adversary will be UqOq . . . U1O1U0|0n〉. Finally, the adversary applies
the final state to get some useful information and make forgeries.

Quantum Complexity.There are three dimensions to measure the complexities
of a quantum algorithm: query complexity, time complexity, memory complexity.
The query complexity counts the number of the superposition oracle queries Of
used for function f . Notice that the classical queries are specific cases of super-
position queries. So we add the number of classical queries to query complexity
in the quantum algorithm. The time complexity is the number of quantum op-
erations (gates, unitaries). The memory complexity is the number of qubits in
a quantum circuit. In our work, the time complexity of the quantum algorithm
is close to query complexity, so we only consider query complexity and memory
complexity.

B Grover’s Algorithm and Proof of Theorem 1

B.1 Grover’s Algorithm

The Grover’s algorithm consists of a series of Grover’s routines. Before all it-
erations, when we measure |ψ〉 the initial probability to get a u who satisfies
test(u) = 1 is small. However, every routine of the algorithm will amplify the am-
plitude of such elements. When the amplitude of such elements is large enough,
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then when we measure the state we will get a u who satisfies test(u) = 1. In our
paper, we will apply the Grover algorithm to find some hidden useful informa-
tion, such as the correct secret key. The quantum circuit of Grover’s algorithm
is showed figure 12 and the algorithm is showed in algorithm 1.

Fig. 12. The quantum circuit of Grover’s algorithm.

Algorithm 1 Grover’s Algorithm

Input: m, t, test : {0, 1}m → {0, 1}
Output: u who satisfies test(u) = 1

Let Otest|u〉 = (−1)test(x)|u〉, D|ψ〉 = 2|ψ〉〈ψ| − I2m .
1: Initialize m qubits registers |0m〉;
2: Apply H⊗m to obtain |ψ〉 = H⊗m|0m〉;
3: Repeat Grover’s routines with t times to get |φ〉 = (D|ψ〉Otest)

t|ψ〉;
4: Measure |φ〉 in order to get u who satisfies test(u) = 1;
5: return u;

Firstly, we divide the initial superposition state |ψ〉 = H⊗m|0m〉
= 2−

m
2

∑
u∈{0,1}m |u〉 as two parts by whether test(u) = 0 or not. Let θ =

arcsin
√

e
2m , |ψ0〉 =

∑
test(u)=0

1√
2m−e |u〉, |ψ1〉 =

∑
test(u)=1

1√
e
|u〉. Then the ini-

tail state |ψ〉 = cos θ|ψ0〉+sin θ|ψ1〉. It is easy to know that |ψ1〉 and |ψ0〉 are two
orthogonal unit vectors. Then we can establish a coordinate system with |ψ0〉
and |ψ1〉 as its orthogonal coordinate axis. In this coordinate system, the vector
|ψ〉 is a unit-length vector with angle θ. In the first Grover routine, the query
Otest flip the state |ψ〉 with |ψ0〉 as the symmetry axis to a unit-length vector
whose angle is −θ, i.e., cos θ|ψ0〉−sin θ|ψ1〉. Then the flip operation D|ψ〉 will flip
vector Otest|ψ〉 with |ψ〉 as its symmetry axis to get a unit-length vector whose
angle is 3θ, i.e., cos 3θ|ψ0〉+ sin 3θ|ψ1〉. We show the above process in figure 13.
It is easy to know that every iteration will add an angle 2θ. After t Grover itera-
tions, we will get a quantum state |φ〉 = cos ((2t+ 1)θ)|ψ0〉+ sin ((2t+ 1)θ)|ψ1〉.
For t = d π4θ e, the final state |φ〉 will be close to |ψ1〉 and we will get a good
elements with probability almost 1.

In the above Grover algorithm, we amplify some amplitudes of a uniform
superposition state |ψ〉 = 2−m/2

∑
u∈{0,1}m |u〉, which in produced by H⊗m on

|0n〉. In the following, we will introduce a more general Grover algorithm: am-
plitude amplification algorithm (algorithm 2). It can amplify some amplitudes
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Fig. 13. The effect of the first Grover’s routine.

of any quantum state |ψ〉 =
∑
u∈{0,1}m αu|u〉 as long as we can produce |ψ〉 by

a unitary operation U on |0m〉.

