
Getting Rid of Linear Algebra in Number Theory
Problems

Paul Kirchner and Pierre-Alain Fouque

IRISA/CNRS, Université Rennes 1, France,
{paul.kirchner,pierre-alain.fouque}@irisa.fr

Abstract. We revisit some well-known cryptographic problems in a
black box modular ring model of computation. This model allows us
to compute with black box access to the ring Z/mZ. We develop new
generic ring algorithms to recover m even if it is unknown. At the end,
Maurer’s generic algorithm allows to recover an element from its black
box representation. However, we avoid Maurer’s idealized model with
CDH oracle for the multiplication in the hidden ring by introducing a
new representation compatible with ring operations. An element is en-
coded by its action over the factor basis. Consequently, we can multiply
two elements with classical descent computations in sieving algorithms.
As the algorithms we propose work without using an expensive linear al-
gebra computation at the end, even though they manipulate large sparse
matrices, we can exploit a high-level of parallelism.

Then, we consider general groups such as imaginary quadratic class group
and the Jacobian of a hyperelliptic curve, and obtain new methods for
group order computation. The repeated squaring problem and the adap-
tive root problem used in the construction of Verifiable Delay Functions
are particularly easy to solve in the black box modular ring, the high
degree of parallelism provided by our method allows a reduction in the
time to solve them. We improve the smoothing time, and as a result,
we break Verifiable Delay Functions and factorize weak keys with lower
Area-Time cost.
Finally, we show new AT costs for computing a discrete logarithm over
an adversarial basis in finite fields.

1 Introduction

Factorization and Discrete Logarithm (DL) are the two most fascinating im-
portant cryptographic problems since the security of the RSA [74] and Diffie-
Hellman [25] cryptosystems are related to them. The overall structure of the
best known algorithms to solve them was already described in 1922 by Kraichik
in his pioneering work [48]: the first step consists in finding a large collection
of relations and the second one performs linear algebra computations on a very
large sparse matrix. While the first step can be fully parallelized as epitomized
by the title of the paper “Factoring by Electronic Mail” [52], the second one is
less easy to parallelize [87]. We introduce a new technique to avoid the expensive

2 Paul Kirchner and Pierre-Alain Fouque

linear algebra computational stage. The interest in finding parallel algorithms
for number theory problems has recently been put in front of the stage by the
tremendous research activities in Verifiable Delay Functions. They also intro-
duced new number theoretic problems. Cryptosystems can also be based on
various groups such as the group of points of an elliptic curve [44,63] by Koblitz
and Miller or the Jacobian of a hyperelliptic curve [45]. Buchman and Williams
have also proposed to use the class group of an imaginary quadratic orders [13].

Verifiable Delay Functions (VDF). VDF have been first proposed in [10] by
Boneh et al., after a preliminary work by Lenstra and Wesolowski [55]. In 2019,
two elegant VDFs have been constructed by Wesolowski in [89] and Pietrzak
in [69]. This research area is highly supported by the VDF Alliance as these
functions have numerous applications for blockchains and more generally de-
centralized setting such as randomness beacons. Their construction poses new
challenges for the cryptographic community since VDF should be computable in
a prescribed amount of time but not faster and should be easy to verify. Both
VDFs use the hard problem of computing an exponentiation by 2T in a group
of unknown order, a.k.a. repeated squarings, in which the naive algorithm has to
perform at least T sequential squaring operations. It is conjectured that there is
no parallelized algorithm that could speed up this computation. This problem
has been first proposed by Rivest, Shamir and Wagner in 1996 [75] to construct
a time-lock puzzle. These VDFs are non-interactive succinct proof arguments
for the computation of an iterated squaring in a group of unknown order, whose
security is based on the so-called adaptive root and low order element prob-
lems. An advanced application of these techniques is the Supersonic zk-SNARG
scheme [15]. It is believed that the assumptions hold in the group (Z/nZ)× (or
the group of squares for n a product of 2 safe primes), but a trusted setup is
needed. There are various ways to obtain a trustless setup. The first one is to use
a random n, but much larger; the class group of an imaginary quadratic number
field [89], and the Jacobian of hyperelliptic curves were also proposed [26].

Several recent works have investigated the security of these assumptions
based on idealized settings such as generic group model or the less idealized,
algebraic group model. For instance, Rotem and Segev [76] have shown that
speeding up repeating squaring is equivalent to factoring in the generic model.
However, it is well-known that the security of discrete logarithm schemes is not
based on the seminal generic lower bound given by Shoup [81], and the best
factoring algorithms are not generic. Our initial goal is to evaluate the security
of these assumptions in a more realistic adversarial model.

Cryptographic problems. The repeated squaring problem consists in com-
puting y = x2

T

given a random element x where T is a large value typically 230

as proposed in [11] in time less than T squarings. The adaptive root problem
in group G asks the adversary A to win the following security game. First, A
outputs an element w ∈ G. Then, the challenger randomly chooses a prime ` in a
large set of primes Primes(λ) depending on the security parameter λ and A(`)
must output w1/` ∈ G. We use additive notation for the group embedded in a
ring, so we call them repeated doubling and adaptive division in the following.

Getting Rid of Linear Algebra in Number Theory Problems 3

We also study more classical problems as computing the order of the group
(Z/nZ)× for an RSA modulus (equivalent to the factorization problem), com-
puting the order of the class group in an imaginary quadratic number fields, and
computing the order of the Jacobian of a hyperelliptic curve when the genus g
is large. We look at computing a variant of the discrete logarithm problem in
these groups:
Adversarial-basis DL Problem (ABDL). Given B = {g1, . . . , gn} chosen
by the adversary A in G, the challenger returns {xg1, . . . ,xgn} to A, who must
compute x.

This problem is close to the Static Diffie-Hellman (SDH) problem studied
in [12,19] where the queries to the DH oracle are adaptive. Since the final goal is
to compute a discrete logarithm using DH queries, we called it adversarial-basis
DL problem. Boldyreva in [9] proposed a variant of Static DH and if we can
solve our problem, we can solve her problem. Freeman also proposed another
variant [30] that is easier than ABDL. While solving Static DH breaks the se-
curity of the scheme, ABDL corresponds to a key recovery. To understand the
differences between these DH problems, we refer the reader to [46] by Koblitz
and Menezes. We emphasize that Static DH can be solved much faster than
ABDL [35,38].
Related work. Many algorithms for solving the factorization problem have
been proposed since Fermat, followed by Euler and Legendre. Kraichik devel-
oped more recent modern techniques that were exploited. Pomerance was then
able to find parameters in Kraichik method to define the quadratic sieve [73].
Then, Pollard used number field techniques, introduced for solving the discrete
logarithm problem by Coppersmith et al. [22] to factorize special numbers. The
development of the Generalized Number Field Sieve was accomplished by many
people as it is stated in [14]. The running time was in Ln[1/3, 1.923]. The best
constant was achieved by Coppersmith by using multiple number fields in [20] in
Ln[1/3, 1.902]. Bernstein [7] proposed a circuit for factoring and a new analysis in
the AT model to better model hardware cost, extended in [8], where the AT name
has been coined. Several devices for speeding up the sieving phase have been pro-
posed such as Twinkle in [53]. To factor specific RSA moduli, H. Lenstra [56]
extended Pollard’s p− 1-method [71] and Williams’ p+1-technique [91] for fac-
torizing numbers where p − 1 or p + 1 are smooth for a prime divisor p. The
number that needs to be smooth is now the order of an elliptic curve modulo
p, i.e. in the range [p + 1 − 2

√
p, p + 1 + 2

√
p], leading to a Lp[1/2,

√
2 + o(1)]

complexity.
For the discrete logarithm problem in FQ, where Q is a prime power, index-

calculus techniques were also developed by Kraichik since 1922. Coppersmith
et al. technique, a.k.a. the Gaussian integer algorithm was the fastest algo-
rithm [22]. In [78], Schirokauer developed a simple LQ[1/3, 1.923 + o(1)] al-
gorithm. Matyukhin adapted the Multiple Number Field Sieve to the discrete
logarithm case [58]. Then, Joux and Lercier made several improvements to the
GNFS algorithm for solving the discrete logarithm problem in [37] . When the
characteristic is in LQ[1/3,ω(1)], the best algorithm is due to Pierrot in [68]

4 Paul Kirchner and Pierre-Alain Fouque

with a LQ[1/3, 2.156] running time. In table 2, we adapt the complexities in the
AT cost model after optimizing the parameters.

For hyperelliptic curves, the best algorithm is by Gaudry et al. [33] in q2−2/g+o(1)
for small genus g, following the general algorithm of Adleman et al. [1], which is
subexponential when the genus is large. McCurley published a subexponential
algorithm for computing an imaginary class group [62] in 1987; Kirchner slightly
improved the complexity to L|∆|(1 + o(1)) [42].

Sutherland proposed an algorithm for computing the group order [83], similar
to Pollard’s p − 1 factoring algorithm. For a subexponentionally small fraction
of cyclic groups, the algorithm takes subexponential time. This is a problem if
we want a trustless setup, as the party selecting the group could run this attack
on a subexponential number of groups, and hope that no one would run it on
the chosen group. A workaround for this difficulty could be to select the group
using a randomness beacon [55].

