
SLAP: Simple Lattice-Based Private Stream
Aggregation Protocol

Jonathan Takeshita, Ryan Karl, Ting Gong, and Taeho Jung

University of Notre Dame, Notre Dame IN 46556, USA
{jtakeshi,rkarl,tgong,tjung}@nd.edu

Abstract. Today, users’ data is gathered and analyzed on a massive
scale. While user data analytics such as personalized advertisement need
to make use of this data, users may not wish to divulge their informa-
tion without security and privacy guarantees. Private Stream Aggrega-
tion (PSA) allows the secure aggregation of time-series data, affording
security and privacy to users’ private data, which is much more effi-
cient than general secure computation such as homomorphic encryption,
multiparty computation, and secure hardware based approaches. Earlier
PSA protocols face limitations including needless complexity or a lack of
post-quantum security. In this work, we present SLAP, a lattice-based
PSA protocol. SLAP features two variants with post-quantum security,
with simpler and more efficient computations enabled by (1) the white-
box approach that builds the encryption directly from the Ring Learning
With Error assumption and (2) the state-of-the-art algorithmic opti-
mization in lattice-based cryptography. We show that SLAP meets the
security and privacy requirements of PSA, and show experimentally the
improvements of SLAP over similar work. We show a speedup of 20.76x
over the previous state-of-the-art lattice-based PSA work’s aggregation,
and apply techniques including RNS, NTT, and batching to obtain a
throughput of over 600,000 aggregations per second.
Keywords: Lattice-based Cryptography· Private Stream Aggregation·
SIMD · RNS

1 Introduction

Many common real-life applications can be posed as a problem of aggregation.
For example, to compute an average over a set of data, the data can be additively
aggregated (i.e. summed), and then divided by the number of data elements. In
some such contexts, the data privacy of individual data holders is paramount.
Examples of this include health care and education, where an individual’s privacy
is often protected by law [5]. It is thus desirable to consider schemes that allow
data aggregation to be computed without violating users’ privacy.

Simply put, the problem we wish to solve is as follows: considering n users
with data xi, how can we allow a third party to compute

∑n−1
i=0 xi while preserv-

ing users’ security and privacy? In this scenario, both the security and privacy
of each data element should be protected. Security guarantees should prevent
eavesdroppers from seeing the original data. This is easy enough to achieve with
symmetric encryption; however this does not prevent the data aggregator from
learning individual users’ data. Privacy guarantees are thus required to make

sure the aggregator cannot learn anything about individual data. A simple solu-
tion is to simply use a trusted third party to collect and aggregate users’ data;
however this is a very strong assumption that we wish to eliminate.

Other approaches include the use of homomorphic encryption, secure mul-
tiparty computation, or trusted hardware to allow a third party to collect and
aggregate data without gaining any knowledge about the users’ data besides
the final aggregation. While these approaches can achieve a high degree of se-
curity, they incur a high overhead in computation and/or communication, and
may have other issues rendering them undesirable for ordinary users. Homo-
morphic Encryption (HE) can be applied to compute over encrypted data, and
can guarantee quantum security to encrypted data [28, 9, 17]. However, there are
many issues with using existing HE schemes as-is. For example, key management
is nontrivial: an aggregating party must be trusted to not decrypt ciphertexts
pre-aggregation, or the duties of aggregation and decryption should be sepa-
rated between two servers. Further, HE schemes are mathematically complex
and computationally intensive, making them unattractive to clients who want
simple, lightweight solutions to the less general problem of aggregation. Trusted
Execution Environments, including Intel SGX, AMD Secure Execution Envi-
ronment, and TrustZone, can be used to facilitate secure computing. However,
these hardware solutions are vulnerable to practical attacks, incur runtime penal-
ties, and introduce nontrivial implementation difficulties [29]. Secure Multiparty
Computation (MPC) protocols are used to allow a set of parties to securely
compute a function over their inputs [36, 25]. These functionalities may require
multiple rounds of interactive communication between parties, where for a single
piece of input data, multiple messages must be exchanged between parties.

The shortcomings of more general approaches have led to the creation of
the idea of Private Stream Aggregation (PSA), which is the secure and private
aggregation of time-series data. As originally introduced by Shi et al. [31], PSA
encompassed security and privacy with the idea of aggregator obliviousness. Ag-
gregator obliviousness captures security and privacy, requiring that no adversary
can learn the values of a target’s data, even when compromising all other partic-
ipating parties. Later work in secure aggregation worked towards constructing
aggregation schemes secure against quantum adversaries. The state-of-the-art
LaPS scheme [7] achieves additive aggregation with quantum security by utilizing
lattice-based cryptography. However, the LaPS scheme has several drawbacks: it
introduces needless complexity and overhead by relying upon fully homomorphic
encryption as a primitive operation. It also relies on the BGV cryptosystem as
a black-box primitive, which hinders the possibility of optimizing the underly-
ing system for the task of aggregation. In this work, we improve upon previous
work in secure aggregation by presenting simpler and more efficient lattice-based
quantum-secure aggregation schemes. Instead of relying on HE schemes such as
BGV directly as a primitive, we create novel schemes that arise directly from
the underlying principles of HE schemes and lattice-based hardness assumptions.
To create these schemes, we take a white-box approach and design lattice-based
PSA protocols comprised directly of ring operations, without using other HE

2

cryptosystems. We take advantage of the trusted setup model of PSA schemes
to create ciphertexts that possess additive homomorphism with correct decryp-
tion when (and only when) all parties’ ciphertexts are aggregated. This is pos-
sible through an additive correlation of users’ secret keys and the aggregation
key. This simple construction helps create a PSA scheme that is comparable to
the state-of-the-art even with a naive implementation, and is capable of greatly
improving upon the state-of-the-art with various optimizations. We show that
our optimized implementation can improve upon previous work by 65x for en-
cryption and 20x for aggregation, and can achieve a throughput of over 812,396
aggregations per second. We also show that our schemes are scalable, and more
efficient in communication overhead than previous work.

Our Contributions

– We present SLAP, a PSA scheme with two variations, built using a white-
box approach. SLAP draws its ideas from the core ideas of the BGV [9]
and B/FV [17] fully homomorphic encryption schemes, and the NTRU [21]
and LPR [27] difficulty assumptions. By taking this approach, we can create
novel lattice-based schemes optimally tailored to the application of PSA.
Both variants are simpler and more efficient than previous related protocols.

– We further integrate the NTT, full-RNS variants, and double-batching to
greatly improve the practical performance and throughput of SLAP. To our
knowledge, SLAP is the first work to fully explore and implement the use of
these optimizations in PSA.

– We implement simple and optimized versions of both variants of SLAP,
and analyze the results to show the practical efficiency and scalability of
SLAP. Our results show performance improvements of an order of magni-
tude against previous work, which become much greater when integrating
our double-batching strategy. We can achieve a latency as low as 3.26ms
for a single aggregation (with throughput of up to 628,605 aggregations per
second) with the largest set of parameters evaluated by LaPS. Both imple-
mentations (basic and fully optimized) of our scheme are made available
(anonymously) as open-source code.