Fig. 14. The quantum circuit of amplitude amplification algorithm.

Algorithm 2 Amplitude Amplification Algorithm

Input: m, t, test : {0, 1}m → {0, 1}, unitary operation U
Output: u who satisfies g(u) = 1

Let Otest|u〉 = (−1)test(u)|u〉, D|ψ〉 = 2|ψ〉〈ψ| − I2m .
1: Initialize m qubits registers |0m〉;
2: Apply U to obtain |ψ〉 = U |0m〉;
3: Repeat Grover’s routines with t times to get |φ〉 = (D|ψ〉Otest)

t|ψ〉;
4: Measure |φ〉 in order to get a u who satisfies test(u) = 1;
5: return u;

B.2 Proof of Theorem 1

Firstly, we prove the following lemma.

Lemma 1. (Adapted from [6]) Let test : {0, 1}m → {0, 1}, U as defined
in definition 2. Assume in algorithm 2 the initial probability to get a u ∈ U
after measuring |ψ〉 is p0 and the quantum implement of test(·) costs j qubits.
Then amplitude amplification algorithm with t = d π

4 arcsin
√
p0
e quantum queries

to test(·) and O(m + j) qubits will output a u ∈ U with probability at least
p0

p0+p1
[1− (p1p0 +

√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2].
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Proof. From lemma 1 we get the initial probability of measuring |ψ〉 to get
a u who satisfies test(u) = 1 is between [p0, p0 + p1]. Paper [6] has proofed
when the initial probability is between [p0, p0 + p1], then after t = d π

4 arcsin
√
p0
e

Grover’s routines the probability to get a u who satisfies test(u) = 1 is at least

1− (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2. Among all u who satisfies test(u) = 1, the

proportion of u ∈ U is at least p0
p0+p1

. Multiple them and then we can get the
lower bound of the probability of getting a u ∈ U .

By setting U = H⊗m in amplitude amplification algorithm (algorithm 2), We
obtain Grover’s algorithm (algorithm 1) and p0 = e

2m . By lemma 1, we prove
theorem 1.

C Simon’s Algorithm and Proof of theorem 2

C.1 Simon’s Algorithm

Simon’s algorithm consist of many Simon’s routines. The quantum circuit and
the quantum algorithm of of a Simon’s routine is showed in figure 16 and al-
gorithm 3. If f is a periodic function with period s, Simon’s routine outputs
vi ∈ {0, 1}n who is perpendicular to the period s. Assume l Simon’s routines
output v1, v2, . . . , vl. If v1, v2, . . . , vl span the whole space {0n, s}⊥, then we can
get the nontrivial period s by solving the equation system s · vi = 0, i = 1, . . . , l.
The whole Simon’s algorithm is in algorithm 4.

Fig. 15. The quantum circuit of Simon’s routine.

In fact, we can parallel Simon’s routines to construct Simon’s algorithm as
in algorithm 5. The quantum circuit of algorithm 5 is in figure 16.

Fig. 16. The quantum circuit of Simon’s algorithm.



Attack Beyond-Birthday-Bound MACs in Quantum Setting 29

Algorithm 3 Simon’s routine

Input: n, d, f : {0, 1}n → {0, 1}d who has a hiddden period s
Output: v who satisfies v · s = 0

Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉.
1: Initialize n+ d qubits registers |0n〉|0d〉 ;
2: Apply U = (H⊗n × I2d)Of (H⊗n × I2d) on |0n〉|0d〉 to get

|ψ〉 = 2−n
∑

v∈{0,1}n

∑
x∈{0,1}n

(−1)x·v|v〉|f(x)〉;

3: Measure |ψ〉 and get the first n-bit v;
4: return v;

Algorithm 4 Simon’s algorithm

Input: n, d, l, f : {0, 1}n → {0, 1}d who has a hiddden period s
Output: the period s

Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉.
1: Initialize n+ d qubits registers |0n〉|0d〉 ;
2: For i = 1 to l do
3: Apply U = (H⊗n × I2d)Of (H⊗n × I2d) on |0n〉|0d〉 to get

|ψi〉 = 2−n
∑

vi∈{0,1}n,xi∈{0,1}n
(−1)xi·vi |vi〉|f(xi)〉;

