
Batched Differentially Private Information Retrieval

Kinan Dak Albab∗ ,† Rawane Issa∗ ,‡ Mayank Varia‡ Kalman Graffi§

Abstract

Private Information Retrieval (PIR) allows several clients to query a database held by one
or more servers, such that the contents of their queries remain private. Prior PIR schemes have
achieved sublinear communication and computation by leveraging computational assumptions,
federating trust among many servers, relaxing security to permit differentially private leakage,
refactoring effort into a pre-processing stage to reduce online costs, or amortizing costs over a
large batch of queries.

In this work, we present an efficient PIR protocol that combines all of the above techniques
to achieve constant amortized communication and computation complexity in the size of the
database and constant client work. We leverage differential private leakage in order to provide
better trade-offs between privacy and efficiency. Our protocol achieves speed-ups up to and
exceeding 10x in practical settings compared to state of the art PIR protocols, and can scale to
105 queries per second on cheap commodity AWS machines. Our protocol builds upon a new
secret sharing scheme that is both incremental and non-malleable, which may be of interest to
a wider audience. Our protocol provides security up to abort against malicious adversaries that
can corrupt all but one party.

1 Introduction

Private Information Retrieval (PIR) [26, 45] is a cryptographic primitive that allows a client to
retrieve a record from a public database held by a single or multiple servers without revealing the
content of her query. PIR protocols have been developed for a variety of settings, including informa-
tion theoretic PIR where the database is replicated across several servers [26], and computational
PIR using single server [45]. The different settings of PIR are limited by various lower bounds on
their computation or communication complexity. In essence, a server must “touch” every entry in
the database when responding to a query, otherwise the server learns information about the query,
namely what the query is not!

Recent PIR protocols [27, 43, 51, 59] achieve sub-linear computation and communication by
relying on a preprocessing/offline stage that shifts the bulk of computation into off-peak hours [12],
relaxing the security to allow limited leakage [61], or batching queries that originate from the
same client. These advances allowed PIR to be used in a variety of privacy preserving applications
including private presence discovery [16,58], anonymous communication and messaging [9,23,46,56],
private media and advertisement consumption [36, 37], certificate transparency [51], and privacy
preserving route recommendation [69], among others.

∗These authors contributed equally to this effort.
†Brown University. Email: kinan dak albab@brown.edu
‡Boston University. Email: {ra1issa,varia}@bu.edu
§Honda Research Institute EU. Email: kalman.graffi@honda-ri.de

1

Existing sublinear PIR protocols are able to handle medium to large databases of size n and still
respond to queries reasonably quickly. However, they scale poorly as the number of queries increase:
the sub-linear cost (e.g.

√
n for Checklist [43]) of handling each query quickly adds up when the

number of queries approach or exceeds the size of the database into a super-linear overall cost
(e.g. n

√
n). Efficiently batching such queries and amortizing their overheads is an open problem

when these queries are made by different clients: existing work that batches such queries require an
impractical number of queries for the amortization to become significant [51] at the cost of sub-linear
communication, or requires clients to coordinate or share secrets when preprocessing is used [12].
This complicates efforts to deploy PIR in a variety of important applications including software
updates, contact tracing, content moderation, blacklisting of fake news, software vulnerability look-
up, and similar large-scale automated services. We demonstrate this empirically in section 2.

In this work, we introduce DP-PIR, a novel differentially private PIR protocol tuned to efficiently
handle large batches of queries approaching or exceeding the size of the underlying database.
Our protocol batches queries from different non-coordinating clients. DP-PIR is the first protocol
to achieve constant amortized server computation and communication, as well as constant client
computation and communication.

While the details of our protocol are different from earlier work, at a high level our construction
combines three ideas:

1. Offloading public key operations to an offline stage so that the online stage consists only of
cheap operations [27,59].

2. High throughput batched shuffling of messages by mix-nets and secure messaging systems
[47,48,64,66].

3. Relaxing the security of oblivious data structures and protocols to differentially private leakage
[54].

DP-PIR Overview Our protocol is a batched information-theoretic multi-server PIR protocol
optimized for queries approaching or exceeding the database size. DP-PIR is secure up to selective
aborts against a dishonest majority of malicious servers, as long as at least one server is honest.
Our protocol induces a per-batch overhead linear in the size of the database, this overhead is
independent of the number of queries q in that batch, with a total computation complexity of n+ q
per entire batch. When the number of queries approaches or exceeds the size of the database, the
amortized computation complexity per query is constant. Furthermore, our protocol only requires
constant computation, communication, and storage on the client side, regardless of amortization.
We describe the details of our construction in section 5.

Our protocol achieves this by relaxing the security guarantees of PIR to differential privacy
(DP) [30]. Unlike traditional PIR protocols, servers in DP-PIR learn a noised differentially private
histogram of the queries made in a batch. Clients secret share their queries and communicate them
to the servers, which are organized in a chain similar to a mixnet. Our servers take turns shuffling
these queries and injecting them with generated noise queries similar to Vuvuzela [66]. The last
server reconstructs the queries (both real and noise) revealing a noisy histogram, and looks them
up in the database. The servers similarly secret share and de-shuffle responses, while removing
responses corresponding to their noise, and then send them to their respective clients for final
reconstruction. The noise queries are generated from a particular distribution to ensure that the
revealed histogram is (ε, δ)-differentially private, so that the smaller ε and δ get, the more noise

2

queries need to be added. The number of these queries is linear in n and 1
ε and independent of the

number of queries in a batch. The noise does not affect the accuracy or correctness of any client’s
output. Section 3 describes our threat model and how our differentially private guarantees can be
interpreted and compared to those of traditional PIR protocols.

Our protocol offloads all expensive public key operations to a similarly amortizable offline
preprocessing stage. This stage produces correlated secret material that our protocol then uses
online. Our online stage uses only a cheap information-theoretic secret sharing scheme, consisting
solely of a few field operations, which modern CPUs can execute in a handful of cycles. The
security of our protocol requires this secret sharing scheme, which we define in section 4, be both
incremental and non-malleable. Finally, section 6 describes how our protocol can be parallelized
over additional machines to exhibit linear improvements in latency and throughput.

Our Contribution We make three main contributions:

1. We introduce the first PIR protocol that achieves constant amortized server complexity with
constant client computation and communication, including both its offline and online stage,
when the number of queries is similar or larger than the size of the database, even when the
queries are made by different clients. Our offline stage performs public key operations linear
in the database and queries size, and the online stage consists exclusively of cheap arithmetic
operations.

2. We achieve a crypto-free online stage via a novel secret sharing scheme that is both incremen-
tal and non-malleable, based only on modular arithmetic for both sharing and reconstruction.
To our knowledge, this is the first information theoretic scheme that exhibits both proper-
ties combined. This scheme may be of independent interest in scenarios involving Mixnets,
(Distributed) ORAMs, and other shuffling and oblivious data structures.

3. We implement this protocol and demonstrate its performance and scaling to loads with several
million queries, while achieving an online latency of few seconds on cheap low-resource cloud
environments. The experiments identify a criterion describing application settings where our
protocol is most effective compared to existing protocols, based on the ratio of the number
of queries over the database size.

2 Motivation

Private Information Retrieval is a powerful primitive that conceptually applies to a wide range
of privacy preserving applications. Existing PIR protocols are well suited for applications with
medium to large databases and small or infrequent number of queries [9,36,57,69]. However, they
are impractical for a large class of applications with a large number of queries, especially periodic
automated services, and applications with heavy peak loads.

We consider one such example: checking for software updates on mobile app stores. As of 2020,
the Google Play and iOS app stores contain an estimated 2.56 and 1.85 million applications each [2],
while the number of active Android and iOS devices exceed 3 and 1.65 billion, respectively [3]. These
devices perform periodic (e.g. daily) background checks to ensure that their installed applications
are up to date. Currently, these checks are done without privacy: The relevant app store knows
all applications installed on a device, and can perform checks to determine if they are up-to-date

3

quickly. However, the installed applications on one’s device constitute sensitive information. They
can reveal information about the user’s activity (e.g. which bank they use), or whether the device
has applications with known exploits.

It is desirable to hide the sensitive application information from the app store as well as potential
attackers. A device can send a PIR query for each application installed, and the servers can privately
respond with the most up-to-date version label of each application. The device can compare the
received version label against the installed version. If the application is out of date, the device can
construct a URL for downloading it, assuming the stores use a reasonable URL naming convention
(e.g. store.com/app name/version label). Downloading the application must be done via some
anonymous channel, such as Tor, to avoid revealing installed applications to the host.

Existing PIR protocols cannot practically realize this application. The number of devices is
about 1000x larger than the size of the database, and each device may have tens to hundreds of
applications installed. With such large loads, the sub-linear overhead per query quickly adds up.
This is further exacerbated with time as more applications are added to the store. We demonstrate
this below with experiments using two state of the art PIR protocols: Checklist [43] and SealPIR [8].

We believe that a large class of applications demonstrate similar properties ideal for DP-PIR.
In privacy-preserving automated exposure notification for contact tracing [20, 62, 63], the number
of recent cases in a city or region (i.e. the size of the database) is far smaller than the total
population of that area (i.e. the number of queries). Similarly, blocking misinformation in end-
to-end encrypted messaging systems [44] usually involves a denylist far smaller than the total
number of messages exchanged in the system within a reasonable batching time window. Our
empirical results demonstrate that DP-PIR achieves significant concrete speedups over state of the
art protocols in applications where the ratio of queries to database size exceeds 10. On the other
hand, our protocol is unsuited for applications with a ratio smaller than 1

10 .
We believe that the differential privacy guarantees of DP-PIR suffice for applications where the

primary focus is protecting the privacy of any given client, but not overall trends or patterns. For
many applications where PIR could be employed, it is also desirable for the (approximate) overall
query distribution to be publicly revealed, e.g. an app store that displays download counts or a
private exposure notification service that also identifies infection hotspots. DP-PIR is ideal for such
applications, since it reveals a noised version of this distribution, without having to use an additional
private heavy hitters protocol [14]. Furthermore, our DP guarantees are more meaningful in the
settings that DP-PIR target, where the number of queries and clients is large, and any particular
client’s query is intermixed with a large set of indistinguishable noise queries as well as queries
from other clients. In practice, we emphasize that our relaxed guarantees should be viewed as an
improvement over the insecure status-quo, rather than a replacement for PIR protocols that have
stronger guarantees but impractical overheads in our target settings.