2 Related Work

2.1 Pre-quantum PSA

The seminal work of Shi et al. [31] and Rastogi et al. [16] introduced the concepts
of PSA and aggregator obliviousness, as well as presenting a Diffie-Hellman-
based scheme with differential privacy. The work of Joye et al. [22] expanded
upon this work by improving the limited plaintext space size, using the hardness
assumption of Decisional Composite Residuosity. Erkin et al. [15] propose a
PSA-like framework for aggregation of time- and space-series data (intended
for use in smart metering), which utilizes the Pallier cryptosystem. Protocols for
secure distributed polynomial computations based in the difficulty of the discrete
logarithm problem have also been formulated [24, 23], which have the added
advantage of not relying upon secure channels of communication. These works

3

are vulnerable to quantum-capable attackers, who can utilize Shor’s algorithm
for solving integer factorization and the discrete logarithm problem [32].

PSA schemes using secret sharing [14, 8] do not have the same weakness
to quantum adversaries. However, these schemes suffer from a severe lack of
scalability: the computation required by each user increases linearly with the
number of users, which is clearly untenable for cases with millions of users.

2.2 Post-quantum PSA

There exists some work in PSA-like protocols relying on lattice-based cryptog-
raphy, which is quantum-proof [1, 2, 30]. However, these works have the disad-
vantage of relying on a trusted third party, and are less versatile, being designed
for the specific scenario of smart metering. Key-homomorphic pseudorandom
functions can be used to construct quantum-secure PSA protocols without the
requirement of a trusted third party, but such protocols have extremely complex
decryption procedures or other weaknesses [7, 35]. SLAP is much conceptually
simpler and more efficient than other lattice-based PSA schemes. Further, we in-
tegrate state-of-the-art algorithmic optimizations of lattice-based cryptography
(SIMD, RNS) into SLAP to further enhance the efficiency and throughput.

2.3 Algorithmic optimization in lattice-based encryption

Lattice-based quantum-secure fully homomorphic encryption schemes such as
the BGV [9], B/FV [17], and CKKS [11] schemes deal with ring polynomials
that are large in two senses: both their degree and coefficients may be large,
with polynomial degrees on order of 215 and coefficients that are hundreds of bits
wide. Large polynomial degrees may make polynomial multiplication highly com-
putationally intensive; to mitigate this the Number-Theoretic Transform (NTT)
can be used to decrease the theoretical complexity of polynomial multiplication
[26]. For large coefficients, Residue Number System (RNS) representations can
be used to break these large numbers down into smaller, more manageable com-
ponents. Full-RNS variants of lattice-based cryptosystems have been used to
reduce the complexity of those cryptosystems’ most intensive operations to the
complexity of the NTT [6, 10, 19]. Both the NTT and full-RNS variants bring
a great practical improvement to these cryptosystems. We apply both of these
optimizations in our work, and discuss them in more detail in Section 5.

3 Background

3.1 Notation

For a number x, let bxe be the integer closest to x (rounding up if the fractional
portion of x is 1

2). Let [x]t be the centered modular reduction of x mod t, such
that [x]t = x − bxt e · t ∈ Zt, where Zt = [−t2 ,

t
2) ∩ Z. We use R to denote the

quotient ring of Z[X]/Φ(X). Here, Φ(X) is the M = 2N -th cyclotomic polyno-
mial with degree N = 2d for some positive integer d. Define Rt = Zt[X]/Φ(X),
the ring with all coefficients in Zt. Boldface lowercase letters (e.g. a) denote el-
ements rings. Centered modular reduction can be applied coefficientwise to ring
elements, i.e. [a]t ∈ Rt.

4

3.2 Ring Learning With Error (RLWE) Problem

Consider coprime numbers q, p, with q � p, and let s be a random element of
Rq with coefficients bounded by b. Let ai, ei be a polynomially bounded number
of elements of Rq, with ai chosen randomly and ei random and also b-bounded.
An adversary is given the set of pairs (ai,bi) ∈ R2

q . Unknown to the adversary is
whether (ai,bi) are RLWE terms, i.e. bi = [ai · si + pei]q, or if bi was randomly
chosen from Rq. The decisional RLWE problem is then to determine whether
the terms bi are RLWE terms or random elements of Rq. The RLWE problem
is believed to be intractable for quantum computers; its difficulty comes from
reduction to the Shortest Vector Problem [27].

3.3 Differential Privacy and Computational Differential Privacy

We recall relevant definitions from differential privacy in this section. Let exp(·)
be the exponential function. Denote the l1 norm of a database D as ||D||1 =∑|D|
i=1 |Di|.

Definition 1. The l1 distance between databases D0, D1 is ||D0 − D1||1. We
say that D0, D1 are adjacent when the distance between the databases is no more
than 1.

Definition 2. A function M is (ε, δ)-differentially private if for all adjacent
databases D0, D1 and all U that are subsets of the range of M , Pr[M(D0) ∈
U] ≤ exp(ε) · Pr[M(D1)] + δ. (This is abbreviated to M being ε-differentially
private when δ is zero.)

Definition 3. A function M is (α, β)-accurate with respect to a query function
f (with the same domain and range as M) when for all D in the domain of M ,
Pr[|M(D)− f(D)| ≤ α] ≥ 1− β.

Definition 4. The discrete Laplacian distribution is defined for a scale param-
eter s > 1. Let σ = exp(−1/s) ∈ (0, 1). Then the discrete Laplacian distri-
bution DLs is definied to be the function with a probability mass function of
DLs(x) = 1−σ

1+σ · σ
|x|, for arguments x ∈ Z.

3.4 Private Stream Aggregation and Aggregator Obliviousness

In secure aggregation, we consider the case of a set of n users and a single
untrusted aggregator. Each user i possesses a piece of data xi, corresponding to
some timestamp ts. The users wish to calculate the aggregation

∑n−1
i=0 xi.

Private Stream Aggregation schemes are designed to allow a third party
(referred to as the aggregator) to perform this computation while providing se-
mantic security to the data the aggregator receives from other users. Further,
a PSA scheme should provide privacy to individual users, preventing the aggre-
gator from learning their individual data even when compromising or colluding
with other users. PSA schemes are formalized as the following 3 algorithms:

– Setup(λ, · · ·): Takes a security parameter λ as input, along with any other
required parameters, e.g. the number of users n and the range of their data.
Returns a set of parameters parms, users’ secret keys si, i ∈ [0, n − 1], and
the aggregation key s′.

5

– NoisyEnc(parms, xi,ts, si, ts, · · ·): Takes the scheme’s parameters, and a
user’s secret key si and time-series input xi,ts, along with a timestamp ts.
The input should be obscured with differentially private noise specified by
additional parameters. The noise term may be directly specified, or a distri-
bution from which to draw the noise may be given. Returns an encryption
ci of the user’s noisy input under their secret key.