4: Measure |ψi〉 to get the first n-bits values vi;
5: end for
6: Compute the period s by solving the equation system s · vi = 0, i = 1, 2, . . . , l;
7: return s;

Algorithm 5 Simon’s algorithm

Input: n, d, l, f : {0, 1}n → {0, 1}d who has a hiddden period s
Output: the period s

Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉, Uf |x1〉 . . . |xl〉|y1〉 . . . |yl〉 → |x1〉 . . . |xl〉|y1 ⊕
f(x1)〉 . . . |yl ⊕ f(xl)〉 with l calls to Of .
1: Initialize nl + dl qubits registers |0nl〉|0dl〉 ;
2: Apply U = (H⊗nl × I2dl)Uf (H⊗nl × I2dl) on |0nl〉|0dl〉 to get

|ψ〉 = 2−nl
∑

v1,...,vl∈{0,1}n,
x1,...,xl∈{0,1}n

(−1)x1·v1 |v1〉 . . . (−1)xl·vl |vl〉|f(x1)〉 . . . |f(xl)〉;

3: Measure |ψ〉 to get the first nl-bits values v1, v2, . . . , vl;
4: Compute the period s by solving the equation system s · vi = 0, i = 1, 2, . . . , l;
5: return s;
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C.2 Proof of Theorem 2

Proof. Firstly, let us focus on Simon’s routine. Kaplan et al (Appendix A in [18])
have proved for t ∈ {0, 1}n \ {0n}, therefore is a relationship between the prob-
ability of get a v who satisfies v · t = 0 after measuring |ψ〉 and the proportion
of x who satisfies f(x) = f(x⊕ t) among {0, 1}n. It is

Pr
v

[v · t = 0] =
1

2
(1 + Pr

x
[f(x) = f(x⊕ t)]). (9)

If t = s, we have Prx[f(x) = f(x⊕ s)] = 1, which leads to Prv[v · s = 0] = 1 by
equation (9). That is to say, for function f with period s, we can always get a v
who satisfies v · s = 0 after Simon’s routine. By

ε(f) = max
t∈{0,1}n\{0n,s}

Prx[f(x) = f(x⊕ t)],

we have Prv[v · t = 0] ≤ 1
2 (1 + ε(f)) for t ∈ {0, 1}n\{0n, s}. That is to say, the

probability of getting a v who satisfies v · t = 0 for t ∈ {0, 1}n\{0n, s} is at most
1
2 (1 + ε(f)).

Now, let us focus on Simon’s algorithm. The line 1 to 3 are l parallel Simon
routines. Then v1, . . . , vl are all satisfy vi · s = 0, i ∈ {1, . . . , l}. Therefore, the
space spanned by v1, . . . , vl is the subspace of {0n, s}⊥. If the space spanned by
v1, . . . , vl is equal to {0n, s}⊥, then we can get s by solving the equation system
vi ·s = 0, i = 1, . . . , l. However, Simon’s algorithm may fail when there is at least
one t ∈ {0, 1}n\{0n, s} such that vi · t = 0, i = 1, . . . , l. The probability of this

bad case is at most 2n · ( 1+ε(f)
2 )l. Let l = cn then we get theorem 2.

D Grover-meet-Simon Algorithm and Proof of Theorem
3

D.1 Grover-meet-Simon Algorithm

For Grover-meet-Simon problem in definition 5, Leader and May [24] firstly
propose Grover-meet-Simon algorithm to solve it. The main idea is to search u ∈
U by Grover’s algorithm and in every Grover’s routine check whether or not each
u ∈ U by whether f(u, ·) is periodic or not, which can be implemented by Simon’s
algorithm. Assume the l parallel Simon routines in Simon’s algorithm output
v1, . . . , vl. For simplicity, we only check whether or not the rank of v1, . . . , vl is
at most n−1 instead of whether f(u, ·) is periodic or not, this the first proposed
in [16] and then combined with Grover’s algorithm in [6]. The replacement is
available for the following reason. For u ∈ U , f(u, x) is a periodic function. Thus
the space spanned by v1, . . . , vl is the subspace of {0n, s}⊥. So the rank of such
space is no more than n−1. However, for u 6∈ U , f(u, x) is an aperiodic function.
Thus the space spanned by v1, . . . , vl is the subspace of {0, 1}n. For sufficient
large l, the v1, . . . , vl can span the whole space {0, 1}n. We let the the output of
the test function be 1 when the rank of {v1, . . . , vl} is at most n− 1. Otherwise,
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it is 0. Therefore, Grover’s routine will amplify the amplitude of u ∈ U . At
last, we can get a u ∈ U and its corresponding v1, . . . , vl. Like the Simon’s
algorithm, we can get su by solving the equation system vi · s = 0, i = 1, . . . , l
in the end. The whole Grover-meet-Simon is in algorithm 6 and the quantum
circuit is in figure 17. More accurately, the whole algorithm is an amplitude
amplification algorithm (algorithm 2) with Hadamard transform and the parallel
Simon’s routines without measurement as the unitary operation U in algorithm
2.