Techniques. Black box models have been introduced in cryptography to study
the equivalence problems between the RSA and Factorization problems and the
DH and Discrete Logarithm problems. In these restricted computational models,
the adversary cannot exploit the whole bit representation of the group elements.
For instance, we can assume that the element a in a cyclic group G is encoded
as ag and we are not able to get the discrete logarithm a. The adversary can
only manipulate the encodings with some prescribed operations such as addition
of the group elements, test equality to 0 and 1. After den Boer in [24], Maurer
studied in [60] the relation between the Discrete Logarithm problem and the
computational DH problem. He proved an outstanding algorithm solving the
Discrete Logarithm problem given a Computational DH oracle in a black box
group. The method uses a CDH oracle to implement the multiplication in the
black box ring. In this model, it is possible to perform straight-line programs
on the elements with test equality. Then, he finds an elliptic curve with smooth
order, so that one can recover an element via a discrete logarithm computation
on the elliptic curve. However, his algorithm only works when the group order
is known.

We show how to compute the order at a speed which is almost optimal. Our
fast algorithm consists in using the CM method to find an elliptic curve with a
smooth order, and a known endomorphism ring. Then, solving a norm equation
in the imaginary quadratic field leads to the field cardinal.

Repeated doubling can be computed by binary exponentiation. The adaptive
division is solved by generating an integer divisible by all small primes, which is
done with elliptic curves, just as in elliptic curve factoring method. Overall, all
these problems can be solved much faster than a group order computation.

Computational model. Most of our results are in the AT model which allows
taking into account parallelism, and some degree of communication cost. The
circuit is decomposed as a square circuit of cells and each cell can only exchange
data with its adjacent neighbors. Since it is reminiscent to circuit cost evaluation,
we call it AT model following [8], and we try to minimize the product Area ×
Time. We emphasize that the AT model is designed to model application-specific

Getting Rid of Linear Algebra in Number Theory Problems 5

integrated circuits rather than common hardware. For example, multiplying two
matrices has the same AT cost as sorting their entries [86].

The two most time-consuming steps of the NFS algorithm are the sieving
and the matrix step. The matrix step identifies linear dependencies between
the entries of a sparse large matrix. Many hardware architectures have been
proposed in the past to carry out the matrix step, a.k.a. mesh sorting [7] and
mesh routing by Lenstra et al. [54]. Such devices are believed to provide faster
circuit for factorization. Such machines can factor with an AT product (AT
cost) of L[1/3, 1.976 + o(1)], while if we consider the best algorithm for factor-
ing [20] due to Coppersmith in the standard model, the number of operations is
L[1/3, 1.901 + o(1)].

Table 1: Our results, the group order is e and ` = gpf(e). Lx(α) is a shorthand
for Lx[1/2,α] and only the factoring is in the AT cost. Adaptive division takes
a negligible number of ring operations only for the current choice. Group order
is harder than finding factors. An exponent of 1 + o(1) is implicit everywhere.
When there is a ×, the complexity is the product of the two values.

Problem solved

Groups Ring
operations

(Z/nZ)×
AT cost Cl(Q[

√
∆])

Hyperelliptic curve on Fq
of genus g

small g large g

Previous work
(with limited parallelism) - Ln[1/3, 1.976] L|∆|(1) q2−2/g Le(

√
2)

Repeated doubling sec. 3.6
Adaptive division sec. 3.7 small Ln[1/3, 1.928] L|∆|(1) q Le(

√
2)

Group order sec. 3.4 L`(3/2)
L`(
√
2)×

Ln[1/3, 1.928]

L`(
√
2)×

L|∆|(1) q

L`(
√
2)×

Le(
√
2)

adversarial-basis DL sec. 3.5
known order, worst case L`(1/2)

L`(1/2)×
Ln[1/3, 1.928]

L|∆|(1.12) q Le(1.574)

Contributions. We extend Maurer black box group model to ring by showing
how to implement in practice multiplication with a descent algorithm on a factor
basis, and develop new algorithms for classical cryptanalysis problems such as
factorization and discrete logarithm without requiring linear algebra.

Our approach is to first use a black box modular ring model for Z/mZ for
group of known and unknown order. We show algorithms in this computational
model to perform basic operations such as computing the group order and re-
covering the elements using Maurer’s algorithm. We develop new efficient paral-

6 Paul Kirchner and Pierre-Alain Fouque

lelized algorithms to solve repeated doubling and adaptive division problems in
this model. The resulting algorithms are mostly embarrassingly parallel.

In a second part, we instantiate this algorithm on various groups. It follows
that we can compute the group order of a class group and of the Jacobian of
a hyperelliptic curve. In the low genus case, we significantly reduce the number
of operations needed, from q2−2/g+o(1) to q1+o(1) in the standard model. For the
others, our algorithms may be slower in the standard model, however they are
far more parallel; we can reach a quasi-polynomial circuit depth with only a
negligible overhead, and it has lower AT cost.

Then, we study special number fields, which correspond to the factoring
problem and discrete logarithm computation. We improve the smoothing time
to a constant of 1.004 in the standard model in heuristic claim 7, and 1.08 in
AT cost. This is low enough to decrease the complexity in RSA groups and
Fp in the AT model. In particular, we show how to factor an RSA modulus
if the greatest factor of p − 1 is less than ` with an AT cost of L`[1/2,

√
2 +

o(1)]Ln[1/3, 1.92757]. This is an improvement for a Ln[1/3,−ε] proportion of
RSA moduli. The algorithm uses the elliptic-curve factorization method in the
p− 1 algorithm, which is enabled by a GNFS-like algorithm.

We then look at the static discrete logarithm in an extension field FQ, as a
large subfield accelerates the smoothing time. It follows that in the AT model,
when there is a large subfield, we can solve ABDL problem faster than the
discrete logarithm problem the results are summarized in table 2. Our faster
smoothing allows faster practical attacks on Diffie-Hellman cryptosystem, see [2].
Outside of low genus hyperelliptic curves, we expect our algorithms to have no
practical impact.

Table 2: Complexity in the AT model of the Discrete Logarithm variants in Fpd
and Q = pd, only when the degree is even, with the best characteristic χ, and
only in a subgroup of size LQ[2/3, o(1)].

Problem

Characteristic
LQ[1/3,ω(1)] LQ[2/3,χ+ o(1)] LQ[2/3,ω(1)]

Discrete Logarithm LQ[1/3, 2.2621] [6] LQ[1/3, 1.7954] [6] LQ[1/3, 1.9761] [78]

ABDL sec. 4.2 LQ[1/3, 2.2013] LQ[1/3, 1.7472] LQ[1/3, 1.9230]

Getting Rid of Linear Algebra in Number Theory Problems 7

2 Background

Definition 1. (Smoothness). Let B be a positive integer. An integer, (resp. poly-
nomial, ideal in a number field) is said to be B-smooth if all its prime power
divisors (resp. the degrees of all its irreducible , prime ideals whose norms) are
bounded by B.

Subexponential complexities. For α and r are real numbers with 0 6 r 6 1,
the complexities will be expressed using the Ln[r;α] function equals to

exp
(
α(lnn)r(ln lnn)1−r

)
, for n→∞,

with natural logarithms. Thus, we get Ln[r;α] + Ln[r;β] = Ln[r; max(α,β)],
Ln[r;α]Ln[r;β] = Ln[r;α + β], Ln[r;α]Ln[s;β] = Ln[r;α] if r > s, Ln[r;α]k =
Ln[r; kα] and if α > 0, (log n)kLn[r;α] = Ln[r;α+ o(1)] for any fixed k so that
we can neglect log factors. The following theorem gives an estimation of the
probability that an integer 6 x is y-smooth in term of the complexity function.
It is implied by the Canfield-Erdős-Pomerance theorem [16].

Theorem 1. Let 0 < s < r 6 1 and 0 6 α,β. If x = Ln[r,α] and y = Ln[s,β],

ψ(x, y)

x
= Ln[r − s,−

α

β
(r − s) + o(1)],

where ψ(x, y) is the number of integers smaller or equal to x which are y-smooth.
Also, for any constant k > 0, and x large enough,

ψ(x, log(x)k)/x > x−k−o(1).

For example, a uniform integer less than 6 Ln[2/3,α] is Ln[1/3,β]-smooth
with probability Ln[1/3,−α/(3β)]. We abbreviate Ln[1/2,α] to Ln(α).

For the smoothness of polynomials, it is known that ordering polynomials by
increasing degree leads to the same result, as long as the smoothness degree is
not logarithmic [66]. The probability for a uniform degree d polynomial in Fq[x]
to be 1-smooth, where the factors are in a set of εq monic polynomials is larger
than εd/d!.

Complexity analysis. There is essentially only one calculation behind the
complexity statements which follow. It consists in remarking that the minimum
of ax+ b

x is in x =
√
b/a and equal to 2

√
ab. For example, if we have to perform

L`(ax + o(1)) operations at each iteration, and the algorithm succeeds in one
iteration if 2b integers sampled uniformly below ` are L`(x+ o(1))-smooth, the
total number of operations is

L`

(
ax+

b

x
+ o(1)

)
= L`

(
2
√
ab+ o(1)

)
.

Replacing the addition by a maximum simply removes the factor 2.

8 Paul Kirchner and Pierre-Alain Fouque

Smoothing and descent steps. Nearly all sieving-based algorithms for fac-
torization and discrete logarithm computation rely on a factor basis containing
small elements, where the definition of small depends on the case. Let us fo-
cus in the case of computing the discrete logarithm is a prime field. Since the
probability that a target element h = gx mod p is B0 smooth is low, individual
discrete logarithm computation runs into two steps: the smoothing step and the
descent step. The first step is iterative and relies on testing the smoothness of
randomly generated elements gth where t is a random and known exponent until
a B1-smooth decomposition is found. This step is usually performed using the
Elliptic Curve Method (ECM). The second step starts a recursive process for
each element less than B1 and greater than B0 found after the first step. For
each of these medium-sized elements, we compute a complete decomposition over
the factor basis. Each element is the root of a descent tree. We get a relation
involving the original element and others whose norm or degree depending on
the case, is strictly smaller than that of the root element. These smaller elements
become the leaves of the descent tree and as soon as all the leaves are in the
factor basis, the discrete logarithm can be computed by a tree traversal. Several
optimizations can be added to this principled algorithm. In the first step, we can
start to represent elements gth as u/v with u, v of half size.