– Agg(parms, s′, ts, c0,ts, · · · cn−1,ts): Takes the scheme’s parameters, the ag-
gregation key, a timestamp, and the n time-series ciphertexts from the users
(with timestamp ts). Returns yts = x0,ts ⊗ x1,ts ⊗ · · · ⊗ xn−1,ts.

Users will run NoisyEnc on their data, and send their results ci,ts to the ag-
gregator. The aggregator can then call Agg on the ciphertexts c0,ts, · · · cn−1,ts
it has collected from users to get the aggregation result yts. In PSA schemes,
the algorithm Setup is considered to be run in a trusted manner [7]. This can
be accomplished through the use of an additional trusted third party, secure
hardware, or secure multiparty computation. In PSA, only a single round of
input-dependent communication must be performed, making it more efficient in
communication than most existing MPC protocols [35, 25].

Aggregator Obliviousness Informally, we wish to require that an adversary
able to compromise any number of the aggregator and other users is unable
to learn any new information about uncompromised users’ data. The idea of
aggregator obliviousness encompasses these ideas. We restate the definition of
aggregator obliviousness [7, 31] in Definition 5:

Definition 5. Suppose we have a set of n users, who wish to compute an ag-
gregation at a time point specified by the timestamp ts. An aggregation scheme
AS is aggregator oblivious [7, 31] if no polynomially bounded adversary has an
advantage greater than negligible in the security parameter λ in winning the fol-
lowing game:

The challenger runs the Setup algorithm which returns the public parameters
parms to the adversary. Then the adversary will guess which of two unknown
inputs was a users’ data, by performing the following queries:

Encrypt: The adversary argues (i, xi,ts, ri,ts) to the challenger and receives
back NoisyEnc(parms, ski, ts, xi,ts, ri,ts) to the adversary. (Note that the adver-
sary explicitly specifies the noise to be added in this case.)

Compromise: The adversary argues i ∈ [0, n) ∪ {�}. If i = �, the chal-
lenger gives the aggregator’s decryption key s′ to the adversary. Otherwise, the
challenger returns the ith user’s secret key si to the adversary.

Challenge: The adversary may only make this query once. The adversary
argues a set of participants S ⊂ [0, n), with i ∈ S not previously compro-
mised. For each user i ∈ S, the adversary chooses two plaintext-noise pairs
(xi,ts, ri,ts), (x̃i,ts, r̃i,ts) and sends them to the challenger. The challenger then
chooses a random bit b. If b = 0, the challenger computes ci,ts = NoisyEnc(parms,
si, ts, xi,ts, ri,ts) for every i ∈ S. If b = 1, the challenger computes ci,ts =
NoisyEnc(parms, si, ts, x̃i,ts, r̃i,ts) for every i ∈ S. The challenger returns the
ciphertexts {ci,ts}i∈S to the adversary.

6

We say that the adversary wins the game if they can correctly guess the bit b
chosen during the Challenge.

In this game, an adversary can trivially learn information about a single user’s
data, by compromising the aggregator all other users, decrypting the compro-
mised users’ data, and computing the difference of the aggregator’s sum and
the sum of the compromised users’ data. Such situations are inherent in many
such scenarios with powerful adversaries, and are managed by constructing the
security definition to require that no additional information is learned in such a
case [7, 34].

4 Basic Aggregation without Differential Privacy

We first present basic schemes without differential privacy, and complete the
construction of full PSA schemes in Section 6. We present two variants of our
PSA scheme SLAP, each similar to popular lattice-based fully homomorphic
encryption schemes (BGV [9] and B/FV [17]). These variants are evaluated
against each other in Section 7. While the full BGV scheme has been used in
previous lattice-based PSA as a black-box building block, we take a white-box
approach, constructing a scheme similar to BGV but specially formulated for
PSA. Further, we extend this approach to the B/FV cryptosystem, which has
not been applied to PSA.

As a preliminary, let PRFq(·) be a pseudorandom function with its domain
being the set of possible timestamps, and its range being Rq.

4.1 First Additive Scheme (BGV-like)

The first scheme we present is similar to the BGV fully homomorphic encryption
scheme [9], and is also based on NTRU [21]. While the basic idea of embedding
messages in ring polynomials is drawn from BGV, the actual scheme is quite
different: operands are ring elements, not matrices or vectors. Further, the key
distribution/correlation mechanism differs from BGV key generation. In this
scheme SLAPBGV , we consider the plaintext domain to be the ring Rt and the
ciphertext domain to be the ring Rq, with q � t and an appropriate value of the
polynomial modulus degree N to allow for a desired level of security. Secret keys
and error terms are drawn from a 1-bounded distribution on Rq. The scheme is
defined as follows:

– SetupBGV (λ, t, n): Takes in the security parameter λ, the plaintext modulus
t, and the number of users n. Choose q such that log2(3)+log2(n)+log2(t) <
log2(q) and q, t are coprime. Choose the polynomial modulus N such that
λ bits of security are provided for the RLWE problem with ring polynomial
coefficients in Zq [3, 4]. (While a larger value of q allows for more utility, it
also decreases security - choosing larger values for N can offset this.) Choose
users’ secret keys s0 · · · sn−1 from a 1-bounded distribution on Rq. Construct

the aggregator’s key as s′ = −[
∑n−1
i=0 si]q. Return parms = (Rq, t, n), the

users’ secret keys si, and the aggregation key s′.
– EncBGV (parms, si,xi,ts ∈ Rt, ts): Choose the user’s error ei,ts from a 1-

bounded distribution on Rq. Return the user’s ciphertext ci,ts = [PRF(ts) ·

7

si+tei,ts+xi,ts]q (based upon the secret key, the user’s input, a small random
error, and the timestamp ts).

– AggBGV (parms, s′, ts, c0,ts · · · cn−1,ts):
Compute yts = [[PRF(ts) · s′ +

∑n−1
i=0 ci,ts]q]t

Correctness When adding n ciphertexts ci,ts, we find [PRF(ts)·s′+
∑n−1
i=0 ci,ts]q =

[
∑n−1
i=0 (tei,ts + xi,ts)]q. The magnitude of the sum of the errors is bounded by

n · t, and the magnitude of the sum of the inputs is bounded by n · t2 . Then so

long as 3·n·t
2 < q

2 ,
∑n−1
i=0 (tei,ts + xi,ts) will not overflow modulo q, guarantee-

ing correctness. Then reducing
∑n−1
i=0 (tei,ts + xi,ts) modulo t removes the error

terms, leaving us with the sum of the users’ inputs modulo t.