D.2 Proof of Theorem 3

Proof. When u ∈ U , the classifier function test will output 1. If we measure |ψ〉,
it is easy to know the probability to get a u ∈ U is e

2m . For u 6∈ U , if there is at
least one t ∈ {0, 1}n\{0n} who satisfies t · vi = 0, i = 1, . . . , l , then test output
1 as well. By

ε(f) = max
(u,t)∈{0,1}m×{0,1}n\(Us∪{0,1}m×{0n})

Prx[f(u, x) = f(u, x⊕ t)],

this case happens with probability at most 2n ·( 1+ε(f)
2 )l. By lemma 1, we will get

the lower bound of the probability of get a u ∈ U after measuring |φ〉. For u ∈ U ,
Simon’s algorithm with function f(u, ·) output the period su with probability

at least 1 − 2n · ( 1+ε(f)
2 )l. Multiple them and then we can get lower bound of

the probability of get a tuple (u, su) ∈ Us. Let l = cn. By paper [7], we get the
qubits of these algorithm is O(m+cn2 +cdn). Now, we have proved the theorem
3.

Fig. 17. The quantum circuit of Grover-meet-Simon algorithm.
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Algorithm 6 Grover-meet-Simon Algorithm

Input: m,n, r, l, t, f : {0, 1}m × {0, 1}n → {0, 1}d, for u ∈ U ⊆ {0, 1}m that f(u, ·) is
a periodic function, otherwise it is an aperiodic function.

Output: a good element x
Let Of |u〉|x〉|y〉 = |u〉|x〉|y ⊕ f(u, x)〉, Uf |u〉|x1〉 . . . |xl〉|y1〉 . . . |yl〉 =
|u〉|x1〉 . . . |xl〉|y1⊕f(u, x1)〉 . . . |yl⊕f(u, xl)〉 with l calls to Of , test : {0, 1}m+nl+dl →
{0, 1} with

test(u, v1, . . . , vl, y1, . . . , yl) =

{
1, dim{v1, . . . , vl} ≤ n− 1
0, dim{v1, . . . , vl} = n

,

Otest|u, v1, . . . , vl, y1, . . . , yl〉 = (−1)test(u,v1,...,vl,y1,...,yl)|u, v1, . . . , vl, y1, . . . , yl〉, D|ψ〉 =
2|ψ〉〈ψ| − I2m .
1: Initialize m+ nl + dl qubits registers |0m〉|0nl〉|0dl〉;
2: Apply U = (I2m⊗H⊗nl⊗I2dl)Uf (H⊗m⊗H⊗nl⊗I2dl) to |0m〉|0nl〉|0dl〉 to obtain

|ψ〉 = 2−(m
2
+nl)

∑
u∈{0,1}m,

v1,...,vl∈{0,1}n,
x1,...,xl∈{0,1}n

|u〉(−1)x1·v1 |v1〉 . . . (−1)xl·vl |vl〉|f(u, x1)〉 . . . |f(u, xl)〉;

3: Repeat Grover’s routines with t times to get |φ〉 = (D|ψ〉Otest)
t|ψ〉;

4: Measure |φ〉 to in order to get the first (m+ nl)-bit values u ∈ U and v1, . . . , vl
who satisfy su · vi = 0, i = 1, . . . , q;

5: Compute the period su by solving the equation system su · vi = 0, i = 1, 2, . . . , l;
6: return u, su;