Elliptic curves. Elliptic curves are central in our algorithms. In characteristic
larger than 3, a projective elliptic curve E can be put in the projective short
Weierstrass form y2z = x3 + axz2 + bz3. Points on this curve form a group,
additions can be computed as polynomials of coordinates. Given a point P on
the curve, we can forget its ordinate y and obtain ±P on the Kummer surface.
When we talk about the abscissa of a point, we have implicitly z 6= 0, for
example z = 1. The Frobenius endomorphism over Fq of an ordinary elliptic
curve can be embedded as τ in Q[

√
∆] where ∆ < 0. It follows that the group

order is (τ − 1)(τ − 1), while the field order is q = ττ . The group order can also
be written as q + 1 − τ − τ . The Hasse theorem follows from these properties:
|τ + τ | 6 2

√
q.

If d is not a square, we can consider the elliptic curve Ed : dy2z = x3+axz2+
bz3. It is the quadratic twist of E, and its group order is q + 1 + τ + τ .

A constant proportion of curves can be put in Montgomery form by2z =
x3 + ax2z + xz3, where b controls the twist [65]. They have the property of
fast doubling, and differential addition which leads to a fast scalar multiplica-
tion. Furthermore, we can quickly multiply points ±P on the Kummer surface,
without using the coefficient b.

Using modular forms, it is possible to create an elliptic curve from ∆. The
method is fairly involved, and the reader is referred to the papers by Schoof,
Atkin and Morain [79,4].

One of the main applications of elliptic curves is factorization [56]. Indeed,
if a curve E has a B-smooth order modulo p, a factor of n, then with P a
non-trivial point of the curve, B!P is equal to 0 modulo p. We thus compute
B!P modulo n, and the gcd of the z coordinate with n should give a non-trivial
factor. Taking Lp(

√
1/2 + o(1)) curves with B ≈ Lp(

√
1/2) leads to a heuristic

Getting Rid of Linear Algebra in Number Theory Problems 9

complexity of Lp(
√
2+o(1)) arithmetic operations. Lenstra, Pila and Pomerance

proved a variant of this algorithm using hyperelliptic curves, but with a far higher
expected running time [57].

3 Black Box Modular Ring Model

We introduce here the black box modular ring model, and study the complexity
of solving various problems in it. It consists in black box access to the ring Z/mZ,
which means that we can add, subtract, multiply, test equality and have access
to representations of 0 and 1 while not knowing the number used and m. Our
results culminate in the ability to find m, and recover an element from its black
box representation.

3.1 Motivation

We first explain the interest of such a model. Finite cyclic groups Z/mZ available
only through a (mostly) black box are ubiquitous in cryptography and number
theory. For example Diffie-Hellman used the units of a finite field Fq, RSA uses
(Z/nZ)×. In this section, the group is denoted additively, even though some ap-
plications typically use a multiplicative notation. It is also possible to consider
abelian varieties over finite fields for maximum efficiency, or class group of imag-
inary quadratic fields. While these abelian groups may not be cyclic, they are
almost always of the form H×Z/mZ with H a group with a very small cardinal.
It then follows that solving some problem in the abelian group can be efficiently
reduced to solving it in the cyclic part, so we will focus on this case only.

While the group and black box aspects are clear, the multiplication is miss-
ing. Indeed, when group elements are of the form ag for a known generator g,
multiplication is also known as the Computational Diffie-Hellman problem. This
led to Maurer’s reduction [60] showing how to compute a discrete logarithm us-
ing a CDH oracle. This result is our last step, recovering an element, and we
recall the algorithm which uses an elliptic curve with smooth order in section 3.5.

Cryptanalysis usually provides a descent algorithm on the given group. It
selects generators (gi) of the group, called a factor base, and a descent algorithm,
given an element a of the group to find in time T an integer vector x with
a =

∑
i xigi. Further, the vector x is always short and sparse, so we will assume

that only Bo(1) entries are non-zero, and they are bounded by Bo(1).
Our model then represents an integer a as (agi)i, so that group operations

have a complexity of B. Then, we can compute ax for any x in the group, simply
by using a descent on x =

∑
i xigi, so that

ax =
∑
i

xi(agi).

Multiplication of two representations simply consists in repeating this B times.
Once the descents are computed, we just need to sort elements; this can be done
with AT cost B1/2+o(1) [86].

10 Paul Kirchner and Pierre-Alain Fouque

An important point is that the complexity does not depend on the size of
a or b as integers, and indeed it will be exponentially large in our algorithms.
Minimizing the number of ring operations is much more important than min-
imizing additions, or operations outside of the ring. Using double-and-add, we
can create an integer with l bits in 2l additions.

For practical purpose, we can use another representation, with a multiplica-
tion matrix Ma where agi =

∑
j(Ma)i,jgj , and Ma is sparse and small. Multi-

plication matrices can be added and multiplied, and descents are only needed
to make them sparser, so that we can slightly decrease their number. However,
at least in the worst case, additions may cost much more. This is analogous to,
and inspired by a Fully Homomorphic Encryption construction [34].

We will discuss the specificities of each group, and of the descent in the next
section.

3.2 Lower bound for computing the order in the black box model

We show that extracting square roots in a black box ring model of Z/pZ is harder
than finding a factor of a multiple n of p. Indeed, we can use Z/nZ as a ring
model of Z/pZ where equality tests compute the gcd with n. in our computational
model. The reduction between the square root computation and the factorization
of n is classical and consists in sampling x uniformly in (Z/nZ)× and tests
whether

√
x
2 is equal to ±x. If n has at least two factors, with probability at

least 1/2, we can recover a non-trivial square root which allows us to factor n.
As the most efficient algorithm for factoring a multiple of p is Lenstra’s

Elliptic Curve Method [56] with complexity Lp(
√
2+o(1)), this complexity bound

gives a lower bound on the complexity of solving the group order problem in our
model. Moreover, this also shows that we can use the ECM algorithm for solving
our problems without impacting too much their overall complexities.

In sections 3.3 and 3.4, we develop algorithms to recover the ring order in
the black box computational ring model.

3.3 Finding an almost multiple of the ring order

In this subsection, we show how to reduce the general problem of finding the
order m of the ring to the problem of finding the order of Z/`Z where ` is
an unknown prime. For doing this, it is enough to find an integer n such that
` - n and m

` |n, or an “almost multiple” of m. Indeed, as n(Z/mZ) = Z/`Z,
multiplication by n reduces our problem to Z/`Z. Once ` is known, solutions
can be recovered with a multiplication by n−1 mod `.

The integer n is built using a variant of Lenstra’s Elliptic Curve Method.
We pick random x0, y0 and a, compute b = y20 − x30 − ax0 and work with the
projective elliptic curve y2z = x3 + axz2 + bz3 to avoid divisions. The value b
is chosen so that P = (x0 : y0 : 1) is on the curve. We now define ni as the z
coordinate of i!P , which can be computed with O(i log i) ring operations. Our
candidates for n are the products Nj =

∏
i<j ni. Indeed, the probability that

Getting Rid of Linear Algebra in Number Theory Problems 11

`|ni is roughly the probability that i! divides the order of the i-th curve modulo
`. Assuming this order is uniform, the theorem 1 suggests this probability is
logi(`)

−(1+o(1)) logi(`). We thus expect the first i where `|ni to be L`(
√
1/2+o(1)),

for a total of L`(
√
2 + o(1)) computations.

Then, we compute the smallest Nj = 0 mod m and Nj−1 is most likely a
candidate. First, with q = gpf(m), the greatest prime factor of m, we have
j ∈ Lq

(√
1/2 + o(1)

)
log logm with overwhelming probability, as there are at

most logm prime factors. Most likely m
gcd(m,Nj−1)

has few prime factors, and in
most cases one, that is Nj−1 is an almost multiple of m. If this is not the case,
we resample the ith curve and also the point, and continue. The number of ring
operations is L`(

√
2 + o(1)).

If Nj−1 is an almost multiple, we can find ` using the algorithm of the next
subsection. Repeating with `(Z/mZ), we can find all prime factors of m with
their multiplicities, and therefore m.

Heuristic Claim 1 We can find a multiple, and an almost multiple of the order
m of a black box modular ring with Lgpf(m)(

√
2 + o(1)) ring operations.

3.4 Finding the prime group order

We assume here that we are working over Z/`Z, with ` > 1000. Our goal is to
find the hidden prime order `. We will describe an easy but slow algorithm for
this task, and then a faster, but significantly more complicated one.

Given an elliptic curve and a point P on it, we first show how to find the order
of the point when it divides F =

∏
i p
ei
i . We compute

∏
i6j p

ei
i P for successive j

until this is equal to zero. Next, we compute pej
∏
i<j p

ei
i P for successive e until

this is equal to zero. The order of P is then the order of pejP , which is computed
recursively, multiplied by pej . The complexity is then O(logF) per prime factor
of the order.

The method for finding ` consists in remarking that ` + 1 = |E|+|Ed|
2 where

Ed is the unique quadratic twist of E, of equation dy2z = x3 + axz2 + bz3 (d
is not a quadratic residue and |E| is the order of the elliptic curve E). Then,
we sample E randomly until we find that the exponent of both E and Ed are
different, and smooth. The easiest way to compute on Ed is to use Montgomery
curves (dy2z = x3+ax2z+ bz3), as arithmetic on the curve depends only on the
abscissa, and not on the ordinate or the twist parameter d [65].