Existing PIR Protocols Private Information Retrieval (PIR) has been been extensively stud-
ied in a variety of settings. Information theoretic PIR replicates the database over several non-
colluding servers [11], while computational PIR traditionally uses a single database and relies on
cryptographic hardness assumptions [18,25,49].

Naive PIR protocols require a linear amount of computation and communication (e.g. sending
the entire database over to the client), and several settings have close-to-linear lower bounds on
either computation or communication [50].

Modern PIR protocols commonly introduce an offline preprocessing stage, which either encodes

4

Protocol
Computation Communication

Online Offline Online Offline

BIM04 [12] n0.55 − n0.55 −
CK20 [27]

√
n n λ2 log n

√
n

Checklist [43]
√
n n λ log n

√
n

Naive † n - n/q∗ -
PSIR [59] † q∗n n logc n n/q
CK20 [27] † q∗

√
n n

√
n

√
n/q∗

BIM04 [12] ‡§ qn
w
3 − n

1
3 /q −

LG15 [51] ‡¶ q0.8n −
√
n −

This work ‡‖ cε,δn+ q cε,δn+ q 1 1

†: support batching of queries made by the same client.
‡: supports batching of queries made by different clients.

§: amortizes to n
w
3 , w ≥ 2 is the matrix mult. exponent.

¶: amortizes to a constant when q ∼ n5.
‖: amortizes to a constant when q ∼ n.

Table 1: Computation and communication complexity of various existing PIR protocols. Here,
n is the database size, q∗ and q are the number of queries made by a single or different clients.
For protocols that support batching, computation complexity represents the total complexity to
handle a batch. Communication is always per query

the database for faster online processing using replication [12, 15, 27, 43] and coding theory [17,
19, 38, 59], performs a linear amount of offline work per client to make the online stage sub-linear
[19,27,43,43], or performs expensive public key operations so that the online stage only consists of
cheaper ones [27,43,59]. Other PIR protocols improve performance by allowing some leakage [61],
or relying on homomorphic primitives [6, 8, 68].

Finally, some protocols allow batching queries to amortize costs. When combined with pre-
processing, batching is only supported for queries originating from the same client [27, 43, 59], or
ones that share secret state [12]. Batching queries from different clients without preprocessing is
possible [40] but has limitations. Earlier work induces a sublinear (but non constant) amortized
computation complexity [12], while the state of the art [51] only amortizes to a constant when the
number of queries approach n5, at the cost of

√
n client computation and communication. Our

work is the first to amortize computation costs down to a constant quickly, while also requiring
constant client computation and communication.

Experiment Setup Our experiments measure the server(s) time needed to process a complete
set of queries with ε = 0.1 and δ = 10−6. While the trends shown in these results are intrinsic
properties of our protocol design, the exact numbers depend on the setup and protocol parameters.
Section 7 discusses our setup and the effects of these parameters in detail.

Checklist Figure 1 shows the server computation time of Checklist and DP-PIR when processing
different number of queries against a database with n = 100K elements. Our protocol has constant
performance initially, which starts to increase with the number of queries q as it exceeds 1M. In

5

100 102 104 106

Queries

10−1

102

105

C
om

p
le

ti
on

T
im

e
(s

ec
on

d
s)

Checklist

DP-PIR

Figure 1: Checklist and DP-PIR Total completion time (y-axis, logscale) for varying number of
queries (x-axis, logscale) against a 100K database

103 104 105

Database size

0

20

40

60

80

Q
u

er
ie

s/
D

at
ab

as
e

si
ze

1x

2x

5x

10x

Figure 2: The ratios of queries/database (y-axis) after which DP-PIR outperforms Checklist for
different database sizes (x-axis, logscale)

more detail, the computation time of DP-PIR is proportional to cε,δn + q = 184 × 100, 000 + q.
Therefore, the cost induced by q is negligible until q becomes relatively significant.

On the other hand, Checklist scales linearly with the number of queries throughout, as its com-
putation time is proportional to q

√
n. When the number of queries is small, this cost is far smaller

than the initial overhead of our system. As q approaches n, both systems start getting comparable
performance. DP-PIR achieves identical performance to Checklist at q = 67K (two thirds the
database size) and outperforms Checklist for more queries. Our speedup over Checklist grows with
the ratio q

n , approaching a maximum speedup determined by
√
n when the ratio approaches ∞.

Our experiments demonstrate that we outperform Checklist by at least 2x, 5x, and 10x after the
ratio exceeds 1.27, 3.3, and 6.7 respectively.

The ratio required for achieving a particular speedup is not identical for all database sizes. Fig-
ure 2 shows how these ratios decrease as the database size grows. DP-PIR prefers larger databases:
The larger the database the smaller the ratio required by DP-PIR to achieve a particular speedup,
and the larger the maximum speedup that DP-PIR can achieve as q → ∞. In our motivating
scenario involving the Google Play store where the ratio exceeds 1000, our protocol can achieve a

6

100 102 104 106

Queries

10−1

101

103

105

C
om

p
le

ti
on

T
im

e
(s

ec
on

d
s)

SealPIR

DP-PIR

Figure 3: SealPIR and DP-PIR Total completion time (y-axis, logscale) for varying number of
queries (x-axis, logscale) against a 10K database

102 103 104 105

Database size

0.0

0.5

1.0

1.5

2.0

2.5

Q
u

er
ie

s/
D

at
ab

as
e

si
ze

1x

2x

5x

10x

Figure 4: The ratios of queries/database (y-axis) after which DP-PIR outperforms SealPIR for
different database sizes (x-axis, logscale)

speedup over Checklist far in excess of 10x.

SealPIR Figures 3 and 4 show similar results for SealPIR. In the first experiment, we use a
database size of only 10K elements, and find that DP-PIR outperforms SealPIR at relatively few
queries (around 600) with a ratio q

n of just 0.06. Similarly, we achieve 2x, 5x, and 10x speedups
for modest ratios of 15

100 ,
3
8 , and 3

4 respectively. These ratios decrease as the database size grows,
similar to our experiment with Checklist.

While SealPIR has a sub-linear overhead per query similar to Checklist, we outperform SealPIR
with far fewer queries than we do Checklist. In fact, our experiments show that Checklist is 20x
faster than SealPIR. Checklist’s online phase contains only symmetric key operations, since it
offloads all expensive public key operations to an offline stage. SealPIR on the other hand does
not rely on such an offline stage, and instead performs expensive homomorphic operations during
its online stage. Our protocol goes even further, only executing a couple of modular arithmetic
operations per query online.

7

3 Protocol Overview

Notation Our protocol consists of d clients and m servers labeled c1, ..., cd and s1, ..., sm respec-
tively. We designate s1 and sm as a special frontend and backend server respectively. We assume
that every server si has public encryption key pki known to all servers and clients, with associ-
ated secret key ski. Finally, we assume that every server has a copy of the underlying database,
represented as a table T = K : V consisting of a key and a value column.

We refer to the query made by client ci by qi, and its associated response as ri. We use
(xi0, y

i
0), ..., (x

i
m, y

i
m) and ei0, ..., e

i
m to denote the two sets of secret shares created by client i for her

query and response. We denote the shared anonymous secrets installed from client ci at server sj
by aij = (tij , t

i
j+1, x

i
j , y

i
j , e

i
j). We drop the i superscript when the context is clear.

Our offline protocol uses onion encryption to pass secrets through the servers as defined below,
where :: denotes string concatenation:

OEnc(i) = Enc(sk1, a
i
1 :: Enc(sk2, a

i
2 :: ... Enc(skm, a

i
m) ...))

3.1 Setting

We describe our protocol in terms of a single epoch consisting of an input-independent offline stage
followed by an online stage. Our protocol allows for executing a (slower) offline stage in one shot,
which can then support several (faster) online stages executed afterward. Practical deployments
may benefit from this feature to run the offline stage when computing power is cheaper, after
which the clients have flexibility to choose when to make their queries. The converse is not true:
secrets resulting from several offline stages cannot be used in a single online computation, or else
an adversary could identify which offline stage each query belongs to.

The client state, created in the offline stage and consumed in the online one, consists exclusively
of random elements. Clients can store the seed used to produce these elements to achieve constant
storage relative to the number of queries and number of servers. A client need only submit her
secrets to the service during the offline stage, and can immediately leave the protocol afterwards.
The client can reconnect at any later time to make a query without any further coordination.

The offline stage is more computationally expensive than the online one, since it performs a
linear number of public key operations overall. We suggest that the offline stage be carried out
during off-peak hours (e.g. overnight), when utilization is low. Furthermore, both our stages are
embarrassingly parallel in the resources of each party. It may be reasonable to run the offline stage
with more resources, if these resources are cheaper to acquire overnight (e.g. spot instances).

While the requirements on the offline stage are primarily throughput oriented, the online stage
must exhibit reasonable latency as well. Our offline stage is similar to Vuvuzela [66], which exhibits
good throughput. The linear number of public key operations performed by Vuvuzela makes it
impractical for our online stage. Indeed, our online stage is crypto-free using only a handful of
arithmetic operations per query.

3.2 Threat Model

Our construction operates in the ‘anytrust’ model up to selective abort. Specifically, we tolerate
up to m− 1 malicious servers and d− 1 malicious clients. Our protocol leaks noisy access patterns
over the honest clients’ queries, in the form of a differentially private noisy histogram H(Q) =
Hhonest(Q) + χ(ε, δ).

8

Our protocol is secure up to selective abort, and does not guarantee fairness. Adversarial servers
may elect to stop responding to queries, effectively aborting the entire protocol. Furthermore, they
can do so selectively for certain queries. All servers can decide to drop queries at random, the
frontend server can drop queries based on the identity of their clients, and the backend server can
drop queries based on their value.

