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Abstract—Payment Channel Networks (PCNs) have given a
huge boost to the scalability of blockchain-based cryptocurren-
cies: Beyond improving the transaction rate, PCNs enabled cheap
cross-currency payments and atomic swaps. However, current
PCNs proposals either heavily rely on special scripting features
of the underlying blockchain (e.g. Hash Time Lock Contracts)
or are tailored to a handful of digital signature schemes, such as
Schnorr or ECDSA signatures. This leaves us in an unsatisfactory
situation where many currencies that are being actively developed
and use different signature schemes cannot enjoy the benefits of
a PCN.

In this work, we investigate whether we can construct PCNs
assuming the minimal ability of a blockchain to verify a digital
signature, for any signature scheme. In answering this question
in the affirmative, we introduce the notion of lockable signatures,
which constitutes the cornerstone of our PCN protocols. Our
approach is generic and the PCN protocol is compatible with any
digital signature scheme, thus inheriting all favorable properties
of the underlying scheme that are not offered by Schnorr/ECDSA
(e.g. aggregatable signatures or post-quantum security).

While the usage of generic cryptographic machinery makes our
generic protocol impractical, we view it as an important feasibility
result as it may serve as the basis for constructing optimized
protocols for specific signature schemes. To substantiate this
claim, we design a highly efficient PCN protocol for the special
case of Boneh-Lynn-Shacham (BLS) signatures. BLS signatures
enjoy many unique features that make it a viable candidate for a
blockchain, e.g. short, unique, and aggregatable signatures. Yet,
prior to our work, no PCN was known to be compatible with it
(without requiring an advanced scripting language). The cost of
our PCN is dominated by a handful of calls to the BLS algorithms.
Our concrete evaluation of these basic operations shows that
users with commodity hardware can process payments with
minimal overhead.

Index Terms—Payment Channel Networks, Scriptless Scripts,
BLS Signatures

I . I N T R O D U C T I O N

Decentralized payments have become a reality with the
advent of blockchain based cryptocurrencies like Bitcoin,
Ethereum, etc. Users can now make payments among each other
without relying on a trusted central bank, but instead rely on a
public distributed ledger and a transaction scheme that helps
determine the validity of a payment publicly. However, a major
drawback of these cryptocurrencies is their low scalability due
to a low transaction rate. Traditional payment services like Visa,
Mastercard, etc, support order of 3 magnitude more payments
than even the most prominent cryptocurrencies like Bitcoin,
Ethereum, etc. This is because, a large amount of payments in

these currencies are fighting for a few spots on the blockchain,
where they are validated and used to update the state of the
system.

Off-chain payments were proposed as a solution to this
problem where users no longer need to register every payment
on the blockchain. Instead, they can make several payments
locally and only register their final balances on the chain.
Payment Channels (PC) [1] and its generalization Payment
Channel Networks (PCN) [1]–[4] are such off-chain (or layer
2) payment solutions that help improve the scalability of these
cryptocurrencies. In a PC protocol, two users Alice and Bob
open a payment channel by posting a single transaction on the
blockchain. This transaction locks some amount of coins in this
channel, referred to as channel capacity. Alice and Bob can
then make several payments locally by adjusting the balance of
the channel, without registering any of them on the chain. Once
the payment phase ends, a closing transaction that finalises
the balances of Alice and Bob in the channel is posted on the
chain, thus closing the channel. Given several payments can
be made at the price of only two transactions on the chain,
this is a dramatic boost to the number of payments when
the number of on-chain payments is limited. Consequently,
PCs have been practically deployed in major currencies like
Bitcoin [5], Ethereum [6], and Ripple [7].

Payment Channel Networks. A PCN generalizes the notion
of a PC and allows payments between users Alice and Bob
that do not directly share a PC, through a chain of intermediate
users that connects Alice with Bob, referred to as payment
path. PCNs also enable payments across different currencies
in a secure way: As an example, PCNs can be used to perform
atomic swaps of coins in different currencies. The first proposals
of PCNs were based on a special scripting feature of the
blockchain, called Hash Time-Lock Contracts (HTLCs) [1], [2]:
parties setup payments along the payment path such that each
of these payments are successful if a pre-image of a hash value
is released before some time t. However, this approach has
several major limitations:

1) It suffers from wormhole attacks [3], where the adversary
can “skip” an honest intermediate user in the payment path,
thereby stealing his PCN participation fee.

2) It is compatible only with those blockchains that support
advanced scripts and several existing currencies like Monero [8],
Mimblewimble [9], Ripple [10], or Zcash [11] (shielded



addresses) are therefore left out.
3) It results in larger transactions and consequently larger

ledgers.
4) It lacks on-chain privacy as PCN transactions of a single

payment are linkable with each other,
5) Finally, PCN transactions are clearly distinguishable from

standard payments one-to-one payments, thus hampering the
fungibility of the coins.

To amend this, Malavolta et al. [3] proposed PCN protocols
without relying on any special scripts, also referred to as
scriptless scripts [12], that simultaneously solved all the above
issues. They presented two protocols exploiting the algebraic
structure of Schnorr and ECDSA signatures. More recently,
those techniques have been adapted to the lattice settings [13],
barring a few limitations in terms of on-chain privacy, as
discussed in [14].

Unfortunately, the techniques from [3] do not seem to extend
to PCN protocols for other popular signature schemes that
are of great interest to the cryptocurrency space as discussed
below. For instance, recently there has been a lot of interest in
developing new currencies or adapting existing currencies [15],
[16], with transaction schemes that use BLS signatures [17] and
its variants [18], that offer useful properties, such as key and
signature aggregation, which have the potential to drastically
reduce the size of the ledger. Furthermore, the looming threat
of quantum computers has motivated a large body of research
in lattice-based [13], [19]–[21] and hash-based [22] signatures,
and subsequent development of new currencies based on these
signatures [23]–[26]. It is plausible to foresee a near future
where all blockchains will have to move to a signature scheme
with post-quantum security.

Therefore, to enjoy all the benefits of PCNs based on script-
less scripts in all existing (and possibly future) cryptocurrencies,
we require a PCN protocol that does not rely on advanced
scripts and can handle any signature scheme. This motivates
us to ask the following question:

Can we construct a PCN assuming only the bare
minimal ability of a blockchain to verify a signature?

In this work we give a positive answer to the above question,
for any signature scheme. Before delving into the description of
our approach, we explain the challenges that arise when trying
to construct PCN generically, without assuming any algebraic
structure of the signature scheme.

A. Challenges in Constructing PCNs

Let us recall the high-level idea of the PCN protocol from [3].
They consider a setting with n parties P1, . . . , Pn where P1 is
the sender and Pn is the receiver. Neighbouring parties Pi and
Pi+1 (for i ∈ {1, . . . , n− 1}) in this path have open channels
between them. Their PCN protocol consists of two phases: A
lock and a release phase. To make a payment of v coins, P1,
together with each pair of intermediate users, sets up a payment
lock as follows: For i ∈ {1, . . . , n− 1}, Pi and Pi+1 set up a
payment transaction denoted by tx pay,i paying v coins from
their channel to Pi+1, along with a partial signature σ̄i on this

transaction. The partial signature σ̄i is not a valid signature on
tx pay,i but can be transformed into a valid signature σi provided
that a certain release information ki is available. Generating
partial signatures requires exploiting the algebraic structure of
Schnorr or ECDSA signatures, where the sender “injects” some
randomness in the signing process that causes the signature to
be partial or incomplete. Things are set in such a way that if
Pi+1 obtains σi+1, he can locally recompute ki and learn the
valid signature σi.

Once the payment locks are setup until party Pn, the
sender P1 initiates the release phase by revealing the release
information for the n-th partial signature to Pn. A cascade
of payment release happens until party P2, which concludes
one payment of v coins from P1 to Pn. There are two main
properties that are satisfied by this locking mechanism:

1) Atomicity: Even if Pi and Pi+1 collude, they cannot
transform the lock σ̄i into the valid signature σi without the
help of the sender (P1). They may of course generate a new
valid signature σ′i 6= σi, but only σi can help release the (i−1)-
th lock. Therefore no two colluding intermediate neighbours
Pi and Pi+1 can initiate the payment release ahead of time.
This assures the sender that no intermediate user Pi+1 can
steal his v coins, that were intended for Pn.

2) Balance Security: Even if all parties but Pi are malicious,
Pi is guaranteed that a valid signature on a transaction tx pay,i+1

will always allow it to recover a valid signature on tx pay,i.
This is to ensure that intermediate users never lose coins. The
protocol enforces this by having intermediate users checking
whether the randomness injected by the sender is consistent
across different instances of the partial signing protocol.

To ensure both of the properties above, their protocol heavily
relies on the ability of the sender to inject consistent randomness
in the signing protocol, which in turn leverages the special
algebraic structure of Schnorr/ECDSA signatures.

Failed Attempts. We illustrate the pitfalls of extending this
approach with the case of BLS signatures, where the signatures
are unique for a given message under a given key. In this
case, two colluding intermediate users Pi and Pi+1 can always
collude to generate the one and only valid σi on tx pay,i. This
means Pi and Pi+1 can release the lock at any time and
effectively steal v coins from P1. Similar problems persist
for non-unique signature where there is no way for a third
party (in our case the sender) to meaningfully and consistently
inject some randomness in the signing process to make the
signatures partial and at the same time verifiable.

One could think of setting up the locks backwards (starting
from Pn until P2) thereby preventing colluding users from
initiating the release phase like above. However, such a
backwards lock setup strategy suffers from a different issue:
Assume that locks up to the i-th one have been setup starting
from the n-th lock. If user Pn−1 and Pn collude and initiate
a release phase, the cascade follows until the i-th lock which
results in party Pi paying Pi+1 via tx pay,i. If the sender P1

aborts the lock phase now, an honest intermediate Pi loses v
coins and has effectively paid the receiver Pn.



A Fairness Problem. In general, the source of difficulty in
designing PCNs seems to be rooted in enforcing fairness (a
weaker form of guaranteed output delivery) in the locking
protocol: We want to ensure that either all parties P1, . . . , Pn
learn a valid signature on the corresponding transaction, or
none does. This makes it especially tricky to design general
purpose solution for this problem, as fairness is notoriously
difficult to achieve. Even using powerful cryptographic tools,
such as general-purpose multi-party computation (MPC), does
not seem to trivialize the problem since fairness for MPC is,
in general, impossible to achieve [27]. The aim of this work is
to evade this fairness barrier and to construct a PCN protocol
that is compatible with any signature scheme.

B. Our Contribution

The contributions of this work are summarized as follows.

Generic Solution. We construct the first PCN protocol (Sec-
tion V-B) that is compatible with any signature scheme. The
signature scheme shall satisfy the notion of strong Existential
Unforgeability under Chosen Message Attacks (sEUF-CMA),
which is the de-facto definition of security for digital signatures.
Our scheme does not assume any scripting language for the
underlying blockchain, besides the ability to verify a signature
and the timestamp of a transaction. This enables, in principle,
interoperable payments across chains with any signature scheme
(unique, aggregatable, post-quantum secure, etc.). Our PCN
protocol also guarantees on-chain privacy for the users in the
payment path of the PCN, that is on par with the state of the art
proposals [2], [3]. To achieve this, we introduce and construct
lockable signatures (Section IV), a new cryptographic tool
which may be independent interest.

We wish to clarify that we view our generic protocol as
an initial feasibility result and it may not be efficient enough
to be deployed in practice, due to the high costs associated
with the cryptographic machinery that are used. Apart from the
computational overhead, the price to pay for such a generality is
that of a slight increase in the number of on-chain transactions
per PC. Specifically, in the worst case, parties involved in
a payment in our PCN need to post 2 transactions on the
chain to close their channels, instead of 1 as in prior works.
Nevertheless, we believe that our approach sheds light on the
necessary assumptions needed to construct PCNs and can serve
as the blueprint to design efficient protocols specific to many
signature schemes.

Efficient Protocol for BLS. Following the blueprint of our
generic protocol, we construct the first practically efficient
PCN protocol fully compatible with the BLS signature scheme
(Section V-C), that has unique and aggregatable signatures.
Additionally, our BLS-based protocol also inherits the security
and privacy properties of our generic protocol. Prior to our
work, supporting PCNs for BLS signatures required complex
scripts like HTLCs whose disadvantages were discussed above.

Our protocol makes only a handful of calls to the basic
BLS algorithms, and does not require any heavy cryptographic
machinery. Our efficiency analysis (Section VI) shows that the

cost incurred by PCN users is minimal and the protocol can
be run on today’s low-end devices.

C. Related Work

As off-chain scalability solutions, Payment Channels and
Payment Channel Networks [1]–[4] have been proposed and
extensively studied. Typical proposals [1], [2] use special scripts
like HTLCs, that let a user get paid if he produces a pre-
image of a certain hash value before a specific time (payment
expiry time). While these protocols are also “universal” (i.e.
are compatible with any signature scheme), they fall short
in achieving the properties of scriptless scripts, due to their
reliance on special scripts and the syntactic difference between
standard an PCN transactions. Malavolta et al. [3] propose a
PCN protocol that does not rely on HTLC and offers better
on-chain privacy using a new tool called Anonymous Multi
Hop Locks (AMHL). However, their protocol is tailored for
transaction schemes that use Schnorr and ECDSA signatures.
Similar techniques were used by Esgin, Esroy and Erkin [13]
for a specific lattice based signature scheme, which is a variant
of [21]. Egger, Moreno-Sanchez and Maffei [4] propose a PCN
protocol compatible with a wide-variety of network topologies.
Unfortunately, they lack on-chain privacy of the parties involved
and also have increased number of transactions that go on-chain
per party in the worst case. As a result, in their proposal it is
easy to differentiate between PCN and non-PCN transactions,
which heavily affects the fungibility of the coins. Bolt [28] is
a payment channel protocol specially tailored for Zcash [11]
which uses zk-SNARKs [29]–[31]. A generalisation of PC with
complex conditional payments is a state channel [32]–[34] that
requires highly expressive scripting functionalities from the
underlying blockchain (like Ethereum) and are therefore not
scriptless. Other works in these settings study the notion of
non-source routing, where the payment is routed locally by each
intermediate node [35]. In contrast, our approach is inherently
tied to source routing.