It is in general true for short Weierstrass curves that the abscissa of kP does
not depend on the ordinate of P = (x0 : y0 : 1) [63].

It is known that the exponent is often close to the order of the group [82,
Section 4], so that guessing the curve orders is easy.

With logF = `(
√
2/2+ o(1)), we can compute the exponent of E with prob-

ability L`(
√
2/2 + o(1)). When it is computed, we use logF = `(

√
2 + o(1)) on

Ed, which is computed with probability L`(
√
2/4 + o(1)).

Heuristic Claim 2 We can find the prime order ` of a black box modular ring
with L`(5

√
2

4 + o(1)) ring operations.

12 Paul Kirchner and Pierre-Alain Fouque

We now show how to decrease this to L`(
√
2 + o(1)) multiplications. Be-

fore explaining this faster technique to compute the prime order group, we will
present other algorithms that we need to present this technique. The first black
box algorithm shows that if we have an elliptic curve with smooth order over F`,
we can recover it efficiently if we know its endomorphism ring in time L`(o(1)).
The second algorithm shows that we can compute a root of a polynomial in the
black box ring model. The third one uses this to build elliptic curves with the
CM method. This section can be skipped at first read.

Elliptic curves order with known Frobenius discriminant. Suppose we
have an ordinary elliptic curve with a known order N , and an endomorphism
ring with known Frobenius discriminant ∆. Then, we have ` = ττ and N =
(τ − 1)(τ − 1) where τ ∈ Q[

√
∆] is the Frobenius endomorphism.

The algorithm starts by factoring N =
∏
i p
ei
i . Then, we factor the ideal

(pi) = pipi in the number field Q[
√
∆]. The factorization of the ideal (τ − 1)

is for some vector x,
∏
i p
xi
i pei−xi

i . We then check for all x with 0 6 xi 6 ei if
this ideal is principal. In an imaginary quadratic field, a generator is a shortest
vector of the ideal, so that it is polynomial time. The generators are given by the
product between a generator and all units, and there are at most 6 units in an
imaginary quadratic field. At some point, a generator will be τ − 1. We deduce
a candidate ` = ττ and check if ` = 0 in the ring.

Alladi found the average of
∑
ei (if N were a uniform smooth number) [3],

which leads to a

O

(√
log `

log log `

)
bound. The inegality of arithmetic and geometric means leads to a bound of

2
O
(√

log `
log log `

)
= L`(o(1))

on the number of x candidates, and the complexity of the recovery.
In our case, −∆ is sufficiently small for a class group computation to be

run, which turns the problem into a “random” knapsack problem with density
2−O(log log l) = log−O(1) `. The knapsack problem can in turn be solved using
lattice reduction [49] or other means [43].

We will now explain how to use the CM method [79] to generate L`(
√
1/2+

o(1)) curves with a known Frobenius discriminant ∆.

Root finding. We consider a polynomial P (x) of degree d with coefficients in
the black box ring, with d distinct roots. We show how to efficiently find a linear
factor of P (x). First, Cantor and Kaltofen found an algorithm which multiplies
polynomials in a black box ring efficiently [18]. Second, it can be used to obtain
a fast gcd algorithm, for a complexity of O

(
d log2 d log log d

)
in degree d [64].

We can do this without division if we drop the condition that the gcd is monic.

Getting Rid of Linear Algebra in Number Theory Problems 13

We precompute a Montgomery elliptic curve E, with a smooth exponent.
We assume that it is ordinary. A putative exponent e 6 2` is then computed.
For factoring, we start by sampling s(x) ∈ Z[x]/(P (x)) with uniform coefficients
between 0 and 100de2. As e >

√
`/2, s(x) is almost uniform in (Z/`Z)[x]/(P (x)).

We define Q as the point with abscissa s(x) in the ring (Z/`Z)[x]/(P (x)). Then,
we compute f(x)/g(x) the abscissa of eQ. If the degree of gcd(g(x),P (x)) is 0
or d, we restart. Otherwise, we continue with gcd(g(x),P (x)) or a generator of
(P (x)/ gcd(g,P (x))), whichever has the lowest degree.

Let r be a root of P (x). Then r is a root of g(x) iff the point(s) with abscissa
s(x) mod (x − r) are on a curve with order dividing e. We now prove that it is
unlikely if the points with abscissa s(x) mod (x− r) are on the quadratic twist
of E.

Let t be such that the order of the curve is ` + 1 − t, so that the quadratic
twist has order ` + 1 + t. Mestre [79, Theorem 3.1] proved there is a divisor
g > 4

√
p of either `+ 1− t or `+ 1+ t. Hasse theorem indicates that |t| 6 2

√
p,

so that exactly one of the two orders is divisible by g and therefore

gcd(e, `+ 1 + t) = gcd(`+ 1− t, `+ 1 + t) 6
`+ 1 + t

2
.

This implies that for at least `−1+t
4 > `−1−2

√
`

4 > `
5 different abscissae, the

corresponding point is not killed by e.
The statistical distance between s(x) and uniform is bounded by e2

40` > 1
30 .

For the algorithm to restart, d−1 roots must behave in the same way as the last
one. Hence, the probability that gcd(g(x),P (x)) has degree 0 or d is less than

max

(
1− 1

5
,
`+ 1− t

2`

)d−1
+

1

30
6

5

6
.

If this is not the case, the degree of P (x) is divided by at least 2, and the expected
complexity is

O(d log(`d) log d log log d).

We can also detect if P (x) has no roots. It is very unlikely that E (or the
quadratic twist) has a smooth number of points over a strict extension of F`, so
that a restart is almost guaranteed. Stopping after −10 log(ε) restarts leads to a
failure probability of ε.

CM method. We shall use −∆ 6 D = L`(
√
2+ o(1)), but only when the class

group of K = Q[
√
∆] is LD(1/2)-smooth. This heuristically leaves DLD(−1/2+

o(1)) candidates. For each subgroup G of the class group of K of prime power
order, we compute

PG(x) =
∏
a∈G

(x− j(a))

where a any ideal in the class, and j(a) is the j-invariant of the complex el-
liptic curve C/a. CM theory dictates that PG(x) has integer coefficients, and
K[x]/PG(x) is an extension of K with Galois group G.

14 Paul Kirchner and Pierre-Alain Fouque

We use the previous algorithm to check that PG(x) has indeed a root, which
is equivalent to having |G| roots. This takes a total of DLD(1/2 + o(1)) ring
operations.

If D passes all checks, then Artin reciprocity law implies that ` is a product
of two algebraic integers in K, and the CM method will be able to build a curve.
We expect the class of the factors of ` to be uniformly distributed in the class
group, of cardinal O

(√
−∆ log(−∆)

)
. This leads to an expectation of√

DLD(−1/2 + o(1)) = L`(
√
1/2 + o(1))

curves.
The CM method now computes PG(x) where G is the class group, extracts

a root j of it, and builds (at least) two elliptic curves with this j-invariant. As
P ’s coefficients have a bitsize of |∆|1/2+o(1) [28], we need |∆|1+o(1) additions to
transform them into the black-box model. The total number of these operations
is

D
√
DLD(O(1)) = L`(

√
9/2 + o(1)).

The factorization takes L`(
√

1/2 + o(1)) ring operations per curve and this
can be decreased using the tower of Galois extensions [29,84]. Once the curve is
built, we check for L`(

√
1/2 + o(1))-smoothness, for a total of

DLD(1/2 + o(1)) +
√
DL`(

√
1/2 + o(1)) = L`(

√
2 + o(1))

ring operations.
If we want to minimize the total number of ring operations, rather than

multiplications, we use D = L`(1 + o(1)).

Heuristic Claim 3 We can find the prime order ` of a black box modular ring
with L`(

√
9/2+o(1)) additions and L`(

√
2+o(1)) multiplications. Alternatively,

this can be done in L`(3/2 + o(1)) operations.

3.5 Recovery in prime order group

Given an element x in a black box ring Z/`Z with known `, we have to find x.
This problem was studied by Maurer [60], we give a variant of his algorithm for
completeness. The inverse of a is computed with a`−1.

We first find a cyclic elliptic curve E (with known coefficients, i.e. not in
the black box) with L`(1)-smooth order and a generator g. This can be done in
L`(1/2+o(1)). We then sample uniform shift s ∈ Z/`Z until x+s is the abscissa
of a point on our elliptic curve, which can be checked since we know `. Then, we
use Pohlig-Hellman’s algorithm [70] to compute its discrete logarithm ±a, with
respect to g, in time L`(1/2+ o(1)). Finally x+ s is recovered as the abscissa of
±ag.

In case the ring operations are very expensive, we can try `ε curves to find a
log1/ε+o(1)(`)-smooth order, for a total of O

(
log1+1/(2ε)+o(1) `

)
ring operations.

With Pohlig-Hellman’s algorithm, this can be extended to any Z/mZ.

Getting Rid of Linear Algebra in Number Theory Problems 15

Heuristic Claim 4 Given m, and an element a in the black box model Z/mZ,
we can find a with Lgpf(m)(1/2 + o(1)) operations.

3.6 Repeated doubling

We have to compute, given x in the black box ring, 2ex. Without using the
multiplication, we can compute this in e repeated doubling of x, a process usually
called “binary exponentiation” when Z/mZ is represented as a multiplicative
group. Here, we can compute 2e with fast binary exponentiation so that the
total ring complexity is (1 + 2

log log e) log e.
In our application, x may not be fully represented as an element of the ring,

i.e. we may not know all (xgi)i; nevertheless, a descent on x and the computation
of 2e allows to quickly compute the group element 2ex.