We stress that an adversary cannot drop a query based on the conjunction of the client’s identity
and the value, regardless of which subset of servers gets corrupted. Also, an adversary can only
drop a query, but cannot convince a client to accept an incorrect response, since clients can validate
the correctness of received responses locally.

3.3 Interpreting Security

We protect the privacy of any particular query made by an honest client with the guarantees of
differential privacy. In particular, we consider two neighboring batches of queries Q and Q′ over
d clients. The two query sets consists of identical queries, except for a single client ci, who makes
two different queries q 6= q′ in the two batches respectively. We formalize this in definition 1.

Definition 1 (Differentially Private PIR Access Patterns). For any privacy parameters ε, δ, and
every two query sets Q,Q′ that differ on a single query i (i.e. ∀j 6= i, Q[j] = Q′[j]), the probabilities
of our protocol producing identical access pattern histograms are (ε, δ)-similar when run on either
set:

Pr[H(Q) = H] ≤ eεPr[H(Q′) = H] + δ

Our definition uses the substitution formulation of DP, rather than the more common ad-
dition/removal; see [65, §1.6] for details. Substitution is commonly used in secure computation
protocols involving DP leakage [54]. We use this variant since our protocol does not hide whether
a client made a query in a batch or not: the adversary already knows this e.g. by observing IP
addresses associated to queries. Instead, we hide the value of the query itself. Our formulation is
more conservative adding twice the expected amount of noise queries, since the sensitivity is 2 in
our formulation and 1 in the other.

One way to interpret our differentially private guarantees is to note that it provides any client
with plausible deniability: a client that made query q can claim that her true query was any q′ 6= q,
and external distinguishers cannot falsify this claim since the probability of either case inducing
any same observed histogram of access patterns is similar.

Whereas traditional differential privacy mechanisms trade privacy for accuracy, our scheme
trades privacy for performance, such that increasing privacy (i.e. lowering ε and δ) results in
additional noise queries and load on the system.

We show the security of our protocol using a simulation-based proof, where the ideal functional-
ity reveals a leakage function to the simulator. We then argue separately that this leakage function
is (ε, δ)-DP. Simulation-based security holds when the protocol is sequentially composed, which
extends our security to cases where several online stages are pooled together into a single offline
stage. Furthermore, sequential composition combines nicely with the DP composition theorem,
when several instances of the protocol are run over (potentially) correlated queries.

Note that our leakage is defined over plaintext values in the database. In the ORAM domain,
it is common to define leakage over ciphers, since the database is encrypted or garbled. In our
setting, these two definitions are equivalent. The adversary can carefully select the portion of noise

9

queries it controls, and correlate that with the observed histogram over ciphers, to map ciphers
back to their original plaintexts.

4 Incremental Non-malleable Secret Sharing

Mixnets traditionally organize computation sequentially in a chain over servers, and rely on public
key onion encryption in order to pass secrets meant for subsequent servers through previous servers.
However, this induces a large number of public key operations, proportional to m × |batch|. We
use a novel cheaper arithmetic-based secret sharing scheme instead of onion encryption during our
own online stage.

The secret sharing scheme provides similar security guarantees to onion encryption, to ensure
that input and output queries are untraceable by external adversaries:

1. Secrecy: As long as one of the shares is unknown, reconstruction cannot be carried out by an
adversary.

2. Incremental Reconstruction: A server that only knows a single secret share and a running
tally must be able to combine them to produce a new tally. The new tally must produce the
original secret when combined with the remaining shares.

3. Independence: An adversary cannot link any partially reconstructed output from a set of
outputs to any shared input in the corresponding input set.

4. Non-Malleability: An adversary who perturbs any given share cannot guarantee that the
output of reconstruction with that perturbed share satisfies any desired relationship. In
particular, the adversary cannot perturb shares such that reconstruction yields a specific
value (e.g., 0), or a specific function of the original secret (e.g., adding a fixed offset).

Non-malleability is critical for preserving security when the last (backend) server is corrupted.
The backend can observe the final reconstructed values of all queries to identify queries perturbed
by earlier colluding servers. If the perturbation can be undone (e.g. by removing a fixed offset),
then the backend can learn the value of the query, and link it to information known by other servers,
such as the identity of its client.

Secrecy and independence can be easily achieved with any appropriately-thresholded secret
sharing scheme. However, non-malleability excludes several incremental schemes, such as additive
or XOR-based sharing. While several non-malleable secret sharing schemes exist [10, 35], they
don’t satisfy our incremental design. It would have been possible to use different primitives that
satisfy these properties, such as authenticated onion symmetric-key encryption. However, these
operations remain more expensive than simple information theoretic secret sharing schemes that
can be implemented with a handful of arithmetic operations.

Our Sharing Scheme Given a secret q, a prime modulus z, and an integer m, our scheme
produces m+ 1 pairs (x0, y0), (x1, y1), ..., (xm, ym), each representing a single share of q. All x and
y shares are chosen independently at random from Fz and F∗z respectively, except for the very first
pair x0, y0, whose values are set to:

x0 = ((q − xm)× y−1m ...− x1)× y−11 mod z, y0 = 0

10

All shares except the first one can be selected prior to knowing q. This is important for our
offline stage. The modulus z must be as big as the key size in the underlying database (64 bits in
our experiments). The secret q can be reconstructed incrementally from a running tally lj−1 and
one share (xj , yj) to produce a new tally lj , such that lm = q:

l0 = y0 × 1 + x0 mod z

lj = yj × lj−1 + xj mod z

Incremental Non-malleability Security Game We describe the following security game be-
tween an adversary and an incremental sharing dealer. The dealer possesses a fixed secret share h,
while the adversary produces two partial tallies l, l′ of its own choosing, such that l 6= l′.

In the real world, the dealer computes the next two tallies R(l, h), R(l′, h) by applying our
scheme’s incremental reconstruction function to l and l′ with its fixed share. In the ideal world, the
dealer computes R(l, h) correctly, and produces a random value for the second tally r. The aim of
the adversary is to distinguish between the real and ideal world.

The adversary here represents all parties in an incremental reconstruction protocol up to and
excluding the last honest party, the first tally produced by the dealer represents the non-tampered
tally resulting from all of these parties following the reconstruction protocol correctly, while the
second tally represents the tampered tally resulting from some of these parties using tampered
shares (or deviating arbitrarily from the protocol). The dealer represents the last honest party.

The game demonstrates that regardless of what tampering the adversary performs (it has the
freedom to select any tallies), the next tampered partial tally is indistinguishable from a random
one, even knowing what the non-partial tally should have been. This is a strong guarantee that
implies that the actual tally cannot be extracted from the tampered one, since the existence of any
such extraction mechanism provides a way to distinguish the real and ideal world. In Appendix D,
we prove that our construction satisfies this security game.

5 Our DP-PIR Protocol

Offline Stage Our offline stage consists of a single sequential pass over the m servers. Clients
generate random secrets locally, and submit them after onion encryption to the first server in
the chain. The first server receives all such incoming messages from clients, until a configurable
granularity is reached, e.g. after a certain time window passes or a number of messages is received.
All incoming messages at that point constitutes the input set for that server, which get processed
by that server into an output set of a larger size, since the server also injects its own messages into
the set, consisting of its anonymous random secrets that she needs to perform the noise addition
in the online stage later on.

The number of shared anonymous secrets injected by a server and stored at subsequent servers
must suffice to handle all noise queries that the server needs to inject in the online stage. As a
result, our protocol requires the server to pre-sample the histogram of noise during the offline stage
to determine the total count of noise queries that will be used during the online stage, and inject
precisely the needed amount of shared anonymous secrets into the output set.

The output set contains onion ciphers, encrypted under the keys of the subsequent servers in
the chain. None of the plaintexts decrypted by the current server survives, they are all consumed
and stored in the server’s local mapping for use during the online stage. No linkage between

11

Algorithm 1 Client Offline Stage

Input: Nothing.
Output state at the client: a list of anonymous secrets [a0, ..., am], one per each of the m servers.
The client uses this in the online stage.
Output to s1: Onion encryption of a0, ..., am.

1. Generate Random Values: For each Server sj , the client generates 4 values all sampled
uniformly at random: (1) A globally unique identifier tj . (2) Two incremental pre-shares
xj ∈ {0, ..., z} and yj ∈ {1, ...z}. (3) An additive pre-share ej ∈ {0, ..., z}.

2. Build Shared Anonymous secrets: The client builds aj = (tj , tj+1, xj , yj , ej), for every
server 1 ≤ j ≤ m, using the generated random values above, with tm+1 = ⊥. These secrets
are stored by the client for later use in the online stage.

3. Onion Encryption: The client onion encrypts the secrets using the correspond server’s
public key, such that OEnc(m) = Enc(skm, am) and OEnc(j) = Enc(skj , aj :: OEnc(j+1)).

4. Secrets Submission: The client sends the onion cipher OEnc(1) to server s1. The client
can leave the protocol as soon as receipt of this message is acknowledged.

messages in the input and output sets is possible without knowing the server’s secret key, since the
ciphers in the input cannot be used to distinguish between (sub-components of) their plaintexts
(by CPA-security), and since the output set is uniformly shuffled.

Online Stage Our online stage is structured similarly to the offline stage. However, it requires
going through the chain of servers twice. The first phase moves from the clients to the backend
server, where every server injects its noise queries into the running set of queries, and incrementally
reconstructs the values of received queries. The second phase moves in the opposite direction, with
every server removing responses to their noise queries, and incrementally reconstructing the values
of received responses, until the final value of a response is reconstructed by its corresponding client.

The backend operates differently than the rest of the servers. The backend gets to see the
reconstructed query set, and find their corresponding responses in the underlying database via
direct look-ups. The backend need not add any noise queries, which alleviates the need for shuffling
at the backend.

Discussion The security of both offline and online stages rely on the same intuition. First, an
adversary that observes the input and output sets of an honest server should not be able to link
any output message to its input. Second, the adversary must not be able to distinguish outputs
corresponding to real queries from noise injected by that server.

