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Abstract

A universal circuit (UC) is a general-purpose circuit that can simulate arbitrary circuits
(up to a certain size n). Valiant provides a k-way recursive construction of universal cir-
cuits (STOC 1976), where k tunes the complexity of the recursion. More concretely, Valiant
gives theoretical constructions of 2-way and 4-way UCs of asymptotic (multiplicative) sizes
5n log n and 4.75n log n respectively, which matches the asymptotic lower bound Ω(n log n)
up to some constant factor.

Motivated by various privacy-preserving cryptographic applications, Kiss et al. (Eurocrypt
2016) validated the practicality of 2-way universal circuits by giving example implemen-
tations for private function evaluation. Günther et al. (Asiacrypt 2017) and Alhassan et
al. (J. Cryptology 2020) implemented the 2-way/4-way hybrid UCs with various optimiza-
tions in place towards making universal circuits more practical. Zhao et al. (Asiacrypt
2019) optimized Valiant’s 4-way UC to asymptotic size 4.5n log n and proved a lower bound
3.64n log n for UCs under Valiant framework. As the scale of computation goes beyond 10-
million-gate (n = 107) or even billion-gate level (n = 109), the constant factor in circuit size
plays an increasingly important role in application performance. In this work, we investigate
Valiant’s universal circuits and present an improved framework for constructing universal
circuits with the following advantages.

Simplicity. Parameterization is no longer needed. In contrast to that previous implemen-
tations resort to a hybrid construction combining k = 2 and k = 4 for a tradeoff
between fine granularity and asymptotic size-efficiency, our construction gets the best
of both worlds when configured at the lowest complexity (i.e., k = 2).

Compactness. Our universal circuits have asymptotic size 3n log n, improving upon the
best previously known 4.5n log n by 33% and beating the 3.64n log n lower bound for
UCs constructed under Valiant’s framework (Zhao et al., Asiacrypt 2019).

Tightness. We show that under our new framework the universal circuit size is lower
bounded by 2.95n log n, which almost matches the 3n log n circuit size of our 2-way
construction.

We implement the 2-way universal circuits and evaluate its performance with other imple-
mentations, which confirms our theoretical analysis.
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1 Introduction

A universal circuit (UC) is a programmable circuit capable of simulating arbitrary circuits (up to
a certain scale), which is analogous to that a universal Turing machine is configured to simulate
an arbitrary Turing machine or that a central processing unit (CPU) carries out computations
specified by a sequence of instructions. More specifically, a universal circuit refers to a sequence of
circuits, i.e., UC = {UCn}n∈N, such that every circuit C of size n can be (efficiently) encoded into
a string of control bits pC to fulfill the simulation, i.e., for every valid input x: C(x) = UCn(pC, x).
An explicit construction is an efficient algorithm that (on input n) produces as output UCn in
time polynomial in n.

Universal model of computation. Valiant’s universal circuits [Val76] gave inspirations to
universal parallel computers [GP81,Mey83]. Cook and Hoover [CH85] proposed depth-optimal
universal circuits, i.e., for any n, c, d they constructed a universal circuit UC(n, c, d) of size
O(c3d/ log c) and depth O(d) that can simulate any circuit having n inputs, of size c and depth
d. Bera et al. [BFGH10] used the frameworks of universal circuit from [Val76, CH85] in their
design of universal quantum circuits.

1.1 Cryptographic applications

We sketch some cryptographic applications of universal circuits. The performance of most
applications crucially rely on the size efficiency of universal circuits. We refer the readers to the
cited publications for full details.

Private function evaluation. A major cryptographic application of universal circuits is pri-
vate function evaluation (PFE) [AF90, BBKL17, KR11, KS08b], which can be based on the
protocols for secure two-party/multiparty computation (2PC/MPC) [Yao82, Yao86, GMW87].
Take the two-party setting as an example: a 2PC protocol enables two parties Alice and Bob to
securely compute a publicly known function f on their respective private inputs x and y without
revealing anything substantial more than the output of computation f(x,y), whereas in a PFE
scenario Alice with private input x and Bob with private function f engage in a protocol such
that in the end Alice (resp., Bob) learns nothing about f (resp., x) beyond what can be revealed
from the output f(x). A PFE reduces to a 2PC/MPC with the aid of a universal circuit: Alice
and Bob invoke a 2PC to securely compute a publicly known universal circuit UC on Alice’s pri-
vate input x and Bob’s private input pf (a string that encodes f), which yields UC(pf , x) = f(x).
It is easy to see that the PFE protocol is as secure as the underlying 2PC/MPC protocol against
the same type (semi-honest, covert or malicious) of adversaries, and the time/space efficiency
of the PFE mainly depends on the size/depth of the UC. The takeaway is that one simply
plugs a PFE into a MPC framework (without changes to the underlying infrastructure) to enjoy
the corresponding benefits and additional features, such as non-interactive PFE [LMS16] and
outsourced PFE [KR11] that are generalized from non-interactive and outsourced secure com-
putation protocols [AMPR14] respectively. As its name suggests, PFE [AF90] can be applied
to scenarios where some party wants to keep his function private but still hopes to evaluate
it on others’ inputs. Depending on the concrete instantiations of the private function, applica-
tions include privacy-preserving checking of loanee’s credit worthiness [FAZ05], protection of the
code privacy of an autonomous mobile agent [CCKM00], oblivious filtering of remote stream-
ing data [OS05], medical diagnostics [BFK+09], remote software fault diagnosis [BPSW07],
blinded policy evaluation protocols [FAL06, FLA06], query-hiding database management sys-
tems (DBMSs) [PKV+14,FVK+15], private evaluation of branching programs [MS13,IP07] and
privacy-preserving intrusion detection [MS13,NSMS14].
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Applications beyond PFE. Universal circuits can be applied to various other cryptographic
scenarios. UCs were used to hide the functions in verifiable computation [FGP14] and multi-
hop homomorphic encryption [GHV10], to reduce verifier’s preprocessing costs in NIZK ar-
gument [GGPR13], and to build the attribute-based encryption (ABE) scheme in [GGHZ14].
Attrapadung [Att14] used UCs to transform the ABE schemes for any polynomial-size cir-
cuits [GGH+13b,GVW13] into ciphertext-policy ABE. Garg et al. [BV15,GGH+13a] used UCs
to construct universal branching programs, which were in turn used to build a candidate indistin-
guishability obfuscation (iO). The iO scheme [GGH+13a] was implemented in [BOKP15], whose
efficiency is closely related to size of UCs. Zimmerman [Zim15] proposed a new scheme to ob-
fuscate programs by viewing UC as a keyed program for circuit families. Lipmaa et al. [LMS16]
suggested that UC can used for efficient batch execution of secure two-party computation. The
batch execution techniques [HKK+14, LR15] were originally intended for amortizing the cost
of maliciously secure garbled circuits for the same function, and UCs can now enable batched
execution for circuits of different functions (realized by the same UC). This protocol was made
round-optimal in [MR17].

1.2 Valiant’s universal circuits and subsequent works

Valiant [Val76] took a graph-theoretic approach to construct universal circuits that was followed
by almost all size-efficient universal circuits [KS16,LMS16,GKS17,ZYZL19,AGKS20]. One may
represent an arbitrary circuit by a direct acyclic graph (DAG) and then see a universal circuit
as a special DAG called edge universal graph (EUG). The construction of UCs reduces to that
of EUGs in a recursive manner: “an EUG simulating any DAG of size n”, denoted by EUG(n),
can be constructed based on k instances of EUG(nk ), and the recursion can be repeated many
times until a sufficiently small EUG to be built by hand, where parameter k ≥ 2 is proportional
to the complexity of the construction. Valiant provided 2-way and 4-way (i.e., k = 2 and k = 4)
theoretical constructions of universal circuits of multiplicative sizes1 5n log n and 4.75n log n
respectively (omitting smaller terms), which match the lower bound Ω(n log n) up to constant
factors [Val76,Weg87]. Therefore, as a theoretical problem, explicit construction of size-efficient
universal circuits was mostly solved by Valiant [Val76] more than forty years ago.