3.7 Adaptive division

The task of adaptive division consists in outputting a w, and then for a q 6 Q
prime uniformly sampled, we have to compute w/q. Without ring operations, we
can take w as the product of all primes less than Q so that w/q can be computed,
for a total of O(Q) operations.

We propose to take for w a Ni with the notations of section 3.3 with i =
LQ(

√
1/2 + o(1)). Then, it is likely that q divides Ni as integers, and we then

compute Ni/q.
Given a straight line program with ring operations computing the integer

a [47,88], we can transform it into one computing ba/qc with roughly the same
size. Indeed, we proceed by induction where numbers are represented with the
form qa+ r. If we want to multiply, we have:

(qa0 + r0)(qa1 + r1) = q(qa0a1 + r0a1 + a1r0 + br0r1/qc) + (r0r1) mod q.

All other operations can be carry out in the same manner. For a small q, which
is our case, this is efficient.

Heuristic Claim 5 We can solve the Adaptive division problem in LQ(
√
2 +

o(1)) operations.

This is much less than Q as the security parameter proposed in [89] seems to
suggest since Q is exponential in the security parameter, while we show here
efficient algorithms in our black box model. In the next section, we will show
how to perform the ring operations in various groups.

4 Applications

We emphasize here that previous index-calculus-like algorithm [48,14,78,1] use
typically a Block Wiedemann algorithm [21] with a large dimension m on a
sparse matrix. As such, the space needed is proportional to m and the block size

16 Paul Kirchner and Pierre-Alain Fouque

k, which limits the number of processors to around k. Also, k > m1/ω, the lattice
reduction step in the Block Wiedemann algorithm has to be parallelized, which
is difficult [85]. Thomé’s algorithm needs a time bounded by m1+o(1) and an area
of (mk)1+o(1) when the field elements are with mo(1) bits. As a result, even when
the algorithms proposed use more operations, they are still of interest. This is
especially important for Verifiable Delay functions where the parallel adversary
has to compete with a single-thread user.

4.1 Picard groups, the general case

Class group of a quadratic number field. Let K = Q[
√
∆] be a quadratic

number field. The group G is the class group, usually denoted multiplicatively.
Multiplication of group elements corresponds to the multiplication of ideals,
followed by a lattice reduction, which allows the representative to have a norm
bounded by O

(√
|∆|
)
. The factor base consists of all prime ideals of degree

one smaller than B = L|∆|(1/2). Descent proceeds by randomizing the class, i.e.
multiplying the input by a sparse random combination of factor base elements,
followed by a smoothness test of the norm. Using ECM this takes negligible time,
and we need L|∆|(1/2 + o(1)) trials. The running time for a ring operation is
therefore L|∆|(1 + o(1)).

The class group cardinal is “random”, which leads to a total running time
of L|∆|(1 + o(1)) for a vanishing fraction of quadratic number fields (when the
group order is |∆|o(1) smooth).

We can use a smoothness bound of logω(1) |∆| in ECM, while keeping a
complexity of L|∆|(1/2 + o(1)) for a descent. Thus, we have that for any depth
logω(1) |∆|, there exists a circuit with L|∆|(1 + o(1)) gates for a ring operation.
We also obtain a time of L|∆|(1/3+o(1)) for a circuit with area L|∆|(2/3+o(1)).

With previous algorithms, we have an AT cost at L|∆|
(√

25
24 + o(1)

)
when us-

ing a factor base with L|∆|
(√

1
6 + o(1)

)
elements. The time taken is L|∆|

(
1
2 + o(1)

)
.

Jacobian of a hyperelliptic curve. Now we set K = Fq(x, y)/(y2 + h(x)y −
f(x)) where the degree of h is at most g, and the degree of f is 2g + 1, and the
curve is non-singular. The class group ofK is then the Jacobian of a hyperelliptic
curve of genus g, and is our group G. Multiplication is as above, we first multiply
the ideals and then use lattice reduction (in a degree sense) to reduce the degree
of the generators to at most g [17].

We take in our factor base qLqg (
√

1/2+ o(1)) (or just q for small g) polyno-
mials with minimal degree. For descent, we randomize as above and factor using
any polynomial factoring algorithm until the factors are in the factor base. The
number of trials is then less than Lqg (

√
1/2 + o(1)), which leads to a multipli-

cation running time of
qLqg (

√
2 + o(1)).

Getting Rid of Linear Algebra in Number Theory Problems 17

We conclude as above: for a vanishing fraction of hyperelliptic curves, we can
solve ABDL and find the group order in time

qLqg (
√
2 + o(1)).

(For small g, we have a factor base of size q, for a multiplication complexity
of only O(qg!g log q).) Further, for any hyperelliptic curve, we can compute its
order with the second algorithm in time

qLqg (2
√
2 + o(1))

and solve ABDL when the group order is known in time

qLqg (
√

3/4 +
√

1/2 + o(1)).

When g is small, and the order is known, ABDL is solved in time

qg! log(q) · log1+g/2+o(1)(q).

This is better than the previous time of q2−2/g+o(1) for a discrete logarithm given
|G| by Gaudry et al. [33] for any g > 3.

For ng small, say bounded by log log q, we can solve the same problem over
the finite field Fqn with the same complexity [80,32]. Indeed, we can restrict the
coefficients in our factor base to Fq. The descent now has to solve a system of
ng polynomial equations with ng variables, which can be done in time qo(1) and
with success probability of q−o(1). Overall, we obtain a q1+o(1) running time.

In the same way, a circuit with depth logO(1)(q) and with q1+o(1) gates can
compute a multiplication. For optimizing the AT cost of a ring multiplication,
we restrict to the factor basis to bq1−1/(2g+1)c elements as Harley proposed [31],
so that a descent is computed in time qg/(2g+1)+o(1). (We do not use the large
prime(s) variants [33] as the memory needed appears to increase the cost.) It
follows that with area q1−1/(2g+1)+o(1), a ring operation can be computed in time
q1/2−1/(4g+2)+o(1) = qg/(2g+1)+o(1), giving an AT cost of q3g/(2g+1)+o(1).

For optimizing the discrete logarithm AT cost, we use the double large prime
variant of Gaudry et al. [33]. We put bq1−rc primes in our factor base. The first
step is finding an extended base of bq1−r/2c primes which can be written with less
than g log q factor base elements. The extended base size is doubled by finding
5q relations with g − 2 factors in the factor base, one in the extended base and
the last factor can be added to the extended base. The AT cost for generation
is therefore q1+(g−2)r+o(1). A descent is computed by searching a relation with
g− 2 factors1 in the base and 2 in the extended base. The AT cost for q1−r+o(1)
descents is q1−r+(g−2)r+2r/2+o(1) = q1+(g−2)r+o(1). Selecting r = 3

2g+1 leads to

an AT cost of q
5g−5
2g+1+o(1) for discrete logarithm. For g > 2, this is better than

Pollard rho.
Schemes using these groups were proposed [26], Verifiable Delay Functions

with trustless setup [89,69] or zk-SNARG [15], assuming the hardness of Adaptive
Division and/or Repeated Doubling in G.
1 It is possible to reduce the area, without changing the AT cost, by reducing this to
≈ g/3 and the extended base size to q1−

2
3g

+ 6
g2 for g large enough.

18 Paul Kirchner and Pierre-Alain Fouque

4.2 Special number fields: factoring, and discrete logarithm

We now consider the case of factoring and discrete logarithm, where we work in
Z[x]/(h,n) and n is often prime in discrete logarithm.G is chosen as (Z[x]/(h,n))×,
or a subgroup of it.

We consider two monic irreducible polynomials fi ∈ Z[x], with f1 of degree
d1, and f2 of degree d2, such that they have a known common factor g modulo n.
It follows that we have a ring homomorphism from Z[x] to Z[x]/fi, and moding
out by (n, g) to Z[x]/(g,n), and the diagram commutes.

Z[x]

Z[x]/f1 Z[x]/f2

(Z/nZ)[x]/h

For factoring or computing discrete logarithms in Fp, we have d1 = 1 and take
g = f1. f1 can be chosen as x−m with m ≈ n1/d2 , f2 as a base m expansion of
n.

The factor base consists as usual of all prime ideals of norm smaller than
some bound in the number fields Q ⊗ Z[x]/fi, and unit group generators. We
take B as the norm bound, for a total of at most B elements. More precisely, we
compute e the lcm of the class group cardinals, and the representative of p is a
generator of pe. The image of elements of Z[x]/fi in G can simply be computed
by a modular reduction, followed by an exponentiation by e. For simplicity, we
could force e = 1 as most number fields are principal.

When the group order ` is known, there is a faster choice, using Schirokauer’s
ideas [78]. We assume ` is prime, and prime with the number of roots of unity and
the class number of all fields, and does not ramify. The `-adic Iwasawa logarithm
is defined by its morphism property, log`(`) = 0 and

log`(1− x) =
∞∑
k=1

−xk

k

when it converges, log`(x
e)

e when it does not, with for example e = |(Z/`Z)[x]/f×i |.
We select a F` vector space of dimension di with corank the rank of the unit
group. Then, we expect that for all principal ideals prime with `, there is only
one reduction of the Iwasawa logarithm of the generators modulo ` in this space.
It implies that the generator is uniquely defined up to a `-th power, and there-
fore the image of the principal ideal in G is well-defined. This is extended to all
ideals by taking the e-th root of the image of the e-th power.

In order to find a prime factor p|n, we use section 3.3 with respect to Z/pZ
to compute gNi in Z/nZ for all gi in the factor base, with N a multiple of p− 1.
Then gcd(gNi − 1,n) reveals a multiple of p, unlikely to be n.