Comparison with Adaptor Signatures. A related (stronger)
notion to lockable signatures is that of adaptor signatures [36].
Similarly to lockable signatures, adaptor signatures allow one
to compute a pre-signature (the analogue of the lock) with
respect to some NP-relation, and the witness of such a relation
can be then used to recover the full (valid) signature. However,
the crucial difference is that the pre-signature can be computed
without knowing the witness of the given relation, which makes
adaptor signatures a more versatile primitive then lockable
signatures. On the flip side, adaptor signatures do not seem to
be easily realizable for signature schemes without algebraic
structure.

In summary, none of these proposals can simultaneously
(i) generically handle all signature schemes without using
special scripts, (ii) guarantee on-chain privacy and (iii) improve
fungibility of the coins, as they either rely on specific signature
schemes or leak information on-chain about the parties and
the payments made in the PCN.



Fig. 1. Payment Setup phase of our PCN protocol. Transaction tx Setup,i

transfers (all or part of) the funds from 2-PCi to 3-PCi. While 2-PCi
needs Pi and Pi+1 to sign, 3-PCi requires additionally a special party
P0 to sign. Channel 3-PCi expires T times units earlier than 2-PCi,
meaning that after time ti − T , the funds from 3-PCi are essentially
transferred back to 2-PCi (which is in the control of Pi and Pi+1).

I I . T E C H N I C A L OV E RV I E W

In this section we give a brief overview of the techniques we
employ to construct a generic scriptless-script PCN protocol
compatible with any signature scheme. At the core of our
solution we have two main techniques: A local 3-party channel
(at the transaction layer) and lockable signatures, a new cryp-
tographic abstraction that we introduce (at the cryptographic
layer). We detail each of our technique individually first, then
describe how they are put together in our PCN protocol. Finally,
we discuss how to construct a highly efficient protocol for
the case of BLS signatures, bypassing the need for heavy
cryptographic machinery.

A. Transaction Layer: Local 3-Party Channel

Recall that the fairness problem arose in the lock phase
because of colluding neighbours Pi and Pi+1 in a payment
path (P1, . . . , Pn). Since Pi and Pi+1 share a payment channel,
collectively they possess all the information necessary to sign
any transaction. The way prior works [3] bypassed this obstacle,
was to allow the sender P1 to contribute to the randomness
of the lock σ̄i between Pi and Pi+1. The lock is carefully set
such that the input of the sender is hard to compute given the
lock, and the valid signature σi can only be recovered with the
help of the sender. We would like to mimic this approach but
by only making generic use of the signature scheme, without
relying on any particular feature of the signature scheme.

Local Channel. Our idea is to let parties locally convert their
2-party payment channels into a 3-party payment channel. As
shown in Figure 1, parties Pi and Pi+1 share a channel denoted
by 2-PCi (a public key shared between Pi and Pi+1), with a
capacity of v coins and channel expiry time ti. The sender in
this case plays the role of a special party P0 who, along with
Pi and Pi+1, generates a 3-party payment channel 3-PCi (a
public key shared between P0, Pi and Pi+1). To do this, Parties
Pi and Pi+1 generate a special setup transaction txSetup,i that
sends v′ ≤ v coins from 2-PCi to 3-PCi, while the extra
amount v − v′ is sent to some channel between Pi and Pi+1

and is omitted for clarity. Transaction txSetup,i expires at ti−T
(where T is a system parameter) and once txSetup,i expires,
v′ coins are transferred back to 2-PCi, the 2-party channel
between Pi and Pi+1.

Notice that, to spend from 3-PCi, all of P0, Pi and Pi+1

have to agree and generate a signature together on the spending

transaction. This way the sender (P0) has an input on spending
from 3-PCi that is hard to compute by a coalition of Pi and
Pi+1. We stress that txSetup,i is only kept locally by the parties
P0, Pi and Pi+1 and not posted on the chain, hence the name
local 3-party channel. An added advantage of this approach is
that intermediate parties need not lock all the (v) coins from
their payment channel for the purposes of PCN payments. They
can decide how many coins (v′ ≤ v) they want to lock for
payments in the form of a 3-party channel with the sender
P0. This way the remaining coins v − v′ are available for the
intermediate parties which they can use in any way they want.

The notion of a local 3-party channel is reminiscent of the
concept of virtual channels [37], however their purposes are very
different: A virtual channel allows two parties to exchange
coins via a (trustless) intermediary without communicating
with it for every payment. On the other hand, a local 3-party
channel requires (and enforces) the active interaction of all 3
participants.
Preventing Denial of Service Attacks. A malicious P0 (the
sender) could try a denial of service (DoS) attack, by refusing
to spend from 3-PCi, and locking Pi and Pi+1’s channel funds.
To prevent this, 3-PCi is set to expire before 2-PCi expires. So,
if P0 goes offline and 3-PCi expires at ti − T , the entire fund
of v coins is still available in 2-PCi up to time T , meaning that
parties Pi and Pi+1 can make payments using 2-PCi, before
2-PCi itself expires at time ti.
On-Chain Privacy. We remark that the creation of these
local channels happens completely off-chain and essentially
consists of the joint generation of a public key. On-chain
transactions from and to such a (shared) public key are identical
to any other payment of any other public key. Therefore,
our PCN transactions are indistinguishable from other regular
transactions on-chain.

B. Cryptographic Layer: Lockable Signatures
The one remaining piece of the puzzle for constructing a

generic PCN is the functionality of party Pi being able to
obtain a valid signature on a transaction, provided party Pi+1

releases a valid signature on another transaction. To capture this
functionality, we introduce the notion of lockable signatures, a
new cryptographic abstraction. Intuitively, lockable signatures
enable a user to generate a lock `k using the Lock algorithm,
that hides a signature σ (the locked signature) with the help
of another signature σ̃ (the locking signature). Here σ is a
signature on a message m signed using the secret key sk ,
while σ̃ is a signature on a message m̃ signed using the secret
key s̃k . Note that the locked and the locking signatures may
even be from different signature schemes.

In terms of security we want that the lock `k is hiding, which
intuitively says that no information about the locked signature
σ is revealed via the lock (if σ̃ is not revealed). We also want
a guarantee that, given a correctly generated lock `k and the
valid signature σ̃ on the message m̃ under the public key p̃k
(whose corresponding secret key is s̃k ), one should be able to
run a efficient Unlock procedure that outputs σ. We refer to
this security notion as unlockability.



 
Fig. 2. PCN protocol status after the payment lock phase. Sender P1 plays the role of the special parties P0 and Pn+1. Transaction tx pay,i

spends from tx Setup,i (Figure 1). Transaction tx pay,n inside the dotted box is an arbitrary message known to parties P0, Pn+1 and Pn. The
expiry times are for payments tx pay,i, i ∈ [n− 1]. The lock `kn := σn, in the dotted box is just a regular signature on tx pay,n.

We give a simple and generic construction for lockable
signatures, where the lock is set as `k := σ⊕H(σ̃), where H
is a hash function and the Unlock procedure simply computes
σ := `k⊕H(σ̃). The hash function H is modelled as a random
oracle in the security analysis.
BLS-Based Lockable Signatures. We also present a BLS-
based construction, where we have the two signatures as σ ←
ΠBLS.Sign(sk ,m) and σ̃ ← ΠBLS.Sign(s̃k , m̃), where sk , s̃k
are two independent secret keys and m, m̃ are two different
messages. The lock is simply computed as the aggregate of
the two signatures, `k := σ · σ̃ = ΠBLS.Agg(σ, σ̃) leveraging
the well-known properties of the scheme [38]. The Unlock
procedure on input a signature σ̃ simply computes σ := `k/σ̃.
It is well known that extracting aggregated signatures is hard
(if no individual aggregated signature is already known). For
our purposes, we will need a slightly stronger property: We
want that is should be hard to extract an individual signature
from a chain of aggregate signatures (σ0 · σ1, σ1 · σ2, . . . ).
We show that extracting an individual signature from such a
chain of aggregates, is as hard as solving the computational
Diffie-Hellman (CDH) problem.

The reason why we introduce this special-purpose construc-
tion for BLS is that it allows anyone to verify that the lock
is well-formed, by simply checking the validity of the BLS
aggregate signature. I.e., BLS lockable signatures have a built-in
verification to ensure unlockability of (potentially malformed)
locks. This feature will greatly increase the practicality of our
BLS-based protocol.
Applications of Lockable Signatures. To build up some
intuition on how we are going to use lockable signatures for
our main result, we provide a toy example for the applicability
of this primitive. Consider the scenario where we want a
transaction tx 0 to take place only if another transaction tx 1

is posted on the blockchain. We can then generate a lock
`k on σ0 (a valid signature for tx 0) conditioned on σ1 (a
valid signature for tx 1). Publishing `k guarantees that anyone
can recover a valid signature on tx 0 only if tx 1 appears on
the blockchain (and not before that). This can be naturally
extended to more complex scenarios where the finalization of a

contract is conditioned on the finalization of another (possibly
independent) contract.

C. Putting Things Together

We now show how to construct a PCN protocol using the
above tools. Our payment protocol starts with a one-time setup
phase that is run by the parties P1, . . . , Pn, before the payment
lock phase. In this phase, the sender P1 plays the role of
a special party P0 and creates a local 3-party channel 3-PCi
(using txSetup,i) with parties Pi and Pi+1 for i ∈ {1, . . . , n−1},
as shown in Figure 2. To do this, parties P0, Pi and Pi+1 run an
MPC protocol that computes a shared public key pk i and each
party receives shares of the secret key sk i, namely sk

(0)
i , sk

(i)
i

and sk
(i+1)
i , respectively. Here the shared public key pk i is

set as the 3-party channel 3-PCi.
In the payment lock phase, parties P0, Pi−1, Pi and Pi+1,

for i ∈ {2, . . . , n}, run a MPC protocol that computes

`ki−1 := σi−1 ⊕H(σi)← Lock(sk i−1, tx pay,i−1, sk i, tx pay,i)

and is returned to party Pi. Here, we have:
• The keys sk i−1 and sk i are the shared secret key between

(P0, Pi−1, Pi) and (P0, Pi, Pi+1), respectively, established dur-
ing the payment setup phase.
• The transaction tx pay,i−1 (analogously tx pay,i) spends v

coins from pk i−1 or 3-PCi−1 (pk i or 3-PCi) to some key
pk∗i−1 (pk∗i ) of party Pi (Pi+1).
• The signature σi−1 (analogously σi) is the signature on

the transaction tx pay,i−1 (tx pay,i) under the public key pk i−1

or 3-PCi−1 (pk i or 3-PCi).
The recipient finally obtains `kn−1 generated with the help
of P0, Pn−1 and Pn+1 (which is again impersonated by the
sender). Notice the expiry times of the payment transactions
are set such that tx pay,i−1 expires ∆ time units after txpay,i
expires. This is to ensure Pi has sufficient time (∆ units) to
get paid from tx pay,i−1 after it pays Pi+1 using tx pay,i.

The payment release phase is triggered when the sender
(P0, Pn+1) jointly generates σn along with the receiver Pn.
The receiver can unlock `kn−1 using Unlock to obtain σn−1

and returns it to Pn−1. This procedure continues until party



P2 who unlocks `k1 and learns σ1. Every party Pi (except
the sender) has two transactions txSetup,i−1 and tx pay,i−1 (that
spends from txSetup,i−1) along with valid signatures on both,
concluding one payment of v coins from P1 to Pn.

For subsequent payments between the same sender and the
receiver via the same payment path P1, . . . , Pn, the parties can
re-use the setup phase and only overwrite the lock information
by re-running the lock phase.

Security. Intuitively, the unlockability of the lockable signatures
guarantees that no adversary can return a valid signature σ′i
on tx pay,i under pk i to an honest party Pi, such that when Pi
tries to unlock `ki−1 with σ′i, he gets an invalid signature. This
ensures the adversary cannot steal the funds of an honest Pi,
no matter how many other parties it corrupts.

The hiding property of the lockable signatures ensures that no
adversary can unlock `ki (for any i) to reveal a valid signature
σi on tx pay,i, before the sender initiates the release phase. This
ensures that no adversary corrupting an intermediate party
in the payment path can steal the funds of the sender. Our
construction is secure against wormhole attacks [3] following
a similar argument.

It is important to notice that we consider the standard notion
of MPC where the adversary can abort at any time and deny
the honest parties from seeing their output (i.e., we do not
assume fairness). This means that some extra care is needed to
ensure that adversarial aborts do not cause the honest parties
to lose coins. To convey some intuition, consider two cases.
• Abort before all locks are established: the participants

will also abort the execution. The hiding property of the locks
guarantees that the signatures on the transactions remain hidden
and the honest parties do not lose money.
• Abort after all locks are established: the honest parties

can “unlock” their signatures by just accessing the blockchain
(and using some local information). The unlockability property
guarantees that this process never fails.

Efficient BLS-Based PCN. We obtain an efficient BLS-based
PCN protocol by exploiting the structure of the keys and the
signature. In the setup phase, we substitute the usage of a
general purpose MPC with a non-interactive protocol where
the shared public key is set to be the aggregate of individual
public keys of the parties. That is,

pk i := pk
(0)
i · pk

(i)
i · pk

(i+1)
i

where pk
(0)
i , pk

(i)
i and pk

(i+1)
i are the keys of P0, Pi and Pi+1,

respectively. Each key has an associated NIZK proof, proving
knowledge of the corresponding secret key, to prevent rogue
key attacks [39].

Since BLS signatures are aggregatable, we have that the
signature σi on tx pay,i under pk i is just an aggregate of
σ

(0)
i , σ

(i)
i and σ

(i+1)
i , where each of these are themselves

signatures on tx pay,i generated by the respective parties using
their respective secret key shares. As discussed above, signatures
are locked by simply computing a chain of aggregates

(σ1 · σ2, σ2 · σ3, . . . , σn−1 · σn)

i.e., `ki := σi · σi+1, (i ∈ [n− 1]), whose well-formedness can
be readily tested using the aggregate verification algorithm of
BLS. This allows us to forego entirely the usage of general
purpose MPC, thus obtaining a concretely efficient protocol.

I I I . P R E L I M I N A R I E S

We denote by λ ∈ N the security parameter and by x ←
A(in; r) the output of the algorithm A on input in using r ←
{0, 1}∗ as its randomness. We often omit this randomness
and only mention it explicitly when required. The notation
[n] denotes a set {1, . . . , n} and [i, j] denotes the set {i, i +
1, . . . , j}. We consider probabilistic polynomial time (PPT)
machines as efficient algorithms.