Valiant’s universal circuit had long been recognized more as a feasibility result than a prac-
tical application. Kolesnikov and Schneider [KS08b] turned to (and implemented for the first
time) a modular design of universal circuits with circuit size 1.5n log2 n + 2.5n log n. Despite
not asymptotically size optimal, the UC [KS08b] enables efficient simulation of small-scale cir-
cuits (e.g., for n < 106), thanks to the smaller constant factor in circuit size. Further, they
gave the first implementation of UC-based PFE under the Fairplay secure computation frame-
work [MNPS04]. More recently, Kiss et al. [KS16] implemented a hybrid UC combining Valiant’s
2-way UC [Val76] and the UC of Kolesnikov and Schneider [KS08b] integrated with various op-
timizations for many typical PFE applications. Günther et al. [GKS17] gave a generic edge
embedding algorithm for Valiant’s k-way construction, and implemented a hybrid of Valiant’s
2-way and 4-way UCs. Concurrently, Lipmaa et al. [LMS16, Sad15] gave a generic construc-
tion of k-way supernode (an important building block of Valiant’s k-way universal circuit) and
based on the method they estimated that k’s optimal value for minimizing the size of UC was
k = 3.147 (i.e., k ∈ {3, 4} as an integer). In addition, Lipmaa et al. [LMS16] brought down the
size of 4-way UC from 19n log n to 18n log n by optimizing out some XOR gates. However, the
number of AND gates remained the same as Valiant’s 4-way UC [Val76] (i.e., 4.75n log n) and
thus the improvement offers limited help to PFE or other applications with free XOR optimiza-
tions [KS08a]. Zhao et al. [ZYZL19] gave a more efficient 4-way UC of multiplicative circuit
size 4.5n log n (and circuit size 17.75n log n), which was the best size-efficient construction prior

1It is typically assumed that a circuit C consists of AND gates and XOR gates. The size of C refers to the
number of gates in C, and its multiplicative size is the number of AND gates. As a major performance indicator
for Valiant’s (and our optimized) framework, the multiplicative size of a UC is roughly a quarter of its total size.
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Universal Circuit MUL size
(# of ANDs)

Lower
Bound on
MUL size

Total Size

Kolesnikov et al.’s UC [KS08b] 0.25n log2 n N/A n log2 n

Valiant’s 2-way UC [Val76] 5n log n ≥ 3.64n log n 20n log n
Valiant’s 3-way UC [Val76,GKS17] 5.05n log n ———"——— 20.19n log n

Valiant’s 4-way UC [Val76] 4.75n log n ———"——— 19n log n
Lipmaa et al.’s 4-way UC [LMS16] 4.75n log n ———"——— 18n log n
Zhao et al.’s 4-way UC [ZYZL19] 4.5n log n ———"——— 17.75n log n

Our 2-way UC 3n log n ≥ 2.95n log n 12n log n

Table 1: The sizes, multiplicative sizes and lower bounds for previous universal circuits and ours,
keeping only dominant terms.

to our work. Alhassan et al. [AGKS20] designed an efficient and scalable algorithm for UC
generation and programming, and implemented a hybrid construction of Valiant’s 2-way UC
and the 4-way UC by Zhao et al. [ZYZL19]. We refer to Table 1 for asymptotic sizes of existing
theoretical constructions.

1.3 Our contributions

An overview of outstanding issues. For efficiency and granularity of the construction 2,
k is desired to be smallest possible, i.e., k = 2, but 2-way universal circuits are less size-
efficient than UC tuned at other values, e.g., k = 4. Therefore, the state-of-the-art implementa-
tions [GKS17,AGKS20] resort to a hybrid construction of 2-way and 4-way UCs for a tradeoff
between granularity and size efficiency. Further, there remains a significant gap between the
4.5n log n achieved by the best size-efficient UC and the 3.64n log n lower bound under Valiant’s
framework. With the growing trend of secure computation exceeding 10-million-gate or even
billion-gate scale (e.g., [ABF+17,ZCSH18]), improving upon the constant factor in asymptotic
universal circuit size becomes increasingly important and practically relevant. To summarize, it
is natural to raise the following question:

Can we build a UC with low(est) complexity and small(est) circuit size at the same time, ideally
matching (or even beating) the 3.64n log n lower bound?

Note that the 3.64n log n lower bound [ZYZL19] applies only to UCs under Valiant’s frame-
work. Hence, getting around the lower bound is not impossible but needs new ideas to break
the shackles of Valiant’s framework.

In this paper, we first carry out an in-depth study and analysis of Valiant’s UC framework.
We then present an intermediate tweaked version of Valiant’s construction (in a somewhat weaker
form), which well demonstrates the redundancy of Valiant’s construction, and further provide
an optimized version as the final construction. As a complement, we prove a 2.95n log n lower
bound on size of UCs under our optimized framework. In general, this bound is incomparable to
(and thus not implied by) the 3.64n log n bound [ZYZL19] obtained under Vailiant’s framework,
and it creates more room for efficiency improvement. Compared with previous constructions
(see Table 1), our universal circuit brings the following advantages:

2The edge embedding algorithm for constructing 2-way UC is simply a bipartite matching algorithm, while
in contrast a generic algorithm for k-way UC is much more complex and less efficient. Moreover, Valiant’s
construction only explicitly hands the case n = Bkj for arbitrary j ∈ N+ (i.e., the number of recursions) and
small B ∈ N+ (i.e., EUG(B) is the initial EUG built from scratch). Optimization techniques [GKS17,AGKS20]
are helpful adapting to arbitrary n, especially for k = 2.
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Simplicity. Our approach inherits Valiant’s framework but removes the need for parameter k.
That is, always set k = 2 to obtain UCs that are most efficient to construct and offer good
size efficiency simultaneously.

Compactness. Our universal circuits have asymptotic size 3n log n, improving upon the previ-
ous state-of-the-art 4.5n log n by 33% and beating the 3.64n log n lower bound in Valiant’s
framework [ZYZL19].

Tightness. Our new framework bridges the gap between theory and practice of universal cir-
cuits: the universal circuit size 3n log n achieved almost tightly matches the 2.95n log n
lower bound.

We implement, optimize and evaluate (the performance of) the universal circuit, which confirms
our theoretical analysis and validates its practicality.

2 Preliminaries

Notations. We use [n] to denote the set of the first n positive integers, i.e., {1, . . ., n}. |G|
(resp., |C|) refers to the size of a graph G (resp., circuit C), namely, the number of nodes (resp.,
inputs and gates) in G (resp., C). More specifically, Cg

s,t denotes a circuit of s inputs, t outputs
and g gates of fan-in and fan-out 2, where circuit size n = s+ t by definition. DAG2(n) refers to
a Directed Acyclic Graph (DAG) of fan-in and fan-out 2, and size n, and UCn denotes a UC of
fan-in and fan-out 2 that can simulate any Cg

s,t of size s+ g ≤ n.

Definition 1 (Universal Circuits [Weg87,LMS16,ZYZL19]). A circuit UCn is a universal circuit,
if for any circuit Cg

s,t with s + g ≤ n, there exists a bit-string pC ∈ {0, 1}m that configures UCn

to simulate Cg
s,t, i.e., ∀x ∈ {0, 1}s,UC(n)(pC, x) = Cg

s,t(x).

Universality refers to the ability to simulate arbitrary circuits (up to a certain scale), and the
correctness of simulation requires that for every eligible circuit Cg

s,t there exists a configuration pC
such that UCn(pC, ·) is functionally equivalent to Cg

s,t(·). Following previous works, we consider
circuits with fan-in and fan-out bounded by 2 without loss of generality.

Graph representation. A circuit Cg
s,t of fan-in and fan-out 2 can be represented by a DAG2(n)

for n = s + g and vice versa, where circuit wires correspond to graph edges, and inputs and
gates become nodes on the corresponding graph. As illustrated in Fig. 1, Valiant introduced a
special DAG, referred to as edge-universal graph (EUG), such that “a universal circuit simulates
arbitrary circuits” can be compared to that “an EUG2(n) edge-embeds arbitrary DAG2(n)”, where
subscript 2 indicates fan-in and fan-out of the DAG and n is the size of the DAG. We provide an
example of edge embedding for n = 4 in Fig. 2. Informally, the DAG2(4) on the left-hand edge
embeds into EUG2(4) on the right-hand in the sense that all nodes (i.e., inputs x, y and gates
⊕, ∧) in DAG2(4) one-to-one map to the counterparts in EUG2(4) and all edges in DAG2(4) find
their respective edge-disjoint paths in EUG2(4), e.g., edge e corresponds to path (e1,e2,e3) and
f maps to (f1, f2). The edge universality of EUG2(4) refers to that for every DAG2(4) such an
edge embedding always exists (and can be efficiently identified). We refer to Definition 2 and
Definition 3 for formal statements about edge embedding and edge universal graphs.