Getting Rid of Linear Algebra in Number Theory Problems 19

Descent on a ∈ Z/nZ can start if the norm of the factors in Z[x]/f1 is smaller
than N (n)o(1). A prime factor p appearing in the i-th number field can be cleared
by finding an element in Z[x] such that the image in Z[x]/fi has a factor p and
other smaller factors, and there exists a j 6= i such that the image in Z[x]/fj
has only smaller factors. All these new factors are then cleared recursively, until
they are all in the factor base, and this takes negligible time. This is detailed in
one case in appendix A.

We now describe how to do the first step efficiently. The first idea is to use
lattice reduction to compute a preimage of a of the form z/w with both terms in
Z[x]/f1, so thatN (z) ≈ N (w) ≈

√
N (n). While this is well-known, we show how

to use it to obtain a much larger gain. Critically, the element can be randomized,
so that a low success probability is not a problem.

Smoothing. From Barbulescu [5, 4.5] and Guillevic [36, Theorem 5.3], who
followed Pomerance’s Early Abort Strategy [72] we obtain:

Heuristic Claim 6 Given uniformly sampled numbers a, b and a constant α 6
1, it is possible to either fail or find a divisor and its factorization larger than
respectively aα and bα; the prime factors are all smaller than (a+ b)o(1) and the
expected running time of the algorithm per success is

Lab

[
1/3,

(
675α

361

)1/3

+ o(1)

]
.

The algorithm consists in ω(1) stages with ECM, with increasing smoothness
bounds, and early abort if the factored part is too small. (Barbulescu and Guille-
vic obtained their results only for one number and α = 1, however products of
numbers are known to be slightly smoother, and the density of rough numbers
allows to extend the result to lower α)

We combine this with Coppersmith’s factorization factory [20] to obtain:

Heuristic Claim 7 After a precomputation of time

Lab

1/3,(2025(18 + 7
√
6)

−1021 + 8241
√
6

)1/3

+ o(1)

,
we can, given uniformly sampled number a, b, either fail or factor both of them
with primes factors in (a+ b)o(1) and the expected running time per success is

Lab

1/3,(1350(7 + 3
√
6)

−1021 + 8241
√
6

)1/3

+ o(1)

.
Proof. We use the previous algorithm with some constant α. In case of success,
we run the factorization factory on both numbers in time

Lab

1/3,((1− α)10 + 4
√
6

9

)1/3

+ o(1)

.

20 Paul Kirchner and Pierre-Alain Fouque

The prime factors are smaller than (ab)1/ log log(ab) with probability Lab[1/3, o(1)].
Hence, the expected running time per success is

Lab

1/3,max

(
675α

361
,
(1− α)(10 + 4

√
6)

9

)1/3

+ o(1)

.
We choose

α =
722

12150 + 31097
√
6
≈ 0.54054069

which leads to the result, since the precomputation time is

Lab

1/3,((1− α)12 + 5
√
6

3

)1/3

+ o(1)

The constants are respectively ≈ 1.548569 and ≈ 1.003556, which is significantly
better than the previous ≈ 1.231966. We used the LLL algorithm [51] to obtain
shorter formulas for the exact value α. This is however too slow for several
applications.

For minimizing AT cost, we replace Coppersmith’s algorithm by Bernstein’s [7]
(with cost Ln[1/3, (5/3)4/3 + o(1)]) and obtain with α = 9025/13399 ≈ 0.6735:

σ = (16875/13399)1/3 ≈ 1.079917.

In our context, we can use Bernstein and Lange’s batch factorization [8], for a
fast batch smoothing algorithm. Their circuit factors Ln[1/3, 7

16 +o(1)] numbers
less than n, with an AT cost per number of

Ln

[
1/3,

5

18

3

√
117 + 36

√
10 + o(1)

]
with a constant less than 1.704, and a time of Ln

[
1/3, 1

6

3
√
117 + 36

√
10 + o(1)

]
.

Heuristic Claim 8 We can, given

Ln

1/3, 21
8

(
−9 + 9

√
10

1527 + 5693
√
10

)1/3

+ o(1)

sequences of uniformly sampled number a, b, either fail or factor both of them
with primes factors in (a+ b)o(1) and AT cost per success in each sequence is

Lab

1/3, 15(3 +
√
10

1527 + 5693
√
10

)1/3

+ o(1)

.
Proof. We use the same technique with

α =
5415 + 1805

√
10

1527 + 5693
√
10
≈ 0.5695339.

The constants in the claim are respectively ≈ 0.262189 and ≈ 1.021187. We call
σ ≈ 1.02 the smoothing constant.

Getting Rid of Linear Algebra in Number Theory Problems 21

Parameters. We take Q = ndeg g, di = δi

(
logQ

log logQ

)1/3
, B = LQ[1/3,β+ o(1)].

The total complexity is LQ(1/3,κ+ o(1)). (The Greek letter is chosen according
to the beginning of the word.)

Finding representatives. We assume that a preimage of the identity matrix
by a sparse small random integer matrix with m rows and at least m columns
can be computed in time mτ . It is known that τ 6 2.62902 in the standard
model [42]. When we can use Schirokauer’s ideas, it is enough to invert a sparse
random matrix modulo `, so we can use τ 6 2.2435 in the standard model [42,27].

The corresponding AT cost is τ = 4 in the first case, and τ = 3.5 in the
second, when we are limited to an area ofm1+o(1). Indeed, in the first case, we are
not interested in the preimages x which havem1+o(1) bits, but the corresponding
representative inG (modulo n), which is

∏
axi
i . As the vectors are computed from

the most significant bit to the least significant bit, we can reduce the memory
used to m1+o(1) per vector. Using a preconditioner block size of b

√
mc leads to

the result [42]: each bit is produced using a multiplication of a dense matrix of
dimension b

√
mc and a vector, plus O

(
m
b
√
mc

)
iterations of a conjugate gradient,

each one taking time m1/2+o(1) [86]. In the second case, we use Wiedemann’s
algorithm [90].

We actually have more area available, so that it is possible to decrease the
running time, and the AT cost (see [42,27]). The area available will be at least
m2+o(1) in our applications, so we can use a preconditioner block size of bm3/4c
and a lattice dimension of bm1/2c, for an AT cost of m3.25+o(1) in the first case.
In the second case, we can use a block size (or lattice dimension) of bm2/3c, for
an AT cost of m17/6+o(1).

Factorization. We have to compute each number fields in time Ln[1/3,κ+ o(1)],
which is therefore the number of elements whose smoothness is checked. They
are of norm Ln[2/3, δ2κ/2 + 1/δ2 + o(1)], so that with a smoothness bound of
Ln[1/3,β

′] we obtain

Ln

[
1/3,κ− δ2κ/2 + 1/δ2

3β′
+ o(1)

]
relations. We obtain the conditions:

κ− δ2κ/2 + 1/δ2
3β′

> β′

τβ′ 6 κ

and changing the first to an equality we get

β′ =
κ

2

(
1−

√
1− 2δ2

3κ
− 4

3δ2κ2

)
.

22 Paul Kirchner and Pierre-Alain Fouque

This finds the representative of all Ln[1/3,β′] smallest prime ideals in G. The
representative of an ideal p is found by computing a relation where it appears
with an exponent of one, and the other ideals in the relation are of norm smaller
than the norm of p. This idea was already sketched in 1993 [50, 9.5].

We now set the running time of a descent to Ln[1/3,σ + o(1)]. At the
bottom of the descent, we search for algebraic integers with coefficient size
Ln[1/3,κ/2 + o(1)], so that their norm is

Ln[2/3, δ2κ/2 + 1/δ2 + o(1)]

and the expected number of solutions is:

Ln

[
1/3,σ − δ2κ+ 4/δ2

6β
+ o(1)

]
.

We therefore add the condition:

σ =
δ2κ+ 4/δ2

6β
.

Finally, κ = σ + β. Using Lagrangian multipliers, we obtain:

κ =
4

δ22

Combining these equations we get:

κ =
9σ3 + 2

√
9σ3 + 1 + 2

9σ2
.

Even with the minimum σ, we need τ 6 4, which we can achieve.

Heuristic Claim 9 The Adaptive Division problem with parameter `, and find-
ing a factor p of n with gpf(p− 1) 6 ` can be both solved with an AT cost of

L`[1/2,
√
2 + o(1)]Ln[1/3, 1.92756123].

The Repeated Doubling problem in (Z/nZ)× with e doublings can be solved with
AT cost

log(e)Ln[1/3, 1.92756123].

For `,e low enough, this is better than Bernstein’s factorization algorithm which
has a constant of (5/3)4/3 ≈ 1.97605 [7]. We can use this for smoothing, after
the ECM steps, as we expect φ(n) to be as smooth as a uniform number. This
in turn, leads to a slight reduction of the constant.

Time-lock puzzles were built on this group [75], as well as Verifiable Delay
Functions with trustless setup [89,69] or zk-SNARG [15], which are assuming
the hardness of Adaptive Division and/or Repeated Doubling in G. RSA groups
where gpf(p− 1) is (relatively) smooth were proposed by Maurer and Yacobi for
a non-interactive key distribution scheme [61,67].

Getting Rid of Linear Algebra in Number Theory Problems 23

Discrete logarithm in high characteristic finite field extensions. Guille-
vic [36] invented a fast smoothing algorithm, when we work over Fpd , which
reduces the number to be factored to ≈ pd−d/r where r|d. It consists in multi-
plying by an element in Fpd/r , chosen so that the product is can be written as
a fraction of two short elements. They are obtained by lattice reduction. The
overall effect is that σ can be multiplied by (1− 1/r)−1/3.

JLSV [39] used lattice reduction to find polynomials of the same size as in
factoring, withQ = pd, as long as the characteristic p is larger than LQ[2/3,ω(1)].