A. Universal Composability

To model security and privacy in the presence of concurrent
executions we resort to the universal composability framework
from Canetti [40] extended to support a global setup [41]. We
refer the reader to [40] for a comprehensive discussion. We
consider the setting of static corruptions, where the adversary
must declare ahead of time which parties he wish to corrupt.
We denote the environment by E . For a real protocol Π
and an adversary A we write EXEC τ,A,E to denote the
ensemble corresponding to the protocol execution. For an ideal
functionality F and an adversary S we write EXECF,S,E to
denote the distribution ensemble of the ideal world execution.

Definition 1 (Universal Composability): A protocol τ UC-
realizes an ideal functionality F if for any PPT adversary A
there exists a simulator S such that for any environment E the
ensembles EXEC τ,A,E and EXECF,S,E are computationally
indistinguishable.
We require the cryptographic primitives with UC security.

Digital Signatures. A digital signature scheme allows one to
authenticate a message with respect to a public key. Formally,
it consists of the following triple of efficient algorithms: A
key generation algorithm KGen(1λ) that takes as input the
security parameter 1λ and outputs the public/secret key pair
(pk , sk). The signing algorithm Sign(sk ,m) inputs a secret
key and a message m ∈ {0, 1}∗ and outputs a signature σ.
The verification algorithm Vf(pk ,m, σ) outputs 1 if σ is a
valid signature on m under the public key pk , and outputs
0 otherwise. We require standard notions of correctness and
unforgeability for the signature scheme [42]. Unforgeability is
formally referred to as existential unforgeability under chosen
message attack (EUF-CMA), says that a PPT adversary cannot
forge a fresh signature on a fresh message of its choice given
only the public key and access to a signing oracle (that returns
a valid signature on a message of his choice). A stronger
notion is that of strong unforgeability (sEUF-CMA) that says
the forgery can consist only of a fresh signature, irrespective
of whether the message was previously queried to the signing
oracle or not. Such a notion is known to be equivalent to the
UC formulation of security [43].

In this work we only consider signature schemes with a
deterministic signing algorithm. This is however without loss
of generality, as shown by the following (well known) lemma.



Lemma 1: Let (KGen,Sign,Vf) be a signature scheme with
probabilistic Sign algorithm. Then there exists a signature
scheme (KGen,Sign∗,Vf) where Sign∗ is deterministic.

Proof 1 (Sketch): The new signing algorithm Sign∗ is defined
to be Sign(sk ,m;PRF(sk ,m)), where PRF is a cryptographic
pseudorandom function.

Commitment Schemes. A commitment scheme is a digital
analogue of sealing a message inside an envelope. Formally,
it consists of the following tuple of efficient algorithms: A
commitment generation algorithm Commit(1λ,m) that takes
as input a security parameter and a message m to commit
to, and outputs a commitment c and a corresponding opening
information d. The opening algorithm Open(c, d) takes as
input a commitment c and a opening information d and outputs
the committed message m or outputs a special symbol ⊥ if
d is not the valid opening information for the commitment
c. In addition to the standard binding and hiding properties
(who’s UC formalization can be found in [40]), we require
that the commitment scheme has unique openings. I.e. for all
commitments there exists a single valid message that causes
the Open algorithm to accept.

Non-Interactive Zero Knowledge Proofs. Let R : {0, 1}∗ ×
{0, 1}∗ → {0, 1} be a n NP-witness-relation with correspond-
ing NP-language L := {x : ∃w s.t. R(x,w) = 1}. A non-
interactive zero-knowledge proof (NIZK) [44] system for the
relation R is initialized with a setup algorithm Setup(1λ) that,
on input the security parameter, outputs a common reference
string crs and a trapdoor td. A prover can show the validity of a
statement x with a witness w by invoking P(crs, x, w), which
outputs a proof π. The proof π can be efficiently checked by the
verification algorithm V(crs, x, π). We require a NIZK system
to be (1) zero-knowledge, where the verifier does not learn more
than the validity of the statement x, and (2) simulation sound
extractable, if there exists an extractor algorithm E that on input
the common reference string crs , a trapdoor information td,
the statement x and the proof π, and outputs a witness w such
that (x,w) ∈ R with high probability. For formal UC-style
definition of security we refer the reader to [45].

Multi-Party Computation. The aim of a secure multi-party
computation (MPC) protocol is for the participating parties
to securely compute some function f of their private inputs.
In terms of properties, we require correctness that states that
the parties’ output is that which is defined by the function.
We then require privacy that states that the only information
learned by the parties in the computation is that specified by
the function output. For a comprehensive treatment of the UC
definition of MPC we refer the reader to [46]. In this work we
require the existence of MPC protocols that are:
• Secure against an active adversary corrupting up to n−1 of

the n players, where the set of corrupted parties is determined
ahead of time (static corruption).
• Secure with aborts, i.e. the definition allows the adversary

to decide which of the honest parties obtain the output of the
computation.

The latter requirement implies that we do not assume that the
MPC protocol achieves any form of fairness or guaranteed
output delivery. These is arguably the most common flavor of
MPC, for which many general-purpose efficient protocols are
known (see e.g. [47] and follow-up works).

Synchrony and Communication. We assume synchronous
communication between users, where the execution of the
protocol happens in rounds. We model this via an ideal
functionality Fclock as it is done in [37], [48], where all honest
parties are required to indicate that are ready to proceed to the
next round before the clock proceeds. The clock functionality
that we consider is fully described in [41]. This means that all
entities are always aware of the given round. We also assume
the existence of secure message transmission channels between
users modelled by Fsmt.

Blockchain. We assume the existence of a blockchain B (just as
in [2], [3], [36]) that we model as a trusted append-only bulletin
board: The corresponding ideal functionality FB maintains the
chain B locally and updates it according to the transactions
between users. The functionality is also parameterized by a
transaction scheme which also specifies a signature scheme, that
lets any user generate key pairs and can post a signed transaction
transferring coins from one user to another. We use the notation
tx := tx (A,B, v) to denote a transaction that sends v coins
from address A to address B. At any point in the execution,
any user U can send a distinguished message read to FB, who
sends the whole transcript of B to U . We refer the reader
to [36] for a formal definition of this functionality. Our FB
functionality also offers a timelock interface, where a particular
transaction can be assigned a expiry time t. If the global clock
is past the expiry time t, it means that the transaction has
expired and its effect on user balances, is revoked.

B. Bilinear Maps

Let (G0,G1,Gt) be three groups of order q, where q is a
λ bit prime. A pairing function e is an efficiently computable
function e : G0×G1 → GT , where g0 and g1 are generators of
G0 and G1 respectively. The pairing operation is bilinear if for
all u ∈ G0, v ∈ G1, a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
The pairing operation is non-degenerate if e(g1, g2) 6= 1.

BLS Signature Scheme. Let H be a hash function H :
{0, 1}∗ → G0. We briefly recall the BLS aggregatable
signature [17] in Figure 3. It is well known that the scheme has
unique signature and it is strongly unforgeable in the random
oracle model if the computational Diffie-Hellman (CDH)
problem is hard over the bilinear group. In Appendix B, we
recall the aggregate extraction assumption from [38] (Definition
4.3), which in a later work, Coron and Naccache [49] showed
is equivalent to the CDH assumption.

We introduce a new hard problem that we call chained
aggregate extraction problem, that says that an adversary who
is given a chain of aggregate values, cannot extract any of
the aggregated values in polynomial time. This assumption
significantly simplifies our security analysis of our BLS based
PCN protocol. We formally define the problem below.



KGen(1λ)

α← Zq
h← g

α
1 ∈ G1

pk := h, sk := α

return (pk , sk)

Sign(sk ,m)

σ := H(m)
sk

return σ

Agg({σi}i∈[t])
σ ←

∏
i∈[t]

σi

return σ

Vf(pk ,m, σ)

if (e(σ, g1) = e(H(m), pk))

return 1

else return 0

VfAgg({pk i}i∈[t], {mi}i∈[t], σ)
if (e(σ, g1) =

∏
i∈[t]

e(H(mi), pki))

return 1

else return 0

Fig. 3: BLS signature scheme

ExpChAgExtA,G0,G1,Gt(1
λ, n)

xi, yi ← Zq, ∀i ∈ [n]

σi ← g
(xiyi+xi+1yi+1)
0 , ∀i ∈ [n− 1]

(σ, j)← A({gxi1 , g
yi
0 }i∈[n], {σi}i∈[n−1])

b0 := (j ∈ [n])

b1 := (σ = g
xjyj
0 )

return b0 ∧ b1
Fig. 4: Chained Aggregate Extraction experiment

Definition 2 (Chained Aggregate Extraction Problem): The
chained aggregate extraction problem for a bilinear pairing
group G0,G1,Gt of order q is said to be hard if there exists
a negligible function negl, for all λ ∈ N and n = poly(λ) for
some polynomial poly, and all PPT adversaries A, it holds that,

Pr
[
ExpChAgExtA,G0,G1,Gt(1

λ) = 1
]
≤ negl(λ)

where ExpChAgExt is defined in Figure 4.
In Theorem 3.1 we show that the chained aggregate extraction

problem is equivalent to the aggregate extraction problem, when
k = 2, where k denotes the number of signatures aggregated
with each other into a single value. Formal security proof of
the theorem can be found in Appendix B.

Theorem 3.1: For k = 2, the aggregate extraction assumption
(Definition 8) is equivalent to the Chained Aggregate Extraction
assumption (Definition 2).

Corollary 1: The Chained Aggregate Extraction assumption
is equivalent to the CDH assumption.

I V. L O C K A B L E S I G N AT U R E S

A lockable signature scheme allows one to lock a signature
(referred to as the locked signature) on a message with respect to
another signature (referred to as the locking signature), possibly
on a different message. The two signatures can verify against
two different public keys. To learn the locked signature, one
has to know the locking signature and otherwise the locked
signature is computationally hidden.

A. Definitions

Below we formally define the interfaces, notion of correctness
and the properties of interest of a lockable signature.

Definition 3 (Lockable Signatures): A Lockable signature
scheme LS is defined with respect to a signature scheme ΠDS
and consists of PPT algorithms (Lock,Unlock) defined below.
`k ← Lock(sk ,m, s̃k , m̃): The lock algorithm takes as input
two secret keys (sk , s̃k) and two messages (m, m̃) and returns
a lock `k .
σ ← Unlock(pk ,m, p̃k , m̃, σ̃, `k): The unlock algorithm takes
as input two public keys (pk , p̃k), a pair of messages (m, m̃),
a signature σ̃, and a lock `k , and outputs a signature σ.

Definition 4 (Correctness): A lockable signature scheme LS
is correct if for all λ ∈ N, all pairs of messages (m, m̃) ∈
{0, 1}λ, for all key pairs (pk , sk) and (p̃k , s̃k) in the image
of KGen it holds that

Vf(pk ,m,Unlock(pk ,m, p̃k , m̃, σ̃, `k)) = 1

where `k ← Lock(sk ,m, s̃k , m̃) and σ̃ ← Sign(s̃k , m̃).
Below we define the security notions for lockable signatures.

As discussed before, we consider without loss of generality
only signatures where the signing algorithm is deterministic. In
all of the security notions, we assume that the Lock algorithm
is executed honestly. Looking ahead to our main protocol, this
assumption is justified by the fact that the algorithm is always
executed as part of an MPC protocol where at least one of the
participants is honest.
Unlockability. The unlockability property ensures that a cor-
rectly generated lock can be unlocked to reveal a valid locked
signature, when provided with a valid locking signature. We
capture this intuition in the form of an experiment EUn-CMA
in Figure 5. Here the adversary gets to choose the messages
(m, m̃) while it has access to a signing oracle for the key
s̃k . The experiment generates a lock `k honestly by running
Lock(sk ,m, s̃k , m̃) and gives the lock to the adversary. The
adversary returns a candidate locking signature σ∗ which is
used to unlock the lock `k and obtain a candidate locked
signature σ′. The adversary wins the experiment if σ∗ is a
valid signature on the message m̃ under p̃k (condition b0)
while σ′ is an invalid signature on the message m under pk
(condition b1). A lockable signature scheme is said to satisfy
unlockability if the adversary wins the above experiment at
most with negligible probability in the security parameter.

Definition 5 (Unlockability): A lockable signature LS is
unlockable if there exists a negligible function negl such that
for all λ ∈ N and for all PPT adversaries A it holds that

Pr[EUn-CMAA,LS(λ) = 1] ≤ negl(λ)

where the experiment EUn-CMA is defined in Figure 5.
Hiding. The hiding property ensures that a correctly generated
lock reveals no information about the locked or the locking
signature. We capture this intuition in the form of an experiment
EHi-CMA in Figure 5. Here the adversary gets to choose two
messages (m, m̃) while having access to signing oracles with
respect to both keys sk and s̃k . The experiment chooses a bit
b uniformly random and if b = 0, it generates a lock correctly
using Lock(sk ,m, s̃k , m̃). If b = 1, the experiment uses a
simulator Sim that only takes as input the public keys pk , p̃k



EUn-CMAA,LS(λ)

Q := ∅

(pk , sk)← ΠDS .KGen(1
λ

)

(p̃k , s̃k)← ΠDS .KGen(1
λ

)

(m, m̃, state)← ASignO(s̃k,·)
(sk , p̃k)

`k ← Lock(sk ,m, s̃k , m̃)

σ
∗ ← ASignO(s̃k,·)

(state, `k)

σ
′ ← Unlock(pk ,m, p̃k , m̃, σ∗, `k)

b0 := ΠDS .Vf(p̃k , m̃, σ
∗
) = 1

b1 := ΠDS .Vf(pk ,m, σ
′
) 6= 1

return b0 ∧ b1

EHi-CMAA,LS(λ)

Q := ∅

(pk , sk)← ΠDS .KGen(1
λ

)

(p̃k , s̃k)← ΠDS .KGen(1
λ

)

O := {SignO(sk , ·), SignO(s̃k , ·)}

(m, m̃, state)← AO
(pk , p̃k)

b← {0, 1}
if b = 0 then

`k ← Lock(sk ,m, s̃k , m̃)

else `k ← Sim(pk , p̃k)

b
∗ ← AO

(state, `k)

b0 := (b = b
∗
)

b1 := (m̃ /∈ Q)

return b0 ∧ b1

SignO(s̃k ,m)

σ ← ΠDS .Sign(s̃k ,m)

Q := Q ∪ {m̃}
return σ

SignO(sk ,m)

σ ← ΠDS .Sign(sk ,m)

return σ

Fig. 5: Experiments for unlockability and hiding of lockable
signatures

(corresponding to sk and s̃k , respectively) and outputs a lock
`k . The adversary is given `k and outputs a guess b∗. The
adversary wins the experiment if the guess was correct, i.e.
b = b∗ (condition b0) and if m̃ was never queried before to
the signing oracle with respect to s̃k . The latter condition is
necessary to avoid trivial attacks where the adversary uses a
signature on m̃ to run the unlocking algorithm. A lockable
signature is said to satisfy hiding if the adversary wins the
above experiment with probability negligibly close to 1/2.