Definition 2 (Edge-Embedding [Val76,LMS16,AGKS20]). Edge-embedding is a mapping from
graph G = (V,E) into G′ = (V ′, E′), denoted by G G′, such that

1. V maps to V ′ one-to-one, but not necessarily surjective (i.e., |V | ≤ |V ′|).

2. Every edge e ∈ E maps to a directed path in E′ in an edge-disjoint manner, i.e., any edge
e′ ∈ E′ is found at most once (in the paths that are mapped from the edges in E).
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UCn Cg
s,tsimulates

EUG2(n) DAG2(n)
edge-embeds

Figure 1: “UCn simulates Cg
s,t” compares to “EUG2(n) edge-embeds DAG2(n)”.

Definition 3 (Edge-Universal Graph [Val76,LMS16,AGKS20]). A directed graph G′ is an Edge-
Universal Graph for DAGd(n), denoted by EUGd(n), if it satisfies the following conditions:

1. (acyclicness). G′ is a DAG.

2. (universality). Every G = (V,E) ∈ DAGd(n) can be edge-embedded into G′.

3. (bounded fan-in/fan-out). G′ has bounded fan-in/fan-out, typically bounded by 2.

Further, G′ is a weak Edge-Universal Graph for DAGd(n), denoted by wEUGd(n), if it satisfies
conditions 2 and 3 above.

Remark 1. In the above definition, the condition that “G′ is a DAG of bounded fan-in/fan-
out” is decoupled into “acyclicness” (condition 1) and “bounded fan-in/fan-out” (condition 3).
This facilitates the definition of weak EUG. In general, weak EUG is not a useful notion since
it doesn’t guarantee acyclicness, and thus does not give rise to a universal circuit (not even a
circuit). However, looking ahead, we find the weak EUG notion simplfying our presentation when
introducing our intermediate construction. Condition 3 is not strictly necessary for universal
circuits, but it was respected by almost all previous works of universal circuits, and satisfying
this condition helps to provide a fair comparison.

x y

∧

e

f

⊕

g

h

z0 z1

x

input

Splitter

e1

Splitter
h1

y

input

X-switch

g1

e2

X-switch
f1

h2

∧
UG

e3 f2

Y-switch

g2

Y-switch

h3

⊕
UG

g3 h4

⇒

Figure 2: An example of edge-embedding.

Configuring EUG. Still using Fig. 2, we explain how edge embedding translates to the
simulation of circuits. First, input nodes (e.g., x and y) simply map to the corresponding input
poles in the EUG, and the gates (e.g., ⊕ and ∧) are implemented by the universal gates in the
EUG. As the name suggests, a universal gate can be configured to simulate any binary gate
(see Appendix A for more details). In addition to poles, there are also control nodes in the
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EUG (i.e., the smaller ones in the right-hand of Fig. 2), which can be further instantiated with
X-switching gates, Y -switching gates, and splitters. They are labelled in Fig. 2. A control
node with a single incoming edge and two outgoing edges is implemented by a splitter, where
only two wires (i.e., no gates) are needed as the two outputs simply copy the value from the
input. The control nodes with in-degree 2 and out-degree 2 (resp., 1) are implemented by X-
switching (resp., Y -switching) gates, which can be configured in two different ways (see Fig 3).
In summary, the universal gates simulate the corresponding gates in the original circuit, and
the X/Y -switching gates are configured such that every intermediate value is carried from the
origin to the destination (by following the route of edge embedding). For example in Fig. 2, the
input x goes all the way, following the path (e1, e2, e3), to the universal gate that computes ∧,
with a correct configuration of the X/Y - switching gates along the way. We refer to Appendix A
for details about universal gates and switching gates and their implementations. Finally, the
control bits of universal gates and switching gates make up the program bits pC for the universal
circuits.

x0 x1

x0 x1

c = 0
or

x0 x1

x1 x0

c = 1

(a) X-switching gate

x0 x1

x0

c = 0
or

x0 x1

x1

c = 1

(b) Y -switching gate

Figure 3: The configurations of X-switching and Y -switching gates.

Therefore, Valiant reduces the problem of constructing universal circuits to that of construct-
ing edge-universal graphs. The size efficiency of universal circuit mainly concerns total size and
multiplicative size (the number of AND gates), both of which are proportional to the size of the
EUG.

|UCn| = 4nX + 3nY + 9n ≤ 4(nX + nY + n) + 5n = 4|EUG2(n)|+ 5n ,

#(AND) = nX + nY + 3n = (nX + nY + n) + 2n = |EUG2(n)|+ 2n ,

where nX , nY and n are the numbers of X-switching gates, Y -switching gates and universal
gates respectively. 4nX , 3nY and 9n further account for the numbers of basic gates needed to
construct X-switching gates, Y -switching gates and universal gates respectively. Details about
the implementations are provided in Appendix A. Recall that |EUG2(n)| = Ω(n log n) and thus

|EUG2(n)| ≈ #(AND) ≈ |UCn|/4

will be used as the major efficiency indicator.

3 Simplifying Constructions of Universal Circuits

3.1 Valiant’s universal circuits

Following Valiant’s blueprint [Val76] (see Fig 4), the construction of universal circuits consists
of the following steps:

1. Construct a UCn based on an EUG2(n);

2. Construct an EUG2(n) by merging two instances of EUG1(n);
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3. Construct an EUG1(n) based on EUG1(dn/ke − 1), where the reduction is enabled with a
special graph referred to as a k-way supernode, abbreviated as SN(k), for some small k
(typically k ∈ {2, 3, 4});

4. Repeat Step 3 recursively until EUG1 is small enough to build by hand.

UCn EUG2(n) EUG1(n)
EUG1(dn/ke −

1)
. . .

Figure 4: A high-level view of Valiant’s framework for contructing universal circuits.

The construction of universal circuit UCn from EUG2(n) was already explained in the previous
section. We proceeding to the rest steps.

Construct EUG2(n) from EUG1(n). We introduce Lemma 1 and Lemma 2 in order to show
that EUG2(n) can be based on two instances of EUG1(n).

Theorem 1 (König’s theorem [Dén31, LP09]). If G is bipartite and its nodes have at most k
incoming and k outgoing edges, then the number of colors necessary to color G is k.

Lemma 1 (Lemma 2.1 from [Val76]). For any DAGd(n) = (V,E), there exist d disjoint sets E1,
E2, . . ., Ed such hat E = ∪di=1Ei and each (V,Ei) (for 1 ≤ i ≤ d) constitutes a DAG1(n).

Lemma 2 ( [Val76]). For any n ∈ N+ and any EUG1(n) of size T , there exists an EUG2(n) of
size 2T − n.

We only sketch the proofs for completeness and to avoid redundancy. As exemplified in
Fig. 5, we simply construct an EUG2(n) based on two instances of EUG1(n) by merging the
corresponding poles and thus the size of the resulting EUG2(n) is twice that of EUG1(n) minus
n. We now argue that the merged graph must be an EUG2(n). Any G = (V,E) ∈ DAG2(n) can
be decomposed into G1 = (V,E1), G2 = (V,E2) ∈ DAG1(n) by Lemma 1, for which there exist
edge embeddings ρ1 and ρ2 that map G1 and G2 into the two instances of EUG1(n) respectively.
It is not hard to see that ρ1∪ρ2 is also an edge embedding (since edge-disjointness is preserved)
that maps this (arbitrarily chosen) G ∈ DAG2(n) into the candidate EUG2(n), which is a merge
of the two EUG1(n) instances.

x

splitter
h1

y

X-switch
f1

h2

∧
f2

Y-switch

h3

⊕
h4

+

xe1

y
g1

e2

∧
e3g2

⊕
g3

⇐

x

input

e1 h1

y

input

g1

e2

f1
h2

∧
UG

e3 f2
g2 h3

⊕
UG

g3 h4

Figure 5: An EUG2(n) based on two instances of EUG1(n).
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DAG Augmentation. We introduce the notion of augmentation, as specified in Definition 4.
Informally, a DAG1(k) is augmented by adding k input nodes and k output nodes, and connecting
every source (resp., sink) with a single edge from (resp., to) an input (resp., output) node.
Each input/output node is connected by at most one edge and thus the resulting augmented
DAG remains of fan-in/fan-out 1, namely, an augmented DAG1(k) is a DAG1(3k). Notice that
inputs/outputs always suffice for augmentation since they are as many as the nodes in the
original DAG. We also define k-way supernode, denoted by SN(k), in Definition 5 as a special
EUG1(3k) that edge embeds any augmented DAG1(k), much as that an EUG1(k) edge embeds
any DAG1(k). We refer to Fig. 6 for an example, where a DAG1(4) is augmented and then edge
embedded into an SN(4).