4.2 Second Additive Scheme (B/FV-like)

In LaPS, BGV was used as a black-box building block, and in SLAPBGV we
created a BGV-lke PSA scheme. We also explore the possibility of constructing
a lattice-based PSA scheme whose mathematics are similar to the popular B/FV
scheme and LPR hardness [17, 27]. As before, while the basic idea of message
encoding is from the B/FV scheme, the particulars of our scheme are different: as
one example, ciphertexts are singleton elements ofRq, not arbitrary-length tuples
with elements from Rq. In this scheme, we again consider the plaintext domain of
Rt and the ciphertext domain of Rq, with N chosen to ensure the desired level of
security. We require q � t, but do not require that q, t are coprime (though this
may be needed for efficient implementation - see Section 5.1). Secret keys and
error terms are drawn from a 1-bounded distribution on Rq. Denote ∆ = b qt c.
The scheme SLAPB/FV is defined as follows:

– SetupB/FV (λ, t, n): Takes in the security parameter λ, the plaintext modulus
t, and the number of users n. Choose the ciphertext modulus q such that
log2(3) + log2(n) + 2 · log2(t) < log2(q). Choose the polynomial modulus
N such that λ bits of security are provided for the RLWE problem with
ring polynomial coefficients in Zq [3, 4]. Choose users’ secret keys s0 · · · sn−1
from a 1-bounded distribution on Rq. Construct the aggregator’s key as

s′ = −[
∑n−1
i=0 si]q. Return parms = (Rq, t, n), the users’ secret keys si, and

the aggregation key s′.
– EncB/FV (parms, si,xi,ts ∈ Rt, ts): Choose the user’s error ei,ts from a 1-

bounded distribution on Rq. Return the user’s ciphertext ci,ts = [PRF(ts) ·
si + ei,ts + ∆ · xi,ts]q (based upon the secret key, the user’s input, a small
random error, and the timestamp ts).

– AggB/FV (parms, s′, ts, c0,ts · · · cn−1,ts): Compute yts = [b tq (PRF(ts) · s′ +∑n−1
i=0 ci,ts)e]t

Correctness When adding n ciphertexts ci,ts, we find ytmp = [PRF(ts) · s′ +∑n−1
i=0 ci,ts]q = [

∑n−1
i=0 ei,ts+∆xi,ts]q. Then b tqy

tmpe = b tq (
∑n−1
i=0 (ei,ts+∆xi,ts))e

will be equal to
∑n−1
i=0 xi,ts when t

q · ||
∑n−1
i=0 ei,ts− q mod t

t

∑n−1
i=0 xi,ts|| < q

2 [17].

Noting that q mod t
t < 1, this is satisfied when t2 · n · 32 <

q
2 .

8

4.3 Semantic Security

The semantic security of the ciphertexts ci generated in SLAPBGV and SLAPB/FV
follow directly from the security of the BGV and B/FV cryptosystems on which
they are based [9, 17]. The ciphertexts ci are of exactly the same form of cipher-
texts in the BGV and B/FV cryptosystems. Thus post-quantum security follows
directly from reduction to the RLWE problem [27]. (While correctness may also
similarly follow from the BGV and B/FV schemes, the parameter bounds are
greatly relaxed when considering only additively homomorphic operations, which
is why we explicitly state the bounds needed for correctness in SLAPBGV and
SLAPB/FV .)

5 Performance Optimizations and Practical
Considerations

In this section, we discuss various practical optimizations common to lattice-
based cryptography that can be utilized to accelerate SLAP. We also discuss
parameter choices for different scenarios.

5.1 RNS Variants

The Chinese Remainder Theorem states that given a number q that can can
be written as a product of k coprime numbers q = q0 · q1 · · · · · qk−1, the rings

Zq and×k−1
i=0

Zqi = Zq0 × Zq1 × · · · × Zqk−1
are isomorphic. This isomorphism

can be applied to write a number x ∈ Zq in Residue Number System (RNS)

form as ([x]q0 , [x]q1 , · · · , [x]qk−1
) ∈×k−1

i=0
Zqi . Addition and multiplication on

numbers in Zq can then be carried out by simply performing the same operations
coefficientwise on the operands in RNS form. This is most useful with a q that
is significantly larger than a computer word (64 bits in modern systems) and
can be factored into coprime qi that can fit into a computer word. By writing
numbers in RNS form, each of the k RNS components can fit into a computer
word, so operations only require single-precision arithmetic.

Our schemes, like their analogues in fully homomorphic encryption, require
some operations that cannot be directly performed in RNS. In particular, rounded
division (required in AggB/FV) and modular reduction to another RNS base
(used in both variants’ Agg) are not easily implemented with numbers in RNS
form. In fully homomorphic encryption, full-RNS variants have been created to
allow for the use of RNS representations without having to reconstruct numbers
in Zq for the problematic operations [6, 19]. The full-RNS variant using floating-
point operations [19] is much simpler and as efficient as the full-RNS variant
using integer-only operations [6]. We thus adapt the operations of [19] for use in
SLAP, and can directly apply their procedures.

Base Conversion Suppose we have a number x in RNS form with respect to q,
written as (xi)i∈[0,k) = ([x]q0 , [x]q1 , · · · , [x]qk−1

). In both variants of SLAP, we
wish to compute [x]t during aggregation as part of returning our result in Rt. We
can then use the procedure of CRT Basis Extension from Section 2.2 of [19]. Let
q∗i = q

qi
∈ Z and q̃i be the inverse of q∗i (mod q)i. Then our goal is to compute

9

[x]t = [(
∑k−1
i=0 [xi · q̃i]q̃i ·q∗i)−v ·q]t, where v ∈ Zk is equal to d

∑k−1
i=0

[xi·q̃i]q̃i
qi
c. This

can be done by computing yi = [xi · q̃i]q̃i (as an integer) and zi = yi
qi

(in floating-

point). Then v =
∑k−1
i=0 zi, and we can compute [x]p = [(

∑k−1
i=0 yi·[q∗i]p])−v·[q]p]p.

To do this efficiently, the parameters [q∗i]p, q̃i, and [q]p can all be precomputed.

Division with Rounding Now suppose that for x in RNS form, we wish to
scale x by t

q and round to the nearest integer, as in AggB/FV . To accomplish

this, we use the procedure of Simple Scaling from Section 2.3 of [19]. We can

then compute y = d tq · xc = [d(
∑k−1
i=0 xi · (q̃i ·

t
qi

))c]t. To do this, we precompute
t·q̃i
qi

= ωi+θi separated into integer and fractional parts, where ωi ∈ Zt and θi ∈
[− 1

2 ,
1
2). We can then compute the terms ω = [

∑k−1
i=0 xi·ωi]t and v = d

∑k−1
i=0 xi·θic

(where ω is computed with single-precision integer arithmetic, and v is computed
with floating-point arithmetic). Then the final result is [ω + v]t.