Definition 6 (Hiding): A lockable signature LS is hiding
if there exists a negligible function negl and a simulator Sim
such that for all λ ∈ N and all PPT adversaries A it holds that

Pr[EHi-CMAA,LS(λ) = 1] ≤ 1/2 + negl(λ)

where the experiment EHi-CMA is defined in Figure 5.

B. Constructions of Lockable Signatures

In the following we describe our generic and BLS-based
construction of a lockable signatures.

Lock(sk ,m, s̃k , m̃)

σ ← ΠDS .Sign(sk ,m)

σ̃ ← ΠDS .Sign(s̃k , m̃)

`k := σ ⊕H(σ̃)

return `k

Unlock(pk ,m, p̃k , m̃, σ̃, `k)

return `k ⊕H(σ̃)

Lock(sk ,m, s̃k , m̃)

σ ← ΠBLS.Sign(sk ,m)

σ̃ ← ΠBLS.Sign(s̃k , m̃)

`k := ΠBLS.Agg(σ, σ̃)

return `k

Unlock(pk ,m, p̃k , m̃, σ̃, `k)

return `k/σ̃

Fig. 6: Generic (left) and BLS-based (right) constructions of
Lockable Signatures
Generic Construction. Let ΠDS := (KGen,Sign,Vf) be a
digital signature scheme (with deterministic signing algorithm)
and let H : {0, 1}λ → {0, 1}λ be a hash function. Our generic

construction of lockable signature is specified in Figure 6 (left).
In our construction, a lock is an xor of the locked signature σ
and the hash of the locking signature σ̃. Provided the hash of the
locking signature H(σ̃) is a random string with high entropy,
we can see that intuitively the locked signature σ is hidden
inside the lock, similar to a one-time pad. The release procedure
is an xor of H(σ̃) and the lock, similar to the decryption of a
one-time pad.

In the theorem below, we prove that our generic construction
satisfies unlockability (Definition 5) and hiding (Definition 6),
as defined before. In favor of a simpler analysis, we model
the hash function H as a random oracle, however we note
that one could also set H to be a hardcore function [50] (for
polynomially-many bits) and security would follow with a
similar argument.

Theorem 4.1 (Unlockability & Hiding): Let ΠDS =
(KGen,Sign,Vf) be a strongly unforgeable digital signature
scheme. Then LS := (Lock,Unlock) is unlockable and hiding
in the random oracle model.

Proof 2: Unlockability. Note that the only way the adversary
can win the experiment is to find a valid signature σ∗ on m̃ such
that H(σ∗) 6= H(ΠDS .Sign(s̃k , m̃)). Since H is deterministic,
this implies that σ∗ 6= ΠDS .Sign(s̃k , m̃), which contradicts the
strong unforgeability of ΠDS .

Hiding. The simulator Sim simply returns a binary string of
the appropriate length sampled uniformly at random. Observe
that the adversary A is not allowed to query m̃ to the
signing oracle ΠDS .Sign(s̃k , ·), and consider the following two
cases. In the first case, A manages to guess ΠDS .Sign(s̃k , m̃)
correctly and queries the random oracle on then the value
H(ΠDS .Sign(s̃k , m̃)). In this case the A can distinguish
between the simulated lock and an honestly generated one.
However, given that ΠDS is unforgeable, this case happens
only with negligible probability negl(λ). In the second case,
A does not guess ΠDS .Sign(s̃k , m̃) and therefore the value
H(ΠDS .Sign(s̃k , m̃)) is uniformly distributed. In this case, the
success probability of the adversary is exactly 1/2.

BLS-Based Construction. We present an alternative construc-
tion of lockable signatures LS := (Lock,Unlock) for the
BLS signature scheme ΠBLS := (KGen,Sign,Vf,Agg,VfAgg)
in Figure 6 (right). While this scheme satisfies a weaker notion
of hiding (as defined in Appendix A), it will allow us to
construct a much more efficient PCN, without the need to resort
to complex cryptographic machinery. Intuitively, a lockable
signature consists of an aggregate of two signatures, and the
security comes from the hardness of extracting signatures from
aggregates.

Unlockability follows unconditionally from the uniqueness
of BLS signatures. The scheme only satisfies a weaker notion
of hiding (i.e. only the search version of the problem is
hard), which is captured by the chained aggregate extraction
assumption (Definition 2). Loosely speaking, weak hiding
ensures that an adversarial party cannot extract a valid signature
from a lock, before the corresponding locking signature is
revealed. In our protocol (see Section V-C), this is sufficient



to ensure that an adversarial party in the payment path cannot
steal the funds of honest parties in the same path.

V. PAY M E N T C H A N N E L N E T W O R K S

In this section we describe two constructions for Payment
Channel Networks (PCNs) from lockable signatures: The first
construction is generic, i.e. individual payment channels in
the payment path can be based on any signature scheme. Our
second construction is an efficient instantiation of the generic
construction, tailored for the case where the individual payment
channels are based on BLS signatures.

A. Definition of PCN

We recall the notion of a PCN as an ideal functionality
FPCN as proposed in [2]. Payment channels in the chain B
are of the form (c〈u0,u1〉, v, t, f), where c〈u0,u1〉 is a unique
channel identifier for the channel between users u0 and u1,
v is the capacity of the channel, t is the expiration time of
the channel and f is the associated fee. Note that any two
users may have multiple channels open simultaneously. The
functionality maintains two additional internal lists L (to keep
track of the closed channels) and P (to record the off-chain
payments in an open channel). Entries in P are of the form
(c〈u0,u1〉, v, t, h), where c〈u0,u1〉 is the corresponding identifier,
v is the amount of credit used, t is the expiration time of the
channel, and h is the identifier of the entry.

The functionality provides the users with interfaces open,
close, and pay, which are used to open a channel, close the
channel, and make payments using the channel, respectively.
FPCN initializes a pair of empty lists P,L. Users can query
FPCN to open channels and close them to any valid state
in P . On input a value v and a set of payment channels
c〈u0,u1〉, . . . , c〈un,un+1〉 from some user u0, FPCN checks
whether the path has enough capacity (step 1) and initiates the
payment. Each intermediate user can either allow the payment
or deny it. Once the payment has reached the receiver, each
user can again decide to interrupt the flow of the payment (step
2), i.e. pay instead of the sender. Finally FPCN informs the
involved nodes of the success of the operation (step 3) and
adds the updated state to P for the corresponding channels.

In terms of off-chain privacy, we model a slightly weaker
notion than the functionality from [2]: Each user ui, in addition
to learning the channel identifiers c〈ui−1,ui〉 and c〈ui,ui+1〉 of
its neighbours ui−1 and ui+1, also learns the channel identifiers
c〈ui−2,ui−1〉 and c〈ui+1,ui+2〉 of its neighbours’ neighbours ui−2

and ui+2. In other words, any intermediate user ui learns the
identity of the sender u0 and of the two nodes that precede
and succeed him in the payment path. For completeness, we
describe the modified ideal functionality in Figure 10.

B. Construction I: PCNs for all Signatures

We now describe our generic construction of PCN using
lockable signatures. Consider the setting where party P1 wants
to send v coins to party Pn via off-chain payments. We denote
by j-PC a payment channel involving j-many parties, i.e.
where the secret key is shared among j users. We assume

that neighbouring parties in P1, . . . , Pn have payment channels
between them, namely, Pi has a payment channel 2-PCi with
Pi+1 for i ∈ [n− 1]. Using this network of payment channels,
P1 wishes to route v coins to Pn.

For ease of understanding, we make the following simplifying
assumptions: First, we assume the participation fee for each
party in the payment path fi := 0. Second, we assume that
every payment channel 2-PCi (for i ∈ [n − 1]) in the path
from P1 to Pn is based on the same signature scheme ΠDS .
Our construction can be easily tweaked to support a different
signature scheme for each payment channel in the payment path,
provided that the signature schemes satisfy the requirements
necessary to construct a lockable signature (namely, strong
unforgeability and deterministic signing).

1) Overview: Our protocol assumes the existence of the
following cryptographic tools: (i) A digital signature scheme
ΠDS with the corresponding lockable signature algorithms LS,
(ii) a UC-secure commitment scheme (Commit,Open) with
unique openings, and (iii) a UC-secure MPC protocol Γ for
general functions.

We also assume the transaction expiry functionality from
the underlying blockchain that invalidates a transaction if the
transaction is unspent and a pre-specified time has passed.
In Section V-D we discuss how this can be realized in practice.

Our generic PCN protocol formally described in Figure 7,
proceeds in three phases, namely, a (one-time) setup phase, a
lock phase and a release phase.

Setup Phase. The sender P1 plays the role of a (special) party
P0 and sets up a local 3-party payment channel with each
successive pair of users. To do this, party P0 along with parties
Pi and Pi+1 (for i ∈ [n − 1]), run an MPC protocol Γ to
generate (i) a new joint public key pk i, (ii) a commitment ci to
the corresponding secret key sk i, (iii) a 3-out-of-3 share of the
secret key sk i and the opening information di (corresponding
to the commitment ci). The commitment ci will force the
parties to use consistent inputs (i.e. shares of the secret key)
in the MPC run during the locking phase. Once the MPC
successfully terminates, party Pi and Pi+1 jointly generate a
transaction txSetup,i that transfers v coins from 2-PCi (sending
address) to the newly generated joint key pk i, referred to as
3-PCi (recipient address).

Note that in an honest run of the protocol, this setup
transaction txSetup,i is never published on the chain and
only kept among the parties P0, Pi, Pi+1 locally. It acts as
a safeguard for the sender P1 who wants to ensure that no
two intermediate parties Pi, Pi+1 can release the payments
without his permission. Additionally, if the payment channel
2-PCi’s expiry time was ti, the setup transaction txSetup,i is
set to have a expiry time tSetup,i = ti − T , where T is some
system parameter. This is to ensure that even if the sender P1

(or P0) goes offline and coins from txSetup,i remain unspent,
parties Pi and Pi+1 can still get back the locked coins from
txSetup,i. Once they get the coins back to 2-PCi from 3-PCi,
they can make payments in the remaining time T after which
the channel 2-PCi itself expires.



Lock Phase. Parties P0, Pi−1, Pi, Pi+1 (for i ∈ [2, n−1]), run
the MPC Γ to set up the lock `ki−1 that is received by Pi. The
locked signature in `ki−1 is σi−1, which is a signature on the
transaction tx pay,i−1 under the key pk i−1 (or 3-PCi−1). Here
the transaction tx pay,i−1 pays v coins from 3-PCi−1 to a key
pk∗i of party Pi. A critical requirement of the MPC protocol is
that it must ensure that the locked signature σi−1 in the lock
`ki−1 is actually the locking signature for lock `ki−2, and so
on. This is done by checking that the parties provide as input
valid shares of the secret key contained in the commitment ci,
which is verified inside of the MPC protocol.

For the final lock, party P0, Pn−1, Pn and (a special) party
Pn+1 (again played by the sender P1) setup the lock `kn−1

whose locking signature σn is a signature on some (arbitrary)
message tx pay,n under the public key pkn (shared among
P0, Pn+1 and Pn).

Notice that tx pay,i−1 expires ∆ time units after tx pay,i. This
is to ensure that party Pi has enough time in the release phase
(described below), to learn σi−1 and get paid by tx pay,i−1 after
Pi+1 gets paid by tx pay,i. This requirement is the same as what
is required in [2], [3].

Release Phase. Once the payment locks have been established
until the recipient Pn, the sender P1 along with the receiver
Pn, jointly unlock `kn−1. This is done by running the MPC
protocol Γ to compute σn on tx pay,n using their (P0, Pn, Pn+1)
shares of the secret key skn.
Pn learns σn using which it reveals the signature σn−1 on

tx pay,n−1, by executing the Unlock algorithm. Party Pn then
sends σn−1 to party Pn−1 using which Pn−1 can unlock `kn−2,
and so on. The cascade ends with party P2 learning σ1, thus
concluding one payment of v coins from P1 to Pn.

We stress that in case all parties are honest, then no
information about the payment is posted on the blockchain.
Thus subsequent payments can happen by simply overwriting
this information (i.e. the locks). On the other hand, if any
party Pi wants to close the channel with Pi−1, it can post
the transactions txSetup,i−1 and tx pay,i−1 along with valid
signatures for both transactions before either of them expire.

Security Analysis. The following theorem states the security
of our protocol and we defer the proof to Appendix C.

Theorem 5.1: Let LS be a hiding and an unlockable lockable
signature scheme with respect to the signature scheme ΠDS
that is strongly unforgeable. Let (Commit,Open) be a UC-
secure commitment scheme and Γ be a UC-secure MPC
for general functions. Then, the PCN described in Figure 7
with access to (FB,Fsmt,Fclock) UC-realizes the functionality
FPCN (Figure 10).

C. Construction II: PCNs for BLS Signatures

We now describe our BLS-based PCN protocol where the
settings are identical to Section V-B. However, the structure
and properties of BLS signatures will allow us to design a
PCN with significant efficiency improvements. For example,
the joint generation of a shared public key can be done “non-
interactively” by simply setting pk = pk0 · pk1 and sk =

sk0 + sk1. Then a valid signature under pk is an aggregate of
a signature under pk0 and a signature under pk1.

1) Overview: As before, we describe the payment protocol in
three (setup, locking, and release) phases. A formal description
of our scheme can be found in Figure 8.

Setup Phase. During this phase, parties P0, Pi and Pi+1

(for i ∈ [n − 1]), jointly generate pk i such that each party
has a 3-out of-3 share of the corresponding secret key sk i.
Similar to the generic construction, P0 and Pn+1 are special
parties whose role is played by the sender P1. To prevent
rogue key attacks [39], each party proves the knowledge
of its secret share using a NIZK for the language, LDL :={
stmt = pk : ∃sk s.t . (pk := gsk1 )

}
. Since BLS signatures

are unique to the message and the public key, we do not need
an explicit commitment to the secret key.