Definition 4 (Augmented DAG). For any k ∈ N+ and any G = (V,E) ∈ DAG1(k), we say that
G′ = (V ′, E′) ∈ DAG1(3k) is an augmented DAG for G if

V ′ =
(
I = {in1, . . . , ink}

)
∪
(
V = (P1, . . . , Pk)

)
∪
(
O = {out1, . . . , outk}

)
and E′ = E ∪ Eaux satisfy

1. (Soundness). Every e ∈ Eaux satisfies either e = (ini, Pj) or e = (Pj , outi);

2. (Completeness). For every source (resp., sink) Pj ∈ V , there exists exactly one i ∈ [k]
such that (ini, Pj) ∈ Eaux (resp., (Pj , outi) ∈ Eaux).

Definition 5 (Supernode [LMS16,ZYZL19]). A k-way supernode, denoted by SN(k), is a DAG
that can edge embed any augmented DAG1(k).

Remark 2. To be in line with augmented DAG1(k), an SN(k) needs k inputs, k poles, k outputs
and potentially more, say m, control nodes. We define the size of SN(k), denoted by |SN(k)|,
to be m + k rather than m + 3k, i.e., excluding inputs and outputs. This seems a slight abuse
of the definition of graph size, but it comes in handy when counting the size of Valiant’s EUG
construction (see Fig. 7), where the input/output nodes coincide with the poles in the smaller
EUG (and hence their contribution to the graph size has already been counted).

Construct EUG1(n) based on EUG1(dnk e−1) and SN(k). The core of Valiant’s construction
is to reduce the problem of EUG1 to itself of a smaller size (by a constant factor k), with the aid
of the special gadget called supernode.

Theorem 2 (Valiant’s reduction [Val76]). There exists an explicit construction of EUG1(n) based
on k instances of EUG1(dnk e − 1) and dnk e instances of k-way supernodes SN(k) such that

EUG1(n) = k · |EUG1(d
n

k
e − 1)|+ dn

k
e · |SN(k)| .

As visualized in Fig. 7, the n poles of the candidate EUG1(n) come from the poles of n
k

instances of SN(k), i.e., n = n
k ·k. Merge the corresponding output and input nodes of neighboring

SN(k) (e.g., out11 and in12 in Fig. 7), which results in the merged nodes of in-degree and out-
degree 1. Further, let the merged nodes coincide with the poles3 of EUG1(dnk e− 1) that are also
of in-degree and out-degree 1. Then, the eventually merged nodes are of in-degree/out-degree
2 and are thus instantiated with X-switching nodes. The fact below states that as long as one
starts with an initial EUG1 and an SN(k) that are DAG2

4 with all poles of in-degree/out-degree
3Note that the poles of EUG1(dnk e − 1) do not constitute the poles of the EUG1(n), but become X-switching

nodes after merging with input/output nodes.
4Recall that subscript 1 in EUG1(n) refers to its capability of edge embedding arbitrary DAG1(n), instead of

that EUG1(n) is of fan-in/fan-out 1. In fact, an EUG1 needs fan-in/fan-out 2 to cater for control nodes such as
X/Y switching nodes.
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Figure 6: A DAG1(4) with edges a, b is augmented and then edge embedded to an SN(4).

1, then the condition will be preserved for the recursively constructed EUG1 of arbitrary size.
Note that G’s all poles are of in-degree/out-degree 1 doesn’t conflict G ∈ DAG2 since the control
nodes have in-degree/out-degree 2.

Fact 1 (degree preservingness). Consider the recursive construction in Fig. 7 (or Fig. 8). As
long as the building block SN(k) and the initial EUG1 satisfy

1. Each graph is of fan-in/fan-out 2;

2. The poles of each graph are of in-degree and out-degree 1.

Then, the resulting EUG1 (or wEUG1) candidate satisfies the two conditions as well.

Proof. The proof goes by an induction. During each iteration, the poles of EUG1(dnk e−1) are of
in-degree and out-degree 1, and thus after merging with SN(k)’s intput/output nodes, it yields
nodes of in-degree and out-degree 2 (i.e., not violating condition 1). Further, the poles of the
SN(k)’s now become the poles of the new EUG1(n) candidate, and thus the “all poles are of
in-degree and out-degree 1” condition is preserved for EUG1(n) candidate.

Proof sketch of Theorem 2. It suffices to show any G = (V,E) ∈ DAG1(n) can be edge
embedded into the candidate EUG1(n). For concreteness we give a working example (for n = 30
and k = 6) of how an arbitrary G ∈ DAG1(30) (see Fig. 18) is edge embedded into a candidate
EUG1(30) in Appendix D. Denote the topologically sorted nodes in G by V={p1, p2, . . ., pn},
and group them such that every k successive nodes make up a set, i.e., for each i ∈ [dnk e]

Vi
def
= {p(i−1)k+1, p(i−1)k+2, . . . , p(i−1)k+k} ,

let Ei be the set of edges connecting the nodes in Vi

Ei
def
= {(pu, pv) ∈ E, | pu, pv ∈ Vi}

and let E\ be the rest edges (connecting nodes from different sets)

E\
def
= E \ (E1 ∪ . . . ∪ Edn

k
e) .

10
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Figure 7: Valiant’s construction of EUG1(n) based on k instances of EUG1(dnk e − 1) and dnk e
instances of SN(k).

First, augment (as per Definition 4) each (Vi, Ei) ∈ DAG1(k) to a (V ′i , E
′
i) ∈ DAG1(3k) by adding

input (resp., output) nodes, and connecting them to sources (resp., from sinks) in (Vi, Ei). There
are also edges connecting nodes between different Vi, i.e., (pu, pv) ∈ E\ with pu ∈ Vi and pv ∈ Vj
(i < j), where pu (resp., pv) must be a sink (resp., source) within (Vi, Ei) (resp., (Vj , Ej))
because any additional e ∈ E other than (pu, pv) from pu (resp., to pv) would contradict that G
is a DAG1. Therefore, pu will be connected to outti and in

t′
j will be linked to pv when augmenting

(Vi, Ei) and (Vj , Ej) respectively. In order to edge embed (pu, pv) to the augmented graph, we
connect outti to in

t′
j , and add (outti,in

t′
j ) to Evert. Thus, we have the following edge embedding

G = (V,E) G′ =

( dnk e⋃
i=1

(Ii ∪ Vi ∪Oi),
( dnk e⋃

i=1

E′i

)
∪ Evert

)
,

where every node in V maps to itself, every edge in Ei maps to itself, and every (pu, pv) ∈ E\
maps to path (pu, out

t
i, in

t′
j , pv). Thus, the edge embedding is not unique but up to the choices

of (t, t′). Lemma 3 below guarantees (V1, E1), . . ., (Vdn
k
e, Edn

k
e) can be jointly augmented such

that every pair (outti,in
t′
j ) is aligned vertically (i.e., t = t′).

Lemma 3. For every G = (V,E) ∈ DAG1(n) divided into (Vi, Ei) and E\ as aforementioned,
one can augment (V1, E1), . . ., (Vdn

k
e, Edn

k
e) ∈ DAG1(k) to the respective(

I1 ∪ V1 ∪O1, E
′
1

)
, . . . ,

(
Idn

k
e ∪ Vdn

k
e ∪Odn

k
e, E

′
dn
k
e

)
∈ DAG1(3k)

where Ii = {inti}t∈[k] and Oi = {outti}t∈[k], such that for every (pu, pv) ∈ E\ with pu ∈ Vi and
pv ∈ Vj (i < j), the corresponding added edges (pu, out

t
i) ∈ E′i and (int

′
j , pv) ∈ E′j satisfy t = t′.