An adversary cannot link a message in the output set to its corresponding input message,
since the honest server re-randomizes these messages. In the offline stage this re-randomization
is performed with onion-decryption, while the online stage performs it using our non-malleable
incremental reconstruction and additive secret sharing for the two phases respectively. We do
not need to use a non-malleable secret sharing scheme for response handling, since the adversary
cannot observe the final response output, which is only revealed to the corresponding client, and

12

Algorithm 2 Server sj Offline Stage

Configuration: The underlying database T = K;V , and privacy parameters ε, δ.
Input from sj−1 or clients if j = 1: A set of onion ciphers of anonymous secrets, one per each
incoming request.
Output state at sj: A mapping M of unique tag tij to its corresponding shared anonymous secrets

aij used to handle incoming queries during the online stage. A list of generated anonymous secrets
L used to create noise queries during the online stage. A sampled histogram N of noise queries to
use in the online stage.
Output to server sj+1: A set output onion ciphers corresponding to input onion ciphers and
noise generated by sj .

1. Onion Decryption: For every received onion cipher OEnc(j)i, the server decrypts the
cipher with its secret key skj , producing aij and OEnc(j + 1)i.

2. Anonymous Secret Installation: For every decrypted secret aij = (tij , t
i
j+1, x

i
j , y

i
j , e

i
j), the

server stores entry (tij+1, x
i
j , y

i
j , e

i
j) at M [tij] for later use in the online stage.

If j < m:

3. Noise Pre-Sampling: The server samples a histogram representing counts of noisy queries
to add for every key in the database N ← χ(ε, δ), and computes the total count of this noise
S =

∑
N .

4. Build shared anonymous secrets for noise: The server generates S many anonymous
secrets and onion encrypts them for all servers sj′ > sj , using the same algorithm as the
client. The server stores these secrets in L.

5. Shuffling and Forwarding: The server shuffles all onion ciphers, either decrypted from
incoming messages, or generated by the previous step, and sends them over to the next server
sj+1.

thus cannot observe the effects of the perturbation.
Shuffling in the noise with the re-randomized messages ensure that they are indistinguishable. A

consequence of this is that a server cannot send out any output message until it receives the entirety
of its input set from the previous server to avoid leaking information about the permutation used.
Idle servers further along the chain can use this time to perform input independent components
of the protocol, such as sampling the noise, building and encrypting their anonymous secrets, or
sampling a shuffling order.

A malicious server may deviate from this protocol in a variety of ways: it may de-shuffle
responses incorrectly (by using a different order), attach a different tag to a query than the one
the offline stage dictates, or set the output value corresponding to a query or response arbitrarily
(including via the use of an incorrect pre-share). The offline stage does not provide a malicious
server with additional deviation capability: any deviation in the offline stage can be reformulated
as a deviation in the online stage, after carrying out the offline stage honestly, with both deviations
achieving identical effects. Finally, a backend server may choose to provide incorrect responses to
queries by ignoring the underlying database.

13

Algorithm 3 Client Online Stage

Input: A query q.
Input state at the client: a shared anonymous secrets aj = (tj , tj+1, xj , yj , ej) per server sj
generated by the offline stage.
Output: A response r, corresponding to the value associated to q in the database.

1. Compute Final Incremental Secret Share: Client computes l = x0, so that (x0, 0)
combined with (x1, y1), ..., (xm, ym) is a valid sharing of q, per our incremental secret sharing
scheme.

2. Query Submission: Client sends (t1, l) to server s1.

3. Response Reconstruction: Client receives response r1 from s1. Client reconstructs r′ =
r1 −

∑
ej mod z.

4. Response verification: The client ensures that the response r′ = (q, r), where q is the
original query. Furthermore, it verifies that it is signed by pk = (pk1, ..., pkm).

Each of these deviations has the same effect: The non-malleability of both our sharing scheme
and onion encryption ensures that mishandled messages reconstruct to random values. While
mishandled responses will not pass client-side verification, unless the adversary can forge signatures.
In either case, the affected clients will identify that the output they received is incorrect and reject
it. Ergo, servers can only use this approach to selectively deny service to some clients or queries.
A malicious frontend can deny service to any desired subset of clients since it knows which queries
correspond to which clients, a malicious backend can deny service to any number of client who
queried a particular entry in the database, and any server can deny service to random clients.
The backend and frontend capabilities cannot be combined even when colluding since at least one
honest server exists between the frontend and backend. These guarantees are similar to those of
Vuvuzela [66] and many other mixnet systems.

Formal Security We rigorously specify our security guarantee in Theorem 1, which refers to
the ideal functionality defined in Algorithm 5. The ideal functionality formalizes our notion of
“selective” abort. In particular, it formalizes capabilities of the adversary to deny service to certain
clients based on client identity, query value, or neither (depending on which servers are corrupted).

Theorem 1 (Security of our protocol Π). For any set A of adversarial colluding servers and
clients, including no more than m−1 servers, there exists a simulator S, such that for client inputs
q1, ..., qd, we have:

ViewReal(Π, A, (q
1, ..., qd)) ≈ ViewIdeal(F ,S, (q1, ..., qd))

A construction of the simulator and proof for Theorem 1 are shown in Appendices A and B.

Differential Privacy Our security theorem contains leakage revealed to the backend server in
the form of a histogram over queries made by honest clients and honest servers. Our privacy
guarantees hinge on this leakage being differentially private, which in turn depend on the underlying

14

Algorithm 4 Server sj Online Stage

State at sj: The mapping M , list L, and noise histogram N stored from the offline stage.

Input from sj−1 or clients if j = 1: A list of queries (tji , l
i
j).

Output to sj−1 or clients: A list of responses rij corresponding to each query i.

1. Anonymous Secret Lookup: For every received query (tji , l
i
j), the server finds M [tji] =

(tj+1
i , xji , y

j
i , e

j
i).

2. Query Handling: For every received query, the server computes output query
(tj+1
i , R(lij , (x

j
i , y

j
i))), where R is our scheme’s incremental reconstruction function.

If j < m:

4. Noise injection: The server makes output queries per stored noise histogram N , using the
stored list of anonymous secrets L and the client’s online protocol. By construction, there
are exactly as many secrets in L as overall queries in N .

5. Shuffling and Forwarding: The server shuffles all output queries, both real and noise, and
sends them over to the next server sj+1. The server waits until she receives the corresponding
responses from sj+1, and de-shuffles them using the inverse permutation.

6. Response Handling: Received responses corresponding to noise queries generated by this
server are discarded. For every remaining received response rij+1, the server computes the

output response rij = rij+1 + eji mod z.

7. Response Forwarding: The server sends all output responses rij to sj−1, or the correspond-
ing client ci if j = 1.

If j = m:

4. Response Lookup: The backend server does not need to inject any noise or shuffle. By
construction, step (2) computes (⊥, qi) for each received query. The backend find the corre-
sponding response r′i by looking up qi in the database. If qi was not found in the database
(because a malicious party mishandled it), we set r′i to a random value.

5. Response Handling: The backend computes the output responses rij = r′i + eji mod z, and
sends them to sj−1.

noise distribution. Several differentially private mechanisms exist in the literature for a variety of
functions and statistics. Our application requires that the noise we add be non-negative (we cannot
add a negative amount of queries) and integer (e.g., we cannot add half a query). It is desirable
to have an upper bound on the amount of noise queries. Algorithm 6 details how we modify the
standard Laplace mechanism to satisfy these properties. Appendix C proves that this mechanism
indeed achieves (ε, δ)-differential privacy.

15

Algorithm 5 Ideal Functionality F
Input: A set of queries qi, one per client, the underlying database T = K;V , and privacy param-
eters ε, δ.
Output: A set of responses ri, one per client, either equal to the correct response or ⊥.
Leakage: A noisy histogram H revealed to sm.

1. if s1 is corrupted, F receives a list of client identities from the adversary. These clients are
excluded from the next steps, and receive ⊥ outputs.

2. F reveals the noised histogram H = Hhonest +N to the backend server sm, where Hhonest is
the histogram of queries made by honest clients not excluded by the previous step, and N is
sampled at random from the distribution of noise χ(ε, δ).

3. if the backend is corrupted, F receives a list of counts ci for every entry in the database ki,
and outputs ⊥ to ci-many clients, randomly chosen among the remaining clients that queried
ki.

4. if any server, other than sm and s1, is corrupted, F receives a number c, and outputs ⊥ to
c-many clients, randomly chosen among the remaining clients.

5. if s1 is corrupted, F receives an additional list of client identities to receive ⊥.

6. F outputs T [qi] for every client i not excluded by any of the steps above.

Algorithm 6 Noise Query Sampling Mechanism χ(ε, δ)

Input: The size of the database |T |, and privacy parameters ε, δ.
Output: A histogram N over T representing how many noise queries to add per database entry.

1. B := |CDF−1Laplace(0,2/ε)(
δ
2)|.

For every i ∈ |T |:

2. li ←− Laplace(0, 2ε).

3. l′i := max(−B,min(B, li)) +B.

4. Ni := floor(l′i).

6 Scaling and Parallelization

Many existing PIR protocols can be trivially scaled over additional resources, by running completely
independent parallel instances of them on different machines. This approach is not ideal for our
protocol: each instance needs to add an independent set of noise queries, since each instance reveals
an independent histogram of its queries. Instead, our protocol is more suited for parallelizing a
single instance over additional resources, such that only a single histogram is revealed without
needing to add ancillary noise queries.

In a non-parallel setting, the notions of a party and a server are identical. For scaling, we allow

16

parties to operate multiple machines. These machines form a single trust domain. In other words,
we assume that if one of these machines is corrupted, all other machines belonging to the same party
are also corrupted. This maintains our security guarantees at the level of a party. Particularly, the
protocol remains secure if one party (and all its machines) is honest. Machines owned by the same
party share all their secret state, including anonymous secrets installed at any of them during the
offline stage, as well as the noise query they select.

Any machine mj
i belonging to party j only communicates with a single machine mj−1

i and mj+1
i

from the preceding and succeeding parties, in order to receive inputs and send outputs respectively.
A machine also communicates with all other machines belonging to the same party for shuffling.