Lock Phase. Our interactive payment lock phase between
P0, Pi−1, Pi, Pi+1 (for i ∈ [2, n − 1]), proceeds in rounds.
At the end Pi obtains a lock `ki−1 := σi−1 · σi where σi−1

is a valid signature on tx pay,i−1 under 3-PCi−1 and σi is a
valid signature on tx pay,i under 3-PCi. The interactions are
designed to ensure that it is infeasible for Pi+1 to produce
σi without colluding with P0 and Pi. Similarly, Pi−1 cannot
output σi−1 without colluding with P0 and Pi. At the end of
the locking phase, parties P0, Pn−1, Pn and Pn+1 establish a
lock `kn−1 := σn−1 · σn, where σn is a signature on some
(arbitrary) message tx pay,n generated by P0 and Pn.

Release Phase. This phase is initiated by P0 by computing σn.
Starting from Pn, all parties can progressively start unlocking
their signatures: For i ∈ [n, 2] party Pi learns σi−1 by simply
computing `ki−1/σi, i.e. by extracting σi−1 from the aggregate
of the two signatures. Note that the uniqueness of the signature
allows us to ensure that the extraction is always successful for
intermediate users.

Security Analysis. The following theorem establishes the
security of our BLS-based PCN protocol and we defer the
proof to Appendix D.

Theorem 5.2: Let (PNIZK,LDL
,VNIZK,LDL

) be a UC secure
NIZK and let (G0,G1,Gt) be a CDH-hard bilinear group.
Then the PCN protocol described in Figure 8 with access to
(FB,Fsmt,Fclock) UC-realizes the functionality FPCN (Fig-
ure 10) in the random oracle model.

D. On the Transaction Expiry Functionality

For our PCN protocols we assume that the blockchain offers
an expiration functionality, where transactions can be set to
expire after some time. In practice, the standard way to realise
such an expiry time of a transaction txA is to set a nLockTime
field in the script of another transaction txB that spends from
txA. Transaction txB is accepted on the chain only if the
number in its nLockTime field is larger than or equal to
the current chain height. Therefore, if txA is on the chain
and remains unspent until the expiry time (the number in
nLockTime field of txB), transaction txB can be posted on
the chain thereby spending from txA.



Input: For i ∈ [n− 1], parties Pi and Pi+1 share a payment channel 2-PCi with channel expiry ti. For each channel 2-PCi,
party Pi has a secret signing key sk

(i)
p,i and party Pi+1 has a secret signing key sk

(i+1)
p,i . All parties are aware of the system

parameters ∆ ∈ N and T ∈ N. We consider party P1 the sender of the payment, to play the role of a P0 in the below protocol.

Payment Setup Phase

Parties P0, Pi, Pi+1 for i ∈ [n− 1] do the following:
1) They engage in the execution of the MPC protocol Γ for the following functionality:
• Compute (pk i, sk i)← ΠDS .KGen(1λ) and (ci, di)← ΠC.Commit(1λ, sk i).
• Sample uniformly at random

(
sk

(0)
i , sk

(i)
i , sk

(i+1)
i

)
and

(
d

(0)
i , d

(i)
i , d

(i+1)
i

)
such that sk i = sk

(0)
i ⊕ sk

(i)
i ⊕ sk

(i+1)
i and

di = d
(0)
i ⊕ d

(i)
i ⊕ d

(i+1)
i .

• Return
(
pk i, ci, sk

(0)
i , d

(0)
i

)
,
(
pk i, ci, sk

(i)
i , d

(i)
i

)
,
(
pk i, ci, sk

(i+1)
i , d

(i+1)
i

)
to P0, Pi and Pi+1, respectively.

2) Parties Pi and Pi+1 do the following:
• Generate txSetup,i = tx (2-PCi, 3-PCi, vi) with transaction expiry time tSetup,i = ti − T , where 3-PCi := pk i
• Run the MPC protocol Γ to generate σs,i ← ΠDS .Sign

(
sk

(i)
p,i ⊕ sk

(i+1)
p,i , txSetup,i

)
• Send (txSetup,i, σs,i, tSetup,i) to P0

Payment Lock Phase

Parties P0, Pi−1, Pi, Pi+1 for i ∈ [2, n− 1] generate a payment lock for party Pi by doing the following:
1) Parties P0, Pi−1, Pi generate tx pay,i−1 = tx (3-PCi−1, pk

∗
i , v) with payment expiry time t̃i−1 and parties P0, Pi, Pi+1

generate tx pay,i = tx
(
3-PCi, pk

∗
i+1, v

)
with payment expiry time t̃i, such that t̃i−1 = t̃i + ∆.

2) Party P0 sends (3-PCi−1, ci−1) to party Pi+1 and sends (3-PCi, ci) to party Pi−1

3) Parties P0, Pi−1, Pi and Pi+1 engage in the MPC protocol Γ, to compute `ki−1 ← Lock (sk i−1, tx pay,i−1, sk i, tx pay,i).
Specifically, the MPC takes as input (pk i−1, ci−1, pk i, ci) from all parties these parties and as private inputs{(

sk
(0)
i−1, d

(0)
i−1

)
,
(
sk

(0)
i , d

(0)
i

)}
from P0,

(
sk

(i−1)
i−1 , d

(i−1)
i−1

)
from Pi−1,

{(
sk

(i)
i−1, d

(i)
i−1

)
,
(
sk

(i)
i , d

(i)
i

)}
from Pi and(

sk
(i+1)
i , d

(i+1)
i

)
from Pi+1. The MPC computes the following functionality:

• Check whether sk (0)
i−1 ⊕ sk

(i−1)
i−1 ⊕ sk

(i)
i−1 = ΠC.Open

(
d

(0)
i−1 ⊕ d

(i−1)
i−1 ⊕ d

(i)
i−1, ci−1

)
and

sk
(0)
i ⊕ sk

(i)
i ⊕ sk

(i+1)
i = ΠC.Open

(
d

(0)
i ⊕ d

(i)
i ⊕ d

(i+1)
i , ci

)
and abort otherwise.

• Return `ki−1 = Lock
(
sk

(0)
i−1 ⊕ sk

(i−1)
i−1 ⊕ sk

(i)
i−1, tx pay,i−1, sk

(0)
i ⊕ sk

(i)
i ⊕ sk

(i+1)
i , tx pay,i

)
to Pi.

4) Parties P0, Pn−1, Pn, Pn+1 where Pn+1 is party P1, run the above steps that returns
`kn−1 := Lock(skn−1, tx pay,n−1, skn, tx pay,n) to Pn, where tx pay,n is some message known to P0 and Pn and skn is a
secret key shared among P0, Pn+1 and Pn.

Payment Release Phase

The sender (parties P0, Pn+1) initiates the payment release by jointly generating σn ← ΠDS .Sign(skn, tx pay,n) with Pn via
the MPC protocol Γ. Parties Pi for i ∈ [n, 2] do the following:
1) Release the locks by computing σi−1 ← Unlock (3-PCi, tx pay,i, σi, 3-PCi−1, tx pay,i−1`ki−1).
2) Store (txSetup,i−1, σs,i−1, tx pay,i−1, σi−1) to post on the blockchain if the case arises.

Fig. 7: Generic Payment Channel Network Protocol run between parties P1, . . . , Pn

Although the setup transaction txSetup,i is only kept locally
and never posted on the chain, a malicious sender P1 may
post txSetup,i on the blockchain and go offline. Parties Pi
and Pi+1 would end up locking their funds in 3-PCi forever.
To prevent such a DoS attack, the parties may generate a
revoke transaction tx revoke,i := tx (3-PCi, 2-PCi, vi) with its
nLockTime set such that it is enforceable only after time
tSetup,i. This feature is available in most scripting languages.
The revoke transaction tx revoke,i in this case can be posted on
the blockchain after time tSetup,i and the parties Pi and Pi+1

can get their funds back.
We could also adapt our protocol according to a recent

work [51], which would let us eliminate the need for the
nLockTime script entirely, while using time-lock puzzles [52]
and a script to delay the spending of the output of a transaction,
relative to the time of posting that transaction on chain1.

E. On the Privacy our PCN Protocols

In both of our PCN protocols, the keys involved in the
same payment path are not correlated to the eyes of an external
observer. Thus, they achieve the same notion of on-chain privacy

1Bitcoin scripting language offers this feature with the script
CHECKSEQUENCEVERIFY.



Input: For i ∈ [n− 1], parties Pi and Pi+1 share a payment channel 2-PCi with channel expiry ti. For each channel 2-PCi,
party Pi has a secret signing key sk

(i)
p,i and party Pi+1 has a secret signing key sk

(i+1)
p,i . All parties are aware of the system

parameters ∆ ∈ N and T ∈ N.
We consider party P1 the sender of the payment, to play the role of a P0 in the below protocol.

Payment Setup Phase

Parties P0, Pi, Pi+1 for i ∈ [n− 1] (Party Pn+1, is just a copy of party Pn) do the following:
1) Each party Pj , j ∈ {0, i, i+ 1}, executes the following steps:

• Sample (pk
(j)
i , sk

(j)
i )← ΠBLS.KGen(1λ)

• Generate π(j)
i ← PNIZK,LDL

(
pk

(j)
i , sk

(j)
i

)
and send

(
pk

(j)
i , π

(j)
i

)
to other parties

• Verify if the proof π(k)
i , k ∈ {0, i, i+ 1}/j of other parties is correct by checking VNIZK,LDL

(
pk

(k)
i , π

(k)
i

)
= 1. If any

one of the proof does not verify, the party aborts.
• The final public key is pk i ←

∏
j∈{0,i,i+1} pk

(j)
i

• Return
(
pk i, sk

(0)
i

)
,
(
pk i, sk

(i)
i

)
and

(
pk i, sk

(i+1)
i

)
to P0, Pi and Pi+1, respectively.

2) Parties Pi and Pi+1 do the following:
• Generate txSetup,i = tx (2-PCi, 3-PCi, vi) with transaction expiry time tSetup,i = ti − T , where 3-PCi := pk i
• Generate σs,i ← ΠBLS.Sign

(
sk

(i)
p,i + sk

(i+1)
p,i , txSetup,i

)
• Send (txSetup,i, σs,i, tSetup,i) to P0 and P0 verifies if the transaction is correctly formed and checks if

ΠBLS.Vf(2-PCi, txSetup,i, σs,i) = 1, and aborts otherwise.

Payment Lock Phase

Parties P0, Pi−1, Pi, Pi+1 for i ∈ [2, n− 1] generate a payment lock for party Pi by doing the following:
1) Parties P0, Pi−1, Pi generate tx pay,i−1 = tx (3-PCi−1, pk

∗
i , v) with payment expiry time t̃i−1 and parties P0, Pi, Pi+1

generate tx pay,i = tx (3-PCi, pk
∗
i+1, v) with payment expiry time t̃i, such that t̃i−1 = t̃i + ∆.

2) Party P0 sends 3-PCi−1 to party Pi+1 and sends 3-PCi to party Pi−1

3) Parties P0, Pi−1, Pi and Pi+1 engage in the following interactive protocol to compute
`ki−1 ← Lock (sk i−1, tx pay,i−1, sk i, tx pay,i). The common input all parties is (pk i−1, pk i) and as private inputs P0 has(
sk

(0)
i−1, sk

(0)
i

)
, Pi−1 has sk

(i−1)
i−1 , Pi has

(
sk

(i)
i−1, sk

(i)
i

)
and Pi+1 has sk

(i+1)
i .

• (Round 1): Pi−1 generates σ(i−1)
i−1 ← ΠBLS.Sign

(
sk

(i−1)
i−1 , tx pay,i−1

)
and sends σ(i−1)

i−1 to Pi. Party Pi aborts if

ΠBLS.Vf
(
pk

(i−1)
i−1 , tx pay,i−1, σ

(i−1)
i−1

)
= 0 and continues otherwise.

• (Round 2): Pi+1 generates σ(i+1)
i ← ΠBLS.Sign

(
sk

(i+1)
i , tx pay,i

)
and sends σ(i+1)

i to Pi. Party Pi aborts if

ΠBLS.Vf
(
pk

(i+1)
i , tx pay,i, σ

(i+1)
i

)
= 0 and continue otherwise.

• (Round 3): P0 generates σ(0)
i−1 ← ΠBLS.Sign

(
sk

(0)
i−1, tx pay,i−1

)
and σ(0)

i ← ΠBLS.Sign
(
sk

(0)
i , tx pay,i

)
. It computes

σ′ ← ΠBLS.Agg(σ
(0)
i−1, σ

(0)
i ) and sends σ′ to Pi. Party Pi aborts if

ΠBLS.VfAgg
({

pk
(0)
i−1, pk

(0)
i

}
, {tx pay,i−1, tx pay,i}, σ′

)
= 0 and continues otherwise.

• Party Pi generates signatures σ(i)
i−1 ← ΠBLS.Sign

(
sk

(i)
i−1, tx pay,i−1

)
and σ(i)

i ← ΠBLS.Sign
(
sk

(i)
i , tx pay,i

)
. It then sets

`ki−1 := ΠBLS.Agg
(
σ

(i−1)
i−1 , σ

(i)
i−1, σ

(i+1)
i , σ

(i)
i , σ′

)
.

4) Parties P0, Pn−1, Pn, Pn+1 where Pn+1 is party P1, run the above steps that returns `kn−1 := l1 · l2 to Pn where
l1 := σn−1 and l2 := σn. Here σn−1 is a signature on transaction tx pay,n−1 := tx (3-PCn−1, pk

∗
n, v) and

σn ← ΠBLS.Sign(skn, tx pay,n) is a signature on some message tx pay,n (known to P0, Pn+1 and Pn) under public key pkn.
Payment Release Phase

The sender (parties P0, Pn+1) initiates the payment release by jointly generating σn with Pn. Parties Pi for i ∈ [n, 2] do the
following:
1) Check if ΠBLS.Vf(pk i, tx pay,i, σi) = 1 and if so, release the locks by computing

σi−1 := `ki−1/σi := Unlock(pk i−1, tx pay,i−1, pk i, tx pay,i, σi, `ki−1).
2) Store (txSetup,i−1, σs,i−1, tx pay,i−1, σi−1) to post on the blockchain if the case arises.

Fig. 8: BLS based Payment Channel Network Protocol run between parties P1, . . . , Pn



TABLE I
N U M B E R O F C A L L S T O T H E A L G O R I T H M S O F T H E N I Z K F O R LDL A N D O F T H E B L S S I G N AT U R E S C H E M E F O R E A C H PA R T Y D U R I N G

PAY M E N T S E T U P P H A S E ( F I G U R E 8 ) . H E R E P1 ’ S O P E R AT I O N S I N C L U D E T H O S E O F P0 A N D Pn+1 .