5.2 Number-Theoretic Transform

Textbook algorithms for polynomial multiplication have complexity of O(N2).
Considering that values of N may commonly range from 210 to 215, it is greatly
desirable to reduce this complexity. To accomplish this, the Number-Theoretic
Transform (NTT) can be applied [26]. This strategy uses two operations: the
forward NTT transformation NTT and the inverse NTT INTT . For a,b ∈ Rq,
the ring polynomial product a · b ∈ Rq can be computed as INTT (NTT (a) ◦
NTT (b)), where ◦ denotes coefficientwise modular multiplication (a linear-time
operation). Because both NTT and INTT can be computed in O(N · log(N)),
the complexity of polynomial multiplication can thus be reduced from quadratic
to loglinear. For polynomials modulo xN + 1 and q, a negacyclic wrapped con-
volution can be used to perform the NTT [26]. For this, it is required that q
satisfies the condition q ≡ 1 mod 2N , so that primitive 2N -th roots of unity
can be easily found. When using RNS form (as in Section 5.1), all moduli qi
must satisfy this condition. In practice, these moduli are often precomputed.

5.3 Batching

In many practical applications, users will have scalar data xi,ts ∈ Zt, not poly-
nomial inputs xi,ts ∈ Rt. A simple solution is to simply set the constant term (or
any single coefficient) of xi,ts equal to xi,ts and set all other coefficients to zero.
However, this does not fully utilize all N coefficients of xi,ts. We can perform N
batched aggregations in parallel by assigning each coefficient of the ciphertext
to be a piece of data corresponding to a different computation. Because polyno-
mial addition is only a coefficientwise operation, we can use this simple batching
method and do not require the common (and much more complex) method of
batching using the polynomial version of the CRT (as in the the “double-CRT”
form) [18].

Another method of batching is to use RNS decomposition (see Section 5.1) on
the plaintext, breaking coefficients modulo t into a tuple of coefficients modulo
the coprime factors of t. This allows smaller messages to be batched together.
Decomposing t into k′ RNS moduli gives us a total ofN ·k′ inputs packed together
into a single ring polynomial when using both batching methods, allowing higher

10

throughput with less computation and communication. This double batching will
affect the allowable range of users’ inputs and the number of users for a given
ciphertext modulus, as discussed in Section 5.4.

5.4 Practical Parameter Selection

In the scenario where users wish to compute aggregation without overflow, we
suppose users have arguments that are in Zw where w

2 < n · t2 , so that a compu-
tation can correctly sum users’ values without wrapping modulo t. Suppose we
decompose t into k′ RNS moduli as in Sections 5.1 and 5.3, the smallest of which
is t̃. (k′ = 1 without packing.) Suppose there are n users, with input as large
as w

2 (so that all inputs are in an interval of width w). Then to avoid wrapping
from modular reduction, we require that n ·w/2 ≤ t̃ ≈ t

k′ . This can be written as
k′ ≤ t

n·w , n ≤ t
k′·w , w ≤ t

k′·n , or w ·k′ ·n ≤ t, allowing one to choose the number
of packed values, users, input size, or plaintext modulus size based on the values
of the other variables. This analysis is made for the case of exact aggregation.
When differentially private noise is added as in Section 6, parameter selection
should take the possible addition of that noise into account.

A different scenario would be in the case of computing a binary aggregation
(i.e., an OR over inputs in {0, 1}), in which case t′ = t = 2 (Z2 is usually taken
to be {0, 1}). De Morgan’s Law can also be applied to calculate an AND over
users’ binary inputs, by negating each input and the final result.

6 Achieving Computational Differential Privacy

To construct PSA using the exact additive aggregation schemes presented in Sec-
tion 4, we require that users add differentially private noise to their inputs before
calling Enc. For the distribution of added noise, we utilize the discrete Lapla-
cian distribution. In particular, we replace the basic Enc function of each scheme
with the differentially private encryption function NoisyEnc(parms, si,xi,ts ∈
Rt, ts, s, ε, δ, α, β): From DLs, add differentially private noise to each coefficient
of xi,ts, and then simply call Enc. The noise added is specified for (ε, δ)-privacy
and (α, β)-accuracy. Concretely, these functions are:

– NoisyEncBGV (parms, si,xi,ts ∈ Rt, ts, s, ε, δ, α, β): Choose zi,ts ∈ Rt, where
with probability β, zi,ts has coefficients drawn from DLs; with probability
1− β, zi,ts will be zero. Set x′i,ts = xi,ts + zi,ts.
Return the result of EncBGV (parms, si,x

′
i,ts, ts).

– NoisyEncBGV (parms, si,xi,ts ∈ Rt, ts, s, ε, δ, α, β): Choose zi,ts ∈ Rt, where
with probability β, zi,ts has coefficients drawn from DLs; with probability
1− β, zi,ts will be zero. Set x′i,ts = xi,ts + zi,ts.
Return the result of EncBGV (parms, si,x

′
i,ts, ts).

The parameter s of the discrete Laplacian distribution used to draw the noise
terms is determined by the number of users, range of the users’ inputs, number
of users adding differentially private noise, and desired level of privacy. This
is formalized in Theorem 1. We prove the guarantee of privacy and accuracy
for any (ε, δ) under reasonable conditions taken from LaPS [7], and apply it
to our aggregation schemes. We show that the PSA schemes SLAPBGV and

11

SLAPB/FV using noisy encryption achieve differential privacy and aggregator
obliviousness:

Theorem 1. Consider a scenario with n users, whose inputs fit in an interval
of width w. Let the desired privacy level (ε, δ) satisfy ε > 0 and δ ∈ (0, 1). Define
the discrete Laplacian parameter s as s = w

ε . Let the proportion of honest users γ
(i.e., the number of users adding differentially private noise) be at least 1

n ln(1
δ).

Then if w ≥ ε
3 , then the schemes SLAPBGV and SLAPB/FV using NoisyEnc

achieve (ε, δ)-differential privacy. Further, these PSA schemes achieve (α, β)-

accuracy, where β ≥ 2δ
1
γ and α = 4w

ε

√
1
γ ln(1

δ)ln(2
β).

Proof. This follows directly from [7], Theorem 3, which itself is from [31], Lemma
1. Our desired function and method of differential privacy is the same.

This theorem gives a guarantee of privacy for the desired (ε, δ), and gives
bounds on the probability and magnitude of the error resulting from the addition
of differentially private noise as described above. The term α is approximately
O(∆ε

√
n), so this approach to differential privacy is most effective with a smaller

number of users whose inputs have a low variance.

Having constructed the complete, differentially private scheme SLAP, we can
now state that SLAP satisfies the security requirement of aggregator oblivious-
ness given in Section 3.4.

Theorem 2. SLAP is an aggregator oblivious PSA scheme.

Proof. See Appendix A.

7 Experimental Evaluation

In this section, we present experimental evaluations of our work. The LaPS
scheme [7] is the most closely related work to ours, so we compare SLAP against
LaPS to best understand the improvements gained in performance and com-
munication. In our experimental evaluations, we consider the same parameters
for differential privacy as LaPS, i.e., ε = 1, δ = 0.1, γ ≥ 0.0023. We also com-
pare SLAP to a simple non-PSA plain aggregation (that does not use SIMD or
RNS batching), to analyze the slowdown in SLAP as compared to a realistic
non-secure implementation.