Lemma 3 falls into a corollary of Theorem 1. To see this, view each Ii/Oi as a node (instead
of a set of nodes) and consider the bipartite graph (O ∪ I, Ebp) with disjoint node sets O={O1,
. . ., Odn

k
e} and I={I1, . . ., Idn

k
e}, where (Oi, Ij) ∈ Ebp if and only if there exists (pu, pv) ∈ E\

with pu ∈ Vi, pv ∈ Vj and i < j5. By Theorem 1, the bipartite graph is of fan-in/fan-out k and
5No edge (pu, pv) ∈ Ei (i.e., i = j) is considered, and the case for i > j is not possible as nodes are topologically

sorted in the first place. Further, if there are multiple edges from a node in Vi to one in Vj , then equally many
copies of (Oi, Ij) are added.

11



thus can be k-colored say with colors C-1 to C-k. Therefore, Lemma 3 follows by translating
the coloring to graph augmentation, i.e., for every (Oi, Ij) ∈ Ebp colored with C-t we add edges
(pu, out

t
i) and (intj , pv) to E′i and E

′
j respectively (and add (outti,in

t
j) to Evert).

G can be edge embedded to G′, but G′ cannot be edge embedded into the candidate EUG1(n)
because after adding the input/output nodes G′ does not even look like (a subgraph of) the
candidate EUG1(n). To be compatible, we merge every output-input pair from the neighboring
Oi and Ii+1, i.e., merge outti and in

t
i+1 for every i ∈ [dnk e−1] and t ∈ [k], and rename the merged

node from outti/in
t
i+1 to oiti. Let OIi

def
= {oiti}t∈[k], let E′′i and E′vert be the counterparts of E′i

and Evert respectively (by renaming outti/in
t
i+1 to oiti) and eliminating self loops6. We denote

the merged version of G′ by

G′′ =

(
I1 ∪

dn
k
e−1⋃

i=1

(Vi ∪OIi) ∪Odn
k
e,
( dnk e⋃

i=1

E′′i

)
∪ E′vert

)
,

whose example is illustrated in Fig. 19 and it remains to edge embed G′′ to the candidate
EUG1(n). To achieve this, we edge embed every (OIi−1 ∪ Vi ∪OIi,E′′i ) into SN(k)i as shown in
Fig. 20, where OI0 = I1 and OIdn

k
e=Odn

k
e. The task then reduces to

( dnk e−1⋃
i=1

OIi =

k⋃
t=1

{oiti}i∈
[
dn
k
e−1
], E′vert) k⋃

t=1

EUG1(d
n

k
e − 1)t .

Thanks to Lemma 3, every (oiti,oi
t′
j )∈ E′vert satisfies t = t′, and thus the job furthers reduces to

do edge embedding independently, i.e., for every t ∈ [k](
V oi
t

def
= {oiti}i∈

[
dn
k
e−1
], Eoi

t
def
=
{

(oiti, oi
t
j) ∈ E′vert

})
 EUG1(d

n

k
e − 1)t ,

where ∪kt=1E
oi
t = E′vert. This is trivial (see Fig. 21 for the example) since any DAG1(dnk e − 1)

such as (V oi
t , Eoi

t ) can be edge embedded into an EUG1(dnk e − 1).

Theorem 3 (Valiant’s universal circuits [Val76]). For any integer k ≥ 2, there exist explicit
k-way constructions of EUG2(n) and UCn with

|EUG2(n)| = 2|SN(k)|
k log k

n log n− Ω(n) and |UCn| ≤ 4|EUG2(n)|+O(n) .

The construction of EUG2(n) eventually reduces to that of EUG1(B) for small B, whose
optimal sizes were known for B ∈ {2, . . . , 8} [Val76,LMS16,GKS17] (see Table 2). The size of
EUG2(n) follows from Lemma 2 and Theorem 2, i.e.,

|EUG2(n)| = 2|EUG1(n)| − n , (1)

|EUG1(n)| = k|EUG1(d
n

k
e − 1)|+ dn

k
e|SN(k)| , (2)

where |EUG1(B)| is irrelevant to the dominant term of |EUG2(n)| but is reflected in (and absorbed
by) the term Ω(n). Similarly, we get

|UCn| =
2|CircuitSN(k)|

k log k
n log n− Ω(n) ≤ 8|SN(k)|

k log k
n log n− Ω(n) , (3)

where CircuitSN(k) denotes the circuit counterpart of SN(k). Clearly, the size of universal circuits
monotonically depends on the k-way supernode size, and thus constructing size-optimal universal
circuits reduces to the search for optimal size-efficient supernodes. We know from literature
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n 2 3 4 5 6 7 8

|EUG1(n)| 2 4 6 10 13 19 23

Table 2: The concrete sizes of size-optimal EUG1(n) for n ∈ {2, · · · , 8} [Val76,LMS16,GKS17].

Construction k |SN(k)| |EUG2(n)| |UCn|
Valiant’s 2-way [Val76] 2 5 5n log n 20n log n

Günther et al.’s 3-way [GKS17] 3 12 5.05n log n 20.19n log n
Valiant’s 4-way [Val76] 4 19 4.75n log n 19n log n

Zhao et al.’s 4-way [ZYZL19] 4 18 4.5n log n 17.75n log n

Table 3: Size-efficient universal circuits for k ∈ {2, 3, 4} under Valiant’ framework, where graph
and circuit sizes keep only dominant terms.

[Val76,GKS17,ZYZL19] the minimum of |SN(k)| for practical values k = 2, 3, 4 along with the
corresponding sizes of edge universal graphs and universal circuits, as shown in Appendix C and
Table 3.

The supernode sizes in Table 3, i.e., |SN(k)| = 5, 12 and 18 for k ∈ {2, 3, 4} respectively, were
shown optimal by an exhaustive search that no candidate graph of smaller sizes can constitute
a k-way supernode [ZYZL19]. However, size-optimal supernodes, for k ≥ 5, are not known
and even if they are found, the corresponding universal circuits are not practical because the
time/memory complexity of the compiler (that involves EUG configuration, edge embedding,
etc.) blows up dramatically with respect to k. Further, Zhao et al. [ZYZL19] showed that
under Valiant’s framework |EUG2(n)| is lower bounded by 3.64n log n with minimum achieved
at k = 69 (and thus unattainable in practice). Therefore, it is necessary to break Valiant’s
mindset to beat the 3.64n log n lower bound.

3.2 An intermediate wEUG1(n) construction

As concluded, improvement to Valiant’s universal circuits seemingly relies on better construc-
tions of EUG1(n). As shown in Fig. 8, we give an intermediate construction of a candidate
wEUG1(n): for every row i (i.e., SN(k)i) we horizontally (i.e., for t ∈ [k]) merge every input-
output pair (inti,out

t
i) to node ioti of in-degree and out-degree 1, and we further merge the nodes

vertically, for every column t, let (iot1,iot2,. . . ,iotdn
k
e) merge with the poles of the wEUG1(dnk e)t

component-wise. Prior to merging the poles of wEUG1(dnk e) are of in-degree and out-degree 1
(see Fact 1), and therefore the merged nodes are X-switching nodes of in-degree and out-degree
2. This construction seems to be a variant of Valiant’s construction in Fig. 7. The difference is
that, instead of merging every pair of outti and in

t
i+1 (1 ≤ t ≤ k) from the neighboring SN(k)i

and SN(k)i+1, one merges inti and out
t
i for the same SN(k)i and for every i ∈ [dnk e] and t ∈ [k].

This introduces cycles to the graph and thus the best hope is to prove it to be a wEUG1(n).

Corollary 1 (The intermediate wEUG1(n)). The graph constructed from k instances of wEUG1(dnk e)
and dnk e instances of SN(k), as in Fig. 8, is a wEUG1(n).