Distributing Noise Generation Our protocol generates noise independently for each entry in
the database, we can parallelize the generation by assigning each machine a subset of database
entries to generate noise for, e.g. mj

i is responsible for generating all noise queries corresponding
to keys {k| k % j = 0}. This distribution is limited by the size of the database. If parallelizing
the noise generation beyond this limit is required, an alternate additive noise distribution (e.g.
Poisson [64]) can be used instead, which allows several machines to sample noise for the same
database entry from a proportionally smaller distribution.

Distributed Shuffling Machines belonging to the same party must have identical probability
of outputting any input query after shuffling, regardless of which server it was initially sent to.
An ideal algorithm guarantees that the number of queries remains uniformly distributed among
machines after shuffling. We choose one that requires no online coordination to ensure it maintains
perfect scaling. Machines belonging to the same party agree on a single secret seed ahead of time.
They use this seed to simulate a non-distributed global shuffling locally. Assuming that the total
number of input queries is l, each machine mj

i samples l random numbers using the shared seed
locally to uniformly sample the same global permutation P of size l using Knuth shuffle. Each
machine mj

i need only retain P [i×lm : (i+1)l
m] which determines the new indices of each of its input

queries. The target machine that each query q should be sent to can be computed by P [q]% l
m . This

algorithm performs optimal communication l
m per machine but requires each machine to perform

CPU work linear in the overall number of queries to sample the overall permutation. This work
is independent of the actual queries, and can be done ahead of time (e.g. while queries are being
batched or processed by previous parties).

Distributing Offline Anonymous Secrets Since the offline and online stages perform indepen-
dent shuffling, it is unlikely that an online query be processed by the same machine as its associated
offline secret. We require all machines belonging to the same party to share all secrets they installed
during the offline stage, so that any of them can quickly retrieve the needed ones during the online
stage. For small scale applications, it may be suitable for each machine to maintain a copy of
all these secrets in its Main memory. For larger scale applications, it may be more appropriate to
store that copy on a local SSD, or utilize an appropriate key-value storage or in-memory distributed
file system, especially ones that support Remote direct memory access (RDMA) [55,70], offloaded
lookups to the remote machine [1], and batching of multiple requests to minimze network costs [4].

17

101 103 105 107

Queries

102

103

C
om

p
le

ti
on

T
im

e
(s

ec
on

d
s)

Offline

Online

Figure 5: Completion time for varying number of queries against a 100K database (logscale)

102 103 104 105 106

Database Size

100

102

104

N
oi

se
C

om
p

le
ti

on
T

im
e

(s
ec

on
d

s)

Offline

Online

Figure 6: Completion time for a batch consisting only of noise queries against varying database
sizes (logscale)

7 Evaluation

We evaluate DP-PIR and its applicability via several experiments. Our evaluation focuses on the
following questions:

1. How does DP-PIR scale with application parameters?

2. How does DP-PIR compare to other PIR protocols?

3. What is the latency of DP-PIR?

4. When is DP-PIR ideal and when is it unsuitable?

Experiment Setup Our various experiments measure the server completion time for a batch
of queries. For the online stage, this is the total wall time taken from the moment the first
server receives a complete batch ready for processing, until that batch is completely processed
by the entire protocol, and its outputs are ready to be sent to clients. For the offline stage, the
measurements start when the complete batch is received by the first server, and ends when all
servers finished processing and installing the secrets. Measurements include the time spent in CPU

18

2 3 4 5
Number of parties

0

500

1000

1500

2000

C
om

p
le

ti
on

T
im

e
(s

ec
on

d
s)

Offline

Online

Figure 7: Completion time for varying number of parties with 100K queries against a 10K database
(yaxis logscale)

performing various computations from the protocol, as well as time spent waiting for network IO
as messages get exchanged between servers. Our measurements does not include client processing
or round-trip time, we do not have the capacity to faithfully deploy hundreds of thousands of
clients concurrently. Instead, we feed the servers pre-generated queries from a trace file. This does
not affect our measurements, since our protocol and measurements start after a complete batch of
queries is received.

We ran these experiments with ε = 0.1 and δ = 10−6 on general purpose AWS t2.large instances
with two 3GHz cores, 8 GB RAM, and low (around 100Mbps) network bandwidth. These are
relatively small machines costing less than $0.1 per hour. We chose these machines to demonstrate
that our protocol can be effectively deployed on cheap commodity hardware, and to ensure our
protocol does not gain an implicit setup advantage against Checklist and SealPIR (more on this
later). We implemented our protocol using a C++ prototype with about 6.5K lines of code. Our
prototype relies on libsodium for public key operations and TCP sockets. We use a database with
keys and values that are 8 bytes each.

Scaling Figures 5 and 6 show how our protocol scales with the number of queries and database
size respectively. Our runtime is dominated by noise queries when the number of queries is smaller
than the size of the database, and begins to increase with the number of queries as they exceed it.
For large enough number of queries, our runtime scales linearly as the overhead of noise queries is
amortized away over the real queries. Our protocol scales linearly with the size of the database. The
cost of processing any input query in isolation is constant and does not depend on the database
size, which only affects the number of noise queries added by our protocol. The offline stage is
about 20x more expensive than our online stage. This is expected since the offline stage performs
a public key operation for each corresponding modular arithmetic operation in the online stage.

Figure 7 shows that our protocol scales super-linearly in the number of parties. Our protocol is
most efficient when only two parties are involved. When the number of parties increases, a query
has to pass through more servers as it crosses the chain. This is more pronounced in the offline
stage, as it additionally increases the size and layers of each onion cipher. All this is compounded
by each server naively adding in the full required amount of noise queries independently, since only
one of them may be honest. Adding less noise by relying on additional assumptions (e.g. honest
majority) is an open problem, which can help improve our scaling with the number of parties,

19

Machines / Party
Completion time (seconds)

Offline Online

1 2021 113.5
2 1048 70.63
4 520 35.88
8 261 18.2

Table 2: Horizontal scaling with 1M queries and a 100K DB

δ
ε 1 0.1 0.01 0.0001

10−5 23 230 2302 23025
10−6 27 276 2763 27631
10−7 32 322 3223 32236

Table 3: Expected number of noise queries B per database element as a function of different ε
(columns) and δ (rows)

and can have important consequences to mixnets, the DP shuffling model, and DP mechanisms
in general. Techniques such as noise verification [47] may be useful to ensure that (partial) noise
generated by an honest server is not tampered with by future malicious servers.

Table 2 demonstrates how our protocol scales horizontally. Parallelizing the online stage pri-
marily parallelizes communication. However, parallel shuffling introduces an additional round of
communication per party. As a result, our online stage speed up when using 2 machines is not 2x.
We exhibit linear speedups as the number of machines exceeds 2.

Finally, the expected number of noise queries added per database element is a function of ε and
δ. Table 3 lists this expected number for various combinations of ε and δ. The expectation increases
linearly as ε decreases but scales better with δ. Our protocol trades security for performance. It can
efficiently amortize the cost of independent queries due to its relaxed DP security guarantees. As ε
becomes smaller, this relaxation becomes less meaningful, as the DP security guarantees approach
those of computational security. While linear scaling with 1

ε appears to be intrinsic to our protocol,
we believe it may be possible to reduce the scaling constant, by using different basis distributions
that are inherently non-negative or discrete (e.g. Poisson [64] or Geometric [54]), or by adapting
recent work on privacy amplification [24, 31] that achieves the same level of privacy in various DP
mechanisms using less noise with oblivious shuffling.

Comparison to Other Protocols Section 2 demonstrates that the performance of DP-PIR
versus other state of the art protocols is governed by the ratio of queries to database size. Our
results show that our protocol can achieve significant speedups (over 2x, 5x, 10x and beyond) for
various modest ratios, especially for large databases. While the overall trends shown in section 2
are an intrinsic benefit of our design, the exact ratio and runtime values shown depend on the
application parameters and deployment setting.

We consciously chose to use t2.large instances in our experiments to avoid inflating our perfor-
mance because of the setup. These instances provide much better CPU and memory capabilities
than network bandwidth. This benefits Checklist and SealPIR, which are both CPU-bound pro-
tocols that perform no communication during server computation. Our online network-hungry

20

protocol is bottle-necked by the low network resources, which are unable to match the throughput
of the CPU, causing CPU utilization to remain low. This is less drastic for our offline protocol,
which performs frequent CPU-heavy public key operations. Like most MPC applications, our pro-
tocol prefers having high network bandwidth, such as when the parties are co-located within the
same placement group, or are connected via high-speed LANs. These setups can commonly pro-
vide bandwidth exceeding 10 Gbps. Any such increase in network bandwidth translates to a direct
performance boost for our protocol.

Therefore, the exact speedup we achieve for a given ratio highly depends on the setup. Our
protocol will perform proportionally better than our experiments in more network optimized setups,
while the other protocols benefit more from more compute-optimized setups. Similarly, we can
deduce from tables 2 and 3 that this ratio linearly increases or decreases with the privacy budget
and number of machines.

Throughput and Latency The completion times reported are a product of the throughput and
number of queries. Furthermore, they constitute the majority of the tail latency, since a query
can only be sent back to a client after the entire batch has been completely processed, so that no
information about the secret permutation is leaked. Specifically, the tail latency is the sum of the
round trip cost between the client and server, the batching frequency (i.e the window during which
incoming queries constitute the same batch), and the aforementioned completion time. We can
always improve latency by adding more machines or resources per party, as shown in table 2. The
latency of our offline stage is irrelevant, as clients disconnect as soon as they submit their secrets
to the first server.

For reasonable ratios of queries to database size and small batching frequencies, this is compa-
rable to other existing protocols. Existing protocols incur large overheads per query and process
queries sequentially. When a large number of queries is received in a small window, these queries
get queued up as the system goes through them for processing, and the tail latency includes the
time to process all previous queries. In fact, when the ratio of queries to database size is sufficient
for our protocol to achieve a certain speedup in completion time, it follows that our tail latency
exhibits a similar speedup. This introduces an important consideration: it is ideal to configure our
protocol with a smaller batching window to minimize latency. At the same time, this window must
be large enough to ensure that enough queries are batched in to reach an effective ratio of queries
to database size.