Party PNIZK,LDL
VNIZK,LDL

ΠBLS.KGen ΠBLS.Sign ΠBLS.Vf ΠBLS.Agg ΠBLS.VfAgg
P1 n + 1 2n n + 1 n n− 1 0 0

Pi, i ∈ [2, n] 2 4 2 4 2 2 0

as in existing proposals based on scriptless scripts [3]. For off-
chain privacy, our generic protocol reveals to the intermediate
node Pi the identity of (i) the sender P0, (ii) its neighbours Pi−1

and Pi+1, and (iii) the neighbours’ neighbours Pi−2 and Pi+2,
in that session. On the other hand, in our BLS-based protocol
the corrupted intermediate users only learn the identities of the
sender and of the direct neighbours (same as in [3]).

V I . I M P L E M E N TAT I O N A N D E F F I C I E N C Y A N A LY S I S

We implemented our BLS-based PCN protocol and we
compare its performance against the Schnorr and ECDSA based
PCN protocols from [3].

Instantiations. The three PCN protocols under consideration
make use of a NIZK (PNIZK,LDL

,VNIZK,LDL
) for LDL which

we instantiate with the Schnorr identification scheme [53] and
make non-interactive using the Fiat-Shamir transformation [54].
While this scheme is not known to be UC-secure (the classical
proof [55] is in the stand-alone model) we view this as a
reasonable compromise in favor of a more efficient protocol.
We further note that the same trade-off is common to other
works in the literature (e.g. [3]).

Efficiency and Comparison. We consider an n party pay-
ment path for the PCN. Given that the PCN protocols
of [3] also follows a similar structure, we compare the
timing cost of the operations performed in each phase:
The payment setup, payment lock, and payment release. We
measured the costs on a local machine with 1,8 GHz
Octa-Core Intel Core i7-8550U processor and 16
GB 2133 MHz LPDDR3 memory. We used the python li-
braries charm [56] and BLS signature library blspy [57]
for evaluating the ECDSA/Schnorr-based PCN protocol [3]
and our BLS-based PCN protocol, respectively. We ran the
operations 10K times and the measurements (taken as the
average) are reported in Table II. From [2], [3], we can also
see that multi-hop HTLC based payments where n = 5, takes
about 5 seconds to complete with a communication cost of 17
MB. This is much more expensive than the scriptless variants.
For extensive comparisons with non-private PCN protocols and
HTLC based protocols we refer the reader to [3].

In measuring the efficiency of the payment setup phase we
also consider the time to sign a revoke transaction tx revoke,i

for every txSetup,i (recall that tx revoke,i was used to realize the
expiry of the 3-party channel 3-PCi). Notice that the payment
lock phase is interactive, with 3 rounds of messages being
sent to party Pi who sets the lock `ki−1. While we do not
consider the network latency in our measurements, this does
not constitute the efficiency bottleneck of our approach.The more expensive setup phase for our BLS-based PCN
protocol comes from the generation of a 3-party local channel.

TABLE II
C O M PA R I S O N O F T H E C O M P U TAT I O N A L T I M E A N D

C O M M U N I C AT I O N C O S T S A C R O S S P C N P R O T O C O L S , F O R A PAT H
L E N G T H O F n. T I M E S A R E R E P O R T E D I N M I L L I S E C O N D S ( M S )

A N D C O M M U N I C AT I O N C O S T S A R E R E P O R T E D I N B Y T E S .

Phase Resource Schnorr [3] ECDSA [3] Our BLS
Setup Time 1.75 n 1.91 n 19.43 n

Comm. 128 n 128 n 242 n
Lock Time 4.58 (n− 1) 38.81 (n− 1) 13.78 (n− 1)

Comm. 256 (n− 1) 416 (n− 1) 196 (n− 1)
Release Time 0.0009 n 1.95 n 0.39 n

Comm. 0 0 0

We provide a more detailed overview of the operations
that constitute the setup phase and their computational costs
in Table I. For the lock phase, our BLS-based protocol performs
significantly better when compared to the ECDSA/Schnorr
variants: The signature and key aggregation property of BLS
signatures help significantly reduce the communication costs,
while the uniqueness property of the signatures help in saving
computation, as we discuss below.
Optimizations. We observe that, in the execution of two
consequent locking phase, each intermediate party Pi has
to generate two pairs signatures σ(i)

i−1 on txPay,i−1 and σ
(i)
i

on txPay,i, respectively. Since BLS signatures are unique, we
can safely generate each signature exactly once. Furthermore,
reduce the cost of the sender by half, leveraging a similar
observation. A naive implementation of our protocol (Figure 8)
would require the sender to run ΠBLS.Sign and ΠBLS.Agg, 2n
times each, twice for each lock, during the lock phase. However,
since the sender has to send signatures on the same transaction
twice with respect to the same secret key, he only needs to run
the signing algorithm once and re-send the same signature. For
additional clarity, we report the computation cost in the payment
lock phase in terms of the number of signature operations of
a BLS signature in Table III.

TABLE III
N U M B E R O F C A L L S T O T H E A L G O R I T H M S O F T H E B L S

S I G N AT U R E S C H E M E F O R E A C H PA R T Y D U R I N G PAY M E N T L O C K
P H A S E ( F I G U R E 8 ) . H E R E P1 ’ S O P E R AT I O N S I N C L U D E T H O S E O F

P0 A N D Pn+1 .

Party ΠBLS.Sign ΠBLS.Vf ΠBLS.Agg ΠBLS.VfAgg
P1 n + 1 0 n− 1 0

Pi, i ∈ [2, n] 2 2 2 1

V I I . C O N C L U S I O N

In this work we introduced the notion of lockable signatures
as the cornerstone to construct PCNs. As a result we obtain a
PCN protocol that does not require any special scripts and is



compatible with any signature scheme. Our approach expands
the scope of PCNs to signature schemes with extra properties
(e.g. aggregatable, post-quantum secure, etc.) and facilitates
payments across different chains. Our BLS-based PCN protocol
is the first that is fully compatible with the BLS signature
scheme and makes lightweight use of cryptographic tools, thus
offering competitive performances. As an exciting next step,
we plan to explore the large scale adoption of our BLS-based
construction as to study the benefits offered by the signature
aggregation in the context of PCNs.
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A P P E N D I X

A. More Formal Definitions - Lockable Signatures

We define a weaker version of the hiding property, which is
useful for one of our schemes. Such a property ensures that an
adversary, who is given a correctly generated lock, cannot output
the locked signature without knowing the locking signature.
This is formally captured in the experiment in Figure 9 which
is identical to EHi-CMA except now the adversary is always
given the correctly generated lock and has to output a valid
locked signature to win the experiment. The formal definition
is given in the following.

Definition 7 (Weak Hiding): A lockable signature LS is
weakly hiding if there exists a negligible function negl such
that for all λ ∈ N and for all PPT adversaries A it holds that

Pr[EWHi-CMAA,LS(λ) = 1] ≤ negl(λ)

where the experiment EHi-CMA is defined in Figure 9.

B. More Proofs - Theorem 3.1

We recall the aggregate extraction assumption from [38]
(Definition 4.3).

Definition 8 (Aggregate Extraction problem): The aggregate
extraction problem for a bilinear pairing group G0,G1,Gt

EWHi-CMAA,LS(λ)

Q := Q̃ := ∅

(pk , sk)← ΠDS .KGen(1
λ

)

(p̃k , s̃k)← ΠDS .KGen(1
λ

)

O := {SignO(sk , ·)SignO(s̃k , ·)}

(m, m̃, state)← AO
(pk , p̃k)

`k ← Lock(sk ,m, s̃k , m̃)

σ
∗ ← AO

(state, `k)

b0 := ΠDS .Vf(pk ,m, σ
∗
) = 1

b1 := (m /∈ Q ∧ m̃ /∈ Q̃)

return b0 ∧ b1

SignO(sk ,m)

σ ← ΠDS .Sign(sk ,m)

Q := Q ∪ {m}
return σ

SignO(s̃k , m̃)

σ̃ ← ΠDS .Sign(s̃k , m̃)

Q̃ := Q̃ ∪ {m̃}
return σ̃

Fig. 9: Experiment for weak hiding of lockable signatures

of order q is said to be hard if there exists a negligible
function negl, for all λ, k ∈ N such that k = poly(λ) for some
polynomial poly, and all PPT adversaries A, the following
holds,

Pr
[
ExpAgExtA,G0,G1,Gt(1

λ) = 1
]
≤ negl(λ)

where ExpAgExt is defined in Figure 11.
Proof 3 (Proof of Theorem 3.1): We will prove that the

hardness of aggregate extraction assumption holds if and only
if the hardness of chained aggregate extraction assumption
holds.
Only if. We first show that "only if" condition holds. That
is, aggregate extraction assumption for k = 2 implies the
chained aggregate extraction assumption. Assume towards the
contrary that chained aggregate extraction assumption does not
hold. This means there exists a PPT adversary A that wins
the ExpChAgExt experiment with non-negligible probability.
We construct a reduction algorithm R that participates in the
ExpAgExt experiment while making use of A as a sub-routine.

The reduction R gets as input ({Gi, Hi}i∈[2], σ). It sets
σ1 := σ and does the following,

for ` ∈ [2, n− 1] do

r`+1, s`+1 ← Z∗q

G`+1 :=
(
G`−1 · g

r`+1
1

)s−1
`+1

H`+1 := (H`−1)
s`+1

σ` := σ`−1 ·H
r`+1

`−1

It invokes the adversary A with inputs
({Gi, Hi}i∈[n], {σi}i∈[n−1]). It receives a (σ∗, j∗) as
output from A. Reduction R checks if j∗ ∈ [n], if not it
aborts.

If j∗ is odd, reduction R first computes computes F :=

H
(r3+s3r5+···+sj∗−2rj∗ )
1 . The reduction R outputs (σ∗/F, 1)

as its output to its own challenger.
If j∗ is even, reduction R first computes F :=

H
(r4+s4r6+···+sj∗−2rj∗ )
2 . The reduction R outputs (σ∗/F, 2)

as its output to its own challenger.
To see why the view of A is correctly simulated, notice that

(r3, s3, r4, s4, . . . , rn, sn) are chosen uniformly at random from
Z∗p, the values ({Gi, Hi}i∈[n]) are uniformly distributed. By
induction, we have the base case G1 := gx1

1 , H1 := gy10 , G2 :=
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Open Channel: On input (OpChannel, c〈u,u′〉, v, u
′, t, f) from a user u, the functionality checks whether c〈u,u′〉 is

well-formed (contains valid identifiers and it is not a duplicate) and eventually sends (c〈u,u′〉, v, t, f) to u′, who can either
abort or authorize the operation. In the latter case, the functionality appends the tuple (c〈u,u′〉, v, t, f) to B and the tuple
(c〈u,u′〉, v, t, h) to P , for some random h. The functionality returns h to u and u′.
Close Channel: On input (ClChannel, c〈u,u′〉, h) from either user u or u′, the ideal functionality parses B for an entry
(c〈u,u′〉, v, t, f) and P for an entry (c〈u,u′〉, v

′, t′, h), for h 6= ⊥. If c〈u,u′〉 ∈ L or either t or t′ is past the current time, the
functionality aborts. Otherwise the functionality adds (c〈u,u′〉, u

′, v′, t′) to B and adds c〈u,u′〉 to L. The functionality then
notifies other parties with the message (c〈u,u′〉,⊥, h).
Pay: On input (payChannel, v, c〈u0,u1〉, . . . , c〈un,un+1〉), (t0, . . . , tn)) from a user u0, the functionality executes the following
interactive protocol:
• For all i ∈ 1, . . . , (n+ 1), it samples a random hi and parses B for an entry of the form (c〈ui−1,u′i〉, vi, t

′
i, fi). If such an

entry does exist, it sends the tuple (u0, hi−1, hi, hi+1, hi+2, c〈ui−2,ui−1〉, c〈ui−1,ui〉, c〈ui,ui+1〉, c〈ui+1,ui+2〉, v −
∑n
j=i fj ,

ti−2, ti−1, ti, ti+1)to the user ui via an anonymous channel (for the specific case of the receiver the tuple is only
(hn+1, c〈un,un+1〉, v, tn)). Then it checks whether for all entries of the form (c, v′, ·, ·) ∈ P it holds that v′ ≥ (v −

∑n
j=i fj)

and that ti−1 ≥ ti. If this is the case it adds di = (c〈ui−1,ui〉, (v
′
i − (v −

∑n
j=i fj), ti,⊥) to P , where

(c〈ui−1,ui〉, v
′
i, ·, ·) ∈ P is the entry with the lowest v′i. If any of the conditions above is not met, it removes from P all the

entries di added in this phase and aborts.
• For all i ∈ {(n+ 1), . . . , 1}, it queries all ui with (hi, hi+1), through an anonymous channel. Each user can reply with

either > or ⊥. Let j be the index of the user that returns ⊥ such that for all i > j : ui returned >. If no user returned ⊥ we
set j = 0.

• For all i ∈ {j + 1, . . . , n} the ideal functionality updates di ∈ P (defined as above) to (−,−,−, hi) and notifies the user of
the success of the operation with with some distinguished message (success, hi, hi+1). For all i ∈ {0. . . . , j} (if j 6= 0), it
removes di from P and notifies the user with the message (⊥, hi, hi+1).

Fig. 10: Ideal functionality FPCN for PCNs (with weaker off-chain privacy).

ExpAgExtA,G0,G1,Gt(1
λ, k)

xi, yi ← Zq, ∀i ∈ [k]

σ ← g

∑
i∈[k] xiyi

0

(σ
′
, I
′
)← A({gxi1 , g

yi
0 }i∈[k], σ)

b0 := (∅ 6= I
′ ⊂ [k])

b1 :=

(
σ
′

= g

∑
i∈I′ xiyi

0

)
return b0 ∧ b1

Fig. 11: Aggregate Extraction experiment

gx2
1 , H2 := gy20 , σ1 := gx1y1+x2y2

0 . By induction hypothesis,
we have Gi := gxi1 , Hi := gyi0 , σi−1 := g

xiyi+xi−1yi−1

0 .