7.1 Example Parameters

Table 1 shows minimal parameter choices to guarantee correctness for some pa-
rameter settings. The ciphertext moduli required for SLAPB/FV is generally
larger, which also necessitates a larger polynomial modulus degree. The cipher-
text modulus size needed for SLAPBGV is smaller than the outer ciphertext
modulus of LaPS (q1), and is often even smaller than the inner ciphertext mod-
ulus (q0) [7]. Also, our required polynomial modulus degree is smaller. This
continues the improvement of smaller parameters that LaPS presented over re-
lated work [13], and shows that SLAP can be more efficient than previous work
in communication overhead.

12

Table 1. Parameter Requirements for 128-bit security
Users |t| |q| (SLAPBGV) |q| (SLAPB/FV) N (SLAPBGV) N (SLAPB/FV)
100 32 42 75 2,048 2,048

1000 32 45 78 2,048 2,048
10000 32 49 82 2,048 2,048
10000 128 145 274 8,192 16,384
1015 128 181 310 8,192 16,384
1021 128 201 330 8,192 16,384

Table 2. Latency of SLAP with 1000 users and 16-bit messages
Variant Full-RNS NoisyEnc Full-RNS Agg NTL NoisyEnc NTL Agg

BGV-like 1.17 ms 3.26 ms 43.53 ms 95.38 ms
B/FV-like 5.91 ms 16.98 ms 166.40 ms 272.26 ms

7.2 Implementation and Experiments

To evaluate the efficiency of our scheme, we analyzed the performance of both
a basic implementation of the scheme as originally presented in Section 4 and
a more optimized implementation, both utilizing the differentially private noise
mechanism of Section 6. Our implementations were in C++14, and utilized NTL
[33] for integer and polynomial arithmetic in the basic implementation. In the
optimized implementation, the full-RNS variant presented in Section 5.1 is im-
plemented, and the Number-Theoretic Transform is used to accelerate poly-
nomial multiplication (as described in Section 5.2). Our implementations are
published (anonymously) at https://anonymous.4open.science/r/43ecd86b-44c2-
4ad9-97e2-a8c6a020c746/. Our experiments were run on a server computer with
an AMD EPYC 7451 CPU, running at up to 2.3GHz. The computer had 128GB
memory.

We generally consider users to have a message space of 16 bits. This is in line
with the experimental evaluations performed by LaPS, and is useful for many
applications, e.g. quantized machine learning [7, 12]. Our tests took average run-
times over 50 trials of the operation in question. We use the standard ciphertext
modulus and polynomial modulus specifications from HomomorphicEncryption.

org [3].

We first compare SLAP directly to LaPS, matching the largest set of pa-
rameters they considered. LaPS is implemented using the HElib homomorphic
encryption library [20], which incorporates optimizations such as the double-
CRT representation and Discrete Fourier Transform for efficient arithmetic. We
compare both the basic and optimized (full-RNS) implementations of SLAP to
LaPS, though comparison with the full-RNS implementation is the more direct
one. We begin by considering the largest set of parameter settings used in LaPS,
i.e., a 16-bit plaintext space, 128 bits of security, and 1000 users. Table 2 shows
the performance of SLAP with these parameters, along with the time it takes to
do the computation in plaintext. Table 3 shows the speedup of SLAP as com-
pared to LaPS. From this, we see that our full-RNS implementation of SLAP
is able to speed up NoisyEnc by 65.97x and Agg by 20.76x (with SLAPBGV).
Even without any optimizations such as those present in HElib, a basic imple-
mentation of SLAP still shows performance comparable to LaPS.

We next tested the scalability of the aggregation and decryption of SLAP
with respect to the number of users in the aggregation. Taking |t| = 32, we
evaluated the runtime of Agg for n = 100, 1000, 10000, 100000. As Figure 1

13

Table 3. Speedup of SLAP vs. LaPS with 1000 users and 16-bit messages
Variant Full-RNS NoisyEnc Full-RNS Agg Basic NoisyEnc Basic Agg

BGV-like 65.97x 20.76x 1.79x 0.71x
B/FV-like 13.09x 3.98x 0.46x 0.25x

Table 4. Speedup of SLAP vs. plain aggregation with 1000 users and 16-bit messages
Variant Full-RNS Agg Basic Agg Full-RNS Agg, batched Basic Agg, batched

BGV-like 0.0139x 0.0005x 28.39x 0.97x
B/FV-like 0.0027x 0.0002x 5.45x 0.34x

shows, the runtime of aggregation increases linearly with the number of users,
showing the scalability of SLAP.

Users

R
un

tim
e

(m
s)

1

10

100

1000

10000

100000

100 1000 10000 100000

Full-RNS Agg (BGV-like)

Basic Agg (BGV-like)

Full-RNS Agg (BFV-like)

Basic Agg (BFV-like)

Runtime of SLAP's aggregation/decryption with different numbers of users

Fig. 1. Scalability with a 32-bit plaintext space

The direct comparison to LaPS only compared the case when a single message
is included in a ciphertext. However, as discussed in Section 5.3, we can pack N
inputs into a single scheme plaintext, by setting the coefficients of the plaintext
polynomial to each of the N inputs. Doing this greatly increases our scheme’s
overall throughput, as seen in Table 5. With the parameters of 1000 users and 16-
bit messages, the ciphertext modulus degree is 2048, so we pack 2048 messages
into one ciphertext. As shown in Table 5, introducing even simple batching
greatly increases the throughput SLAP can achieve. With this, the throughput
of PSA can be improved to 628605 aggregations/second, reducing our amortized
runtime to only microseconds.

To fully utilize our scheme’s possible throughput, we then tested the use of
the double-packing method from Section 5.3. We tested plaintext domains of
32, 64, 128, and 196 bits, each of which exceed the parameters experimentally
evaluated for LaPS. Each plaintext polynomial with N coefficients and k′ RNS
components for t can hold N · k′ data elements total. We show the results from
such packing in Table 6. For larger plaintext spaces, SLAP is still reasonably
performant, only requiring tens of milliseconds for SLAPBGV to run NoisyEnc
and Agg for |t| of up to 192 bits. When analyzing throughput, SLAP is able to
perform up to 812,396 aggregations per second (for a 128-bit plaintext space),
and even shows a speedup relative to a naive non-PSA data aggregation.