The latency of DP-PIR and other shuffling-oriented systems can be radically improved by alter-
native mechanisms that generate a stream of noise queries intermixed with real ones without strict
batching. Some work on streaming DP mechanisms exists [28,29,39,41], and may be complemented
with adding random delays to messages to mimic shuffling [42].

When should you use DP-PIR? Our protocol offers relaxed differentially private security
guarantees, and should only be used for applications where this is suitable. The primary perfor-
mance factor that determines the applicability of our protocol is the ratio of queries to database
size. Our experiments provide evidence that our protocol is almost always preferred when this
ratio is above 10, as that guarantees significant speedups in most practical settings. On the other
hand, our protocol is almost always less efficient than its traditional counterparts when that ratio
is below 1

10 , since this ratio does not provide enough queries to effectively amortize our fixed noise
overheads. Applications with ratios in between may be suitable for our protocol, depending on how

21

close their ratio is to either extremes relative to how much other application parameters suit our
protocol. These parameters include the size of the database, desired privacy budget (especially ε),
and client resources, as well as whether the deployment environment is more network or compute
optimized.

8 Related Work

Section 2 discusses existing work on Private Information Retrieval. Here, we discuss related work
from other areas.

Mixnets Traditional mixnets [21] consist of various parties that sequentially process a batch
of onion-ciphers, and output a uniformly random permutation of their corresponding plaintexts.
Various Mixnet systems [13, 32] add cover traffic to obfuscate various traffic patterns. However,
ad-hoc cover traffic is shown to leak information over time [53].

Recent work mitigates this by relying on secure multiparty computation [7] or differential pri-
vacy. Vuvuzela [66] adds noise traffic from a suitable distribution to achieve formal differential
privacy guarantees over leaked traffic patterns, and Stadium [64] improves on its performance by
allowing parallel noise generation and permutation. Similar techniques have been used in private
messaging systems [47], and in differential privacy models that utilize shuffling for privacy am-
plification [31] or for introducing a shuffled model that lies in between the central and the local
models [24].

While our work has similarities to Vuvuzela, and Mixnets overall, it provides better latency
as it makes the (online) processing of every query significantly cheaper, by eliminating all crypto
operations, relying only on cheap modular arithmetic. This is critical for the success of adapting
such Mixnets techniques to PIR and other applications, where the latency of handling one query
in a batch is limited by the overall processing time for the entire batch (and not just the query).

Differential Privacy and Access Patterns Using differential privacy to efficiently hide access
patterns of various protocols has seen increasing interest in the literature. Earlier work relaxes the
security guarantees of PIR to be differentially private [61] in the semi-honest setting, by putting
the burden on clients to hide their actual query among a number of random queries selected from
an appropriate distribution. This assumes that clients are all honest, and requires the database to
be replicated over a large number of servers.

A larger body of work relaxes the security guarantees of Oblivious RAM (ORAM), a primitive
where a single client obliviously reads and writes to a private remote database [33, 34], to be dif-
ferentially private. Extensions of ORAM address multi-client settings [52], where the obliviousness
of access patterns must be guaranteed over all users. Differentially private ORAM relaxations [67]
guarantee that neighboring access patterns (those that differ in the location of a single access) occur
with similar probability.

Differentially private access patterns have been studied for searchable encryption [22] and generic
secure computation [54] where the ideal functionality outputs a leakage function over the input data
that must itself be differentially private. The security notions from these various works are tightly
connected. DP-PIR can be instantiated from DP-ORAM protocols [67] with similar differential
privacy security relaxation. In both cases, privacy is provided at the level of a user query/access, and

22

the same noise distribution can be used to hide access patterns similarly to the classic differentially
private histogram release example [30].

Secret Sharing Shamir Secret Sharing [60] allows a user to split her data among n parties such
that any t of them can reconstruct the secret. Secret sharing schemes with additional properties have
been studied for use in various applications. Some schemes, such as additive secret sharing, allow
the secret to be reconstructed incrementally by combining a subset of shares of size k into a single
share that can recover the original secret when combined with the remaining n − k shares. Non-
malleable secret sharing schemes [10,35] additionally protect against an adversary that can tamper
with shares, and guarantees that tampered shares either reconstruct to the original message or to
some random value. Recent work [5] shows generic transformations that construct non-malleable
schemes from secret sharing schemes over the same access structure.

9 Conclusion

This paper introduces DP-PIR, a novel multi-server differntially private PIR protocol, specifically
geared towards applications with a large number of queries relative to the size of the underlying
database. Unlike existing work, DP-PIR amortizes the server work per query down to a constant
when the number of queries approach the size of the database. DP-PIR exhibits concrete speedups
up to and exceeding 10x compared to state of the art protocols. DP-PIR separates the space of
PIR applications into 3 regions, governed by the ratio of the number of queries within a batch q
over the size of the database n:

1. q
n ≥ 10 : These applications are ideal for DP-PIR, as their scale allows our amortization to
truly shine. Our experiments demonstrate that DP-PIR can achieve significant speedups
beyond 10x when compared to state of the art PIR protocols in this setting. Numerous
applications fall in this region including software update checks, contact tracing, and content
moderation.

2. q
n <

1
10 : These applications are unsuited for our protocol as the amortized overhead per query

remains large. DP-PIR is not designed for applications in this region, and we recommend
they continue to use traditional PIR protocols. Consider for example a privacy-preserving
version of Google docs, where clients privately retrieve documents from an online service.
The overall number of documents vastly outnumber how many documents get requested in
any reasonable batching window.

3. 1
10 ≤

q
n < 10 : Applications in this region may exhibit roughly comparable performance using

DP-PIR and other protocols. The optimal protocol to use for such applications depends on
how close the ratio is to either extremes, as well as deployment parameters including the
privacy budget, database size, server CPU vs bandwidth, and client resources.

Acknowledgments

The authors are grateful to Andrei Lapets, Frederick Jansen, Jens Schmuedderich, Malte Schwarzkopf,
and Ran Canetti for their valuable feedback on earlier versions of this work. This material is sup-

23

ported by the National Science Foundation under Grants No. 1414119, 1718135, and 1931714, by
DARPA under Agreement No. HR00112020021, and by Honda Research Institutes.

References

[1] Apache ignite. https://github.com/apache/ignite. Accessed: 2020-12-01.

[2] App download and usage statistics (2020). https://www.businessofapps.com/data/app-
statistics/. Accessed: 2021-06-02.

[3] There are over 3 billion active android devices. https://www.theverge.com/2021/5/18/22440813/android-
devices-active-number-smartphones-google-2021. Accessed: 2021-06-02.

[4] Turbocharge amazon s3 with amazon elasticache for redis.
https://aws.amazon.com/blogs/storage/turbocharge-amazon-s3-with-amazon-elasticache-
for-redis/. Accessed: 2020-12-01.

[5] Divesh Aggarwal, Ivan Damgrard, Jesper Buus Nielsen, Maciej Obremski, Erick Purwanto,
João Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 510–539, Cham, 2019. Springer International
Publishing.

[6] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. Xpir:
Private information retrieval for everyone. Proceedings on Privacy Enhancing Technologies,
2016(2):155–174, 2016.

[7] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. MCMix:
Anonymous messaging via secure multiparty computation. In 26th USENIX Security Sym-
posium (USENIX Security 17), pages 1217–1234, 2017.

[8] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries
and amortized query processing. In IEEE Symposium on Security and Privacy, pages 962–979.
IEEE Computer Society, 2018.

[9] Sebastian Angel and Srinath Setty. Unobservable communication over fully untrusted infras-
tructure. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 551–569, Savannah, GA, November 2016. USENIX Association.

[10] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret shar-
ing. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 593–622. Springer, 2019.

[11] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata,
Languages and Programming, pages 912–926, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg.

[12] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computation in private
information retrieval: Pir with preprocessing. Journal of Cryptology, 17(2):125–151, 2004.

24

[13] Oliver Berthold and Heinrich Langos. Dummy traffic against long term intersection attacks. In
Roger Dingledine and Paul Syverson, editors, Privacy Enhancing Technologies, pages 110–128,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[14] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight
techniques for private heavy hitters. Cryptology ePrint Archive, Report 2021/017, 2021.
https://eprint.iacr.org/2021/017.

[15] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately.
In Public Key Cryptography (2), volume 10175 of Lecture Notes in Computer Science, pages
494–524. Springer, 2017.

[16] Nikita Borisov, George Danezis, and Ian Goldberg. Dp5: A private presence service. Proceed-
ings on Privacy Enhancing Technologies, 2015(2):4–24, 2015.

[17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both
locally and privately? In Theory of Cryptography Conference, pages 662–693. Springer, 2017.

[18] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. In EUROCRYPT, volume 1592 of Lecture
Notes in Computer Science, pages 402–414. Springer, 1999.

[19] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private infor-
mation retrieval. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, pages
694–726, Cham, 2017. Springer International Publishing.

[20] Justin Chan, Landon P. Cox, Dean P. Foster, Shyam Gollakota, Eric Horvitz, Joseph Jaeger,
Sham M. Kakade, Tadayoshi Kohno, John Langford, Jonathan Larson, Puneet Sharma, Sud-
heesh Singanamalla, Jacob E. Sunshine, and Stefano Tessaro. PACT: privacy-sensitive proto-
cols and mechanisms for mobile contact tracing. IEEE Data Eng. Bull., 43(2):15–35, 2020.

[21] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–90, February 1981.

[22] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang. Differentially private access patterns for
searchable symmetric encryption. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pages 810–818, 2018.

[23] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal, Thomas
Anderson, Arvind Krishnamurthy, and Bryan Parno. Talek: Private group messaging with
hidden access patterns, 2020.

[24] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via shuffling. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, pages 375–403, Cham, 2019. Springer International Pub-
lishing.

[25] Benny Chor and Niv Gilboa. Computationally private information retrieval. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pages 304–313, 1997.

25

[26] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-
trieval. J. ACM, 45(6):965–981, November 1998.

[27] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear online
time. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT
2020, pages 44–75, Cham, 2020. Springer International Publishing.