Heuristic Claim 10 The Adversarial-Basis Discrete Logarithm problem in a
group of order `|pd−1, ` = LQ[2/3, o(1)] can be solved in the time given in table 3.

Table 3: Complexity of the Adversarial-Basis Discrete Logarithm Problem.

Smallest prime factor of d Complexity

2, 3 or 5 LQ[1/3, 3
√

64/9]

7 LQ[1/3, 1.9231]

Matyukhin’s generalized Joux Lercier method [59] uses a different d, with no
asymptotical difference.

Discrete logarithm in middle characteristic finite field extensions. We
consider now the case where the characteristic is in LQ[2/3,χ]. We choose the
conjugation method for generating the polynomials [6,68,77]. This means that
d1 = 2d2, Q = pd2 , and the coefficients of f1 are O(logQ) and the ones of f2 are
bounded by √p.

We now treat only the case where at the bottom of the descent, we sieve
on linear polynomials, over a space of volume LQ[1/3,κ]. It follows that the
norm in the first field is LQ[2/3,κδ2 + o(1)] and LQ

[
2/3, κδ22 + 1

2δ2
+ o(1)

]
for

the second. Thus, the descent succeeds when:

σ =
3κδ22 + 1

6δ2β
.

It follows that

κ =
6σ3 +

√
12σ3 + 1 + 1

6σ2
.

With our σ, this gives when χ ≈ 2.3071 equal to κ ≈ 1.77427. When d2 is
even, we can use the optimal parameters and κ = 24/33−1/3 ≈ 1.74716. The

24 Paul Kirchner and Pierre-Alain Fouque

τ required is 3 +
√
3 ≈ 4.73. The optimal AT cost for discrete logarithm is

κ = 54/33−12−2/3 ≈ 1.79536.
We consider now the case where the characteristic is in LQ[1/3,ω(1)] and

LQ[2/3, o(1)]. When we have to sieve a space of volume LQ[1/3,κ], we are forced
to use lattices of degree d ∈ ω(1), with pd = LQ[2/3, δ]. It follows that the norm
in the first field is LQ

[
2/3, 2κ

δ + o(1)
]
and LQ

[
2/3, δ2 + κ

δ + o(1)
]
for the second.

Thus, the descent succeeds when:

σ =
δ2 + 6κ

6δβ
.

This leads to κ = 25/33−1/3 ≈ 2.201284 for ABDL as τ 6 3 +
√
3 ≈ 4.73.

The optimal AT cost for discrete logarithm is κ = 54/33−12−1/3 ≈ 2.26201468.
We note that if a subfield of the right size exists, even lower complexities can

be reached [40,41]. Indeed, if the degree of the finite field has a factor of the right
size, we can replace Z by the integers of a number field, and obtain a complexity
identical to the previous case.

These are asymptotically the best algorithms in many (but not all) cases for
attacking pairings [23]. When the Pollard Rho algorithm takes roughly the same
time as finite field discrete logarithm, we have p = LQ[1/3,χ] with a relatively
large χ (e.g. from 3 to 8), so that the complexities are slightly higher.

5 Conclusion

We managed to remove the sparse system solving from many number theo-
retic algorithms by using black-box modular ring algorithms. We introduced a
new representation allowing us to perform efficiently all ring operations. We
proposed new black-box algorithms to recover the ring order and solve VDF
problems. Then, we showed that we can apply these algorithms in various rings
and groups. In particular, we proposed novel algorithms for the factorization
and adversarial basis discrete logarithm problems in various groups. Finally, we
described new smoothing algorithms in the AT cost and standard models which
are of independent interest.

Assuming we can lower the cost of smoothing, and that we can compute
descents with the same complexity as a relation in a multiple number field setup,
we can lower further the complexities in the standard model. For factoring, the
optimum is with a smoothing constant of σ = (100/243)1/3 ≈ 0.74381438 and
the cost of a ring operation would be 2

2.5σ =
(5/3)5/3

21/3
≈ 1.85953597

in the standard, or AT model. Likewise, all Multiple Number Field Sieve ABDL
complexities would be decreased, and fast smoothing is already possible when
the finite field degree has a small divisor.
2 This is below the minimum claimed in [54, 2.7]

Getting Rid of Linear Algebra in Number Theory Problems 25

It seems difficult to adapt the black box modular ring framework to a (flat)
torus, so that obtaining the generator of an ideal in a number field with this
kind of technique is an interesting challenge.

References

1. L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm
for discrete logarithms over the rational subgroup of the Jacobians of large genus
hyperelliptic curves over finite fields. In International Algorithmic Number Theory
Symposium, pages 28–40. Springer, 1994.

2. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS
2015, pages 5–17. ACM Press, Oct. 2015.

3. K. Alladi. An Erdos-Kac theorem for integers without large prime factors. Acta
Arith, 49(1):81–105, 1987.

4. A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics
of computation, 61(203):29–68, 1993.

5. R. Barbulescu. Algorithms of discrete logarithm in finite fields. Theses, Université
de Lorraine, Dec. 2013.

6. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain. Improving NFS for the
discrete logarithm problem in non-prime finite fields. In E. Oswald and M. Fis-
chlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 129–155.
Springer, Heidelberg, Apr. 2015.

7. D. J. Bernstein. Circuits for integer factorization: a proposal. 2001.
8. D. J. Bernstein and T. Lange. Batch NFS. In A. Joux and A. M. Youssef, editors,

SAC 2014, volume 8781 of LNCS, pages 38–58. Springer, Heidelberg, Aug. 2014.
9. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on

the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, Jan. 2003.

10. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, Aug. 2018.

11. D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/
712.

12. D. R. L. Brown and R. P. Gallant. The static Diffie-Hellman problem. Cryptology
ePrint Archive, Report 2004/306, 2004. http://eprint.iacr.org/2004/306.

13. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, June 1988.

14. J. P. Buhler, H. W. Lenstra, and C. Pomerance. Factoring integers with the number
field sieve. In The development of the number field sieve, pages 50–94. Springer,
1993.

15. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers.
In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

16. E. R. Canfield, P. Erdös, and C. Pomerance. On a problem of oppenheim concern-
ing “factorisatio numerorum”. Journal of Number Theory, 17(1):1–28, 1983.

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
http://eprint.iacr.org/2004/306

26 Paul Kirchner and Pierre-Alain Fouque

17. D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics
of computation, 48(177):95–101, 1987.

18. D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991.

19. J. H. Cheon. Discrete logarithm problems with auxiliary inputs. Journal of Cryp-
tology, 23(3):457–476, July 2010.

20. D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, Mar. 1993.

21. D. Coppersmith. Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation, 62(205):333–350, 1994.

22. D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p).
Algorithmica, 1(1):1–15, 1986.

23. G. De Micheli, P. Gaudry, and C. Pierrot. Asymptotic complexities of discrete
logarithm algorithms in pairing-relevant finite fields. In D. Micciancio and T. Ris-
tenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 32–61.
Springer, Heidelberg, Aug. 2020.

24. B. den Boer. Diffie-Hellman is as strong as discrete log for certain primes (rump
session). In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 530–
539. Springer, Heidelberg, Aug. 1990.

25. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976.

26. S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown order with
hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196, 2020. https:
//eprint.iacr.org/2020/196.

27. W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Solving sparse
rational linear systems. In Proceedings of the 2006 international symposium on
Symbolic and algebraic computation, pages 63–70, 2006.

28. A. Enge. The complexity of class polynomial computation via floating point ap-
proximations. Mathematics of Computation, 78(266):1089–1107, 2009.

29. A. Enge and F. Morain. Fast decomposition of polynomials with known Galois
group. In International Symposium on Applied Algebra, Algebraic Algorithms, and
Error-Correcting Codes, pages 254–264. Springer, 2003.

30. D. Freeman. Pairing-based identification schemes. Cryptology ePrint Archive,
Report 2005/336, 2005. http://eprint.iacr.org/2005/336.

31. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
19–34. Springer, Heidelberg, May 2000.

32. P. Gaudry. Index calculus for abelian varieties and the elliptic curve discrete
logarithm problem. Cryptology ePrint Archive, Report 2004/073, 2004. http:
//eprint.iacr.org/2004/073.

33. P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime vari-
ation for small genus hyperelliptic index calculus. Mathematics of computation,
76(257):475–492, 2007.

34. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual
Cryptology Conference, pages 75–92. Springer, 2013.

35. R. Granger. On the static Diffie-Hellman problem on elliptic curves over extension
fields. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 283–302.
Springer, Heidelberg, Dec. 2010.

36. A. Guillevic. Faster individual discrete logarithms in finite fields of composite
extension degree. Mathematics of Computation, 88(317):1273–1301, 2019.

https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2020/196
http://eprint.iacr.org/2005/336
http://eprint.iacr.org/2004/073
http://eprint.iacr.org/2004/073

Getting Rid of Linear Algebra in Number Theory Problems 27

37. A. Joux and R. Lercier. Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math.
Comput., 72(242):953–967, 2003.

38. A. Joux, R. Lercier, D. Naccache, and E. Thomé. Oracle-assisted static Diffie-
Hellman is easier than discrete logarithms. In M. G. Parker, editor, 12th IMA In-
ternational Conference on Cryptography and Coding, volume 5921 of LNCS, pages
351–367. Springer, Heidelberg, Dec. 2009.

39. A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the
medium prime case. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 326–344. Springer, Heidelberg, Aug. 2006.

40. T. Kim and R. Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In M. Robshaw and J. Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 543–571. Springer, Heidelberg, Aug. 2016.

41. T. Kim and J. Jeong. Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In S. Fehr, editor, PKC 2017, Part I,
volume 10174 of LNCS, pages 388–408. Springer, Heidelberg, Mar. 2017.