We sketch how the proof of Theorem 2 can be adapted to prove the above corollary. Consider
an arbitrary G = (V,E) ∈ DAG1(n) with topologically sorted nodes V={p1, p2, . . ., pn}, and
let Vi, Ei and E\ be defined the same way (as in proof of Theorem 2). After augmenting every

6After merging, edge (outti,int
i+1) becomes a self-loop which is not included in E′

vert.
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(Vi, Ei) ∈ DAG1(k) to a (V ′i , E
′
i) ∈ DAG1(3k), we can (efficiently) obtain such an edge embedding

G = (V,E) G′ =

( dnk e⋃
i=1

(Ii ∪ Vi ∪Oi),
( dnk e⋃

i=1

E′i

)
∪ Evert

)
,

where by Lemma 3 for every (pu, pv) ∈ E\ (i.e., pu ∈ Vi, pv ∈ Vj , i < j) there exists t ∈ [k]
such that edge (pu, pv) maps to path (pu, out

t
i, in

t
j , pv) in the edge embedding. Notice that up

till now the proof is exactly the same as that of Theorem 2. Next, instead of merging every pair
of outti and in

t
i+1 (t ∈ [k]) from the neighboring Oi and Ii+1 (i ∈ [dnk e − 1]), we merge inti and

outti for the same i, and for every i ∈ [dnk e] and t ∈ [k], as shown in Fig. 8. Rename the merged

node inti/out
t
i to io

t
i, let IOi

def
= {ioti}t∈[k], and let E′′i and E′vert be the counterparts of E′i and

Evert respectively by renaming the nodes (from inti/out
t
i to io

t
i). This simplifies G′ to

G′′ =

( dnk e⋃
i=1

(IOi ∪ Vi),
( dnk e⋃

i=1

E′′i

)
∪ E′vert

)
,

and it remains to show G′′ can be edge embedded into the candidate weak EUG. Every (Ii∪Vi∪
Oi,E′i) can be edge embeded into SN(k)i and so can do it when the corresponding inti and out

t
i

are merged, which ensures that every edge in Ei maps to a path in the candidate wEUG1(n).
Further, by the definition of weak EUG we have for every t ∈ [k](

V io
t

def
= {ioti}i∈[dnk e], E

io
t

def
=
{

(ioti, io
t
j) ∈ E′vert

})
 wEUG1(d

n

k
e)t ,

which ensures that every (pu, pv) ∈ E\ maps to a path in the candidate wEUG1(n). Finally, it is
important to note that the aforementioned mappings of edges in E to the corresponding paths
in the candidate wEUG1(n) are edge disjoint.
Note that wEUG1 is cyclic, and there are paths that first leave a block (e.g., SN(k)1 in Fig. 8)
and eventually feeds back to the same block. However, it is interesting to observe that such self-
feedback paths will never appear in the edge-disjoint paths for edge-embedding any DAG1(n).
This is because for any topologically sorted DAG1(n) and any edge (u, v) ∈ DAG1(n) that belong
to the same block we have 1+(i−1)k ≤ u < v ≤ k+(i−1)k, and by the definition of supernode
SN(k)i edge embeds (u, v) with a path that never leaves the block. Otherwise said, the X-
switching nodes resulting from merging input/output nodes for every SN(k)i (see node a in
Fig. 8) are actually redundant, e.g., the self-feedback option (4, 2)/(1, 3) for node a is never
used. This motivates further optimizations in our final construction, and thanks to the removal
of the redundant nodes, the end construction results in a DAG and we get an EUG in the end.

3.3 The final constructions of EUG1(n) and universal circuits

On optimizing the intermediate construction. At first glance, this construction is nothing
more than a weak version of Valiant’s EUG, with roughly the same (actually slightly worse)
circuit size. However, it serves to exhibit the redundancy of Valiant’s construction. Our universal
circuits use the EUG1 construction in Fig. 9, which optimizes (differs to) Fig. 8 by avoiding
merging the nodes (and save X-switching nodes). That is, for every t ∈ [k] and i ∈ [dnk e], let
(inti, out

t
i) be the input-output pair from SN(k)i and let pti be the i-th pole of wEUG1(dnk e)t,

we remove inti, out
t
i and p

t
i (their associated edges) and add an edge connecting pti’s precursor

node to inti’s successor node and another one linking outti’s precursor to pti’s successor. Here
inti’s successor and outti’s precursor refer to the respective successor/precursor in SN(k)i and
pti’s precursor/successor is with respect to wEUG1(dnk e)t. These precursors/successors are all
guaranteed to be unique by the definition of augmentation and Fact 1. It is important to note
that after removing the nodes (and their associated edges, and making necessary adjustment),
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Figure 8: The intermediate wEUG1(n) based on k instances of wEUG1(dnk e) and dnk e instances
of SN(k).

the candidate EUG1 in Fig. 9 now becomes a DAG2. We can prove that it is EUG1 by showing that
the universality is preserved from the wEUG1 in Fig. 8 (i.e., not affected by the optimization).

Theorem 4 (Universal circuits). For any integer k ≥ 2, there exists explicit k-way constructions
of EUG2(n) and UCn with

|EUG2(n)| = 2(|SN(k)| − k)

k log k
n log n− Ω(n) and |UCn| ≤ 4|EUG2(n)|+O(n) .

In particular, for k = 2 we have |EUG2(n)| = 3n log n− Ω(n).

Proof. Now that Fig. 8 presents a correct wEUG1 construction by Corollary 1, we further argue
that Fig. 9 gives rise to an EUG1 as well. By comparing Fig. 9 with Fig. 8, the difference is all
X-switching nodes ioti, that merges (inti, out

t
i) from SN(k)i and pole pti from wEUG1(dnk e)t, are

now bypassed in Fig. 9. By right the X-switch node ioti offers two switching options:

option 0: (pt,prei , ioti, in
t,suc
i ) & (outt,prei , ioti, p

t,suc
i )

option 1: (pt,prei , ioti, p
t,suc
i ) & (outt,prei , ioti, in

t,suc
i )

where pt,prei and pt,suci denote the precursor and successor of pti within the wEUG1(dnk e) respec-
tively, and int,suci (resp., outt,prei ) denotes the successor (resp., precursor) of inti (resp., outti)
within the SN(k). In contrast, Fig. 9 simply hardwires the option-0 configuration and short-
circuits every node ioti as follows:

(pt,prei , int,suci ) & (outt,prei , pt,suci ) .

It suffices to show that option 1 is redundant and is thus not needed. Recall the main idea
of the wEUG1(n) construction is that wEUG1(dnk e) edge-embeds inter-group edges, i.e., (pu, pv)
for pu ∈ Vi1 , pv ∈ Vi2 and i1 < i2, and SN(k) takes care of intra-group edges, i.e., (pu, pv) for
pu, pv ∈ Vi. In the former case, edges (pu, out

t
i1

) and (inti2 , pv) will be added during augmen-
tation, where two option-0 configurations are needed: for i = i1 we need (outt,prei , ioti, p

t,suc
i ) to
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Our k-way UC SN(k) |EUG2(n)| |UCn|
2-way 5 3n log n 12n log n
3-way 12 3.79n log n 15.14n log n
4-way 18 3.5n log n 14n log n

Table 4: Our k-way universal circuits from Theorem 5 for k ∈ {2, 3, 4}.

make a path that originates from pu’s corresponding pole; and for i = i2 it is necessary to have
(pt,prei , ioti, in

t,suc
i ) for a path ending at pv’s pole. Note that edge (outti1 , in

t
i2

) will be mapped to
a path in wEUG1(dnk e)t. In the latter case, the edge embedding of (pu, pv) is handled by SN(k)i
internally and thus no switching configurations are needed. Therefore, the wEUG1 after opti-
mization (by removing the cycles) becomes a DAG1 (and is therefore an EUG1). The optimized
EUG1 construction yields

|EUG1(n)| = k · |EUG1(d
n

k
e)|+ dn

k
e · |SN(k)| − n ,

where n accounts for the number of X-switching node ioti saved (cf. Eq 2). Based on this
optimized EUG1 construction, we follow Valiant’s blueprint (see Fig 4) to get an EUG2(n) of size

|EUG2(n)| = 2|EUG1(n)| − n =
2(|SN(k)| − k)

k log k
n log n− Ω(n) ,

where choosing k = 2, SN(2) = 5 yields efficient 2-way construction of size 3n log n− Ω(n).