14

Table 5. Throughput of SLAP with 1000 users, 16-bit messages, 2048 data points per
ciphertext (calculations/second)

Variant Full-RNS NoisyEnc Full-RNS Agg Basic NoisyEnc Basic Agg
BGV-like 1,747,079 628,605 47,369 21,470
B/FV-like 346,726 120,626 12,308 7,522

Table 6. Throughput of full-RNS SLAP with 1000 users and 16-bit messages (calcu-
lations/second)

Variant |t| k′ N NoisyEnc (batched) Agg (batched) Agg (batched) Speedup vs. Plain
BGV-like 32 1 2,048 1,727,284 626,321 20.0x
B/FV-like 32 1 4,096 692,389 240,753 7.7x
BGV-like 64 2 2,048 668,259 211,954 6.8x
B/FV-like 64 2 4,096 368,887 136,507 4.4x
BGV-like 128 4 8,192 1,403,887 546,029 17.4x
B/FV-like 128 4 16,384 741,917 277,198 8.8x
BGV-like 192 7 8,192 2,305,269 812,396 25.9x
B/FV-like 192 7 16,384 1,197,435 469,138 15.0x

From these experiments, we can conclude that SLAPBGV is generally su-
perior to SLAPB/FV . The BGV-based variant of SLAP has better parameter
bounds and performance than the B/FV-based variant. We can further conclude
that PSA implemented with SLAP can be extremely computationally efficient
in terms of computation. With ciphertexts that are smaller as compared to pre-
vious work (see Section 7.1), SLAP also requires less communication, which can
further decrease the latency that end users of PSA will experience. Overall,
these experiemnts show the high performance of SLAP, especially as compared
to other work.

7.3 Comparison to Other Lattice-based PSA

Early work by Shi et al. [31] does not report experimental results, but estimate
that their work should support 0.6ms encryption and 1.5s decryption on modern
hardware. The schemes presented by [30] and [1] are highly similar; both are
lattice-based PSA-like work specifically tailored to the scenario of smart meters,
which is different from general PSA. [30] fixes some security holes in [1], but
does not provide any experimental evaluation for a direct comparison. In both
cases, the communication overhead their scheme incurs is higher than the single
round of communication per aggregation in a PSA scheme. Our experimental
comparison to the state-of-the-art lattice-based PSA scheme LaPS shows that
SLAP is more efficient and as compared to previous work, and would require
less overhead in communication due to smaller ciphertexts. In [2], the runtime of
aggregation is dominated by LWE decryption, which runs at 0.14 ms; however
the parameter settings of |q| < 15 and N = 256 used in this evaluation is
extremely small as compared to parameters used in SLAP or LaPS.

8 Conclusion

In this work, we presented SLAP, a PSA scheme with two variations that fea-
tures efficiency, simplicity, and quantum security. We prove both the security
and privacy of SLAP, which combined allows SLAP to achieve the security no-
tion of aggregator obliviousness. Our implementation of both variants of SLAP
(both basic and full-RNS implementations) shows improvements of over 20x for
aggregation against previous work. Our experiments also show that SLAP can

15

achieve aggregation with a throughput of up to 628,605 aggregations/second for
parameters matching previous research, and actually brings a speedup as com-
pared to non-PSA aggregation. We conclude that SLAP brings both theoretical
and practical improvements to the current state-of-the-art in lattice-based PSA.

References

1. Asmaa Abdallah and Xuemin Sherman Shen. A lightweight lattice-based homo-
morphic privacy-preserving data aggregation scheme for smart grid. IEEE Trans-
actions on Smart Grid, 9(1):396–405, 2016.

2. Aarti Amod Agarkar, Mandar Karyakarte, and Himanshu Agrawal. Post quantum
security solution for data aggregation in wireless sensor networks. In 2020 IEEE
Wireless Communications and Networking Conference (WCNC), pages 1–8. IEEE,
2020.

3. Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018.

4. Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel Player,
Eamonn W Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate
all the {LWE, NTRU} schemes! In International Conference on Security and
Cryptography for Networks, pages 351–367. Springer, 2018.

5. David Archer, Lily Chen, Jung Hee Cheon, Ran Gilad-Bachrach, Roger A Hallman,
Zhicong Huang, Xiaoqian Jiang, Ranjit Kumaresan, Bradley A Malin, Heidi Sofia,
et al. Applications of homomorphic encryption. HomomorphicEncryption. org,
Redmond WA, Tech. Rep., 2017.

6. Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca. A full
rns variant of fv like somewhat homomorphic encryption schemes. In International
Conference on Selected Areas in Cryptography, pages 423–442. Springer, 2016.

7. Daniela Becker, Jorge Guajardo, and Karl-Heinz Zimmermann. Revisiting private
stream aggregation: Lattice-based psa. In NDSS, 2018.

8. James Bell, K Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly) logarithmic overhead. IACR Cryptol.
ePrint Arch, 2020.

9. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):1–36, 2014.

10. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
A full rns variant of approximate homomorphic encryption. In International Con-
ference on Selected Areas in Cryptography, pages 347–368. Springer, 2018.

11. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 409–
437. Springer, 2017.

12. Matt Crane, Andrew Trotman, and Richard O’Keefe. Maintaining discriminatory
power in quantized indexes. In Proceedings of the 22nd ACM international confer-
ence on Information & Knowledge Management, pages 1221–1224, 2013.

13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. Practical covertly secure mpc for dishonest majority–or: breaking

16

the spdz limits. In European Symposium on Research in Computer Security, pages
1–18. Springer, 2013.

14. George Danezis, Cédric Fournet, Markulf Kohlweiss, and Santiago Zanella-
Béguelin. Smart meter aggregation via secret-sharing. In Proceedings of the first
ACM workshop on Smart energy grid security, pages 75–80, 2013.

15. Zekeriya Erkin and Gene Tsudik. Private computation of spatial and temporal
power consumption with smart meters. In International Conference on Applied
Cryptography and Network Security, pages 561–577. Springer, 2012.

16. Rastogi et al. Differentially private aggregation of distributed time-series with
transformation and encryption, 2010.

17. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

18. Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the aes
circuit. In Annual Cryptology Conference, pages 850–867. Springer, 2012.

19. Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved rns variant of the bfv
homomorphic encryption scheme. In Cryptographers’ Track at the RSA Conference,
pages 83–105. Springer, 2019.

20. Shai Halevi and Victor Shoup. Helib. Retrieved from HELib: https://github. com.
shaih/HElib, 2014.

21. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In International Algorithmic Number Theory Symposium, pages
267–288. Springer, 1998.

22. Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving aggregation
of time-series data. In International Conference on Financial Cryptography and
Data Security, pages 111–125. Springer, 2013.

23. Taeho Jung, Xiang-Yang Li, and Meng Wan. Collusion-tolerable privacy-preserving
sum and product calculation without secure channel. IEEE Transactions on De-
pendable and secure computing, 12(1):45–57, 2014.

24. Taeho Jung, XuFei Mao, Xiang-Yang Li, Shao-Jie Tang, Wei Gong, and Lan Zhang.
Privacy-preserving data aggregation without secure channel: Multivariate polyno-
mial evaluation. In 2013 Proceedings IEEE INFOCOM, pages 2634–2642. IEEE,
2013.

25. Ryan Karl, Timothy Burchfield, Jonathan Takeshita, and Taeho Jung. Non-
interactive mpc with trusted hardware secure against residual function attacks.
In International Conference on Security and Privacy in Communication Systems,
pages 425–439. Springer, 2019.

26. Patrick Longa and Michael Naehrig. Speeding up the number theoretic trans-
form for faster ideal lattice-based cryptography. In International Conference on
Cryptology and Network Security, pages 124–139. Springer, 2016.

27. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. Journal of the ACM (JACM), 60(6):1–35, 2013.

28. Paulo Martins, Leonel Sousa, and Artur Mariano. A survey on fully homomor-
phic encryption: An engineering perspective. ACM Computing Surveys (CSUR),
50(6):1–33, 2017.

29. Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Weidong Shi. A comparison study
of intel sgx and amd memory encryption technology. In Proceedings of the 7th
International Workshop on Hardware and Architectural Support for Security and
Privacy, pages 1–8, 2018.

30. Rihem Ben Romdhane, Hamza Hammami, Mohamed Hamdi, and Tai-Hoon Kim.
At the cross roads of lattice-based and homomorphic encryption to secure data

17

aggregation in smart grid. In 2019 15th International Wireless Communications
& Mobile Computing Conference (IWCMC), pages 1067–1072. IEEE, 2019.

31. Elaine Shi, TH Hubert Chan, Eleanor Rieffel, Richard Chow, and Dawn Song.
Privacy-preserving aggregation of time-series data. In Proc. NDSS, volume 2,
pages 1–17. Citeseer, 2011.

32. Peter W Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th annual symposium on foundations of computer science,
pages 124–134. Ieee, 1994.

33. Victor Shoup et al. Ntl: A library for doing number theory, 2001.
34. Jonathan Takeshita, Ryan Karl, and Taeho Jung. Secure single-server nearly-

identical image deduplication. In IoTSPT-ML at ICCCN 2020. IEEE, 2020.
35. Filipp Valovich and Francesco Aldà. Computational differential privacy from

lattice-based cryptography. In International Conference on Number-Theoretic
Methods in Cryptology, pages 121–141. Springer, 2017.

36. Yang Yang, Xindi Huang, Ximeng Liu, Hongju Cheng, Jian Weng, Xiangyang Luo,
and Victor Chang. A comprehensive survey on secure outsourced computation and
its applications. IEEE Access, 7:159426–159465, 2019.

A Proof

Note our proof is very similar to existing PSA proofs [7, 31], and we adapt these
existing techniques for our own protocol.

Theorem 3. (Aggregator Obliviousness Security): Let the output of Enc be in-
distinguishable from random. Then both variants of SLAP are secure under ag-
gregator obliviousness. problems.

Proof. We follow previous work in assuming that a potential adversary can
choose the noise ri as part of the Challenge phase in the security game of aggre-
gator obliviousness.

We aim to show that if there exists a PPT adversary A that wins the ag-
gregator obliviousness security game, then there exists a PPT adversary B that
can distinguish between RLWE ciphertexts in the BGV or B/FV schemes.

A Slightly Modified Game: In this proof, we modify the game of aggrega-
tor obliviousness (defined in Section 3.4) as follows: First, we change any Encrypt
query as a Compromise query from the adversary (which actually strengthens
the adversary), and we change the Challenge phase to a real-or-random version.
Second, in the original game of aggregator obliviousness, the adversary is asked
to specify two sets of plaintext/randomness pairs (xi, zi), (x̃i, z̃i) and then to
distinguish between encryptions of either of the pairs. In this proof, we let the
adversary choose one pair (xi, zi) and have them distinguish between valid en-
cryptions of (zi, zi) or random values. Any adversary with more than negligible
advantage in winning this modified game will also be able to win the original
game of aggregator obliviousness aggregator obliviousness security game with
more than negligible advantage. Therefore, it is enough to show that with any
PPT adversary A with a greater than negligible advantage in winning the mod-
ified game can be used to construct an algorithm B that can distinguish RLWE
ciphertexts from random, thus solving the decisional version of RLWE.

18

For simplicity in the proof, we consider the protocol’s operation at a single
timestamp ts, and write A = PRF(ts). We also omit the timestamp identifier
of plaintexts, ciphertexts, and other variables.

A fundamental property of aggregator obliviousness is that it acknowledges
the case where the adversary compromises all but one participant, and allows
that they inevitably learns the secret key of that participant and can therefore
distinguish between valid encryptions and random values. To account for this
the definition of aggregator obliviousness requires that they do not learn any
additional information about that participant.

Reducing to Semantic Security: First, we briefly define a game for B
that describes their ability to break the semantic security of RLWE ciphertexts.
Suppose B receives the parameters (Rq, t, n). Then with a challenger C testing
the ability of B to break either of the BGV or B/FV cryptosystems, B will
play the modified game described above. In this, B can make Sample queries by
arguing m ∈ Rt to C and will receive back the pair (A,M), where A is a publicly
known element of Rq and M is an encryption under the secret key s∗ (either in
the BGV or B/FV styles, as appropriate) of m. Then in the Distinguish part, B
argues m∗ ∈ Rt to C. Based on a random bit b chosen by C, C will choose M∗

either as an encryption of m∗ (if b = 0) or a random element of Rq (if b = 1).
Then B must guess the value of b, winning if correct.

Reduction: We now show how B can simulate the modified game of ag-
gregator obliviousness to A. In the Setup phase, B will first choose distinct
j, k ∈ [0, n) ∪ {�}. (With probability 1

n2 , A will not select these parties to
be compromised.) Then, B implicitly sets sk = s∗, chooses secret keys si for
all i 6= j, k, and implicitly sets sj = [−(

∑
i 6=j,k si) − sk]q. (Note that B does

not actually know either of sk, sj , which are the aggregation scheme’s secret
keys for users j, k.) Finally, B chooses the aggregation key s′ randomly from
{si}i∈[0,n) \ {sj , sk}.

In the Compromise phase, A will send a query i to B. If i /∈ {j, k}, then B
returns si to A. Also, if i = �, then s′ will be returned to A.

In the Challenge phase, A will choose a set of uncompromised users U ⊆
[0, n) \ {j, k}. They will then send plaintext-randomness pairs {(xi, zi)} with
i ∈ U to B. Because we chose earlier to abort if a query was for either of j, k, we
know that j, k ∈ U . Then, B computes {ci = NoisyEnc (parms, si,xi, zi)} for
i ∈ U \ {j, k}

Now B enters the Distinguish phase and sends mk = [xk + zk]q to C who
returns the tuple (A,M). Then, B sets ck := M. B then computes an encryption
of the sum of the plaintext-random pairs, with v = [

∑
i∈U xi + zi]q and cj =

FHE.Enc(parms,A,v), where FHE is either of the BFV or B/FV schemes, as
appropriate. Now B has ci for i ∈ U , including cj and ck. B then returns these
values ci to A.

We now move to the Guess phase. If A has more than negligible advantage
in winning the aggregator obliviousness security game, they can distinguish the
ciphertexts from random. Specifically, if ck = M is a valid encryption of xk + rk
andA will return 0, otherwise they return 1. Therefore, by forwardingA’s output

19

to C as their guess, B wins the game, and they can distinguish M from random
and break the semantic security of the FHE scheme being used. This completes
the proof by reduction. ut

20