[28] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy
under continual observation. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 715–724, 2010.

[29] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N Rothblum, and Sergey Yekhanin. Pan-
private streaming algorithms. In ICS, pages 66–80, 2010.

[30] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[31] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
anonymity. In SODA, pages 2468–2479. SIAM, 2019.

[32] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing network layer.
In Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS
’02, page 193–206, New York, NY, USA, 2002. Association for Computing Machinery.

[33] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In STOC, pages 182–194. ACM, 1987.

[34] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, May 1996.

[35] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 685–698, 2018.

[36] Matthew Green, Watson Ladd, and Ian Miers. A protocol for privately reporting ad impressions
at scale. In CCS, pages 1591–1601. ACM, 2016.

[37] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi, and Michael
Walfish. Scalable and private media consumption with popcorn. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), pages 91–107, Santa Clara,
CA, March 2016. USENIX Association.

[38] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous data access.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
pages 244–273, Cham, 2019. Springer International Publishing.

[39] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adver-
sarially robust streaming algorithms via differential privacy. arXiv preprint arXiv:2004.05975,
2020.

26

[40] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 239–248, 2006.

[41] Georgios Kellaris, Stavros Papadopoulos, Xiaokui Xiao, and Dimitris Papadias. Differentially
private event sequences over infinite streams. Proc. VLDB Endow., 7(12):1155–1166, August
2014.

[42] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop- and- go-mixes providing proba-
bilistic anonymity in an open system. In David Aucsmith, editor, Information Hiding, pages
83–98, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[43] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with checklist. Cryptology
ePrint Archive, Report 2021/345, 2021. https://eprint.iacr.org/2021/345.

[44] Anunay Kulshrestha and Jonathan Mayer. Identifying harmful media in end-to-end encrypted
communication: Efficient private membership computation. In USENIX Security Symposium.
USENIX Association, 2021.

[45] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-
private information retrieval. In Proceedings of the 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, page 364, USA, 1997. IEEE Computer Society.

[46] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient com-
munication system with strong anonymity. Proceedings on Privacy Enhancing Technologies,
2016(2):115–134, 2016.

[47] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private messaging
immune to passive traffic analysis. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 711–725, 2018.

[48] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure communication without
leaking metadata. In OSDI, pages 571–586. USENIX Association, 2016.

[49] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In Jianying
Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, Information Security, pages
314–328, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[50] Helger Lipmaa. First cpir protocol with data-dependent computation. In Proceedings of
the 12th International Conference on Information Security and Cryptology, ICISC’09, page
193–210, Berlin, Heidelberg, 2009. Springer-Verlag.

[51] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private information retrieval.
In Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography and Data Security,
pages 168–186, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[52] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. Maliciously secure
multi-client oram. In International Conference on Applied Cryptography and Network Security,
pages 645–664. Springer, 2017.

27

[53] Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and resisting
statistical disclosure. In David Martin and Andrei Serjantov, editors, Privacy Enhancing
Technologies, pages 17–34, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[54] Sahar Mazloom and S. Dov Gordon. Secure computation with differentially private access
patterns. In CCS, pages 490–507. ACM, 2018.

[55] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided RDMA reads to build a
fast, cpu-efficient key-value store. In 2013 USENIX Annual Technical Conference (USENIX
ATC 13), pages 103–114, 2013.

[56] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. Pir-tor:
Scalable anonymous communication using private information retrieval. In Proceedings of the
20th USENIX Conference on Security, SEC’11, page 31, USA, 2011. USENIX Association.

[57] Femi Olumofin and Ian Goldberg. Revisiting the computational practicality of private infor-
mation retrieval. In George Danezis, editor, Financial Cryptography and Data Security, pages
158–172, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[58] Rahul Parhi, Michael Schliep, and Nicholas Hopper. Mp3: A more efficient private presence
protocol. In Sarah Meiklejohn and Kazue Sako, editors, Financial Cryptography and Data
Security, pages 38–57, Berlin, Heidelberg, 2018. Springer Berlin Heidelberg.

[59] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful information retrieval. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, page 1002–1019, New York, NY, USA, 2018. Association for Computing Machinery.

[60] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[61] Raphael R Toledo, George Danezis, and Ian Goldberg. Lower-cost ε-private information re-
trieval. Proceedings on Privacy Enhancing Technologies, 2016(4):184–201, 2016.

[62] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione: Lightweight
contact tracing with strong privacy. IEEE Data Eng. Bull., 43(2):95–107, 2020.

[63] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé, James R. Larus,
Wouter Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele Antonioli, Ludovic Barman, Syl-
vain Chatel, Kenneth G. Paterson, Srdjan Capkun, David A. Basin, Jan Beutel, Dennis Jack-
son, Marc Roeschlin, Patrick Leu, Bart Preneel, Nigel P. Smart, Aysajan Abidin, Seda Gurses,
Michael Veale, Cas Cremers, Michael Backes, Nils Ole Tippenhauer, Reuben Binns, Ciro Cat-
tuto, Alain Barrat, Dario Fiore, Manuel Barbosa, Rui Oliveira, and José Pereira. Decentralized
privacy-preserving proximity tracing. IEEE Data Eng. Bull., 43(2):36–66, 2020.

[64] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium:
A distributed metadata-private messaging system. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 423–440, 2017.

[65] Salil Vadhan. The Complexity of Differential Privacy, pages 347–450. Springer International
Publishing, Cham, 2017.

28

[66] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable
private messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP ’15, page 137–152, New York, NY, USA, 2015. Association
for Computing Machinery.

[67] Sameer Wagh, Paul Cuff, and Prateek Mittal. Differentially private oblivious ram. Proceedings
on Privacy Enhancing Technologies, 2018(4):64–84, 2018.

[68] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei Zaharia.
Splinter: Practical private queries on public data. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 299–313, Boston, MA, March 2017.
USENIX Association.

[69] David J Wu, Joe Zimmerman, Jérémy Planul, and John C Mitchell. Privacy-preserving shortest
path computation. arXiv preprint arXiv:1601.02281, 2016.

[70] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Orion: A distributed file system for non-
volatile main memory and rdma-capable networks. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 221–234, 2019.

A Simulator Construction

Input: T = K;V , and ε, δ.
Simulating the Offline Stage: The offline stage has no inputs on the client side, and only needs
access to T, ε, and δ on the server side. The simulator can simulate this stage perfectly by running
our protocol when simulating honest parties, and invoking the adversary for corrupted ones.
Simulating Client Online Queries: The simulator uses “junk” queries for this simulation. The
actual queries are injected by the simulator later during the query phase.

1. The simulator assigns random query values to each honest client in its head. The simulator
then runs our client protocol for these input query values, providing each client with the
anonymous secrets the simulator selected when simulating that client’s offline phase.

2. The simulator runs the adversary’s code to determine the query message of each corrupted
client.

Simulating Server Online Protocol - First Pass: The simulator goes through the servers in
order, from s1 to sm−1.

1. If si is corrupted: The simulator runs the adversary on the query vector constructed by
the previous step, which outputs the next query vector.

2. If si is the first non-corrupted server:

• Neither s1 nor the backend are corrupted: The simulator executes step 3 below.

• If s1 is corrupted: The simulator begins by identifying any mishandled honest client
queries in the current query vector. For each honest client query, the simulator looks
for it by its tag, which the simulator knows because she simulated the offline stage of

29

that client. The simulator validates that the associated tally has the expected value,
furthermore, it checks that the anonymous secret installed at si during the offline stage
match the ones the simulator generated when simulating the client portion of that offline
stage. All of these checks depend on the honest client and honest server si offline state,
which the simulator knows.
If any of tags, tallies, or shares do not match their expected value, or are missing, then the
simulator knows that the adversary has mishandled this client’s query (or corresponding
offline stage) prior to server si. The simulator sends the identities of all such clients to
the ideal functionality (step 1 in F).

• If backend is corrupted: The simulator receives a noised histogram Hhonest from
the ideal functionality. The simulator identifies all honest queries that have not been
mishandled so far. Say there are k such queries. As part of simulating si, the simulator
will replace the tallies of these queries with new tallies, such that the tally of honest
query w ≤ k would reconstruct to the value of the w-th entry in Hhonest, when combined
with the remaining shares that the simulator generated for that client during its offline
stage.
Furthermore, the simulator needs to inject noise queries for si. The simulator chooses
the tallies for these queries so they reconstruct to the remaining values in Hhonest. This
guarantees that all correctly handled honest client queries combined with this server’s
noise have the distribution Hhonest.
The simulator shuffles the updated query vector and uses it as the output query vector
for this server.

3. If Neither Above Cases are True: The simulator executes our protocol honestly, including
using the same noise queries from the offline stage, to produce the next query vector.

Simulating The Backend: The simulator executes our protocol truthfully, if the backend is not
corrupted, or runs the adversary’s code if the backend is corrupted, and finds the next response
vector.
Simulating Server Online Protocol - Second Pass: The simulator goes through the servers
in reverse order, from sm−1 to s1.

1. If si is corrupted: The simulator runs the adversary on the current response vector, out-
putting the next response vector.

2. If si is the first encountered non-corrupted server:

• If the backend is corrupted: The simulator identifies all responses corresponding to
honest queries that were misshandled. The responses do not have tags directly embedded
in them. However, they should be in the same order as the queries at si, which do have
these tags. Furthermore, the correct value of the response is know to the simulator, since
she can compute it using the T , the value of the corresponding query, and the additive
pre-share installed during the offline stage.
The server sends a histogram over the count of these mishandled responses to the ideal
function, grouped by their corresponding query value (step 3 in F).

• If the backend is not corrupted: The simulator executes step 3 below.

30

3. If si is not corrupted: The simulator identifies all honest queries that were mishandled,
using the same mechansim as above. The simulator ignores mishandled queries that were
detected in either of the two cases above (the special cases of the first server or backend being
corrupted). The simulator only needs to keep count of such mishandled query.
If si is the last honest server, she sends this count to the ideal functionality (step 4 in F).