Remark 3 (Why not optimizing Valiant’s EUG1?). One might ask why not directly optimize
the Valiant’s original construction in Fig 7 and instead introduce the intermediate one in Fig. 8.
This is because the merged nodes in Fig 7 are actually necessary and cannot be saved for free.
To see this, for every i ∈ [dnk e − 1] and t ∈ [k], merge outti, in

t
i+1 and the i-th pole pti of

EUG1(dnk e − 1)t to an X-switching node oiti, where the switching options are as follows

option 0: (pt,prei , oiti, in
t,suc
i+1 ) & (outt,prei , oiti, p

t,suc
i ) ,

option 1: (pt,prei , oiti, p
t,suc
i ) & (outt,prei , oiti, in

t,suc
i+1 ) .

We mention that both options are necessary. Option 0 is needed for edge embedding (pu, pv)
with either pu ∈ Vj, pv ∈ Vi+1 (j < i) or pu ∈ Vi, pv ∈ Vj+1 (j > i), whereas option 1
is required for the case that pu ∈ Vi and pv ∈ Vi+1. Hence, we cannot save XOR switching
node oiti by hardwiring either options. In retrospect, the latter configuration is only needed for
handling edges connecting neighboring node sets, which motivates us to use the variant in Fig 8
to eliminate the need for option 1.

As explicitly stated in Theorem 5, our 2-way universal circuits already improve upon the
best previously known by reducing a third in circuit size. Curiously, one may wonder if the
advantage can be further increased by using a large k. We list out the results in Table 4 for k
up to 4 based on the corresponding optimal-size k-way supernodes.

3.4 A lower bound on circuit size in our Framework

We lower bound the size of the k-way EUG2(n) (and UC) in our framework based on the tech-
niques introduced in [ZYZL19].

Theorem 5 (A lower bound on |EUG2(n)|). For any integer k ≥ 2, any k-way EUG2(n) con-
structed via the following two steps
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Figure 9: The end EUG1(n) based on k instances of EUG1(dnk e) and dnk e instances of k-way
supernodes SN(k), where a− and a+ are the precursor and successor of pole a within EUG2(dnk e)1
respectively, and dashed edges do not exist (cf. Fig. 8).

1. Recursively construct an EUG1(n) as in Fig. 9;

2. Use Valiant’s EUG1-to-EUG2 transform (see Lemma 2) to get an EUG2(n).

must satisfy |EUG2(n)| ≥ 2.95n log n for all sufficiently large n’s.

Proof. Recall that by Theorem 3 we have

|EUG2(n)| = 2(|SN(k)| − k)

k log k
n log n− Ω(n) ≥ 2dlog(Fk)e

k log k
n log n− Ω(n)

where the inequality comes from [ZYZL19], stated as Lemma 4, whose proof is reproduced
in Appendix B for completeness. It thus suffices to bound the factor g(k)

def
= 2dlog(Fk)e

k log k using
Lemma 5.

Lemma 4 ( [ZYZL19]). |SN(k)| ≥ dlog(Fk) + ke, where Fk =
∑k

i=1(
k!

(k−i)!)
2Ai,k and Ai,k in

turn can be computed by dynamic programming with the following:

1. (Base case). A1,k = 1,∀k ∈ N+;

2. (Recursive formula). Ai,k =
∑k−i

j=0

(
k−1
j

)
Ai−1,k−j−1.

Fk is defined as the number of augmented DAG1(k) (as per Definition 4), and Ai,k denotes the
number of ways to spread k different balls into i (i ≤ k) identical boxes with the condition that
no boxes are empty.

Lemma 5. For any integer k ≥ 2, g(k)
def
= 2dlog(Fk)e

k log k > 2.95.

Proof. As a general closed-form expression for Fk seems difficult, we use dynamic programming
to compute the values of Ai,k Fk and g(k) for k up to a few hundred, and list only partial results
(up to k = 30) in Table 5 due to lack of space. Note that g(8) and g(9) are roughly the same
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k 2 3 4 . . . 8 9 10 . . . 29 30
g(k) 3 3.0158 2.9943 . . . 2.9547 2.9547 2.9565 . . . 3.0419 3.0449

Table 5: The values of g(k) for k ≤ 30.

and seemingly reach the minimum in terms of the values we computed. It remains to show that
“g(k) is monotonically increasing for k ≥ 9” to complete the proof. We have

Fk =

k∑
i=1

(
k!

(k − i)!
)2Ai,k ≥

k∑
i=k−1

(
k!

(k − i)!
)2Ai,k = (Ak−1,k +Ak,k)(k!)2 ,

and Ak,k = 1, Ak−1,k =
(
k
2

)
= (k−1)k

2 . Thus, Fk ≥ ( (k−1)k2 + 1)(k!)2. It follows from Stirling’s
formula ∀k ∈ N+ k! ≥

√
2πk(ke )k

Fk ≥ (2πk)
((k − 1)k

2
+ 1
)(k

e

)2k

,

and therefore

g(k) ≥ 2 log(Fk)

k log k
≥

2 log(πk((k − 1)k + 2)(ke )2k)

k log k

def
= h(k) ,

where by taking the derivative we know that h(k) in the right-hand is monotonically increasing
for k ≥ 2, and thus g(k) ≥ h(k) ≥ h(9) ≈ 2.95 for all k ≥ 9, which completes the proof.

On the (un)tightness of the 2.95n log n bound. The bound is obtained by applying Lemma 4
and Lemma 5. The latter is tight as equality holds for k = 9 while the former is not. We observe
that log(Fk) + k equals 5, 10.17 and 15.98 for k = 2, 3, 4 respectively, so |SN(k)|, as an integer,
is no less than 5, 11, and 16 for the respective k = 2, 3, 4. However, as shown in Table 4, the
minimum of |SN(k)| equals 5, 12, 18 for k = 2, 3, 4 respectively. That is, the equality holds only
at k = 2 and the gap seems to increase over k, where the untightness is attributed to the proof
technique, i.e., that the number of possible configurations is no less than that of augmented k-
way DAG1 is a loose argument due to the existence of redundant configurations (not all control
nodes are needed to edge embed a specific DAG). To conclude, the lower bound 2.95n log n is
very close to 3n log n achieved by our efficient construction, and the loose steps for deriving the
lower bound suggests that the construction might already be optimal under the framework we
introduced.

4 Implementation and Performance Evaluation

In this section, we give more details about the implementation and optimization of the univer-
sal circuits, and a performance comparison with the previous works. The source code of our
implementation and optimization is available at [oTP20].

4.1 Implementing and optimizing the 2-way universal circuits

We briefly describe how to implement and optimize our 2-way UC. Following previous imple-
mentations [KS16,GKS17,AGKS20], we use the Fairplay compiler [MNPS04,BNP08] with the
Fairplay extension [KS08b] to transform any functionality described in a high-level language
into the standard circuit description written in SHDL (Secure Hardware Definition Language).
The produced circuit description has fan-in 2, but has not limit on its fan-out. As required
by Valiant’s universal circuits, the fan-out of the circuit to be simulated must be bounded by
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2 as well. Hence, the next step is to convert the circuit to a functionality equivalent one with
fan-in/fan-out 2, which is achieved by using copying gates for those gates with out-degree more
than 2. We refer to [KS16] for implementation details and how the conversion affects the size
of practical circuits. Following [KS16,GKS17,AGKS20], the circuit description format of the
generated UC numbers the wires in sequential order and specifies universal, X-switching and
Y -switching gates as follows:

U in1 in2 out1

X in1 in2 out1 out2

Y in1 in2 out1

where a gate with type (U , X or Y ) and input wires in1 and in2 produces as output(s) wire out1
(and possibly wire out2), and control bits for the gates are not present in the above description
but stored in the programming file of UC.

Our 2-way UC should be more efficient to generate than the hybrid counterparts in [KS16,
GKS17, ZYZL19, AGKS20] due to the simplicity. However, a straightforward implementation
of a 2-way construction in Fig. 9 requires that n is a two’s power and therefore optimization is
need to adapt to arbitrary n. Similar to [GKS17], we define in Fig. 10 sub-components of SN(2)
called head block and tail blocks by removing the respective input and output nodes (and their
associated edges and control nodes). This enables a more fine-grained recursive construction of
EUG1(n) for arbitrary n ∈ N+ as follows:

1. If n is even, construct EUG1(n) as in Fig. 11(a) and invoke the two instances of EUG1(
n
2 );

2. Otherwise (n is odd), construct EUG1(n) as in Fig. 11(b), and invoke EUG1(
n+1
2 ) and

EUG1(
n−1
2 ).