Gi+1 := g

(
xi−1+ri+1

si+1

)
1 := g

xi+1

1 , where xi+1 :=
xi−1 + ri+1

si+1

Hi+1 := g
yi−1si+1

0 := g
yi+1

0 , where yi+1 := yi−1si+1

σi := σi−1 ·Hri+1

i−1 := g
xiyi+xi−1yi−1+yi−1ri+1

0

:= g
xiyi+yi−1si+1

(
xi−1+ri+1

si+1

)
0 := g

xiyi+yi+1xi+1

0

By induction, we can see that the simulation by the reduction
R is faithful to the execution in the experiment ExpChAgExt.

Let us analyse the case for j∗ is odd (the even case of
analogous) why the reduction R’s output wins the experiment

ExpAgExt. Notice that,

σj∗ := g
y1
(
x1+r3+

∑j∗
i=5 si−2ri

)
+y2

(
x2+r4+

∑j∗−1
i=6 si−2ri

)
0

σ∗ := g
y1
(
x1+r3+

∑j∗
i=5 si−2ri

)
0 := g

y1x1+y1
(
r3+

∑j∗
i=5 si−2ri

)
0

F := H

(
r3+

∑j∗
i=5 si−2ri

)
1 := g

y1
(
r3+

∑j∗
i=5 si−2ri

)
0

Thus, σ∗/F := gy1x1

0 . Therefore (σ∗/F, 1) is a winning output
from R with respect to ExpAgExt.

Clearly R is efficient. Therefore, given our initial assump-
tion that A outputs a winning (σ∗, j∗) with non-negligible
probability in ExpAgExt, we have that R wins the experiment
ExpChAgExt with the same non-negligible probability. But
this means R is a PPT algorithm that breaks the aggregate
extraction assumption, which is a contradiction. Hence it must
be the case that no such PPT A can exist. This concludes the
"only if" direction.
If. Proving this direction is trivial. Here we build a reduction
algorithm R that plays in ExpChAgExt and runs a sub-routine
A that is participating in ExpAgExt with k = 2. The reduction
R receives a chained aggregate challenge and simply chooses
one of the n− 1 aggregates at random and gives it to A. Now,
whatever signature A outputs, R outputs the same signature
along with the index of the chosen aggregate. It is easy to
see that the simulation by R for the adversary A is faithful to
ExpAgExt. If A outputs a valid extraction for the aggregate it
was given as input with non-negligible probability, the reduction
R is able to win ExpChAgExt with the same non-negligible
probability. By contradiction, this proves the "if" direction.



C. Security Analysis of PCN Protocol for Any Signature

Proof 4 (Proof of Theorem 5.1): We now prove that our
protocol in Figure 7 securely US-realizes the PCN functionality
from Figure 10.

We describe a simulator S that handles subset of parties
P1, . . . , Pn that are corrupted by a PPT A and simulates the
real world execution protocol while interacting with the ideal
functionality FPCN . We have a static corruption where the
environment E at the beginning of a session specifies the
corrupted parties and the honest parties. The simulator S
faithfully impersonates the honest parties. For operations exclu-
sively among corrupted users, the environment does not expect
any interaction with the simulator. Similarly, communications
exclusively among honest nodes happen through secure chan-
nels and therefore the attacker does not gather any additional
information other than the fact that the communication took
place. For simplicity, we omit these operations in the description
of our simulator. The random oracle H is simulated by S via
lazy-sampling. The operations to be simulated for a PCN are
described in the following.

Channel opening and channel closing follows immediately
from the analysis from [2]. For the sake of completeness, we
describe here the two cases taken in verbatim from [2].

Channel Opening. Let u1 be the user that initiates the request.
We have two cases to analyze:

1) Corrupted u1: simulator S receives a (c〈u1,u2〉, β, t, f)
request from the adversary on behalf of u1 and initiates
a two-user agreement protocol with A to convey upon
a local fresh channel identifier c〈u1,u2〉. If the protocol
successfully terminates, S sends (open, c〈u1,u2〉, β, t, f)
to FPCN , which eventually returns (c〈u1,u2〉, h).

2) Corrupted u2: S receives a message (c〈u1,u2〉, v, t, f) from
FPCN engages the adversary A in a two-user agreement
protocol on behalf of u1 for the opening of the channel. If
the execution is successful, S sends an accepting message
to FPCN which returns (c〈u1,u2〉, h), otherwise it outputs
⊥.

If the opening was successful the simulator initializes an empty
list Pc〈u1,u2〉 and appends the value (h, v,⊥,>).

Channel Closing. Let u1 be the user that initiates the request.
We have two cases to analyze:

1) Corrupted u1: S receives a closing request from the
adversary on behalf of u1, then it fetches Pc〈u1,u2〉 for
some value (h, v,m, σ). If such a value does not exist
then it aborts. Otherwise it sends (close, c〈u1,u2〉, h) to
FPCN .

2) Corrupted u2: S receives (c〈u1,u2〉, h,⊥) from FPCN and
simply notifies A of the closing of the channel c〈u1,u2〉.

Channel Payment. In describing S’s operations for channel
payment, we begin by describing a series of hybrid executions,
where we begin with a real world execution and gradually
change the simulation in these hybrids and then we argue
about the proximity of neighbouring experiments. Simulator
S’s execution for the payment operation is defined as the final

hybrid’s execution. Below we describe the hybrid executions
first and later argue about their proximity. Note that the
switching of hybrid executions is performed over every session,
but one at a time and we only discuss here a single time for
simplicity and readability.
Hybrid H0: This is the same as the real execution of the
protocol in Figure 7.
Hybrid H1: This is the same as the above execution except now
the the MPC protocol in the payment setup phase is simulated
using Smpc,1 for the corrupted parties.
Hybrid H2: This is the same as in H1 except now the MPC
protocol for generating σs,· in the payment setup phase is
simulated using Smpc,2.
Hybrid H3: This is the same as in H2 except now for all i ∈
[2, n], the MPC protocol run between parties P0, Pi−1, Pi, Pi+1

for generating `ki−1 is simulated on behalf of the honest parties
using Smpc,3. The simulator Smpc,3 simulates the view for the
corrupted parties in the lock protocol.
Hybrid H4: This is the same as in H3 except now the MPC
protocol in the release phase for generating σn is replaced with
a simulator Smpc,4. The simulator Smpc,4 simulates the view
for the corrupted parties in the protocol for generating σn.
Hybrid H5: Is the same execution as H4, except now the
function output (given as input to the MPC simulator Smpc,3)
is computed differently. Specifically, for all i ∈ [2, n], we no
longer perform the following checks:

• sk
(0)
i−1 ⊕ sk

(i−1)
i−1 ⊕ sk

(i)
i−1

?
= ΠC.Open(d

(0)
i−1 ⊕ d

(i−1)
i−1 ⊕

d
(i)
i−1, ci−1)

• sk
(0)
i ⊕sk

(i)
i ⊕sk

(i+1)
i

?
= ΠC.Open(d

(0)
i ⊕d

(i)
i ⊕d

(i+1)
i , ci)

Instead, check if xor of the secret keys input by the adversary
for the MPC protocol is equal to the xor of the adversarial
keys obtained from the setup. Specifically, if for instance
Pi−1, Pi, Pi+1 are corrupted and P0 is honest, we have the
following checks

• sk
(i−1)
i−1 ⊕ sk

(i)
i−1

?
= sk

(i−1)
A,i−1 ⊕ sk

(i)
A,i−1 and d

(i−1)
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d
(i)
i−1

?
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(i−1)
A,i−1 ⊕ d

(i)
A,i−1 where (sk

(i−1)
A,i−1, d

(i−1)
A,i−1) and

(sk
(i)
A,i−1, d

(i)
A,i−1) were received by the adversary as output

from the payment setup phase on behalf of corrupt Pi−1

and Pi.
• sk

(i)
i ⊕ sk

(i+1)
i

?
= sk

(i)
A,i ⊕ sk

(i+1)
A,i and d

(i)
i ⊕ d

(i+1)
i

?
=
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(i)
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(i+1)
A,i where (sk

(i)
A,i, d

(i)
A,i) and (sk

(i+1)
A,i , d

(i+1)
A,i )

were received by the adversary as output from the payment
setup phase on behalf of corrupt Pi and Pi+1.

Here (sk
(i−1)
i−1 , d

(i−1)
i−1 ), (sk

(i)
i−1, d

(i)
i−1), (sk

(i)
i , d

(i)
i ), (sk

(i+1)
i ,

d
(i+1)
i ) are the inputs that the adversary sends to the MPC

protocol. The simulator extracts these inputs by interacting
with the ideal functionality of the MPC protocol of Lock.
The simulator uses Smpc,3 to simulate the MPC of the Lock
algorithm with this new check. The rest of the execution follows
as the previous hybrid.
Hybrid H6: Is the same execution as H5, except now for all
i ∈ [n−1] the shares of the opening information that adversary



receives in the payment setup phase are switched to random
strings. Specifically, if for example, Pi, Pi+1 are corrupt and
P0 is honest, d(i)

A,i, d
(i+1)
A,i that the adversary receives from the

setup are switched to random strings.
Hybrid H7: Is the same execution as H6, except now for all
i ∈ [n−1] the commitment ci that is generated by the payment
setup phase are replaced with commitments to 0λ, provided one
of P0, Pi, Pi+1 is honest on whose behalf Smpc,1 simulates.
Hybrid H8: Is the same execution as H7 except now for all
i ∈ [n − 1] the public key pk i is randomly sampled and the
adversarial shares of the secret key of the pk i are generated
randomly provided one of P0, Pi, Pi+1 is honest on whose
behalf Smpc,1 simulates.
Hybrid H9: Is the same execution as H8, except now for all
i ∈ [n − 1] the lock `ki is hardcoded in the simulation by
hardcoding first the signatures σi and σi+1 in the simulation.
Here σi is a signature on tx pay,i under the key pk i and σi+1

is a signature on tx pay,i+1 under they key pk i+1.
Hybrid H10: Is the same execution as H9, except now
for an honest Pi, if in some q1-th session, the adver-
sary outputs σ∗ such that ΠDS .Vf(3-PCi+1, tx pay,i, σ

∗) =
1, σ′ ← Unlock(3-PCi, tx pay,i, σ

∗, 3-PCi−1, tx pay,i−1, `ki−1)
and ΠDS .Vf(3-PCi−1, tx pay,i−1, σ

′) = 0, the simulation aborts
by outputting a special symbol abort1. This abort happens
when the adversary outputs a valid signature such that honest
user Pi pays the adversary through tx pay,i but is unable to
unlock a valid signature on tx pay,i−1 that pays to Pi.
Hybrid H11: Is the same execution as H10 except now, if in
some q2-th session, before an honest sender (P1 or P0) initiates
the payment release, adversary A outputs a signature σ∗ such
that ΠDS .Vf(3-PCi−1, tx pay,i−1, σi−1) = 1 the simulation
aborts by outputting a special symbol abort2. This abort
happens when the adversary is able to unlock a lock correctly
before the sender P1 initiates the unlock process.
Hybrid H12: Is the same execution as H11 except now, for
an honest sender P1 (or P0) and an honest intermediate
party Pi and the simulation aborts by outputting a
special symbol abort3 if in some q3-th session, the
adversary outputs σj for some j ∈ [i − 2] before
Pi outputs σi−1 such that ΠDS .Vf(pk i, tx pay,i, σi) =
1, ΠDS .Vf(pk i−1, tx pay,i−1, σi−1) = 1 and
ΠDS .Vf(pk j , tx pay,j , σj) = 1.
Simulator S: The execution of the simulator is defined as the
execution in H12 while it interacts with the ideal functionality
FPCN . Specifically, if the i-th payment (i ∈ [2, n]) is confirmed
S adds the entry (hi, v

∗− vi−1, tx pay,i−1, σi−1) to Lc〈ui−1,ui〉

where vi−1 is the amount in tx pay,i−1 and v∗ is the current
capacity of c〈ui−1,ui〉.

Below we discuss the indistinguishability arguments and we
use the notation ≈c to denote computational indistinguishability
for a PPT algorithm.
H0 ≈c H1 and H1 ≈c H2 and H2 ≈c H3 and H3 ≈c H4:
the indistinguishability follow from the security of the MPC
protocols in the payment setup phase. Security of the MPC

protocol for the derivation of keys guarantees the existence
of Smpc,1, the security of the MPC protocol for the signature
generation guarantees the existence of Smpc,2, the security of
the MPC protocol for the lock generation algorithm, which
guarantees the existence of Smpc,3 and finally the security of
the MPC protocol for generating σn guarantees the existence
of Smpc,4.
H4 ≡ H5: Notice that given the commitment scheme ΠC is
perfectly binding with unique openings, the old checks (in
H4) pass if and only if the new checks (in H5) pass. This
means that the function computed by the MPC simulator in
both hybrids is equivalent and therefore the two hybrids H4

and H5 are identical.
H5 ≡ H6: Notice that in H6 as in H5 the adversary simply
sees random shares of the opening information of commitment
ci for i ∈ [n− 1]. Therefore the view of the adversary in this
hybrid is identical to its view in H5.
H6 ≈c H7: Given that the only difference between the hybrids
is how the commitments ci for i ∈ [n− 1] are generated, the
indistinguishability of the two hybrids H6 and H7 follows from
the computational hiding property of the commitment scheme
ΠC.
H7 ≡ H8: Notice that in H8, as in the real protocol the
adversary simply sees random shares of secret keys. Therefore
the view of the adversary in this hybrid is identical to its view
in H7.
H8 ≡ H9: Notice that the change made in hybrid H9 does not
affect the functionality of the computation. We only change
the way the output of the simulated MPC is generated and
therefore the execution in H8 and H9 are identical.
H9 ≈c H10: The only change in hybrid H10 is the
abort in the simulation with the special symbol abort1.
Notice that this event occurs when the adversary out-
puts σ∗ such that ΠDS .Vf(3-PCi+1, tx pay,i, σ

∗) = 1,
σ′ ← Unlock(3-PCi, tx pay,i, σ

∗, 3-PCi−1, tx pay,i−1, `ki−1)
and ΠDS .Vf(3-PCi−1, tx pay,i−1, σ

′) = 0. We now show that
the probability with which this abort event occurs is at most
negligible in the security parameter, i.e., Pr[abort1|H10 ] ≤
negl(λ). To show this, we construct a reduction R against the
unlockability property of the lockable signatures.