Simulating Client Online Responses: For every honest client, the simulator checks that her
corresponding response, as outputted by s1, reconstructs to the expected response value. If the
response does not match, then it could have been mishandled by the adversary earlier, and have
been already identified by the simulator, such responses are ignored.
The remaining mishandled responses must have been mishandled after the last honest server was
simulated. The simulator sends a list of identities of all clients with such responses to the ideal
function (step 5 in F).

B Proof of Theorem 1

Proof. The view of the adversary consists of all outgoing and incoming messages from an to ad-
versary corrupted parties. We show that these messages are indistinguishable in the real protocol
from their simulator-generated counterparts.

First, note that all output messages from honest clients in the offline stage are cipher of random
values. This is true in both the real and ideal world, and thus these messages are statistically indis-
tinguishable. The same is true for messages corresponding to noise anonymous secrets created by
an honest server. The adversary only receives such messages in the offline protocol, and therefore
behaves identically in both real and ideal worlds.

Case 1: The backend server sm is honest.

1. The access patterns are not part of the view, and therefore do not need to be simulated.

2. The corrupted clients are simulated perfectly and has identical outgoing message distributions
in the real and ideal worlds.

3. The honest clients are choosing their queries randomly in the ideal world. However, their
messages only include a tag and a tally. The tag is itself selected randomly during the offline
stage, and thus has identical distribution. The tally is indistinguishable from random, re-
gardless of the query it is based on, provided that at least one secret share remains unknown,
by secrecy of our incremental sharing scheme. In particular, the honest server share is com-
putationally indistinguishable to the adversary from any other possible share value, by CPA
security of the onion encryption scheme.

4. The input messages of the first malicious server have indistinguishable distributions in the
real and ideal worlds, and therefore the outgoing messages of that malicious server has indis-
tinguishable distributions, since any honest servers prior to this malicious server are simulated
according to the protocol perfectly. Inductively, this shows that all malicious servers have
indistinguishable distributions during the first pass of the online stage.

5. The backend executes the honest protocol in both worlds. While the backend sees different
distributions in either worlds, since honest clients make random queries when simulated, the

31

honest protocol is not dependent on that distribution, and only output responses in the form
of secret shares. These secret shares are selected at random during the offline stage by the
client, without knowing the response or the query. Therefore, the output of the backend is
indistinguishable in both worlds.

6. Finally, a similar argument shows that the adversary input and output response vectors are
all indistinguishable from random in both worlds, since the last secret share of honest queries
remains unknown.

Case 2: The backend server sm is corrupted.

1. The access patterns are part of the view, the simulator must yield a view consistent with
them.

2. The outgoing messages of each corrupted client has identical distributions in the real and
ideal worlds.

3. The honest client queries are selected randomly. However, they are secret shared. Their
secret share component (tally) is indistinguishable from random in both worlds, given that
the honest server share is unknown to the adversary. Therefore, their initial tallies are also
indistinguishable (but not the access patterns they induce).

4. The input vector to the first server has identical distributions in both worlds, if that server
is malicious, then its output vector will also have identical distributions. This argument can
be applied to all malicious servers up to the first honest server.

5. The first honest server retains all queries from malicious servers and clients, and handles
them as our honest protocol would. However, the server discards all client noise and injects
its own queries into it from the provided H. However, this is indistinguishable to the following
server from the case where these queries are handled truthfully: (1) the tag component of the
query is handled honestly (2) the tally component of the honest client queries are the result
of an incremental reconstruction in our protocol, since the server’s share being reconstructed
is unknown, the output of this operation is indistinguishable from random even knowing the
input. (3) the total count of queries induced by H is exactly the count of honest client queries
that this server discards, plus an amount of noise queries sampled according to the honest
noise distribution, this count has the same distribution as the count induced by the honest
protocol.

6. The output of the first honest server is indistinguishable, and all the remaining servers are
simulated truthfully, therefore their outputs are also indistinguishable., up to the backend.

7. The backend server is corrupted, and can reconstruct the access patterns from the input.
However, these access patterns are now indistinguishable between the two worlds, this is
because the access patterns of the secret shared queries as outputted by the first honest
server in both worlds are indistinguishable: they are both equal to H + malicious clients and
servers queries + mishandled queries. The mishandled queries are guaranteed to reconstruct
to random, by our incremental secret sharing non-malleability property, even when their
original queries are different (random in the simulated world).

32

8. The same argument from Case 1 demonstrates that the view from the second pass of the
online stage is indistinguishable in both worlds.

The only thing that remains is to show that the interactions of the simulator and adversary
with the ideal function F are indistinguishable. There are at most 4 such interactions. All of
these interactions depend on the simulators ability to detect when a query or response has been
mishandled.

A query may be mishandled by (1) corrupting its tag (2) corrupting its tally by setting it to a
value different than the one determined by the associated offline anonymous secrets. Both of these
cases can be checked by the simulator, since she has access to the expected uncorrupted anonymous
secret values created by every honest client and server. Either of these cases result in the query
reconstructing to random, the second case follows from our non-malleability property, the first
induces the following honest server to apply an incorrect share when incrementally reconstructing,
and thus follows from our non-malleability property as well.

On the other hand, a response can be mishandled by (1) corrupting its tally/value (2) corrupting
its relative order within a response vector. The first case arises when an adversary sets the tally value
to one different than the sum of its previous value and additive pre-share from its corresponding
anonymous secret, as well as when a backend server disregards the underlying database, and assigns
a different initial value to a given response. The second case happens when the adversary does not
deshuffle responses with the inverse order of the corresponding shuffle. The simulator can check
these two cases as well: if a deshuffle was performed correctly, then every response and query at the
same index must correspond to one another, and the simulator can compute the expected value of
that response from its query value, database T , and additive pre-shares. If the response and query
did not match, then either the shuffling or tally computation was corrupted.

We can consider consecutive servers that are adversarially controlled to be a single logical server,
since they can share their state and coordinate without restrictions. For example if the first and
second server are corrupted, the second server can identify the identities of clients of corresponding
to each of its input queries, because the first server can reveal its shuffling order to the second.
Similarly with the backend and previous server. This shows that the correct points to check for
mishandling is when an honest server is encountered, rather than after every malicious server, since
consecutive servers may perform operations that each appear to be mishandling, but consecutively
end up handling queries and responses correctly.

Our simulator does the mishandling checks at the level of an honest server. Furthermore,
the simulator assumes that any mishandling was done according to the strongest identification
method available to the adversary at that point. For example, it assumes that the first server
always mishandles queries based on their clients identities, even though that server may mishandle
queries randomly. In either cases these result in indistinguishable distributions. An adversary that
mishandles queries randomly has the same distribution as a simulator that copies that random
choice and translates it to identities. No server has the capability to mishandle based on both
identity and value, since there must be at least one honest server somewhere between the backend
and first server (including either of them).

Finally, intermediate servers (those surrounded by honest servers on both ends) see only query
and response vectors that have been shuffled honestly by at least one server, and have a random
share applied to their tally by that server as well. So their inputs are indistinguishable from random,
and thus they can only mishandle randomly. The first server (and its adjacent servers) see query
and response vectors whose tallies are random (because at least one share corresponding to them

33

is unknown), but have a fixed order, since no shuffling has yet occurred, therefore they mishandle
queries based on the order (i.e. client identity) as well as randomly. Lastly, the backend (and its
adjacent servers) see queries and responses that have been shuffled by at least one honest server, but
whose values are revealed, since no shares of these values are unknown. The backend can mishandle
queries based on their known value, but not based on their client identity, since mishandling based
on index/order is identical to mishandling randomly, because the order is random.

C Analysis of the Noised Histogram Release

Theorem 2 (Leakage is Diferentially Private). H = Hhonest+χ(ε, δ) is (ε, δ)-Differentially Private.

Proof. We define neighboring histograms over access patterns to differ in exactly one query, there-
fore the sensitivity is 2, since removing a query from a bin in the histogram dictates adding it back
to a different bin. Hence adding noise from Laplace0,2/ε constitutes an (ε, 0)-differentially private
histogram release mechanism, this corresponds to value li in our mechanism from algorithm 6.

Our mechanism selects B such that Prob[li ≤ −B] = Prob[li ≥ B] = δ
2 . Note that l′i 6= li+B iff

either of these disjoint cases is true, so Prob[l′i 6= li +B] = δ. This implies that using l′i constitutes
an ε, δ-differentially private mechanism.

Finally, taking the floor of l′i is equivalent to taking the floor of l′i + c, where c is the true count
of honest queries, since c is guaranteed to be integer. Therefore, floor maintains differential privacy
by post-processing.

D Proof of the Incremental Non-Malleability Property

Theorem 3 (Incremental Non-malleability of Our Scheme). The real and ideal dealers from the
incremental non-malleability security game are statistically indistinguishable, when the game is
instantiated with our secret sharing scheme.

Proof. The dealer possesses h = (x, y) and the incremental reconstruction function is R(l, (x, y)) =
y × l + x mod z.

Our aim is to show that for all l, l′, x, y and random r, the following two quantities are
statistically indistinguishable:

l, l′, R(l, (x, y)), R(l′, (x, y)) ≡ l, l′, R(l, (x, y)), r

Let us denote g = y × l + x. We want to find x′, y′, such that

x′ × l + y′ = g mod z

x′ × l′ + y′ = r mod z

Since z is prime and l 6= l′, we know there exists exactly one solution:

x′ = (r − g)× (l′ − l)−1 mod z
y′ = g − (r − g)× (l′ − l)−1 × t mod z

Therefore, even with l, l′ chosen by the adversary, any execution of the ideal dealer corresponds
to a single execution of the real dealer, and vice-versa. Therefore, the adversary cannot distinguish
between the real and ideal worlds.

34

	Introduction
	Motivation
	Protocol Overview
	Setting
	Threat Model
	Interpreting Security

	Incremental Non-malleable Secret Sharing
	Our DP-PIR Protocol
	Scaling and Parallelization
	Evaluation
	Related Work
	Conclusion
	Simulator Construction
	Proof of Theorem 1
	Analysis of the Noised Histogram Release
	Proof of the Incremental Non-Malleability Property