42. P. Kirchner. Fast linear algebra for number fields computation. To appear.
43. P. Kirchner and P.-A. Fouque. An improved BKW algorithm for LWE with appli-

cations to cryptography and lattices. In R. Gennaro and M. J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 43–62. Springer, Heidelberg,
Aug. 2015.

44. N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

45. N. Koblitz. Hyperelliptic cryptosystems. Journal of cryptology, 1(3):139–150, 1989.
46. N. Koblitz and A. Menezes. Another look at non-standard discrete log and Diffie-

Hellman problems. J. Math. Cryptol., 2(4):311–326, 2008.
47. P. Koiran. Valiant’s model and the cost of computing integers. Electron. Colloquium

Comput. Complex., (003), 2004.
48. M. Kraitchik. Théorie des Nombres. Gauthier-Villars, 1922.
49. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems.

Journal of the ACM (JACM), 32(1):229–246, 1985.
50. A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard. The number field

sieve. In The development of the number field sieve, pages 11–42. Springer, 1993.
51. A. K. Lenstra, H. W. J. Lenstra, and L. Lovász. Factoring polynomials with

rational coefficients. Math. Ann., 261:515–534, 1982.
52. A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. In J.-J. Quisquater

and J. Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 355–371.
Springer, Heidelberg, Apr. 1990.

53. A. K. Lenstra and A. Shamir. Analysis and optimization of the TWINKLE fac-
toring device. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 35–52. Springer, Heidelberg, May 2000.

54. A. K. Lenstra, A. Shamir, J. Tomlinson, and E. Tromer. Analysis of Bernstein’s
factorization circuit. In Y. Zheng, editor, ASIACRYPT 2002, volume 2501 of
LNCS, pages 1–26. Springer, Heidelberg, Dec. 2002.

55. A. K. Lenstra and B. Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. Int. J. Appl. Cryptogr., 3(4):330–343, 2017.

56. H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

57. H. W. Lenstra Jr, J. Pila, and C. Pomerance. A hyperelliptic smoothness test. i.
Philosophical Transactions of the Royal Society of London. Series A: Physical and
Engineering Sciences, 345(1676):397–408, 1993.

28 Paul Kirchner and Pierre-Alain Fouque

58. D. Matyukhin. On asymptotic complexity of computing discrete logarithms over
GF(p). Discrete Mathematics and Applications, 13(1):27–50, 2003.

59. D. V. Matyukhin. Effective version of the number field sieve for discrete logarithm
in a field GF (pk). Trudy po Diskretnoi Matematike, 9:121–151, 2006.

60. U. M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete algorithms. In Y. Desmedt, editor, CRYPTO’94, volume
839 of LNCS, pages 271–281. Springer, Heidelberg, Aug. 1994.

61. U. M. Maurer and Y. Yacobi. Non-interactive public-key cryptography. In D. W.
Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 498–507. Springer,
Heidelberg, Apr. 1991.

62. K. McCurley. Cryptographic key distribution and computation in class groups.
Proceedings of NATO ASI Number Theory and applications, pages 459–479, 1989.

63. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor,
CRYPTO’85, volume 218 of LNCS, pages 417–426. Springer, Heidelberg, Aug.
1986.

64. R. T. Moenck. Fast computation of gcds. In Proceedings of the fifth annual ACM
symposium on Theory of computing, pages 142–151, 1973.

65. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

66. D. Panario, X. Gourdon, and P. Flajolet. An analytic approach to smooth polyno-
mials over finite fields. In International Algorithmic Number Theory Symposium,
pages 226–236. Springer, 1998.

67. K. G. Paterson and S. Srinivasan. On the relations between non-interactive key
distribution, identity-based encryption and trapdoor discrete log groups. Designs,
Codes and Cryptography, 52(2):219–241, 2009.

68. C. Pierrot. The multiple number field sieve with conjugation and generalized Joux-
Lercier methods. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 156–170. Springer, Heidelberg, Apr. 2015.

69. K. Pietrzak. Simple verifiable delay functions. In A. Blum, editor, ITCS 2019,
volume 124, pages 60:1–60:15. LIPIcs, Jan. 2019.

70. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on information
Theory, 24(1):106–110, 1978.

71. J. M. Pollard. Theorems of factorization and primality testing. Proceedings of the
Cambridge Philosophical Society., 76(3):521–528, 1974.

72. C. Pomerance. Analysis and comparison of some integer factoring algorithms.
Computational methods in number theory, pages 89–139, 1982.

73. C. Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and
I. Ingemarsson, editors, EUROCRYPT’84, volume 209 of LNCS, pages 169–182.
Springer, Heidelberg, Apr. 1985.

74. R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, 1978.

75. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

76. L. Rotem and G. Segev. Generically speeding-up repeated squaring is equivalent
to factoring: Sharp thresholds for all generic-ring delay functions. In D. Micciancio
and T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
481–509. Springer, Heidelberg, Aug. 2020.

77. P. Sarkar and S. Singh. New complexity trade-offs for the (multiple) number field
sieve algorithm in non-prime fields. In M. Fischlin and J.-S. Coron, editors, EURO-

Getting Rid of Linear Algebra in Number Theory Problems 29

CRYPT 2016, Part I, volume 9665 of LNCS, pages 429–458. Springer, Heidelberg,
May 2016.

78. O. Schirokauer. Discrete logarithms and local units. Philosophical Transactions
of the Royal Society of London. Series A: Physical and Engineering Sciences,
345(1676):409–423, 1993.

79. R. Schoof. Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux, 7(1):219–254, 1995.

80. I. Semaev. Summation polynomials and the discrete logarithm problem on elliptic
curves. Cryptology ePrint Archive, Report 2004/031, 2004. http://eprint.iacr.org/
2004/031.

81. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidel-
berg, May 1997.

82. I. E. Shparlinski. Orders of points on elliptic curves. Contemporary Mathematics,
369:245–252, 2005.

83. A. V. Sutherland. Order computations in generic groups. PhD thesis, Mas-
sachusetts Institute of Technology, 2007.

84. A. V. Sutherland. Accelerating the CM method. LMS Journal of Computation
and Mathematics, 15:172–204, 2012.

85. E. Thomé. Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of symbolic computation,
33(5):757–775, 2002.

86. C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer.
Communications of the ACM, 20(4):263–271, 1977.

87. L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger. Factoring
as a service. In J. Grossklags and B. Preneel, editors, FC 2016, volume 9603 of
LNCS, pages 321–338. Springer, Heidelberg, Feb. 2016.

88. L. G. Valiant. Completeness Classes in Algebra. In M. J. Fischer, R. A. DeMillo,
N. A. Lynch, W. A. Burkhard, and A. V. Aho, editors, Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, pages 249–261. ACM, 1979.

89. B. Wesolowski. Efficient verifiable delay functions. In Y. Ishai and V. Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407.
Springer, Heidelberg, May 2019.

90. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE transactions
on information theory, 32(1):54–62, 1986.

91. H. C. Williams. A p+ 1 method of factoring. Mathematics of computation,
39(159):225–234, 1982.

http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2004/031

30 Paul Kirchner and Pierre-Alain Fouque

A Descent complexity

We describe how a descent works, in one case, which corresponds to factoring
and discrete logarithm with large characteristic. We want to descend an ideal p
of norm q 6 Qo(1), in time LQ[1/3,σ + o(1)].

We start by the case where the norm q is larger than LQ[1/3,C], with large
enough C (say log logQ). In order to descend an ideal, it is enough to find an
element of p which has no large factor beside p. We consider at most LQ[1/3,σ]
elements of degree t, so that the size of the coefficients is ≈ q1/t [51]. The
product of the norms is therefore ≈ Qt/d2qd1/t · Qt/d2qd2/t, which is optimized
with t ≈ d2

√
log q

2 logQ , t = ω(1) to

≈ Q(4+o(1))t/d2 = LQ[2/3, (4 + o(1))t/δ2] = LQ

[
1,

√
(8 + o(1)) log q

logQ

]
.

As we use ≈ LQ[1/3,σ] trials, the smoothness bound must be in

LQ

[
1/3,

(4 + o(1))t

3σδ2

]
= LQ

[
2/3,

√
(8 + o(1)) log q

9σ2 logQ

]
.

Since this is in LQ[2/3, o(1)], ECM runs in negligible time. This leads to O(logQ)

ideals to be recursively descended (more precisely, O
(
log1/3Q

)
). Observe that

the new t will be chosen near

d2

√
4t

3σδ2
log−1/3Q log log1/3Q ≈

√
(4 + o(1))tδ2

3σ
.

The norm of q decreases to below LQ[1/3,C] in less than log log t ≈ log log logQ
recursive steps.

We now analyze more precisely what happens when the ideal is in the i-th
field, its norm is in LQ[1/3, ν] and ν is small, less than log logQ. We use t = 1, in
order to simplify the analysis. The size of the elements used is now LQ[1/3,

ν+σ
2],

the product of the norms in the fields is

LQ[2/3, δ2
ν + σ

2
+

2

δ2
+ o(1)].

We set a smoothness bound so that the smoothness probability is LQ[1/3,−σ+
o(1)]. This is

LQ

[
1/3,β

σ + ν + 4/δ22
σ + β + 4/δ22

]
,

so that ν converges exponentially quickly to β.
As the number of branches is bounded by logQ, it follows that the number of

prime ideals at the end of the descent is bounded by exp((1+o(1)) ln logQ log log logQ) =
L[1/3, o(1)], and it can be completed in time (or AT cost) LQ[1/3,σ + o(1)].

	Getting Rid of Linear Algebra in Number Theory Problems