We in fact reduce to a weaker notion of unlockability where
the adversary in EUn-CMA is only given oracle access to
Sign(sk , ·) (apart from Sign(s̃k , ·)) and the public keys (pk , p̃k)
instead of (sk , p̃k). In this regard consider the reduction R that
is given as input public keys (pk , p̃k). The reduction guesses the
session q1 where the adversary triggers the abort abort1 and
it guesses an index i ∈ [n] where this event occurs. It simulates
the execution of H10 faithfully except it sets pk i−1 = pk and
pk i = p̃k . The reduction outputs tx pay,i−1 and tx pay,i to its
challenger and obtains a lock `k . The reduction sets `ki−1 = `k
and hardcodes in the simulation as done in H10. The adversary
participating in the hybrid H10 outputs a signature σ∗ and the
reduction R outputs the same.

Clearly the reduction R runs in polynomial time as it
only performs efficient simulation operations. Notice that the



winning conditions of EUn-CMA are precisely the conditions
that lead to an abort abort1 in hybrid H9. It is easy to see
that if the adversary triggers the abort event abort1 with non-
negligible probability in session q1, the reduction also succeeds
in winning EUn-CMA with the same non-negligible probability.
Since this is a contradiction, it must be the case that abort1

occurs with negligible probability.

H10 ≈c H11: Notice that the only difference between the
hybrids is in the abort event abort2 in H11. The abort event
occurs if in some q2-th session the adversary is able to output
a valid signature σ∗ on tx pay,i under pk i for some i ∈ [n]. We
will show that the probability with which the abort event is
triggered is bound by a negligible probability with the help
of Lemma 2.

Lemma 2: There exists a negligible function negl such that
Pr[abort2|H11 ] ≤ negl(λ)

Proof 5: To show this, we consider the following hybrid
executions. Note that these hybrid execution are only designed
to show that the abort event abort2 occurs with negligible
probability. In other words, these hybrids do not feature in our
main line of hybrids as we have above.

Hybrid H11,j , j ∈ [0, n− 1]: Is the same execution as H11

where the sender has not yet initiated the release phase in the
q2-th session, except now the last j locks are generated by the
simulator by hardcoding the `kj in the simulator Smpc,3 where
the lock `kj ← Sim(pk j , pk j+1).

H11,j ≈c H11,j+1: Notice that the hybrid H11,0 = H11 and
the indistinguishability of hybrids H11,j and H11,j+1 follows
immediately from the hiding property of lockable signatures.
To show this we construct a reduction algorithm R that plays in
the hiding experiment EHi-CMA and runs a distinguisher (of the
hybrids) as a sub-routine. The reduction gets as input (pk , p̃k)
and sets pkn−j−1 = pk and pkn−j = p̃k . The reduction
outputs (tx pay,n−j−1, tx pay,n−j) to its challenger and obtains a
lock `k which it sets as `kn−j−1 = `k . The reduction hardcodes
`kn−j−1 in its simulation of the payment lock phase for parties
P0, Pn−j−1, Pn−j , Pn−j+1. Rest of the simulation by R is
according to H11,j . The distinguisher outputs a bit b′ and the
reduction outputs the same bit to its challenger.

Clearly the reduction R is efficient. To argue about the
success probability, notice that if b = 0 in EHi-CMA the
reduction R simulates H11,j+1, and if b = 1, the reduction R
simulates H11,j . Therefore if the distinguisher outputs b′ = b
with non-negligible probability more than half, the reduction
succeeds with the same non-negligible probability more than
half, which is a contradiction to the hiding property of the
lockable signatures.

By standard hybrid argument we have that H11,0 ≈c
H11,n−1. Notice that in H11,n−1, every lock is generated via
Sim and no information about signatures or honest party’s
secret keys is available in the view of the adversary. Since H11

is indistinguishable from H11,n−1, provided that the sender P1

has not initiated the release phase in session q2, we have that
the probability with which the adversary triggers abort event
abort2 in H11 must be the same in H11,n−1 except with a

negligible difference. For the adversary to trigger abort2 in
H11,n−1, it has to output σ∗ on tx pay,i under pk i for some
i ∈ [n].

We now show that the probability with which the adversary
can do this in H11,n−1 is at most negligible in the security
parameter, i.e., Pr[abort2|H11,n−1 ] ≤ negl(λ), by reducing
the occurance of the event to the unforgeability of the signature
scheme. We construct a reduction algorithm R′ that guesses
the q2-th session and some index i∗ ∈ [n]. It receives as input
a public key pk and simulates the view for the adversary A
faithfully as in H11,n−1 except that it sets pk i∗ := pk . If the
adversary outputs a σ∗ on tx pay,i∗ under public key pk i∗ , the
reduction R′ simply outputs (tx pay,i∗ , σ

∗) as its forgery in the
EUF-CMA game. Clearly R′ is efficient and if A outputs
such a valid signature and a message with non-negligible
probability, clearly R′ wins EUF-CMA with the same non-
negligible probability. This is a contradiction and therefore
bounds the probability with which abort2 is triggered to be
negligible. This proves that abort2 happens in H11,n−1 with
negligible probability and since H11 ≈c H11,n−1, we have that
abort2 happens in H10 only with negligible probability. This
proves our initial claim that H10 ≈c H11. �

H11 ≈c H12: The only difference between the hybrids is the
abort event abort3 in H12. We show that the abort event
happens only with negligible probability in H12. Notice that
the abort event abort3 is triggered in H12 if in some session
q3, for an honest sender P1 and an honest intermediate party
Pi, the adversary outputs σj on tx pay,j for some j ∈ [i − 2]
before Pi outputs σi−1. Consider the following sub-hybrids

Hybrid H12,j , j ∈ [0, i− 1]: Is the same execution as H12

where the sender has initiated the release phase in the q3-
th session, except now the last j locks from the lock `ki−1,
are generated by the simulator by hardcoding the `kj in the
simulator Smpc,3 where the lock `kj ← Sim(pk j , pk j+1).
Notice that H12 = H12,0.

H12,0 ≈c H12,1: InH12,1 the lock `ki−1 is switched to being
generated by Sim. To see the indistinguishability, notice that the
adversary does not have access to the lock `ki−1 and Pi does
not output σi−1 in this session. Therefore from the view of the
adversary both hybrids are computationally indistinguishable.

By a similar argument as in Lemma 2, we can show that
H12,j ≈c H12,j+1, and specifically H12 ≈c H12,i−1. Given
that all the locks `k1, . . . , `ki−1 in H12,i−1 are simulated by
Sim and are therefore completely independent of σi−1 and the
honest party Pi’s secret information. Given the sender has not
initiated the release phase for party Pi yet, the scenario is similar
to the case in the hybridH11. Again from a similar argument as
in Lemma 2, we can show that Pr[abort3|H12,i−1 ] ≤ negl(λ).
Since H12 ≈c H12,i−1, we have Pr[abort3|H12 ] ≤ negl(λ).
Therefore the hybrids H11 and H12 are computationally
indistinguishable.

Our final simulator S for the channel payment is defined as
the execution in H12 and this concludes the proof.



D. Security Analysis of PCN Protocol for BLS Signatures

Proof 6 (Proof of Theorem 5.2): We now prove that our
protocol in Figure 8 securely UC-realizes the PCN functionality
from Figure 10.

We describe a simulator S that handles subset of parties
P1, . . . , Pn that are corrupted by a PPT A and simulates the
real world execution protocol while interacting with the ideal
functionality FPCN .

For details about the operations of the simulator S in the
simulation specifically in channel opening and channel closing
operations of FPCN , we refer the reader to the initial part of
the analysis in Appendix C. We directly explain the simulation
in the channel payment operation of FPCN .

Channel Payment. In describing S’s operations for channel
payment, we begin by describing a series of hybrid executions,
where we begin with a real world execution and gradually
change the simulation in these hybrids and then we argue
about the proximity of neighbouring experiments. Simulator
S’s execution for the payment operation is defined as the final
hybrid’s execution. Below we describe the hybrid executions
first and later argue about their proximity. Note that the
switching of hybrid executions is performed over every session,
but one at a time and we only discuss here a single time for
simplicity and readability.

Hybrid H0: This is the same as the real execution of the
protocol in Figure 8.

Hybrid H1: This is the same as the above execution except
now for all honest parties (one by one) in the payment setup
phase, the NIZK proof for LDL is simulated using a simulator
SNIZK,LDL

.

Hybrid H2: Is the same execution as H1 except now the
simulator extracts the witnesses from the NIZK proofs output
by the corrupted parties during the payment setup phase. To do
this, the simulator uses the simulation-sound extractor E that
takes as input the statement, the proof of the corrupted parties
and a trapdoor, and outputs the witness for the statement. UC
secure NIZK-PoK extractors are provided with a trapdoor [58].
Here the witnesses of corrupted parties correspond to their
shares of the secret key of a common 3-party public key.

Hybrid H3: Is the same execution as H2, except now the sim-
ulator aborts by outputting a special symbol abort1 if in some
q1-th session of the protocol, the adversary outputs a σi, such
that σ′i−1 ← Unlock(pk i−1, tx pay,i−1, pk i, tx pay,i, σi, `ki−1)
and it holds that ΠBLS.Vf(pk i, tx pay,i, σi) = 1 and
ΠBLS.Vf(pk i−1, tx pay,i−1, σ

′
i−1) = 0. This abort happens when

the adversary outputs a valid signature such that an honest Pi
pays the adversary through tx pay,i but is unable to unlock a
valid signature on tx pay,i−1 that pays to Pi.

Hybrid H4: Is the same execution as H3, except now the
simulator aborts by outputting a special symbol abort2 if if
in some q2-th session of the protocol, the adversary outputs
a signature σi such that ΠBLS.Vf(pk i, tx pay,i, σi) = 1 before
a honest P1 (or P0) initiates the payment release phase. This

abort happens when the adversary is able to unlock a lock
correctly before the sender P1 initiates the release phase.

Hybrid H5: is the same execution as H4, except now we
have an honest sender P1 and an honest intermediate party
Pi and the simulation aborts by outputting a special sym-
bol abort3 if in some q3-th session of the protocol, the
adversary outputs σj (for some j ∈ [i − 2]) before Pi
outputs σi−1 such that ΠBLS.Vf(pk i−1, tx pay,i−1, σi−1) = 1
and ΠBLS.Vf(pk i−2, tx pay,i−2, σi−2) = 1.

Simulator S: The execution of the simulator is defined as in the
execution of H5 while it interacts with the ideal functionality
FPCN .

Below we discuss the indistinguishability arguments.

H0 ≈c H1: The hybrids are computationally indistinguishable
following from the zero-knowledge property of the NIZK proof
which guarantees the existence of a simulator SNIZK,LDL

. Here
we assume a NIZK proof that has a straight-line simulation
and therefore no rewinding is necessary during the simulation
by SNIZK,LDL

.

H1 ≈c H2: The indistinguishability follows from the simula-
tion sound non-interactive extractability of the NIZK proof,
that guarantees the existence of an extractor E .

H2 ≡ H3: The probability that abort1 happens in H3

is 0. Notice that the locks are of the form `ki−1 :=
σi−1 · σi and an honest Pi only accepts `ki−1 as valid
if ΠBLS.VfAgg({pk i−1, pk i}, {tx pay,i, tx pay,i+1}, `ki−1) = 1.
Given the uniqueness of BLS signatures (there exists exactly
one valid signature for a given message under a given public
key) and the aggregate verification ensures that valid signa-
tures σi−1 and σi are aggregated together in `ki−1, we have
Pr[abort1|H3 ] = 0. Hence the hybrids are identical.

H3 ≈c H4: The only difference between the hybrids is the
abort event abort2 in H4. We will show that the probability
that simulation aborts with abort2 in H4 is negligible. To show
this, we reduce such an abort event to the chained aggregate
extraction assumption (Definition 2). That is, we show that if
in some q2-th session, the adversary is able to trigger the abort
event abort2 in H4, then we can construct a reduction R that
uses this adversary as a sub-routine and breaks the chained
aggregate extraction assumption.

Consider a reduction algorithm R that receives as input
({Gi, Hi}i∈[n], {σ̃i}i∈[n−1]). It guesses the session q2 from a
polynomial number of sessions where the abort event occurs.
The reduction simulates the execution as in H4 to the adversary.
To do this, the reduction sets party P0’s public keys during the
setup phase (of the q2-th session) as pk

(0)
i := Gi for i ∈ [n].

It uses the simulator SNIZK,LDL
to generate simulated proofs

and uses the extractor E to extract the adversarial secret keys
sk

(i)
i , sk

(i+1)
i (for i ∈ [2, n − 1]). It simulates random oracle

queries to H in the following way. Whenever the adversary
queries tx pay,i (for i ∈ [n]), the reduction sets H(tx pay,i) := Hi.
When generating `ki−1 for i ∈ [2, n − 1], the reduction R
plays the role of P0 and sets σ′i := σ̃i sends the aggregate
signature σ′i to party Pi (corrupted by the adversary). The



adversary outputs σi. The reduction computes σ(0)
i := σi/(σ

(i)
i ·

σ
(i+1)
i ). The reduction can do this by first computing σ

(i)
i

and σ(i+1)
i as it knows the adversary’s secret keys sk

(i)
i and

sk
(i+1)
i . The reduction R then outputs (σ

(0)
i , i) to its challenger.

Clearly the reduction is efficient as it only performs polynomial
time operations and it faithfully simulates the view of hybrid
execution H4. It is easy to see that if the adversary outputs
a valid σi with non-negligible probability, the reduction R
successfully win in the experiment ExpChAgExt with a non-
negligible probability. This is a contradiction to the chained
aggregate extraction assumption and concludes the argument.
H4 ≈c H5: The only difference between the hybrids is the abort
event abort3 in H5. We show that the abort event happens only
with negligible probability in H5. To show this, let us analyse
when the abort event happens. We have an honest sender P1

and an honest intermediate Pi. For simplicity lets assume that
every other party in the payment path is corrupted by the
adversary. Let q3-th session be the one where the adversary
triggers the abort event. To trigger the abort event, the adversary
outputs a valid σi and σj for some j ∈ [i − 2] before Pi
can output σi−1. Notice that the adversary has `ki := σi ·
σi+1 and `ki−2 := σi−2 · σi−1. The adversary has no further
access to σi−1 from any lock other than `ki−2. Therefore
we can view P1, . . . , Pi−1 as an independent instance of the
payment path, where the adversary corrupts every party except
P1 the sender. To trigger the abort event, the adversary has to
produce σj , j ∈ [i− 2] before P1 initiates the release phase at
Pi−1. We can show that this event only occurs with negligible
probability with a reduction to the chained aggregate extraction
assumption analogous to the previous hybrid. This implies that
the probability the abort event abort3 occurs is also negligible.

Our final simulator S for the channel payment is defined as
the execution in H5 and this concludes the proof.