3. Repeat until n is sufficiently small to build EUG1(n) by hand.

in1 in2

p2i+1

p2i+2

out1 out2

(a) Body Block B2

p1

p2

out1 out2

(b) Head Block H2

in1 in2

pn−1

pn

(c) Tail Block T 2
2

in1

pn

(d) Tail Block T 1
2

Figure 10: (a) is Valiant’s 2-way supernode, (b) is the head block that excludes input nodes, (c)
and (d) are the tail blocks for two poles and a single pole respectively.

The construction gives the recursive relation on the size of EUG1(n) as follows:

|EUG1(n)| = |head|+ (dn
2
e − 2) · |body|+ |tail(pn)|

+ |EUG1(d
n

2
e)|+ |EUG1(b

n

2
c)| − n ,

(4)

where pn = 2 if n is even, or pn = 1 otherwise, |head| = 4 and |body| = 5 are the sizes of the
head and standard body blocks respectively, and |tail(1)| = 1 and |tail(2)| = 4 are the sizes
of different tail blocks determined by the parity of n as shown in Fig. 10. The above relation
is more precise but it yields the same asymptotic sizes about EUG2(n) and UCn as stated in
Theorem 5, which are obtained in the simplified scenario n = 2j ·B.
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(b) Construction of
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Figure 11: A more fine-grained construction of EUG1(n) for arbitrary n (cf. Fig. 9), which starts
with a head block, followed by dn2 −2e standard blocks of SN(2), and ends with a tail block with
one or two poles depending on the parity of n.

4.2 Performance evaluation

We evaluate the multiplicative circuit sizes of our UC in simulating a set of typical circuits
such as AES-128 with key expansion, MD5 and SHA-256 from [TS15] and compare the results
with those from previous ones [KS16,GKS17, ZYZL19,AGKS20] in Table 6. We also run the
experiments for a wider range of (fan-in/fan-out 2) circuits of size 15 ≤ n ≤ 108, in particular, for
every range n ∈ {10i, . . . , 10i+1} pick 100 equidistant points for n (or evaluate all if the number
of points are less than 100). The comparison with previous implementations are visualized in
Fig. 12. Both comparisons confirm that our 2-way universal circuits achieves roughly 33%,
37% and 40% reductions in circuit size over Zhao et al.’s UC, Valiant’s 2-way and 4-way UCs
respectively.

Admittedly, our implementation only verifies the correctness of the construction and its
size advantages over previous constructions. Further engineering efforts are needed to optimize
UC generation and programming process for practical use, and in this respect the scalable UC
generation algorithm from [AGKS20] that reduces memory consumption from O(n log n) to O(n)
serves as a good reference.
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A The gadgets of universal circuits

To translate an EUG2(n) into a UCn, one needs to instantiate the poles of EUG2(n) with universal
gates and replace control nodes by X/Y -switching gates, and configure them accordingly.
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Universal gates. Each pole in an EUG (that corresponds to a gate in the original DAG)
is implemented by a universal gate. A universal gate on 2 binary inputs, when configured
with 4 control bits (c1, c2, c3, c4), can simulate all 24 = 16 binary gates. The universal gate
ug : {0, 1}2 × {0, 1}4 → {0, 1} can be defined as follows:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4 , (5)

and can be implemented with 3 AND and 6 XOR gates [LMS16,KS16,GKS17,ZYZL19,AGKS20].
Note that (c1, c2, c3, c4) belong to control bits pC of the universal circuits.

X-switching gates. As its name suggests, an X-switching gate is dedicated for a control node
with in-degree and out-degree 2. Depending on the value of the control bit c (see Fig. 3(a)), the
gate simply outputs the two values of its inputs correspondingly (i.e., c = 0) or in a switched
way (i.e., c = 1). This unit can be implemented with 1 AND gate and 3 XOR gates as shown
in Fig. 13(a).

Y -switching gates. Similar to an X-switching gate, a Y -switching gate is intended for the
control node with in-degree 2 but out-degree 1. In particular, the gate takes as input two bits
and produces one of them as the output, based on the value of the control bit c. This unit can
be implemented with 1 AND gate and 2 XOR gates, as given in Fig. 13(b).

x0x1 c

xc

xc

(a) X-switching gate

x0x1 c

xc

(b)Y -switching gate

Figure 13: Circuit implementations of switching gates.

B Proofs omitted in the main body

Proof of Lemma 4. Every augmented G ∈ DAG1(k) can be configured (by setting the con-
trol bits) to be edge-embedded into SN(k), and the common nodes should be switching gates.
Therefore, for an SN(k) we need set the control bits of its |SN(k)| − k common nodes to cater
for all augmented graph (amount to Fk), i.e., 2|SN(k)|−k ≥ Fk, where |SN(k)| is an integer. This
completes the proof for the inequality. Any G = (V,E) ∈ DAG1(3k) that is augmented from a
DAG1(k), by Definition 4, can be viewed as a set of paths. It remains to sum up the numbers
of augmented DAG1 for 1 ≤ i ≤ k paths: the number of ways to “put” k poles into i paths is
Ai,k by definition, and there are k!

(k−i)! ways to link i start-nodes (resp., end-nodes) to k inputs
(resp., outputs) for these paths. Thus, ( k!

(k−i)!)
2Ai,k different augmented graph for each value

of i and we sum up (for i = 1 to i = k) to get the final result. Finally, we prove the recursive
formula. Recall that balls are all distinct while boxes are identical. We assume WLOG that
ball #1 is in box #1, and let j be the number of other balls (in addition to ball #1) in box #1,
where j ≤ k − i is required to make sure that no boxes are empty. After choosing these j balls
(
(
k−1
j

)
different choices), it remains to put the rest k− j−1 balls into the remaining i−1 boxes,

which can be done in Ai−1,k−j−1 different ways by definition. �
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in1
p1 p2

out1

out2

Figure 14: A 2-way supernode that consists of 5 nodes [Val76].

in3

in2

in1
P1 P2 P3

out3

out2

out1

Figure 15: A 3-way supernode that consists of 12 nodes [GKS17].

C Size-optimal 2-way, 3-way and 4-way Supernodes

D How EUG1(30) is constructed from EUG1(4) and SN(6)

This section provides a working example on the correctness of the EUG1(n) construction in
Fig. 7. Concretely, consider n = 30 and k = 6 and an arbitrary G ∈ DAG1(30) as in Fig. 18, and
the goal is to edge embed it into the EUG1(30) candidate in Fig. 7. As explained in the proof
of Theorem 2, we augment G in Fig. 18 and merge the corresponding input and output nodes,
which result in G′′ as in Fig. 19. As for G′′, the five rows of subgraphs can be edge embedded
into five instances of SN(6), as shown in Fig. 20, and the six columns of subgraphs (that consist
of merged input/output nodes) are edge embedded into 6 instances of EUG1(4) as depicted in
Fig. 21. This completes the task: G G′′  EUG1(30).

in1

in2

in3

in4

P1 P2 P3 P4

out1

out2

out3

out4

Figure 16: A 4-way supernode that consists of 18 nodes [ZYZL19].
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out1

out2

out3

out4

Figure 17: A 4-way supernode that consists of 19 nodes [Val76].

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

Figure 18: An arbitrary DAG1(30).
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1 2 3 4 5 6

a1 b1 c1 d1 e1 f1

7 8 9 10 11 12

a2 b2 c2 d2 e2 f2

13 14 15 16 17 18

a3 b3 c3 d3 e3 f3

19 20 21 22 23 24

a4 b4 c4 d4 e4 f4

25 26 27 28 29 30

Figure 19: The augmented version of the DAG1(30) from Fig. 18.
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1 2 3 4 5 6

a1 b1 c1 d1 e1 f1

7 8 9 10 11 12

a2 b2 c2 d2 e2 f2

13 14 15 16 17 18

a3 b3 c3 d3 e3 f3

19 20 21 22 23 24

a4 b4 c4 d4 e4 f4

25 26 27 28 29 30

Figure 20: Partially edge embed the augmented DAG from Fig. 19 with 5 instances of SN(6),
which take care of the 5 rows of subgraphs accordingly.

a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2 f2

a3 b3 c3 d3 e3 f3

a4 b4 c4 d4 e4 f4

Figure 21: A subgraph of Fig 20 by excluding the supernodes (and their associated edges), which
can be further edge embedded by 6 instances of EUG1(4) independently.
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